WorldWideScience

Sample records for dynamic information elements

  1. Probabilistic models for access strategies to dynamic information elements

    DEFF Research Database (Denmark)

    Hansen, Martin Bøgsted; Olsen, Rasmus L.; Schwefel, Hans-Peter

    In various network services (e.g., routing and instances of context-sensitive networking) remote access to dynamically changing information elements is a required functionality. Three fundamentally different strategies for such access are investigated in this paper: (1) a reactive approach...... initiated by the requesting entity, and two versions of proactive approaches in which the entity that contains the information element actively propagates its changes to potential requesters, either (2) periodically or (3) triggered by changes of the information element. This paper develops probabilistic...... for information elements spread over a large number of network nodes are provided, which allow to draw conclusions on scalability properties. The impact of different distribution types for the network delays as well as for the time between changes of the information element on the mismatch probability...

  2. Elements of quantum information

    International Nuclear Information System (INIS)

    Schleich, W.P.

    2007-01-01

    Elements of Quantum Information introduces the reader to the fascinating field of quantum information processing, which lives on the interface between computer science, physics, mathematics, and engineering. This interdisciplinary branch of science thrives on the use of quantum mechanics as a resource for high potential modern applications. With its wide coverage of experiments, applications, and specialized topics - all written by renowned experts - Elements of Quantum Information provides and indispensable, up-to-date account of the state of the art of this rapidly advancing field and takes the reader straight up to the frontiers of current research. The articles have first appeared as a special issue of the journal 'Fortschritte der Physik / Progress of Physics'. Since then, they have been carefully updated. The book will be an inspiring source of information and insight for anyone researching and specializing in experiments and theory of quantum information. Topics addressed in Elements of Quantum Information include - Cavity Quantum Electrodynamics - Segmented Paul Traps - Cold Atoms and Bose-Einstein Condensates in Microtraps, Optical Lattices, and on Atom Chips - Rydberg Gases - Factorization of Numbers with Physical Systems - Entanglement of Continuous Variables - NMR and Solid State Quantum Computation - Quantum Algorithms and Quantum Machines - Complexity Theory - Quantum Crytography. (orig.)

  3. Elements of gas dynamics

    CERN Document Server

    Liepmann, H W

    2001-01-01

    The increasing importance of concepts from compressible fluid flow theory for aeronautical applications makes the republication of this first-rate text particularly timely. Intended mainly for aeronautics students, the text will also be helpful to practicing engineers and scientists who work on problems involving the aerodynamics of compressible fluids. Covering the general principles of gas dynamics to provide a working understanding of the essentials of gas flow, the contents of this book form the foundation for a study of the specialized literature and should give the necessary background

  4. Dynamic statistical information theory

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In recent years we extended Shannon static statistical information theory to dynamic processes and established a Shannon dynamic statistical information theory, whose core is the evolution law of dynamic entropy and dynamic information. We also proposed a corresponding Boltzmman dynamic statistical information theory. Based on the fact that the state variable evolution equation of respective dynamic systems, i.e. Fokker-Planck equation and Liouville diffusion equation can be regarded as their information symbol evolution equation, we derived the nonlinear evolution equations of Shannon dynamic entropy density and dynamic information density and the nonlinear evolution equations of Boltzmann dynamic entropy density and dynamic information density, that describe respectively the evolution law of dynamic entropy and dynamic information. The evolution equations of these two kinds of dynamic entropies and dynamic informations show in unison that the time rate of change of dynamic entropy densities is caused by their drift, diffusion and production in state variable space inside the systems and coordinate space in the transmission processes; and that the time rate of change of dynamic information densities originates from their drift, diffusion and dissipation in state variable space inside the systems and coordinate space in the transmission processes. Entropy and information have been combined with the state and its law of motion of the systems. Furthermore we presented the formulas of two kinds of entropy production rates and information dissipation rates, the expressions of two kinds of drift information flows and diffusion information flows. We proved that two kinds of information dissipation rates (or the decrease rates of the total information) were equal to their corresponding entropy production rates (or the increase rates of the total entropy) in the same dynamic system. We obtained the formulas of two kinds of dynamic mutual informations and dynamic channel

  5. Dynamics of Information Systems

    CERN Document Server

    Hirsch, Michael J; Murphey, Robert

    2010-01-01

    Our understanding of information and information dynamics has outgrown classical information theory. This book presents the research explaining the importance of information in the evolution of a distributed or networked system. It presents techniques for measuring the value or significance of information within the context of a system

  6. Dynamic Strategic Information Transmission

    OpenAIRE

    Mikhail Golosov; Vasiliki Skreta; Aleh Tsyvinski; Andrea Wilson

    2011-01-01

    This paper studies strategic information transmission in a dynamic environment where, each period, a privately informed expert sends a message and a decision maker takes an action. Our main result is that, in contrast to a static environment, full information revelation is possible. The gradual revelation of information and the eventual full revelation is supported by the dynamic rewards and punishments. The construction of a fully revealing equilibrium relies on two key features. The first f...

  7. The Dynamics of Information

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    efficacy at making predictions in the real world. About the speaker Bernardo Huberman is a Senior HP Fellow and Director of the Information Dynamics Lab at Hewlett Packard Laboratories. He received his Ph.D. in Physics from the University of Pennsylvania, and is currently a Consulting Professor in the Department of Applied Physics at Stanford University...

  8. A CAREM type fuel element dynamic analysis

    International Nuclear Information System (INIS)

    Magoia, J.E.

    1990-01-01

    A first analysis on the dynamic behaviour of a fuel element designed for the CAREM nuclear reactor (Central Argentina de Elementos Modulares) was performed. The model used to represent this dynamic behaviour was satisfactorily evaluated. Using primary estimations for some of its numerical parameters, a first approximation to its natural vibrational modes was obtained. Results obtained from fuel elements frequently used in nuclear power plants of the PWR (Pressurized Water Reactors) type, are compared with values resulting from similar analysis. (Author) [es

  9. Chemical elements dynamic in the fermentation process of ethanol producing

    International Nuclear Information System (INIS)

    Nepomuceno, N.; Nadai Fernandes, E.A. de; Bacchi, M.A.

    1994-01-01

    This paper provides useful information about the dynamics of chemical elements analysed by instrumental neutron activation analysis (INAA) and, found in the various segments of the fermentation process of producing ethanol from sugar cane. For this, a mass balance of Ce, Co, Cs, Eu, Fe, Hf, La, Sc, Sm, and Th, terrigenous elements, as well as Br, K, Rb, and Zn, sugar cane plant elements, has been demonstrated for the fermentation vats in industrial conditions of ethanol production. (author). 10 refs, 4 figs, 1 tab

  10. Finite-element analysis of dynamic fracture

    Science.gov (United States)

    Aberson, J. A.; Anderson, J. M.; King, W. W.

    1976-01-01

    Applications of the finite element method to the two dimensional elastodynamics of cracked structures are presented. Stress intensity factors are computed for two problems involving stationary cracks. The first serves as a vehicle for discussing lumped-mass and consistent-mass characterizations of inertia. In the second problem, the behavior of a photoelastic dynamic tear test specimen is determined for the time prior to crack propagation. Some results of a finite element simulation of rapid crack propagation in an infinite body are discussed.

  11. Asymmetric information and macroeconomic dynamics

    Science.gov (United States)

    Hawkins, Raymond J.; Aoki, Masanao; Roy Frieden, B.

    2010-09-01

    We show how macroeconomic dynamics can be derived from asymmetric information. As an illustration of the utility of this approach we derive the equilibrium density, non-equilibrium densities and the equation of motion for the response to a demand shock for productivity in a simple economy. Novel consequences of this approach include a natural incorporation of time dependence into macroeconomics and a common information-theoretic basis for economics and other fields seeking to link micro-dynamics and macro-observables.

  12. An efficient finite element solution for gear dynamics

    International Nuclear Information System (INIS)

    Cooley, C G; Parker, R G; Vijayakar, S M

    2010-01-01

    A finite element formulation for the dynamic response of gear pairs is proposed. Following an established approach in lumped parameter gear dynamic models, the static solution is used as the excitation in a frequency domain solution of the finite element vibration model. The nonlinear finite element/contact mechanics formulation provides accurate calculation of the static solution and average mesh stiffness that are used in the dynamic simulation. The frequency domain finite element calculation of dynamic response compares well with numerically integrated (time domain) finite element dynamic results and previously published experimental results. Simulation time with the proposed formulation is two orders of magnitude lower than numerically integrated dynamic results. This formulation admits system level dynamic gearbox response, which may include multiple gear meshes, flexible shafts, rolling element bearings, housing structures, and other deformable components.

  13. Spatiotemporal Wave Patterns: Information Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mikhail Rabinovich; Lev Tsimring

    2006-01-20

    Pattern formation has traditionally been studied in non-equilibrium physics from the viewpoint of describing the basic structures and their interactions. While this is still an important area of research, the emphasis in the last few years has shifted towards analysis of specific properties of patterns in various complex media. For example, diverse and unexpected phenomena occur in neuro-like media that are characterized by highly non-trivial local dynamics. We carried out an active research program on analysis of spatio-temporal patterns in various physical systems (convection, oscillating fluid layer, soap film), as well as in neuro-like media, with an emphasis on informational aspects of the dynamics. Nonlinear nonequilibrium media and their discrete analogs have a unique ability to represent, memorize, and process the information contained in spatio-temporal patterns. Recent neurophysiological experiments demonstrated a certain universality of spatio-temporal representation of information by neural ensembles. Information processing is also revealed in the spatio-temporal dynamics of cellular patterns in nonequilibrium media. It is extremely important for many applications to study the informational aspects of these dynamics, including the origins and mechanisms of information generation, propagation and storage. Some of our results are: the discovery of self-organization of periodically oscillatory patterns in chaotic heterogeneous media; the analysis of the propagation of the information along a chaotic media as function of the entropy of the signal; the analysis of wave propagation in discrete non-equilibrium media with autocatalytic properties, which simulates the calcium dynamics in cellular membranes. Based on biological experiments we suggest the mechanism by which the spatial sensory information is transferred into the spatio-temporal code in the neural media. We also found a new mechanism of self-pinning in cellular structures and the related phenomenon

  14. Dynamics of intracellular information decoding

    International Nuclear Information System (INIS)

    Kobayashi, Tetsuya J; Kamimura, Atsushi

    2011-01-01

    A variety of cellular functions are robust even to substantial intrinsic and extrinsic noise in intracellular reactions and the environment that could be strong enough to impair or limit them. In particular, of substantial importance is cellular decision-making in which a cell chooses a fate or behavior on the basis of information conveyed in noisy external signals. For robust decoding, the crucial step is filtering out the noise inevitably added during information transmission. As a minimal and optimal implementation of such an information decoding process, the autocatalytic phosphorylation and autocatalytic dephosphorylation (aPadP) cycle was recently proposed. Here, we analyze the dynamical properties of the aPadP cycle in detail. We describe the dynamical roles of the stationary and short-term responses in determining the efficiency of information decoding and clarify the optimality of the threshold value of the stationary response and its information-theoretical meaning. Furthermore, we investigate the robustness of the aPadP cycle against the receptor inactivation time and intrinsic noise. Finally, we discuss the relationship among information decoding with information-dependent actions, bet-hedging and network modularity

  15. Dynamics of intracellular information decoding.

    Science.gov (United States)

    Kobayashi, Tetsuya J; Kamimura, Atsushi

    2011-10-01

    A variety of cellular functions are robust even to substantial intrinsic and extrinsic noise in intracellular reactions and the environment that could be strong enough to impair or limit them. In particular, of substantial importance is cellular decision-making in which a cell chooses a fate or behavior on the basis of information conveyed in noisy external signals. For robust decoding, the crucial step is filtering out the noise inevitably added during information transmission. As a minimal and optimal implementation of such an information decoding process, the autocatalytic phosphorylation and autocatalytic dephosphorylation (aPadP) cycle was recently proposed. Here, we analyze the dynamical properties of the aPadP cycle in detail. We describe the dynamical roles of the stationary and short-term responses in determining the efficiency of information decoding and clarify the optimality of the threshold value of the stationary response and its information-theoretical meaning. Furthermore, we investigate the robustness of the aPadP cycle against the receptor inactivation time and intrinsic noise. Finally, we discuss the relationship among information decoding with information-dependent actions, bet-hedging and network modularity.

  16. Dynamic characterization of the CAREM fuel element prototype

    International Nuclear Information System (INIS)

    Ghiselli, Alberto M.; Fiori, Jose M.; Ibanez, Luis A.

    2004-01-01

    As a previous step to make a complete test plan to evaluate the hydrodynamic behavior of the present configuration of the CAREM type fuel element, a dynamic characterization analysis is required, without the dynamic response induced by the flowing fluid. This paper presents the tests made, the methods and instrumentation used, and the results obtained in order to obtain a complete dynamic characterization of the CAREM type fuel element. (author)

  17. Matrix Elements in Fermion Dynamical Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    LIU Guang-Zhou; LIU Wei

    2002-01-01

    In a neutron-proton system, the matrix elements of the generators for SO(8) × SO(8) symmetry areconstructed explicitly, and with these matrix elements the low-lying excitation spectra obtained by diagonalization arepresented. The excitation spectra for SO(7) nuclei Pd and Ru isotopes and SO(6) r-soft rotational nuclei Xe, Ba, andCe isotopes are calculated, and comparison with the experimental results is carried out.

  18. Matrix Elements in Fermion Dynamical Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    LIUGuang-Zhou; LIUWei

    2002-01-01

    In a neutron-proton system,the matrix elements of the generators for SO(8)×SO(8) symmetry are constructed exp;icitly,and with these matrix elements the low-lying excitation spsectra obtained by diagonalization are presented.The excitation spectra for SO(7) nuclei Pd and Ru isotopes and SO(6) r-soft rotational nuclei Xe,Ba,and Ce isotopes are calculated,and comparison with the experimental results is carried out.

  19. Information feedback and mass media effects in cultural dynamics

    OpenAIRE

    Gonzalez-Avella, J. C.; Cosenza, M. G.; Klemm, K.; Eguiluz, V. M.; Miguel, M. San

    2007-01-01

    We study the effects of different forms of information feedback associated with mass media on an agent-agent based model of the dynamics of cultural dissemination. In addition to some processes previously considered, we also examine a model of local mass media influence in cultural dynamics. Two mechanisms of information feedback are investigated: (i) direct mass media influence, where local or global mass media act as an additional element in the network of interactions of each agent, and (i...

  20. Dynamic relaxation method in analysis of reinforced concrete bent elements

    Directory of Open Access Journals (Sweden)

    Anna Szcześniak

    2015-12-01

    Full Text Available The paper presents a method for the analysis of nonlinear behaviour of reinforced concrete bent elements subjected to short-term static load. The considerations in the range of modelling of deformation processes of reinforced concrete element were carried out. The method of structure effort analysis was developed using the finite difference method. The Dynamic Relaxation Method, which — after introduction of critical damping — allows for description of the static behaviour of a structural element, was used to solve the system of nonlinear equilibrium equations. In order to increase the method effectiveness in the range of the post-critical analysis, the Arc Length Parameter on the equilibrium path was introduced into the computational procedure.[b]Keywords[/b]: reinforced concrete elements, physical nonlinearity, geometrical nonlinearity, dynamic relaxation method, arc-length method

  1. INVESTIGATION OF DYNAMIC CHARACTERISTICS OF ELEMENTS OF AUTOMATICS OF A SMART HOUSE IN PARAMETRICAL STRUCTURAL SCHEMES

    Directory of Open Access Journals (Sweden)

    Petrova Irina Yur’evna

    2018-01-01

    Full Text Available Subject: automation of calculation of dynamic characteristics of the device being designed in the system of conceptual design of sensor equipment, structurally-parametric models of dynamic processes and algorithms for the automated calculation of the qualitative characteristics of elements of the information-measuring and control systems (IMCS. The stage of conceptual design most fully determines the operational characteristics of technical systems. However, none of the information support systems of this stage provides an opportunity to evaluate the performance characteristics of the element being designed taking into account its dynamic characteristics. Research objectives: increasing the effectiveness of the evaluation of dynamic characteristics of sensitive elements of the information-measuring and control systems of a smart house. Materials and methods: when solving the problems posed, the mathematical apparatus of system modeling was used (in particular, the energy-information method of modeling processes of various physical nature that occur in the sensor equipment; the main provisions of the theory of automatic control, the theory of constructing computer-aided design systems, the theory of operational calculus; basics of conceptual design of elements of the information-measuring and control systems. Results: we compared the known automated systems for conceptual design of sensors, highlighted their advantages and disadvantages and we showed that none of these systems allows us to investigate dynamic characteristics of the element being designed in a simple and understandable for engineer form. The authors proposed using energy-information method of modeling for the synthesis of operation principles of sensors and analysis of their dynamic characteristics. We considered elementary dynamic chains and issues of synthesis of parametrical structural schemes that reflect the dynamics of the process with the use of mathematical apparatus of

  2. Dynamics of Information as Natural Computation

    Directory of Open Access Journals (Sweden)

    Gordana Dodig Crnkovic

    2011-08-01

    Full Text Available Processes considered rendering information dynamics have been studied, among others in: questions and answers, observations, communication, learning, belief revision, logical inference, game-theoretic interactions and computation. This article will put the computational approaches into a broader context of natural computation, where information dynamics is not only found in human communication and computational machinery but also in the entire nature. Information is understood as representing the world (reality as an informational web for a cognizing agent, while information dynamics (information processing, computation realizes physical laws through which all the changes of informational structures unfold. Computation as it appears in the natural world is more general than the human process of calculation modeled by the Turing machine. Natural computing is epitomized through the interactions of concurrent, in general asynchronous computational processes which are adequately represented by what Abramsky names “the second generation models of computation” [1] which we argue to be the most general representation of information dynamics.

  3. An implicit finite element method for discrete dynamic fracture

    Energy Technology Data Exchange (ETDEWEB)

    Gerken, Jobie M. [Colorado State Univ., Fort Collins, CO (United States)

    1999-12-01

    A method for modeling the discrete fracture of two-dimensional linear elastic structures with a distribution of small cracks subject to dynamic conditions has been developed. The foundation for this numerical model is a plane element formulated from the Hu-Washizu energy principle. The distribution of small cracks is incorporated into the numerical model by including a small crack at each element interface. The additional strain field in an element adjacent to this crack is treated as an externally applied strain field in the Hu-Washizu energy principle. The resulting stiffness matrix is that of a standard plane element. The resulting load vector is that of a standard plane element with an additional term that includes the externally applied strain field. Except for the crack strain field equations, all terms of the stiffness matrix and load vector are integrated symbolically in Maple V so that fully integrated plane stress and plane strain elements are constructed. The crack strain field equations are integrated numerically. The modeling of dynamic behavior of simple structures was demonstrated within acceptable engineering accuracy. In the model of axial and transverse vibration of a beam and the breathing mode of vibration of a thin ring, the dynamic characteristics were shown to be within expected limits. The models dominated by tensile forces (the axially loaded beam and the pressurized ring) were within 0.5% of the theoretical values while the shear dominated model (the transversely loaded beam) is within 5% of the calculated theoretical value. The constant strain field of the tensile problems can be modeled exactly by the numerical model. The numerical results should therefore, be exact. The discrepancies can be accounted for by errors in the calculation of frequency from the numerical results. The linear strain field of the transverse model must be modeled by a series of constant strain elements. This is an approximation to the true strain field, so some

  4. Information flow dynamics in the brain

    Science.gov (United States)

    Rabinovich, Mikhail I.; Afraimovich, Valentin S.; Bick, Christian; Varona, Pablo

    2012-03-01

    Timing and dynamics of information in the brain is a hot field in modern neuroscience. The analysis of the temporal evolution of brain information is crucially important for the understanding of higher cognitive mechanisms in normal and pathological states. From the perspective of information dynamics, in this review we discuss working memory capacity, language dynamics, goal-dependent behavior programming and other functions of brain activity. In contrast with the classical description of information theory, which is mostly algebraic, brain flow information dynamics deals with problems such as the stability/instability of information flows, their quality, the timing of sequential processing, the top-down cognitive control of perceptual information, and information creation. In this framework, different types of information flow instabilities correspond to different cognitive disorders. On the other hand, the robustness of cognitive activity is related to the control of the information flow stability. We discuss these problems using both experimental and theoretical approaches, and we argue that brain activity is better understood considering information flows in the phase space of the corresponding dynamical model. In particular, we show how theory helps to understand intriguing experimental results in this matter, and how recent knowledge inspires new theoretical formalisms that can be tested with modern experimental techniques.

  5. 21 CFR 50.25 - Elements of informed consent.

    Science.gov (United States)

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROTECTION OF HUMAN SUBJECTS Informed Consent of Human Subjects § 50.25 Elements of informed consent. (a) Basic... pertinent questions about the research and research subjects' rights, and whom to contact in the event of a...

  6. Information spreading dynamics in hypernetworks

    Science.gov (United States)

    Suo, Qi; Guo, Jin-Li; Shen, Ai-Zhong

    2018-04-01

    Contact pattern and spreading strategy fundamentally influence the spread of information. Current mathematical methods largely assume that contacts between individuals are fixed by networks. In fact, individuals are affected by all his/her neighbors in different social relationships. Here, we develop a mathematical approach to depict the information spreading process in hypernetworks. Each individual is viewed as a node, and each social relationship containing the individual is viewed as a hyperedge. Based on SIS epidemic model, we construct two spreading models. One model is based on global transmission, corresponding to RP strategy. The other is based on local transmission, corresponding to CP strategy. These models can degenerate into complex network models with a special parameter. Thus hypernetwork models extend the traditional models and are more realistic. Further, we discuss the impact of parameters including structure parameters of hypernetwork, spreading rate, recovering rate as well as information seed on the models. Propagation time and density of informed nodes can reveal the overall trend of information dissemination. Comparing these two models, we find out that there is no spreading threshold in RP, while there exists a spreading threshold in CP. The RP strategy induces a broader and faster information spreading process under the same parameters.

  7. Automating the generation of finite element dynamical cores with Firedrake

    Science.gov (United States)

    Ham, David; Mitchell, Lawrence; Homolya, Miklós; Luporini, Fabio; Gibson, Thomas; Kelly, Paul; Cotter, Colin; Lange, Michael; Kramer, Stephan; Shipton, Jemma; Yamazaki, Hiroe; Paganini, Alberto; Kärnä, Tuomas

    2017-04-01

    The development of a dynamical core is an increasingly complex software engineering undertaking. As the equations become more complete, the discretisations more sophisticated and the hardware acquires ever more fine-grained parallelism and deeper memory hierarchies, the problem of building, testing and modifying dynamical cores becomes increasingly complex. Here we present Firedrake, a code generation system for the finite element method with specialist features designed to support the creation of geoscientific models. Using Firedrake, the dynamical core developer writes the partial differential equations in weak form in a high level mathematical notation. Appropriate function spaces are chosen and time stepping loops written at the same high level. When the programme is run, Firedrake generates high performance C code for the resulting numerics which are executed in parallel. Models in Firedrake typically take a tiny fraction of the lines of code required by traditional hand-coding techniques. They support more sophisticated numerics than are easily achieved by hand, and the resulting code is frequently higher performance. Critically, debugging, modifying and extending a model written in Firedrake is vastly easier than by traditional methods due to the small, highly mathematical code base. Firedrake supports a wide range of key features for dynamical core creation: A vast range of discretisations, including both continuous and discontinuous spaces and mimetic (C-grid-like) elements which optimally represent force balances in geophysical flows. High aspect ratio layered meshes suitable for ocean and atmosphere domains. Curved elements for high accuracy representations of the sphere. Support for non-finite element operators, such as parametrisations. Access to PETSc, a world-leading library of programmable linear and nonlinear solvers. High performance adjoint models generated automatically by symbolically reasoning about the forward model. This poster will present

  8. Viscoelastic dynamic models of resilient elements used in railway tracks

    Directory of Open Access Journals (Sweden)

    Zbiciak Artur

    2016-01-01

    Full Text Available The paper presents selected theoretical aspects concerning viscoelastic dynamic modelling of resilient elements used in railway tracks. In order to characterize the research methodology for resilient mats in railway tracks, German Standards [1-4] are used herein. The main goal of the paper is to demonstrate the procedure of insertion loss calculation for a single degree of freedom truck system containing under-ballast mats. Selected results of certain dynamic characteristics of resilient truck systems (transmissibility, Bode and Nyquist plots etc. are also discussed. The results of calculations visualized in graphs, were obtained by using own applications written in programming language MATLAB.

  9. Nonlinear dynamic analysis using Petrov-Galerkin natural element method

    International Nuclear Information System (INIS)

    Lee, Hong Woo; Cho, Jin Rae

    2004-01-01

    According to our previous study, it is confirmed that the Petrov-Galerkin Natural Element Method (PG-NEM) completely resolves the numerical integration inaccuracy in the conventional Bubnov-Galerkin Natural Element Method (BG-NEM). This paper is an extension of PG-NEM to two-dimensional nonlinear dynamic problem. For the analysis, a constant average acceleration method and a linearized total Lagrangian formulation is introduced with the PG-NEM. At every time step, the grid points are updated and the shape functions are reproduced from the relocated nodal distribution. This process enables the PG-NEM to provide more accurate and robust approximations. The representative numerical experiments performed by the test Fortran program, and the numerical results confirmed that the PG-NEM effectively and accurately approximates the nonlinear dynamic problem

  10. How does selfing affect the dynamics of selfish transposable elements?

    Directory of Open Access Journals (Sweden)

    Boutin Thibaud S

    2012-03-01

    Full Text Available Abstract Background Many theoretical models predicting the dynamics of transposable elements (TEs in genomes, populations, and species have already been proposed. However, most of them only focus on populations of sexual diploid individuals, and TE dynamics in populations partly composed by autogamous individuals remains poorly investigated. To estimate the impact of selfing on TE dynamics, the short- and long-term evolution of TEs was simulated in outcrossing populations with various proportions of selfing individuals. Results Selfing has a deep impact on TE dynamics: the higher the selfing rate, the lower the probability of invasion. Already known non-equilibrium dynamics (complete loss, domestication, cyclical invasion of TEs can all be described whatever the mating system. However, their pattern and their respective frequencies greatly depend on the selfing rate. For instance, in cyclical dynamics resulting from interactions between autonomous and non-autonomous copies, cycles are faster when the selfing rate increases. Interestingly, an abrupt change in the mating system from sexuality to complete asexuality leads to the loss of all the elements over a few hundred generations. In general, for intermediate selfing rates, the transposition activity remains maintained. Conclusions Our theoretical results evidence that a clear and systematic contrast in TE content according to the mating system is expected, with a smooth transition for intermediate selfing rates. Several parameters impact the TE copy number, and all dynamics described in allogamous populations can be also observed in partly autogamous species. This study thus provides new insights to understand the complex signal from empirical comparison of closely related species with different mating systems.

  11. Quasifission Dynamics in the Formation of Superheavy Elements

    Directory of Open Access Journals (Sweden)

    Hinde D.J.

    2017-01-01

    Full Text Available Superheavy elements are created through the fusion of two heavy nuclei. The large Coulomb energy that makes superheavy elements unstable also makes fusion forming a compact compound nucleus very unlikely. Instead, after sticking together for a short time, the two nuclei usually come apart, in a process called quasifission. Mass-angle distributions give the most direct information on the characteristics and time scales of quasifission. A systematic study of carefully chosen mass-angle distributions has provided information on the global trends of quasifission. Large deviations from these systematics at beam energies near the capture barrier reveal the major role played by the nuclear structure of the two colliding nuclei in determining the reaction outcome, and thus implicitly in hindering or favouring superheavy element synthesis.

  12. A modified discrete element model for sea ice dynamics

    Institute of Scientific and Technical Information of China (English)

    LI Baohui; LI Hai; LIU Yu; WANG Anliang; JI Shunying

    2014-01-01

    Considering the discontinuous characteristics of sea ice on various scales, a modified discrete element mod-el (DEM) for sea ice dynamics is developed based on the granular material rheology. In this modified DEM, a soft sea ice particle element is introduced as a self-adjustive particle size function. Each ice particle can be treated as an assembly of ice floes, with its concentration and thickness changing to variable sizes un-der the conservation of mass. In this model, the contact forces among ice particles are calculated using a viscous-elastic-plastic model, while the maximum shear forces are described with the Mohr-Coulomb fric-tion law. With this modified DEM, the ice flow dynamics is simulated under the drags of wind and current in a channel of various widths. The thicknesses, concentrations and velocities of ice particles are obtained, and then reasonable dynamic process is analyzed. The sea ice dynamic process is also simulated in a vortex wind field. Taking the influence of thermodynamics into account, this modified DEM will be improved in the future work.

  13. Information-flux approach to multiple-spin dynamics

    International Nuclear Information System (INIS)

    Di Franco, C.; Paternostro, M.; Kim, M. S.; Palma, G. M.

    2007-01-01

    We introduce and formalize the concept of information flux in a many-body register as the influence that the dynamics of a specific element receive from any other element of the register. By quantifying the information flux in a protocol, we can design the most appropriate initial state of the system and, noticeably, the distribution of coupling strengths among the parts of the register itself. The intuitive nature of this tool and its flexibility, which allow for easily manageable numerical approaches when analytic expressions are not straightforward, are greatly useful in interacting many-body systems such as quantum spin chains. We illustrate the use of this concept in quantum cloning and quantum state transfer and we also sketch its extension to nonunitary dynamics

  14. Developments in Dynamic Analysis for quantitative PIXE true elemental imaging

    International Nuclear Information System (INIS)

    Ryan, C.G.

    2001-01-01

    Dynamic Analysis (DA) is a method for projecting quantitative major and trace element images from PIXE event data-streams (off-line or on-line) obtained using the Nuclear Microprobe. The method separates full elemental spectral signatures to produce images that strongly reject artifacts due to overlapping elements, detector effects (such as escape peaks and tailing) and background. The images are also quantitative, stored in ppm-charge units, enabling images to be directly interrogated for the concentrations of all elements in areas of the images. Recent advances in the method include the correction for changing X-ray yields due to varying sample compositions across the image area and the construction of statistical variance images. The resulting accuracy of major element concentrations extracted directly from these images is better than 3% relative as determined from comparisons with electron microprobe point analysis. These results are complemented by error estimates derived from the variance images together with detection limits. This paper provides an update of research on these issues, introduces new software designed to make DA more accessible, and illustrates the application of the method to selected geological problems.

  15. Investigations on Actuator Dynamics through Theoretical and Finite Element Approach

    Directory of Open Access Journals (Sweden)

    Somashekhar S. Hiremath

    2010-01-01

    Full Text Available This paper gives a new approach for modeling the fluid-structure interaction of servovalve component-actuator. The analyzed valve is a precision flow control valve-jet pipe electrohydraulic servovalve. The positioning of an actuator depends upon the flow rate from control ports, in turn depends on the spool position. Theoretical investigation is made for No-load condition and Load condition for an actuator. These are used in finite element modeling of an actuator. The fluid-structure-interaction (FSI is established between the piston and the fluid cavities at the piston end. The fluid cavities were modeled with special purpose hydrostatic fluid elements while the piston is modeled with brick elements. The finite element method is used to simulate the variation of cavity pressure, cavity volume, mass flow rate, and the actuator velocity. The finite element analysis is extended to study the system's linearized response to harmonic excitation using direct solution steady-state dynamics. It was observed from the analysis that the natural frequency of the actuator depends upon the position of the piston in the cylinder. This is a close match with theoretical and simulation results. The effect of bulk modulus is also presented in the paper.

  16. Business Intelligence tools as an element of information supply system

    Directory of Open Access Journals (Sweden)

    Agnieszka Szmelter

    2013-12-01

    Full Text Available This paper aims to present theBusiness Intelligence toolsas an element improvingflow of information withinthe management information systemand as atool to facilitate theachieving the objectives ofinformation supply system.In the firstpart of the paperthe author presents the issuesrelatedto the specific character of information as a kind of resource and functioning ofthe information supply systemin the enterprise. The secondpart of the articleincludethe characteristics ofBusiness Intelligence systems. The thirdpart deals withthe impact ofBusiness Intelligence toolsto the ongoingactivities ofinformation supply system.

  17. Basic functions of telecommunication channel elements for successful information transmission

    Directory of Open Access Journals (Sweden)

    Milorad S. Markagić

    2011-04-01

    Full Text Available The challenge in the field of multimedia telecommunications is an attempt to integrate texts, sound, images and videos coherently and consistently and to ensure simplicity and interactivity of operation. In order to make the proposed multimedia applications acceptable to end-users, the quality of transmission through the network and message presentation should have special attention. The main aims of this paper are the introduction to the communication channel with its basic elements, a detailed description of the information source and the presentation of possible approaches to the analysis of the telecommunication channel. Introduction In the age of mass application of various communication means, end-users of telecommunication channel elements rarely pay attention to the processes taking place in everyday communication and the elements presented in the channel. In order to discuss all the factors that influence the establishment and maintenance of the links, this paper will explain the basic elements of telecommunication channels. Source Every object that generates messages to be transferred to a recipient is called the source of the message. Directors, writers, speakers, books, newspapers, various instruments (thermometer, barometer, ammeter, etc., computers, a man himself - these are all sources of various messages. In relation to facilities that generate messages, there are different sources of messages. All the messages that they generate belong to discrete or continuous modes of messages. Discrete messages can be presented with element sets, where elements can be considered through different values of observed messages. Each text message of arbitrary length, for example, is made of a finite number of elements - symbols (letters, numbers, punctuation marks, from the set of symbols called the alphabet message source. Continuous messages can be presented with an infinite number of sets of elements where elements can have different values of

  18. Dynamic Epigenetic Control of Highly Conserved Noncoding Elements

    KAUST Repository

    Seridi, Loqmane

    2014-10-07

    Background Many noncoding genomic loci have remained constant over long evolutionary periods, suggesting that they are exposed to strong selective pressures. The molecular functions of these elements have been partially elucidated, but the fundamental reason for their extreme conservation is still unknown. Results To gain new insights into the extreme selection of highly conserved noncoding elements (HCNEs), we used a systematic analysis of multi-omic data to study the epigenetic regulation of such elements during the development of Drosophila melanogaster. At the sequence level, HCNEs are GC-rich and have a characteristic oligomeric composition. They have higher levels of stable nucleosome occupancy than their flanking regions, and lower levels of mononucleosomes and H3.3, suggesting that these regions reside in compact chromatin. Furthermore, these regions showed remarkable modulations in histone modification and the expression levels of adjacent genes during development. Although HCNEs are primarily initiated late in replication, about 10% were related to early replication origins. Finally, HCNEs showed strong enrichment within lamina-associated domains. Conclusion HCNEs have distinct and protective sequence properties, undergo dynamic epigenetic regulation, and appear to be associated with the structural components of the chromatin, replication origins, and nuclear matrix. These observations indicate that such elements are likely to have essential cellular functions, and offer insights into their epigenetic properties.

  19. Dynamic Epigenetic Control of Highly Conserved Noncoding Elements

    KAUST Repository

    Seridi, Loqmane; Ryu, Tae Woo; Ravasi, Timothy

    2014-01-01

    Background Many noncoding genomic loci have remained constant over long evolutionary periods, suggesting that they are exposed to strong selective pressures. The molecular functions of these elements have been partially elucidated, but the fundamental reason for their extreme conservation is still unknown. Results To gain new insights into the extreme selection of highly conserved noncoding elements (HCNEs), we used a systematic analysis of multi-omic data to study the epigenetic regulation of such elements during the development of Drosophila melanogaster. At the sequence level, HCNEs are GC-rich and have a characteristic oligomeric composition. They have higher levels of stable nucleosome occupancy than their flanking regions, and lower levels of mononucleosomes and H3.3, suggesting that these regions reside in compact chromatin. Furthermore, these regions showed remarkable modulations in histone modification and the expression levels of adjacent genes during development. Although HCNEs are primarily initiated late in replication, about 10% were related to early replication origins. Finally, HCNEs showed strong enrichment within lamina-associated domains. Conclusion HCNEs have distinct and protective sequence properties, undergo dynamic epigenetic regulation, and appear to be associated with the structural components of the chromatin, replication origins, and nuclear matrix. These observations indicate that such elements are likely to have essential cellular functions, and offer insights into their epigenetic properties.

  20. Sequential dynamics in the motif of excitatory coupled elements

    Science.gov (United States)

    Korotkov, Alexander G.; Kazakov, Alexey O.; Osipov, Grigory V.

    2015-11-01

    In this article a new model of motif (small ensemble) of neuron-like elements is proposed. It is built with the use of the generalized Lotka-Volterra model with excitatory couplings. The main motivation for this work comes from the problems of neuroscience where excitatory couplings are proved to be the predominant type of interaction between neurons of the brain. In this paper it is shown that there are two modes depending on the type of coupling between the elements: the mode with a stable heteroclinic cycle and the mode with a stable limit cycle. Our second goal is to examine the chaotic dynamics of the generalized three-dimensional Lotka-Volterra model.

  1. Multidimensional biochemical information processing of dynamical patterns.

    Science.gov (United States)

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  2. Dynamics of a population of oscillatory and excitable elements.

    Science.gov (United States)

    O'Keeffe, Kevin P; Strogatz, Steven H

    2016-06-01

    We analyze a variant of a model proposed by Kuramoto, Shinomoto, and Sakaguchi for a large population of coupled oscillatory and excitable elements. Using the Ott-Antonsen ansatz, we reduce the behavior of the population to a two-dimensional dynamical system with three parameters. We present the stability diagram and calculate several of its bifurcation curves analytically, for both excitatory and inhibitory coupling. Our main result is that when the coupling function is broad, the system can display bistability between steady states of constant high and low activity, whereas when the coupling function is narrow and inhibitory, one of the states in the bistable regime can show persistent pulsations in activity.

  3. Parallel Fast Multipole Boundary Element Method for crustal dynamics

    International Nuclear Information System (INIS)

    Quevedo, Leonardo; Morra, Gabriele; Mueller, R Dietmar

    2010-01-01

    Crustal faults and sharp material transitions in the crust are usually represented as triangulated surfaces in structural geological models. The complex range of volumes separating such surfaces is typically three-dimensionally meshed in order to solve equations that describe crustal deformation with the finite-difference (FD) or finite-element (FEM) methods. We show here how the Boundary Element Method, combined with the Multipole approach, can revolutionise the calculation of stress and strain, solving the problem of computational scalability from reservoir to basin scales. The Fast Multipole Boundary Element Method (Fast BEM) tackles the difficulty of handling the intricate volume meshes and high resolution of crustal data that has put classical Finite 3D approaches in a performance crisis. The two main performance enhancements of this method: the reduction of required mesh elements from cubic to quadratic with linear size and linear-logarithmic runtime; achieve a reduction of memory and runtime requirements allowing the treatment of a new scale of geodynamic models. This approach was recently tested and applied in a series of papers by [1, 2, 3] for regional and global geodynamics, using KD trees for fast identification of near and far-field interacting elements, and MPI parallelised code on distributed memory architectures, and is now in active development for crustal dynamics. As the method is based on a free-surface, it allows easy data transfer to geological visualisation tools where only changes in boundaries and material properties are required as input parameters. In addition, easy volume mesh sampling of physical quantities enables direct integration with existing FD/FEM code.

  4. The Essential Dynamics of Information Infrastructures

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Hanseth, Ole

    2011-01-01

    This paper inquires into the complexities of contemporary IT solutions based on a case study of the EU’s eCustoms initiatives using Manuel DeLanda’s Assemblage Theory. Technological innovations have enabled information infrastructures with dramatically increased number and heterogeneity of included...... components, and their dynamic and unexpected interactions. Unfortunately, lack of understanding of how the increasing complexity influences development initiatives is hampering effective information infrastructure development. Assemblage Theory can be seen as holistic synthesis of previous research streams...... seeking to explain how information infrastructures evolve in social contexts. Accordingly, in this paper it helps us getting a holistic grasp of the complexity of contemporary IT solutions and the “essence” of their dynamics. Through Assemblage Theory we explain how the European eCustoms information...

  5. Dynamic Information Encoding With Dynamic Synapses in Neural Adaptation

    Science.gov (United States)

    Li, Luozheng; Mi, Yuanyuan; Zhang, Wenhao; Wang, Da-Hui; Wu, Si

    2018-01-01

    Adaptation refers to the general phenomenon that the neural system dynamically adjusts its response property according to the statistics of external inputs. In response to an invariant stimulation, neuronal firing rates first increase dramatically and then decrease gradually to a low level close to the background activity. This prompts a question: during the adaptation, how does the neural system encode the repeated stimulation with attenuated firing rates? It has been suggested that the neural system may employ a dynamical encoding strategy during the adaptation, the information of stimulus is mainly encoded by the strong independent spiking of neurons at the early stage of the adaptation; while the weak but synchronized activity of neurons encodes the stimulus information at the later stage of the adaptation. The previous study demonstrated that short-term facilitation (STF) of electrical synapses, which increases the synchronization between neurons, can provide a mechanism to realize dynamical encoding. In the present study, we further explore whether short-term plasticity (STP) of chemical synapses, an interaction form more common than electrical synapse in the cortex, can support dynamical encoding. We build a large-size network with chemical synapses between neurons. Notably, facilitation of chemical synapses only enhances pair-wise correlations between neurons mildly, but its effect on increasing synchronization of the network can be significant, and hence it can serve as a mechanism to convey the stimulus information. To read-out the stimulus information, we consider that a downstream neuron receives balanced excitatory and inhibitory inputs from the network, so that the downstream neuron only responds to synchronized firings of the network. Therefore, the response of the downstream neuron indicates the presence of the repeated stimulation. Overall, our study demonstrates that STP of chemical synapse can serve as a mechanism to realize dynamical neural

  6. Creativity, information, and consciousness: The information dynamics of thinking.

    Science.gov (United States)

    Wiggins, Geraint A

    2018-05-07

    This paper presents a theory of the basic operation of mind, Information Dynamics of Thinking, which is intended for computational implementation and thence empirical testing. It is based on the information theory of Shannon, and treats the mind/brain as an information processing organ that aims to be information-efficient, in that it predicts its world, so as to use information efficiently, and regularly re-represents it, so as to store information efficiently. The theory is presented in context of a background review of various research areas that impinge upon its development. Consequences of the theory and testable hypotheses arising from it are discussed. Copyright © 2018. Published by Elsevier B.V.

  7. Information Processing Capacity of Dynamical Systems

    Science.gov (United States)

    Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge

    2012-07-01

    Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory.

  8. Information Processing Capacity of Dynamical Systems

    Science.gov (United States)

    Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge

    2012-01-01

    Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory. PMID:22816038

  9. Cooperation of axisymmetric connection elements under dynamic load

    Directory of Open Access Journals (Sweden)

    Kołodziej Andrzej

    2018-01-01

    Full Text Available The article presents a method for determining the parameters that define the cooperation of the elements in the axisymmetic connection. The connection, which constitutes a shaft cooperating with a sleeve, has been tested for reaction forces in the connection during shaft rotation in the static sleeve. The shaft was characterized by deliberately modelled roundness deviations in the form of ovality, triangularity and quadrangularity. In addition, the research programme has taken into account the determination of the impact of tolerance of the outside diameter of the shaft. Determination of reaction forces has been carried out using the FEM software. The shaft has been modelled as a rigid element that rotates with a given rotational speed in the deformable sleeve. The conclusions present the impact of roundness deviation types and the tolerance value on reaction forces in the connection restraint. The method presented in the article can be used to predict the behaviour of the elements of axisymmetic connections under dynamic load, which can contribute to forecasting the durability of the connection.

  10. Advances in dynamic relaxation techniques for nonlinear finite element analysis

    International Nuclear Information System (INIS)

    Sauve, R.G.; Metzger, D.R.

    1995-01-01

    Traditionally, the finite element technique has been applied to static and steady-state problems using implicit methods. When nonlinearities exist, equilibrium iterations must be performed using Newton-Raphson or quasi-Newton techniques at each load level. In the presence of complex geometry, nonlinear material behavior, and large relative sliding of material interfaces, solutions using implicit methods often become intractable. A dynamic relaxation algorithm is developed for inclusion in finite element codes. The explicit nature of the method avoids large computer memory requirements and makes possible the solution of large-scale problems. The method described approaches the steady-state solution with no overshoot, a problem which has plagued researchers in the past. The method is included in a general nonlinear finite element code. A description of the method along with a number of new applications involving geometric and material nonlinearities are presented. They include: (1) nonlinear geometric cantilever plate; (2) moment-loaded nonlinear beam; and (3) creep of nuclear fuel channel assemblies

  11. Public information - the crucial element in nuclear power acceptance

    International Nuclear Information System (INIS)

    Hayes, R.; Middlemiss, N.

    1996-01-01

    The British nuclear industry approach to the public information is described as the crucial element in nuclear power acceptance. The industry need to be a reliable, trustworthy source of information. There is evidence that when issues are examined in court or in quasi-judicial contexts, the public gains a better appreciation of the issues. The media report both sides of debate more evenly. Therefore the best way to deal with the most hostile opposition may be to take into a legal framework, rather than engage in hand-to-hand battle

  12. Public information - the crucial element in nuclear power acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, R; Middlemiss, N [British Nuclear Industry Forum, London (United Kingdom)

    1996-07-01

    The British nuclear industry approach to the public information is described as the crucial element in nuclear power acceptance. The industry need to be a reliable, trustworthy source of information. There is evidence that when issues are examined in court or in quasi-judicial contexts, the public gains a better appreciation of the issues. The media report both sides of debate more evenly. Therefore the best way to deal with the most hostile opposition may be to take into a legal framework, rather than engage in hand-to-hand battle.

  13. Control of information as an element of nuclear safeguards

    International Nuclear Information System (INIS)

    Green, J.N.

    1982-03-01

    Control of information as an element of physical protection has a long history in the field of national security. The nuclear industry is familiar with the constraints on proprietary information; and, with an effective date of October 1, 1980 for Parts 25 and 95 in Title 10 of the code of Federal Regulations, certain activities had to cope with rules for safeguarding of classified information. In applying the rules it is important to understand the differences between national security information and restricted data, and how guidance is promulgated both by the Nuclear Regulatory Commission (NRC) and by the Department of Energy. More recently, with a fully effective date of January 20, 1982, the NRC published rules for the protection of unclassified safeguards information. The scope is much broader than for the classified information. For example, the rules are applicable to power reactors. In this paper the directives which provide the details for compliance with all these rules are identified, and their application is discussed. NRC inspectors will be checking for compliance with the rules. Once problems of compliance are resolved, the more difficult question of evaluating the impact of information control procedures on the effectiveness of a physical protection system can be addressed

  14. Dynamic visual cryptography on deformable finite element grids

    Science.gov (United States)

    Aleksiene, S.; Vaidelys, M.; Aleksa, A.; Ragulskis, M.

    2017-07-01

    Dynamic visual cryptography scheme based on time averaged moiré fringes on deformable finite element grids is introduced in this paper. A predefined Eigenshape function is used for the selection of the pitch of the moiré grating. The relationship between the pitch of moiré grating, the roots of the zero order Bessel function of the first kind and the amplitude of harmonic oscillations is derived and validated by computational experiments. Phase regularization algorithm is used in the entire area of the cover image in order to embed the secret image and to avoid large fluctuations of the moiré grating. Computational simulations are used to demonstrate the efficiency and the applicability of the proposed image hiding technique.

  15. Hybrid finite element and Brownian dynamics method for charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Gary A., E-mail: ghuber@ucsd.edu; Miao, Yinglong [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0365 (United States); Zhou, Shenggao [Department of Mathematics and Mathematical Center for Interdiscipline Research, Soochow University, 1 Shizi Street, Suzhou, 215006 Jiangsu (China); Li, Bo [Department of Mathematics and Quantitative Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112 (United States); McCammon, J. Andrew [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093 (United States); Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0365 (United States); Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 (United States)

    2016-04-28

    Diffusion is often the rate-determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. A previous study introduced a new hybrid diffusion method that couples the strengths of each of these two methods, but was limited by the lack of interactions among the particles; the force on each particle had to be from an external field. This study further develops the method to allow charged particles. The method is derived for a general multidimensional system and is presented using a basic test case for a one-dimensional linear system with one charged species and a radially symmetric system with three charged species.

  16. Unconstrained Finite Element for Geometrical Nonlinear Dynamics of Shells

    Directory of Open Access Journals (Sweden)

    Humberto Breves Coda

    2009-01-01

    Full Text Available This paper presents a positional FEM formulation to deal with geometrical nonlinear dynamics of shells. The main objective is to develop a new FEM methodology based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors not displacements and rotations. These characteristics are the novelty of the present work and avoid the use of large rotation approximations. A nondimensional auxiliary coordinate system is created, and the change of configuration function is written following two independent mappings from which the strain energy function is derived. This methodology is called positional and, as far as the authors' knowledge goes, is a new procedure to approximated geometrical nonlinear structures. In this paper a proof for the linear and angular momentum conservation property of the Newmark algorithm is provided for total Lagrangian description. The proposed shell element is locking free for elastic stress-strain relations due to the presence of linear strain variation along the shell thickness. The curved, high-order element together with an implicit procedure to solve nonlinear equations guarantees precision in calculations. The momentum conserving, the locking free behavior, and the frame invariance of the adopted mapping are numerically confirmed by examples.

  17. Probalistic Finite Elements (PFEM) structural dynamics and fracture mechanics

    Science.gov (United States)

    Liu, Wing-Kam; Belytschko, Ted; Mani, A.; Besterfield, G.

    1989-01-01

    The purpose of this work is to develop computationally efficient methodologies for assessing the effects of randomness in loads, material properties, and other aspects of a problem by a finite element analysis. The resulting group of methods is called probabilistic finite elements (PFEM). The overall objective of this work is to develop methodologies whereby the lifetime of a component can be predicted, accounting for the variability in the material and geometry of the component, the loads, and other aspects of the environment; and the range of response expected in a particular scenario can be presented to the analyst in addition to the response itself. Emphasis has been placed on methods which are not statistical in character; that is, they do not involve Monte Carlo simulations. The reason for this choice of direction is that Monte Carlo simulations of complex nonlinear response require a tremendous amount of computation. The focus of efforts so far has been on nonlinear structural dynamics. However, in the continuation of this project, emphasis will be shifted to probabilistic fracture mechanics so that the effect of randomness in crack geometry and material properties can be studied interactively with the effect of random load and environment.

  18. The dynamics of maternal-effect selfish genetic elements.

    Science.gov (United States)

    Smith, N G

    1998-03-21

    Maternal-effect selfish genes such as Medea or Scat act to kill progeny that do not bear a copy of the selfish gene present in the mother. Previous models of this system allowed for two types of allele, the selfish (killer) type and the sensitive (susceptible) wild-type. These models predict that the invasion conditions of the selfish allele are quite broad and that if invasion is possible a high frequency equilibrium is to be expected. The selfish element is therefore predicted to persist. Here a hypothetical third allele that neither kills nor is killed (i.e. insensitive) is considered. Such an allele could enter a population by recombination, mutation or migration. The incorporation of this third allele profoundly affects the dynamics of the system and, under some parameter values, it is possible for the spread of the insensitive allele to lead, eventually, to the fixation of the wild-type allele (reversible evolution). This is most likely if the death of progeny provides no direct benefit to the surviving sibs (i.e. in the absence of fitness compensation), as in insects without gregarious broods. Under these circumstances the selfish element cannot spread when infinitely rare, only after having risen to some finite frequency. A fitness cost to bearing the killer allele then causes its loss. However, if fitness compensation is found (e.g. in placental mammals) the invasion of the selfish element from an infinitely low level is possible for a wide range of costs and both stable coexistences of all three alleles and limit cycles of all three are then found. It is therefore to be expected that in mammals selfish maternal-effect genes are more likely both to spread and to persist than in insects, due to their different levels of fitness compensation.

  19. GPU accelerated Discrete Element Method (DEM) molecular dynamics for conservative, faceted particle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Spellings, Matthew [Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Marson, Ryan L. [Materials Science & Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Anderson, Joshua A. [Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Glotzer, Sharon C., E-mail: sglotzer@umich.edu [Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Materials Science & Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States)

    2017-04-01

    Faceted shapes, such as polyhedra, are commonly found in systems of nanoscale, colloidal, and granular particles. Many interesting physical phenomena, like crystal nucleation and growth, vacancy motion, and glassy dynamics are challenging to model in these systems because they require detailed dynamical information at the individual particle level. Within the granular materials community the Discrete Element Method has been used extensively to model systems of anisotropic particles under gravity, with friction. We provide an implementation of this method intended for simulation of hard, faceted nanoparticles, with a conservative Weeks–Chandler–Andersen (WCA) interparticle potential, coupled to a thermodynamic ensemble. This method is a natural extension of classical molecular dynamics and enables rigorous thermodynamic calculations for faceted particles.

  20. Nonlinear dynamics of laser systems with elements of a chaos: Advanced computational code

    Science.gov (United States)

    Buyadzhi, V. V.; Glushkov, A. V.; Khetselius, O. Yu; Kuznetsova, A. A.; Buyadzhi, A. A.; Prepelitsa, G. P.; Ternovsky, V. B.

    2017-10-01

    A general, uniform chaos-geometric computational approach to analysis, modelling and prediction of the non-linear dynamics of quantum and laser systems (laser and quantum generators system etc) with elements of the deterministic chaos is briefly presented. The approach is based on using the advanced generalized techniques such as the wavelet analysis, multi-fractal formalism, mutual information approach, correlation integral analysis, false nearest neighbour algorithm, the Lyapunov’s exponents analysis, and surrogate data method, prediction models etc There are firstly presented the numerical data on the topological and dynamical invariants (in particular, the correlation, embedding, Kaplan-York dimensions, the Lyapunov’s exponents, Kolmogorov’s entropy and other parameters) for laser system (the semiconductor GaAs/GaAlAs laser with a retarded feedback) dynamics in a chaotic and hyperchaotic regimes.

  1. Reliability of dynamic systems under limited information.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr. (.,; .); Grigoriu, Mircea

    2006-09-01

    A method is developed for reliability analysis of dynamic systems under limited information. The available information includes one or more samples of the system output; any known information on features of the output can be used if available. The method is based on the theory of non-Gaussian translation processes and is shown to be particularly suitable for problems of practical interest. For illustration, we apply the proposed method to a series of simple example problems and compare with results given by traditional statistical estimators in order to establish the accuracy of the method. It is demonstrated that the method delivers accurate results for the case of linear and nonlinear dynamic systems, and can be applied to analyze experimental data and/or mathematical model outputs. Two complex applications of direct interest to Sandia are also considered. First, we apply the proposed method to assess design reliability of a MEMS inertial switch. Second, we consider re-entry body (RB) component vibration response during normal re-entry, where the objective is to estimate the time-dependent probability of component failure. This last application is directly relevant to re-entry random vibration analysis at Sandia, and may provide insights on test-based and/or model-based qualification of weapon components for random vibration environments.

  2. Information dynamics in carcinogenesis and tumor growth.

    Science.gov (United States)

    Gatenby, Robert A; Frieden, B Roy

    2004-12-21

    The storage and transmission of information is vital to the function of normal and transformed cells. We use methods from information theory and Monte Carlo theory to analyze the role of information in carcinogenesis. Our analysis demonstrates that, during somatic evolution of the malignant phenotype, the accumulation of genomic mutations degrades intracellular information. However, the degradation is constrained by the Darwinian somatic ecology in which mutant clones proliferate only when the mutation confers a selective growth advantage. In that environment, genes that normally decrease cellular proliferation, such as tumor suppressor or differentiation genes, suffer maximum information degradation. Conversely, those that increase proliferation, such as oncogenes, are conserved or exhibit only gain of function mutations. These constraints shield most cellular populations from catastrophic mutator-induced loss of the transmembrane entropy gradient and, therefore, cell death. The dynamics of constrained information degradation during carcinogenesis cause the tumor genome to asymptotically approach a minimum information state that is manifested clinically as dedifferentiation and unconstrained proliferation. Extreme physical information (EPI) theory demonstrates that altered information flow from cancer cells to their environment will manifest in-vivo as power law tumor growth with an exponent of size 1.62. This prediction is based only on the assumption that tumor cells are at an absolute information minimum and are capable of "free field" growth that is, they are unconstrained by external biological parameters. The prediction agrees remarkably well with several studies demonstrating power law growth in small human breast cancers with an exponent of 1.72+/-0.24. This successful derivation of an analytic expression for cancer growth from EPI alone supports the conceptual model that carcinogenesis is a process of constrained information degradation and that malignant

  3. Information behavior in dynamic group work contexts

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.; Pierce, Linda G.

    2000-01-01

    personnel and documentation on C2. During data analysis, three important themes that highlight the why, what, how and consequences of information behavior in C2 emerged. The first is the concept of interwoven situational awareness consisting of individual, intragroup and intergroup shared understanding...... of the situation. Interwoven situational awareness appears to facilitate response to dynamic, constraint-bound situations. The second theme describes the need for dense social networks or frequent communication between participants about the work context and situation, the work process and domain...

  4. Fusion-fission dynamics and synthesis of the superheavy elements

    International Nuclear Information System (INIS)

    Abe, Yasuhisa

    2003-01-01

    Experiments of fusion-fission reactions clarify that the life time of nuclear fission is much longer than that expected from Bohr-Wheeler formula from the measurements of multiplicities of neutrons, gamma rays etc. emitted prior scission, and thereby appear to require a dynamical treatment of the process. Following the pioneering work by Kramers with the dissipation- fluctuation dynamics, the fissioning degree of freedom is described with the viewpoint of Brownian motion under incessant interactions with the heat bath particles, i.e., with nucleons in thermal equilibrium, in the present case. In the dynamical description the fission width is no more constant in time, but has a transient feature, as well as the reduction factor, the so-called Kramers factor. Both result in a longer life time, consistent with anomalous multiplicities measured. In the fusion process, Coulomb barriers play a crucial role in lighter heavy ion systems, but in very heavy systems it is known that there exists a hindrance in fusion. That is, the Coulomb barrier is not enough for determination of fusion probability, but an extra-energy above the barrier height is required for the system to fuse. This is understood by the properties of the Liquid Drop Model. After overcoming the Coulomb barrier, the ions touch with each other. But the united system, i.e., the pear-shaped configuration is located outside of the conditional saddle point or of the ridgeline. Therefore, in order to form the spherical compound nucleus, the system has to overcome one more barrier. Naturally, in such a situation, the kinetic energy carried in by the incident projectile has been more or less dissipated, i.e., the composite system is heated up. Thus, the shape evolution toward the spherical shape or toward the re-separation can be considered as a Brownian motion with the heat bath inside. The present author et al. have proposed the two-step model for fusion of massive heavy-ion systems where the fusion probability is

  5. Numerical simulations of earthquakes and the dynamics of fault systems using the Finite Element method.

    Science.gov (United States)

    Kettle, L. M.; Mora, P.; Weatherley, D.; Gross, L.; Xing, H.

    2006-12-01

    Simulations using the Finite Element method are widely used in many engineering applications and for the solution of partial differential equations (PDEs). Computational models based on the solution of PDEs play a key role in earth systems simulations. We present numerical modelling of crustal fault systems where the dynamic elastic wave equation is solved using the Finite Element method. This is achieved using a high level computational modelling language, escript, available as open source software from ACcESS (Australian Computational Earth Systems Simulator), the University of Queensland. Escript is an advanced geophysical simulation software package developed at ACcESS which includes parallel equation solvers, data visualisation and data analysis software. The escript library was implemented to develop a flexible Finite Element model which reliably simulates the mechanism of faulting and the physics of earthquakes. Both 2D and 3D elastodynamic models are being developed to study the dynamics of crustal fault systems. Our final goal is to build a flexible model which can be applied to any fault system with user-defined geometry and input parameters. To study the physics of earthquake processes, two different time scales must be modelled, firstly the quasi-static loading phase which gradually increases stress in the system (~100years), and secondly the dynamic rupture process which rapidly redistributes stress in the system (~100secs). We will discuss the solution of the time-dependent elastic wave equation for an arbitrary fault system using escript. This involves prescribing the correct initial stress distribution in the system to simulate the quasi-static loading of faults to failure; determining a suitable frictional constitutive law which accurately reproduces the dynamics of the stick/slip instability at the faults; and using a robust time integration scheme. These dynamic models generate data and information that can be used for earthquake forecasting.

  6. Temporal information encoding in dynamic memristive devices

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wen; Chen, Lin; Du, Chao; Lu, Wei D., E-mail: wluee@eecs.umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2015-11-09

    We show temporal and frequency information can be effectively encoded in memristive devices with inherent short-term dynamics. Ag/Ag{sub 2}S/Pd based memristive devices with low programming voltage (∼100 mV) were fabricated and tested. At weak programming conditions, the devices exhibit inherent decay due to spontaneous diffusion of the Ag atoms. When the devices were subjected to pulse train inputs emulating different spiking patterns, the switching probability distribution function diverges from the standard Poisson distribution and evolves according to the input pattern. The experimentally observed switching probability distributions and the associated cumulative probability functions can be well-explained using a model accounting for the short-term decay effects. Such devices offer an intriguing opportunity to directly encode neural signals for neural information storage and analysis.

  7. Chaotic spectra: How to extract dynamic information

    International Nuclear Information System (INIS)

    Taylor, H.S.; Gomez Llorente, J.M.; Zakrzewski, J.; Kulander, K.C.

    1988-10-01

    Nonlinear dynamics is applied to chaotic unassignable atomic and molecular spectra with the aim of extracting detailed information about regular dynamic motions that exist over short intervals of time. It is shown how this motion can be extracted from high resolution spectra by doing low resolution studies or by Fourier transforming limited regions of the spectrum. These motions mimic those of periodic orbits (PO) and are inserts into the dominant chaotic motion. Considering these inserts and the PO as a dynamically decoupled region of space, resonant scattering theory and stabilization methods enable us to compute ladders of resonant states which interact with the chaotic quasi-continuum computed in principle from basis sets placed off the PO. The interaction of the resonances with the quasicontinuum explains the low resolution spectra seen in such experiments. It also allows one to associate low resolution features with a particular PO. The motion on the PO thereby supplies the molecular movements whose quantization causes the low resolution spectra. Characteristic properties of the periodic orbit based resonances are discussed. The method is illustrated on the photoabsorption spectrum of the hydrogen atom in a strong magnetic field and on the photodissociation spectrum of H 3 + . Other molecular systems which are currently under investigation using this formalism are also mentioned. 53 refs., 10 figs., 2 tabs

  8. Integrated System Validation Usability Questionnaire: Information Display Element

    International Nuclear Information System (INIS)

    Garcés, Ma. I.; Torralba, B.

    2015-01-01

    The Research and Development (R&D) project on “Theoretical and Methodological Approaches to Integrated System Validation of Control Rooms, 2014-2015”, in which the research activities described in this report are framed, has two main objectives: to develop the items for an usability methodology conceived as a part of the measurement framework for performance-based control room evaluation that the OECD Halden Reactor Project will test in the experiments planned for 2015; and the statistical analysis of the data generated in the experimental activities of the Halden Man-Machine Laboratory (HAMMLAB) facility, with previous usability questionnaires, in 2010 and 2011. In this report, the procedure designed to meet the first goal of the project is described, in particular, the process followed to identify the items related to information displays, one of the elements to be included in the usability questionnaire. Three phases are performed, in the first one, the approaches developed by the United States Nuclear Regulatory Commission, NRC, are reviewed and the models proposed by the nuclear energy industry and their technical support organizations, mainly, the United States Electric Power Research Institute, EPRI, are analyzed. In the remaining stages, general and specific guidelines for information displays, in particular, display pages, formats, elements and data quality and update rate recommendations are compared and criteria for the preliminary selection of the items that should be incorporated into the usability questionnaire are defined. This proposal will be reviewed and adapted by the Halden Reactor Project to the design of the specific experiments performed in HAMMLAB.

  9. Finite element formulation for dynamics of planar flexible multi-beam system

    International Nuclear Information System (INIS)

    Liu Zhuyong; Hong Jiazhen; Liu Jinyang

    2009-01-01

    In some previous geometric nonlinear finite element formulations, due to the use of axial displacement, the contribution of all the elements lying between the reference node of zero axial displacement and the element to the foreshortening effect should be taken into account. In this paper, a finite element formulation is proposed based on geometric nonlinear elastic theory and finite element technique. The coupling deformation terms of an arbitrary point only relate to the nodal coordinates of the element at which the point is located. Based on Hamilton principle, dynamic equations of elastic beams undergoing large overall motions are derived. To investigate the effect of coupling deformation terms on system dynamic characters and reduce the dynamic equations, a complete dynamic model and three reduced models of hub-beam are prospected. When the Cartesian deformation coordinates are adopted, the results indicate that the terms related to the coupling deformation in the inertia forces of dynamic equations have small effect on system dynamic behavior and may be neglected, whereas the terms related to coupling deformation in the elastic forces are important for system dynamic behavior and should be considered in dynamic equation. Numerical examples of the rotating beam and flexible beam system are carried out to demonstrate the accuracy and validity of this dynamic model. Furthermore, it is shown that a small number of finite elements are needed to obtain a stable solution using the present coupling finite element formulation

  10. Dynamic use of geoscience information to develop scientific understanding for a nuclear waste repository

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Tsang, C.F.

    1990-01-01

    This paper discusses the development and safety evaluation of a nuclear waste geologic repository. Scientific understanding dependent upon information from a number of geoscience disciplines is described. A discussion is given on the dynamic use of the information through the different stages. The authors point out the need for abstracting, deriving and updating a quantitative spatial and process model (QSPM) to develop a scientific understanding of site responses as a crucial element in the dynamic procedure

  11. Dynamic Training Elements in a Circuit Theory Course to Implement a Self-Directed Learning Process

    Science.gov (United States)

    Krouk, B. I.; Zhuravleva, O. B.

    2009-01-01

    This paper reports on the implementation of a self-directed learning process in a circuit theory course, incorporating dynamic training elements which were designed on the basis of a cybernetic model of cognitive process management. These elements are centrally linked in a dynamic learning frame, created on the monitor screen, which displays the…

  12. Integrated information in discrete dynamical systems: motivation and theoretical framework.

    Directory of Open Access Journals (Sweden)

    David Balduzzi

    2008-06-01

    Full Text Available This paper introduces a time- and state-dependent measure of integrated information, phi, which captures the repertoire of causal states available to a system as a whole. Specifically, phi quantifies how much information is generated (uncertainty is reduced when a system enters a particular state through causal interactions among its elements, above and beyond the information generated independently by its parts. Such mathematical characterization is motivated by the observation that integrated information captures two key phenomenological properties of consciousness: (i there is a large repertoire of conscious experiences so that, when one particular experience occurs, it generates a large amount of information by ruling out all the others; and (ii this information is integrated, in that each experience appears as a whole that cannot be decomposed into independent parts. This paper extends previous work on stationary systems and applies integrated information to discrete networks as a function of their dynamics and causal architecture. An analysis of basic examples indicates the following: (i phi varies depending on the state entered by a network, being higher if active and inactive elements are balanced and lower if the network is inactive or hyperactive. (ii phi varies for systems with identical or similar surface dynamics depending on the underlying causal architecture, being low for systems that merely copy or replay activity states. (iii phi varies as a function of network architecture. High phi values can be obtained by architectures that conjoin functional specialization with functional integration. Strictly modular and homogeneous systems cannot generate high phi because the former lack integration, whereas the latter lack information. Feedforward and lattice architectures are capable of generating high phi but are inefficient. (iv In Hopfield networks, phi is low for attractor states and neutral states, but increases if the networks

  13. Integrated information in discrete dynamical systems: motivation and theoretical framework.

    Science.gov (United States)

    Balduzzi, David; Tononi, Giulio

    2008-06-13

    This paper introduces a time- and state-dependent measure of integrated information, phi, which captures the repertoire of causal states available to a system as a whole. Specifically, phi quantifies how much information is generated (uncertainty is reduced) when a system enters a particular state through causal interactions among its elements, above and beyond the information generated independently by its parts. Such mathematical characterization is motivated by the observation that integrated information captures two key phenomenological properties of consciousness: (i) there is a large repertoire of conscious experiences so that, when one particular experience occurs, it generates a large amount of information by ruling out all the others; and (ii) this information is integrated, in that each experience appears as a whole that cannot be decomposed into independent parts. This paper extends previous work on stationary systems and applies integrated information to discrete networks as a function of their dynamics and causal architecture. An analysis of basic examples indicates the following: (i) phi varies depending on the state entered by a network, being higher if active and inactive elements are balanced and lower if the network is inactive or hyperactive. (ii) phi varies for systems with identical or similar surface dynamics depending on the underlying causal architecture, being low for systems that merely copy or replay activity states. (iii) phi varies as a function of network architecture. High phi values can be obtained by architectures that conjoin functional specialization with functional integration. Strictly modular and homogeneous systems cannot generate high phi because the former lack integration, whereas the latter lack information. Feedforward and lattice architectures are capable of generating high phi but are inefficient. (iv) In Hopfield networks, phi is low for attractor states and neutral states, but increases if the networks are optimized

  14. Intrinsic information carriers in combinatorial dynamical systems

    Science.gov (United States)

    Harmer, Russ; Danos, Vincent; Feret, Jérôme; Krivine, Jean; Fontana, Walter

    2010-09-01

    Many proteins are composed of structural and chemical features—"sites" for short—characterized by definite interaction capabilities, such as noncovalent binding or covalent modification of other proteins. This modularity allows for varying degrees of independence, as the behavior of a site might be controlled by the state of some but not all sites of the ambient protein. Independence quickly generates a startling combinatorial complexity that shapes most biological networks, such as mammalian signaling systems, and effectively prevents their study in terms of kinetic equations—unless the complexity is radically trimmed. Yet, if combinatorial complexity is key to the system's behavior, eliminating it will prevent, not facilitate, understanding. A more adequate representation of a combinatorial system is provided by a graph-based framework of rewrite rules where each rule specifies only the information that an interaction mechanism depends on. Unlike reactions, which deal with molecular species, rules deal with patterns, i.e., multisets of molecular species. Although the stochastic dynamics induced by a collection of rules on a mixture of molecules can be simulated, it appears useful to capture the system's average or deterministic behavior by means of differential equations. However, expansion of the rules into kinetic equations at the level of molecular species is not only impractical, but conceptually indefensible. If rules describe bona fide patterns of interaction, molecular species are unlikely to constitute appropriate units of dynamics. Rather, we must seek aggregate variables reflective of the causal structure laid down by the rules. We call these variables "fragments" and the process of identifying them "fragmentation." Ideally, fragments are aspects of the system's microscopic population that the set of rules can actually distinguish on average; in practice, it may only be feasible to identify an approximation to this. Most importantly, fragments are

  15. Intrinsic information carriers in combinatorial dynamical systems.

    Science.gov (United States)

    Harmer, Russ; Danos, Vincent; Feret, Jérôme; Krivine, Jean; Fontana, Walter

    2010-09-01

    Many proteins are composed of structural and chemical features--"sites" for short--characterized by definite interaction capabilities, such as noncovalent binding or covalent modification of other proteins. This modularity allows for varying degrees of independence, as the behavior of a site might be controlled by the state of some but not all sites of the ambient protein. Independence quickly generates a startling combinatorial complexity that shapes most biological networks, such as mammalian signaling systems, and effectively prevents their study in terms of kinetic equations-unless the complexity is radically trimmed. Yet, if combinatorial complexity is key to the system's behavior, eliminating it will prevent, not facilitate, understanding. A more adequate representation of a combinatorial system is provided by a graph-based framework of rewrite rules where each rule specifies only the information that an interaction mechanism depends on. Unlike reactions, which deal with molecular species, rules deal with patterns, i.e., multisets of molecular species. Although the stochastic dynamics induced by a collection of rules on a mixture of molecules can be simulated, it appears useful to capture the system's average or deterministic behavior by means of differential equations. However, expansion of the rules into kinetic equations at the level of molecular species is not only impractical, but conceptually indefensible. If rules describe bona fide patterns of interaction, molecular species are unlikely to constitute appropriate units of dynamics. Rather, we must seek aggregate variables reflective of the causal structure laid down by the rules. We call these variables "fragments" and the process of identifying them "fragmentation." Ideally, fragments are aspects of the system's microscopic population that the set of rules can actually distinguish on average; in practice, it may only be feasible to identify an approximation to this. Most importantly, fragments are

  16. Optically intraconnected computer employing dynamically reconfigurable holographic optical element

    Science.gov (United States)

    Bergman, Larry A. (Inventor)

    1992-01-01

    An optically intraconnected computer and a reconfigurable holographic optical element employed therein. The basic computer comprises a memory for holding a sequence of instructions to be executed; logic for accessing the instructions in sequence; logic for determining for each the instruction the function to be performed and the effective address thereof; a plurality of individual elements on a common support substrate optimized to perform certain logical sequences employed in executing the instructions; and, element selection logic connected to the logic determining the function to be performed for each the instruction for determining the class of each function and for causing the instruction to be executed by those the elements which perform those associated the logical sequences affecting the instruction execution in an optimum manner. In the optically intraconnected version, the element selection logic is adapted for transmitting and switching signals to the elements optically.

  17. Extension to linear dynamics for hybrid stress finite element formulation based on additional displacements

    Science.gov (United States)

    Sumihara, K.

    Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.

  18. The effect of innovation competence on the choice of information elements in a simulated NPD process

    DEFF Research Database (Denmark)

    Søndergaard, Helle Alsted; Juhl, Hans Jørn

    to prompt different managerial behaviour. This study uses a role-play approach to investigating the relationship between innovation competence (exploitation or exploration competences) and the acquisition of information elements in a simulated new product development (NPD) process. Results show that two......This paper presents a study of the relationship between innovation competence and managerial behaviour. Within the resource-based view of the firm the development of new products is often related to the attainment of dynamic capabilities. Different levels of dynamic capabilities are expected...... distinct clusters can be identified among respondents, one cluster with both exploitation and exploration competence experience and a second cluster only with exploitation competence experience. Contrary to expectations analysis of variance and Chi-square tests for independence show that there are no clear...

  19. Modeling dynamic exchange of gaseous elemental mercury at polar sunrise.

    Science.gov (United States)

    Dastoor, Ashu P; Davignon, Didier; Theys, Nicolas; Van Roozendael, Michel; Steffen, Alexandra; Ariya, Parisa A

    2008-07-15

    At polar sunrise, gaseous elemental mercury (GEM) undergoes an exceptional dynamic exchange in the air and at the snow surface during which GEM can be rapidly removed from the atmosphere (the so-called atmospheric mercury depletion events (AMDEs)) as well as re-emitted from the snow within a few hours to days in the Polar Regions. Although high concentrations of total mercury in snow following AMDEs is well documented, there is very little data available on the redox transformation processes of mercury in the snow and the fluxes of mercury at the air/snow interface. Therefore, the net gain of mercury in the Polar Regions as a result of AMDEs is still an open question. We developed a new version of the global mercury model, GRAHM, which includes for the first time bidirectional surface exchange of GEM in Polar Regions in spring and summer by developing schemes for mercury halogen oxidation, deposition, and re-emission. Also for the first time, GOME satellite data-derived boundary layer concentrations of BrO have been used in a global mercury model for representation of halogen mercury chemistry. Comparison of model simulated and measured atmospheric concentrations of GEM at Alert, Canada, for 3 years (2002-2004) shows the model's capability in simulating the rapid cycling of mercury during and after AMDEs. Brooks et al. (1) measured mercury deposition, reemission, and net surface gain fluxes of mercury at Barrow, AK, during an intensive measurement campaign for a 2 week period in spring (March 25 to April 7, 2003). They reported 1.7, 1.0 +/- 0.2, and 0.7 +/- 0.2 microg m(-2) deposition, re-emission, and net surface gain, respectively. Using the optimal configuration of the model, we estimated 1.8 microg m(-2) deposition, 1.0 microg m(-2) re-emission, and 0.8 microg m(-2) net surface gain of mercury for the same time period at Barrow. The estimated net annual accumulation of mercury within the Arctic Circle north of 66.5 degrees is approximately 174 t with +/-7 t of

  20. Photonic single nonlinear-delay dynamical node for information processing

    Science.gov (United States)

    Ortín, Silvia; San-Martín, Daniel; Pesquera, Luis; Gutiérrez, José Manuel

    2012-06-01

    An electro-optical system with a delay loop based on semiconductor lasers is investigated for information processing by performing numerical simulations. This system can replace a complex network of many nonlinear elements for the implementation of Reservoir Computing. We show that a single nonlinear-delay dynamical system has the basic properties to perform as reservoir: short-term memory and separation property. The computing performance of this system is evaluated for two prediction tasks: Lorenz chaotic time series and nonlinear auto-regressive moving average (NARMA) model. We sweep the parameters of the system to find the best performance. The results achieved for the Lorenz and the NARMA-10 tasks are comparable to those obtained by other machine learning methods.

  1. The dynamic efficiency of feed-in tariffs: The impact of different design elements

    International Nuclear Information System (INIS)

    Río, Pablo del

    2012-01-01

    Dynamic efficiency has received much less attention than the effectiveness and static efficiency criteria to assess policies to support electricity from renewable energy sources (RES-E). On the other hand, the literature on RES-E support shows that the choice of design elements within RES-E support instruments is at least as important to successfully promote RES-E as the choice of specific instruments. The aim of this paper is to build a theoretical framework for dynamic efficiency analysis and assess the dynamic efficiency properties of the different design elements of feed-in tariffs. It is shown that, in fact, several design elements can have a significant impact on the different dimensions of dynamic efficiency. Particularly relevant design elements in this context are technology-specific fixed-tariffs, floor prices, degression, reductions of support over time for existing plants, long duration of support and support falling on consumers. In addition, it is shown than some design elements would be more appropriate than others to activate specific dimensions. - Highlights: ► A theoretical framework for dynamic efficiency analysis is built. ► The dynamic efficiency properties of feed-in tariffs design elements are assessed. ► Several design elements have a significant impact on the different dimensions of dynamic efficiency.

  2. Dynamics of parallel robots from rigid bodies to flexible elements

    CERN Document Server

    Briot, Sébastien

    2015-01-01

    This book starts with a short recapitulation on basic concepts, common to any types of robots (serial, tree structure, parallel, etc.), that are also necessary for computation of the dynamic models of parallel robots. Then, as dynamics requires the use of geometry and kinematics, the general equations of geometric and kinematic models of parallel robots are given. After, it is explained that parallel robot dynamic models can be obtained by decomposing the real robot into two virtual systems: a tree-structure robot (equivalent to the robot legs for which all joints would be actuated) plus a free body corresponding to the platform. Thus, the dynamics of rigid tree-structure robots is analyzed and algorithms to obtain their dynamic models in the most compact form are given. The dynamic model of the real rigid parallel robot is obtained by closing the loops through the use of the Lagrange multipliers. The problem of the dynamic model degeneracy near singularities is treated and optimal trajectory planning for cro...

  3. Explicit Dynamic Finite Element Method for Predicting Implosion/Explosion Induced Failure of Shell Structures

    Directory of Open Access Journals (Sweden)

    Jeong-Hoon Song

    2013-01-01

    Full Text Available A simplified implementation of the conventional extended finite element method (XFEM for dynamic fracture in thin shells is presented. Though this implementation uses the same linear combination of the conventional XFEM, it allows for considerable simplifications of the discontinuous displacement and velocity fields in shell finite elements. The proposed method is implemented for the discrete Kirchhoff triangular (DKT shell element, which is one of the most popular shell elements in engineering analysis. Numerical examples for dynamic failure of shells under impulsive loads including implosion and explosion are presented to demonstrate the effectiveness and robustness of the method.

  4. Phase reduction and synchronization of a network of coupled dynamical elements exhibiting collective oscillations

    Science.gov (United States)

    Nakao, Hiroya; Yasui, Sho; Ota, Masashi; Arai, Kensuke; Kawamura, Yoji

    2018-04-01

    A general phase reduction method for a network of coupled dynamical elements exhibiting collective oscillations, which is applicable to arbitrary networks of heterogeneous dynamical elements, is developed. A set of coupled adjoint equations for phase sensitivity functions, which characterize the phase response of the collective oscillation to small perturbations applied to individual elements, is derived. Using the phase sensitivity functions, collective oscillation of the network under weak perturbation can be described approximately by a one-dimensional phase equation. As an example, mutual synchronization between a pair of collectively oscillating networks of excitable and oscillatory FitzHugh-Nagumo elements with random coupling is studied.

  5. Model Reduction in Dynamic Finite Element Analysis of Lightweight Structures

    DEFF Research Database (Denmark)

    Flodén, Ola; Persson, Kent; Sjöström, Anders

    2012-01-01

    models may be created by assembling models of floor and wall structures into large models of complete buildings. When assembling the floor and wall models, the number of degrees of freedom quickly increases to exceed the limits of computer capacity, at least in a reasonable amount of computational time...... Hz. Three different methods of model reduction were investigated; Guyan reduction, component mode synthesis and a third approach where a new finite element model was created with structural elements. Eigenvalue and steady-state analyses were performed in order to compare the errors...

  6. Information system of forest growth and productivity by site quality type and elements of forest

    Science.gov (United States)

    Khlyustov, V.

    2012-04-01

    Information system of forest growth and productivity by site quality type and elements of forest V.K. Khlustov Head of the Forestry Department of Russian State Agrarian University named after K.A.Timiryazev doctor of agricultural sciences, professor The efficiency of forest management can be improved substantially by development and introduction of principally new models of forest growth and productivity dynamics based on regionalized site specific parameters. Therefore an innovative information system was developed. It describes the current state and gives a forecast for forest stand parameters: growth, structure, commercial and biological productivity depend on type of site quality. In contrast to existing yield tables, the new system has environmental basis: site quality type. The information system contains set of multivariate statistical models and can work at the level of individual trees or at the stand level. The system provides a graphical visualization, as well as export of the emulation results. The System is able to calculate detailed description of any forest stand based on five initial indicators: site quality type, site index, stocking, composition, and tree age by elements of the forest. The results of the model run are following parameters: average diameter and height, top height, number of trees, basal area, growing stock (total, commercial with distribution by size, firewood and residuals), live biomass (stem, bark, branches, foliage). The system also provides the distribution of mentioned above forest stand parameters by tree diameter classes. To predict the future forest stand dynamics the system require in addition the time slot only. Full set of forest parameters mention above will be provided by the System. The most conservative initial parameters (site quality type and site index) can be kept in the form of geo referenced polygons. In this case the system would need only 3 dynamic initial parameters (stocking, composition and age) to

  7. Finite element simulation of dynamic wetting flows as an interface formation process

    KAUST Repository

    Sprittles, J.E.; Shikhmurzaev, Y.D.

    2013-01-01

    A mathematically challenging model of dynamic wetting as a process of interface formation has been, for the first time, fully incorporated into a numerical code based on the finite element method and applied, as a test case, to the problem

  8. Application of a nonlinear spring element to analysis of circumferentially cracked pipe under dynamic loading

    International Nuclear Information System (INIS)

    Olson, R.; Scott, P.; Wilkowski, G.M.

    1992-01-01

    As part of the US NRC's Degraded Piping Program, the concept of using a nonlinear spring element to simulate the response of cracked pipe in dynamic finite element pipe evaluations was initially proposed. The nonlinear spring element is used to represent the moment versus rotation response of the cracked pipe section. The moment-rotation relationship for the crack size and material of interest is determined from either J-estimation scheme analyses or experimental data. In this paper, a number of possible approaches for modeling the nonlinear stiffness of the cracked pipe section are introduced. One approach, modeling the cracked section moment rotation response with a series of spring-slider elements, is discussed in detail. As part of this discussion, results from a series of finite element predictions using the spring-slider nonlinear spring element are compared with the results from a series of dynamic cracked pipe system experiments from the International Piping Integrity Research Group (IPIRG) program

  9. Repetitive elements dynamics in cell identity programming, maintenance and disease

    KAUST Repository

    Bodega, Beatrice

    2014-12-01

    The days of \\'junk DNA\\' seem to be over. The rapid progress of genomics technologies has been unveiling unexpected mechanisms by which repetitive DNA and in particular transposable elements (TEs) have evolved, becoming key issues in understanding genome structure and function. Indeed, rather than \\'parasites\\', recent findings strongly suggest that TEs may have a positive function by contributing to tissue specific transcriptional programs, in particular as enhancer-like elements and/or modules for regulation of higher order chromatin structure. Further, it appears that during development and aging genomes experience several waves of TEs activation, and this contributes to individual genome shaping during lifetime. Interestingly, TEs activity is major target of epigenomic regulation. These findings are shedding new light on the genome-phenotype relationship and set the premises to help to explain complex disease manifestation, as consequence of TEs activity deregulation.

  10. Numerical modeling of the dynamic behavior of structures under impact with a discrete elements / finite elements coupling

    International Nuclear Information System (INIS)

    Rousseau, J.

    2009-07-01

    That study focuses on concrete structures submitted to impact loading and is aimed at predicting local damage in the vicinity of an impact zone as well as the global response of the structure. The Discrete Element Method (DEM) seems particularly well suited in this context for modeling fractures. An identification process of DEM material parameters from macroscopic data (Young's modulus, compressive and tensile strength, fracture energy, etc.) will first be presented for the purpose of enhancing reproducibility and reliability of the simulation results with DE samples of various sizes. Then, a particular interaction, between concrete and steel elements, was developed for the simulation of reinforced concrete. The discrete elements method was validated on quasi-static and dynamic tests carried out on small samples of concrete and reinforced concrete. Finally, discrete elements were used to simulate impacts on reinforced concrete slabs in order to confront the results with experimental tests. The modeling of a large structure by means of DEM may lead to prohibitive computation times. A refined discretization becomes required in the vicinity of the impact, while the structure may be modeled using a coarse FE mesh further from the impact area, where the material behaves elastically. A coupled discrete-finite element approach is thus proposed: the impact zone is modeled by means of DE and elastic FE are used on the rest of the structure. An existing method for 3D finite elements was extended to shells. This new method was then validated on many quasi-static and dynamic tests. The proposed approach is then applied to an impact on a concrete structure in order to validate the coupled method and compare computation times. (author)

  11. Dynamic separation of nanomagnet sublattices by orientation of elliptical elements

    Science.gov (United States)

    Yahagi, Y.; Berk, C. R.; Harteneck, B. D.; Cabrini, S. D.; Schmidt, H.

    2014-04-01

    We report the separation of the magnetization dynamics of densely packed nanomagnets depending on their orientation. The arrays consist of interleaved sublattices of identical nickel elliptical disks. By controlling the orientation of the elliptic disks relative to the external field in each sublattice, we simultaneously analyzed the magnetization dynamics in each sublattice using a time-resolved magnetooptic Kerr effect (TR-MOKE) microscopy system. The Fourier spectra showed clearly separated precession modes for sublattices with different orientations. The spectra were shown to be robust against the error in applied field orientation. The sublattice response can be tuned to a single collective frequency by choosing a symmetric field orientation. We analyzed the effect of the interelement coupling with various spacing between nanomagnets and found a relatively weak dependence on dipolar interactions in good agreement with micromagnetic simulations.

  12. Essential elements of online information networks on invasive alien species

    Science.gov (United States)

    Simpson, A.; Sellers, E.; Grosse, A.; Xie, Y.

    2006-01-01

    In order to be effective, information must be placed in the proper context and organized in a manner that is logical and (preferably) standardized. Recently, invasive alien species (IAS) scientists have begun to create online networks to share their information concerning IAS prevention and control. At a special networking session at the Beijing International Symposium on Biological Invasions, an online Eastern Asia-North American IAS Information Network (EA-NA Network) was proposed. To prepare for the development of this network, and to provide models for other regional collaborations, we compare four examples of global, regional, and national online IAS information networks: the Global Invasive Species Information Network, the Invasives Information Network of the Inter-American Biodiversity Information Network, the Chinese Species Information System, and the Invasive Species Information Node of the US National Biological Information Infrastructure. We conclude that IAS networks require a common goal, dedicated leaders, effective communication, and broad endorsement, in order to obtain sustainable, long-term funding and long-term stability. They need to start small, use the experience of other networks, partner with others, and showcase benefits. Global integration and synergy among invasive species networks will succeed with contributions from both the top-down and the bottom-up. ?? 2006 Springer.

  13. Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics

    CERN Document Server

    Wu, Shen R

    2012-01-01

    A systematic introduction to the theories and formulations of the explicit finite element method As numerical technology continues to grow and evolve with industrial applications, understanding the explicit finite element method has become increasingly important, particularly in the areas of crashworthiness, metal forming, and impact engineering. Introduction to the Explicit FiniteElement Method for Nonlinear Transient Dynamics is the first book to address specifically what is now accepted as the most successful numerical tool for nonlinear transient dynamics. The book aids readers in master

  14. Information and Communication Technology and the dynamics of ...

    African Journals Online (AJOL)

    The paper provides an overview of Information and Communication Technology in the 21st century library and information service delivery. It highlights the various dynamics in today's library and information service delivery associated with ICTs use - the resultant changes in the library and information landscape and the ...

  15. Effects of controlled element dynamics on human feedforward behavior in ramp-tracking tasks.

    Science.gov (United States)

    Laurense, Vincent A; Pool, Daan M; Damveld, Herman J; van Paassen, Marinus René M; Mulder, Max

    2015-02-01

    In real-life manual control tasks, human controllers are often required to follow a visible and predictable reference signal, enabling them to use feedforward control actions in conjunction with feedback actions that compensate for errors. Little is known about human control behavior in these situations. This paper investigates how humans adapt their feedforward control dynamics to the controlled element dynamics in a combined ramp-tracking and disturbance-rejection task. A human-in-the-loop experiment is performed with a pursuit display and vehicle-like controlled elements, ranging from a single integrator through second-order systems with a break frequency at either 3, 2, or 1 rad/s, to a double integrator. Because the potential benefits of feedforward control increase with steeper ramp segments in the target signal, three steepness levels are tested to investigate their possible effect on feedforward control with the various controlled elements. Analyses with four novel models of the operator, fitted to time-domain data, reveal feedforward control for all tested controlled elements and both (nonzero) tested levels of ramp steepness. For the range of controlled element dynamics investigated, it is found that humans adapt to these dynamics in their feedforward response, with a close to perfect inversion of the controlled element dynamics. No significant effects of ramp steepness on the feedforward model parameters are found.

  16. System Dynamics Modeling for Supply Chain Information Sharing

    Science.gov (United States)

    Feng, Yang

    In this paper, we try to use the method of system dynamics to model supply chain information sharing. Firstly, we determine the model boundaries, establish system dynamics model of supply chain before information sharing, analyze the model's simulation results under different changed parameters and suggest improvement proposal. Then, we establish system dynamics model of supply chain information sharing and make comparison and analysis on the two model's simulation results, to show the importance of information sharing in supply chain management. We wish that all these simulations would provide scientific supports for enterprise decision-making.

  17. Elements of earthquake engineering and structural dynamics. 2. ed.

    International Nuclear Information System (INIS)

    Filiatrault, A.

    2002-01-01

    This book is written for practising engineers, senior undergraduate and junior structural-engineering students, and university educators. Its main goal is to provide basic knowledge to structural engineers who have no previous knowledge about earthquake engineering and structural dynamics. Earthquake engineering is a multidisciplinary science. This book is not limited to structural analysis and design. The basics of other relevant topics (such as geology, seismology, and geotechnical engineering) are also covered to ensure that structural engineers can interact efficiently with other specialists during a construction project in a seismic zone

  18. Rigid finite element method in analysis of dynamics of offshore structures

    Energy Technology Data Exchange (ETDEWEB)

    Wittbrodt, Edmund [Gdansk Univ. of Technology (Poland); Szczotka, Marek; Maczynski, Andrzej; Wojciech, Stanislaw [Bielsko-Biala Univ. (Poland)

    2013-07-01

    This book describes new methods developed for modelling dynamics of machines commonly used in the offshore industry. These methods are based both on the rigid finite element method, used for the description of link deformations, and on homogeneous transformations and joint coordinates, which is applied to the modelling of multibody system dynamics. In this monograph, the bases of the rigid finite element method and homogeneous transformations are introduced. Selected models for modelling dynamics of offshore devices are then verified both by using commercial software, based on the finite element method, as well as by using additional methods. Examples of mathematical models of offshore machines, such as a gantry crane for Blowout-Preventer (BOP) valve block transportation, a pedestal crane with shock absorber, and pipe laying machinery are presented. Selected problems of control in offshore machinery as well as dynamic optimization in device control are also discussed. Additionally, numerical simulations of pipe-laying operations taking active reel drive into account are shown.

  19. Rigid Finite Element Method in Analysis of Dynamics of Offshore Structures

    CERN Document Server

    Wittbrodt, Edmund; Maczyński, Andrzej; Wojciech, Stanisław

    2013-01-01

    This book describes new methods developed for modelling dynamics of machines commonly used in the offshore industry. These methods are based both on the rigid finite element method, used for the description of link deformations, and on homogeneous transformations and joint coordinates, which is applied to the modelling of multibody system dynamics. In this monograph, the bases of the rigid finite element method  and homogeneous transformations are introduced. Selected models for modelling dynamics of offshore devices are then verified both by using commercial software, based on the finite element method, as well as by using additional methods. Examples of mathematical models of offshore machines, such as a gantry crane for Blowout-Preventer (BOP) valve block transportation, a pedestal crane with shock absorber, and pipe laying machinery are presented. Selected problems of control in offshore machinery as well as dynamic optimization in device control are also discussed. Additionally, numerical simulations of...

  20. Dissipative dynamics of the synthesis of superheavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Takahiro; Aritomo, Y.; Tokuda, T.; Okazaki, K.; Ohta, M. [Konan Univ., Kobe (Japan). Dept. of Physics; Abe, Y.

    1997-07-01

    Fusion-fission process in heavy systems are analyzed by Smoluchowski equation taking into account the temperature dependent shell correction energy. The evaporation residue cross sections of superheavy elements have been shown to have an optimum value at a certain temperature, due to the balance between the diffusibility for fusion at high temperature and the restoration of the shell correction energy against fission at low temperature. The isotope dependence of the evaporation residue cross section is found to be very strong. Neutron rich compound system with small neutron separation energy is favorable for larger cross section because of the quick restoration of the shell correction energy. The Z-dependence is discussed for the formation of the compound nuclei with Z=102 to Z=114. (author)

  1. Dynamic stall study of a multi-element airfoil

    Science.gov (United States)

    Tung, Chee; Mcalister, Kenneth W.; Wang, Clin M.

    1992-01-01

    Unsteady flow behavior and load characteristics of a VR-7 airfoil with and without a slat were studied in the water tunnel of the Aeroflightdynamics Directorate, NASA Ames Research Center. Both airfoils were oscillated sinusoidally between 5 and 25 degrees at a Reynolds number of 200,000 to obtain the unsteady lift, drag and pitching moment data. A fluorescing dye was released from an orifice located at the leading edge of the airfoil for the purpose of visualizing the boundary layer and wake flow. The flow field and load predictions of an incompressible Navier-Stokes code based on a velocity-vorticity formulation were compared with the test data. The test and predictions both confirm that the slatted VR-7 airfoil delays both static and dynamic stall as compared to the VR-7 airfoil alone.

  2. Dynamic axes of informed consent in Japan.

    Science.gov (United States)

    Specker Sullivan, Laura

    2017-02-01

    Scholarship in cross-cultural bioethics routinely frames Japanese informed consent in contrast to informed consent in North America. This contrastive analysis foregrounds cancer diagnosis disclosure and physician paternalism as unique aspects of Japanese informed consent that deviate from American practices. Drawing on in-depth interviews with 15 Japanese medical professionals obtained during fieldwork in Japan from 2013 to 15, this article complicates the informed consent discourse beyond East-West comparisons premised on Anglo-American ethical frameworks. It expands professional perspectives to include nurses, medical social workers, clinical psychologists, and ethicists and it addresses informed consent for a broad range of conditions in addition to cancer. The results suggest that division of affective labor is an under-theorized dimension of informed consent that is perceived as at odds with principled demands for universal informed consent. These practical tensions are conceptualized as cultural differences, with Japan identified in terms of omakase as practical and supportive and the United States identified in terms of jiko kettei as principled and self-determining. These results have implications for the methodology of cross-cultural bioethics as well as for theories and practices of informed consent in both Japan and the United States. I conclude that responsible cross-cultural work in bioethics must begin from the ground up, incorporating all relevant stakeholder perspectives, attitudes, and experiences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Analyzing the Mixing Dynamics of an Industrial Batch Bin Blender via Discrete Element Modeling Method

    Directory of Open Access Journals (Sweden)

    Maitraye Sen

    2017-04-01

    Full Text Available A discrete element model (DEM has been developed for an industrial batch bin blender in which three different types of materials are mixed. The mixing dynamics have been evaluated from a model-based study with respect to the blend critical quality attributes (CQAs which are relative standard deviation (RSD and segregation intensity. In the actual industrial setup, a sensor mounted on the blender lid is used to determine the blend composition in this region. A model-based analysis has been used to understand the mixing efficiency in the other zones inside the blender and to determine if the data obtained near the blender-lid region are able to provide a good representation of the overall blend quality. Sub-optimal mixing zones have been identified and other potential sampling locations have been investigated in order to obtain a good approximation of the blend variability. The model has been used to study how the mixing efficiency can be improved by varying the key processing parameters, i.e., blender RPM/speed, fill level/volume and loading order. Both segregation intensity and RSD reduce at a lower fill level and higher blender RPM and are a function of the mixing time. This work demonstrates the use of a model-based approach to improve process knowledge regarding a pharmaceutical mixing process. The model can be used to acquire qualitative information about the influence of different critical process parameters and equipment geometry on the mixing dynamics.

  4. Information Dynamics as Foundation for Network Management

    Science.gov (United States)

    2014-12-04

    developed to adapt to channel dynamics in a mobile network environment. We devise a low- complexity online scheduling algorithm integrated with the...has been accepted for the Journal on Network and Systems Management in 2014. - RINC programmable platform for Infrastructure -as-a-Service public... backend servers. Rather than implementing load balancing in dedicated appliances, commodity SDN switches can perform this function. We design

  5. Towards GLUE2 evolution of the computing element information model

    CERN Document Server

    Andreozzi, S; Field, L; Kónya, B

    2008-01-01

    A key advantage of Grid systems is the ability to share heterogeneous resources and services between traditional administrative and organizational domains. This ability enables virtual pools of resources to be created and assigned to groups of users. Resource awareness, the capability of users or user agents to have knowledge about the existence and state of resources, is required in order utilize the resource. This awareness requires a description of the services and resources typically defined via a community-agreed information model. One of the most popular information models, used by a number of Grid infrastructures, is the GLUE Schema, which provides a common language for describing Grid resources. Other approaches exist, however they follow different modeling strategies. The presence of different flavors of information models for Grid resources is a barrier for enabling inter-Grid interoperability. In order to solve this problem, the GLUE Working Group in the context of the Open Grid Forum was started. ...

  6. Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model.

    Science.gov (United States)

    Chen, Yung-Chuan; Tu, Yuan-Kun; Zhuang, Jun-Yan; Tsai, Yi-Jung; Yen, Cheng-Yo; Hsiao, Chih-Kun

    2017-11-01

    A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.

  7. Information Exchange, Market Transparency and Dynamic Oligopoly

    DEFF Research Database (Denmark)

    Overgaard, Per Baltzer; Møllgaard, Peter

    2005-01-01

    In the economics literature, various views on the likely (efficiency) effects of information exchange,communication between firms and market transparency present themselves. Often these views oninformation flows are highly conflicting. On the one hand, it is argued that increased...... informationdissemination improves firm planning to the benefit of society (including customers) and/or allowspotential customers to make the right decisions given their preferences. On the other hand, theliterature also suggests that increased information dissemination can have significant coordinating orcollusive......, where informational issues have played a significant role....

  8. Entanglement dynamics in quantum information theory

    Energy Technology Data Exchange (ETDEWEB)

    Cubitt, T.S.

    2007-03-29

    This thesis contributes to the theory of entanglement dynamics, that is, the behaviour of entanglement in systems that are evolving with time. Progressively more complex multipartite systems are considered, starting with low-dimensional tripartite systems, whose entanglement dynamics can nonetheless display surprising properties, progressing through larger networks of interacting particles, and finishing with infinitely large lattice models. Firstly, what is perhaps the most basic question in entanglement dynamics is considered: what resources are necessary in order to create entanglement between distant particles? The answer is surprising: sending separable states between the parties is sufficient; entanglement can be created without it being carried by a ''messenger'' particle. The analogous result also holds in the continuous-time case: two particles interacting indirectly via a common ancilla particle can be entangled without the ancilla ever itself becoming entangled. The latter result appears to discount any notion of entanglement flow. However, for pure states, this intuitive idea can be recovered, and even made quantitative. A ''bottleneck'' inequality is derived that relates the entanglement rate of the end particles in a tripartite chain to the entanglement of the middle one. In particular, no entanglement can be created if the middle particle is not entangled. However, although this result can be applied to general interaction networks, it does not capture the full entanglement dynamics of these more complex systems. This is remedied by the derivation of entanglement rate equations, loosely analogous to the rate equations describing a chemical reaction. A complete set of rate equations for a system reflects the full structure of its interaction network, and can be used to prove a lower bound on the scaling with chain length of the time required to entangle the ends of a chain. Finally, in contrast with these more

  9. Entanglement dynamics in quantum information theory

    International Nuclear Information System (INIS)

    Cubitt, T.S.

    2007-01-01

    This thesis contributes to the theory of entanglement dynamics, that is, the behaviour of entanglement in systems that are evolving with time. Progressively more complex multipartite systems are considered, starting with low-dimensional tripartite systems, whose entanglement dynamics can nonetheless display surprising properties, progressing through larger networks of interacting particles, and finishing with infinitely large lattice models. Firstly, what is perhaps the most basic question in entanglement dynamics is considered: what resources are necessary in order to create entanglement between distant particles? The answer is surprising: sending separable states between the parties is sufficient; entanglement can be created without it being carried by a ''messenger'' particle. The analogous result also holds in the continuous-time case: two particles interacting indirectly via a common ancilla particle can be entangled without the ancilla ever itself becoming entangled. The latter result appears to discount any notion of entanglement flow. However, for pure states, this intuitive idea can be recovered, and even made quantitative. A ''bottleneck'' inequality is derived that relates the entanglement rate of the end particles in a tripartite chain to the entanglement of the middle one. In particular, no entanglement can be created if the middle particle is not entangled. However, although this result can be applied to general interaction networks, it does not capture the full entanglement dynamics of these more complex systems. This is remedied by the derivation of entanglement rate equations, loosely analogous to the rate equations describing a chemical reaction. A complete set of rate equations for a system reflects the full structure of its interaction network, and can be used to prove a lower bound on the scaling with chain length of the time required to entangle the ends of a chain. Finally, in contrast with these more abstract results, the entanglement and

  10. A Dynamic Model of Information and Entropy

    Directory of Open Access Journals (Sweden)

    Stuart D. Walker

    2010-01-01

    Full Text Available We discuss the possibility of a relativistic relationship between information and entropy, closely analogous to the classical Maxwell electro-magnetic wave equations. Inherent to the analysis is the description of information as residing in points of non-analyticity; yet ultimately also exhibiting a distributed characteristic: additionally analogous, therefore, to the wave-particle duality of light. At cosmological scales our vector differential equations predict conservation of information in black holes, whereas regular- and Z-DNA molecules correspond to helical solutions at microscopic levels. We further propose that regular- and Z-DNA are equivalent to the alternative words chosen from an alphabet to maintain the equilibrium of an information transmission system.

  11. Information Exchange, Market Transparency and Dynamic Oligopoly

    DEFF Research Database (Denmark)

    Møllgaard, H. Peter; Overgaard, Per Baltzer

    Economic literature often offers conflicting views on the likely efficiency effects of information exchanges, communication between firms, and market transparency. On the one hand, it is argued that increased information dissemination improves firm planning to the benefit of society (including...... buyers) and allows potential buyers to make correct decisions given their preferences. On the other hand, economic literature also shows that increased information dissemination can raise prices through tacit or explicit collusion to the benefit of firms but at the expense of society at large....... This chapter provides a general analytical framework to reconcile these views and presents some basic conclusions for antitrust practice. In addition, the chapter reviews cases from both sides of the Atlantic where informational issues have played a significant role....

  12. Towards GLUE 2: evolution of the computing element information model

    International Nuclear Information System (INIS)

    Andreozzi, S; Burke, S; Field, L; Konya, B

    2008-01-01

    A key advantage of Grid systems is the ability to share heterogeneous resources and services between traditional administrative and organizational domains. This ability enables virtual pools of resources to be created and assigned to groups of users. Resource awareness, the capability of users or user agents to have knowledge about the existence and state of resources, is required in order utilize the resource. This awareness requires a description of the services and resources typically defined via a community-agreed information model. One of the most popular information models, used by a number of Grid infrastructures, is the GLUE Schema, which provides a common language for describing Grid resources. Other approaches exist, however they follow different modeling strategies. The presence of different flavors of information models for Grid resources is a barrier for enabling inter-Grid interoperability. In order to solve this problem, the GLUE Working Group in the context of the Open Grid Forum was started. The purpose of the group is to oversee a major redesign of the GLUE Schema which should consider the successful modeling choices and flaws that have emerged from practical experience and modeling choices from other initiatives. In this paper, we present the status of the new model for describing computing resources as the first output from the working group with the aim of dissemination and soliciting feedback from the community

  13. INFORMATION AS AN ELEMENT OF THE NAVIGATION DECISIONMAKING PROCESS

    Directory of Open Access Journals (Sweden)

    Andrzej BANACHOWICZ

    2016-09-01

    Full Text Available The operation of vehicles (watercraft, aircraft, land-based, spacecraft, unmanned requires the use of navigation systems for their control. These systems can be characterized by varying degrees of complexity and technological advancement. However, each system has sources of information about the state (position of the navigating object, state of the environment in which the object is moving and the task to be accomplished. These components are integrated by the decision-maker (human or automated, who/which makes and implements decisions adjusted to current conditions

  14. Modelling Dynamic Forgetting in Distributed Information Systems

    NARCIS (Netherlands)

    N.F. Höning (Nicolas); M.C. Schut

    2010-01-01

    htmlabstractWe describe and model a new aspect in the design of distributed information systems. We build upon a previously described problem on the microlevel, which asks how quickly agents should discount (forget) their experience: If they cherish their memories, they can build their reports on

  15. A Dynamic Informational-Epistemic Logic

    NARCIS (Netherlands)

    David Santos, Yuri; Madeira, Alexandre; Benevides, Mário

    2017-01-01

    Epistemic logic is usually employed to model two aspects of a situation: the ontic and the epistemic aspects. Truth, however, is not always attainable, and in many cases we are forced to reason only with whatever information is available to us. In this paper, we will explore a four-valued epistemic

  16. Footwear discrimination using dynamic tactile information

    DEFF Research Database (Denmark)

    Drimus, Alin; Mikov, Vedran

    2017-01-01

    Abstract: This paper shows that it is possible to differentiate among various type of footwear solely by using highly dimensional pressure information provided by a sensorised insole. In order to achieve this, a person equipped with two sensorised insoles streaming real-time tactile data to a com...

  17. Linear dynamic analysis of arbitrary thin shells modal superposition by using finite element method

    International Nuclear Information System (INIS)

    Goncalves Filho, O.J.A.

    1978-11-01

    The linear dynamic behaviour of arbitrary thin shells by the Finite Element Method is studied. Plane triangular elements with eighteen degrees of freedom each are used. The general equations of movement are obtained from the Hamilton Principle and solved by the Modal Superposition Method. The presence of a viscous type damping can be considered by means of percentages of the critical damping. An automatic computer program was developed to provide the vibratory properties and the dynamic response to several types of deterministic loadings, including temperature effects. The program was written in FORTRAN IV for the Burroughs B-6700 computer. (author)

  18. An information theory framework for dynamic functional domain connectivity.

    Science.gov (United States)

    Vergara, Victor M; Miller, Robyn; Calhoun, Vince

    2017-06-01

    Dynamic functional network connectivity (dFNC) analyzes time evolution of coherent activity in the brain. In this technique dynamic changes are considered for the whole brain. This paper proposes an information theory framework to measure information flowing among subsets of functional networks call functional domains. Our method aims at estimating bits of information contained and shared among domains. The succession of dynamic functional states is estimated at the domain level. Information quantity is based on the probabilities of observing each dynamic state. Mutual information measurement is then obtained from probabilities across domains. Thus, we named this value the cross domain mutual information (CDMI). Strong CDMIs were observed in relation to the subcortical domain. Domains related to sensorial input, motor control and cerebellum form another CDMI cluster. Information flow among other domains was seldom found. Other methods of dynamic connectivity focus on whole brain dFNC matrices. In the current framework, information theory is applied to states estimated from pairs of multi-network functional domains. In this context, we apply information theory to measure information flow across functional domains. Identified CDMI clusters point to known information pathways in the basal ganglia and also among areas of sensorial input, patterns found in static functional connectivity. In contrast, CDMI across brain areas of higher level cognitive processing follow a different pattern that indicates scarce information sharing. These findings show that employing information theory to formally measured information flow through brain domains reveals additional features of functional connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Dynamic analysis of an axially moving beam subject to inner pressure using finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Hongliang; Qiu, Ming; Liao, Zhenqiang [Nanjing University of Science and Technology, Nanjing (China)

    2017-06-15

    A dynamic model of an axially moving flexible beam subject to an inner pressure is present. The coupling principle between a flexible beam and inner pressure is analyzed first, and the potential energy of the inner pressure due to the beam bending is derived using the principle of virtual work. A 1D hollow beam element contain inner pressure is established. The finite element method and Lagrange’s equation are used to derive the motion equations of the axially moving system. The dynamic responses are analyzed by Newmark-β time integration method. Based on the computed dynamic responses, the effects of inner pressure on beam dynamics are discussed. Some interesting phenomenon is observed.

  20. Information Operations: The Least Applied Element of U.S. National Power

    National Research Council Canada - National Science Library

    Ferguson, Quill

    2004-01-01

    Information operations, one of the four elements of U.S. national power, is supreme in defending the country against foreign or domestic adversaries and winning hearts and minds both at home and internationally...

  1. Patient Perception of Disclosure Performance of Informed Consent Elements in the Preanesthesia Interview

    National Research Council Canada - National Science Library

    Hartgerink, Bradley

    1997-01-01

    ...) were discussed in the preanesthesia interview. A survey composed of 21 questions pertaining to demography and informed consent elements was devised and administered to 53 patients immediately following their preanesthesia interview...

  2. Towards dynamic reference information models: Readiness for ICT mass customisation

    NARCIS (Netherlands)

    Verdouw, C.N.; Beulens, A.J.M.; Trienekens, J.H.; Verwaart, D.

    2010-01-01

    Current dynamic demand-driven networks make great demands on, in particular, the interoperability and agility of information systems. This paper investigates how reference information models can be used to meet these demands by enhancing ICT mass customisation. It was found that reference models for

  3. Micromagnetic simulation on the dynamic permeability spectrum of micrometer sized magnetic elements

    International Nuclear Information System (INIS)

    Liu, Huanhuan; Wang, Qi; Zhang, Huaiwu; Zhong, Zhiyong

    2014-01-01

    The inductance of a thin film inductor with magnetic core is much less than μ'(magnetic core's permeability) times that of inductor without magnetic core due to the complicated magnetic structure in the scaled-down magnetic elements. Therefore, it is very important to optimize the micro-scale magnetic structure for improving the inductance value of the thin film inductor with magnetic core. In this paper, the magnetization dynamics and magnetic structure have been investigated using micromagnetic simulation method, in which the additional internal boundaries are considered. The simulated results show that the permeability of structured micromagnetic core is promoted 32.5% than that of magnetic element without slits. It opens a new way to improve the dynamic high frequency characteristics of micro-scale magnetic element, which can be used in a thin film inductor. - Highlights: • Simulate the magnetic element with dimensions of 2 μm×1 μm×100 nm with slits using micromagnetic simulation method. • The dynamic characteristics of micro-scale magnetic element can be improved when adding appropriate slits. • Give the corresponding area for different resonance frequency

  4. Information model of trainee characteristics with definition of stochastic behavior of dynamic system

    Science.gov (United States)

    Sumin, V. I.; Smolentseva, T. E.; Belokurov, S. V.; Lankin, O. V.

    2018-03-01

    In the work the process of formation of trainee characteristics with their subsequent change is analyzed and analyzed. Characteristics of trainees were obtained as a result of testing for each section of information on the chosen discipline. The results obtained during testing were input to the dynamic system. The area of control actions consisting of elements of the dynamic system is formed. The limit of deterministic predictability of element trajectories in dynamical systems based on local or global attractors is revealed. The dimension of the phase space of the dynamic system is determined, which allows estimating the parameters of the initial system. On the basis of time series of observations, it is possible to determine the predictability interval of all parameters, which make it possible to determine the behavior of the system discretely in time. Then the measure of predictability will be the sum of Lyapunov’s positive indicators, which are a quantitative measure for all elements of the system. The components for the formation of an algorithm allowing to determine the correlation dimension of the attractor for known initial experimental values of the variables are revealed. The generated algorithm makes it possible to carry out an experimental study of the dynamics of changes in the trainee’s parameters with initial uncertainty.

  5. Information processing and dynamics in minimally cognitive agents.

    Science.gov (United States)

    Beer, Randall D; Williams, Paul L

    2015-01-01

    There has been considerable debate in the literature about the relative merits of information processing versus dynamical approaches to understanding cognitive processes. In this article, we explore the relationship between these two styles of explanation using a model agent evolved to solve a relational categorization task. Specifically, we separately analyze the operation of this agent using the mathematical tools of information theory and dynamical systems theory. Information-theoretic analysis reveals how task-relevant information flows through the system to be combined into a categorization decision. Dynamical analysis reveals the key geometrical and temporal interrelationships underlying the categorization decision. Finally, we propose a framework for directly relating these two different styles of explanation and discuss the possible implications of our analysis for some of the ongoing debates in cognitive science. Copyright © 2014 Cognitive Science Society, Inc.

  6. Dynamic measurement of coal thermal properties and elemental composition of volatile matter during coal pyrolysis

    Directory of Open Access Journals (Sweden)

    Rohan Stanger

    2014-01-01

    Full Text Available A new technique that allows dynamic measurement of thermal properties, expansion and the elemental chemistry of the volatile matter being evolved as coal is pyrolysed is described. The thermal and other properties are measured dynamically as a function of temperature of the coal without the need for equilibration at temperature. In particular, the technique allows for continuous elemental characterisation of tars as they are evolved during pyrolysis and afterwards as a function of boiling point. The technique is demonstrated by measuring the properties of maceral concentrates from a coal. The variation in heats of reaction, thermal conductivity and expansion as a function of maceral composition is described. Combined with the elemental analysis, the results aid in the interpretation of the chemical processes contributing to the physical and thermal behaviour of the coal during pyrolysis. Potential applications in cokemaking studies are discussed.

  7. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    Science.gov (United States)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  8. Dynamic analysis and application of fuel elements pneumatic transportation in a pebble bed reactor

    International Nuclear Information System (INIS)

    Liu, Hongbing; Du, Dong; Han, Zandong; Zou, Yirong; Pan, Jiluan

    2015-01-01

    Almost 10,000 spherical fuel elements are transported pneumatically one by one in the pipeline outside the core of a pebble bed reactor every day. Any failure in the transportation will lead to the shutdown of the reactor, even safety accidents. In order to ensure a stable and reliable transportation, it's of great importance to analyze the motion and force condition of the fuel element. In this paper, we focus on the dynamic analysis of the pneumatic transportation of the fuel element and derive kinetic equations. Then we introduce the design of the transportation pipeline. On this basis we calculate some important data such as the velocity of the fuel element, the force between the fuel element and the pipeline and the efficiency of the pneumatic transportation. Then we analyze these results and provide some suggestions for the design of the pipeline. The experiment was carried out on an experimental platform. The velocities of the fuel elements were measured. The experimental results were consistent with and validated the theoretical analysis. The research may offer the basis for the design of the transportation pipeline and the optimization of the fuel elements transportation in a pebble bed reactor. - Highlights: • The kinetic equations of the fuel element in pneumatic transportation are derived. • The dynamic characteristics of the fuel element are analyzed. • Some important parameters are calculated based on the kinetic equations. • The experimental results were consistent with the analysis and verified the analysis. • This paper may offer an important guide to the research of a pebble bed reactor

  9. Simulation of Missing Pellet Surface thermal behavior with 3D dynamic gap element

    International Nuclear Information System (INIS)

    Kim, Hyo Chan; Yang, Yong Sik; Koo, Yang Hyun; Kang, Chang Hak; Lee Sung Uk; Yang, Dong Yol

    2014-01-01

    Most of the fuel performance codes that are able to simulate a multidimensional analysis are used to calculate the radial temperature distribution and perform a multidimensional mechanical analysis based on a one-dimensional (1D) temperature result. The FRAPCON-FRAPTRAN code system incorporates a 1D thermal module and two-dimensional (2D) mechanical module when FEM option is activated. In this method, the multidimensional gap conductance model is not required because one-dimensional thermal analysis is carried out. On the other hand, a gap conductance model for a multi-dimension should be developed in the code to perform a multidimensional thermal analysis. ALCYONE developed by CEA introduces an equivalent heat convection coefficient that represents the multidimensional gap conductance. However, the code does not employ dynamic gap conductance which is a function of gap thickness and gap characteristics in direct. The BISON code, which has been developed by INL (Idaho National Laboratory), employed a thermo-mechanical contact method that is specifically designed for tightly-coupled implicit solutions that employ Jacobian-free solution methods. Owing to tightly-coupled implicit solutions, the BISON code solves gap conductance and gap thickness simultaneously with given boundary conditions. In this paper, 3D dynamic gap element has been proposed to resolve convergence issue and nonlinear characteristic of multidimensional gap conductance. To evaluate 3D dynamic gap element module, 3D thermomechanical module using FORTRAN77 has been implemented incorporating 3D dynamic gap element. To demonstrate effect of 3D dynamic gap element, thermal behavior of missing pellet surface (MPS) has been simulated by the developed module. LWR fuel performance codes should incorporate thermo-mechanical loop to solve gap conductance problem, iteratively. However, gap conductance in multidimensional model is difficult issue owing to its nonlinearity and convergence characteristics. In

  10. Fifth International Conference on the Dynamics of Information Systems

    CERN Document Server

    Walteros, Jose; Pardalos, Panos

    2014-01-01

    The contributions of this volume stem from the “Fifth International Conference on the Dynamics of Information Systems” held in Gainesville, FL in February 2013, and discuss state-of the-art  techniques in handling problems and solutions in the broad field of information systems. Dynamics of Information Systems: Computational and Mathematical Challenges presents diverse aspects of modern information systems with an emphasis on interconnected network systems and related topics, such as signal and message reconstruction, network connectivity, stochastic network analysis, cyber and computer security, community and cohesive structures in complex networks. Information systems are a vital part of modern societies. They are essential to our daily actions, including social networking, business and bank transactions, as well as sensor communications. The rapid increase in these capabilities has enabled us with more powerful systems, readily available to sense, control, disperse, and analyze information.

  11. Measurement of dynamic interaction between a vibrating fuel element and its support

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, N.J.; Tromp, J.H.; Smith, B.A.W. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada). Chalk River Labs.

    1996-12-01

    Flow-induced vibration of CANDU{reg_sign} fuel can result in fretting damage of the fuel and its support. A WOrk-Rate Measuring Station (WORMS) was developed to measure the relative motion and contact forces between a vibrating fuel element and its support. The fixture consists of a small piece of support structure mounted on a micrometer stage. This arrangement permits position of the support relative to the fuel element to be controlled to within {+-} {micro}m. A piezoelectric triaxial load washer is positioned between the support and micrometer stage to measure contact forces, and a pair of miniature eddy-current displacement probes are mounted on the stage to measure fuel element-to-support relative motion. WORMS has been utilized to measure dynamic contact forces, relative displacements and work-rates between a vibrating fuel element and its support. For these tests, the fuel element was excited with broadband random force excitation to simulate flow-induced vibration due to axial flow. The relationship between fuel element-to-support gap or preload (i.e., interference or negative gap) and dynamic interaction (i.e., relative motion, contact forces and work-rates) was derived. These measurements confirmed numerical simulations of in-reactor interaction predicted earlier using the VIBIC code.

  12. Theoretical and experimental investigation of the nonlinear structural dynamics of Fast Breeder Reactor fuel elements

    International Nuclear Information System (INIS)

    Liebe, R.

    1978-04-01

    This study describes theoretical and experimental investigations of the dynamic deformation behavior of single and clustered fuel elements under local fault conditions in a Fast Breeder Reactor core. In particular an energetic molten-fuel-coolant-interaction (FCI) is assumed in one subassembly with corresponding pressure pulses, which may rupture the wrapper and load the adjacent fuel elements impulsively. Associated coherent structural deformation may exceed tolerable and damage the control rods. To attack the outlined coupled fluid-structure-interaction problem it is assumed, that the loading at the structures is known in space and time, and that there is no feedback from the deformation response. Then current FCI-knowledge and experience from underwater core model explosion tests is utilized to estimate upper limits of relevant pulse characteristics. As a first step the static carrying capacity of the rigid-plastic hexagonal wrapper tube is calculated using the methods of limit analysis. Then for a general dynamic simulation of the complete elastoplastic subassembly response the concept of a discrete nonlinear hinge is introduced. A corresponding physical lumped parameter hinge model is presented, and general equations of motion are derived using D'Alembert's principle. Application to the static and dynamic analysis of a single complete fuel element includes the semiempirical modelling of the fuel-pin bundle by a homogeneous compressible medium. Most important conclusions are concerning the capability of the theoretical models, the failure modes and threshold load levels of single as well as clustered SNR-300 fuel elements and the safety relevant finding, that only limited deformations are found in the first row around the incident element. This shows in agreement with explosion test results that the structured and closely spaced fuel elements constitute an effective, inherent barrier against extreme dynamic loadings. (orig.) [de

  13. Dynamic analysis of fast-acting solenoid valves using finite element method

    International Nuclear Information System (INIS)

    Kwon, Ki Tae; Han, Hwa Taik

    2001-01-01

    It is intended to develop an algorithm for dynamic simulation of fast-acting solenoid valves. The coupled equations of the electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balances acting on the plunger, which include the electromagnetic force calculated from the finite element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well the experimental results including bouncing effects

  14. Social Information Links Individual Behavior to Population and Community Dynamics.

    Science.gov (United States)

    Gil, Michael A; Hein, Andrew M; Spiegel, Orr; Baskett, Marissa L; Sih, Andrew

    2018-05-07

    When individual animals make decisions, they routinely use information produced intentionally or unintentionally by other individuals. Despite its prevalence and established fitness consequences, the effects of such social information on ecological dynamics remain poorly understood. Here, we synthesize results from ecology, evolutionary biology, and animal behavior to show how the use of social information can profoundly influence the dynamics of populations and communities. We combine recent theoretical and empirical results and introduce simple population models to illustrate how social information use can drive positive density-dependent growth of populations and communities (Allee effects). Furthermore, social information can shift the nature and strength of species interactions, change the outcome of competition, and potentially increase extinction risk in harvested populations and communities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Dynamic cost control information system for nuclear power plant construction

    International Nuclear Information System (INIS)

    Wang Yongqing; Liu Wei

    1998-01-01

    The authors first introduce the cost control functions of some overseas popular project management software at present and the specific ways of cost control of nuclear power plant construction in China. Then the authors stress the necessity of cost and schedule control integration and present the concept of dynamic cost control, the design scheme of dynamic cost control information system and the data structure modeling. Based on the above, the authors can develop the system which has the functions of dynamic estimate, cash flow management and cost optimization for nuclear engineering

  16. Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics

    International Nuclear Information System (INIS)

    Altaner, Bernhard

    2017-01-01

    Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. (paper)

  17. Creating a Test Validated Structural Dynamic Finite Element Model of the X-56A Aircraft

    Science.gov (United States)

    Pak, Chan-Gi; Truong, Samson

    2014-01-01

    Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the Multi Utility Technology Test-bed, X-56A aircraft, is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground vibration test-validated structural dynamic finite element model of the X-56A aircraft is created in this study. The structural dynamic finite element model of the X-56A aircraft is improved using a model tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, while other properties such as center of gravity location, total weight, and offdiagonal terms of the mass orthogonality matrix were used as constraints. The end result was a more improved and desirable structural dynamic finite element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.

  18. Can I Trust You? Profile Elements that Inform First Impressions of Trustworthiness in Virtual Project Teams

    NARCIS (Netherlands)

    Rusman, Ellen; Van Bruggen, Jan; Sloep, Peter; Valcke, Martin; Koper, Rob

    2010-01-01

    Rusman, E., Van Bruggen, J., Sloep, P. B., Valcke, M., & Koper, R. (2012). Can I Trust You? Profile Elements that Inform First Impressions of Trustworthiness in Virtual Project Teams. International Journal of Information Technology Project Management (IJITPM), 3(1), 15-35.

  19. Moving finite element method aided by computerized symbolic manipulation and its application to dynamic fracture simulation

    International Nuclear Information System (INIS)

    Nishioka, Toshihisa; Takemoto, Yutaka

    1988-01-01

    Recently, the authors have shown that the combined method of the path-independent J' integral (dynamic J integral) and a moving isoparametric element procedure is an effective tool for the calculation of dynamic stress intensity factors. In the moving element procedure, the nodal pattern of the elements near a crack tip moves according to the motion of the crack-tip. An iterative numerical technique was used in the previous procedure to find the natural coordinates (ξ, η) at the newly created nodes. This technique requires additional computing time because of the nature of iteration. In the present paper, algebraic expressions for the transformation of the global coordinates (x, y) to the natural coordinates (ξ, η) were obtained by using a computerized symbolic manipulation system (REDUCE 3.2). These algebraic expressions are also very useful for remeshing or zooming techniques often used in finite element analysis. The present moving finite element method demonstrates its effectiveness for the simulation of a fast fracture. (author)

  20. Dynamic Response of a Planetary Gear System Using a Finite Element/Contact Mechanics Model

    Science.gov (United States)

    Parker, Robert G.; Agashe, Vinayak; Vijayakar, Sandeep M.

    2000-01-01

    The dynamic response of a helicopter planetary gear system is examined over a wide range of operating speeds and torques. The analysis tool is a unique, semianalytical finite element formulation that admits precise representation of the tooth geometry and contact forces that are crucial in gear dynamics. Importantly, no a priori specification of static transmission error excitation or mesh frequency variation is required; the dynamic contact forces are evaluated internally at each time step. The calculated response shows classical resonances when a harmonic of mesh frequency coincides with a natural frequency. However, peculiar behavior occurs where resonances expected to be excited at a given speed are absent. This absence of particular modes is explained by analytical relationships that depend on the planetary configuration and mesh frequency harmonic. The torque sensitivity of the dynamic response is examined and compared to static analyses. Rotation mode response is shown to be more sensitive to input torque than translational mode response.

  1. An improved model for considering strain rate effects on reinforced concrete elements behavior under dynamic loads

    International Nuclear Information System (INIS)

    Sim, J.; Soroushian, P.

    1989-01-01

    An improved model for predicting the reinforced concrete element behavior under dynamic strain rates was developed using the layer modeling technique. The developed strain rate sensitive model for axial/flexural analysis of reinforced concrete elements was used to predict the test results, performed at different loading rates, and the predictions were reasonable. The developed analysis technique was used to study the loading rate sensitivity of reinforced concrete beams and columns with different geometry and material properties. Two design formulas for computing the loading rate dependent axial and flexural strengths of reinforced concrete sections are suggested

  2. The dynamic management system for grid resources information of IHEP

    International Nuclear Information System (INIS)

    Gu Ming; Sun Gongxing; Zhang Weiyi

    2003-01-01

    The Grid information system is an essential base for building a Grid computing environment, it collects timely the resources information of each resource in a Grid, and provides an entire information view of all resources to the other components in a Grid computing system. The Grid technology could support strongly the computing of HEP (High Energy Physics) with big science and multi-organization features. In this article, the architecture and implementation of a dynamic management system are described, as well as the grid and LDAP (Lightweight Directory Access Protocol), including Web-based design for resource information collecting, querying and modifying. (authors)

  3. Dynamic use of geoscience information to develop scientific understanding for a nuclear waste repository

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Tsang, C.F.

    1990-01-01

    The development and safety evaluation of a nuclear waste geologic repository require a proper scientific understanding of the site response. Such scientific understanding depends on information from a number of geoscience disciplines, including geology, geophysics, geochemistry, geomechanics and hydrogeology. The information comes in four stages: (1) general regional survey data base, (2) surface-based testing, (3) exploratory shaft testing, and (4) repository construction and evaluation. A discussion is given on the dynamic use of the information through the different stages. We point out the need for abstracting, deriving and updating a quantitative spatial and process model (QSPM) to develop a scientific understanding of site responses as a crucial element in the dynamic procedure. 2 figs

  4. Information dynamics in virtual worlds gaming and beyond

    CERN Document Server

    Evans, Woody

    2011-01-01

    Presents a broad examination of the nature of virtual worlds and the potential they provide in managing and expressing information practices through that medium, grounding information professionals and students of new media in the fundamental elements of virtual worlds and online gaming. The book details the practical issues in finding and using information in virtual environments and presents a general theory of librarianship as it relates to virtual gaming worlds. It is encompassed by a set of best practice methods that libraries can effectively execute in their own environments, meeting the

  5. Study of Dynamic Flow and Mixing Performances of Tri-Screw Extruders with Finite Element Method

    OpenAIRE

    X. Z. Zhu; G. Wang; Y. D. He; Z. F. Cheng

    2013-01-01

    There is a special circumfluence in the center region of cross-section for a tri-screw extruder. To study the effect of the dynamic center region on the flow and mixing mechanism of the tri-screw extruder, 2D finite element modeling was used to reduce the axial effects. Based on the particle tracking technology, the nonlinear dynamics of a typical particle motions in the center region was carried out and the mixing process in the tri-screw extruder was analyzed with Poincaré maps. Moreover, m...

  6. Dynamic transient analysis of rupture disks by the finite-element method

    International Nuclear Information System (INIS)

    Hsieh, B.J.

    1975-02-01

    A finite element method utilizing the principle of virtual work in convected coordinates is used to analyze the axisymmetric dynamic transient response of rupture disks. This method can treat non-linearities arising both from inelastic material properties and large displacements/rotations provided that the convected strains are small. This report contains extensive calculations using a variety of rupture disk geometries and attempts to relate the static buckling of such disks to their dynamic response characteristics. A majority of the calculations treat the response of 18 inch disks typical of those currently considered for use in the Clinch River Breeder Reactor intermediate heat transport system

  7. REMOTE SYNTHESIS AND CONTROL INFORMATION TECHNOLOGY OF SYSTEM-DYNAMIC MODELS

    Directory of Open Access Journals (Sweden)

    A. V. Masloboev

    2015-07-01

    Full Text Available The general line of research is concerned with development of information technologies and computer simulation tools for management information and analytical support of complex semistructured systems. Regional socio-economic systems are consideredas a representative of this system type. Investigation is carried out within the bounds of development strategy implementation of the Arctic zone of the Russian Federation and national safety until 2020 in the Murmansk region, specifically under engineering of high end information infrastructure for innovation and security control problem-solving of regional development. Research methodology consists of system dynamics modeling method, distributed information system engineering technologies, pattern-based modeling and design techniques. The work deals with development of toolkit for decision-making information support problem-solving in the field of innovation security management of regional economics. For that purpose a system-dynamic models suite of innovation process standard components and information technology for remote formation and control of innovation business simulation models under research have been developed. Designed toolkit provides innovation security index dynamics forecasting and innovation business effectiveness of regional economics. Information technology is implemented within the bounds of thin client architecture and is intended for simulation models design process automation of complex systems. Technology implementation software tools provide pattern-based system-dynamic models distributed formation and simulation control of innovation processes. The technology provides availability and reusability index enhancement of information support facilities in application to innovation process simulation at the expense of distributed access to innovation business simulation modeling tools and model synthesis by the reusable components, simulating standard elements of innovation

  8. Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.; Sprague, M. A.; Jonkman, J.; Johnson, N.

    2014-01-01

    This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context of LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.

  9. Dynamics of unsymmetric piecewise-linear/non-linear systems using finite elements in time

    Science.gov (United States)

    Wang, Yu

    1995-08-01

    The dynamic response and stability of a single-degree-of-freedom system with unsymmetric piecewise-linear/non-linear stiffness are analyzed using the finite element method in the time domain. Based on a Hamilton's weak principle, this method provides a simple and efficient approach for predicting all possible fundamental and sub-periodic responses. The stability of the steady state response is determined by using Floquet's theory without any special effort for calculating transition matrices. This method is applied to a number of examples, demonstrating its effectiveness even for a strongly non-linear problem involving both clearance and continuous stiffness non-linearities. Close agreement is found between available published findings and the predictions of the finite element in time approach, which appears to be an efficient and reliable alternative technique for non-linear dynamic response and stability analysis of periodic systems.

  10. The Finite Element Modelling and Dynamic Characteristics Analysis about One Kind of Armoured Vehicles’ Fuel Tanks

    Science.gov (United States)

    Gao, Yang; Ge, Zhishang; Zhai, Weihao; Tan, Shiwang; Zhang, Feng

    2018-01-01

    The static and dynamic characteristics of fuel tank are studied for the armoured vehicle in this paper. The CATIA software is applied to build the CAD model of the armoured vehicles’ fuel tank, and the finite element model is established in ANSYS Workbench. The finite element method is carried out to analyze the static and dynamic mechanical properties of the fuel tank, and the first six orders of mode shapes and their frequencies are also computed and given in the paper, then the stress distribution diagram and the high stress areas are obtained. The results of the research provide some references to the fuel tanks’ design improvement, and give some guidance for the installation of the fuel tanks on armoured vehicles, and help to improve the properties and the service life of this kind of armoured vehicles’ fuel tanks.

  11. Dynamic modeling of geometrically nonlinear electrostatically actuated microbeams (Corotational Finite Element formulation and analysis)

    Energy Technology Data Exchange (ETDEWEB)

    Borhan, H; Ahmadian, M T [Sharif University of Technology, Center of Excellence for Design, Robotics and Automation, School of Mechanical Engineering, PO Box 11365-9567, Tehran (Iran, Islamic Republic of)

    2006-04-01

    In this paper, a complete nonlinear finite element model for coupled-domain MEMS devices with electrostatic actuation and squeeze film effect is developed. For this purpose, a corotational finite element formulation for the dynamic analysis of planer Euler beams is employed. In this method, the internal nodal forces due to deformation and intrinsic residual stresses, the inertial nodal forces, and the damping effect of squeezed air film are systematically derived by consistent linearization of the fully geometrically nonlinear beam theory using d'Alamber and virtual work principles. An incremental-iterative method based on the Newmark direct integration procedure and the Newton-Raphson algorithm is used to solve the nonlinear dynamic equilibrium equations. Numerical examples are presented and compared with experimental findings which indicate properly good agreement.

  12. The boundary element method applied to 3D magneto-electro-elastic dynamic problems

    Science.gov (United States)

    Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.

    2017-11-01

    Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.

  13. Information Processing Features Can Detect Behavioral Regimes of Dynamical Systems

    Directory of Open Access Journals (Sweden)

    Rick Quax

    2018-01-01

    Full Text Available In dynamical systems, local interactions between dynamical units generate correlations which are stored and transmitted throughout the system, generating the macroscopic behavior. However a framework to quantify exactly how these correlations are stored, transmitted, and combined at the microscopic scale is missing. Here we propose to characterize the notion of “information processing” based on all possible Shannon mutual information quantities between a future state and all possible sets of initial states. We apply it to the 256 elementary cellular automata (ECA, which are the simplest possible dynamical systems exhibiting behaviors ranging from simple to complex. Our main finding is that only a few information features are needed for full predictability of the systemic behavior and that the “information synergy” feature is always most predictive. Finally we apply the idea to foreign exchange (FX and interest-rate swap (IRS time-series data. We find an effective “slowing down” leading indicator in all three markets for the 2008 financial crisis when applied to the information features, as opposed to using the data itself directly. Our work suggests that the proposed characterization of the local information processing of units may be a promising direction for predicting emergent systemic behaviors.

  14. Information Processing and Dynamics in Minimally Cognitive Agents

    Science.gov (United States)

    Beer, Randall D.; Williams, Paul L.

    2015-01-01

    There has been considerable debate in the literature about the relative merits of information processing versus dynamical approaches to understanding cognitive processes. In this article, we explore the relationship between these two styles of explanation using a model agent evolved to solve a relational categorization task. Specifically, we…

  15. The PTFE-nanocomposites mechanical properties for transport systems dynamic sealing devices elements

    Science.gov (United States)

    Mashkov, Y. K.; Egorova, V. A.; Chemisenko, O. V.; Maliy, O. V.

    2017-06-01

    The mechanical properties study results of polymer nanocomposites based on polytetrafluoroethylene with modifiers in the form of micro- and nanoscale cryptocrystalline graphite and silicon dioxide powders are determined. The nanocomposites mechanical properties determined values provide high sealing degree of transport systems dynamic sealing devices elements. When the temperature changes from cryogenic to high positive then the elastic modulus, tensile strength decrease significantly and nonlinearly, the latter limits the composite usage in heavily loaded tribosystems operating at elevated temperatures.

  16. Dislocation dynamics in non-convex domains using finite elements with embedded discontinuities

    Science.gov (United States)

    Romero, Ignacio; Segurado, Javier; LLorca, Javier

    2008-04-01

    The standard strategy developed by Van der Giessen and Needleman (1995 Modelling Simul. Mater. Sci. Eng. 3 689) to simulate dislocation dynamics in two-dimensional finite domains was modified to account for the effect of dislocations leaving the crystal through a free surface in the case of arbitrary non-convex domains. The new approach incorporates the displacement jumps across the slip segments of the dislocations that have exited the crystal within the finite element analysis carried out to compute the image stresses on the dislocations due to the finite boundaries. This is done in a simple computationally efficient way by embedding the discontinuities in the finite element solution, a strategy often used in the numerical simulation of crack propagation in solids. Two academic examples are presented to validate and demonstrate the extended model and its implementation within a finite element program is detailed in the appendix.

  17. Dislocation dynamics in non-convex domains using finite elements with embedded discontinuities

    International Nuclear Information System (INIS)

    Romero, Ignacio; Segurado, Javier; LLorca, Javier

    2008-01-01

    The standard strategy developed by Van der Giessen and Needleman (1995 Modelling Simul. Mater. Sci. Eng. 3 689) to simulate dislocation dynamics in two-dimensional finite domains was modified to account for the effect of dislocations leaving the crystal through a free surface in the case of arbitrary non-convex domains. The new approach incorporates the displacement jumps across the slip segments of the dislocations that have exited the crystal within the finite element analysis carried out to compute the image stresses on the dislocations due to the finite boundaries. This is done in a simple computationally efficient way by embedding the discontinuities in the finite element solution, a strategy often used in the numerical simulation of crack propagation in solids. Two academic examples are presented to validate and demonstrate the extended model and its implementation within a finite element program is detailed in the appendix

  18. Dynamic analysis of smart composite beams by using the frequency domain spectral element method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Il Wook; Lee, Usik [Inha Univ., Incheon (Korea, Republic of)

    2012-08-15

    To excite or measure the dynamic responses of a laminated composite structure for the active controls of vibrations or noises, wafertype piezoelectric transducers are often bonded on the surface of the composite structure to form a multi layer smart composite structure. Thus, for such smart composite structures, it is very important to develop and use a very reliable mathematical and/or computational model for predicting accurate dynamic characteristics. In this paper, the axial-bending coupled equations of motion and boundary conditions are derived for two layer smart composite beams by using the Hamilton's principle with Lagrange multipliers. The spectral element model is then formulated in the frequency domain by using the variation approach. Through some numerical examples, the extremely high accuracy of the present spectral element model is verified by comparing with the solutions by the conventional finite element model provided in this paper. The effects of the lay up of composite laminates and surface bonded wafer type piezoelectric (PZT) layer on the dynamics and wave characteristics of smart composite beams are investigated. The effective constraint forces at the interface between the base beam and PZT layer are also investigated via Lagrange multipliers.

  19. Reliability modelling and analysis of a multi-state element based on a dynamic Bayesian network

    Science.gov (United States)

    Li, Zhiqiang; Xu, Tingxue; Gu, Junyuan; Dong, Qi; Fu, Linyu

    2018-04-01

    This paper presents a quantitative reliability modelling and analysis method for multi-state elements based on a combination of the Markov process and a dynamic Bayesian network (DBN), taking perfect repair, imperfect repair and condition-based maintenance (CBM) into consideration. The Markov models of elements without repair and under CBM are established, and an absorbing set is introduced to determine the reliability of the repairable element. According to the state-transition relations between the states determined by the Markov process, a DBN model is built. In addition, its parameters for series and parallel systems, namely, conditional probability tables, can be calculated by referring to the conditional degradation probabilities. Finally, the power of a control unit in a failure model is used as an example. A dynamic fault tree (DFT) is translated into a Bayesian network model, and subsequently extended to a DBN. The results show the state probabilities of an element and the system without repair, with perfect and imperfect repair, and under CBM, with an absorbing set plotted by differential equations and verified. Through referring forward, the reliability value of the control unit is determined in different kinds of modes. Finally, weak nodes are noted in the control unit.

  20. In vivo detection of dynamics of elements in a living rat using multitracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Ken-ichiro; Ui, Iori; Endo, Kazutoyo [Showa Pharmaceutical Univ., Dept. of Physical Chemistry, Machida, Tokyo (Japan); Hirunuma, Rieko; Enomoto, Shuichi [The Inst. of Physical and Chemical Research, Cyclotron Center, Division of Radioisotope Technology, Wako, Saitama (Japan)

    2002-04-01

    In vivo detection technique for radioactivity of the nuclide in the multitracer intravenously administered to a living rat was proposed using a special setting of lead slit and high-purity Ge semiconducting detector. In vivo time courses of the relative distribution of {sup 7}Be, 4{sup 8}V, {sup 54}Mn, {sup 58}Co, {sup 65}Zn, {sup 74}As, {sup 75}Se, {sup 83}Rb, {sup 85}Sr, and {sup 88}Y in upper abdomen and head of six week old male Wistar rats were analyzed. The dynamics of the elements were estimated using the relative distribution of {sup 74}As as base line of blood concentration, since exogenous arsenic tracer is mainly taken into red blood cell. In the head, elements distributed mainly in bones or muscles except for Co and Se, while these elements in blood. In the upper abdomen, Mn, Co, Zn, Se, Rb, V, and Y are distributed in to the liver, which is a main organ for accumulating metals. It is the first report that dynamics of biotrace elements within an hour after administration was non-invasively obtained in living animal. (author)

  1. In vivo detection of dynamics of elements in a living rat using multitracer technique

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichiro; Ui, Iori; Endo, Kazutoyo; Hirunuma, Rieko; Enomoto, Shuichi

    2002-01-01

    In vivo detection technique for radioactivity of the nuclide in the multitracer intravenously administered to a living rat was proposed using a special setting of lead slit and high-purity Ge semiconducting detector. In vivo time courses of the relative distribution of 7 Be, 4 8 V, 54 Mn, 58 Co, 65 Zn, 74 As, 75 Se, 83 Rb, 85 Sr, and 88 Y in upper abdomen and head of six week old male Wistar rats were analyzed. The dynamics of the elements were estimated using the relative distribution of 74 As as base line of blood concentration, since exogenous arsenic tracer is mainly taken into red blood cell. In the head, elements distributed mainly in bones or muscles except for Co and Se, while these elements in blood. In the upper abdomen, Mn, Co, Zn, Se, Rb, V, and Y are distributed in to the liver, which is a main organ for accumulating metals. It is the first report that dynamics of biotrace elements within an hour after administration was non-invasively obtained in living animal. (author)

  2. INFORMATION – A VALUABLE ELEMENT IN THE MANAGEMENT SYSTEM OF THE MARKET ECONOMY

    Directory of Open Access Journals (Sweden)

    Ion SARBU

    2015-12-01

    Full Text Available News. The globalization process has been accelerated by the explosion of information technologies entering into the work of social, production and education enterprises. Thus, in terms of systemic approach, the company is not a production of goods or services tailored to market requirements, but is equally an information unit producing knowledge. Purpose. The fundamental feature of these processes is applied once that the primary element of information processing is generated always in the information system, the information processed and interpreted in its final form as a resource of the management system. Methods. The article exposed the theoretical and methodological organization of information system of market relations and the role of information as a valuable element of business processes. Results. In the modern knowledge-based economy, increasing information needs at all levels of economic units that generate the emergence of new information products, enhancement of the productive resource and service information and transporting it by modern computerized channels.Information as a productive resource and service as the raw material for creating an active instrument of scientific management and virtual education in Moldova.

  3. Distributed and dynamic intracellular organization of extracellular information.

    Science.gov (United States)

    Granados, Alejandro A; Pietsch, Julian M J; Cepeda-Humerez, Sarah A; Farquhar, Iseabail L; Tkačik, Gašper; Swain, Peter S

    2018-06-05

    Although cells respond specifically to environments, how environmental identity is encoded intracellularly is not understood. Here, we study this organization of information in budding yeast by estimating the mutual information between environmental transitions and the dynamics of nuclear translocation for 10 transcription factors. Our method of estimation is general, scalable, and based on decoding from single cells. The dynamics of the transcription factors are necessary to encode the highest amounts of extracellular information, and we show that information is transduced through two channels: Generalists (Msn2/4, Tod6 and Dot6, Maf1, and Sfp1) can encode the nature of multiple stresses, but only if stress is high; specialists (Hog1, Yap1, and Mig1/2) encode one particular stress, but do so more quickly and for a wider range of magnitudes. In particular, Dot6 encodes almost as much information as Msn2, the master regulator of the environmental stress response. Each transcription factor reports differently, and it is only their collective behavior that distinguishes between multiple environmental states. Changes in the dynamics of the localization of transcription factors thus constitute a precise, distributed internal representation of extracellular change. We predict that such multidimensional representations are common in cellular decision-making.

  4. Information Dynamics of a Nonlinear Stochastic Nanopore System

    Directory of Open Access Journals (Sweden)

    Claire Gilpin

    2018-03-01

    Full Text Available Nanopores have become a subject of interest in the scientific community due to their potential uses in nanometer-scale laboratory and research applications, including infectious disease diagnostics and DNA sequencing. Additionally, they display behavioral similarity to molecular and cellular scale physiological processes. Recent advances in information theory have made it possible to probe the information dynamics of nonlinear stochastic dynamical systems, such as autonomously fluctuating nanopore systems, which has enhanced our understanding of the physical systems they model. We present the results of local (LER and specific entropy rate (SER computations from a simulation study of an autonomously fluctuating nanopore system. We learn that both metrics show increases that correspond to fluctuations in the nanopore current, indicating fundamental changes in information generation surrounding these fluctuations.

  5. Information dynamics and open systems classical and quantum approach

    CERN Document Server

    Ingarden, R S; Ohya, M

    1997-01-01

    This book aims to present an information-theoretical approach to thermodynamics and its generalisations On the one hand, it generalises the concept of `information thermodynamics' to that of `information dynamics' in order to stress applications outside thermal phenomena On the other hand, it is a synthesis of the dynamics of state change and the theory of complexity, which provide a common framework to treat both physical and nonphysical systems together Both classical and quantum systems are discussed, and two appendices are included to explain principal definitions and some important aspects of the theory of Hilbert spaces and operator algebras The concept of higher-order temperatures is explained and applied to biological and linguistic systems The theory of open systems is presented in a new, much more general form Audience This volume is intended mainly for theoretical and mathematical physicists, but also for mathematicians, experimental physicists, physical chemists, theoretical biologists, communicat...

  6. Cross-Sectional Information on Pore Structure and Element Distribution of Sediment Particles by SEM and EDS

    Directory of Open Access Journals (Sweden)

    Minghong Chen

    2017-01-01

    Full Text Available The interaction between pollutants and sediment particles often occurs on the particle surface, so surface properties directly affect surface reaction. The physical and chemical processes occurring on sediment particle surfaces are microscopic processes and as such need to be studied from a microscopic perspective. In this study, field emission scanning electron microscopy (SEM and energy dispersive X-ray spectrometer (EDS were adopted to observe and analyze the pore structure and element distribution of sediment particles. In particular, a special method of sample preparation was used to achieve the corresponding cross-sectional information of sediment particles. Clear images of a particle profile and pore microstructure were obtained by high-resolution SEM, while element distribution maps of sediment particles were obtained by EDS. The results provide an intuitive understanding of the internal microenvironment and external behavior of sediment particles, in addition to revealing a significant role of pore microstructure in the adsorption and desorption of pollutants. Thus, a combination of different experimental instruments and observation methods can provide real images and information on microscopic pore structure and element distribution of sediment particles. These results should help to improve our understanding of sediment dynamics and its environmental effects.

  7. Application of Dynamic Analysis in Semi-Analytical Finite Element Method.

    Science.gov (United States)

    Liu, Pengfei; Xing, Qinyan; Wang, Dawei; Oeser, Markus

    2017-08-30

    Analyses of dynamic responses are significantly important for the design, maintenance and rehabilitation of asphalt pavement. In order to evaluate the dynamic responses of asphalt pavement under moving loads, a specific computational program, SAFEM, was developed based on a semi-analytical finite element method. This method is three-dimensional and only requires a two-dimensional FE discretization by incorporating Fourier series in the third dimension. In this paper, the algorithm to apply the dynamic analysis to SAFEM was introduced in detail. Asphalt pavement models under moving loads were built in the SAFEM and commercial finite element software ABAQUS to verify the accuracy and efficiency of the SAFEM. The verification shows that the computational accuracy of SAFEM is high enough and its computational time is much shorter than ABAQUS. Moreover, experimental verification was carried out and the prediction derived from SAFEM is consistent with the measurement. Therefore, the SAFEM is feasible to reliably predict the dynamic response of asphalt pavement under moving loads, thus proving beneficial to road administration in assessing the pavement's state.

  8. Dynamics Modeling and Analysis of Local Fault of Rolling Element Bearing

    Directory of Open Access Journals (Sweden)

    Lingli Cui

    2015-01-01

    Full Text Available This paper presents a nonlinear vibration model of rolling element bearings with 5 degrees of freedom based on Hertz contact theory and relevant bearing knowledge of kinematics and dynamics. The slipping of ball, oil film stiffness, and the nonlinear time-varying stiffness of the bearing are taken into consideration in the model proposed here. The single-point local fault model of rolling element bearing is introduced into the nonlinear model with 5 degrees of freedom according to the loss of the contact deformation of ball when it rolls into and out of the local fault location. The functions of spall depth corresponding to defects of different shapes are discussed separately in this paper. Then the ode solver in Matlab is adopted to perform a numerical solution on the nonlinear vibration model to simulate the vibration response of the rolling elements bearings with local fault. The simulation signals analysis results show a similar behavior and pattern to that observed in the processed experimental signals of rolling element bearings in both time domain and frequency domain which validated the nonlinear vibration model proposed here to generate typical rolling element bearings local fault signals for possible and effective fault diagnostic algorithms research.

  9. Dynamics of chemical elements in the fermentation process of ethanol production

    International Nuclear Information System (INIS)

    Nepomuceno, N.; Fernandes, E.A.N.; Bacchi, M.A.

    1997-01-01

    Brazil has become the largest producer of biomass ethanol derived from sugar cane. The industrial production is based on the fermentation of sugar cane juice by yeast, inside of large volume vats, in a fed-batch process that recycles yeast cells. To study the dynamics of chemical elements in each operating cycle, five stages of the fermentation process were considered: must, yeast suspension, wine, non-yeast wine and yeast cream. For this, a mass balance of the terrigenous elements, Ce, Co, Cs, Eu, Fe, Hf, La, Na, Sc, Sm, and Th, and the sugar cane plant elements, Br, K, Rb, and Zn, were established in fermentation vats of an industrial scale unit, with sampling undertaken during different climatic conditions (dry and rainy periods). A similar distribution of the sugar cane characteristics elements was found for the stages analysed, while for the terrigenous elements a trend of accumulation in the yeast cream was observed. Preferential absorption of Br, K, Rb, and Zn by yeast cells was indicated by the smaller concentrations observed in yeast suspension than in yeast cream. (author)

  10. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  11. Development of 3D dynamic gap element for simulation of asymmetric fuel behavior

    International Nuclear Information System (INIS)

    Kim, Hyochan; Yang, Yongsik; Koo, Yanghyun; Kang, Changhak; Lee, Sunguk; Yang, Dongyol

    2014-01-01

    The accurate modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding the fuel performance, including cladding stress and behavior under irradiated conditions. To establish a heat transfer model through a gap in the fuel performance code, the gap conductance based on the Ross and Stoute model was employed in most previous works. In this model, the gap conductance that determines the temperature gradient within the gap is a function of gap thickness, which is dependent on mechanical behavior. Recently, many researchers have been developing fuel performance codes based on the finite element method (FE) to calculate the temperature, stress, and strain in 2D or 3D. The gap conductance model for FE can be a challenging issue in terms of convergence and nonlinearity because the elements that are positioned in a gap have a different gap conductance, and the boundary conditions of the gap vary at each iteration step. In this paper, the specified 3D dynamic gap element has been proposed and implemented to simulate asymmetric thermo-mechanical fuel behavior. A thermo-mechanical 3D finite element module incorporating a gap element has been implemented using FORTRAN77. To evaluate the proposed 3D gap element, the missing pellet surface (MPS), which results in an asymmetric heat transfer in the pellet and cladding, was simulated. As a result, the maximum temperature of a pellet for the MPS problem calculated with the specified 3D gap element is much higher than the temperature calculated with a uniform gap conductance model that a multidimensional fuel performance code employs. The results demonstrate that a 3D simulation is essential to evaluate the temperature and stress of the pellet and cladding for an asymmetric geometry simulation. (author)

  12. Dynamic instability analysis of axisymmetric shells by finite element method with convected coordinates

    International Nuclear Information System (INIS)

    Hsieh, B.J.

    1977-01-01

    A rectilinear shell element formulated in the convected (co-rotational) coordinates is used to investigate the effects of edge conditions on the behaviors of thin shells of revolution under suddenly applied uniform loading. The equivalent generalized nodal forces under uniform loading are computed to the third order of the length of each element. A dynamic buckling load is defined as the load at which a great change in the response is observed for a small change in the loading. The problem studied is a shallow spherical cap. The cap is discretized into a finite number of elements. This discretization introduces some initial imperfections into the shell model. Nonetheless, the effect of this artificial imperfection is isolated from the effect of the edge conditions provided the same number of elements is used in all the cases. Four different edge conditions for the cap are used. These boundary conditions are fixed edge, hinged edge, roller edge and free edge. The apex displacement of the cap is taken as the measure for the response of the cap, and the dynamic buckling load is obtained by examining the response of the cap under different levels of loadings. Dynamic buckling loads can be found for all cases but for the free edge case. They are 0.28q for both fixed and hinged cases and 0.13 q for the roller case, where q is the classic static buckling load of a complete spherical shell with the same geometric dimensions and material properties. In the case of free edge, the motions of the cap are composed of mostly rigid body motion and small vibrations. The vibration of the cap is stable up to 1 q loading. The cap does snap through at higher loading. However, no loading can be clearly identified as buckling load

  13. Linear and nonlinear dynamic analysis by boundary element method. Ph.D. Thesis, 1986 Final Report

    Science.gov (United States)

    Ahmad, Shahid

    1991-01-01

    An advanced implementation of the direct boundary element method (BEM) applicable to free-vibration, periodic (steady-state) vibration and linear and nonlinear transient dynamic problems involving two and three-dimensional isotropic solids of arbitrary shape is presented. Interior, exterior, and half-space problems can all be solved by the present formulation. For the free-vibration analysis, a new real variable BEM formulation is presented which solves the free-vibration problem in the form of algebraic equations (formed from the static kernels) and needs only surface discretization. In the area of time-domain transient analysis, the BEM is well suited because it gives an implicit formulation. Although the integral formulations are elegant, because of the complexity of the formulation it has never been implemented in exact form. In the present work, linear and nonlinear time domain transient analysis for three-dimensional solids has been implemented in a general and complete manner. The formulation and implementation of the nonlinear, transient, dynamic analysis presented here is the first ever in the field of boundary element analysis. Almost all the existing formulation of BEM in dynamics use the constant variation of the variables in space and time which is very unrealistic for engineering problems and, in some cases, it leads to unacceptably inaccurate results. In the present work, linear and quadratic isoparametric boundary elements are used for discretization of geometry and functional variations in space. In addition, higher order variations in time are used. These methods of analysis are applicable to piecewise-homogeneous materials, such that not only problems of the layered media and the soil-structure interaction can be analyzed but also a large problem can be solved by the usual sub-structuring technique. The analyses have been incorporated in a versatile, general-purpose computer program. Some numerical problems are solved and, through comparisons

  14. Technical Information Resource on Rare Earth Elements Now Available to Public and Private Sector Stakeholders

    Science.gov (United States)

    A new EPA technical information resource, “Rare Earth Elements: A Review of Production, Processing, Recycling, and Associated Environmental Issues” has been produced as an introductory resource for those interested in learning more about REE mining and alternatives to meet demand...

  15. Dynamics of trace elements in shallow groundwater of an agricultural land in the northeast of Mexico

    Science.gov (United States)

    Mora, Abrahan; Mahlknecht, Jürgen; Hernández-Antonio, Arturo

    2017-04-01

    The citrus zone located in northeastern Mexico covers an area of 8000 km2 and produces 10% of the Mexican citrus production. The aquifer system of this zone constitutes the major source of water for drinking and irrigation purposes for local population and provides base flows to surface water supplied to the city of Monterrey ( 4.5 million inhabitants). Although the study area is near the recharge zones, several works have reported nitrate pollution in shallow groundwater of this agricultural area, mainly due to animal manure and human waste produced by infiltration of urban sewers and septic tanks. Thus, the goals of this work were to assess the dynamics of selected trace elements in this aquifer system and determine if the trace element content in groundwater poses a threat to the population living in the area. Thirty-nine shallow water wells were sampled in 2010. These water samples were filtered through 0,45 µm pore size membranes and preserved with nitric acid for storage. The concentrations of Cd, Cs, Cu, Mo, Pb, Rb, Si, Ti, U, Y, and Zn were measured by ICP-MS. Also, sulfate concentrations were measured by ion chromatography in unacidified samples. Principal Component Analysis (PCA) performed in the data set show five principal components (PC). PC1 includes elements derived from silicate weathering, such as Si and Ti. The relationship found between Mo and U with sulfates in PC2 indicates that both elements show a high mobility in groundwater. Indeed, the concentrations of sulfate, Mo and U are increased as groundwater moves eastward. PC3 includes the alkali trace elements (Rb and Cs), indicating that both elements could be derived from the same source of origin. PC4 represents the heavy trace elements (Cd and Pb) whereas PC5 includes divalent trace elements such as Zn and Cu. None of the water samples showed trace element concentrations higher than the guideline values for drinking water proposed by the World Health Organization, which indicates that the

  16. An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems

    Science.gov (United States)

    Teng, Z. H.; Sun, F.; Wu, S. C.; Zhang, Z. B.; Chen, T.; Liao, D. M.

    2018-02-01

    By introducing the shape functions of virtual node polygonal (VP) elements into the standard extended finite element method (XFEM), a conforming elemental mesh can be created for the cracking process. Moreover, an adaptively refined meshing with the quadtree structure only at a growing crack tip is proposed without inserting hanging nodes into the transition region. A novel dynamic crack growth method termed as VP-XFEM is thus formulated in the framework of fracture mechanics. To verify the newly proposed VP-XFEM, both quasi-static and dynamic cracked problems are investigated in terms of computational accuracy, convergence, and efficiency. The research results show that the present VP-XFEM can achieve good agreement in stress intensity factor and crack growth path with the exact solutions or experiments. Furthermore, better accuracy, convergence, and efficiency of different models can be acquired, in contrast to standard XFEM and mesh-free methods. Therefore, VP-XFEM provides a suitable alternative to XFEM for engineering applications.

  17. International Conference on Computer Modelling of Seas and Coastal Regions and Boundary Elements and Fluid Dynamics

    CERN Document Server

    Partridge, P; Boundary Elements in Fluid Dynamics

    1992-01-01

    This book Boundary Elements in Fluid Dynamics is the second volume of the two volume proceedings of the International Conference on Computer Modelling of Seas and Coastal Regions and Boundary Elements and Fluid Dynamics, held in Southampton, U.K., in April 1992. The Boundary Element Method (BEM) is now fully established as an ac­ curate and successful technique for solving engineering problems in a wide range of fields. The success of the method is due to its advantages in data reduction, as only the boundary of the region is modelled. Thus moving boundaries may be more easily handled, which is not the case if domain methods are used. In addition, the method is easily able to model regions to extending to infinity. Fluid mechanics is traditionally one of the most challenging areas of engi­ neering, the simulation of fluid motion, particularly in three dimensions, is always a serious test for any numerical method, and is an area in which BEM analysis may be used taking full advantage of its special character...

  18. The effect of loading time on flexible pavement dynamic response: a finite element analysis

    Science.gov (United States)

    Yin, Hao; Solaimanian, Mansour; Kumar, Tanmay; Stoffels, Shelley

    2007-12-01

    Dynamic response of asphalt concrete (AC) pavements under moving load is a key component for accurate prediction of flexible pavement performance. The time and temperature dependency of AC materials calls for utilizing advanced material characterization and mechanistic theories, such as viscoelasticity and stress/strain analysis. In layered elastic analysis, as implemented in the new Mechanistic-Empirical Pavement Design Guide (MEPDG), the time dependency is accounted for by calculating the loading times at different AC layer depths. In this study, the time effect on pavement response was evaluated by means of the concept of “pseudo temperature.” With the pavement temperature measured from instrumented thermocouples, the time and temperature dependency of AC materials was integrated into one single factor, termed “effective temperature.” Via this effective temperature, pavement responses under a transient load were predicted through finite element analysis. In the finite element model, viscoelastic behavior of AC materials was characterized through relaxation moduli, while the layers with unbound granular material were assumed to be in an elastic mode. The analysis was conducted for two different AC mixtures in a simplified flexible pavement structure at two different seasons. Finite element analysis results reveal that the loading time has a more pronounced impact on pavement response in the summer for both asphalt types. The results indicate that for reasonable prediction of dynamic response in flexible pavements, the effect of the depth-dependent loading time on pavement temperature should be considered.

  19. Finite element simulation of dynamic wetting flows as an interface formation process

    KAUST Repository

    Sprittles, J.E.

    2013-01-01

    A mathematically challenging model of dynamic wetting as a process of interface formation has been, for the first time, fully incorporated into a numerical code based on the finite element method and applied, as a test case, to the problem of capillary rise. The motivation for this work comes from the fact that, as discovered experimentally more than a decade ago, the key variable in dynamic wetting flows - the dynamic contact angle - depends not just on the velocity of the three-phase contact line but on the entire flow field/geometry. Hence, to describe this effect, it becomes necessary to use the mathematical model that has this dependence as its integral part. A new physical effect, termed the \\'hydrodynamic resist to dynamic wetting\\', is discovered where the influence of the capillary\\'s radius on the dynamic contact angle, and hence on the global flow, is computed. The capabilities of the numerical framework are then demonstrated by comparing the results to experiments on the unsteady capillary rise, where excellent agreement is obtained. Practical recommendations on the spatial resolution required by the numerical scheme for a given set of non-dimensional similarity parameters are provided, and a comparison to asymptotic results available in limiting cases confirms that the code is converging to the correct solution. The appendix gives a user-friendly step-by-step guide specifying the entire implementation and allowing the reader to easily reproduce all presented results, including the benchmark calculations. © 2012 Elsevier Inc.

  20. Experimental Combustion Dynamics Behavior of a Multi-Element Lean Direct Injection (LDI) Gas Turbine Combustor

    Science.gov (United States)

    Acosta, Waldo A.; Chang, Clarence T.

    2016-01-01

    An experimental investigation of the combustion dynamic characteristics of a research multi-element lean direct injection (LDI) combustor under simulated gas turbine conditions was conducted. The objective was to gain a better understanding of the physical phenomena inside a pressurized flametube combustion chamber under acoustically isolated conditions. A nine-point swirl venturi lean direct injection (SV-LDI) geometry was evaluated at inlet pressures up to 2,413 kPa and non-vitiated air temperatures up to 867 K. The equivalence ratio was varied to obtain adiabatic flame temperatures between 1388 K and 1905 K. Dynamic pressure measurements were taken upstream of the SV-LDI, in the combustion zone and downstream of the exit nozzle. The measurements showed that combustion dynamics were fairly small when the fuel was distributed uniformly and mostly due to fluid dynamics effects. Dynamic pressure fluctuations larger than 40 kPa at low frequencies were measured at 653 K inlet temperature and 1117 kPa inlet pressure when fuel was shifted and the pilot fuel injector equivalence ratio was increased to 0.72.

  1. Using directed information for influence discovery in interconnected dynamical systems

    Science.gov (United States)

    Rao, Arvind; Hero, Alfred O.; States, David J.; Engel, James Douglas

    2008-08-01

    Structure discovery in non-linear dynamical systems is an important and challenging problem that arises in various applications such as computational neuroscience, econometrics, and biological network discovery. Each of these systems have multiple interacting variables and the key problem is the inference of the underlying structure of the systems (which variables are connected to which others) based on the output observations (such as multiple time trajectories of the variables). Since such applications demand the inference of directed relationships among variables in these non-linear systems, current methods that have a linear assumption on structure or yield undirected variable dependencies are insufficient. Hence, in this work, we present a methodology for structure discovery using an information-theoretic metric called directed time information (DTI). Using both synthetic dynamical systems as well as true biological datasets (kidney development and T-cell data), we demonstrate the utility of DTI in such problems.

  2. Kinetics of the Dynamical Information Shannon Entropy for Complex Systems

    International Nuclear Information System (INIS)

    Yulmetyev, R.M.; Yulmetyeva, D.G.

    1999-01-01

    Kinetic behaviour of dynamical information Shannon entropy is discussed for complex systems: physical systems with non-Markovian property and memory in correlation approximation, and biological and physiological systems with sequences of the Markovian and non-Markovian random noises. For the stochastic processes, a description of the information entropy in terms of normalized time correlation functions is given. The influence and important role of two mutually dependent channels of the entropy change, correlation (creation or generation of correlations) and anti-correlation (decay or annihilation of correlation) is discussed. The method developed here is also used in analysis of the density fluctuations in liquid cesium obtained from slow neutron scattering data, fractal kinetics of the long-range fluctuation in the short-time human memory and chaotic dynamics of R-R intervals of human ECG. (author)

  3. Dynamic analysis of liquid storage tank including hydrodynamic interaction by boundary element method

    International Nuclear Information System (INIS)

    Hwang, I.T.; Ting, K.

    1987-01-01

    Dynamic response of liquid storage tanks considering the hydrodynamic interactions due to earthquake ground motion has been extensively studied. Several finite element procedures, such as Balendra et. al. (1982) and Haroun (1983), have been devoted to investigate the dynamic interaction between the deformable wall of the tank and the liquid. Further, if the geometry of the storage tank can not be described by axi-symmetric case, the tank wall and the fluid domain must be discretized by three dimensional finite elements to investigate the fluid-structure-interactions. Thus, the need of large computer memory and expense of vast computer time usually make this analysis impractical. To demonstrate the accuracy and reliability of the solution technique developed herein, the dynamic behavior of ground-supported, deformed, cylindrical tank with incompressible fluid conducted by Haroun (1983) are analyzed. Good correlations of hydrodynamic pressure distribution between the computed results with the referenced solutions are noted. The fluid compressibility significantly affects the hydrodynamic pressures of the liquid-tank-interactions and the work which is done on this discussion is still little attention. Thus, the influences of the compressibility of the liquid on the reponse of the liquid storage due to ground motion are then drawn. By the way, the complex-valued frequency response functions for hydrodynamic forces of Haroun's problem are also displayed. (orig./GL)

  4. Dynamic Asset Allocation and the Informational Efficiency of Markets.

    OpenAIRE

    Grossman, Sanford J

    1995-01-01

    Markets have an allocational role; even in the absence of news about payoffs, prices change to facilitate trade and allocate resources to their best use. Allocational price changes create noise in the signal extraction process, and markets where such trading is important are markets in which we may expect to find a failure of informational efficiency. An important source of allocational trading is the use of dynamic trading strategies caused by the incomplete equitization of risks. Incomplete...

  5. Information Factor in the Dynamics of Contemporary Geopolitical Processes

    Directory of Open Access Journals (Sweden)

    A. V. Vilovatykh

    2014-01-01

    Full Text Available Th e role of information in shaping geopolitical situation needs a greater academic attention, because the infl uence of external actors in favour of theor political preferences forms the vectors of state development. Modern world’s turbulence is based on technologies of managing social reality. It requires a principally new methodology in evaluating and forecasting geopolitical processes. Nowadays it makes sense to speak of information factor of geopolitical dynamics, which shapes a new quality of geopolitical space.

  6. Molecular characterization, genomic distribution and evolutionary dynamics of Short INterspersed Elements in the termite genome.

    Science.gov (United States)

    Luchetti, Andrea; Mantovani, Barbara

    2011-02-01

    Short INterspersed Elements (SINEs) in invertebrates, and especially in animal inbred genomes such that of termites, are poorly known; in this paper we characterize three new SINE families (Talub, Taluc and Talud) through the analyses of 341 sequences, either isolated from the Reticulitermes lucifugus genome or drawn from EST Genbank collection. We further add new data to the only isopteran element known so far, Talua. These SINEs are tRNA-derived elements, with an average length ranging from 258 to 372 bp. The tails are made up by poly(A) or microsatellite motifs. Their copy number varies from 7.9 × 10(3) to 10(5) copies, well within the range observed for other metazoan genomes. Species distribution, age and target site duplication analysis indicate Talud as the oldest, possibly inactive SINE originated before the onset of Isoptera (~150 Myr ago). Taluc underwent to substantial sequence changes throughout the evolution of termites and data suggest it was silenced and then re-activated in the R. lucifugus lineage. Moreover, Taluc shares a conserved sequence block with other unrelated SINEs, as observed for some vertebrate and cephalopod elements. The study of genomic environment showed that insertions are mainly surrounded by microsatellites and other SINEs, indicating a biased accumulation within non-coding regions. The evolutionary dynamics of Talu~ elements is explained through selective mechanisms acting in an inbred genome; in this respect, the study of termites' SINEs activity may provide an interesting framework to address the (co)evolution of mobile elements and the host genome.

  7. Information dynamics of brain–heart physiological networks during sleep

    International Nuclear Information System (INIS)

    Faes, L; Nollo, G; Jurysta, F; Marinazzo, D

    2014-01-01

    This study proposes an integrated approach, framed in the emerging fields of network physiology and information dynamics, for the quantitative analysis of brain–heart interaction networks during sleep. With this approach, the time series of cardiac vagal autonomic activity and brain wave activities measured respectively as the normalized high frequency component of heart rate variability and the EEG power in the δ, θ, α, σ, and β bands, are considered as realizations of the stochastic processes describing the dynamics of the heart system and of different brain sub-systems. Entropy-based measures are exploited to quantify the predictive information carried by each (sub)system, and to dissect this information into a part actively stored in the system and a part transferred to it from the other connected systems. The application of this approach to polysomnographic recordings of ten healthy subjects led us to identify a structured network of sleep brain–brain and brain–heart interactions, with the node described by the β EEG power acting as a hub which conveys the largest amount of information flowing between the heart and brain nodes. This network was found to be sustained mostly by the transitions across different sleep stages, as the information transfer was weaker during specific stages than during the whole night, and vanished progressively when moving from light sleep to deep sleep and to REM sleep. (paper)

  8. Information dynamics of brain-heart physiological networks during sleep

    Science.gov (United States)

    Faes, L.; Nollo, G.; Jurysta, F.; Marinazzo, D.

    2014-10-01

    This study proposes an integrated approach, framed in the emerging fields of network physiology and information dynamics, for the quantitative analysis of brain-heart interaction networks during sleep. With this approach, the time series of cardiac vagal autonomic activity and brain wave activities measured respectively as the normalized high frequency component of heart rate variability and the EEG power in the δ, θ, α, σ, and β bands, are considered as realizations of the stochastic processes describing the dynamics of the heart system and of different brain sub-systems. Entropy-based measures are exploited to quantify the predictive information carried by each (sub)system, and to dissect this information into a part actively stored in the system and a part transferred to it from the other connected systems. The application of this approach to polysomnographic recordings of ten healthy subjects led us to identify a structured network of sleep brain-brain and brain-heart interactions, with the node described by the β EEG power acting as a hub which conveys the largest amount of information flowing between the heart and brain nodes. This network was found to be sustained mostly by the transitions across different sleep stages, as the information transfer was weaker during specific stages than during the whole night, and vanished progressively when moving from light sleep to deep sleep and to REM sleep.

  9. Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics

    Science.gov (United States)

    Altaner, Bernhard

    2017-11-01

    Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. , which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Bernhard Altaner was selected by the Editorial Board of J. Phys. A as an Emerging Talent.

  10. Observing Bridge Dynamic Deflection in Green Time by Information Technology

    Science.gov (United States)

    Yu, Chengxin; Zhang, Guojian; Zhao, Yongqian; Chen, Mingzhi

    2018-01-01

    As traditional surveying methods are limited to observe bridge dynamic deflection; information technology is adopted to observe bridge dynamic deflection in Green time. Information technology used in this study means that we use digital cameras to photograph the bridge in red time as a zero image. Then, a series of successive images are photographed in green time. Deformation point targets are identified and located by Hough transform. With reference to the control points, the deformation values of these deformation points are obtained by differencing the successive images with a zero image, respectively. Results show that the average measurement accuracies of C0 are 0.46 pixels, 0.51 pixels and 0.74 pixels in X, Z and comprehensive direction. The average measurement accuracies of C1 are 0.43 pixels, 0.43 pixels and 0.67 pixels in X, Z and comprehensive direction in these tests. The maximal bridge deflection is 44.16mm, which is less than 75mm (Bridge deflection tolerance value). Information technology in this paper can monitor bridge dynamic deflection and depict deflection trend curves of the bridge in real time. It can provide data support for the site decisions to the bridge structure safety.

  11. Digital Information Platform Design of Fuel Element Engineering For High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Du Yuwei

    2014-01-01

    This product line provide fuel element for high temperature gas-cooled reactor nuclear power plant which is being constructed in Shidao bay in Shandong province. Its annual productive capacity is thirty ten thousands fuel elements whose shape is spherical . Compared with pressurized water fuel , this line has the feature of high radiation .In order to reduce harm to operators, the comprehensive information platform is designed , which can realize integration of automation and management for plant. This platform include two nets, automation net using field bus technique and information net using Ethernet technique ,which realize collection ,control, storage and publish of information.By means of construction, automatization and informatization of product line can reach high level. (author)

  12. Dynamic analysis of suspension cable based on vector form intrinsic finite element method

    Science.gov (United States)

    Qin, Jian; Qiao, Liang; Wan, Jiancheng; Jiang, Ming; Xia, Yongjun

    2017-10-01

    A vector finite element method is presented for the dynamic analysis of cable structures based on the vector form intrinsic finite element (VFIFE) and mechanical properties of suspension cable. Firstly, the suspension cable is discretized into different elements by space points, the mass and external forces of suspension cable are transformed into space points. The structural form of cable is described by the space points at different time. The equations of motion for the space points are established according to the Newton’s second law. Then, the element internal forces between the space points are derived from the flexible truss structure. Finally, the motion equations of space points are solved by the central difference method with reasonable time integration step. The tangential tension of the bearing rope in a test ropeway with the moving concentrated loads is calculated and compared with the experimental data. The results show that the tangential tension of suspension cable with moving loads is consistent with the experimental data. This method has high calculated precision and meets the requirements of engineering application.

  13. Dynamics of elements in soil treated with increasing doses sewage sludge for instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Oliveira, Helder de; Mortatti, Jefferson; Vendramini, Diego; Lopes, Renato A.; Nolasco, Murilo M.; Sarries, Gabriel A.; Furlan, Adriana

    2007-01-01

    In this work the dynamics of the elements was analyzed The, Br, Ce, Co, Cr, Cs, Fe, Hf, La, In the, Sb, Sc, Sm, Ta, Th, U, Yb and Zn in a profile of a red-yellow latossolo, in the depths of 0-5, 5-10, 10-30 and 30-50 cm, and dose of the biosolid of 0, 25, 124 and 375 t ha -1 , of the station of treatment of sewer of Barueri, Sao Paulo. The experiment was carried out in areas of 3,05 m 2 in the times of 2,2; 4,0; 6,6; 14,3 and 21 months. For analysis of the elementary composition, it was used of the analysis technique by instrumental neutron activation analysis (INAA). The experiment was submitted under normal tropical conditions in a forest station in Itatinga, Sao Paulo, of the University of Sao Paulo. For better details, the factors depth, doses and times statistical analyses of the results of the elementary composition of the soil samples were made. For all the biossolid doses conditioned with polymeric and applied in the soil, the composition of 17 of the 18 elements in the soil were not altered, with exception for Cr in the studied times. The elements As, Br, Ce, Co, Fe, Hf, La, Sm, Ta, Th, U and Yb presented higher levels in the deepest layers of soil; already the elements Cr, In the, Sb and Zn presented higher concentrations in the superficial layers. (author)

  14. Parametric Study on the Dynamic Heat Storage Capacity of Building Elements

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, H.; Heiselberg, Per

    2007-01-01

    as their interrelation. The potential of increasing thermal mass by using phase change materials (PCM) was estimated assuming increased thermal capacity. The results show a significant impact of the heat transfer coefficient on heat storage capacity, especially for thick, thermally heavy elements. The storage capacity...... of onedimensional heat conduction in a slab with convective boundary condition was applied to quantify the dynamic heat storage capacity of a particular building element. The impact of different parameters, such as slab thickness, material properties and the heat transfer coefficient was investigated, as well......In modern, extensively glazed office buildings, due to high solar and internal loads and increased comfort expectations, air conditioning systems are often used even in moderate and cold climates. Particularly in this case, passive cooling by night-time ventilation seems to offer considerable...

  15. Asymmetric Rolling Process Simulations by Dynamic Explicit Crystallographic Homogenized Finite Element Method

    International Nuclear Information System (INIS)

    Ngoc Tam, Nguyen; Nakamura, Yasunori; Terao, Toshihiro; Kuramae, Hiroyuki; Nakamachi, Eiji; Sakamoto, Hidetoshi; Morimoto, Hideo

    2007-01-01

    Recently, the asymmetric rolling (ASR) has been applied to the material processing of aluminum alloy sheet to control micro-crystal structure and texture in order to improve the mechanical properties. Previously, several studies aimed at high formability sheet generation have been carried out experimentally, but finite element simulations to predict the deformation induced texture evolution of the asymmetrically rolled sheet metals have not been investigated rigorously. In this study, crystallographic homogenized finite element (FE) codes are developed and applied to analyze the asymmetrical rolling processes. The textures of sheet metals were measured by electron back scattering diffraction (EBSD), and compared with FE simulations. The results from the dynamic explicit type Crystallographic homogenization FEM code shows that this type of simulation is a comprehensive tool to predict the plastic induced texture evolution

  16. Finite-element-model updating using computational intelligence techniques applications to structural dynamics

    CERN Document Server

    Marwala, Tshilidzi

    2010-01-01

    Finite element models (FEMs) are widely used to understand the dynamic behaviour of various systems. FEM updating allows FEMs to be tuned better to reflect measured data and may be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. Finite Element Model Updating Using Computational Intelligence Techniques applies both strategies to the field of structural mechanics, an area vital for aerospace, civil and mechanical engineering. Vibration data is used for the updating process. Following an introduction a number of computational intelligence techniques to facilitate the updating process are proposed; they include: • multi-layer perceptron neural networks for real-time FEM updating; • particle swarm and genetic-algorithm-based optimization methods to accommodate the demands of global versus local optimization models; • simulated annealing to put the methodologies into a sound statistical basis; and • response surface methods and expectation m...

  17. Explicit dynamics for numerical simulation of crack propagation by the extended finite element method

    International Nuclear Information System (INIS)

    Menouillard, T.

    2007-09-01

    Computerized simulation is nowadays an integrating part of design and validation processes of mechanical structures. Simulation tools are more and more performing allowing a very acute description of the phenomena. Moreover, these tools are not limited to linear mechanics but are developed to describe more difficult behaviours as for instance structures damage which interests the safety domain. A dynamic or static load can thus lead to a damage, a crack and then a rupture of the structure. The fast dynamics allows to simulate 'fast' phenomena such as explosions, shocks and impacts on structure. The application domain is various. It concerns for instance the study of the lifetime and the accidents scenario of the nuclear reactor vessel. It is then very interesting, for fast dynamics codes, to be able to anticipate in a robust and stable way such phenomena: the assessment of damage in the structure and the simulation of crack propagation form an essential stake. The extended finite element method has the advantage to break away from mesh generation and from fields projection during the crack propagation. Effectively, crack is described kinematically by an appropriate strategy of enrichment of supplementary freedom degrees. Difficulties connecting the spatial discretization of this method with the temporal discretization of an explicit calculation scheme has then been revealed; these difficulties are the diagonal writing of the mass matrix and the associated stability time step. Here are presented two methods of mass matrix diagonalization based on the kinetic energy conservation, and studies of critical time steps for various enriched finite elements. The interest revealed here is that the time step is not more penalizing than those of the standard finite elements problem. Comparisons with numerical simulations on another code allow to validate the theoretical works. A crack propagation test in mixed mode has been exploited in order to verify the simulation

  18. Rib fractures under anterior-posterior dynamic loads: experimental and finite-element study.

    Science.gov (United States)

    Li, Zuoping; Kindig, Matthew W; Kerrigan, Jason R; Untaroiu, Costin D; Subit, Damien; Crandall, Jeff R; Kent, Richard W

    2010-01-19

    The purpose of this study was to investigate whether using a finite-element (FE) mesh composed entirely of hexahedral elements to model cortical and trabecular bone (all-hex model) would provide more accurate simulations than those with variable thickness shell elements for cortical bone and hexahedral elements for trabecular bone (hex-shell model) in the modeling human ribs. First, quasi-static non-injurious and dynamic injurious experiments were performed using the second, fourth, and tenth human thoracic ribs to record the structural behavior and fracture tolerance of individual ribs under anterior-posterior bending loads. Then, all-hex and hex-shell FE models for the three ribs were developed using an octree-based and multi-block hex meshing approach, respectively. Material properties of cortical bone were optimized using dynamic experimental data and the hex-shell model of the fourth rib and trabecular bone properties were taken from the literature. Overall, the reaction force-displacement relationship predicted by both all-hex and hex-shell models with nodes in the offset middle-cortical surfaces compared well with those measured experimentally for all the three ribs. With the exception of fracture locations, the predictions from all-hex and offset hex-shell models of the second and fourth ribs agreed better with experimental data than those from the tenth rib models in terms of reaction force at fracture (difference rib responses and bone fractures for the loading conditions considered, but coarse hex-shell models with constant or variable shell thickness were more computationally efficient and therefore preferred. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Multiscale Modeling of Blood Flow: Coupling Finite Elements with Smoothed Dissipative Particle Dynamics

    KAUST Repository

    Moreno Chaparro, Nicolas; Vignal, Philippe; Li, Jun; Calo, Victor M.

    2013-01-01

    A variational multi scale approach to model blood flow through arteries is proposed. A finite element discretization to represent the coarse scales (macro size), is coupled to smoothed dissipative particle dynamics that captures the fine scale features (micro scale). Blood is assumed to be incompressible, and flow is described through the Navier Stokes equation. The proposed cou- pling is tested with two benchmark problems, in fully coupled systems. Further refinements of the model can be incorporated in order to explicitly include blood constituents and non-Newtonian behavior. The suggested algorithm can be used with any particle-based method able to solve the Navier-Stokes equation.

  20. State vector reduction - 2: Elements of physical reality, nonlocality and stochasticity in relativistic dynamical reduction models

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Pearle, P.

    1991-02-01

    The problem of getting a relativistic generalization of the CSL dynamical reduction model, which has been presented in part I, is discussed. In so doing we have the opportunity to introduce the idea of a stochastically invariant theory. The theoretical model we present, that satisfies this kind of invariance requirement, offers us the possibility to reconsider, from a new point of view, some conceptually relevant issues such as nonlocality, the legitimacy of attributing elements of physical reality to physical systems and the problem of establishing causal relations between physical events. (author). Refs, 3 figs

  1. Multiscale Modeling of Blood Flow: Coupling Finite Elements with Smoothed Dissipative Particle Dynamics

    KAUST Repository

    Moreno Chaparro, Nicolas

    2013-06-01

    A variational multi scale approach to model blood flow through arteries is proposed. A finite element discretization to represent the coarse scales (macro size), is coupled to smoothed dissipative particle dynamics that captures the fine scale features (micro scale). Blood is assumed to be incompressible, and flow is described through the Navier Stokes equation. The proposed cou- pling is tested with two benchmark problems, in fully coupled systems. Further refinements of the model can be incorporated in order to explicitly include blood constituents and non-Newtonian behavior. The suggested algorithm can be used with any particle-based method able to solve the Navier-Stokes equation.

  2. Elements of non-equilibrium (ℎ, k)-dynamics at zero and finite temperatures

    International Nuclear Information System (INIS)

    Golubeva, O.N.; Sukhanov, A.D.

    2011-01-01

    We suggest a method which allows developing some elements of non-equilibrium (ℎ, k)-dynamics without use of Schroedinger equation. It is based on the generalization pf Fokker-Planck and Hamilton-Jacobi equations. Sequential considering of stochastic influence of vacuum is realized in the quantum heat bath model. We show that at the presence of quantum-thermal diffusion non-equilibrium wave functions describe the process of nearing to generalized state of thermal equilibrium at zero and finite temperatures. They can be used as a ground for universal description of transport phenomena

  3. Nano-memory-element applications of carbon nanocapsule encapsulating potassium ions: molecular dynamics study

    International Nuclear Information System (INIS)

    Kang, Jeong Won; Hwang, Ho Jung

    2004-01-01

    We investigated the internal dynamics of ionic fluidic shuttle memory elements consisting of potassium ions encapsulated in C 640 nanocapsules. The systems proposed were the encapsulated-ion shuttle memory devices such as (13 K + ) at C 640 , (3 K + -C 60 -2 K + ) at C 640 and (5 K + -C 60 ) at C 640 . The energetics and the operating responses of ionic fluidic shuttle memory devices, such as transitions between the two states of the C 640 capsule, were examined by using classical molecular dynamics simulations of the shuttle media in the C 640 capsule under external force fields. The operating force fields for stable operations of the shuttle memory device were investigated.

  4. Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces

    Science.gov (United States)

    Tal, Yuval; Hager, Bradford H.

    2017-09-01

    This paper presents a mortar-based finite element formulation for modeling the dynamics of shear rupture on rough interfaces governed by slip-weakening and rate and state (RS) friction laws, focusing on the dynamics of earthquakes. The method utilizes the dual Lagrange multipliers and the primal-dual active set strategy concepts, together with a consistent discretization and linearization of the contact forces and constraints, and the friction laws to obtain a semi-smooth Newton method. The discretization of the RS friction law involves a procedure to condense out the state variables, thus eliminating the addition of another set of unknowns into the system. Several numerical examples of shear rupture on frictional rough interfaces demonstrate the efficiency of the method and examine the effects of the different time discretization schemes on the convergence, energy conservation, and the time evolution of shear traction and slip rate.

  5. Multibody simulations of trolleybus vertical dynamics and influences of spring-damper structural elements

    Directory of Open Access Journals (Sweden)

    Polach P.

    2008-11-01

    Full Text Available Vertical dynamic properties of the ŠKODA 21 Tr low-floor trolleybus were investigated on an artificial test track when driving with a real vehicle and when simulating driving with a multibody model along a virtual test track. Driving along the artificial test track was aimed to determine vertical dynamic properties of the real trolleybus and on the basis of them to verify computer trolleybus models. Time histories and extreme values of the air springs relative deflections are the monitored quantities. Due to differences of the experiments and the computer simulations results the influences of the characteristics of the spring-damper structural elements of the axles suspension and the radial characteristics of the tires used in the trolleybus multibody model on the extreme values of the monitored quantities are evaluated.

  6. Dynamic characteristics and finite element analysis of a magnetic levitation system using a YBCO bulk superconductor

    International Nuclear Information System (INIS)

    Ueda, H; Ishiyama, A

    2004-01-01

    We have been developing a magnetic levitating device with two-dimensional movement, namely a 'levitating X-Y transporter'. For the real design of a levitating X-Y transporter, it is necessary to clarify the levitation characteristics, such as the lift, the levitation height and the stability against mechanical disturbances. Furthermore various kinds of force may be applied to the levitating part and cause mechanical oscillation. Therefore the characteristics of oscillation are also important factors in the dynamic stability of such a levitation system. In this paper, we examine experimentally the lift and the restoring force and develop a new simulation code based on the three-dimensional hybrid finite and boundary element method to analyse the dynamic electromagnetic behaviour of the HTS bulk. We have investigated a suitable permanent-magnet arrangement to enhance the levitation characteristics through experiment and numerical simulation. We can then determine the suitable conditions for stable levitation from those results

  7. Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems.

    Science.gov (United States)

    Pant, Sanjay

    2018-05-01

    A new class of functions, called the 'information sensitivity functions' (ISFs), which quantify the information gain about the parameters through the measurements/observables of a dynamical system are presented. These functions can be easily computed through classical sensitivity functions alone and are based on Bayesian and information-theoretic approaches. While marginal information gain is quantified by decrease in differential entropy, correlations between arbitrary sets of parameters are assessed through mutual information. For individual parameters, these information gains are also presented as marginal posterior variances, and, to assess the effect of correlations, as conditional variances when other parameters are given. The easy to interpret ISFs can be used to (a) identify time intervals or regions in dynamical system behaviour where information about the parameters is concentrated; (b) assess the effect of measurement noise on the information gain for the parameters; (c) assess whether sufficient information in an experimental protocol (input, measurements and their frequency) is available to identify the parameters; (d) assess correlation in the posterior distribution of the parameters to identify the sets of parameters that are likely to be indistinguishable; and (e) assess identifiability problems for particular sets of parameters. © 2018 The Authors.

  8. Neural Dynamics and Information Representation in Microcircuits of Motor Cortex

    Directory of Open Access Journals (Sweden)

    Yasuhiro eTsubo

    2013-05-01

    Full Text Available The brain has to analyze and respond to external events that can change rapidly from time to time, suggesting that information processing by the brain may be essentially dynamic rather than static. The dynamical features of neural computation are of significant importance in motor cortex that governs the process of movement generation and learning. In this paper, we discuss these features based primarily on our recent findings on neural dynamics and information coding in the microcircuit of rat motor cortex. In fact, cortical neurons show a variety of dynamical behavior from rhythmic activity in various frequency bands to highly irregular spike firing. Of particular interest are the similarity and dissimilarity of the neuronal response properties in different layers of motor cortex. By conducting electrophysiological recordings in slice preparation, we report the phase response curves of neurons in different cortical layers to demonstrate their layer-dependent synchronization properties. We then study how motor cortex recruits task-related neurons in different layers for voluntary arm movements by simultaneous juxtacellular and multiunit recordings from behaving rats. The results suggest an interesting difference in the spectrum of functional activity between the superficial and deep layers. Furthermore, the task-related activities recorded from various layers exhibited power law distributions of inter-spike intervals (ISIs, in contrast to a general belief that ISIs obey Poisson or Gamma distributions in cortical neurons. We present a theoretical argument that this power law of in vivo neurons may represent the maximization of the entropy of firing rate with limited energy consumption of spike generation. Though further studies are required to fully clarify the functional implications of this coding principle, it may shed new light on information representations by neurons and circuits in motor cortex.

  9. Air rudder mechanism dynamics considering two elements:Joint clearance and link flexibility

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuntao; Quan, Qiquan; Li, He; Tang, Dewei; Li, Zhonghong; Fan, Wenyang; Deng, Zongquan [Harbin Institute of Technology, Harbin (China)

    2017-07-15

    Both the impact phenomenon in the clearance revolute joint and the link deformation will influence the dynamics of the air rudder transmission mechanism, which could reduce the flight quality of an aircraft. Given the effect of the two elements, a feasible simulation method with two improvements of previous methods is proposed to analyze the dynamic characteristics of the mechanism. In previous studies, the parameters of the contact force model in multi-body dynamics software were generally determined by experience, which may cause uncertainty in the calculation precision of the contact force. Furthermore, it is difficult to solve for the elastic link deformation in the practical mechanism using the available analytical methods due to the complicated section of the link. In this paper, a Continuous contact force (CCF) model was proposed and embedded in the ADAMS by developing a routine of the CCF model. Then, the flexible model was obtained by ANSYS to obtain the elastic link deformation. The experimental results indicate that the proposed simulation method can be effectively applied to predict the dynamic behavior of the mechanism.

  10. Sequential assimilation of multi-mission dynamical topography into a global finite-element ocean model

    Directory of Open Access Journals (Sweden)

    S. Skachko

    2008-12-01

    Full Text Available This study focuses on an accurate estimation of ocean circulation via assimilation of satellite measurements of ocean dynamical topography into the global finite-element ocean model (FEOM. The dynamical topography data are derived from a complex analysis of multi-mission altimetry data combined with a referenced earth geoid. The assimilation is split into two parts. First, the mean dynamic topography is adjusted. To this end an adiabatic pressure correction method is used which reduces model divergence from the real evolution. Second, a sequential assimilation technique is applied to improve the representation of thermodynamical processes by assimilating the time varying dynamic topography. A method is used according to which the temperature and salinity are updated following the vertical structure of the first baroclinic mode. It is shown that the method leads to a partially successful assimilation approach reducing the rms difference between the model and data from 16 cm to 2 cm. This improvement of the mean state is accompanied by significant improvement of temporal variability in our analysis. However, it remains suboptimal, showing a tendency in the forecast phase of returning toward a free run without data assimilation. Both the mean difference and standard deviation of the difference between the forecast and observation data are reduced as the result of assimilation.

  11. Entropic information of dynamical AdS/QCD holographic models

    Energy Technology Data Exchange (ETDEWEB)

    Bernardini, Alex E., E-mail: alexeb@ufscar.br [Departamento de Física, Universidade Federal de São Carlos, PO Box 676, 13565-905, São Carlos, SP (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, UFABC, 09210-580, Santo André (Brazil)

    2016-11-10

    The Shannon based conditional entropy that underlies five-dimensional Einstein–Hilbert gravity coupled to a dilaton field is investigated in the context of dynamical holographic AdS/QCD models. Considering the UV and IR dominance limits of such AdS/QCD models, the conditional entropy is shown to shed some light onto the meson classification schemes, which corroborate with the existence of light-flavor mesons of lower spins in Nature. Our analysis is supported by a correspondence between statistical mechanics and information entropy which establishes the physical grounds to the Shannon information entropy, also in the context of statistical mechanics, and provides some specificities for accurately extending the entropic discussion to continuous modes of physical systems. From entropic informational grounds, the conditional entropy allows one to identify the lower experimental/phenomenological occurrence of higher spin mesons in Nature. Moreover, it introduces a quantitative theoretical apparatus for studying the instability of high spin light-flavor mesons.

  12. Finite Element Based Lagrangian Vortex Dynamics Model for Wind Turbine Aerodynamics

    International Nuclear Information System (INIS)

    McWilliam, Michael K; Crawford, Curran

    2014-01-01

    This paper presents a novel aerodynamic model based on Lagrangian Vortex Dynamics (LVD) formulated using a Finite Element (FE) approach. The advantage of LVD is improved fidelity over Blade Element Momentum Theory (BEMT) while being faster than Numerical Navier-Stokes Models (NNSM) in either primitive or velocity-vorticity formulations. The model improves on conventional LVD in three ways. First, the model is based on an error minimization formulation that can be solved with fast root finding algorithms. In addition to improving accuracy, this eliminates the intrinsic numerical instability of conventional relaxed wake simulations. The method has further advantages in optimization and aero-elastic simulations for two reasons. The root finding algorithm can solve the aerodynamic and structural equations simultaneously, avoiding Gauss-Seidel iteration for compatibility constraints. The second is that the formulation allows for an analytical definition for sensitivity calculations. The second improvement comes from a new discretization scheme based on an FE formulation and numerical quadrature that decouples the spatial, influencing and temporal meshes. The shape for each trailing filament uses basis functions (interpolating splines) that allow for both local polynomial order and element size refinement. A completely independent scheme distributes the influencing (vorticity) elements along the basis functions. This allows for concentrated elements in the near wake for accuracy and progressively less in the far-wake for efficiency. Finally the third improvement is the use of a far-wake model based on semi-infinite vortex cylinders where the radius and strength are related to the wake state. The error-based FE formulation allows the transition to the far wake to occur across a fixed plane

  13. Dynamic products shaping information to engage and persuade

    CERN Document Server

    Colombo, Sara

    2016-01-01

    This book explores how dynamic changes in products' sensory features can be used to convey information to the user in an effective and engaging way. The aim is to supply the reader with a clear understanding of an important emerging area of research and practice in product design, referred to as dynamic products, which is opening up new possibilities for the integration of product design with digital and smart technologies and offering an alternative to the use of digital interfaces. Dynamic products are artifacts displaying sensory characteristics – visual, tactile, auditory, or olfactory – that change in a proactive and reversible way over time, addressing one or more of the user's senses. The reader will learn why and how to communicate by means of such dynamic products. Their potential advantages and limitations are identified and design tools are proposed to support the design activity. It is hoped that the book will stimulate the design community to reflect upon the ever more compelling need to merg...

  14. Informative importance of determination of trace elements in biologocal mediums in patients with endocrine pathology

    Directory of Open Access Journals (Sweden)

    Ирина Николаевна Андрусишина

    2015-07-01

    Full Text Available Aim. The changes of mineral metabolism in human organism caused by the deficiency or excess of trace elements in environment (air, food stuffs, water can lead to disorder of functional status of organism.An excess or deficiency of the certain metals disturb the balance of metabolic processes in organism that causes the different changes in endocrine system too. That is why the aim of research was to detect the peculiarities of distribution of macro and trace elements in patients with different endocrine pathology and to show the reasonability of the complex approach in assessment of microelementoses at hyperthyroidism and diabetes mellitus.Methods. The balance of 15 macro and trace elements in different biological mediums (hairs, whole blood, blood serum, urine was studied using EAAS and AES-ICP methods.Result. There was demonstrated the high informative importance of determination of K, Mg, Mn, Cr, Zn at pancreas pathology and Cr, Mn, Se, Zn- at thyroid pathology in human. There was detected that endocrine pathology is characterized with the surplus accumulation of Al, As and Pb in organism of examined patients.Conclusions. To increase the reliability and efficiency of the clinical diagnostics of endocrine human pathology there was demonstrated the high informative importance of the complex approach in choice of biological mediums at assessment of the trace elements imbalance. 

  15. Mixed Finite Element Method for Static and Dynamic Contact Problems with Friction and Initial Gaps

    Directory of Open Access Journals (Sweden)

    Lanhao Zhao

    2014-01-01

    Full Text Available A novel mixed finite element method is proposed for static and dynamic contact problems with friction and initial gaps. Based on the characteristic of local nonlinearity for the problem, the system of forces acting on the contactor is divided into two parts: external forces and contact forces. The displacement of structure is chosen as the basic variable and the nodal contact force in contact region under local coordinate system is selected as the iteration variable to confine the nonlinear iteration process in the potential contact surface which is more numerically efficient. In this way, the sophisticated contact nonlinearity is revealed by the variety of the contact forces which are determined by the external load and the contact state stick, slip, or separation. Moreover, in the case of multibody contact problem, the flexibility matrix is symmetric and sparse; thus, the iterative procedure becomes easily carried out and much more economical. In the paper, both the finite element formulations and the iteration process are given in detail for static and dynamic contact problems. Four examples are included to demonstrate the accuracy and applicability of the presented method.

  16. Appraisal of available information on uptake by plants of transplutonium elements and neptunium

    International Nuclear Information System (INIS)

    Thomas, R.L.; Healy, J.W.

    1976-07-01

    A critical review was made of reported information from laboratory studies of plant uptake of transplutonic elements plus neptunium. The available data are meager but indicate that the uptake of Np is the greatest followed by Am and Cm. The data are not sufficient to provide recommended values for use in hazard calculations but they do indicate that the actinides other than plutonium will be accumulated in plants to a greater degree than plutonium

  17. Thermodynamic aspects of information transfer in complex dynamical systems

    Science.gov (United States)

    Cafaro, Carlo; Ali, Sean Alan; Giffin, Adom

    2016-02-01

    From the Horowitz-Esposito stochastic thermodynamical description of information flows in dynamical systems [J. M. Horowitz and M. Esposito, Phys. Rev. X 4, 031015 (2014), 10.1103/PhysRevX.4.031015], it is known that while the second law of thermodynamics is satisfied by a joint system, the entropic balance for the subsystems is adjusted by a term related to the mutual information exchange rate between the two subsystems. In this article, we present a quantitative discussion of the conceptual link between the Horowitz-Esposito analysis and the Liang-Kleeman work on information transfer between dynamical system components [X. S. Liang and R. Kleeman, Phys. Rev. Lett. 95, 244101 (2005), 10.1103/PhysRevLett.95.244101]. In particular, the entropic balance arguments employed in the two approaches are compared. Notwithstanding all differences between the two formalisms, our work strengthens the Liang-Kleeman heuristic balance reasoning by showing its formal analogy with the recent Horowitz-Esposito thermodynamic balance arguments.

  18. The role of a fuel element and its cladding in water cooled reactor dynamics

    International Nuclear Information System (INIS)

    Randles, J.

    1963-10-01

    To clarify the role of fuel element cladding in water reactor dynamics, the heat diffusion and transfer equations are solved in slab geometry for (a) an oscillatory fission power, (b) an oscillatory coolant temperature. From the resulting transfer functions a clear description of the effect of the cladding on the heat flow is obtained. A Mercury autocode programme for evaluating the transfer functions is described. In addition to the slab element, the heat diffusion equations are also solved for a cylindrical system exposed to an oscillatory fission power. The solutions are expressed as transfer functions and are obtainable numerically from another autocode programme. Both of these programmes are used to obtain the power out/ power in transfer function for a typical cylindrical and slab UO 2 fuel pellet clad in zircaloy. The results give a further indication of the effect of the cladding heat capacity over a wide frequency range. It is shown also that the effect of the geometrical difference between a slab and cylindrical fuel element is unimportant provided the surface to volume ratio of the fuel is the same in each case. (author)

  19. The role of a fuel element and its cladding in water cooled reactor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Randles, J [Technical Assessments and Services Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1963-10-15

    To clarify the role of fuel element cladding in water reactor dynamics, the heat diffusion and transfer equations are solved in slab geometry for (a) an oscillatory fission power, (b) an oscillatory coolant temperature. From the resulting transfer functions a clear description of the effect of the cladding on the heat flow is obtained. A Mercury autocode programme for evaluating the transfer functions is described. In addition to the slab element, the heat diffusion equations are also solved for a cylindrical system exposed to an oscillatory fission power. The solutions are expressed as transfer functions and are obtainable numerically from another autocode programme. Both of these programmes are used to obtain the power out/ power in transfer function for a typical cylindrical and slab UO{sub 2} fuel pellet clad in zircaloy. The results give a further indication of the effect of the cladding heat capacity over a wide frequency range. It is shown also that the effect of the geometrical difference between a slab and cylindrical fuel element is unimportant provided the surface to volume ratio of the fuel is the same in each case. (author)

  20. Multibody dynamic analysis using a rotation-free shell element with corotational frame

    Science.gov (United States)

    Shi, Jiabei; Liu, Zhuyong; Hong, Jiazhen

    2018-03-01

    Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore, the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.

  1. High order curvilinear finite elements for elastic–plastic Lagrangian dynamics

    International Nuclear Information System (INIS)

    Dobrev, Veselin A.; Kolev, Tzanio V.; Rieben, Robert N.

    2014-01-01

    This paper presents a high-order finite element method for calculating elastic–plastic flow on moving curvilinear meshes and is an extension of our general high-order curvilinear finite element approach for solving the Euler equations of gas dynamics in a Lagrangian frame [1,2]. In order to handle transition to plastic flow, we formulate the stress–strain relation in rate (or incremental) form and augment our semi-discrete equations for Lagrangian hydrodynamics with an additional evolution equation for the deviatoric stress which is valid for arbitrary order spatial discretizations of the kinematic and thermodynamic variables. The semi-discrete equation for the deviatoric stress rate is developed for 2D planar, 2D axisymmetric and full 3D geometries. For each case, the strain rate is approximated via a collocation method at zone quadrature points while the deviatoric stress is approximated using an L 2 projection onto the thermodynamic basis. We apply high order, energy conserving, explicit time stepping methods to the semi-discrete equations to develop the fully discrete method. We conclude with numerical results from an extensive series of verification tests that demonstrate several practical advantages of using high-order finite elements for elastic–plastic flow

  2. Splitting of quantum information in travelling wave fields using only linear optical elements

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, W B; De Almeida, N G; Avelar, A T; Baseia, B [Instituto de Fisica, Universidade Federal de Goias, 74.001-970, Goiania-GO (Brazil)

    2011-02-28

    In this paper we present a feasible post-selection scheme to split quantum information in the realm of travelling waves with success probability of 50%. Taking advantage of this scheme we have also proposed the generation of a class of W states useful for perfect teleportation and superdense coding. The scheme employs only linear optical elements as beam splitters (BS) and phase shifters, plus two photon counters and a source of two spontaneous parametric down-conversion photons. It is shown that splitting of quantum information with high fidelity is possible, even when using inefficient detectors and photoabsorption BS.

  3. Word-of-mouth dynamics with information seeking: Information is not (only) epidemics

    Science.gov (United States)

    Thiriot, Samuel

    2018-02-01

    Word-of-mouth is known to determine the success or failure of innovations (Rogers, 2003) and facilitate the diffusion of products (Katz and Lazarsfeld, 1955). Word-of-mouth is made of both individuals seeking out information and/or pro-actively spreading information (Gilly et al., 1998; Rogers, 2003). Information seeking is considered as a step mandatory for individuals to retrieve the expert knowledge necessary for them to understand the benefits of an innovation or decide to buy a product (Arndt, 1967; Rogers, 2003). Yet the role of information seeking in the word-of-mouth dynamics was not investigated in computational models. Here we study in which conditions word-of-mouth enables the population to retrieve the initial expertise scattered in the population. We design a computational model in which awareness and expert knowledge are both represented, and study the joint dynamics of information seeking and proactive transmission of information. Simulation experiments highlight the apparition of cascades of awareness, cascades of expertise and chains of information retrieval. We find that different strategies should be used depending on the initial proportion of expertise (disruptive innovations, incremental innovations or products belonging to well-known categories). Surprisingly, when there is too much expertise in the population prior the advertisement campaign, word-of-mouth is less efficient in the retrieval of this expertise than when less expertise is initially present. Our results suggest that information seeking plays a key role in the dynamics of word-of-mouth, which can therefore not be reduced solely to the epidemic aspect.

  4. Development of dynamic explicit crystallographic homogenization finite element analysis code to assess sheet metal formability

    International Nuclear Information System (INIS)

    Nakamura, Yasunori; Tam, Nguyen Ngoc; Ohata, Tomiso; Morita, Kiminori; Nakamachi, Eiji

    2004-01-01

    The crystallographic texture evolution induced by plastic deformation in the sheet metal forming process has a great influence on its formability. In the present study, a dynamic explicit finite element (FE) analysis code is newly developed by introducing a crystallographic homogenization method to estimate the polycrystalline sheet metal formability, such as the extreme thinning and 'earing'. This code can predict the plastic deformation induced texture evolution at the micro scale and the plastic anisotropy at the macro scale, simultaneously. This multi-scale analysis can couple the microscopic crystal plasticity inhomogeneous deformation with the macroscopic continuum deformation. In this homogenization process, the stress at the macro scale is defined by the volume average of those of the corresponding microscopic crystal aggregations in satisfying the equation of motion and compatibility condition in the micro scale 'unit cell', where the periodicity of deformation is satisfied. This homogenization algorithm is implemented in the conventional dynamic explicit finite element code by employing the updated Lagrangian formulation and the rate type elastic/viscoplastic constitutive equation.At first, it has been confirmed through a texture evolution analyses in cases of typical deformation modes that Taylor's 'constant strain homogenization algorithm' yields extreme concentration toward the preferred crystal orientations compared with our homogenization one. Second, we study the plastic anisotropy effects on 'earing' in the hemispherical cup deep drawing process of pure ferrite phase sheet metal. By the comparison of analytical results with those of Taylor's assumption, conclusions are drawn that the present newly developed dynamic explicit crystallographic homogenization FEM shows more reasonable prediction of plastic deformation induced texture evolution and plastic anisotropy at the macro scale

  5. Lumped-Element Dynamic Electro-Thermal model of a superconducting magnet

    Science.gov (United States)

    Ravaioli, E.; Auchmann, B.; Maciejewski, M.; ten Kate, H. H. J.; Verweij, A. P.

    2016-12-01

    Modeling accurately electro-thermal transients occurring in a superconducting magnet is challenging. The behavior of the magnet is the result of complex phenomena occurring in distinct physical domains (electrical, magnetic and thermal) at very different spatial and time scales. Combined multi-domain effects significantly affect the dynamic behavior of the system and are to be taken into account in a coherent and consistent model. A new methodology for developing a Lumped-Element Dynamic Electro-Thermal (LEDET) model of a superconducting magnet is presented. This model includes non-linear dynamic effects such as the dependence of the magnet's differential self-inductance on the presence of inter-filament and inter-strand coupling currents in the conductor. These effects are usually not taken into account because superconducting magnets are primarily operated in stationary conditions. However, they often have significant impact on magnet performance, particularly when the magnet is subject to high ramp rates. Following the LEDET method, the complex interdependence between the electro-magnetic and thermal domains can be modeled with three sub-networks of lumped-elements, reproducing the electrical transient in the main magnet circuit, the thermal transient in the coil cross-section, and the electro-magnetic transient of the inter-filament and inter-strand coupling currents in the superconductor. The same simulation environment can simultaneously model macroscopic electrical transients and phenomena at the level of superconducting strands. The model developed is a very useful tool for reproducing and predicting the performance of conventional quench protection systems based on energy extraction and quench heaters, and of the innovative CLIQ protection system as well.

  6. Element Partition Trees For H-Refined Meshes to Optimize Direct Solver Performance. Part I: Dynamic Programming

    KAUST Repository

    AbouEisha, Hassan M.

    2017-07-13

    We consider a class of two-and three-dimensional h-refined meshes generated by an adaptive finite element method. We introduce an element partition tree, which controls the execution of the multi-frontal solver algorithm over these refined grids. We propose and study algorithms with polynomial computational cost for the optimization of these element partition trees. The trees provide an ordering for the elimination of unknowns. The algorithms automatically optimize the element partition trees using extensions of dynamic programming. The construction of the trees by the dynamic programming approach is expensive. These generated trees cannot be used in practice, but rather utilized as a learning tool to propose fast heuristic algorithms. In this first part of our paper we focus on the dynamic programming approach, and draw a sketch of the heuristic algorithm. The second part will be devoted to a more detailed analysis of the heuristic algorithm extended for the case of hp-adaptive

  7. Element Partition Trees For H-Refined Meshes to Optimize Direct Solver Performance. Part I: Dynamic Programming

    KAUST Repository

    AbouEisha, Hassan M.; Calo, Victor Manuel; Jopek, Konrad; Moshkov, Mikhail; Paszyńka, Anna; Paszyński, Maciej; Skotniczny, Marcin

    2017-01-01

    We consider a class of two-and three-dimensional h-refined meshes generated by an adaptive finite element method. We introduce an element partition tree, which controls the execution of the multi-frontal solver algorithm over these refined grids. We propose and study algorithms with polynomial computational cost for the optimization of these element partition trees. The trees provide an ordering for the elimination of unknowns. The algorithms automatically optimize the element partition trees using extensions of dynamic programming. The construction of the trees by the dynamic programming approach is expensive. These generated trees cannot be used in practice, but rather utilized as a learning tool to propose fast heuristic algorithms. In this first part of our paper we focus on the dynamic programming approach, and draw a sketch of the heuristic algorithm. The second part will be devoted to a more detailed analysis of the heuristic algorithm extended for the case of hp-adaptive

  8. Development of an information systems to manage the fuel elements of a nuclear reactor

    International Nuclear Information System (INIS)

    Neira Orellana, Alicia Cristina

    1999-01-01

    The development of a computerized information system is presented that administers the fuel elements of a nuclear reactor. This system automates the mathematical calculations of the nuclear reactor's configuration, which have been manually controlled for many years, and it also manages the inventory of these elements for each one of the different deposits of nuclear materials. This system was designed and built based on an Object Oriented Focus (OOF), which fully meets the requirements requested and aims to facilitate the interaction between the user and the machine. The OOF methodology is based on that proposed by Peter Coad and Edward Yourdon and the development tool used is DELPHI version 3.0 (object oriented programming graphics tool that uses Pascal Object language and a Windows '98 platform). To implement the prepared tool the different stages as indicated by the authors of the above-mentioned methodology were carried out step by step, concluding with the practical benefits associated with the use of the proposed focus. A Graphic Interactive Tool is obtained that will be used in part by the people who directly operate the nuclear reactor and who do the mathematical calculations for the configuration of its nucleus. The system will allow them to considerably reduce the time needed for administering the fuel elements with the automated configuration of the operating cycle. The importance of the combination of these elements varies depending on experimental needs. All those processes linked to the configuration of the nucleus are very important, particularly the calculation of fuel element wear (burned) and the coefficient calculation that validates this configuration. These processes were used during the development of this thesis work. The system also manages an inventory of all the elements with their respective histories, facilitating follow-ups and analyses (C.W)

  9. Quadratic temporal finite element method for linear elastic structural dynamics based on mixed convolved action

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Kim, Dong Keon

    2016-01-01

    A common approach for dynamic analysis in current practice is based on a discrete time-integration scheme. This approach can be largely attributed to the absence of a true variational framework for initial value problems. To resolve this problem, a new stationary variational principle was recently established for single-degree-of-freedom oscillating systems using mixed variables, fractional derivatives and convolutions of convolutions. In this mixed convolved action, all the governing differential equations and initial conditions are recovered from the stationarity of a single functional action. Thus, the entire description of linear elastic dynamical systems is encapsulated. For its practical application to structural dynamics, this variational formalism is systemically extended to linear elastic multidegree- of-freedom systems in this study, and a corresponding weak form is numerically implemented via a quadratic temporal finite element method. The developed numerical method is symplectic and unconditionally stable with respect to a time step for the underlying conservative system. For the forced-damped vibration, a three-story shear building is used as an example to investigate the performance of the developed numerical method, which provides accurate results with good convergence characteristics

  10. Finite element simulation of earthquake cycle dynamics for continental listric fault system

    Science.gov (United States)

    Wei, T.; Shen, Z. K.

    2017-12-01

    We simulate stress/strain evolution through earthquake cycles for a continental listric fault system using the finite element method. A 2-D lithosphere model is developed, with the upper crust composed of plasto-elastic materials and the lower crust/upper mantle composed of visco-elastic materials respectively. The media is sliced by a listric fault, which is soled into the visco-elastic lower crust at its downdip end. The system is driven laterally by constant tectonic loading. Slip on fault is controlled by rate-state friction. We start with a simple static/dynamic friction law, and drive the system through multiple earthquake cycles. Our preliminary results show that: (a) periodicity of the earthquake cycles is strongly modulated by the static/dynamic friction, with longer period correlated with higher static friction and lower dynamic friction; (b) periodicity of earthquake is a function of fault depth, with less frequent events of greater magnitudes occurring at shallower depth; and (c) rupture on fault cannot release all the tectonic stress in the system, residual stress is accumulated in the hanging wall block at shallow depth close to the fault, which has to be released either by conjugate faulting or inelastic folding. We are in a process of exploring different rheologic structure and friction laws and examining their effects on earthquake behavior and deformation pattern. The results will be applied to specific earthquakes and fault zones such as the 2008 great Wenchuan earthquake on the Longmen Shan fault system.

  11. Basics elements for modelling the dynamics of cell migration in cell culture

    International Nuclear Information System (INIS)

    FarIas, Ro; Vidal, Cs; Rapacioli, M; Flores, V

    2007-01-01

    This paper introduces some basic elements for modelling the dynamics of cell migration activity over a bi-dimensional substratum. A square matrix, representing the substratum, is implemented in order to generate virtual cells with an initial random uniform distribution, with the ability to freely move within the matrix and to interact with each others by mean of adhesive forces. Two different conditions were examined: A) cells can freely move and after contacting with another cell they both completely inhibit their migration; B) cells that come into contact have the ability to rotate respect to each other without losing their contacts and retaining the ability to move together but at a slower rate, being the decrease in the rate of movement proportional to the number of contacting cells. The dynamics of the migration process in these two conditions was evaluated by recording the evolution of several parameters as a function of time. Minor modifications in some parameters (mobility, intensity of cell-cell and cell-substratum adhesiveness) significantly change the dynamics and the final result of the virtual migrating cells

  12. Dynamic properties of human incudostapedial joint-Experimental measurement and finite element modeling.

    Science.gov (United States)

    Jiang, Shangyuan; Gan, Rong Z

    2018-04-01

    The incudostapedial joint (ISJ) is a synovial joint connecting the incus and stapes in the middle ear. Mechanical properties of the ISJ directly affect sound transmission from the tympanic membrane to the cochlea. However, how ISJ properties change with frequency has not been investigated. In this paper, we report the dynamic properties of the human ISJ measured in eight samples using a dynamic mechanical analyzer (DMA) for frequencies from 1 to 80 Hz at three temperatures of 5, 25 and 37 °C. The frequency-temperature superposition (FTS) principle was used to extrapolate the results to 8 kHz. The complex modulus of ISJ was measured with a mean storage modulus of 1.14 MPa at 1 Hz that increased to 3.01 MPa at 8 kHz, and a loss modulus that increased from 0.07 to 0.47 MPa. A 3-dimensional finite element (FE) model consisting of the articular cartilage, joint capsule and synovial fluid was then constructed to derive mechanical properties of ISJ components by matching the model results to experimental data. Modeling results showed that mechanical properties of the joint capsule and synovial fluid affected the dynamic behavior of the joint. This study contributes to a better understanding of the structure-function relationship of the ISJ for sound transmission. Copyright © 2018. Published by Elsevier Ltd.

  13. Quadratic temporal finite element method for linear elastic structural dynamics based on mixed convolved action

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu [School of Architecture and Architectural Engineering, Hanyang University, Ansan (Korea, Republic of); Kim, Dong Keon [Dept. of Architectural Engineering, Dong A University, Busan (Korea, Republic of)

    2016-09-15

    A common approach for dynamic analysis in current practice is based on a discrete time-integration scheme. This approach can be largely attributed to the absence of a true variational framework for initial value problems. To resolve this problem, a new stationary variational principle was recently established for single-degree-of-freedom oscillating systems using mixed variables, fractional derivatives and convolutions of convolutions. In this mixed convolved action, all the governing differential equations and initial conditions are recovered from the stationarity of a single functional action. Thus, the entire description of linear elastic dynamical systems is encapsulated. For its practical application to structural dynamics, this variational formalism is systemically extended to linear elastic multidegree- of-freedom systems in this study, and a corresponding weak form is numerically implemented via a quadratic temporal finite element method. The developed numerical method is symplectic and unconditionally stable with respect to a time step for the underlying conservative system. For the forced-damped vibration, a three-story shear building is used as an example to investigate the performance of the developed numerical method, which provides accurate results with good convergence characteristics.

  14. Discrete element modeling of triggered slip in faults with granular gouge: application to dynamic earthquake triggering

    International Nuclear Information System (INIS)

    Ferdowsi, B.

    2014-01-01

    Recent seismological observations based on new, more sensitive instrumentation show that seismic waves radiated from large earthquakes can trigger other earthquakes globally. This phenomenon is called dynamic earthquake triggering and is well-documented for over 30 of the largest earthquakes worldwide. Granular materials are at the core of mature earthquake faults and play a key role in fault triggering by exhibiting a rich nonlinear response to external perturbations. The stick-slip dynamics in sheared granular layers is analogous to the seismic cycle for earthquake fault systems. In this research effort, we characterize the macroscopic scale statistics and the grain-scale mechanisms of triggered slip in sheared granular layers. We model the granular fault gouge using three dimensional discrete element method simulations. The modeled granular system is put into stick-slip dynamics by applying a conning pressure and a shear load. The dynamic triggering is simulated by perturbing the spontaneous stick-slip dynamics using an external vibration applied to the boundary of the layer. The influences of the triggering consist in a frictional weakening during the vibration interval, a clock advance of the next expected large slip event and long term effects in the form of suppression and recovery of the energy released from the granular layer. Our study suggests that above a critical amplitude, vibration causes a significant clock advance of large slip events. We link this clock advance to a major decline in the slipping contact ratio as well as a decrease in shear modulus and weakening of the granular gouge layer. We also observe that shear vibration is less effective in perturbing the stick-slip dynamics of the granular layer. Our study suggests that in order to have an effective triggering, the input vibration must also explore the granular layer at length scales about or less than the average grain size. The energy suppression and the subsequent recovery and increased

  15. Geotechnical information as an important element when planning and designing civil engineering work Bogotá

    OpenAIRE

    Denisse Cangrejo Aljure; Carlos Gustavo Infante

    2010-01-01

    The city of Bogota provides a dynamic scenario re civil construction work; it is thereby essential to have relevant information available for the suitable planning and evaluation of engineering work from both the structural and budgetary points of view. The moisture content of soil has become a most important variable, given its great impact on placing structures in Bogota. This is why this work on city zoning aimed at orientating planning and designing civil engineering work has been done a...

  16. Dynamic Volume Holography and Optical Information Processing by Raman Scattering

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2002-01-01

    A method of producing holograms of three-dimensional optical pulses is proposed. It is shown that both the amplitude and the phase profile of three-dimensional optical pulse can be stored in dynamic perturbations of a Raman medium, such as plasma. By employing Raman scattering in a nonlinear medium, information carried by a laser pulse can be captured in the form of a slowly propagating low-frequency wave that persists for a time large compared with the pulse duration. If such a hologram is then probed with a short laser pulse, the information stored in the medium can be retrieved in a second scattered electromagnetic wave. The recording and retrieving processes can conserve robustly the pulse shape, thus enabling the recording and retrieving with fidelity of information stored in optical signals. While storing or reading the pulse structure, the optical information can be processed as an analogue or digital signal, which allows simultaneous transformation of three-dimensional continuous images or computing discrete arrays of binary data. By adjusting the phase fronts of the reference pulses, one can also perform focusing, redirecting, and other types of transformation of the output pulses

  17. How Serious Do We Need to Be? Improving Information Literacy Skills through Gaming and Interactive Elements

    Directory of Open Access Journals (Sweden)

    Ana van Meegen

    2010-09-01

    Full Text Available Catching the attention of highly technologically and visually oriented students is a challenge for libraries. The number of students entering the universities is increasing and a face-to-face learning setting is an impossible mission for the few available subject librarians. This paper demonstrates how effective the use of serious game or other web-based interactive elements can be for teaching information literacy. By means of quasi-experimental research the impact that the game Saving Asia on students’ learning is analysed and compared to a web-based online tutorial of the Vrije Universiteit Amsterdam (Free University of Amsterdam. This research demonstrated that the game needs to be improved if it is to fit into the regular curriculum of the university, but interactive elements definitely improve learning results.

  18. Numerical simulations of granular dynamics: I. Hard-sphere discrete element method and tests

    Science.gov (United States)

    Richardson, Derek C.; Walsh, Kevin J.; Murdoch, Naomi; Michel, Patrick

    2011-03-01

    We present a new particle-based (discrete element) numerical method for the simulation of granular dynamics, with application to motions of particles on small solar system body and planetary surfaces. The method employs the parallel N-body tree code pkdgrav to search for collisions and compute particle trajectories. Collisions are treated as instantaneous point-contact events between rigid spheres. Particle confinement is achieved by combining arbitrary combinations of four provided wall primitives, namely infinite plane, finite disk, infinite cylinder, and finite cylinder, and degenerate cases of these. Various wall movements, including translation, oscillation, and rotation, are supported. We provide full derivations of collision prediction and resolution equations for all geometries and motions. Several tests of the method are described, including a model granular “atmosphere” that achieves correct energy equipartition, and a series of tumbler simulations that show the expected transition from tumbling to centrifuging as a function of rotation rate.

  19. Improvement of dynamic response in an impact absorber by frictional elements

    International Nuclear Information System (INIS)

    Bedolla, Jorge; Szwedowicz, Dariusz; Cortes, Claudia; Gutierrezwing, Enrique S.; Jimenez, Juan; Majewski, Tadeusz

    2014-01-01

    A novel device that uses friction between one or more pairs of elastic conical rings to dissipate the energy from an impacting body is presented. The device consists of one moving and one stationary cylinders coupled to each other using two pairs of conical rings and a spring. The spring is used to restore the system to its original configuration after the impact. The dynamic response of the system to the impact forces during impact events is analysed numerically and experimentally. The effects of several governing parameters, such as the mass ratio between the cylinders, the duration of the transient response of the device, the magnitude of the rest zone of the moving element and the peak impact force are investigated. The proposed system is applicable in sequential impact scenarios, in which remarkable improvements were observed over traditional solid-rod impact absorbers. The present study may serve as a guide for the design of improved damping devices for impact applications.

  20. Mechanical Properties of Boehmite Evaluated by Atomic Force Microscopy Experiments and Molecular Dynamic Finite Element Simulations

    International Nuclear Information System (INIS)

    Fankhanel, J.; Daum, B.; Kempe, A.; Rolfes, R.; Silbernagl, D.; Khorasani, M.Gh.Z.; Sturm, H.; Sturm, H.

    2016-01-01

    Boehmite nanoparticles show great potential in improving mechanical properties of fiber reinforced polymers. In order to predict the properties of nanocomposites, knowledge about the material parameters of the constituent phases, including the boehmite particles, is crucial. In this study, the mechanical behavior of boehmite is investigated using Atomic Force Microscopy (AFM) experiments and Molecular Dynamic Finite Element Method (MDFEM) simulations. Young’s modulus of the perfect crystalline boehmite nanoparticles is derived from numerical AFM simulations. Results of AFM experiments on boehmite nanoparticles deviate significantly. Possible causes are identified by experiments on complementary types of boehmite, that is, geological and hydrothermally synthesized samples, and further simulations of imperfect crystals and combined boehmite/epoxy models. Under certain circumstances, the mechanical behavior of boehmite was found to be dominated by inelastic effects that are discussed in detail in the present work. The studies are substantiated with accompanying X-ray diffraction and Raman experiments.

  1. Level set methods for detonation shock dynamics using high-order finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Dobrev, V. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grogan, F. C. [Univ. of California, San Diego, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, T. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, R [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tomov, V. Z. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-26

    Level set methods are a popular approach to modeling evolving interfaces. We present a level set ad- vection solver in two and three dimensions using the discontinuous Galerkin method with high-order nite elements. During evolution, the level set function is reinitialized to a signed distance function to maintain ac- curacy. Our approach leads to stable front propagation and convergence on high-order, curved, unstructured meshes. The ability of the solver to implicitly track moving fronts lends itself to a number of applications; in particular, we highlight applications to high-explosive (HE) burn and detonation shock dynamics (DSD). We provide results for two- and three-dimensional benchmark problems as well as applications to DSD.

  2. Study of dynamics, sources and speciation of trace elements in the Orge River watershed (Essonne, France)

    International Nuclear Information System (INIS)

    Le Pape, Pierre

    2012-01-01

    The aim of this work is to study the dynamics of trace elements (TE) in the water column of the Orge River. In the upstream part of the watershed, land uses consist mainly in forests and agricultural soils, whereas downstream, the population density reaches up to 8,000 inh. km"-"2, in the suburbs of Paris Mega-city. The sampling sites were chosen to describe a gradation in urbanization influence from up to downstream in this particularly contrasted catchment. Four sampling campaigns were performed at seven selected sites along the Orge River during an hydrological year (2010/2011). The spatio-temporal monitoring of the concentrations in the dissolved phase ( [fr

  3. Model building with a dynamical volume element in gravity, particle theory and theories of extended object

    International Nuclear Information System (INIS)

    Guendelman, E.

    2004-01-01

    Full Text:The Volume Element of Space Time can be considered as a geometrical object which can be independent of the metric. The use in the action of a volume element which is metric independent leads to the appearance of a measure of integration which is metric independent. This can be applied to all known generally coordinate invariant theories, we will discuss three very important cases: 1. 4-D theories describing gravity and matter fields, 2. Parametrization invariant theories of extended objects and 3. Higher dimensional theories including gravity and matter fields. In case 1, a large number of new effects appear: (i) spontaneous breaking of scale invariance associated to integration of degrees of freedom related to the measure, (ii) under normal particle physics laboratory conditions fermions split into three families, but when matter is highly diluted, neutrinos increase their mass and become suitable candidates for dark matter, (iii) cosmic coincidence between dark energy and dark matter is natural, (iv) quintessence scenarios with automatic decoupling of the quintessence scalar to ordinary matter, but not dark matter are obtained (2) For theories or extended objects, the use of a measure of integration independent of the metric leads to (i) dynamical tension, (ii) string models of non abelian confinement (iii) The possibility of new Weyl invariant light-like branes (WTT.L branes). These Will branes dynamically adjust themselves to sit at black hole horizons and in the context of higher dimensional theories can provide examples of massless 4-D particles with nontrivial Kaluza Klein quantum numbers, (3) In Bronx and Kaluza Klein scenarios, the use of a measure independent of the metric makes it possible to construct naturally models where only the extra dimensions get curved and the 4-D observable space-time remain flat

  4. Moving finite elements: A continuously adaptive method for computational fluid dynamics

    International Nuclear Information System (INIS)

    Glasser, A.H.; Miller, K.; Carlson, N.

    1991-01-01

    Moving Finite Elements (MFE), a recently developed method for computational fluid dynamics, promises major advances in the ability of computers to model the complex behavior of liquids, gases, and plasmas. Applications of computational fluid dynamics occur in a wide range of scientifically and technologically important fields. Examples include meteorology, oceanography, global climate modeling, magnetic and inertial fusion energy research, semiconductor fabrication, biophysics, automobile and aircraft design, industrial fluid processing, chemical engineering, and combustion research. The improvements made possible by the new method could thus have substantial economic impact. Moving Finite Elements is a moving node adaptive grid method which has a tendency to pack the grid finely in regions where it is most needed at each time and to leave it coarse elsewhere. It does so in a manner which is simple and automatic, and does not require a large amount of human ingenuity to apply it to each particular problem. At the same time, it often allows the time step to be large enough to advance a moving shock by many shock thicknesses in a single time step, moving the grid smoothly with the solution and minimizing the number of time steps required for the whole problem. For 2D problems (two spatial variables) the grid is composed of irregularly shaped and irregularly connected triangles which are very flexible in their ability to adapt to the evolving solution. While other adaptive grid methods have been developed which share some of these desirable properties, this is the only method which combines them all. In many cases, the method can save orders of magnitude of computing time, equivalent to several generations of advancing computer hardware

  5. Dynamic-stiffness matrix of embedded and pile foundations by indirect boundary-element method

    International Nuclear Information System (INIS)

    Wolf, J.P.; Darbre, G.R.

    1984-01-01

    The boundary-integral equation method is well suited for the calculation of the dynamic-stiffness matrix of foundations embedded in a layered visco-elastic halfspace (or a transmitting boundary of arbitrary shape), which represents an unbounded domain. It also allows pile groups to be analyzed, taking pile-soil-pile interaction into account. The discretization of this boundary-element method is restricted to the structure-soil interface. All trial functions satisfy exactly the field equations and the radiation condition at infinity. In the indirect boundary-element method distributed source loads of initially unknown intensities act on a source line located in the excavated part of the soil and are determined such that the prescribed boundary conditions on the structure-soil interface are satisfied in an average sense. In the two-dimensional case the variables are expanded in a Fourier integral in the wave number domain, while in three dimensions, Fourier series in the circumferential direction and bessel functions of the wave number domain, while in three dimensions, Fourier series in the circumferential direction and Bessel functions of the wave number in the radial direction are selected. Accurate results arise with a small number of parameters of the loads acting on a source line which should coincide with the structure-soil interface. In a parametric study the dynamic-stiffness matrices of rectangular foundations of various aspect ratios embedded in a halfplane and in a layer built-in at its base are calculated. For the halfplane, the spring coefficients for the translational directions hardly depend on the embedment, while the corresponding damping coefficients increase for larger embedments, this tendency being more pronounced in the horizontal direction. (orig.)

  6. Simulation of the dynamic behavior of the coffee fruit-stem system using finite element method

    Directory of Open Access Journals (Sweden)

    Fábio Lúcio Santos

    2015-01-01

    Full Text Available Mechanical harvesting can be considered an important factor to reduce the costs in coffee production and to improve the quality of the final product. Coffee harvesting machinery uses mechanical vibrations to accomplish the harvesting. Therefore, the determination of the natural frequencies of the fruit-stem systems is an essential dynamic parameter for the development of mechanized harvesting system by mechanical vibrations. The objective of this study was to develop a three-dimensional finite element model to determine the natural frequencies and mode shapes of the coffee fruit-stem systems, considering different fruit ripeness. Moreover, it was carried out a theoretical study, using the finite element three-dimensional model, based on the linear theory of elasticity, for determining the generated stress in a coffee fruit-stem system, during the harvesting process by mechanical vibration. The results showed that natural frequencies decrease as the ripeness condition of the fruit increases. Counter-phase mode shape can provide better detachment efficiency considering the stress generation on coffee fruit-stem system during the harvesting by mechanical vibrations and presented a difference greater than 40 Hz between the natural frequencies of the green and ripe fruit.

  7. Ambient concentrations and insights on organic and elemental carbon dynamics in São Paulo, Brazil

    Science.gov (United States)

    Monteiro dos Santos, Djacinto A.; Brito, Joel F.; Godoy, José Marcus; Artaxo, Paulo

    2016-11-01

    The São Paulo Metropolitan Area (SPMA) is a megacity with about 20 million people and about 8 million vehicles, most of which are fueled with a significant fraction of ethanol - making it a unique case worldwide. This study presents organic and elemental carbon measurements using thermal-optical analysis from quartz filters collected in four sampling sites within the SPMA. Overall Organic Carbon (OC) concentration was comparable at all sites, where Street Canyon had the highest concentration (3.37 μg m-3) and Park site the lowest (2.65 μg m-3). Elemental Carbon (EC), emitted as result of incomplete combustion, has been significantly higher at the Street Canyon site (6.11 μg m-3) in contrast to all other three sites, ranging from 2.25 μg m-3 (Downtown) to 1.50 μg m-3 (Park). For all sampling sites, the average OC:EC ratio are found on the lower bound (pollution dynamics in a megacity impacted by a unique vehicular fleet. It also shows the need of implementation of EURO VI technology and to improve mass transport systems such a metro and more bus corridors to allow better transport for 19 million people in the SPMA.

  8. Information governance in dynamic networked business process management

    NARCIS (Netherlands)

    Rasouli, M.; Eshuis, H.; Grefen, P.W.P.J.; Trienekens, J.J.M.; Kusters, R.J.

    2016-01-01

    Competition in today’s globalized markets forces organizations to collaborate within dynamic business networks to provide mass-customized integrated solutions for customers. The collaboration within dynamic business networks necessitates forming dynamic networked business processes (DNBPs).

  9. Information-theoretic characterization of dynamic energy systems

    Science.gov (United States)

    Bevis, Troy Lawson

    sources are compounded by the dynamics of the grid itself. Loads are constantly changing, as well as the sources; this can sometimes lead to a quick change in system states. There is a need for a metric to be able to take into consideration all of the factors detailed above; it needs to be able to take into consideration the amount of information that is available in the system and the rate that the information is losing its value. In a dynamic system, the information is only valid for a length of time, and the controller must be able to take into account the decay of currently held information. This thesis will present the information theory metrics in a way that is useful for application to dynamic energy systems. A test case involving synchronization of several generators is presented for analysis and application of the theory. The objective is to synchronize all the generators and connect them to a common bus. As the phase shift of each generator is a random process, the effects of latency and information decay can be directly observed. The results of the experiments clearly show that the expected outcomes are observed and that entropy and information theory is a valid metric for timing requirement extraction.

  10. Information Environment is an Integral Element of Informational Space in the Process of Professional Development of Future Teacher of Physical Culture

    Directory of Open Access Journals (Sweden)

    Yuri V. Dragnev

    2012-04-01

    Full Text Available The article examines information environment as an integral element of information space in the process of professional development of future teacher of physical culture, notes that the strategic objective of the system of higher education is training of competent future teacher of physical culture in the field of information technologies, when information competence and information culture are major components of professionalism in modern information-oriented society

  11. The Influence of Information Acquisition on the Complex Dynamics of Market Competition

    Science.gov (United States)

    Guo, Zhanbing; Ma, Junhai

    In this paper, we build a dynamical game model with three bounded rational players (firms) to study the influence of information on the complex dynamics of market competition, where useful information is about rival’s real decision. In this dynamical game model, one information-sharing team is composed of two firms, they acquire and share the information about their common competitor, however, they make their own decisions separately, where the amount of information acquired by this information-sharing team will determine the estimation accuracy about the rival’s real decision. Based on this dynamical game model and some creative 3D diagrams, the influence of the amount of information on the complex dynamics of market competition such as local dynamics, global dynamics and profits is studied. These results have significant theoretical and practical values to realize the influence of information.

  12. LOD BIM Element specification for Railway Turnout Systems Risk Mitigation using the Information Delivery Manual

    Science.gov (United States)

    Gigante-Barrera, Ángel; Dindar, Serdar; Kaewunruen, Sakdirat; Ruikar, Darshan

    2017-10-01

    Railway turnouts are complex systems designed using complex geometries and grades which makes them difficult to be managed in terms of risk prevention. This feature poses a substantial peril to rail users as it is considered a cause of derailment. In addition, derailment deals to financial losses due to operational downtimes and monetary compensations in case of death or injure. These are fundamental drivers to consider mitigating risks arising from poor risk management during design. Prevention through design (PtD) is a process that introduces tacit knowledge from industry professionals during the design process. There is evidence that Building Information Modelling (BIM) can help to mitigate risk since the inception of the project. BIM is considered an Information System (IS) were tacit knowledge can be stored and retrieved from a digital database making easy to take promptly decisions as information is ready to be analysed. BIM at the model element level entails working with 3D elements and embedded data, therefore adding a layer of complexity to the management of information along the different stages of the project and across different disciplines. In order to overcome this problem, the industry has created a framework for model progression specification named Level of Development (LOD). The paper presents an IDM based framework for design risk mitigation through code validation using the LOD. This effort resulted on risk datasets which describe graphically and non-graphically a rail turnout as the model progresses. Thus, permitting its inclusion within risk information systems. The assignment of an LOD construct to a set of data, requires specialised management and process related expertise. Furthermore, the selection of a set of LOD constructs requires a purpose based analysis. Therefore, a framework for LOD constructs implementation within the IDM for code checking is required for the industry to progress in this particular field.

  13. Dynamic induced softening in frictional granular materials investigated by discrete-element-method simulation

    Science.gov (United States)

    Lemrich, Laure; Carmeliet, Jan; Johnson, Paul A.; Guyer, Robert; Jia, Xiaoping

    2017-12-01

    A granular system composed of frictional glass beads is simulated using the discrete element method. The intergrain forces are based on the Hertz contact law in the normal direction with frictional tangential force. The damping due to collision is also accounted for. Systems are loaded at various stresses and their quasistatic elastic moduli are characterized. Each system is subjected to an extensive dynamic testing protocol by measuring the resonant response to a broad range of ac drive amplitudes and frequencies via a set of diagnostic strains. The system, linear at small ac drive amplitudes, has resonance frequencies that shift downward (i.e., modulus softening) with increased ac drive amplitude. Detailed testing shows that the slipping contact ratio does not contribute significantly to this dynamic modulus softening, but the coordination number is strongly correlated to this reduction. This suggests that the softening arises from the extended structural change via break and remake of contacts during the rearrangement of bead positions driven by the ac amplitude.

  14. Experimental Investigation and Discrete Element Modelling of Composite Hollow Spheres Subjected to Dynamic Fracture

    Directory of Open Access Journals (Sweden)

    Arthur Coré

    2017-01-01

    Full Text Available This paper deals with the characterization and the numerical modelling of the collapse of composite hollow spherical structures developed to absorb energy during high velocity impacts. The structure is composed of hollow spheres (ϕ=2–30 mm made of epoxy resin and mineral powder. First of all, quasi-static and dynamic (v=5 mm·min−1 to v=2 m·s−1 compression tests are conducted at room temperature on a single sphere to study energy dissipation mechanisms. Fracture of the material appears to be predominant. A numerical model based on the discrete element method is investigated to simulate the single sphere crushing. The stress-strain-time relationship of the material based on the Ree-Eyring law is numerically implemented. The DEM modelling takes naturally into account the dynamic fracture and the crack path computed is close to the one observed experimentally in uniaxial compression. Eventually, high velocity impacts (v>100 m·s−1 of a hollow sphere on a rigid surface are conducted with an air cannon. The numerical results are in good agreement with the experimental data and demonstrate the ability of the present model to correctly describe the mechanical behavior of brittle materials at high strain rate.

  15. Finite element simulation and clinical follow-up of lumbar spine biomechanics with dynamic fixations.

    Directory of Open Access Journals (Sweden)

    Yolanda Más

    Full Text Available Arthrodesis is a recommended treatment in advanced stages of degenerative disc disease. Despite dynamic fixations were designed to prevent abnormal motions with better physiological load transmission, improving lumbar pain and reducing stress on adjacent segments, contradictory results have been obtained. This study was designed to compare differences in the biomechanical behaviour between the healthy lumbar spine and the spine with DYNESYS and DIAM fixation, respectively, at L4-L5 level. Behaviour under flexion, extension, lateral bending and axial rotation are compared using healthy lumbar spine as reference. Three 3D finite element models of lumbar spine (healthy, DYNESYS and DIAM implemented, respectively were developed, together a clinical follow-up of 58 patients operated on for degenerative disc disease. DYNESYS produced higher variations of motion with a maximum value for lateral bending, decreasing intradiscal pressure and facet joint forces at instrumented level, whereas screw insertion zones concentrated stress. DIAM increased movement during flexion, decreased it in another three movements, and produced stress concentration at the apophyses at instrumented level. Dynamic systems, used as single systems without vertebral fusion, could be a good alternative to degenerative disc disease for grade II and grade III of Pfirrmann.

  16. SIMULATION SCENARIO OF INTRODUCTION OF FISH WHITEBAIT WITH THE ACCOUNT OF BIOGENIC ELEMENTS DYNAMICS

    Directory of Open Access Journals (Sweden)

    V. V. Michailov

    2017-01-01

    Full Text Available The article discusses the expansion of the previously formulated approach to modeling aspects of the reproductive cycle, taking into account the changes in the habitat and metamorphosis in the development of fish. Excessive accumulation of nutrients with prolonged use of a reservoir for artificial growth of juveniles or accelerated decomposition of organic nitrogen and phosphorus may in some cases affect the success of the reproductive process. This creates an indirect effect on long-term trends in population dynamics. In some cases, the increase in the influx of organic phosphorus further leads to a state of eutrophication and may affect the insufficient aeration of breeding sites, leading to hypoxia for hatched larvae. Even worsen the situation with the consumption of oxygen in the water at the mass destruction of eggs. Lack of organic matter leads to insufficient development of planktonic organisms for optimal growth of fishes. The system of survivability equations for calculation competing individuals of the generation is supplemented by a functional extension using an iterative model of biogenic elements dynamics, based on the analysis of processes in the ecosystem of Lake Chao. The block of the model for calculating the inflow and destruction of organic matter is synchronized with a continuous-discrete computational structure that takes into account the interrelated changes in mortality factors and the rate of development of juvenile fish during transitions between generalized ecological and physiological stages of development.

  17. Dynamic analysis of reactor containment building using axisymmetric finite element model

    International Nuclear Information System (INIS)

    Thakkar, S.K.; Dubey, R.N.

    1989-01-01

    The structural safety of nuclear reactor building during earthquake is of great importance in view of possibility of radiation hazards. The rational evaluation of forces and displacements in various portions of structure and foundation during strong ground motion is most important for safe performance and economic design of the reactor building. The accuracy of results of dynamic analysis is naturally dependent on the type of mathematical model employed. Three types of mathematical models are employed for dynamic analysis of reactor building beam model axisymmetric finite element model and three dimensional model. In this paper emphasis is laid on axisymmetric model. This model of containment building is considered a reinfinement over conventional beam model of the structure. The nuclear reactor building on a rocky foundation is considered herein. The foundation-structure interaction is relatively less in this condition. The objective of the paper is to highlight the significance of modelling of non-axisymmetric portion of building, such as reactor internals by equivalent axisymmetric body, on the structural response of the building

  18. A stochastic finite element model for the dynamics of globular macromolecules

    Science.gov (United States)

    Oliver, Robin C.; Read, Daniel J.; Harlen, Oliver G.; Harris, Sarah A.

    2013-04-01

    We describe a novel coarse-grained simulation method for modelling the dynamics of globular macromolecules, such as proteins. The macromolecule is treated as a continuum that is subject to thermal fluctuations. The model includes a non-linear treatment of elasticity and viscosity with thermal noise that is solved using finite element analysis. We have validated the method by demonstrating that the model provides average kinetic and potential energies that are in agreement with the classical equipartition theorem and that the nodal velocities have the correct Gaussian distribution. In addition, we have performed Fourier analysis on the simulation trajectories obtained for a series of linear beams to confirm that the correct average energies are present in the first two Fourier bending modes and that the probability distribution of the amplitudes of the first two Fourier modes match the theoretical results. We demonstrate spatial convergence of the model by showing that the anisotropy of the inertia tensor for a cubic mesh converges as a function of the mesh resolution. We have then used the new modelling method to simulate the thermal fluctuations of a representative protein over 500 ns timescales. Using reasonable parameters for the material properties, we have demonstrated that the overall deformation of the biomolecule is consistent with the results obtained for proteins in general from atomistic molecular dynamics simulations.

  19. Two dimensional finite element modelling for dynamic water diffusion through stratum corneum.

    Science.gov (United States)

    Xiao, Perry; Imhof, Robert E

    2012-10-01

    Solvents penetration through in vivo human stratum corneum (SC) has always been an interesting research area for trans-dermal drug delivery studies, and the importance of intercellular routes (diffuse in between corneocytes) and transcellular routes (diffuse through corneocytes) during diffusion is often debatable. In this paper, we have developed a two dimensional finite element model to simulate the dynamic water diffusion through the SC. It is based on the brick-and-mortar model, with brick represents corneocytes and mortar represents lipids, respectively. It simulates the dynamic water diffusion process through the SC from pre-defined initial conditions and boundary conditions. Although the simulation is based on water diffusions, the principles can also be applied to the diffusions of other topical applied substances. The simulation results show that both intercellular routes and transcellular routes are important for water diffusion. Although intercellular routes have higher flux rates, most of the water still diffuse through transcellular routes because of the high cross area ratio of corneocytes and lipids. The diffusion water flux, or trans-epidermal water loss (TEWL), is reversely proportional to corneocyte size, i.e. the larger the corneocyte size, the lower the TEWL, and vice versa. There is also an effect of the SC thickness, external air conditions and diffusion coefficients on the water diffusion through SC on the resulting TEWL. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Finite element method for computational fluid dynamics with any type of elements; Finite Element Methode zur numerischen Stroemungsberechnung mit beliebigen Elementen

    Energy Technology Data Exchange (ETDEWEB)

    Steibler, P.

    2000-07-01

    The unsteady, turbulent flow is to be calculated in a complex geometry. For this purpose a stabilized finite element formulation in which the same functions for velocity and pressure are used is developed. Thus the process remains independent of the type of elements. This simplifies the application. Above all, it is easier to deal with the boundary conditions. The independency from the elements is also achieved by the extended uzawa-algorithm which uses quadratic functions for velocity and an element-constant pressure. This method is also programmed. In order to produce the unstructured grids, an algorithm is implemented which produces meshes consisting of triangular and tetrahedral elements with flow-dependent adaptation. With standard geometries both calculation methods are compared with results. Finally the flow in a draft tube of a Kaplan turbine is calculated and compared with results from model tests. (orig.) [German] Die instationaere, turbulente Stroemung in einer komplexen Geometrie soll berechnet werden. Dazu wird eine Stabilisierte Finite Element Formulierung entwickelt, bei der die gleichen Ansatzfunktionen fuer Geschwindigkeiten und Druck verwendet werden. Das Verfahren wird damit unabhaengig von der Form der Elemente. Dies vereinfacht die Anwendung. Vor allem wird der Umgang mit den Randbedingungen erleichert. Die Elementunabhaengigkeit erreicht man auch mit dem erweiterten Uzawa-Algorithmus, welcher quadratische Ansatzfunktionen fuer die Geschwindigkeiten und elementweisen konstanten Druck verwendet. Dieses Verfahren wird ebenso implementiert. Zur Erstellung der unstrukturierten Gitter wird ein Algorithmus erzeugt, der Netze aus Dreiecks- und Tetraederelementen erstellt, welche stroemungsabhaengige Groessen besitzen koennen. Anhand einiger Standardgeometrien werden die beiden Berechnungsmethoden mit Ergebnissen aus der Literatur verglichen. Als praxisrelevantes Beispiel wird abschliessend die Stroemung in einem Saugrohr einer Kaplanturbine berechnet

  1. Nonlinear dynamics of solitary and optically injected two-element laser arrays with four different waveguide structures: a numerical study.

    Science.gov (United States)

    Li, Nianqiang; Susanto, H; Cemlyn, B R; Henning, I D; Adams, M J

    2018-02-19

    We study the nonlinear dynamics of solitary and optically injected two-element laser arrays with a range of waveguide structures. The analysis is performed with a detailed direct numerical simulation, where high-resolution dynamic maps are generated to identify regions of dynamic instability in the parameter space of interest. Our combined one- and two-parameter bifurcation analysis uncovers globally diverse dynamical regimes (steady-state, oscillation, and chaos) in the solitary laser arrays, which are greatly influenced by static design waveguiding structures, the amplitude-phase coupling factor of the electric field, i.e. the linewidth-enhancement factor, as well as the control parameter, e.g. the pump rate. When external optical injection is introduced to one element of the arrays, we show that the whole system can be either injection-locked simultaneously or display rich, different dynamics outside the locking region. The effect of optical injection is to significantly modify the nature and the regions of nonlinear dynamics from those found in the solitary case. We also show similarities and differences (asymmetry) between the oscillation amplitude of the two elements of the array in specific well-defined regions, which hold for all the waveguiding structures considered. Our findings pave the way to a better understanding of dynamic instability in large arrays of lasers.

  2. The informal recycling in the international and local context: theoretical Elements

    International Nuclear Information System (INIS)

    Yepes P, Dora Luz

    2002-01-01

    This article is a synthesis of the theoretical aspects related with the urban problem of the informal recycling in our means, and it is framed inside the denominated investigation project alternatives for their invigoration of the informal recycling in Medellin, which is a thesis of the grade that looks for to strengthen the informal recycling through the study of the factors associated to the labor productivity of the informal recycle. Specifically, the study will identify options of improvement of its work y points to propose alternatives to dignify the labor of these people integrally by the light of environmental precepts, technicians, normative, institutional social and of sustainability. This document describe the theoretical elements in which this investigation will be based, showing the informal recycling inside of an international context, and their situation in a national and local environment. As a result of the bibliographical revision carried out, can be said, that it glimpses a low interest in to improve the conditions of work a International level of the informal recycle, unless the strategies that it outlines the international labor organization, with regard to the strengthening of the informal economy; in Latin America, it has not been possible to go further of the official rhetoric and the pro motion of the groups environmentalists, but in the issue of the recovery policies, reuse, and the recycling of solid wastes, if there. Has been a sustained advance; at national level clear strategies to improve the informal work of the recycle are being identified, however, lacks many efforts to develop the committed actions with these strategies, in spite of the fact that has been advancing the creation of recycle organizations little by little

  3. Dynamics of Melting and Melt Migration as Inferred from Incompatible Trace Element Abundance in Abyssal Peridotites

    Science.gov (United States)

    Peng, Q.; Liang, Y.

    2008-12-01

    To better understand the melting processes beneath the mid-ocean ridge, we developed a simple model for trace element fractionation during concurrent melting and melt migration in an upwelling steady-state mantle column. Based on petrologic considerations, we divided the upwelling mantle into two regions: a double- lithology upper region where high permeability dunite channels are embedded in a lherzolite/harzburgite matrix, and a single-lithology lower region that consists of partially molten lherzolite. Melt generated in the single lithology region migrates upward through grain-scale diffuse porous flow, whereas melt in the lherzolite/harzburgite matrix in the double-lithology region is allowed to flow both vertically through the overlying matrix and horizontally into its neighboring dunite channels. There are three key dynamic parameters in our model: degree of melting experienced by the single lithology column (Fd), degree of melting experienced by the double lithology column (F), and a dimensionless melt suction rate (R) that measures the accumulated rate of melt extraction from the matrix to the channel relative to the accumulated rate of matrix melting. In terms of trace element fractionation, upwelling and melting in the single lithology column is equivalent to non-modal batch melting (R = 0), whereas melting and melt migration in the double lithology region is equivalent to a nonlinear combination of non-modal batch and fractional melting (0 abyssal peridotite, we showed, with the help of Monte Carlo simulations, that it is difficult to invert for all three dynamic parameters from a set of incompatible trace element data with confidence. However, given Fd, it is quite possible to constrain F and R from incompatible trace element abundances in residual peridotite. As an illustrative example, we used the simple melting model developed in this study and selected REE and Y abundance in diopside from abyssal peridotites to infer their melting and melt migration

  4. Ultrafast vortex core dynamics investigated by finite-element micromagnetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gliga, Sebastian

    2010-07-01

    The investigations carried out in this thesis concern the ultrafast dynamics of a fundamental micromagnetic configuration: the vortex. Over the past decade, a detailed understanding of the dynamic and static properties of such magnetic nanostructures has been achieved as a result of close interplay between experiments, theory and numeric simulations. Here, micromagnetic simulations were performed based on the finite-element method. The vortex structure arises in laterally-confined ferromagnets, in particular in thin-film elements, and is characterized by an in-plane curling of the magnetic moments around a very stable and narrow core. In the present study, a novel process in micromagnetism was found: the ultrafast reversal of the vortex core. The possibility of easily switching the core orientation by means of short in-plane field pulses is surprising in view of the very high stability of the core. Moreover, the simulations presented here showed that this reversal process unfolds on a time scale of only a few tens of picoseconds, which leads to the prediction of the fastest and most complex micromagnetic reversal process known to date. Indeed, the vortex core is not merely switched: it is destroyed and recreated in the immediate vicinity with an opposite direction. This is mediated by a rapid sequence of vortex-antivortex pair creation and annihilation subprocesses and results in a sudden burst-like emission of spin waves. Equally fascinating is the ultrafast dynamics of an isolated magnetic antivortex, the topological counterpart of the vortex. The simulations performed here showed that the static complementarity between vortices and antivortices is equally reflected in their ultrafast dynamics, which leads to the reversal of the antivortex core. A promising means for the control of the magnetization on the nanoscale consists in exploiting the spin-transfer torque effect. The study of the current-induced dynamics of vortices showed that the core reversal can be

  5. Distributed Information System for Dynamic Ocean Data in Indonesia

    Science.gov (United States)

    Romero, Laia; Sala, Joan; Polo, Isabel; Cases, Oscar; López, Alejandro; Jolibois, Tony; Carbou, Jérome

    2014-05-01

    Information systems are widely used to enable access to scientific data by different user communities. MyOcean information system is a good example of such applications in Europe. The present work describes a specific distributed information system for Ocean Numerical Model (ONM) data in the scope of the INDESO project, a project focused on Infrastructure Development of Space Oceanography in Indonesia. INDESO, as part of the Blue Revolution policy conducted by the Indonesian government for the sustainable development of fisheries and aquaculture, presents challenging service requirements in terms of services performance, reliability, security and overall usability. Following state-of-the-art technologies on scientific data networks, this robust information system provides a high level of interoperability of services to discover, view and access INDESO dynamic ONM scientific data. The entire system is automatically updated four times a day, including dataset metadata, taking into account every new file available in the data repositories. The INDESO system architecture has been designed in great part around the extension and integration of open-source flexible and mature technologies. It involves three separate modules: web portal, dissemination gateway, and user administration. Supporting different gridded and non-gridded data, the INDESO information system features search-based data discovery, data access by temporal and spatial subset extraction, direct download and ftp, and multiple-layer visualization of datasets. A complex authorization system has been designed and applied throughout all components, in order to enable services authorization at dataset level, according to the different user profiles stated in the data policy. Finally, a web portal has been developed as the single entry point and standardized interface to all data services (discover, view, and access). Apache SOLR has been implemented as the search server, allowing faceted browsing among ocean

  6. FINITE ELEMENT ANALYSIS OF CONCRETE FILLER INFLUENCE ON DYNAMIC RIGIDITY OF HEAVY MACHINE TOOL PORTAL

    Directory of Open Access Journals (Sweden)

    Yu. V. Vasilevich

    2016-01-01

    Full Text Available Virtual testing of portal machine tool has been carried out with the help of finite elements method (FEM. Static, modal and harmonic analyses have been made for a heavy planer. The paper reveals influence of concrete filler on machine tool dynamic flexibility. A peculiar feature of the simulation is concrete filling of a high-level transverse beam. Such approach oes look a typical one for machine-tool industry. Concrete has been considered as generalized material in two variants. It has been established that concrete application provides approximately 3-fold increase in machine tool rigidity per each coordinate. In this regard it is necessary to arrange closure of rigidity contour by filling all the cavities inside of the portal. Modal FEA makes it possible to determine that concrete increases comparatively weakly (1.3–1.4-fold frequencies of resonance modes. Frequency of the lowest mode rises only from 30.25 to 42.86 Hz. The following most active whole-machine eigenmodes have been revealed in the paper: “Portal pecking”, “Parallelogram” and “Traverse pecking”. In order to restrain the last mode it is necessary to carry out concrete filling of the traverse, in particular. Frequency-response characteristics and curves of dynamic rigidity for a spindle have been plotted for 0–150 Hz interval while using harmonic FEM. It has been determined that concrete increases dynamic machine tool rigidity by 2.5–3.5-fold. The effect is obtained even in the case when weakly damping concrete (2 % is used. This is due to distribution of vibrational energy flow along concrete and along cast iron as well. Thus energy density and vibration amplitudes must decrease. The paper shows acceptability for internal reinforcement of high-level machine tool parts (for example, portal traverses and fillers are applied for this purpose. Traverse weighting is compensated by additional torsional, shear and bending rigidity. The machine tool obtains the

  7. Discrete meso-element simulation of the failure behavior of short-fiber composites under dynamic loading

    International Nuclear Information System (INIS)

    Liu Wenyan; Tang, Z.P.; Liu Yunxin

    2000-01-01

    In recent years, more attention has been paid to a better understanding of the failure behavior and mechanism of heterogeneous materials at the meso-scale level. In this paper, the crack initiation and development in epoxy composites reinforced with short steel fibers under dynamic loading were simulated and analyzed with the 2D Discrete Meso-Element Dynamic Method. Results show that the damage process depends greatly on the binding property between matrix and fibers

  8. Bimanual coordination and musical experience : The role of intrinsic dynamics and behavioral information

    NARCIS (Netherlands)

    Verheul, M.H.G.; Geuze, RH

    Rhythmic interlimb coordination arises from the interaction of intrinsic dynamics and behavioral information, that is, intention, memory, or external information specifying the required coordination pattern. This study investigates the influence of the content of memorized behavioral information on

  9. Transient dynamic finite element analysis of hydrogen distribution test chamber structure for hydrogen combustion loads

    International Nuclear Information System (INIS)

    Singh, R.K.; Redlinger, R.; Breitung, W.

    2005-09-01

    Design and analysis of blast resistant structures is an important area of safety research in nuclear, aerospace, chemical process and vehicle industries. Institute for Nuclear and Energy Technologies (IKET) of Research Centre- Karlsruhe (Forschungszentrum Karlsruhe or FZK) in Germany is pursuing active research on the entire spectrum of safety evaluation for efficient hydrogen management in case of the postulated design basis and beyond the design basis severe accidents for nuclear and non-nuclear applications. This report concentrates on the consequence analysis of hydrogen combustion accidents with emphasis on the structural safety assessment. The transient finite element simulation results obtained for 2gm, 4gm, 8gm and 16gm hydrogen combustion experiments concluded recently on the test-cell structure are described. The frequencies and damping of the test-cell observed during the hammer tests and the combustion experiments are used for the present three dimensional finite element model qualification. For the numerical transient dynamic evaluation of the test-cell structure, the pressure time history data computed with CFD code COM-3D is used for the four combustion experiments. Detail comparisons of the present numerical results for the four combustion experiments with the observed time signals are carried out to evaluate the structural connection behavior. For all the combustion experiments excellent agreement is noted for the computed accelerations and displacements at the standard transducer locations, where the measurements were made during the different combustion tests. In addition inelastic analysis is also presented for the test-cell structure to evaluate the limiting impulsive and quasi-static pressure loads. These results are used to evaluate the response of the test cell structure for the postulated over pressurization of the test-cell due to the blast load generated in case of 64 gm hydrogen ignition for which additional sets of computations were

  10. Vibration Propagation of Gear Dynamics in a Gear-Bearing-Housing System Using Mathematical Modeling and Finite Element Analysis

    Science.gov (United States)

    Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.

    2012-01-01

    Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.

  11. Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings

    Directory of Open Access Journals (Sweden)

    Otaki Joji M

    2012-03-01

    Full Text Available Abstract Background To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lacking. In this study, fundamental structural rules related to butterfly eyespots are proposed, and the induction model is elaborated in terms of the possible dynamics of morphogenic signals involved in the development of eyespots and parafocal elements (PFEs based on colour-pattern analysis of the nymphalid butterfly Junonia almana. Results In a well-developed eyespot, the inner black core ring is much wider than the outer black ring; this is termed the inside-wide rule. It appears that signals are wider near the focus of the eyespot and become narrower as they expand. Although fundamental signal dynamics are likely to be based on a reaction-diffusion mechanism, they were described well mathematically as a type of simple uniformly decelerated motion in which signals associated with the outer and inner black rings of eyespots and PFEs are released at different time points, durations, intervals, and initial velocities into a two-dimensional field of fundamentally uniform or graded resistance; this produces eyespots and PFEs that are diverse in size and structure. The inside-wide rule, eyespot distortion, structural differences between small and large eyespots, and structural changes in eyespots and PFEs in response to physiological treatments were explained well using mathematical simulations. Natural colour patterns and previous experimental findings that are not easily explained by the conventional gradient model were also explained reasonably well by the formal mathematical simulations performed in this study. Conclusions In a mode free from speculative molecular interactions, the present study clarifies fundamental structural rules related to

  12. Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings.

    Science.gov (United States)

    Otaki, Joji M

    2012-03-13

    To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lacking. In this study, fundamental structural rules related to butterfly eyespots are proposed, and the induction model is elaborated in terms of the possible dynamics of morphogenic signals involved in the development of eyespots and parafocal elements (PFEs) based on colour-pattern analysis of the nymphalid butterfly Junonia almana. In a well-developed eyespot, the inner black core ring is much wider than the outer black ring; this is termed the inside-wide rule. It appears that signals are wider near the focus of the eyespot and become narrower as they expand. Although fundamental signal dynamics are likely to be based on a reaction-diffusion mechanism, they were described well mathematically as a type of simple uniformly decelerated motion in which signals associated with the outer and inner black rings of eyespots and PFEs are released at different time points, durations, intervals, and initial velocities into a two-dimensional field of fundamentally uniform or graded resistance; this produces eyespots and PFEs that are diverse in size and structure. The inside-wide rule, eyespot distortion, structural differences between small and large eyespots, and structural changes in eyespots and PFEs in response to physiological treatments were explained well using mathematical simulations. Natural colour patterns and previous experimental findings that are not easily explained by the conventional gradient model were also explained reasonably well by the formal mathematical simulations performed in this study. In a mode free from speculative molecular interactions, the present study clarifies fundamental structural rules related to butterfly eyespots, delineates a theoretical basis for the

  13. Information dynamics algorithm for detecting communities in networks

    Science.gov (United States)

    Massaro, Emanuele; Bagnoli, Franco; Guazzini, Andrea; Lió, Pietro

    2012-11-01

    The problem of community detection is relevant in many scientific disciplines, from social science to statistical physics. Given the impact of community detection in many areas, such as psychology and social sciences, we have addressed the issue of modifying existing well performing algorithms by incorporating elements of the domain application fields, i.e. domain-inspired. We have focused on a psychology and social network-inspired approach which may be useful for further strengthening the link between social network studies and mathematics of community detection. Here we introduce a community-detection algorithm derived from the van Dongen's Markov Cluster algorithm (MCL) method [4] by considering networks' nodes as agents capable to take decisions. In this framework we have introduced a memory factor to mimic a typical human behavior such as the oblivion effect. The method is based on information diffusion and it includes a non-linear processing phase. We test our method on two classical community benchmark and on computer generated networks with known community structure. Our approach has three important features: the capacity of detecting overlapping communities, the capability of identifying communities from an individual point of view and the fine tuning the community detectability with respect to prior knowledge of the data. Finally we discuss how to use a Shannon entropy measure for parameter estimation in complex networks.

  14. Dynamic information architecture system (DIAS) : multiple model simulation management

    International Nuclear Information System (INIS)

    Simunich, K. L.; Sydelko, P.; Dolph, J.; Christiansen, J.

    2002-01-01

    Dynamic Information Architecture System (DIAS) is a flexible, extensible, object-based framework for developing and maintaining complex multidisciplinary simulations of a wide variety of application contexts. The modeling domain of a specific DIAS-based simulation is determined by (1) software Entity (domain-specific) objects that represent the real-world entities that comprise the problem space (atmosphere, watershed, human), and (2) simulation models and other data processing applications that express the dynamic behaviors of the domain entities. In DIAS, models communicate only with Entity objects, never with each other. Each Entity object has a number of Parameter and Aspect (of behavior) objects associated with it. The Parameter objects contain the state properties of the Entity object. The Aspect objects represent the behaviors of the Entity object and how it interacts with other objects. DIAS extends the ''Object'' paradigm by abstraction of the object's dynamic behaviors, separating the ''WHAT'' from the ''HOW.'' DIAS object class definitions contain an abstract description of the various aspects of the object's behavior (the WHAT), but no implementation details (the HOW). Separate DIAS models/applications carry the implementation of object behaviors (the HOW). Any model deemed appropriate, including existing legacy-type models written in other languages, can drive entity object behavior. The DIAS design promotes plug-and-play of alternative models, with minimal recoding of existing applications. The DIAS Context Builder object builds a constructs or scenario for the simulation, based on developer specification and user inputs. Because DIAS is a discrete event simulation system, there is a Simulation Manager object with which all events are processed. Any class that registers to receive events must implement an event handler (method) to process the event during execution. Event handlers can schedule other events; create or remove Entities from the

  15. Dynamic information architecture system (DIAS) : multiple model simulation management.

    Energy Technology Data Exchange (ETDEWEB)

    Simunich, K. L.; Sydelko, P.; Dolph, J.; Christiansen, J.

    2002-05-13

    Dynamic Information Architecture System (DIAS) is a flexible, extensible, object-based framework for developing and maintaining complex multidisciplinary simulations of a wide variety of application contexts. The modeling domain of a specific DIAS-based simulation is determined by (1) software Entity (domain-specific) objects that represent the real-world entities that comprise the problem space (atmosphere, watershed, human), and (2) simulation models and other data processing applications that express the dynamic behaviors of the domain entities. In DIAS, models communicate only with Entity objects, never with each other. Each Entity object has a number of Parameter and Aspect (of behavior) objects associated with it. The Parameter objects contain the state properties of the Entity object. The Aspect objects represent the behaviors of the Entity object and how it interacts with other objects. DIAS extends the ''Object'' paradigm by abstraction of the object's dynamic behaviors, separating the ''WHAT'' from the ''HOW.'' DIAS object class definitions contain an abstract description of the various aspects of the object's behavior (the WHAT), but no implementation details (the HOW). Separate DIAS models/applications carry the implementation of object behaviors (the HOW). Any model deemed appropriate, including existing legacy-type models written in other languages, can drive entity object behavior. The DIAS design promotes plug-and-play of alternative models, with minimal recoding of existing applications. The DIAS Context Builder object builds a constructs or scenario for the simulation, based on developer specification and user inputs. Because DIAS is a discrete event simulation system, there is a Simulation Manager object with which all events are processed. Any class that registers to receive events must implement an event handler (method) to process the event during execution. Event handlers

  16. Information on the evolution of severe LWR fuel element damage obtained in the CORA program

    International Nuclear Information System (INIS)

    Schanz, G.; Hagen, S.; Hofmann, P.; Sepold, L.; Schumacher, G.

    1992-01-01

    In the CORA program a series of out-of-pile experiments on LWR severe accidental situations is being performed, in which test bundles of LWR typical components and arrangements (PWR, BWR) are exposed to temperature transients up to about 2400deg C under flowing steam. The individual features of the facility, the test conduct, and the evaluation will be presented. In the frame of the international cooperation in severe fuel damage (SFD) programs the CORA tests are contributing confirmatory and complementary informations to the results from the limited number of in-pile tests. The identification of basic phenomena of the fuel element destruction, observed as a function of temperature, is supported by separate-effects test results. Most important mechanisms are the steam oxidation of the Zircaloy cladding, which determines the temperature escalation, the chemical interaction between UO 2 fuel and cladding, which dominates fuel liquefaction, relocation and resulting blockage formation, as well as chemical interactions with Inconel spacer grids and absorber units ((Ag, In, Cd) alloy or B 4 C), which are leading to extensive low-temperature melt formation around 1200deg C. Interrelations between those basic phenomena, resulting for example in cladding deformation ('flowering') and the dramatic hydrogen formation in response to the fast cooling of a hot bundle by cold water ('quenching') are determining the evolution paths of fuel element destruction, which are to be identified. (orig.)

  17. Inverse Analysis of Pavement Structural Properties Based on Dynamic Finite Element Modeling and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiaochao Tang

    2013-03-01

    Full Text Available With the movement towards the implementation of mechanistic-empirical pavement design guide (MEPDG, an accurate determination of pavement layer moduli is vital for predicting pavement critical mechanistic responses. A backcalculation procedure is commonly used to estimate the pavement layer moduli based on the non-destructive falling weight deflectometer (FWD tests. Backcalculation of flexible pavement layer properties is an inverse problem with known input and output signals based upon which unknown parameters of the pavement system are evaluated. In this study, an inverse analysis procedure that combines the finite element analysis and a population-based optimization technique, Genetic Algorithm (GA has been developed to determine the pavement layer structural properties. A lightweight deflectometer (LWD was used to infer the moduli of instrumented three-layer scaled flexible pavement models. While the common practice in backcalculating pavement layer properties still assumes a static FWD load and uses only peak values of the load and deflections, dynamic analysis was conducted to simulate the impulse LWD load. The recorded time histories of the LWD load were used as the known inputs into the pavement system while the measured time-histories of surface central deflections and subgrade deflections measured with a linear variable differential transformers (LVDT were considered as the outputs. As a result, consistent pavement layer moduli can be obtained through this inverse analysis procedure.

  18. Flow Dynamics of green sand in the DISAMATIC moulding process using Discrete element method (DEM)

    International Nuclear Information System (INIS)

    Hovad, E; Walther, J H; Thorborg, J; Hattel, J H; Larsen, P

    2015-01-01

    The DISAMATIC casting process production of sand moulds is simulated with DEM (discrete element method). The main purpose is to simulate the dynamics of the flow of green sand, during the production of the sand mould with DEM. The sand shot is simulated, which is the first stage of the DISAMATIC casting process. Depending on the actual casting geometry the mould can be geometrically quite complex involving e.g. shadowing effects and this is directly reflected in the sand flow during the moulding process. In the present work a mould chamber with “ribs” at the walls is chosen as a baseline geometry to emulate some of these important conditions found in the real moulding process. The sand flow is simulated with the DEM and compared with corresponding video footages from the interior of the chamber during the moulding process. The effect of the rolling resistance and the static friction coefficient is analysed and discussed in relation to the experimental findings. (paper)

  19. Dynamic Simulation of a CPV/T System Using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Carlo Renno

    2014-11-01

    Full Text Available The aim of this paper is the determination of a concentrating thermo-photovoltaic (CPV/T system dynamic model by means of the finite element method (FEM. The system consist of triple-junction InGaP/InGaAs/Ge (indium-gallium phosphide/indium-gallium-arsenide/germanium solar cells connected to a metal core printed circuit board (MCPCB placed on a coil circuit used for the thermal energy recovery. In particular, the main aim is to determine the fluid outlet temperature. It is evaluated corresponding both to a constant cell temperature equal to 120 °C, generally representing the maximum operating temperature, and to cell temperature values instantly variable with the direct normal irradiation (DNI. Hence, an accurate DNI analysis is realized adopting the Gordon-Reddy statistical model. Using an accurate electric model, the cell temperature and efficiency are determined together with the CPV/T module electric and thermal powers. Generally, the CPV system size is realized according to the user electric load demand and, then, it is important to evaluate the necessary minimum concentration ratio (Cmin, the limit of CPV system applicability, in order to determine the energy convenience profile. The fluid outlet temperature can be then obtained by the FEM analysis to verify if a CPV/T system can be used in solar heating and cooling applications.

  20. Finite Element Analysis of Aluminum Honeycombs Subjected to Dynamic Indentation and Compression Loads

    Directory of Open Access Journals (Sweden)

    A.S.M. Ayman Ashab

    2016-03-01

    Full Text Available The mechanical behavior of aluminum hexagonal honeycombs subjected to out-of-plane dynamic indentation and compression loads has been investigated numerically using ANSYS/LS-DYNA in this paper. The finite element (FE models have been verified by previous experimental results in terms of deformation pattern, stress-strain curve, and energy dissipation. The verified FE models have then been used in comprehensive numerical analysis of different aluminum honeycombs. Plateau stress, σpl, and dissipated energy (EI for indentation and EC for compression have been calculated at different strain rates ranging from 102 to 104 s−1. The effects of strain rate and t/l ratio on the plateau stress, dissipated energy, and tearing energy have been discussed. An empirical formula is proposed to describe the relationship between the tearing energy per unit fracture area, relative density, and strain rate for honeycombs. Moreover, it has been found that a generic formula can be used to describe the relationship between tearing energy per unit fracture area and relative density for both aluminum honeycombs and foams.

  1. Dynamic, large-deflection, inelastic and thermal stress analysis by the finite element method

    International Nuclear Information System (INIS)

    Haisler, W.E.; Stricklin, J.A.

    1975-01-01

    A finite element theory and computer program have been developed for predicting the dynamic, large displacement, inelastic and thermal response of stiffened and layered structures. The dependence of material properties on temperature is explicitly accounted for and any arbitrary, transient mechanical or thermal load history is allowed. The shell may have internal or external stiffeners and be constructed with up to three layers. The equations of motion are developed by using the pseudo force approach to represent all nonlinearities and are then solved by using either the Houbolt method or central differences. Moderately large rotations are allowed. The program is based on an incremental theory of plasticity using the Von Mises yield condition and associated flow rule. The post yield or work-hardening behavior is idealized with either the isotropic hardening or mechanical sublayer models. Two models are utilized since it has been found through comparison with experimental results that isotropic hardening is best for simple loading conditions while the mechanical sublayer model is better for reverse and cyclic loading. Strain-rate effects are also accounted for in the program by using a power-law type model based on the strain rate. The dependence of material properties on temperature is taken into account in the pseudo forces. Young's modulus, Poisson's ratio, thermal coefficient of expansion, the yield stress, and the entire stress strain curve are treated as functions of the applied temperature. Containment vessels subjected to transient and shock-type mechanical and thermal loads have been analyzed

  2. Dynamic recycling of gaseous elemental mercury in the boundary layer of the Antarctic Plateau

    Directory of Open Access Journals (Sweden)

    A. Dommergue

    2012-11-01

    Full Text Available Gaseous elemental mercury (Hg0 was investigated in the troposphere and in the interstitial air extracted from the snow at Dome Concordia station (alt. 3320 m on the Antarctic Plateau during January 2009. Measurements and modeling studies showed evidence of a very dynamic and daily cycling of Hg0 inside the mixing layer with a range of values from 0.2 ng m−3 up to 2.3 ng m−3. During low solar irradiation periods, fast Hg0 oxidation processes in a confined layer were suspected. Unexpectedly high Hg0 concentrations for such a remote place were measured under higher solar irradiation due to snow photochemistry. We suggest that a daily cycling of reemission/oxidation occurs during summer within the mixing layer at Dome Concordia. Hg0 concentrations showed a negative correlation with ozone mixing ratios, which contrasts with atmospheric mercury depletion events observed during the Arctic spring. Unlike previous Antarctic studies, we think that atmospheric Hg0 removal may not be the result of advection processes. The daily and dramatic Hg0 losses could be a consequence of surface or snow induced oxidation pathways. It remains however unclear whether halogens are involved. The cycling of other oxidants should be investigated together with Hg species in order to clarify the complex reactivity on the Antarctic plateau.

  3. Improved Dynamic Analysis method for quantitative PIXE and SXRF element imaging of complex materials

    International Nuclear Information System (INIS)

    Ryan, C.G.; Laird, J.S.; Fisher, L.A.; Kirkham, R.; Moorhead, G.F.

    2015-01-01

    The Dynamic Analysis (DA) method in the GeoPIXE software provides a rapid tool to project quantitative element images from PIXE and SXRF imaging event data both for off-line analysis and in real-time embedded in a data acquisition system. Initially, it assumes uniform sample composition, background shape and constant model X-ray relative intensities. A number of image correction methods can be applied in GeoPIXE to correct images to account for chemical concentration gradients, differential absorption effects, and to correct images for pileup effects. A new method, applied in a second pass, uses an end-member phase decomposition obtained from the first pass, and DA matrices determined for each end-member, to re-process the event data with each pixel treated as an admixture of end-member terms. This paper describes the new method and demonstrates through examples and Monte-Carlo simulations how it better tracks spatially complex composition and background shape while still benefitting from the speed of DA.

  4. Finite element analysis of the dynamic behavior of pear under impact loading

    Directory of Open Access Journals (Sweden)

    Alireza Salarikia

    2017-03-01

    Full Text Available Pear fruit is susceptible to bruising from mechanical impact during field harvesting operations and at all stages of postharvest handling. The postharvest shelf life of bruised fruits were shorter, and they softened rapidly under cold storage compared with non-bruised samples. Developing strategies for reducing bruising during the supply chain requires an understanding of fruit dynamic behavior to different enforced loadings. Finite Element Method (FEM is among the best techniques, in terms of accuracy and cost-efficiency, for studying the factors effective in impact-induced bruising. In this research, the drop test of pear sample was simulated using FEM. The simulation was conducted on a 3D solid model of the pear that was created by using non-contact optical scanning technology. This computer-based study aimed to assess the stress and strain distribution patterns within pear generated by collision of the fruit with a flat surface made of different materials. The contact force between two colliding surfaces is also investigated. The simulations were conducted at two different drop orientations and four different impact surfaces. Results showed that, in both drop orientations, the largest and smallest stresses, strains and contact forces were developed in collision with the steel and rubber surfaces, respectively. In general, these parameters were smaller when fruit collided with the surfaces along its horizontal axis than when collided along its vertical axis. Finally, analyses of stress and strain magnitudes showed that simulation stress and strain values were compatible with experiments data.

  5. Strength resistance of reinforced concrete elements of high-rise buildings under dynamic loads

    Directory of Open Access Journals (Sweden)

    Berlinov Mikhail

    2018-01-01

    Full Text Available A new method for calculating reinforced concrete constructions of high-rise buildings under dynamic loads from wind, seismic, transport and equipment based on the initial assumptions of the modern phenomenological theory of a nonlinearly deformable elastic-creeping body is proposed. In the article examined the influence of reinforcement on the work of concrete in the conditions of triaxial stress-strain state, based on the compatibility of the deformation of concrete and reinforcement. Mathematical phenomenological equations have been obtained that make it possible to calculate the reinforced concrete elements working without and with cracks. A method for linearizing of these equations based on integral estimates is proposed, which provides the fixation of the vibro-creep processes in the considered period of time. Application of such a technique using the finite-difference method, step method and successive approximations will allow to find a numerical solution of the problem. Such an approach in the design of reinforced concrete constructions will allow not only more fully to take into account the real conditions of their work, revealing additional reserves of load capacity, but also to open additional opportunities for analysis and forecasting their functioning at various stages of operation.

  6. Insights into dynamics of mobile genetic elements in hyperthermophilic environments from five new Thermococcus plasmids.

    Directory of Open Access Journals (Sweden)

    Mart Krupovic

    Full Text Available Mobilome of hyperthermophilic archaea dwelling in deep-sea hydrothermal vents is poorly characterized. To gain insight into genetic diversity and dynamics of mobile genetic elements in these environments we have sequenced five new plasmids from different Thermococcus strains that have been isolated from geographically remote hydrothermal vents. The plasmids were ascribed to two subfamilies, pTN2-like and pEXT9a-like. Gene content and phylogenetic analyses illuminated a robust connection between pTN2-like plasmids and Pyrococcus abyssi virus 1 (PAV1, with roughly half of the viral genome being composed of genes that have homologues in plasmids. Unexpectedly, pEXT9a-like plasmids were found to be closely related to the previously sequenced plasmid pMETVU01 from Methanocaldococcus vulcanius M7. Our data suggests that the latter observation is most compatible with an unprecedented horizontal transfer of a pEXT9a-like plasmid from Thermococcales to Methanococcales. Gene content analysis revealed that thermococcal plasmids encode Hfq-like proteins and toxin-antitoxin (TA systems of two different families, VapBC and RelBE. Notably, although abundant in archaeal genomes, to our knowledge, TA and hfq-like genes have not been previously found in archaeal plasmids or viruses. Finally, the plasmids described here might prove to be useful in developing new genetic tools for hyperthermophiles.

  7. A dynamic box model of bioactive elements in the southern Taiwan Strait

    Science.gov (United States)

    Hua-Sheng, Hong; Shao-Ling, Shang

    1994-06-01

    A dynamic box model was applied to study the characteristics of biogeochemical cycling of PO4-P, NO3-N, AOU, POC and PON in the southern Taiwan Strait region based on the field data of the “Minnan Taiwan Bank Fishing Ground Upwelling Ecosystem Study” during the period of Dec. 1987-Nov. 1988. According to the unique hydrological and topographical features of the region, six boxes and three layers were considered in the model. The variation rates and fluxes of elements induced by horizontal current, upwelling, by diffusion, sinking of particles and biogeochemical processes were estimated respectively. Results further confirmed that upwellings had important effects in this region. The nearshore upwelling areas had net input fluxes of nutrients brought by upwelling water, also had high depletion rates of nutrients and production rates of particulate organic matter and dissolved oxygen. The abnormal net production of nutrients in the middle layer, (10-30 m) indicated the important role of bacteria in this high production region. The phytoplankton POC contributed about 28% of the total POC. POC settling out from the euphotic zone was estimated to be 2×10-6 g/(m2·s) which was about 35% of the primary production.

  8. Dynamic instability analysis of axisymmetric shells by finite element method with convected coordinates

    International Nuclear Information System (INIS)

    Hsieh, B.J.

    1977-01-01

    The instability of axisymmetric shells has been used in engineering fields as a safety device such as the rupture discs used in the LMFBR (Liquid Metal Fast Breeder Reactor) design to relieve the excessive pressure caused by the water and sodium reaction when there is a leak in the piping system. Hence, the analysis of the instability of shells under time varying loading is becoming more and more important. However, notorious discrepancy has been observed between various analytical predications and experimental results for the buckling of shells. Various theories have been proposed to explain these discrepancies. Most of these theories are concerned with two aspects: initial imperfections and asymmetric responses. Both theories do narrow the gap between theoretical and experimental results; however, the remaining discrepancy is still not small. Other possible causes of this discrepancy have to be studied- among them, the boundary conditions. It has been pointed out that the slip at the boundary may have noticeable effect on the transient behavior of a plate. In this paper, the effect of various boundary conditions on the dynamic instability of axisymmetric shells is studied using the numerical discretization technique--convective finite element method

  9. Improved Dynamic Analysis method for quantitative PIXE and SXRF element imaging of complex materials

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, C.G., E-mail: chris.ryan@csiro.au; Laird, J.S.; Fisher, L.A.; Kirkham, R.; Moorhead, G.F.

    2015-11-15

    The Dynamic Analysis (DA) method in the GeoPIXE software provides a rapid tool to project quantitative element images from PIXE and SXRF imaging event data both for off-line analysis and in real-time embedded in a data acquisition system. Initially, it assumes uniform sample composition, background shape and constant model X-ray relative intensities. A number of image correction methods can be applied in GeoPIXE to correct images to account for chemical concentration gradients, differential absorption effects, and to correct images for pileup effects. A new method, applied in a second pass, uses an end-member phase decomposition obtained from the first pass, and DA matrices determined for each end-member, to re-process the event data with each pixel treated as an admixture of end-member terms. This paper describes the new method and demonstrates through examples and Monte-Carlo simulations how it better tracks spatially complex composition and background shape while still benefitting from the speed of DA.

  10. Fluido-Dynamic and Electromagnetic Characterization of 3D Carbon Dielectrophoresis with Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Rodrigo Martinez-Duarte

    2008-12-01

    Full Text Available The following work presents the fluido-dynamic and electromagnetic characterization of an array of 3D electrodes to be used in high throughput and high efficiency Carbon Dielectrophoresis (CarbonDEP applications such as filters, continuous particle enrichment and positioning of particle populations for analysis. CarbonDEP refers to the induction of Dielectrophoresis (DEP by carbon surfaces. The final goal is, through an initial stage of modeling and analysis, to reduce idea-to-prototype time and cost of CarbonDEP devices to be applied in the health care field. Finite Element Analysis (FEA is successfully conducted to model flow velocity and electric fields established by polarized high aspect ratio carbon cylinders, and its planar carbon connecting leads, immersed in a water-based medium. Results demonstrate correlation between a decreasing flow velocity gradient and an increasing electric field gradient toward electrodes’ surfaces which is optimal for selected CarbonDEP applications. Simulation results are experimentally validated in the proposed applications.

  11. Strength resistance of reinforced concrete elements of high-rise buildings under dynamic loads

    Science.gov (United States)

    Berlinov, Mikhail

    2018-03-01

    A new method for calculating reinforced concrete constructions of high-rise buildings under dynamic loads from wind, seismic, transport and equipment based on the initial assumptions of the modern phenomenological theory of a nonlinearly deformable elastic-creeping body is proposed. In the article examined the influence of reinforcement on the work of concrete in the conditions of triaxial stress-strain state, based on the compatibility of the deformation of concrete and reinforcement. Mathematical phenomenological equations have been obtained that make it possible to calculate the reinforced concrete elements working without and with cracks. A method for linearizing of these equations based on integral estimates is proposed, which provides the fixation of the vibro-creep processes in the considered period of time. Application of such a technique using the finite-difference method, step method and successive approximations will allow to find a numerical solution of the problem. Such an approach in the design of reinforced concrete constructions will allow not only more fully to take into account the real conditions of their work, revealing additional reserves of load capacity, but also to open additional opportunities for analysis and forecasting their functioning at various stages of operation.

  12. Creating a Test Validated Structural Dynamic Finite Element Model of the Multi-Utility Technology Test Bed Aircraft

    Science.gov (United States)

    Pak, Chan-Gi; Truong, Samson S.

    2014-01-01

    Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test Bed, X-56A, aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of X-56A. The ground vibration test validated structural dynamic finite element model of the X-56A is created in this study. The structural dynamic finite element model of the X-56A is improved using a model tuning tool. In this study, two different weight configurations of the X-56A have been improved in a single optimization run.

  13. Atomistically-informed dislocation dynamics in FCC crystals

    International Nuclear Information System (INIS)

    Martinez, E.; Marian, J.; Arsenlis, A.; Victoria, M.; Martinez, E.; Victoria, M.; Perlado, J.M.

    2008-01-01

    Full text of publication follows. We will present a nodal dislocation dynamics (DD) model to simulate plastic processes in fcc crystals. The model explicitly accounts for all slip systems and Burgers vectors observed in fcc systems, including stacking faults and partial dislocations. We derive simple conservation rules that describe all partial dislocation interactions rigorously and allow us to model and quantify cross-slip processes, the structure and strength of dislocation junctions, and the formation of fcc-specific structures such as stacking fault tetrahedra. The DD framework is built upon isotropic non-singular linear elasticity, and supports itself on information transmitted from the atomistic scale. In this fashion, connection between the meso and micro scales is attained self-consistently with core parameters fitted to atomistic data. We perform a series of targeted simulations to demonstrate the capabilities of the model, including dislocation reactions and dissociations and dislocation junction strength. Additionally we map the four-dimensional stress space relevant for cross-slip and relate our fundings to the plastic behaviour of' monocrystalline fcc metals. (authors)

  14. Comparison of one-dimensional probabilistic finite element method with direct numerical simulation of dynamically loaded heterogeneous materials

    Science.gov (United States)

    Robbins, Joshua; Voth, Thomas

    2011-06-01

    Material response to dynamic loading is often dominated by microstructure such as grain topology, porosity, inclusions, and defects; however, many models rely on assumptions of homogeneity. We use the probabilistic finite element method (WK Liu, IJNME, 1986) to introduce local uncertainty to account for material heterogeneity. The PFEM uses statistical information about the local material response (i.e., its expectation, coefficient of variation, and autocorrelation) drawn from knowledge of the microstructure, single crystal behavior, and direct numerical simulation (DNS) to determine the expectation and covariance of the system response (velocity, strain, stress, etc). This approach is compared to resolved grain-scale simulations of the equivalent system. The microstructures used for the DNS are produced using Monte Carlo simulations of grain growth, and a sufficient number of realizations are computed to ensure a meaningful comparison. Finally, comments are made regarding the suitability of one-dimensional PFEM for modeling material heterogeneity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Equation of state of dense plasmas: Orbital-free molecular dynamics as the limit of quantum molecular dynamics for high-Z elements

    Energy Technology Data Exchange (ETDEWEB)

    Danel, J.-F.; Blottiau, P.; Kazandjian, L.; Piron, R.; Torrent, M. [CEA, DAM, DIF, 91297 Arpajon (France)

    2014-10-15

    The applicability of quantum molecular dynamics to the calculation of the equation of state of a dense plasma is limited at high temperature by computational cost. Orbital-free molecular dynamics, based on a semiclassical approximation and possibly on a gradient correction, is a simulation method available at high temperature. For a high-Z element such as lutetium, we examine how orbital-free molecular dynamics applied to the equation of state of a dense plasma can be regarded as the limit of quantum molecular dynamics at high temperature. For the normal mass density and twice the normal mass density, we show that the pressures calculated with the quantum approach converge monotonically towards those calculated with the orbital-free approach; we observe a faster convergence when the orbital-free approach includes the gradient correction. We propose a method to obtain an equation of state reproducing quantum molecular dynamics results up to high temperatures where this approach cannot be directly implemented. With the results already obtained for low-Z plasmas, the present study opens the way for reproducing the quantum molecular dynamics pressure for all elements up to high temperatures.

  16. Modeling the Structure and Effectiveness of Intelligence Organizations: Dynamic Information Flow Simulation

    National Research Council Canada - National Science Library

    Behrman, Robert; Carley, Kathleen

    2003-01-01

    This paper describes the Dynamic Information Flow Simulation (DIFS), an abstract model for analyzing the structure and function of intelligence support organizations and the activities of entities within...

  17. Dynamic simulation and finite element analysis of the human mandible injury protected by polyvinyl alcohol sponge

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Alireza; Navidbakhsh, Mahdi, E-mail: mnavid@iust.ac.ir; Razaghi, Reza

    2014-09-01

    There have been intensive efforts to find a suitable kinetic energy absorbing material for helmet and bulletproof vest design. Polyvinyl alcohol (PVA) sponge is currently in extensive use as scaffolding material for tissue engineering applications. PVA can also be employed instead of commonly use kinetic energy absorbing materials to increase the kinetic energy absorption capacity of current helmet and bulletproof vest materials owing to its excellent mechanical properties. In this study, a combined hexahedral finite element (FE) model is established to determine the potential protection ability of PVA sponge in controlling the level of injury for gunshot wounds to the human mandible. Digital computed tomography data for the human mandible are used to establish a three-dimensional FE model of the human mandible. The mechanism by which a gunshot injures the protected mandible by PVA sponge is dynamically simulated using the LS-DYNA code under two different shot angles. The stress distributions in different parts of the mandible and sponge after injury are also simulated. The modeling results regardless of shot angle reveal that the substantial amount of kinetic energy of the steel ball (67%) is absorbed by the PVA sponge and, consequently, injury severity of the mandible is significantly decreased. The highest energy loss (170 J) is observed for the impact at entry angle of 70°. The results suggest the application of the PVA sponge as an alternative reinforcement material in helmet and bulletproof vest design to absorb most of the impact energy and reduce the transmitted load. - Highlights: • The ability of PVA sponge to control the injury to the human mandible is computed. • A hexahedral FE model for gunshot wounds to the human mandible is established. • The kinetic energy and injury severity of the mandible is minimized by the sponge. • The highest energy loss (170 J) is observed for the impact at entry angle of 70°. • PVA suggests as an alternative

  18. Mutual information as a measure of image quality for 3D dynamic lung imaging with EIT.

    Science.gov (United States)

    Crabb, M G; Davidson, J L; Little, R; Wright, P; Morgan, A R; Miller, C A; Naish, J H; Parker, G J M; Kikinis, R; McCann, H; Lionheart, W R B

    2014-05-01

    We report on a pilot study of dynamic lung electrical impedance tomography (EIT) at the University of Manchester. Low-noise EIT data at 100 frames per second were obtained from healthy male subjects during controlled breathing, followed by magnetic resonance imaging (MRI) subsequently used for spatial validation of the EIT reconstruction. The torso surface in the MR image and electrode positions obtained using MRI fiducial markers informed the construction of a 3D finite element model extruded along the caudal-distal axis of the subject. Small changes in the boundary that occur during respiration were accounted for by incorporating the sensitivity with respect to boundary shape into a robust temporal difference reconstruction algorithm. EIT and MRI images were co-registered using the open source medical imaging software, 3D Slicer. A quantitative comparison of quality of different EIT reconstructions was achieved through calculation of the mutual information with a lung-segmented MR image. EIT reconstructions using a linear shape correction algorithm reduced boundary image artefacts, yielding better contrast of the lungs, and had 10% greater mutual information compared with a standard linear EIT reconstruction.

  19. Dynamic travel information personalized and delivered to your cell phone.

    Science.gov (United States)

    2011-01-01

    The policy of FDOT is to use the Florida Advance Traveler Information System as the primary method to disseminate timely and important travel information to the public so that the public can make informed decisions regarding their travel plans....

  20. Analysis of Dynamic Fracture Parameters in Functionally Graded Material Plates with Cracks by Graded Finite Element Method and Virtual Crack Closure Technique

    Directory of Open Access Journals (Sweden)

    Li Ming Zhou

    2016-01-01

    Full Text Available Based on the finite element software ABAQUS and graded element method, we developed a dummy node fracture element, wrote the user subroutines UMAT and UEL, and solved the energy release rate component of functionally graded material (FGM plates with cracks. An interface element tailored for the virtual crack closure technique (VCCT was applied. Fixed cracks and moving cracks under dynamic loads were simulated. The results were compared to other VCCT-based analyses. With the implementation of a crack speed function within the element, it can be easily expanded to the cases of varying crack velocities, without convergence difficulty for all cases. Neither singular element nor collapsed element was required. Therefore, due to its simplicity, the VCCT interface element is a potential tool for engineers to conduct dynamic fracture analysis in conjunction with commercial finite element analysis codes.

  1. The complexity of an investment competition dynamical model with imperfect information in a security market

    International Nuclear Information System (INIS)

    Xin Baogui; Ma Junhai; Gao Qin

    2009-01-01

    We present a nonlinear discrete dynamical model of investment competition with imperfect information for N heterogeneous oligopolists in a security market. In this paper, our focus is on a given three-dimensional model which exhibits highly rich dynamical behaviors. Based on Wen's Hopf bifurcation criterion [Wen GL. Criterion to identify Hopf bifurcations in maps of arbitrary dimension. Phys Rev E 2005;72:026201-3; Wen GL, Xu DL, Han X. On creation of Hopf bifurcations in discrete-time nonlinear systems. Chaos 2002;12(2):350-5] and Kuznetsov's normal form theory [Kuznetsov YA. Elements of applied bifurcation theory. New York: Springer-Verlag; 1998. p. 125-37], we study the model's stability, criterion and direction of Neimark-Sacker bifurcation. Moreover, we numerically simulate a complexity evolution route: fixed point, closed invariant curve, double closed invariant curves, fourfold closed invariant curves, strange attractor, period-3 closed invariant curve, period-3 2-tours, period-4 closed invariant curve, period-4 2-tours.

  2. Stiffness and Mass Matrices of FEM-Applicable Dynamic Infinite Element with Unified Shape Basis

    International Nuclear Information System (INIS)

    Kazakov, Konstantin

    2009-01-01

    This paper is devoted to the construction and evaluation of mass and stiffness matrices of elastodynamic four and five node infinite elements with unified shape functions (EIEUSF), recently proposed by the author. Such elements can be treated as a family of elastodynamic infinite elements appropriate for multi-wave soil-structure interaction problems. The common characteristic of the proposed infinite elements is the so-called unified shape function, based on finite number of wave shape functions. The idea and the construction of the unified shape basis are described in brief. This element belongs to the decay class of infinite elements. It is shown that by appropriate mapping functions the formulation of such an element can be easily transformed to a mapped form. The results obtained using the proposed infinite elements are in a good agreement with the superposed results obtained by a series of standard computational models. The continuity along the finite/infinite element line (artificial boundary) in two-dimensional substructure models is also discussed in brief. In this type of computational models such a line marks the artificial boundary between the near and the far field of the model.

  3. FISHER INFORMATION OF DYNAMIC REGIME TRANSITIONS IN ECOLOGICAL SYSTEMS

    Science.gov (United States)

    Ecosystems often exhibit transitions between multiple dynamic regimes (or steady states). As ecosystems experience perturbations of varying regularity and intensity, they may either remain within the state space neighborhood of the current regime, or ?flip? into the neighborhood ...

  4. Information Decomposition in Bivariate Systems: Theory and Application to Cardiorespiratory Dynamics

    Directory of Open Access Journals (Sweden)

    Luca Faes

    2015-01-01

    Full Text Available In the framework of information dynamics, the temporal evolution of coupled systems can be studied by decomposing the predictive information about an assigned target system into amounts quantifying the information stored inside the system and the information transferred to it. While information storage and transfer are computed through the known self-entropy (SE and transfer entropy (TE, an alternative decomposition evidences the so-called cross entropy (CE and conditional SE (cSE, quantifying the cross information and internal information of the target system, respectively. This study presents a thorough evaluation of SE, TE, CE and cSE as quantities related to the causal statistical structure of coupled dynamic processes. First, we investigate the theoretical properties of these measures, providing the conditions for their existence and assessing the meaning of the information theoretic quantity that each of them reflects. Then, we present an approach for the exact computation of information dynamics based on the linear Gaussian approximation, and exploit this approach to characterize the behavior of SE, TE, CE and cSE in benchmark systems with known dynamics. Finally, we exploit these measures to study cardiorespiratory dynamics measured from healthy subjects during head-up tilt and paced breathing protocols. Our main result is that the combined evaluation of the measures of information dynamics allows to infer the causal effects associated with the observed dynamics and to interpret the alteration of these effects with changing experimental conditions.

  5. A new approach to elastography using mutual information and finite elements

    International Nuclear Information System (INIS)

    Miga, Michael I

    2003-01-01

    Historically, increased mechanical stiffness during tissue palpation exams has been associated with assessing organ health as well as with detecting the growth of a potentially life-threatening cell mass. As such, techniques to image elasticity parameters (i.e., elastography) have recently become of great interest to scientists. In this work, a new method of elastography will be introduced within the context of mammographic imaging. The elastography method proposed represents a non-rigid iterative image registration algorithm that varies material properties within a finite element model to improve registration. More specifically, regional measures of image similarity are used within an objective function minimization framework to reconstruct elasticity images of tissue stiffness. Numerical simulations illustrate: (1) the encoding of stiffness information within the context of a regional image similarity criterion, (2) the methodology for an iterative elastographic imaging framework and (3) elasticity reconstruction simulations. The real strength in this approach is that images from any modality (e.g., magnetic resonance, computed tomography, ultrasound, etc) that have sufficient anatomically-based intensity heterogeneity and remain consistent from a pre- to a post-deformed state could be used in this paradigm

  6. Using molecular dynamics simulations and finite element method to study the mechanical properties of nanotube reinforced polyethylene and polyketone

    Science.gov (United States)

    Rouhi, S.; Alizadeh, Y.; Ansari, R.; Aryayi, M.

    2015-09-01

    Molecular dynamics simulations are used to study the mechanical behavior of single-walled carbon nanotube reinforced composites. Polyethylene and polyketone are selected as the polymer matrices. The effects of nanotube atomic structure and diameter on the mechanical properties of polymer matrix nanocomposites are investigated. It is shown that although adding nanotube to the polymer matrix raises the longitudinal elastic modulus significantly, the transverse tensile and shear moduli do not experience important change. As the previous finite element models could not be used for polymer matrices with the atom types other than carbon, molecular dynamics simulations are used to propose a finite element model which can be used for any polymer matrices. It is shown that this model can predict Young’s modulus with an acceptable accuracy.

  7. Drop-on-Demand Inkjet Printhead Performance Enhancement by Dynamic Lumped Element Modeling for Printable Electronics Fabrication

    Directory of Open Access Journals (Sweden)

    Maowei He

    2014-01-01

    Full Text Available The major challenge in printable electronics fabrication is the print resolution and accuracy. In this paper, the dynamic lumped element model (DLEM is proposed to directly simulate an inkjet-printed nanosilver droplet formation process and used for predictively controlling jetting characteristics. The static lumped element model (LEM previously developed by the authors is extended to dynamic model with time-varying equivalent circuits to characterize nonlinear behaviors of piezoelectric printhead. The model is then used to investigate how performance of the piezoelectric ceramic actuator influences jetting characteristics of nanosilver ink. Finally, the proposed DLEM is applied to predict the printing quality using nanosilver ink. Experimental results show that, compared to other analytic models, the proposed DLEM has a simpler structure with the sufficient simulation and prediction accuracy.

  8. The Dynamics and Architecture of an Informing System

    Directory of Open Access Journals (Sweden)

    Andrew S Targowski

    2015-10-01

    Full Text Available The purpose of this investigation is to define the architecture of computer informing systems. The methodology is based on an interdisciplinary, big-picture view of the cognition units which provide the foundation for informing systems. Among the findings are the following: informing systems should be designed for rigor and relevance with respect to the cognitive units (information, integrating its purpose and goal to achieve its expected utility; informing systems should also be designed for reasoning richness, informing modes, informing quality, and predicting informing biases and filters. Practical implications: A well-designed informing system should provide as an output a message and resonant change by reflecting information that triggers the client’s behavior. Social implication: The quest for the development of informing systems is not supported by Academia in practice; it is only supported by a close circle of early leaders of such systemic applications who sought to enhance the existing information systems which very often process data but do not inform as they should. Originality: This investigation, by providing an interdisciplinary and graphic modeling of informing channels and systems, indicates the vitality of these systems and their potential to create better decision-making in order to solve problems and sustain organizations and civilization.

  9. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils

    International Nuclear Information System (INIS)

    Pueyo, M.; Mateu, J.; Rigol, A.; Vidal, M.; Lopez-Sanchez, J.F.; Rauret, G.

    2008-01-01

    The modified BCR three-step sequential extraction procedure was used to examine the temporal dynamics of trace elements in soils contaminated by an accidental spill from an opencast mine in south-west Spain. Soils were mainly contaminated with pyritic sludge and acidic wastewater, whereas some soils were affected only by acidic wastewater. The distributions obtained for both some major (Ca, Fe and Mn) and trace elements (As, Cd, Cu, Pb and Zn) in the sludge and soil samples taken at different times after the accident, 1-3 months and 21 months, were compared. Sequential extractions were useful in identifying different sources of contamination, and in obtaining additional information on the solubility of secondary minerals formed by pyrite oxidation. Thus, the effectiveness of the BCR procedure has proved to be a useful tool for predicting short- and long-term mobility of trace elements, even in complex environmental scenarios. - The modified BCR three-step sequential extraction procedure has proved a useful prediction tool for short- and long-term mobility of trace elements in contaminated soils

  10. Novel dynamic Bayesian networks for facial action element recognition and understanding

    Science.gov (United States)

    Zhao, Wei; Park, Jeong-Seon; Choi, Dong-You; Lee, Sang-Woong

    2011-12-01

    In daily life, language is an important tool of communication between people. Besides language, facial action can also provide a great amount of information. Therefore, facial action recognition has become a popular research topic in the field of human-computer interaction (HCI). However, facial action recognition is quite a challenging task due to its complexity. In a literal sense, there are thousands of facial muscular movements, many of which have very subtle differences. Moreover, muscular movements always occur simultaneously when the pose is changed. To address this problem, we first build a fully automatic facial points detection system based on a local Gabor filter bank and principal component analysis. Then, novel dynamic Bayesian networks are proposed to perform facial action recognition using the junction tree algorithm over a limited number of feature points. In order to evaluate the proposed method, we have used the Korean face database for model training. For testing, we used the CUbiC FacePix, facial expressions and emotion database, Japanese female facial expression database, and our own database. Our experimental results clearly demonstrate the feasibility of the proposed approach.

  11. Global monitoring of dynamic information systems a case study in the international supply chain

    NARCIS (Netherlands)

    Pruksasri, P.; Berg, J. van den; Hofman, W.J.

    2014-01-01

    Global information systems are becoming more complex and dynamic everyday: huge amounts of data and messages through those systems show dynamically changing traffic patterns. Because of this, diagnosing when sub-systems are not working properly is difficult. System failures or errors in information

  12. Numerical investigations on flow dynamics of prismatic granular materials using the discrete element method

    Science.gov (United States)

    Hancock, W.; Weatherley, D.; Wruck, B.; Chitombo, G. P.

    2012-04-01

    The flow dynamics of granular materials is of broad interest in both the geosciences (e.g. landslides, fault zone evolution, and brecchia pipe formation) and many engineering disciplines (e.g chemical engineering, food sciences, pharmaceuticals and materials science). At the interface between natural and human-induced granular media flow, current underground mass-mining methods are trending towards the induced failure and subsequent gravitational flow of large volumes of broken rock, a method known as cave mining. Cave mining relies upon the undercutting of a large ore body, inducement of fragmentation of the rock and subsequent extraction of ore from below, via hopper-like outlets. Design of such mines currently relies upon a simplified kinematic theory of granular flow in hoppers, known as the ellipsoid theory of mass movement. This theory assumes that the zone of moving material grows as an ellipsoid above the outlet of the silo. The boundary of the movement zone is a shear band and internal to the movement zone, the granular material is assumed to have a uniformly high bulk porosity compared with surrounding stagnant regions. There is however, increasing anecdotal evidence and field measurements suggesting this theory fails to capture the full complexity of granular material flow within cave mines. Given the practical challenges obstructing direct measurement of movement both in laboratory experiments and in-situ, the Discrete Element Method (DEM [1]) is a popular alternative to investigate granular media flow. Small-scale DEM studies (c.f. [3] and references therein) have confirmed that movement within DEM silo flow models matches that predicted by ellipsoid theory, at least for mono-disperse granular material freely outflowing at a constant rate. A major draw-back of these small-scale DEM studies is that the initial bulk porosity of the simulated granular material is significantly higher than that of broken, prismatic rock. In this investigation, more

  13. Multi-Agent Information Classification Using Dynamic Acquaintance Lists.

    Science.gov (United States)

    Mukhopadhyay, Snehasis; Peng, Shengquan; Raje, Rajeev; Palakal, Mathew; Mostafa, Javed

    2003-01-01

    Discussion of automated information services focuses on information classification and collaborative agents, i.e. intelligent computer programs. Highlights include multi-agent systems; distributed artificial intelligence; thesauri; document representation and classification; agent modeling; acquaintances, or remote agents discovered through…

  14. Efficient finite element modelling for the investigation of the dynamic behaviour of a structure with bolted joints

    Science.gov (United States)

    Omar, R.; Rani, M. N. Abdul; Yunus, M. A.; Mirza, W. I. I. Wan Iskandar; Zin, M. S. Mohd

    2018-04-01

    A simple structure with bolted joints consists of the structural components, bolts and nuts. There are several methods to model the structures with bolted joints, however there is no reliable, efficient and economic modelling methods that can accurately predict its dynamics behaviour. Explained in this paper is an investigation that was conducted to obtain an appropriate modelling method for bolted joints. This was carried out by evaluating four different finite element (FE) models of the assembled plates and bolts namely the solid plates-bolts model, plates without bolt model, hybrid plates-bolts model and simplified plates-bolts model. FE modal analysis was conducted for all four initial FE models of the bolted joints. Results of the FE modal analysis were compared with the experimental modal analysis (EMA) results. EMA was performed to extract the natural frequencies and mode shapes of the test physical structure with bolted joints. Evaluation was made by comparing the number of nodes, number of elements, elapsed computer processing unit (CPU) time, and the total percentage of errors of each initial FE model when compared with EMA result. The evaluation showed that the simplified plates-bolts model could most accurately predict the dynamic behaviour of the structure with bolted joints. This study proved that the reliable, efficient and economic modelling of bolted joints, mainly the representation of the bolting, has played a crucial element in ensuring the accuracy of the dynamic behaviour prediction.

  15. EDITORIAL: Quantum control theory for coherence and information dynamics Quantum control theory for coherence and information dynamics

    Science.gov (United States)

    Viola, Lorenza; Tannor, David

    2011-08-01

    Precisely characterizing and controlling the dynamics of realistic open quantum systems has emerged in recent years as a key challenge across contemporary quantum sciences and technologies, with implications ranging from physics, chemistry and applied mathematics to quantum information processing (QIP) and quantum engineering. Quantum control theory aims to provide both a general dynamical-system framework and a constructive toolbox to meet this challenge. The purpose of this special issue of Journal of Physics B: Atomic, Molecular and Optical Physics is to present a state-of-the-art account of recent advances and current trends in the field, as reflected in two international meetings that were held on the subject over the last summer and which motivated in part the compilation of this volume—the Topical Group: Frontiers in Open Quantum Systems and Quantum Control Theory, held at the Institute for Theoretical Atomic, Molecular and Optical Physics (ITAMP) in Cambridge, Massachusetts (USA), from 1-14 August 2010, and the Safed Workshop on Quantum Decoherence and Thermodynamics Control, held in Safed (Israel), from 22-27 August 2010. Initial developments in quantum control theory date back to (at least) the early 1980s, and have been largely inspired by the well-established mathematical framework for classical dynamical systems. As the above-mentioned meetings made clear, and as the burgeoning body of literature on the subject testifies, quantum control has grown since then well beyond its original boundaries, and has by now evolved into a highly cross-disciplinary field which, while still fast-moving, is also entering a new phase of maturity, sophistication, and integration. Two trends deserve special attention: on the one hand, a growing emphasis on control tasks and methodologies that are specifically motivated by QIP, in addition and in parallel to applications in more traditional areas where quantum coherence is nevertheless vital (such as, for instance

  16. Multi-Dimensional Analysis of Dynamic Human Information Interaction

    Science.gov (United States)

    Park, Minsoo

    2013-01-01

    Introduction: This study aims to understand the interactions of perception, effort, emotion, time and performance during the performance of multiple information tasks using Web information technologies. Method: Twenty volunteers from a university participated in this study. Questionnaires were used to obtain general background information and…

  17. Application of Fisher Information to Complex Dynamic Systems (Tucson)

    Science.gov (United States)

    Fisher information was developed by the statistician Ronald Fisher as a measure of the information obtainable from data being used to fit a related parameter. Starting from the work of Ronald Fisher1 and B. Roy Frieden2, we have developed Fisher information as a measure of order ...

  18. Application of Fisher Information to Complex Dynamic Systems

    Science.gov (United States)

    Fisher information was developed by the statistician Ronald Fisher as a measure of the information obtainable from data being used to fit a related parameter. Starting from the work of Ronald Fisher1 and B. Roy Frieden2, we have developed Fisher information as a measure of order ...

  19. Dynamic SPR monitoring of yeast nuclear protein binding to a cis-regulatory element

    International Nuclear Information System (INIS)

    Mao, Grace; Brody, James P.

    2007-01-01

    Gene expression is controlled by protein complexes binding to short specific sequences of DNA, called cis-regulatory elements. Expression of most eukaryotic genes is controlled by dozens of these elements. Comprehensive identification and monitoring of these elements is a major goal of genomics. In pursuit of this goal, we are developing a surface plasmon resonance (SPR) based assay to identify and monitor cis-regulatory elements. To test whether we could reliably monitor protein binding to a regulatory element, we immobilized a 16 bp region of Saccharomyces cerevisiae chromosome 5 onto a gold surface. This 16 bp region of DNA is known to bind several proteins and thought to control expression of the gene RNR1, which varies through the cell cycle. We synchronized yeast cell cultures, and then sampled these cultures at a regular interval. These samples were processed to purify nuclear lysate, which was then exposed to the sensor. We found that nuclear protein binds this particular element of DNA at a significantly higher rate (as compared to unsynchronized cells) during G1 phase. Other time points show levels of DNA-nuclear protein binding similar to the unsynchronized control. We also measured the apparent association complex of the binding to be 0.014 s -1 . We conclude that (1) SPR-based assays can monitor DNA-nuclear protein binding and that (2) for this particular cis-regulatory element, maximum DNA-nuclear protein binding occurs during G1 phase

  20. A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid

    International Nuclear Information System (INIS)

    Taylor, M A; Edwards, J; Thomas, S; Nair, R

    2007-01-01

    We present results from a conservative formulation of the spectral element method applied to global atmospheric circulation modeling. Exact local conservation of both mass and energy is obtained via a new compatible formulation of the spectral element method. Compatibility insures that the key integral property of the divergence and gradient operators required to show conservation also hold in discrete form. The spectral element method is used on a cubed-sphere grid to discretize the horizontal directions on the sphere. It can be coupled to any conservative vertical/radial discretization. The accuracy and conservation properties of the method are illustrated using a baroclinic instability test case

  1. Comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element

    International Nuclear Information System (INIS)

    Wernsman, Bernard

    1997-01-01

    A comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element (TFE) is made. The single-cell TFE used in this study is the prototype for the 40 kW e space nuclear power system that is similar to the 6 kW e TOPAZ-II. The steady-state I-V measurements influence the emitter temperature due to electron cooling. Therefore, to eliminate the steady-state I-V measurement influence on the TFE and provide a better understanding of the behavior of the thermionic energy converter and TFE characteristics, dynamic I-V measurements are made. The dynamic I-V measurements are made at various input power levels, cesium pressures, collector temperatures, and steady-state current levels. From these measurements, it is shown that the dynamic I-V's do not change the TFE characteristics at a given operating point. Also, the evaluation of the collector work function from the dynamic I-V measurements shows that the collector optimization is not due to a minimum in the collector work function but due to an emission optimization. Since the dynamic I-V measurements do not influence the TFE characteristics, it is believed that these measurements can be done at a system level to understand the influence of TFE placement in the reactor as a function of the core thermal distribution

  2. The Dynamic Response of an Euler-Bernoulli Beam on an Elastic Foundation by Finite Element Analysis using the Exact Stiffness Matrix

    International Nuclear Information System (INIS)

    Kim, Jeong Soo; Kim, Moon Kyum

    2012-01-01

    In this study, finite element analysis of beam on elastic foundation, which received great attention of researchers due to its wide applications in engineering, is performed for estimating dynamic responses of shallow foundation using exact stiffness matrix. First, element stiffness matrix based on the closed solution of beam on elastic foundation is derived. Then, we performed static finite element analysis included exact stiffness matrix numerically, comparing results from the analysis with some exact analysis solutions well known for verification. Finally, dynamic finite element analysis is performed for a shallow foundation structure under rectangular pulse loading using trapezoidal method. The dynamic analysis results exist in the reasonable range comparing solution of single degree of freedom problem under a similar condition. The results show that finite element analysis using exact stiffness matrix is evaluated as a good tool of estimating the dynamic response of structures on elastic foundation.

  3. Dynamics of trade between the formal sector and informal traders

    OpenAIRE

    Cyril Nhlanhla Ngiba; David Dickinson; Louise Whittaker; Claire Beswick

    2011-01-01

    The informal sector in South Africa is a significant, but not well understood phenomenon. One important question relates to the nature of the relationship between the formal and informal sector. This article uses Porter’s five forces model to interrogate the linkages between informal fruit and vegetable traders in the Natalspruit Market (Ekurhuleni) and their formal suppliers, primarily the Johannesburg Fresh Produce Market. While the threat of new products is low, the street traders’ positio...

  4. Distributed Learning and Information Dynamics In Networked Autonomous Systems

    Science.gov (United States)

    2015-11-20

    problem, while balancing uncertainty, sensor information, and information about other agents. We used three variants of a warehouse task to show that a...Communication- Efficient Sparse Learning”, ICML 2014 workshop on New Learning Frameworks and Models for Big Data , December 2014. (to appear) 44. A. Bellet... data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this

  5. A (Dis)continuous finite element model for generalized 2D vorticity dynamics

    NARCIS (Netherlands)

    Bernsen, E.; Bokhove, Onno; van der Vegt, Jacobus J.W.

    2005-01-01

    A mixed continuous and discontinuous Galerkin finite element discretization is constructed for a generalized vorticity streamfunction formulation in two spatial dimensions. This formulation consists of a hyperbolic (potential) vorticity equation and a linear elliptic equation for a (transport)

  6. Finite element model updating in structural dynamics using design sensitivity and optimisation

    OpenAIRE

    Calvi, Adriano

    1998-01-01

    Model updating is an important issue in engineering. In fact a well-correlated model provides for accurate evaluation of the structure loads and responses. The main objectives of the study were to exploit available optimisation programs to create an error localisation and updating procedure of nite element models that minimises the "error" between experimental and analytical modal data, addressing in particular the updating of large scale nite element models with se...

  7. Finite element model updating of natural fibre reinforced composite structure in structural dynamics

    Directory of Open Access Journals (Sweden)

    Sani M.S.M.

    2016-01-01

    Full Text Available Model updating is a process of making adjustment of certain parameters of finite element model in order to reduce discrepancy between analytical predictions of finite element (FE and experimental results. Finite element model updating is considered as an important field of study as practical application of finite element method often shows discrepancy to the test result. The aim of this research is to perform model updating procedure on a composite structure as well as trying improving the presumed geometrical and material properties of tested composite structure in finite element prediction. The composite structure concerned in this study is a plate of reinforced kenaf fiber with epoxy. Modal properties (natural frequency, mode shapes, and damping ratio of the kenaf fiber structure will be determined using both experimental modal analysis (EMA and finite element analysis (FEA. In EMA, modal testing will be carried out using impact hammer test while normal mode analysis using FEA will be carried out using MSC. Nastran/Patran software. Correlation of the data will be carried out before optimizing the data from FEA. Several parameters will be considered and selected for the model updating procedure.

  8. Opinion Dynamics with Heterogeneous Interactions and Information Assimilation

    Science.gov (United States)

    Mir Tabatabaei, Seydeh Anahita

    2013-01-01

    In any modern society, individuals interact to form opinions on various topics, including economic, political, and social aspects. Opinions evolve as the result of the continuous exchange of information among individuals and of the assimilation of information distributed by media. The impact of individuals' opinions on each other forms a network,…

  9. Team confidence, motivated information processing, and dynamic group decision making

    NARCIS (Netherlands)

    de Dreu, C.K.W.; Beersma, B.

    2010-01-01

    According to the Motivated Information Processing in Groups (MIP-G) model, groups should perform ambiguous (non-ambiguous) tasks better when they have high (low) epistemic motivation and concomitant tendencies to engage in systematic (heuristic) information processing and exchange. The authors

  10. Why we simulate negated information: a dynamic pragmatic account.

    Science.gov (United States)

    Tian, Ye; Breheny, Richard; Ferguson, Heather J

    2010-12-01

    A well-established finding in the simulation literature is that participants simulate the positive argument of negation soon after reading a negative sentence, prior to simulating a scene consistent with the negated sentence (Kaup, Ludtke, & Zwaan, 2006; Kaup, Yaxley, Madden, Zwaan, & Ludtke, 2007). One interpretation of this finding is that negation requires two steps to process: first represent what is being negated then "reject" that in favour of a representation of a negation-consistent state of affairs (Kaup et al., 2007). In this paper we argue that this finding with negative sentences could be a by-product of the dynamic way that language is interpreted relative to a common ground and not the way that negation is represented. We present a study based on Kaup et al. (2007) that tests the competing accounts. Our results suggest that some negative sentences are not processed in two steps, but provide support for the alternative, dynamic account.

  11. Mixed multiscale finite element methods using approximate global information based on partial upscaling

    KAUST Repository

    Jiang, Lijian; Efendiev, Yalchin; Mishev, IIya

    2009-01-01

    The use of limited global information in multiscale simulations is needed when there is no scale separation. Previous approaches entail fine-scale simulations in the computation of the global information. The computation of the global information

  12. Information Flow Through Stages of Complex Engineering Design Projects: A Dynamic Network Analysis Approach

    DEFF Research Database (Denmark)

    Parraguez, Pedro; Eppinger, Steven D.; Maier, Anja

    2015-01-01

    The pattern of information flow through the network of interdependent design activities is thought to be an important determinant of engineering design process results. A previously unexplored aspect of such patterns relates to the temporal dynamics of information transfer between activities...... design process and thus support theory-building toward the evolution of information flows through systems engineering stages. Implications include guidance on how to analyze and predict information flows as well as better planning of information flows in engineering design projects according...

  13. Dynamics of information diffusion and its applications on complex networks

    Science.gov (United States)

    Zhang, Zi-Ke; Liu, Chuang; Zhan, Xiu-Xiu; Lu, Xin; Zhang, Chu-Xu; Zhang, Yi-Cheng

    2016-09-01

    The ongoing rapid expansion of the Word Wide Web (WWW) greatly increases the information of effective transmission from heterogeneous individuals to various systems. Extensive research for information diffusion is introduced by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and empirical studies, unification and comparison of different theories and approaches are lacking, which impedes further advances. In this article, we review recent developments in information diffusion and discuss the major challenges. We compare and evaluate available models and algorithms to respectively investigate their physical roles and optimization designs. Potential impacts and future directions are discussed. We emphasize that information diffusion has great scientific depth and combines diverse research fields which makes it interesting for physicists as well as interdisciplinary researchers.

  14. The Changing Dynamics of Military Advantage in the Information Age

    National Research Council Canada - National Science Library

    Mulcahey, Sean

    2004-01-01

    .... national security, particularly from a new form of global insurgency. The continued development and proliferation of information technology impacts the very nature of conflict and military competitive advantage. Can the U.S...

  15. Boundary element method in dynamic interaction of structures with multilayers media

    International Nuclear Information System (INIS)

    Mihalache, N.; Poterasu, V.F.

    1993-01-01

    The paper presents the problems of dynamic interaction between the multilayers media and structure by means of B.E.M., using Green's functions. The structure considered by the authors as a particular problem concerns a reinforced concrete shear wall and soil foundation of three layers having different thickness and mechanical characteristics. The authors will present comparatively the stresses and the displacements in static and dynamic regime interaction response of the structure. Theoretical part of the paper presents: Green's functions for the multilayers media in dynamic regime, stiffness matrices, stresses and displacements in the multilayers media exprimed by means of the Green's functions induced by the shear and horizontal forces, computer program, consideration for dynamic, structure-foundation-multilayers soil foundation interaction. (author)

  16. Dynamic Decision Making under Uncertainty and Partial Information

    Science.gov (United States)

    2017-01-30

    Air Force of the future. For successful military operations , the future requirements of the Air Force will include information fusion at a much...challenges in information superiority, logistics, and planning for the Air Force of the future. For successful military operations , the future requirements...24, 23]). We further established the weak duality, strong duality and complementary slackness results in a parallel way as those in the dual

  17. Developing common information elements for renewable energy systems: summary and proceedings of the SERI/AID workshop

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, J.H.; Neuendorffer, J.W.

    1980-06-01

    This report describes the activities, conclusions, and recommendations of the Workshop on Evaluation Systems for Renewable Energy Systems sponsored by the Agency for International Development and SERI, held 20-22 February 1980 in Golden, Colorado. The primary objectives of the workshop was to explore whether it was possible to establish common information elements that would describe the operation and impact of renewable energy projects in developing countries. The workshop provided a forum for development program managers to discuss the information they would like to receive about renewable energy projects and to determine whether common data could be agreed on to facilitate information exchange among development organizations. Such information could be shared among institutions and used to make informed judyments on the economic, technical, and social feasibility of the technologies. Because developing countries and foreign assistance agencies will be financing an increasing number of renewable energy projects, these organizations need information on the field experience of renewable energy technologies. The report describes the substance of the workshop discussions and includes the papers presented on information systems and technology evaluation and provides lists of important information elements generated by both the plenary sessions and the small working groups.

  18. Information Security: A Scientometric Study of the Profile, Structure, and Dynamics of an Emerging Scholarly Specialty

    Science.gov (United States)

    Olijnyk, Nicholas Victor

    2014-01-01

    The central aim of the current research is to explore and describe the profile, dynamics, and structure of the information security specialty. This study's objectives are guided by four research questions: 1. What are the salient features of information security as a specialty? 2. How has the information security specialty emerged and evolved from…

  19. The General Laws of Chemical Elements Composition Dynamics in the Biosphere

    Science.gov (United States)

    Korzh, Vyacheslav D.

    2013-04-01

    The key point of investigation of the specificity of the biosphere elemental composition formation is determination of patterns of redistribution of elemental average concentrations among various phases, like solid - liquid ( the lithosphere - the hydrosphere), which occurs as a result of a global continuous processing of inert matter by living substances. Our task here is to investigate this process in the system "lithosphere - hydrosphere" in view of the integrated involvement of living material in it. This process is most active in biogeochemical barriers, i.e. in places of "the life condensation" and runs under a nonlinear regularity that has been unknown before. It is established that this process results in a general relative increase in concentrations of chemical elements in the solid phase in proportion as their prevalence in the environment is reduced. This process running in various natural systems has practically the same parameter of nonlinearity (v) approximately equal to 0.7. For proto-lithosphere -"living material" - soil v = 0.75. For river - "living material" - ocean v = 0.67. For the contemporary factual awareness level these estimations of nonlinearity indices are practically negligible. Hence, it is for the first time that the existence of a universal constant of nonlinearity of elemental composition evolution in the biosphere has been proved and its quantitative evaluation has been made. REFERENCES 1. Korzh V.D. 1974. Some general laws governing the turnover of substance within the ocean-atmosphere-continent-ocean cycle. // Journal de Recherches Atmospheriques. Vol. 8. P. 653-660. 2. Korzh V.D. 2008. The general laws in the formation of the elemental composition of the Hydrosphere and Biosphere.// J. Ecologica, Vol. XV, P. 13-21. 3. Korzh V.D. 2012. Determination of general laws of elemental composition in Hydrosphere // Water: chemistry & ecology, Journal of water science and its practical application. # 1, P.56-62.

  20. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON THE DELIVERY OF ATMOPHILE ELEMENTS DURING TERRESTRIAL PLANET FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Soko [School of Engineering, Physics, and Mathematics, University of Dundee, DD1 4HN, Scotland (United Kingdom); Brasser, Ramon; Ida, Shigeru, E-mail: s.matsumura@dundee.ac.uk [Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550 (Japan)

    2016-02-10

    Recent observations started revealing the compositions of protostellar disks and planets beyond the solar system. In this paper, we explore how the compositions of terrestrial planets are affected by the dynamical evolution of giant planets. We estimate the initial compositions of the building blocks of these rocky planets by using a simple condensation model, and numerically study the compositions of planets formed in a few different formation models of the solar system. We find that the abundances of refractory and moderately volatile elements are nearly independent of formation models, and that all the models could reproduce the abundances of these elements of the Earth. The abundances of atmophile elements, on the other hand, depend on the scattering rate of icy planetesimals into the inner disk, as well as the mixing rate of the inner planetesimal disk. For the classical formation model, neither of these mechanisms are efficient and the accretion of atmophile elements during the final assembly of terrestrial planets appears to be difficult. For the Grand Tack model, both of these mechanisms are efficient, which leads to a relatively uniform accretion of atmophile elements in the inner disk. It is also possible to have a “hybrid” scenario where the mixing is not very efficient but the scattering is efficient. The abundances of atmophile elements in this case increase with orbital radii. Such a scenario may occur in some of the extrasolar planetary systems, which are not accompanied by giant planets or those without strong perturbations from giants. We also confirm that the Grand Tack scenario leads to the distribution of asteroid analogues where rocky planetesimals tend to exist interior to icy ones, and show that their overall compositions are consistent with S-type and C-type chondrites, respectively.

  1. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON THE DELIVERY OF ATMOPHILE ELEMENTS DURING TERRESTRIAL PLANET FORMATION

    International Nuclear Information System (INIS)

    Matsumura, Soko; Brasser, Ramon; Ida, Shigeru

    2016-01-01

    Recent observations started revealing the compositions of protostellar disks and planets beyond the solar system. In this paper, we explore how the compositions of terrestrial planets are affected by the dynamical evolution of giant planets. We estimate the initial compositions of the building blocks of these rocky planets by using a simple condensation model, and numerically study the compositions of planets formed in a few different formation models of the solar system. We find that the abundances of refractory and moderately volatile elements are nearly independent of formation models, and that all the models could reproduce the abundances of these elements of the Earth. The abundances of atmophile elements, on the other hand, depend on the scattering rate of icy planetesimals into the inner disk, as well as the mixing rate of the inner planetesimal disk. For the classical formation model, neither of these mechanisms are efficient and the accretion of atmophile elements during the final assembly of terrestrial planets appears to be difficult. For the Grand Tack model, both of these mechanisms are efficient, which leads to a relatively uniform accretion of atmophile elements in the inner disk. It is also possible to have a “hybrid” scenario where the mixing is not very efficient but the scattering is efficient. The abundances of atmophile elements in this case increase with orbital radii. Such a scenario may occur in some of the extrasolar planetary systems, which are not accompanied by giant planets or those without strong perturbations from giants. We also confirm that the Grand Tack scenario leads to the distribution of asteroid analogues where rocky planetesimals tend to exist interior to icy ones, and show that their overall compositions are consistent with S-type and C-type chondrites, respectively

  2. What about getting physiological information into dynamic gamma camera studies

    International Nuclear Information System (INIS)

    Kiuru, A.; Nickles, R. J.; Holden, J. E.; Polcyn, R. E.

    1976-01-01

    A general technique has been developed for the multiplexing of time dependent analog signals into the individual frames of a gamma camera dynamic function study. A pulse train, frequency-modulated by the physiological signal, is capacitively coupled to the preamplifier servicing anyone of the outer phototubes of the camera head. These negative tail pulses imitate photoevents occuring at a point outside of the camera field of view, chosen to occupy a data cell in an unused corner of the computer-stored square image. By defining a region of interest around this cell, the resulting time-activity curve displays the physiological variable in temporal synchrony with the radiotracer distribution. (author)

  3. How serious do we need to be? Improving Information Literacy skills through gaming and interactive elements

    NARCIS (Netherlands)

    Meegen, van A.E.; Limpens, I.A.M.

    Nowadays technology makes information accessible for everyone everywhere. The art of selecting the best information in a short period of time and use it correctly is called information literacy. Information literacy training provides students with the tools necessary to efficiently find and

  4. Dynamics of trade between the formal sector and informal traders

    Directory of Open Access Journals (Sweden)

    Cyril Nhlanhla Ngiba

    2011-04-01

    Full Text Available The informal sector in South Africa is a significant, but not well understood phenomenon. One important question relates to the nature of the relationship between the formal and informal sector. This article uses Porter’s five forces model to interrogate the linkages between informal fruit and vegetable traders in the Natalspruit Market (Ekurhuleni and their formal suppliers, primarily the Johannesburg Fresh Produce Market. While the threat of new products is low, the street traders’ position is weakened by the threat of new entrants, consumer bargaining power and lack of cooperation among street traders. In relation to supplier power, we conclude that while this varies according to a number of factors, the formal sector is dominant over informal fruit and vegetable sellers in this market. This finding rests primarily on the observation that, because of their fragmentation, the informal traders’ collective buying power is not being used in the same way as large formal retailers of fruit and vegetables to obtain better terms of trade with the formal economy supplier.

  5. Importance of initial stress for abdominal aortic aneurysm wall motion: Dynamic MRI validated finite element analysis

    NARCIS (Netherlands)

    Merkx, M.A.G.; Veer, van 't M.; Speelman, L.; Breeuwer, M.; Buth, J.; Vosse, van de F.N.

    2009-01-01

    Currently the transverse diameter is the primary decision criterion to assess rupture risk in patients with an abdominal aortic aneurysm (AAA). To obtain a measure for more patient-specific risk assessment, aneurysm wall stress, calculated using finite element analysis (FEA), has been evaluated in

  6. Drought changes the dynamics of trace element accumulation in a Mediterranean Quercus ilex forest

    Energy Technology Data Exchange (ETDEWEB)

    Sardans, J. [Unitat d' Ecofisiologia CSIC-CEAB-CREAF, CREAF - Centre de Recerca Ecologica d' Aplicacions Forestals, Edifici C, Universitat Autonoma Barcelona, 08193 Bellaterra, Barcelona (Spain)]. E-mail: j.sardans@creaf.uab.cat; Penuelas, J. [Unitat d' Ecofisiologia CSIC-CEAB-CREAF, CREAF, Centre de Recerca Ecologica d' Aplicacions Forestals, Edifici C, Universitat Autonoma Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2007-06-15

    We conducted a field drought manipulation experiment in an evergreen oak Mediterranean forest from 1999 to 2005 to investigate the effects of the increased drought predicted for the next decades on the accumulation of trace elements that can be toxic for animals, in stand biomass, litter and soil. Drought increased concentrations of As, Cd, Ni, Pb and Cr in roots of the dominant tree species, Quercus ilex, and leaf Cd concentrations in Arbutus unedo and of Phillyrea latifolia codominant shrubs. The increased concentration of As and Cd can aggravate the toxic capacity of those two elements, which are already next or within the levels that have been shown to be toxic for herbivores. The study also showed a great reduction in Pb biomass content (100-135 g ha{sup -1}) during the studied period (1999-2005) showing the effectiveness of the law that prohibited leaded fuel after 2001. The results also indicate that drought increases the exportation of some trace elements to continental waters. - Drought increased biomass concentrations of As and Cd and favors exportation of some trace elements to continental waters in a Mediterranean forest.

  7. Drought changes the dynamics of trace element accumulation in a Mediterranean Quercus ilex forest

    International Nuclear Information System (INIS)

    Sardans, J.; Penuelas, J.

    2007-01-01

    We conducted a field drought manipulation experiment in an evergreen oak Mediterranean forest from 1999 to 2005 to investigate the effects of the increased drought predicted for the next decades on the accumulation of trace elements that can be toxic for animals, in stand biomass, litter and soil. Drought increased concentrations of As, Cd, Ni, Pb and Cr in roots of the dominant tree species, Quercus ilex, and leaf Cd concentrations in Arbutus unedo and of Phillyrea latifolia codominant shrubs. The increased concentration of As and Cd can aggravate the toxic capacity of those two elements, which are already next or within the levels that have been shown to be toxic for herbivores. The study also showed a great reduction in Pb biomass content (100-135 g ha -1 ) during the studied period (1999-2005) showing the effectiveness of the law that prohibited leaded fuel after 2001. The results also indicate that drought increases the exportation of some trace elements to continental waters. - Drought increased biomass concentrations of As and Cd and favors exportation of some trace elements to continental waters in a Mediterranean forest

  8. Improvement of implicit finite element code performance in deep drawing simulations by dynamics contributions

    NARCIS (Netherlands)

    Meinders, Vincent T.; van den Boogaard, Antonius H.; Huetink, Han

    2003-01-01

    To intensify the use of implicit finite element codes for solving large scale problems, the computation time of these codes has to be decreased drastically. A method is developed which decreases the computational time of implicit codes by factors. The method is based on introducing inertia effects

  9. Simulations of singularity dynamics in liquid crystal flows: A C finite element approach

    International Nuclear Information System (INIS)

    Lin Ping; Liu Chun

    2006-01-01

    In this paper, we present a C finite element method for a 2a hydrodynamic liquid crystal model which is simpler than existing C 1 element methods and mixed element formulation. The energy law is formally justified and the energy decay is used as a validation tool for our numerical computation. A splitting method combined with only a few fixed point iteration for the penalty term of the director field is applied to reduce the size of the stiffness matrix and to keep the stiffness matrix time-independent. The latter avoids solving a linear system at every time step and largely reduces the computational time, especially when direct linear system solvers are used. Our approach is verified by comparing its computational results with those obtained by C 1 elements and by mixed formulation. Through numerical experiments of a few other splittings and explicit-implicit strategies, we recommend a fast and reliable algorithm for this model. A number of examples are computed to demonstrate the algorithm

  10. Developments of the indirect method for measuring the high frequency dynamic stiffness of resilient elements

    NARCIS (Netherlands)

    Thompson, D.J.; Vliet, van W.J.; Verheij, J.W.

    1998-01-01

    The complex stiffness of resilient elements is an important parameter required in order to model vibration isolation for many applications. Measurement methods are being standardized which allow such a stiffness to be measured as a function of excitation frequency for known loading conditions. This

  11. A combined multibody and finite element approach for dynamic interaction analysis of high-speed train and railway structure including post-derailment behavior during an earthquake

    International Nuclear Information System (INIS)

    Tanabe, M; Wakui, H; Sogabe, M; Matsumoto, N; Tanabe, Y

    2010-01-01

    A combined multibody and finite element approach is given to solve the dynamic interaction of a Shinkansen train (high-speed train in Japan) and the railway structure including post-derailment during an earthquake effectively. The motion of the train is expressed in multibody dynamics. Efficient mechanical models to express interactions between wheel and track structure including post-derailment are given. Rail and track elements expressed in multibody dynamics and FEM are given to solve contact problems between wheel and long railway components effectively. The motion of a railway structure is modeled with various finite elements and rail and track elements. The computer program has been developed for the dynamic interaction analysis of a Shinkansen train and railway structure including post derailment during an earthquake. Numerical examples are demonstrated.

  12. A Dynamic Simulation Model of the Management Accounting Information Systems (MAIS)

    Science.gov (United States)

    Konstantopoulos, Nikolaos; Bekiaris, Michail G.; Zounta, Stella

    2007-12-01

    The aim of this paper is to examine the factors which determine the problems and the advantages on the design of management accounting information systems (MAIS). A simulation is carried out with a dynamic model of the MAIS design.

  13. SDN-enabled dynamic WDM networks to address routing information inaccuracy

    CSIR Research Space (South Africa)

    Ravhuanzwo, Lusani

    2016-11-01

    Full Text Available Large dynamic wavelength-division multiplexed (WDM) networks based on the distributed control mechanism are susceptible to routing information inaccuracies. Factors such as non-negligible propagation delays, infrequent network state updates...

  14. Information Propagation in Complex Networks : Structures and Dynamics

    NARCIS (Netherlands)

    Märtens, M.

    2018-01-01

    This thesis is a contribution to a deeper understanding of how information propagates and what this process entails. At its very core is the concept of the network: a collection of nodes and links, which describes the structure of the systems under investigation. The network is a mathematical model

  15. A Coupled Helicopter Rotor/Fuselage Dynamics Model Using Finite Element Multi-body

    Directory of Open Access Journals (Sweden)

    Cheng Qi-you

    2016-01-01

    Full Text Available To develop a coupled rotor/flexible fuselage model for vibration reduction studies, the equation of coupled rotor-fuselage is set up based on the theory of multi-body dynamics, and the dynamic analysis model is established with the software MSC.ADMAS and MSC.NASTRAN. The frequencies and vibration acceleration responses of the system are calculated with the model of coupled rotor-fuselage, and the results are compared with those of uncoupled modeling method. Analysis results showed that compared with uncoupled model, the dynamic characteristic obtained by the model of coupled rotor-fuselage are some different. The intrinsic frequency of rotor is increased with the increase of rotational velocities. The results also show that the flying speed has obvious influence on the vibration acceleration responses of the fuselage. The vibration acceleration response in the vertical direction is much higher at the low speed and high speed flight conditions.

  16. Time-history simulation of civil architecture earthquake disaster relief- based on the three-dimensional dynamic finite element method

    Directory of Open Access Journals (Sweden)

    Liu Bing

    2014-10-01

    Full Text Available Earthquake action is the main external factor which influences long-term safe operation of civil construction, especially of the high-rise building. Applying time-history method to simulate earthquake response process of civil construction foundation surrounding rock is an effective method for the anti-knock study of civil buildings. Therefore, this paper develops a civil building earthquake disaster three-dimensional dynamic finite element numerical simulation system. The system adopts the explicit central difference method. Strengthening characteristics of materials under high strain rate and damage characteristics of surrounding rock under the action of cyclic loading are considered. Then, dynamic constitutive model of rock mass suitable for civil building aseismic analysis is put forward. At the same time, through the earthquake disaster of time-history simulation of Shenzhen Children’s Palace, reliability and practicability of system program is verified in the analysis of practical engineering problems.

  17. A Novel Method for Dynamic Multicriteria Decision Making with Hybrid Evaluation Information

    OpenAIRE

    Shihu Liu; Tauqir Ahmed Moughal

    2014-01-01

    How to select the most desirable pattern(s) is often a crucial step for decision making problem. By taking uncertainty as well as dynamic of database into consideration, in this paper, we construct a dynamic multicriteria decision making procedure, where the evaluation information of criteria is expressed by real number, intuitionistic fuzzy number, and interval-valued intuitionistic fuzzy number. During the process of algorithm construction, the evaluation information at all time episodes is...

  18. A Dynamic and Adaptive Selection Radar Tracking Method Based on Information Entropy

    Directory of Open Access Journals (Sweden)

    Ge Jianjun

    2017-12-01

    Full Text Available Nowadays, the battlefield environment has become much more complex and variable. This paper presents a quantitative method and lower bound for the amount of target information acquired from multiple radar observations to adaptively and dynamically organize the detection of battlefield resources based on the principle of information entropy. Furthermore, for minimizing the given information entropy’s lower bound for target measurement at every moment, a method to dynamically and adaptively select radars with a high amount of information for target tracking is proposed. The simulation results indicate that the proposed method has higher tracking accuracy than that of tracking without adaptive radar selection based on entropy.

  19. Modeling of light dynamic cone penetration test - Panda 3 ® in granular material by using 3D Discrete element method

    Science.gov (United States)

    Tran, Quoc Anh; Chevalier, Bastien; Benz, Miguel; Breul, Pierre; Gourvès, Roland

    2017-06-01

    The recent technological developments made on the light dynamic penetration test Panda 3 ® provide a dynamic load-penetration curve σp - sp for each impact. This curve is influenced by the mechanical and physical properties of the investigated granular media. In order to analyze and exploit the load-penetration curve, a numerical model of penetration test using 3D Discrete Element Method is proposed for reproducing tests in dynamic conditions in granular media. All parameters of impact used in this model have at first been calibrated by respecting mechanical and geometrical properties of the hammer and the rod. There is a good agreement between experimental results and the ones obtained from simulations in 2D or 3D. After creating a sample, we will simulate the Panda 3 ®. It is possible to measure directly the dynamic load-penetration curve occurring at the tip for each impact. Using the force and acceleration measured in the top part of the rod, it is possible to separate the incident and reflected waves and then calculate the tip's load-penetration curve. The load-penetration curve obtained is qualitatively similar with that obtained by experimental tests. In addition, the frequency analysis of the measured signals present also a good compliance with that measured in reality when the tip resistance is qualitatively similar.

  20. Conservation and retrieval of information - Elements of a strategy to inform future societies about nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M [ed.; National Inst. of Radiation Protection, Stockholm (Sweden)

    1996-12-01

    Two main strategies exist for long-term information transfer, one which links information through successive transfers of archived material and other forms of knowledge in society, and one - such as marking the site with a monument - relying upon a direct link from the present to the distant future. Digital methods are not recommended for long-term storage, but digital processing may be a valuable tool to structure information summaries, and in the creation of better long-lasting records. Advances in archive management should also be pursued to widen the choice of information carriers of high durability. In the Nordic countries, during the first few thousand years, and perhaps up to the next period of glaciation, monuments at a repository site may be used to warn the public of the presence of dangerous waste. But messages from such markers may pose interpretation problems as we have today for messages left by earlier societies such as rune inscriptions. Since the national borders may change in the time scale relevant for nuclear waste, the creation of an international archive for all radioactive wastes would represent an improvement as regards conservation and retrieval of information. (EG).

  1. Conservation and retrieval of information - Elements of a strategy to inform future societies about nuclear waste repositories

    International Nuclear Information System (INIS)

    Jensen, M.

    1996-01-01

    Two main strategies exist for long-term information transfer, one which links information through successive transfers of archived material and other forms of knowledge in society, and one - such as marking the site with a monument - relying upon a direct link from the present to the distant future. Digital methods are not recommended for long-term storage, but digital processing may be a valuable tool to structure information summaries, and in the creation of better long-lasting records. Advances in archive management should also be pursued to widen the choice of information carriers of high durability. In the Nordic countries, during the first few thousand years, and perhaps up to the next period of glaciation, monuments at a repository site may be used to warn the public of the presence of dangerous waste. But messages from such markers may pose interpretation problems as we have today for messages left by earlier societies such as rune inscriptions. Since the national borders may change in the time scale relevant for nuclear waste, the creation of an international archive for all radioactive wastes would represent an improvement as regards conservation and retrieval of information. (EG)

  2. INFORMATION TECHNOLOGY AND ROMANIAN HIGHER EDUCATION - EVIDENCE ON LINKED DYNAMIC

    Directory of Open Access Journals (Sweden)

    Bogdan Nichifor

    2014-07-01

    Full Text Available The link between education, in general, and information technologies is one that does not necessarily have to be demonstrated. But it is interesting to see the specific link that is established between these two components of modern society. In recent years, part-time education forms tend to occupy an increasingly important position in the Romanian higher education from the perspective of the total number of students opting for distance learning or traditional part-time learning. This development occurred amid expansion of information technology - more and more households have Internet access and frequency of its use is increasing from year to year – in the context in which forms of part – time learning require the use of this means of information and communication. On this background more and more people over 25 years become interested in further developing their studies, including employed persons opting for further studies, increasing the share of students over 25 years in total students and the share of employed population over 25 years with higher education in total in respective age group.

  3. Investigation of biomechanical behavior of lumbar vertebral segments with dynamic stabilization device using finite element approach

    Science.gov (United States)

    Deoghare, Ashish B.; Kashyap, Siddharth; Padole, Pramod M.

    2013-03-01

    Degenerative disc disease is a major source of lower back pain and significantly alters the biomechanics of the lumbar spine. Dynamic stabilization device is a remedial technique which uses flexible materials to stabilize the affected lumbar region while preserving the natural anatomy of the spine. The main objective of this research work is to investigate the stiffness variation of dynamic stabilization device under various loading conditions under compression, axial rotation and flexion. Three dimensional model of the two segment lumbar spine is developed using computed tomography (CT) scan images. The lumbar structure developed is analyzed in ANSYS workbench. Two types of dynamic stabilization are considered: one with stabilizing device as pedicle instrumentation and second with stabilization device inserted around the inter-vertebral disc. Analysis suggests that proper positioning of the dynamic stabilization device is of paramount significance prior to the surgery. Inserting the device in the posterior region indicates the adverse effects as it shows increase in the deformation of the inter-vertebral disc. Analysis executed by positioning stabilizing device around the inter-vertebral disc yields better result for various stiffness values under compression and other loadings. [Figure not available: see fulltext.

  4. ENRICHMENT OF r-PROCESS ELEMENTS IN DWARF SPHEROIDAL GALAXIES IN CHEMO-DYNAMICAL EVOLUTION MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Yutaka; Kajino, Toshitaka [Department of Astronomy, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ishimaru, Yuhri [Department of Material Science,International Christian University, 3-10-2 Osawa, Mitaka, Tokyo 181-8585 (Japan); Saitoh, Takayuki R. [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Fujii, Michiko S.; Hidaka, Jun, E-mail: yutaka.hirai@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa Mitaka, Tokyo 181-8588 (Japan)

    2015-11-20

    The rapid neutron-capture process (r-process) is a major process for the synthesis of elements heavier than iron-peak elements, but the astrophysical site(s) of the r-process has not yet been identified. Neutron star mergers (NSMs) are suggested to be a major r-process site according to nucleosynthesis studies. Previous chemical evolution studies, however, required unlikely short merger times of NSMs to reproduce the observed large star-to-star scatters in the abundance ratios of r-process elements to iron: the [Eu/Fe] of extremely metal-poor stars in the Milky Way (MW) halo. This problem can be solved by considering chemical evolution in dwarf spheroidal galaxies (dSphs), which would be building blocks of the MW and have lower star formation efficiencies than the MW halo. We demonstrate the enrichment of r-process elements in dSphs by NSMs using an N-body/smoothed particle hydrodynamics code. Our high-resolution model reproduces the observed [Eu/Fe] due to NSMs with a merger time of 100 Myr when the effect of metal mixing is taken into account. This is because metallicity is not correlated with time ∼300 Myr from the start of the simulation due to the low star formation efficiency in dSphs. We also confirm that this model is consistent with observed properties of dSphs such as radial profiles and metallicity distribution. The merger time and the Galactic rate of NSMs are suggested to be ≲300 Myr and ∼10{sup −4} year{sup −1}, respectively, which are consistent with the values suggested by population synthesis and nucleosynthesis studies. This study supports the argument that NSMs are the major astrophysical site of the r-process.

  5. Computing the dynamics of biomembranes by combining conservative level set and adaptive finite element methods

    OpenAIRE

    Laadhari , Aymen; Saramito , Pierre; Misbah , Chaouqi

    2014-01-01

    International audience; The numerical simulation of the deformation of vesicle membranes under simple shear external fluid flow is considered in this paper. A new saddle-point approach is proposed for the imposition of the fluid incompressibility and the membrane inextensibility constraints, through Lagrange multipliers defined in the fluid and on the membrane respectively. Using a level set formulation, the problem is approximated by mixed finite elements combined with an automatic adaptive ...

  6. Effects of ground fires on element dynamics in mountainous coniferous forest in Germany

    Directory of Open Access Journals (Sweden)

    Kerstin Näthe

    2012-09-01

    Full Text Available Disturbances such as fires are a natural phenomenon of forested ecosystems, having a different impact on (micro- climate (e.g. emissions of gases and aerosols, ecology (destruction of flora and fauna and nutrient cycles especially in the soils. Forest fires alter the spatial distribution (forest floor vs. mineral soil, binding forms (organic vs. inorganic and availability (water solubility of organic substances and nutrients. The effects of fires on chemical, biological and physical soil properties in forested ecosystems have been intensively studied in the last decades, especially in the Mediterranean area and North America. However, differences in fire intensity, forest type (species, age and location (climate, geological substrate, nutrient status lead to divergent results. Furthermore, only a few case studies focused on the effects of ground fires in hilly landscapes, on the vertical and lateral water-driven fluxes of elements (C, N, nutrients, as well as on the input of fire-released terrestrial nutrients into aquatic ecosystems. Thus, this study will evaluate the effects of low-severity fires on nutrient cycling in a coniferous forest in a hilly landscape connected to an aquatic system. At three spatially independent sites three paired plots (control and manipulated were chosen at a forested site in Thuringia, Germany. All plots are similar in the vegetation cover and pedogenetic properties.In relation to control sites, this study will examine the effects of low-severity fires on:a the mobilization of organic carbon and nutrients (released from ash material and the forest floor via leachate and erosion paths,b the binding form (inorganic/organic of elements and organic compounds, and c the particle size fraction (DOM/POM of elements and organic compounds.The goal of this study is a better understanding of the impact of forest fires on element cycling and release in a hilly landscape connected to an aquatic system, supposedly driven by

  7. Towards an Entropy Stable Spectral Element Framework for Computational Fluid Dynamics

    KAUST Repository

    Carpenter, Mark H.

    2016-01-04

    Nonlinearly stable finite element methods of arbitrary type and order, are currently unavailable for discretizations of the compressible Navier-Stokes equations. Summation-by-parts (SBP) entropy stability analysis provides a means of constructing nonlinearly stable discrete operators of arbitrary order, but is currently limited to simple element types. Herein, recent progress is reported, on developing entropy-stable (SS) discontinuous spectral collocation formulations for hexahedral elements. Two complementary efforts are discussed. The first effort generalizes previous SS spectral collocation work to extend the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to tensor product Legendre-Gauss (LG) points. The LG and LGL point formulations are compared on a series of test problems. Both the LGL and LG operators are of comparable efficiency and robustness, as is demonstrated using test problems for which conventional FEM techniques suffer instability. The second effort extends previous work on entropy stability to include p-refinement at nonconforming interfaces. A generalization of existing entropy stability theory is required to accommodate the nuances of fully multidimensional SBP operators. The entropy stability of the compressible Euler equations on nonconforming interfaces is demonstrated using the newly developed LG operators and multidimensional interface interpolation operators. Preliminary studies suggest design order accuracy at nonconforming interfaces.

  8. A benchmark study of 2D and 3D finite element calculations simulating dynamic pulse buckling tests of cylindrical shells under axial impact

    International Nuclear Information System (INIS)

    Hoffman, E.L.; Ammerman, D.J.

    1993-01-01

    A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several finite element simulations of the event. The purpose of the study is to compare the performance of the various analysis codes and element types with respect to a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry

  9. Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Caticha, Ariel; Bartolomeo, Daniel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States); Reginatto, Marcel [Physicalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany)

    2015-01-13

    Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrödinger equation follows naturally from information geometry.

  10. Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics

    International Nuclear Information System (INIS)

    Caticha, Ariel; Bartolomeo, Daniel; Reginatto, Marcel

    2015-01-01

    Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrödinger equation follows naturally from information geometry

  11. Dynamically tracking anxious individuals' affective response to valenced information.

    Science.gov (United States)

    Fua, Karl C; Teachman, Bethany A

    2017-09-01

    Past research has shown that an individual's feelings at any given moment reflect currently experienced stimuli as well as internal representations of similar past experiences. However, anxious individuals' affective reactions to streams of interrelated valenced information (vs. reactions to static stimuli that are arguably less ecologically valid) are rarely tracked. The present study provided a first examination of the newly developed Tracking Affect Ratings Over Time (TAROT) task to continuously assess anxious individuals' affective reactions to streams of information that systematically change valence. Undergraduate participants (N = 141) completed the TAROT task in which they listened to narratives containing positive, negative, and neutral physically- or socially-relevant events, and indicated how positive or negative they felt about the information they heard as each narrative unfolded. The present study provided preliminary evidence for the validity and reliability of the task. Within scenarios, participants higher (vs. lower) in anxiety showed many expected negative biases, reporting more negative mean ratings and overall summary ratings, changing their pattern of responding more quickly to negative events, and responding more negatively to neutral events. Furthermore, individuals higher (vs. lower) in anxiety tended to report more negative minimums during and after positive events, and less positive maximums after negative events. Together, findings indicate that positive events were less impactful for anxious individuals, whereas negative experiences had a particularly lasting impact on future affective responses. The TAROT task is able to efficiently capture a number of different cognitive biases, and may help clarify the mechanisms that underlie anxious individuals' biased negative processing. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. The Hunting of the Snark: Organizing and Synchronizing of Informational Elements for Homeland Defense and Civil Support

    Science.gov (United States)

    2009-06-01

    Organizing and synchronizing informational elements is filled with tension, which is metaphorically illustrated in the Victorian children’s story, The...or distance divided by time. In a similar fashion , dominance can be correlated to the control of a domain. Superiority equates to the degree of...how PA should act in this fashion . The literature recommends that leadership bring PA into the operational fold. The literature consistently

  13. The effect of external dynamic loads on the lifetime of rolling element bearings: accurate measurement of the bearing behaviour

    International Nuclear Information System (INIS)

    Jacobs, W; Boonen, R; Sas, P; Moens, D

    2012-01-01

    Accurate prediction of the lifetime of rolling element bearings is a crucial step towards a reliable design of many rotating machines. Recent research emphasizes an important influence of external dynamic loads on the lifetime of bearings. However, most lifetime calculations of bearings are based on the classical ISO 281 standard, neglecting this influence. For bearings subjected to highly varying loads, this leads to inaccurate estimations of the lifetime, and therefore excessive safety factors during the design and unexpected failures during operation. This paper presents a novel test rig, developed to analyse the behaviour of rolling element bearings subjected to highly varying loads. Since bearings are very precise machine components, their motion can only be measured in an accurately controlled environment. Otherwise, noise from other components and external influences such as temperature variations will dominate the measurements. The test rig is optimised to perform accurate measurements of the bearing behaviour. Also, the test bearing is fitted in a modular structure, which guarantees precise mounting and allows testing different types and sizes of bearings. Finally, a fully controlled multi-axial static and dynamic load is imposed on the bearing, while its behaviour is monitored with capacitive proximity probes.

  14. Evaluation of Internal Friction versus Plastic Deformations Effects in Impact Dynamics Problems of Robotic Elements

    Directory of Open Access Journals (Sweden)

    Stelian Alaci

    2014-06-01

    Full Text Available The dynamical behavior study of robotic systems is obtained using multibody dynamics method. The joints met in robots are modeled in different manners. In a robotic joint the energy is lost via hysteretic work and plastic deformation work. The paper presents a comparative study for the results obtained by integration of the equations defining two limit models which describe the impact between two robot parts, modeled by the centric collision between two spheres with loss of energy. The motion equations characteristic for the two models are integrated and for a tangible situation, are presented comparatively, for different values of the coefficient of restitution, the time dependencies of impacting force between the two bodies as well as the hysteresis loops. Finally, an evaluation of the lost work during impact, for the whole range of coefficients of restitution, is completed, together with characteristic parameters of collision: approaching period, complete contact time, maximum approaching and plastic imprint.

  15. Dynamic analysis of aircraft impact using the linear elastic finite element codes FINEL, SAP and STARDYNE

    International Nuclear Information System (INIS)

    Lundsager, P.; Krenk, S.

    1975-08-01

    The static and dynamic response of a cylindrical/ spherical containment to a Boeing 720 impact is computed using 3 different linear elastic computer codes: FINEL, SAP and STARDYNE. Stress and displacement fields are shown together with time histories for a point in the impact zone. The main conclusions from this study are: - In this case the maximum dynamic load factors for stress and displacements were close to 1, but a static analysis alone is not fully sufficient. - More realistic load time histories should be considered. - The main effects seem to be local. The present study does not indicate general collapse from elastic stresses alone. - Further study of material properties at high rates is needed. (author)

  16. Spin dynamics in micron-sized magnetic elements using time-resolved XMCD-PEEM

    International Nuclear Information System (INIS)

    Fukumoto, K.; Kinoshita, T.

    2011-01-01

    Ultrafast dynamics of magnetic spin structures in ultrasmall ferromagnets is now a prominent topic concerning the next generation of memory devices. In particular, the unique dynamics of vortex spin structures in disk-shaped magnets has attracted much attention. To understand the mechanism and to explore even more unique features, we constructed a time-resolved X-ray magnetic circular dichroism (XMCD) with a photoelectron emission microscopy (PEEM) system onto the soft X-ray beamline BL25SU in SPring-8. We observed oscillatory motions of vortex cores after magnetic field pulses as reported in other articles. The time evolution of spin structures the fast magnetic field pulse was also successfully observed. We found that for disks with a larger radius, displacement of the vortex core was not linear with the field amplitude, and there was a delay of the core motion. At the same time, deformation of the vortex structures was observed. (author)

  17. Numerical simulation of microdroplet dynamics in microfluidics using finite element and level set methods

    CSIR Research Space (South Africa)

    Mbanjwa, MB

    2012-10-01

    Full Text Available the dispersed phase (droplets). Miniaturised flow systems are predominately dominated by surface forces due to the Scaling Law (Figure 1). Figure 1: Surface forces dominate over volume forces in microsystems (image credit: DreamWorks[3]) Table 1: Important...?1065. 3. Antz Movie. 1998. DreamWorks Animation SKG Inc. 4. Bruus, H. 2008. Theoretical microfluidics. Oxford University Press, Oxford. K-10032 [www.kashan.co.za] Alongside experimental work, numerical tools, such as computational fl uid dynamics...

  18. A Finite Element Method for Free-Surface Flows of Incompressible Fluids in Three Dimensions, Part II: Dynamic Wetting Lines

    Energy Technology Data Exchange (ETDEWEB)

    Baer, T.A.; Cairncross, R.A.; Rao, R.R.; Sackinger, P.A.; Schunk, P.R.

    1999-01-29

    To date, few researchers have solved three-dimensional free-surface problems with dynamic wetting lines. This paper extends the free-surface finite element method described in a companion paper [Cairncross, R.A., P.R. Schunk, T.A. Baer, P.A. Sackinger, R.R. Rao, "A finite element method for free surface flows of incompressible fluid in three dimensions, Part I: Boundary-Fitted mesh motion.", to be published (1998)] to handle dynamic wetting. A generalization of the technique used in two dimensional modeling to circumvent double-valued velocities at the wetting line, the so-called kinematic paradox, is presented for a wetting line in three dimensions. This approach requires the fluid velocity normal to the contact line to be zero, the fluid velocity tangent to the contact line to be equal to the tangential component of web velocity, and the fluid velocity into the web to be zero. In addition, slip is allowed in a narrow strip along the substrate surface near the dynamic contact line. For realistic wetting-line motion, a contact angle which varies with wetting speed is required because contact lines in three dimensions typically advance or recede a different rates depending upon location and/or have both advancing and receding portions. The theory is applied to capillary rise of static fluid in a corner, the initial motion of a Newtonian droplet down an inclined plane, and extrusion of a Newtonian fluid from a nozzle onto a moving substrate. The extrusion results are compared to experimental visualization. Subject Categories

  19. Tagline: Information Extraction for Semi-Structured Text Elements in Medical Progress Notes

    Science.gov (United States)

    Finch, Dezon Kile

    2012-01-01

    Text analysis has become an important research activity in the Department of Veterans Affairs (VA). Statistical text mining and natural language processing have been shown to be very effective for extracting useful information from medical documents. However, neither of these techniques is effective at extracting the information stored in…

  20. 78 FR 76289 - Request for Information To Gather Technical Expertise Pertaining to Data Elements, Metrics, Data...

    Science.gov (United States)

    2013-12-17

    ... information. To assist us in making a determination on your request, we encourage you to identify any specific... consumer decision-making. Organizations that have developed, or are developing, ratings systems for.... The Department is interested in a PIRS that takes into account information important to the Federal...

  1. Research on Human Dynamics of Information Release of WeChat Users

    OpenAIRE

    Zhang, Juliang; Zhang, Shengtai; Duo, Fan; Wang, Feifei

    2017-01-01

    The information release behavior of WeChat users is influenced by many factors, and studying the rules of the behavior of users in WeChat can provide theoretical help for the dynamic research of mobile social network users. By crawling WeChat moments information of nine users within 5 years, we used the human behavioral dynamics system to analyze users' behavior. The results show that the information distribution behavior of WeChat users is consistent with the power-law distribution for a cer...

  2. Three-dimensional finite element nonlinear dynamic analysis of pile groups for lateral transient and seismic excitations

    International Nuclear Information System (INIS)

    Maheshwari, B.K.; Truman, K.Z.; El Naggar, M.H.; Gould, P.L.

    2004-01-01

    The effects of material nonlinearity of soil and separation at the soil-pile interface on the dynamic behaviour of a single pile and pile groups are investigated. An advanced plasticity-based soil model, hierarchical single surface (HiSS), is incorporated in the finite element formulation. To simulate radiation effects, proper boundary conditions are used. The model and algorithm are verified with analytical results that are available for elastic and elastoplastic soil models. Analyses are performed for seismic excitation and for the load applied on the pile cap. For seismic analysis, both harmonic and transient excitations are considered. For loading on the pile cap, dynamic stiffness of the soil-pile system is derived and the effect of nonlinearity is investigated. The effects of spacing between piles are investigated, and it was found that the effect of soil nonlinearity on the seismic response is very much dependent on the frequency of excitation. For the loading on a pile cap, the nonlinearity increases the response for most of the frequencies of excitation while decreasing the dynamic stiffness of the soil-pile system. (author)

  3. Dynamic structural analysis for assemblies of fuel elements in the core of a PWR

    International Nuclear Information System (INIS)

    Silva Macedo, L.V. da.

    1991-01-01

    It is presented a procedure for the dynamic structural analysis of a PWR core. Impacts between fuel assemblies may occur because of the existence of gaps between them. Thus, the problem is non-linear and an spectral analysis is avoided. It is necessary a time-history response analysis. The Modal Superposition Method with the Duhamel integral was used in order to solve the problem. It is presented an algorithm of solution and also results obtained with the STYCA computer program, developed in the basis of what was proposed here. (author)

  4. Information-theoretic analysis of the dynamics of an executable biological model.

    Directory of Open Access Journals (Sweden)

    Avital Sadot

    Full Text Available To facilitate analysis and understanding of biological systems, large-scale data are often integrated into models using a variety of mathematical and computational approaches. Such models describe the dynamics of the biological system and can be used to study the changes in the state of the system over time. For many model classes, such as discrete or continuous dynamical systems, there exist appropriate frameworks and tools for analyzing system dynamics. However, the heterogeneous information that encodes and bridges molecular and cellular dynamics, inherent to fine-grained molecular simulation models, presents significant challenges to the study of system dynamics. In this paper, we present an algorithmic information theory based approach for the analysis and interpretation of the dynamics of such executable models of biological systems. We apply a normalized compression distance (NCD analysis to the state representations of a model that simulates the immune decision making and immune cell behavior. We show that this analysis successfully captures the essential information in the dynamics of the system, which results from a variety of events including proliferation, differentiation, or perturbations such as gene knock-outs. We demonstrate that this approach can be used for the analysis of executable models, regardless of the modeling framework, and for making experimentally quantifiable predictions.

  5. Entropy Information of Cardiorespiratory Dynamics in Neonates during Sleep

    Directory of Open Access Journals (Sweden)

    Maristella Lucchini

    2017-05-01

    Full Text Available Sleep is a central activity in human adults and characterizes most of the newborn infant life. During sleep, autonomic control acts to modulate heart rate variability (HRV and respiration. Mechanisms underlying cardiorespiratory interactions in different sleep states have been studied but are not yet fully understood. Signal processing approaches have focused on cardiorespiratory analysis to elucidate this co-regulation. This manuscript proposes to analyze heart rate (HR, respiratory variability and their interrelationship in newborn infants to characterize cardiorespiratory interactions in different sleep states (active vs. quiet. We are searching for indices that could detect regulation alteration or malfunction, potentially leading to infant distress. We have analyzed inter-beat (RR interval series and respiration in a population of 151 newborns, and followed up with 33 at 1 month of age. RR interval series were obtained by recognizing peaks of the QRS complex in the electrocardiogram (ECG, corresponding to the ventricles depolarization. Univariate time domain, frequency domain and entropy measures were applied. In addition, Transfer Entropy was considered as a bivariate approach able to quantify the bidirectional information flow from one signal (respiration to another (RR series. Results confirm the validity of the proposed approach. Overall, HRV is higher in active sleep, while high frequency (HF power characterizes more quiet sleep. Entropy analysis provides higher indices for SampEn and Quadratic Sample entropy (QSE in quiet sleep. Transfer Entropy values were higher in quiet sleep and point to a major influence of respiration on the RR series. At 1 month of age, time domain parameters show an increase in HR and a decrease in variability. No entropy differences were found across ages. The parameters employed in this study help to quantify the potential for infants to adapt their cardiorespiratory responses as they mature. Thus, they

  6. Entropy Information of Cardiorespiratory Dynamics in Neonates during Sleep.

    Science.gov (United States)

    Lucchini, Maristella; Pini, Nicolò; Fifer, William P; Burtchen, Nina; Signorini, Maria G

    2017-05-01

    Sleep is a central activity in human adults and characterizes most of the newborn infant life. During sleep, autonomic control acts to modulate heart rate variability (HRV) and respiration. Mechanisms underlying cardiorespiratory interactions in different sleep states have been studied but are not yet fully understood. Signal processing approaches have focused on cardiorespiratory analysis to elucidate this co-regulation. This manuscript proposes to analyze heart rate (HR), respiratory variability and their interrelationship in newborn infants to characterize cardiorespiratory interactions in different sleep states (active vs. quiet). We are searching for indices that could detect regulation alteration or malfunction, potentially leading to infant distress. We have analyzed inter-beat (RR) interval series and respiration in a population of 151 newborns, and followed up with 33 at 1 month of age. RR interval series were obtained by recognizing peaks of the QRS complex in the electrocardiogram (ECG), corresponding to the ventricles depolarization. Univariate time domain, frequency domain and entropy measures were applied. In addition, Transfer Entropy was considered as a bivariate approach able to quantify the bidirectional information flow from one signal (respiration) to another (RR series). Results confirm the validity of the proposed approach. Overall, HRV is higher in active sleep, while high frequency (HF) power characterizes more quiet sleep. Entropy analysis provides higher indices for SampEn and Quadratic Sample entropy (QSE) in quiet sleep. Transfer Entropy values were higher in quiet sleep and point to a major influence of respiration on the RR series. At 1 month of age, time domain parameters show an increase in HR and a decrease in variability. No entropy differences were found across ages. The parameters employed in this study help to quantify the potential for infants to adapt their cardiorespiratory responses as they mature. Thus, they could be useful

  7. Laser ablation inductively coupled plasma dynamic reaction cell mass spectrometry for the multi-element analysis of polymers

    Science.gov (United States)

    Resano, M.; García-Ruiz, E.; Vanhaecke, F.

    2005-11-01

    In this work, the potential of laser ablation-inductively coupled plasma-mass spectrometry for the fast analysis of polymers has been explored. Different real-life samples (polyethylene shopping bags, an acrylonitrile butadiene styrene material and various plastic bricks) as well as several reference materials (VDA 001 to 004, Cd in polyethylene) have been selected for the study. Two polyethylene reference materials (ERM-EC 680 and 681), for which a reference or indicative value for the most relevant metals is available, have proved their suitability as standards for calibration. Special attention has been paid to the difficulties expected for the determination of Cr at the μg g - 1 level in this kind of materials, due to the interference of ArC + ions on the most abundant isotopes of Cr. The use of ammonia as a reaction gas in a dynamic reaction cell is shown to alleviate this problem, resulting in a limit of detection of 0.15 μg g - 1 for this element, while limiting only modestly the possibilities of the technique for simultaneous multi-element analysis. In this regard, As is the analyte most seriously affected by the use of ammonia, and its determination has to be carried out in vented mode, at the expense of measuring time. In all cases studied, accurate results could be obtained for elements ranging in content from the sub-μg g - 1 level to tens of thousands of μg g - 1 . However, the use of an element of known concentration as internal standard may be needed for materials with a matrix significantly different from that of the standard (polyethylene in this work). Precision ranged between 5% and 10% RSD for elements found at the 10 μg g - 1 level or higher, while this value could deteriorate to 20% for analytes found at the sub-μg g - 1 level. Overall, the technique evaluated presents many advantages for the fast and accurate multi-element analysis of these materials, avoiding laborious digestion procedures and minimizing the risk of analyte losses due

  8. Computational statics and dynamics an introduction based on the finite element method

    CERN Document Server

    Öchsner, Andreas

    2016-01-01

    This book introduces readers to modern computational mechanics based on the finite element method. It helps students succeed in mechanics courses by showing them how to apply the fundamental knowledge they gained in the first years of their engineering education to more advanced topics. In order to deepen readers’ understanding of the derived equations and theories, each chapter also includes supplementary problems. These problems start with fundamental knowledge questions on the theory presented in the chapter, followed by calculation problems. In total over 80 such calculation problems are provided, along with brief solutions for each. This book is especially designed to meet the needs of Australian students, reviewing the mathematics covered in their first two years at university. The 13-week course comprises three hours of lectures and two hours of tutorials per week.

  9. New approach to description of fusion-fission dynamics in super-heavy element formation

    International Nuclear Information System (INIS)

    Zagrebaev, V.I.

    2002-01-01

    A new mechanism of the fusion-fission process for a heavy nuclear system is proposed, which takes place in the (A 1 , A 2 ) space, where A 1 and A 2 are two nuclei, surrounded by a certain number of shared nucleons ΔA. The nuclei A 1 and A 2 gradually lose (or acquire) their individualities with increasing (or decreasing) a number of collectivized nucleons ΔA. The driving potential in the (A 1 , A 2 ) space is derived, which allows the calculation of both the probability of the compound nucleus formation and the mass distribution of fission and quasi-fission fragments in heavy ion fusion reactions. The cross sections of super-heavy element formation in the 'hot' and 'cold' fusion reactions have been calculated up to Z CN =118. (author)

  10. The first phase of transformation of an information system project: an essential element of success ?

    OpenAIRE

    Dorota LESZCZYŃSKA; Laurence SAGLIETTO

    2014-01-01

    If perception is a concept which is necessarily intuitive in the analysis of transformations in information systems, it is not to be taken into account at its fair value in existing theoretical models. These models are mainly interested in

  11. Intelligence and Information-Sharing Elements of S.4 and H.R. 1

    National Research Council Canada - National Science Library

    Masse, Todd

    2007-01-01

    Title I of S.4 and Title VII of H.R. 1 include corresponding measures related to enhancing information and intelligence sharing, both horizontally within the Federal Government and vertically between the Federal Government and state...

  12. Adoption of Dynamic Product Information: An Empirical Investigation of Supporting Purchase Decisions on Product Bundles

    OpenAIRE

    Maass, Wolfgang; Kowatsch, Tobias

    2008-01-01

    Up until now, brick-and-mortar stores provide consumers with static product information in the form of printed product labels. This kind of product information does neither adapt to consumer needs nor facilitates new business models (e.g. consumer experience or ad hoc product bundling by products itself). By contrast, dynamic product information provided by mobile recommendation agents (MRA) may leverage these limitations. In this article we formulate a Simplified Consumer Choice (SCC) model ...

  13. In(-formations. The Meaning of Paratextual Elements in Debussy's Syrinx

    Directory of Open Access Journals (Sweden)

    Marcel Cobussen

    2005-12-01

    Full Text Available According to Gérard Genette, paratextual elements can be defined as that what comes against, beside, and in addition to the text (a score for example 'itself'. In that sense, they are always subordinate to 'their' text. The paratext is all material other than, though very closely connected to, the 'actual' text: the cover, the author's name, the title, preface, illustrations, notes, etc. It is therefore located in the space between inside and outside, the space between still belonging and not yet belonging to the text. This essay first of all investigates how paratextual elements (especially breath marks are necessary to provide a musical text (in this case Debussy's Syrinx for solo flute with a (temporary meaning and how they direct possible interpretations. Secondly, this essay also suggests that within the musical text 'itself', paratext is always already present (for example in ornamentation. However, in Syrinx, the borders between text and paratext are remarkably porous, creating a noteworthy questioning and shifting of hierarchies.

  14. INFORMATION, KEY ELEMENT OF ACCOUNTING AND AUDIT IN THE KNOWLEDGE SOCIETY

    Directory of Open Access Journals (Sweden)

    NELUTA MITEA

    2011-04-01

    Full Text Available In a knowledge society, the advantage of nations will not result from their natural resources, nor to the cheap labor, but from their ability to valorize the intellectual potential and to use efficiently the information. The knowledge based economy represents a new step in the development of human civilization that promises us a better future. The knowledge transfer between people and generations in order to facilitate human society’s evolution is the basic function of information science. This paper aims to examine how, in Romania, accounting and audit use and create information in current conditions of economic development. The purpose of this study consists in offering perspectives of improving the information quality. An information is high quality when, by its form and content, it corresponds integrally to all the needs, the exigencies and expectations of its user, without sacrificing the reality. A number of errors made by the accounting profession have been identified along this paper. These errors led to the decrease of information’s credibility. But the study proposes some changes in order to restore the image of this profession: the changes are sustained by the advantages of Knowledge Economy and Information Society. The research method consists in studying a rich background material, including reference items, such as works of applied and fundamental research. The originality of this work is given by the identification of knowledge society’s challenge which could be used as a lever of revival for accounting and audit in Romania.

  15. A system dynamics evaluation model: implementation of health information exchange for public health reporting.

    Science.gov (United States)

    Merrill, Jacqueline A; Deegan, Michael; Wilson, Rosalind V; Kaushal, Rainu; Fredericks, Kimberly

    2013-06-01

    To evaluate the complex dynamics involved in implementing electronic health information exchange (HIE) for public health reporting at a state health department, and to identify policy implications to inform similar implementations. Qualitative data were collected over 8 months from seven experts at New York State Department of Health who implemented web services and protocols for querying, receipt, and validation of electronic data supplied by regional health information organizations. Extensive project documentation was also collected. During group meetings experts described the implementation process and created reference modes and causal diagrams that the evaluation team used to build a preliminary model. System dynamics modeling techniques were applied iteratively to build causal loop diagrams representing the implementation. The diagrams were validated iteratively by individual experts followed by group review online, and through confirmatory review of documents and artifacts. Three casual loop diagrams captured well-recognized system dynamics: Sliding Goals, Project Rework, and Maturity of Resources. The findings were associated with specific policies that address funding, leadership, ensuring expertise, planning for rework, communication, and timeline management. This evaluation illustrates the value of a qualitative approach to system dynamics modeling. As a tool for strategic thinking on complicated and intense processes, qualitative models can be produced with fewer resources than a full simulation, yet still provide insights that are timely and relevant. System dynamics techniques clarified endogenous and exogenous factors at play in a highly complex technology implementation, which may inform other states engaged in implementing HIE supported by federal Health Information Technology for Economic and Clinical Health (HITECH) legislation.

  16. Development of Patient Status-Based Dynamic Access System for Medical Information Systems

    Directory of Open Access Journals (Sweden)

    Chang Won Jeong

    2015-06-01

    Full Text Available Recently, the hospital information system environment using IT communication technology and utilization of medical information has been increasing. In the medical field, the medical information system only supports the transfer of patient information to medical staff through an electronic health record, without information about patient status. Hence, it needs a method of real-time monitoring for the patient. Also, in this environment, a secure method in approaching healthcare through various smart devices is required. Therefore, in this paper, in order to classify the status of the patients, we propose a dynamic approach of the medical information system in a hospital information environment using the dynamic access control method. Also, we applied the symmetric method of AES (Advanced Encryption Standard. This was the best encryption algorithm for sending and receiving biological information. We can define usefulness as the dynamic access application service based on the final result of the proposed system. The proposed system is expected to provide a new solution for a convenient medical information system.

  17. Information as a key-element for the development and dissemination of bioenergy in Austria

    International Nuclear Information System (INIS)

    Schmidt, J.

    1999-01-01

    As one of the renewable energy sources which have to be developed to replace of CO 2 -intensive energy technologies the utilization of bio-energy has a lot of advantages: it is CO 2 - neutral; it is not dependent on imports and improves security of supply; has enormous potential of job creation for rural areas, in small and medium size enterprises; has an enormous market potential; biomass is a by-product in many industrial processes and its using would solve also the waste problem; biomass is an infinite energy source. Predominant market of the biomass for Europe is that for low temperature heating. Being underestimated this market is not attractive for high tech development and research perhaps because of the difficulties for collecting statistical data. Technologies vary from low efficient logwood boilers to sophisticated district heating plants. The strategy of the European Commission, referring to the White Paper, proposes to install 1mill sophisticated biomass heating systems in Europe till 2003. The low temperature heating market will be the most important for future information programmes and projects. For launching of biomass technologies onto a market it is necessary to inform the customer about it and the way to get it. The distribution systems have to rely on multipurpose equipment i.g. for different kind of bio-fuel. The information has to target the advantages of bio-energy fuels compared to the competing carriers like natural gas and oil. These advantages define the market niche. The information strategies include establishing of national and international networks and collaboration with other renewable energy sources associations and with the agricultural sector. The information related projects of the Austrian Biomass Association include: issuing a magazine, information campaigns, conferences, issuing of teaching materials for schools, information brochures and training programmes for plumbers so to be key-agents in the dissemination of small

  18. Mixed multiscale finite element methods using approximate global information based on partial upscaling

    KAUST Repository

    Jiang, Lijian

    2009-10-02

    The use of limited global information in multiscale simulations is needed when there is no scale separation. Previous approaches entail fine-scale simulations in the computation of the global information. The computation of the global information is expensive. In this paper, we propose the use of approximate global information based on partial upscaling. A requirement for partial homogenization is to capture long-range (non-local) effects present in the fine-scale solution, while homogenizing some of the smallest scales. The local information at these smallest scales is captured in the computation of basis functions. Thus, the proposed approach allows us to avoid the computations at the scales that can be homogenized. This results in coarser problems for the computation of global fields. We analyze the convergence of the proposed method. Mathematical formalism is introduced, which allows estimating the errors due to small scales that are homogenized. The proposed method is applied to simulate two-phase flows in heterogeneous porous media. Numerical results are presented for various permeability fields, including those generated using two-point correlation functions and channelized permeability fields from the SPE Comparative Project (Christie and Blunt, SPE Reserv Evalu Eng 4:308-317, 2001). We consider simple cases where one can identify the scales that can be homogenized. For more general cases, we suggest the use of upscaling on the coarse grid with the size smaller than the target coarse grid where multiscale basis functions are constructed. This intermediate coarse grid renders a partially upscaled solution that contains essential non-local information. Numerical examples demonstrate that the use of approximate global information provides better accuracy than purely local multiscale methods. © 2009 Springer Science+Business Media B.V.

  19. Prediction of plastic deformation under contact condition by quasi-static and dynamic simulations using explicit finite element analysis

    International Nuclear Information System (INIS)

    Siswanto, W. A.; Nagentrau, M.; Tobi, A. L. Mohd; Tamin, M. N.

    2016-01-01

    We compared the quasi-static and dynamic simulation responses on elastic-plastic deformation of advanced alloys using Finite element (FE) method with an explicit numerical algorithm. A geometrical model consisting of a cylinder-on-flat surface contact under a normal load and sliding motion was examined. Two aeroengine materials, Ti-6Al-4V and Super CMV (Cr-Mo-V) alloy, were employed in the FE analysis. The FE model was validated by comparative magnitudes of the FE-predicted maximum contact pressure variation along the contact half-width length with the theoretical Hertzian contact solution. Results show that the (compressive) displacement of the initial contact surface steadily increases for the quasi-static load case, but accumulates at an increasing rate to the maximum level for the dynamic loading. However, the relatively higher stiffness and yield strength of the Super CMV alloy resulted in limited deformation and low plastic strain when compared to the Ti-6Al-4V alloy. The accumulated equivalent plastic strain of the material point at the initial contact position was nearly a thousand times higher for the dynamic load case (for example, 6.592 for Ti-6Al-4V, 1.0 kN) when compared to the quasi-static loading (only 0.0072). During the loading step, the von Mises stress increased with a decreasing and increasing rate for the quasi-static and dynamic load case, respectively. A sudden increase in the stress magnitude to the respective peak value was registered due to the additional constraint to overcome the static friction of the mating surfaces during the sliding step

  20. Prediction of plastic deformation under contact condition by quasi-static and dynamic simulations using explicit finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Siswanto, W. A.; Nagentrau, M.; Tobi, A. L. Mohd [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat (Malaysia); Tamin, M. N. [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru (Malaysia)

    2016-11-15

    We compared the quasi-static and dynamic simulation responses on elastic-plastic deformation of advanced alloys using Finite element (FE) method with an explicit numerical algorithm. A geometrical model consisting of a cylinder-on-flat surface contact under a normal load and sliding motion was examined. Two aeroengine materials, Ti-6Al-4V and Super CMV (Cr-Mo-V) alloy, were employed in the FE analysis. The FE model was validated by comparative magnitudes of the FE-predicted maximum contact pressure variation along the contact half-width length with the theoretical Hertzian contact solution. Results show that the (compressive) displacement of the initial contact surface steadily increases for the quasi-static load case, but accumulates at an increasing rate to the maximum level for the dynamic loading. However, the relatively higher stiffness and yield strength of the Super CMV alloy resulted in limited deformation and low plastic strain when compared to the Ti-6Al-4V alloy. The accumulated equivalent plastic strain of the material point at the initial contact position was nearly a thousand times higher for the dynamic load case (for example, 6.592 for Ti-6Al-4V, 1.0 kN) when compared to the quasi-static loading (only 0.0072). During the loading step, the von Mises stress increased with a decreasing and increasing rate for the quasi-static and dynamic load case, respectively. A sudden increase in the stress magnitude to the respective peak value was registered due to the additional constraint to overcome the static friction of the mating surfaces during the sliding step.

  1. Colloid dynamics and transport of major elements through a boreal river - brackish bay mixing zone

    DEFF Research Database (Denmark)

    Gustafsson, Ö.; Widerlund, A.; Andersson, P.

    2000-01-01

    km in the spring.. During the dynamic springflood conditions studied, small 238U–234Th disequilibria, low sediment trap fluxes, laboratory mixing experiments, as well as results from an independent two-box, two-dimensional mixing model combine to suggest that no significant removal of Fe, Si......A range of biogeochemical methodologies were applied to investigate how aggregation processes affected the phase distribution and mixing of Fe, Si, and organic carbon between the Kalix River and the Bothnic Bay, northernmost Baltic Sea salinityF3; the low-salinity zone LSZ. was stretching over 60...... similar to that of neighboring Russian Arctic rivers, is hypothesized to result from a comparatively high organic-to-detrital matter characteristic of the aggregates. While first principles would indeed suggest that decreasing electrostatic repulsion during mixing lead to aggregation, a low specific...

  2. Method of dynamic tests of peripheral elements of the Univac 1108

    International Nuclear Information System (INIS)

    Terrenoire, Philippe

    1972-01-01

    This research thesis addresses maintenance tests to be implemented for high power computers (in this case a Univac 1108) and to be performed during exploitation in order not to interrupt it. After a presentation of the hardware (central processing unit, central memory, auxiliary memories, spooler), and some generalities on programming (memory protection, addressing, statement format, indexing, index register, available library, assembler, and so on), the author describes the characteristics of a specific executable file implemented on the computer. He analyzes problems raised by maintenance of a computer and of its peripheral devices, describes the operation and logical organisation of the dynamic test procedure, reports the development of tests, and modifications introduced to run the procedure. After a description of the test execution, the author analyses lessons learned and proposes some development perspectives, discusses the specific issue of the central unit, and the problem of remote control of a set of installations

  3. Elements of decisional dynamics: An agent-based approach applied to artificial financial market

    Science.gov (United States)

    Lucas, Iris; Cotsaftis, Michel; Bertelle, Cyrille

    2018-02-01

    This paper introduces an original mathematical description for describing agents' decision-making process in the case of problems affected by both individual and collective behaviors in systems characterized by nonlinear, path dependent, and self-organizing interactions. An application to artificial financial markets is proposed by designing a multi-agent system based on the proposed formalization. In this application, agents' decision-making process is based on fuzzy logic rules and the price dynamics is purely deterministic according to the basic matching rules of a central order book. Finally, while putting most parameters under evolutionary control, the computational agent-based system is able to replicate several stylized facts of financial time series (distributions of stock returns showing a heavy tail with positive excess kurtosis, absence of autocorrelations in stock returns, and volatility clustering phenomenon).

  4. [Information, knowledge and healthcare practice: professionals participation as the key element of the gear].

    Science.gov (United States)

    Adam, Paula; Permanyer-Miralda, Gaietà; Solà-Morales, Oriol; Canela-Soler, Jaume

    2010-02-01

    This article analyzes the role of ICT within the complicated gear between information, knowledge and healthcare practices, which particular focus on two specific cases: the digitalization process of the healthcare system and the application of knowledge into the healthcare practices. In both cases, international and local experiences suggest, and sometimes demonstrate the importance of the participation, capacity-building and empowerment of healthcare practitioners for the generation, transfer and use of information and knowledge empowered by the digital tools which should bring into the system better performance, more efficacy, efficiency, equity, equality, security, quality. 2010 Elsevier España S.L. All rights reserved.

  5. Unstructured Finite Elements and Dynamic Meshing for Explicit Phase Tracking in Multiphase Problems

    Science.gov (United States)

    Chandra, Anirban; Yang, Fan; Zhang, Yu; Shams, Ehsan; Sahni, Onkar; Oberai, Assad; Shephard, Mark

    2017-11-01

    Multi-phase processes involving phase change at interfaces, such as evaporation of a liquid or combustion of a solid, represent an interesting class of problems with varied applications. Large density ratio across phases, discontinuous fields at the interface and rapidly evolving geometries are some of the inherent challenges which influence the numerical modeling of multi-phase phase change problems. In this work, a mathematically consistent and robust computational approach to address these issues is presented. We use stabilized finite element methods on mixed topology unstructured grids for solving the compressible Navier-Stokes equations. Appropriate jump conditions derived from conservations laws across the interface are handled by using discontinuous interpolations, while the continuity of temperature and tangential velocity is enforced using a penalty parameter. The arbitrary Lagrangian-Eulerian (ALE) technique is utilized to explicitly track the interface motion. Mesh at the interface is constrained to move with the interface while elsewhere it is moved using the linear elasticity analogy. Repositioning is applied to the layered mesh that maintains its structure and normal resolution. In addition, mesh modification is used to preserve the quality of the volumetric mesh. This work is supported by the U.S. Army Grants W911NF1410301 and W911NF16C0117.

  6. Towards an Entropy Stable Spectral Element Framework for Computational Fluid Dynamics

    Science.gov (United States)

    Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.

    2016-01-01

    Entropy stable (SS) discontinuous spectral collocation formulations of any order are developed for the compressible Navier-Stokes equations on hexahedral elements. Recent progress on two complementary efforts is presented. The first effort is a generalization of previous SS spectral collocation work to extend the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to tensor product Legendre-Gauss (LG) points. The LG and LGL point formulations are compared on a series of test problems. Although being more costly to implement, it is shown that the LG operators are significantly more accurate on comparable grids. Both the LGL and LG operators are of comparable efficiency and robustness, as is demonstrated using test problems for which conventional FEM techniques suffer instability. The second effort generalizes previous SS work to include the possibility of p-refinement at non-conforming interfaces. A generalization of existing entropy stability machinery is developed to accommodate the nuances of fully multi-dimensional summation-by-parts (SBP) operators. The entropy stability of the compressible Euler equations on non-conforming interfaces is demonstrated using the newly developed LG operators and multi-dimensional interface interpolation operators.

  7. Dynamics and control of robotic spacecrafts for the transportation of flexible elements

    International Nuclear Information System (INIS)

    Wen, Hao; Chen, Ti; Yu, Bensong; Jin, Dongping

    2016-01-01

    The technology of robotic spacecrafts has been identified as one of the most appealing solutions to the on-orbit construction of large space structures in future space missions. As a prerequisite of a successful on-orbit construction, it is needed to use small autonomous spacecrafts for the transportation of flexible elements. To this end, the paper presents an energy-based scheme to control a couple of robotic spacecrafts carrying a flexible slender structure to its desired position. The flexible structure is modelled as a long beam based on the formulation of absolute nodal coordinates to account for the geometrical nonlinearity due to large displacement. Meanwhile, the robotic spacecrafts are actuated on their rigid-body degrees of freedom and modelled as two rigid bodies attached to the flexible beam. The energy-based controller is designed using the technique of energy shaping and damping injection such that translational and rotational maneuvers can be achieved with the suppression of the flexible vibrations of the beam. Finally, numerical case studies are performed to demonstrate the proposed schemes. (paper)

  8. Methods for Calculating Frequency of Maintenance of Complex Information Security System Based on Dynamics of Its Reliability

    Science.gov (United States)

    Varlataya, S. K.; Evdokimov, V. E.; Urzov, A. Y.

    2017-11-01

    This article describes a process of calculating a certain complex information security system (CISS) reliability using the example of the technospheric security management model as well as ability to determine the frequency of its maintenance using the system reliability parameter which allows one to assess man-made risks and to forecast natural and man-made emergencies. The relevance of this article is explained by the fact the CISS reliability is closely related to information security (IS) risks. Since reliability (or resiliency) is a probabilistic characteristic of the system showing the possibility of its failure (and as a consequence - threats to the protected information assets emergence), it is seen as a component of the overall IS risk in the system. As it is known, there is a certain acceptable level of IS risk assigned by experts for a particular information system; in case of reliability being a risk-forming factor maintaining an acceptable risk level should be carried out by the routine analysis of the condition of CISS and its elements and their timely service. The article presents a reliability parameter calculation for the CISS with a mixed type of element connection, a formula of the dynamics of such system reliability is written. The chart of CISS reliability change is a S-shaped curve which can be divided into 3 periods: almost invariable high level of reliability, uniform reliability reduction, almost invariable low level of reliability. Setting the minimum acceptable level of reliability, the graph (or formula) can be used to determine the period of time during which the system would meet requirements. Ideally, this period should not be longer than the first period of the graph. Thus, the proposed method of calculating the CISS maintenance frequency helps to solve a voluminous and critical task of the information assets risk management.

  9. DYNAMIC ITELLECTUAL SYSTEM OF PROCESS MANAGEMENT IN INFORMATION AND EDUCATION ENVIRONMENT OF HIGHER EDUCATIONAL INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Yuriy F. Telnov

    2013-01-01

    Full Text Available The paper represents the technology of application of dynamic intelligent process management system for integrated information-educational environment of university and providing the access for community in order to develop flexible education programs and teaching manuals based on multi-agent and service-oriented architecture. The article depicts the prototype of dynamic intelligent process management system using for forming of educational-methodic body. Efficiency of creation and usage of dynamic intelligent process management system is evaluated. 

  10. Key Techniques for Dynamic Updating of National Fundamental Geographic Information Database

    Directory of Open Access Journals (Sweden)

    WANG Donghua

    2015-07-01

    Full Text Available One of the most important missions of fundamental surveying and mapping work is to keep the fundamental geographic information fresh. In this respect, National Administration of Surveying, Mapping and Geoinformation has launched the project of dynamic updating of national fundamental geographic information database since 2012, which aims to update 1:50 000, 1:250 000 and 1:1 000 000 national fundamental geographic information database continuously and quickly, by updating and publishing once a year. This paper introduces the general technical thinking of dynamic updating, states main technical methods, such as dynamic updating of fundamental database, linkage updating of derived databases, and multi-tense database management and service and so on, and finally introduces main technical characteristics and engineering applications.

  11. Holographic control of information and dynamical topology change for composite open quantum systems

    Science.gov (United States)

    Aref'eva, I. Ya.; Volovich, I. V.; Inozemcev, O. V.

    2017-12-01

    We analyze how the compositeness of a system affects the characteristic time of equilibration. We study the dynamics of open composite quantum systems strongly coupled to the environment after a quantum perturbation accompanied by nonequilibrium heating. We use a holographic description of the evolution of entanglement entropy. The nonsmooth character of the evolution with holographic entanglement is a general feature of composite systems, which demonstrate a dynamical change of topology in the bulk space and a jumplike velocity change of entanglement entropy propagation. Moreover, the number of jumps depends on the system configuration and especially on the number of composite parts. The evolution of the mutual information of two composite systems inherits these jumps. We present a detailed study of the mutual information for two subsystems with one of them being bipartite. We find five qualitatively different types of behavior of the mutual information dynamics and indicate the corresponding regions of the system parameters.

  12. Gene expression from polynomial dynamics in the 2-adic information space

    International Nuclear Information System (INIS)

    Khrennikov, Andrei Yu.

    2009-01-01

    We perform geometrization of genetics by representing genetic information by points of the 4-adic information space. By well known theorem of number theory this space can also be represented as the 2-adic space. The process of DNA-reproduction is described by the action of a 4-adic (or equivalently 2-adic) dynamical system. As we know, the genes contain information for production of proteins. The genetic code is a degenerate map of codons to proteins. We model this map as functioning of a polynomial dynamical system. The purely mathematical problem under consideration is to find a dynamical system reproducing the degenerate structure of the genetic code. We present one of possible solutions of this problem.

  13. The Role of piRNA-Mediated Epigenetic Silencing in the Population Dynamics of Transposable Elements in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Yuh Chwen G Lee

    2015-06-01

    Full Text Available The piwi-interacting RNAs (piRNA are small RNAs that target selfish transposable elements (TEs in many animal genomes. Until now, piRNAs' role in TE population dynamics has only been discussed in the context of their suppression of TE transposition, which alone is not sufficient to account for the skewed frequency spectrum and stable containment of TEs. On the other hand, euchromatic TEs can be epigenetically silenced via piRNA-dependent heterochromatin formation and, similar to the widely known "Position-effect variegation", heterochromatin induced by TEs can "spread" into nearby genes. We hypothesized that the piRNA-mediated spread of heterochromatin from TEs into adjacent genes has deleterious functional effects and leads to selection against individual TEs. Unlike previously identified deleterious effects of TEs due to the physical disruption of DNA, the functional effect we investigated here is mediated through the epigenetic influences of TEs. We found that the repressive chromatin mark, H3K9me, is elevated in sequences adjacent to euchromatic TEs at multiple developmental stages in Drosophila melanogaster. Furthermore, the heterochromatic states of genes depend not only on the number of and distance from adjacent TEs, but also on the likelihood that their nearest TEs are targeted by piRNAs. These variations in chromatin status probably have functional consequences, causing genes near TEs to have lower expression. Importantly, we found stronger selection against TEs that lead to higher H3K9me enrichment of adjacent genes, demonstrating the pervasive evolutionary consequences of TE-induced epigenetic silencing. Because of the intrinsic biological mechanism of piRNA amplification, spread of TE heterochromatin could result in the theoretically required synergistic deleterious effects of TE insertions for stable containment of TE copy number. The indirect deleterious impact of piRNA-mediated epigenetic silencing of TEs is a previously

  14. A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture on an earthquake fault

    Science.gov (United States)

    Barall, Michael

    2009-01-01

    We present a new finite-element technique for calculating dynamic 3-D spontaneous rupture on an earthquake fault, which can reduce the required computational resources by a factor of six or more, without loss of accuracy. The grid-doubling technique employs small cells in a thin layer surrounding the fault. The remainder of the modelling volume is filled with larger cells, typically two or four times as large as the small cells. In the resulting non-conforming mesh, an interpolation method is used to join the thin layer of smaller cells to the volume of larger cells. Grid-doubling is effective because spontaneous rupture calculations typically require higher spatial resolution on and near the fault than elsewhere in the model volume. The technique can be applied to non-planar faults by morphing, or smoothly distorting, the entire mesh to produce the desired 3-D fault geometry. Using our FaultMod finite-element software, we have tested grid-doubling with both slip-weakening and rate-and-state friction laws, by running the SCEC/USGS 3-D dynamic rupture benchmark problems. We have also applied it to a model of the Hayward fault, Northern California, which uses realistic fault geometry and rock properties. FaultMod implements fault slip using common nodes, which represent motion common to both sides of the fault, and differential nodes, which represent motion of one side of the fault relative to the other side. We describe how to modify the traction-at-split-nodes method to work with common and differential nodes, using an implicit time stepping algorithm.

  15. Methodology for Simulation and Analysis of Complex Adaptive Supply Network Structure and Dynamics Using Information Theory

    Directory of Open Access Journals (Sweden)

    Joshua Rodewald

    2016-10-01

    Full Text Available Supply networks existing today in many industries can behave as complex adaptive systems making them more difficult to analyze and assess. Being able to fully understand both the complex static and dynamic structures of a complex adaptive supply network (CASN are key to being able to make more informed management decisions and prioritize resources and production throughout the network. Previous efforts to model and analyze CASN have been impeded by the complex, dynamic nature of the systems. However, drawing from other complex adaptive systems sciences, information theory provides a model-free methodology removing many of those barriers, especially concerning complex network structure and dynamics. With minimal information about the network nodes, transfer entropy can be used to reverse engineer the network structure while local transfer entropy can be used to analyze the network structure’s dynamics. Both simulated and real-world networks were analyzed using this methodology. Applying the methodology to CASNs allows the practitioner to capitalize on observations from the highly multidisciplinary field of information theory which provides insights into CASN’s self-organization, emergence, stability/instability, and distributed computation. This not only provides managers with a more thorough understanding of a system’s structure and dynamics for management purposes, but also opens up research opportunities into eventual strategies to monitor and manage emergence and adaption within the environment.

  16. Updating of a dynamic finite element model from the Hualien scale model reactor building

    International Nuclear Information System (INIS)

    Billet, L.; Moine, P.; Lebailly, P.

    1996-08-01

    The forces occurring at the soil-structure interface of a building have generally a large influence on the way the building reacts to an earthquake. One can be tempted to characterise these forces more accurately bu updating a model from the structure. However, this procedure requires an updating method suitable for dissipative models, since significant damping can be observed at the soil-structure interface of buildings. Such a method is presented here. It is based on the minimization of a mechanical energy built from the difference between Eigen data calculated bu the model and Eigen data issued from experimental tests on the real structure. An experimental validation of this method is then proposed on a model from the HUALIEN scale-model reactor building. This scale-model, built on the HUALIEN site of TAIWAN, is devoted to the study of soil-structure interaction. The updating concerned the soil impedances, modelled by a layer of springs and viscous dampers attached to the building foundation. A good agreement was found between the Eigen modes and dynamic responses calculated bu the updated model and the corresponding experimental data. (authors). 12 refs., 3 figs., 4 tabs

  17. Analytical study of performance evaluation for seismic retrofitting of reinforced concrete building using 3D dynamic nonlinear finite element analysis

    Science.gov (United States)

    Sato, Yuichi; Kajihara, Shinichi; Kaneko, Yoshio

    2011-06-01

    This paper presents three-dimensional finite element (FE) analyses of an all-frame model of a three-story reinforced concrete (RC) building damaged in the 1999 Taiwan Chi-Chi Earthquake. Non-structural brick walls of the building acted as a seismic resistant element although their contributions were neglected in the design. Hence, the entire structure of a typical frame was modeled and static and dynamic nonlinear analyses were conducted to evaluate the contributions of the brick walls. However, the results of the analyses were considerably overestimated due to coarse mesh discretizations, which were unavoidable due to limited computer resources. This study corrects the overestimations by modifying (1) the tensile strengths and (2) shear stiffness reduction factors of concrete and brick. The results indicate that brick walls improve frame strength although shear failures are caused in columns shortened by spandrel walls. Then, the effectiveness of three types of seismic retrofits is evaluated. The maximum drift of the first floor is reduced by 89.3%, 94.8%, and 27.5% by Steel-confined, Full-RC, and Full-brick models, respectively. Finally, feasibility analyses of models with soils were conducted. The analyses indicated that the soils elongate the natural period of building models although no significant differences were observed.

  18. Dynamic analysis of a needle insertion for soft materials: Arbitrary Lagrangian-Eulerian-based three-dimensional finite element analysis.

    Science.gov (United States)

    Yamaguchi, Satoshi; Tsutsui, Kihei; Satake, Koji; Morikawa, Shigehiro; Shirai, Yoshiaki; Tanaka, Hiromi T

    2014-10-01

    Our goal was to develop a three-dimensional finite element model that enables dynamic analysis of needle insertion for soft materials. To demonstrate large deformation and fracture, we used the arbitrary Lagrangian-Eulerian (ALE) method for fluid analysis. We performed ALE-based finite element analysis for 3% agar gel and three types of copper needle with bevel tips. To evaluate simulation results, we compared the needle deflection and insertion force with corresponding experimental results acquired with a uniaxial manipulator. We studied the shear stress distribution of agar gel on various time scales. For 30°, 45°, and 60°, differences in deflections of each needle between both sets of results were 2.424, 2.981, and 3.737mm, respectively. For the insertion force, there was no significant difference for mismatching area error (p<0.05) between simulation and experimental results. Our results have the potential to be a stepping stone to develop pre-operative surgical planning to estimate an optimal needle insertion path for MR image-guided microwave coagulation therapy and for analyzing large deformation and fracture in biological tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Information for irradiation and post-irradiation of the silicide fuel element prototype P-07

    International Nuclear Information System (INIS)

    Abbate, Maximo J.; Sbaffoni, Maria M.

    2003-01-01

    Included in the 'Silicides' Project, developed by the Nuclear Fuels Department of the National Atomic Energy Commission (CNEA), it is foreseen the qualification of this type of fuel for research reactors in order to be used in the Argentine RA-3 reactor and to confirm the CNEA as an international supplier. The paper presents basic information on several parameters corresponding to the new silicide prototype, called P-07, to be taken into account for its irradiation, postirradiation and qualification. (author)

  20. INFLUENCE OF DIFFERENT TEACING TECHNOLOGIES ON BEING INFORMED ABOUT MOBILE ELEMENTS OF BASKETBALL

    Directory of Open Access Journals (Sweden)

    Goran Šekeljić

    2009-11-01

    Full Text Available This work is dedicated to the comparative presentation of the results achieved by the pupils that have been partecipated in basketball tests after the implementation of the alternative curriculum having the basketbal as its contentsl. The research has been done during 2005/2006 school year on the sample of 183 male and female pupils of the fourth grade of the primary school. The pupils have been divided in two experimental groups. The first one has realized its curriculum in basketball playground according to the stan- dards and rules of mini-basket, while the the other, experimental group, has realized its teaching contents in the standard basketball playground. The results have pointed out that the dimension of the ball, such as the height of the basket are very important related to the achievements of certain basketball tests. On the other hand, certain number of the basketball tests has not shown any significant differences that can be statistically confirmed. This work can be useful in the methodical approach while teaching the basic elements of the basketball technique

  1. Generalized Langevin dynamics of a nanoparticle using a finite element approach: Thermostating with correlated noise

    Science.gov (United States)

    Uma, B.; Swaminathan, T. N.; Ayyaswamy, P. S.; Eckmann, D. M.; Radhakrishnan, R.

    2011-09-01

    A direct numerical simulation (DNS) procedure is employed to study the thermal motion of a nanoparticle in an incompressible Newtonian stationary fluid medium with the generalized Langevin approach. We consider both the Markovian (white noise) and non-Markovian (Ornstein-Uhlenbeck noise and Mittag-Leffler noise) processes. Initial locations of the particle are at various distances from the bounding wall to delineate wall effects. At thermal equilibrium, the numerical results are validated by comparing the calculated translational and rotational temperatures of the particle with those obtained from the equipartition theorem. The nature of the hydrodynamic interactions is verified by comparing the velocity autocorrelation functions and mean square displacements with analytical results. Numerical predictions of wall interactions with the particle in terms of mean square displacements are compared with analytical results. In the non-Markovian Langevin approach, an appropriate choice of colored noise is required to satisfy the power-law decay in the velocity autocorrelation function at long times. The results obtained by using non-Markovian Mittag-Leffler noise simultaneously satisfy the equipartition theorem and the long-time behavior of the hydrodynamic correlations for a range of memory correlation times. The Ornstein-Uhlenbeck process does not provide the appropriate hydrodynamic correlations. Comparing our DNS results to the solution of an one-dimensional generalized Langevin equation, it is observed that where the thermostat adheres to the equipartition theorem, the characteristic memory time in the noise is consistent with the inherent time scale of the memory kernel. The performance of the thermostat with respect to equilibrium and dynamic properties for various noise schemes is discussed.

  2. Finite element calculations illustrating a method of model reduction for the dynamics of structures with localized nonlinearities.

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel Todd; Segalman, Daniel Joseph

    2006-10-01

    A technique published in SAND Report 2006-1789 ''Model Reduction of Systems with Localized Nonlinearities'' is illustrated in two problems of finite element structural dynamics. That technique, called here the Method of Locally Discontinuous Basis Vectors (LDBV), was devised to address the peculiar difficulties of model reduction of systems having spatially localized nonlinearities. It's illustration here is on two problems of different geometric and dynamic complexity, but each containing localized interface nonlinearities represented by constitutive models for bolted joint behavior. As illustrated on simple problems in the earlier SAND report, the LDBV Method not only affords reduction in size of the nonlinear systems of equations that must be solved, but it also facilitates the use of much larger time steps on problems of joint macro-slip than would be possible otherwise. These benefits are more dramatic for the larger problems illustrated here. The work of both the original SAND report and this one were funded by the LDRD program at Sandia National Laboratories.

  3. A dynamic wheel-rail impact analysis of railway track under wheel flat by finite element analysis

    Science.gov (United States)

    Bian, Jian; Gu, Yuantong; Murray, Martin Howard

    2013-06-01

    Wheel-rail interaction is one of the most important research topics in railway engineering. It involves track impact response, track vibration and track safety. Track structure failures caused by wheel-rail impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. Wheel-rail impact forces occur because of imperfections in the wheels or rails such as wheel flats, irregular wheel profiles, rail corrugations and differences in the heights of rails connected at a welded joint. A wheel flat can cause a large dynamic impact force as well as a forced vibration with a high frequency, which can cause damage to the track structure. In the present work, a three-dimensional finite element (FE) model for the impact analysis induced by the wheel flat is developed by the use of the FE analysis (FEA) software package ANSYS and validated by another validated simulation. The effect of wheel flats on impact forces is thoroughly investigated. It is found that the presence of a wheel flat will significantly increase the dynamic impact force on both rail and sleeper. The impact force will monotonically increase with the size of wheel flats. The relationships between the impact force and the wheel flat size are explored from this FEA and they are important for track engineers to improve their understanding of the design and maintenance of the track system.

  4. Identification of Predictive Cis-Regulatory Elements Using a Discriminative Objective Function and a Dynamic Search Space.

    Directory of Open Access Journals (Sweden)

    Rahul Karnik

    Full Text Available The generation of genomic binding or accessibility data from massively parallel sequencing technologies such as ChIP-seq and DNase-seq continues to accelerate. Yet state-of-the-art computational approaches for the identification of DNA binding motifs often yield motifs of weak predictive power. Here we present a novel computational algorithm called MotifSpec, designed to find predictive motifs, in contrast to over-represented sequence elements. The key distinguishing feature of this algorithm is that it uses a dynamic search space and a learned threshold to find discriminative motifs in combination with the modeling of motifs using a full PWM (position weight matrix rather than k-mer words or regular expressions. We demonstrate that our approach finds motifs corresponding to known binding specificities in several mammalian ChIP-seq datasets, and that our PWMs classify the ChIP-seq signals with accuracy comparable to, or marginally better than motifs from the best existing algorithms. In other datasets, our algorithm identifies novel motifs where other methods fail. Finally, we apply this algorithm to detect motifs from expression datasets in C. elegans using a dynamic expression similarity metric rather than fixed expression clusters, and find novel predictive motifs.

  5. Entropy Maximization as a Basis for Information Recovery in Dynamic Economic Behavioral Systems

    Directory of Open Access Journals (Sweden)

    George Judge

    2015-02-01

    Full Text Available As a basis for information recovery in open dynamic microeconomic systems, we emphasize the connection between adaptive intelligent behavior, causal entropy maximization and self-organized equilibrium seeking behavior. This entropy-based causal adaptive behavior framework permits the use of information-theoretic methods as a solution basis for the resulting pure and stochastic inverse economic-econometric problems. We cast the information recovery problem in the form of a binary network and suggest information-theoretic methods to recover estimates of the unknown binary behavioral parameters without explicitly sampling the configuration-arrangement of the sample space.

  6. Quantifying dynamic mechanical properties of human placenta tissue using optimization techniques with specimen-specific finite-element models.

    Science.gov (United States)

    Hu, Jingwen; Klinich, Kathleen D; Miller, Carl S; Nazmi, Giseli; Pearlman, Mark D; Schneider, Lawrence W; Rupp, Jonathan D

    2009-11-13

    Motor-vehicle crashes are the leading cause of fetal deaths resulting from maternal trauma in the United States, and placental abruption is the most common cause of these deaths. To minimize this injury, new assessment tools, such as crash-test dummies and computational models of pregnant women, are needed to evaluate vehicle restraint systems with respect to reducing the risk of placental abruption. Developing these models requires accurate material properties for tissues in the pregnant abdomen under dynamic loading conditions that can occur in crashes. A method has been developed for determining dynamic material properties of human soft tissues that combines results from uniaxial tensile tests, specimen-specific finite-element models based on laser scans that accurately capture non-uniform tissue-specimen geometry, and optimization techniques. The current study applies this method to characterizing material properties of placental tissue. For 21 placenta specimens tested at a strain rate of 12/s, the mean failure strain is 0.472+/-0.097 and the mean failure stress is 34.80+/-12.62 kPa. A first-order Ogden material model with ground-state shear modulus (mu) of 23.97+/-5.52 kPa and exponent (alpha(1)) of 3.66+/-1.90 best fits the test results. The new method provides a nearly 40% error reduction (p<0.001) compared to traditional curve-fitting methods by considering detailed specimen geometry, loading conditions, and dynamic effects from high-speed loading. The proposed method can be applied to determine mechanical properties of other soft biological tissues.

  7. Dynamic pulse buckling of cylindrical shells under axial impact: A benchmark study of 2D and 3D finite element calculations

    International Nuclear Information System (INIS)

    Hoffman, E.L.; Ammerman, D.J.

    1995-01-01

    A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. During the pulse buckling tests, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. Numerical simulations of the test were performed using PRONTO, a Sandia developed transient dynamics analysis code, and ABAQUS/Explicit with both shell and continuum elements. The calculations are compared to the tests with respect to deformed shape and impact load history

  8. The effect of abandoned mining ponds on trace elements dynamics in the soil-plant system

    Science.gov (United States)

    Gabarrón, María; Faz, Ángel; Zornoza, Raúl; Acosta, Jose A.

    2017-04-01

    In semiarid climate regions lack of vegetation and dryer climate contribute to erosion of abandoned mining surface areas making them up important potential sources of metal pollution into the environment. The objectives of this study were to determine the influence of mine ponds in agriculture and forest soils, and identify the dynamic of metals in the soil-plant system for native plant species (Ballota hirsuta) and crop species (Hordeum vulgare) in two ancient mining districts: La Unión and Mazarrón. To achieve these objectives, wastes samples from mine ponds and soil samples (rhizosphere and non-rhizosphere soils) from natural and agricultural lands were collected. In addition, six plants (Ballota hirsuta) from natural area and 3 plants (Hordeum vulgare) from crops were collected. Physicochemical properties and total, water soluble and bioavailable metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) and arsenic were measured in waste/soil samples. The chemical speciation of metals in soil was estimated by a sequential extraction procedure. For plants analyses, each plant were divided in roots, stem and leaves and metal content measured by ICP-MS. Results indicated that mine, natural and agricultural soils were contaminated by As, Cd, Cu, Pb, and Zn. Chemical partitioning revealed higher mobility of metals in mine ponds than natural and agriculture soils while only Fe and As are completely bound to the soil matrix due to the mineralogical compositions of soils. The accumulation of metals in Ballota hirsuta in La Union decrease as Fe>As>Cr>Ni>Cu>Zn>Cd>Mn>Co>Pb while in Mazarrón did as As>Fe>Cr>Pb>Cu>Ni>Co>Mn>Zn>Cd. Ballota hirsuta showed high ability to bio-accumulate Cu, Cr, Fe, Ni, and As, transferring a large amount to edible parts without exceeding the toxicity limits for animals. Results for barley plants (Hordeum vulgare) showed the ability to absorb and accumulate As, Fe, Mn, Pb and Zn, although the transfer ability of As, Cd and Pb was lower. Although the

  9. Viral Hepatitis Strategic Information to Achieve Elimination by 2030: Key Elements for HIV Program Managers.

    Science.gov (United States)

    Hutin, Yvan; Low-Beer, Daniel; Bergeri, Isabel; Hess, Sarah; Garcia-Calleja, Jesus Maria; Hayashi, Chika; Mozalevskis, Antons; Rinder Stengaard, Annemarie; Sabin, Keith; Harmanci, Hande; Bulterys, Marc

    2017-12-15

    Evidence documenting the global burden of disease from viral hepatitis was essential for the World Health Assembly to endorse the first Global Health Sector Strategy (GHSS) on viral hepatitis in May 2016. The GHSS on viral hepatitis proposes to eliminate viral hepatitis as a public health threat by 2030. The GHSS on viral hepatitis is in line with targets for HIV infection and tuberculosis as part of the Sustainable Development Goals. As coordination between hepatitis and HIV programs aims to optimize the use of resources, guidance is also needed to align the strategic information components of the 2 programs. The World Health Organization monitoring and evaluation framework for viral hepatitis B and C follows an approach similar to the one of HIV, including components on the following: (1) context (prevalence of infection), (2) input, (3) output and outcome, including the cascade of prevention and treatment, and (4) impact (incidence and mortality). Data systems that are needed to inform this framework include (1) surveillance for acute hepatitis, chronic infections, and sequelae and (2) program data documenting prevention and treatment, which for the latter includes a database of patients. Overall, the commonalities between HIV and hepatitis at the strategic, policy, technical, and implementation levels justify coordination, strategic linkage, or integration, depending on the type of HIV and viral hepatitis epidemics. Strategic information is a critical area of this alignment under the principle of what gets measured gets done. It is facilitated because the monitoring and evaluation frameworks for HIV and viral hepatitis were constructed using a similar approach. However, for areas where elimination of viral hepatitis requires data that cannot be collected through the HIV program, collaborations are needed with immunization, communicable disease control, tuberculosis, and hepatology centers to ensure collection of information for the remaining indicators.

  10. Technen elements of recent history of information technologies with epistemological conclusions

    CERN Document Server

    Wierzbicki, Andrzej Piotr

    2015-01-01

    The book expresses the conviction that the art of creating tools ? Greek techne ? changes its character together with the change of civilization epochs and co-determines such changes. This does not mean that tools typical for a civilization epoch determine it completely, but they change our way of perceiving and interpreting the world. There might have been many such epochs in the history of human civilization (much more than the three waves of agricultural, industrial and information civilization). This is expressed by the title Technen of the book, where n denotes a subsequent civilization e

  11. Wavelet analysis of molecular dynamics: Efficient extraction of time-frequency information in ultrafast optical processes

    International Nuclear Information System (INIS)

    Prior, Javier; Castro, Enrique; Chin, Alex W.; Almeida, Javier; Huelga, Susana F.; Plenio, Martin B.

    2013-01-01

    New experimental techniques based on nonlinear ultrafast spectroscopies have been developed over the last few years, and have been demonstrated to provide powerful probes of quantum dynamics in different types of molecular aggregates, including both natural and artificial light harvesting complexes. Fourier transform-based spectroscopies have been particularly successful, yet “complete” spectral information normally necessitates the loss of all information on the temporal sequence of events in a signal. This information though is particularly important in transient or multi-stage processes, in which the spectral decomposition of the data evolves in time. By going through several examples of ultrafast quantum dynamics, we demonstrate that the use of wavelets provide an efficient and accurate way to simultaneously acquire both temporal and frequency information about a signal, and argue that this greatly aids the elucidation and interpretation of physical process responsible for non-stationary spectroscopic features, such as those encountered in coherent excitonic energy transport

  12. Analysis of experiments of the University of Hannover with the Cathare code on fluid dynamic effects in the fuel element top nozzle area during refilling and reflooding

    International Nuclear Information System (INIS)

    Bestion, D.

    1989-11-01

    The CATHARE code is used to calculate the experiment of the University of Hannover concerning the flooding limit at the fuel element top nozzle area. Some qualitative and quantitativ limit at the fuel element top nozzle area. on both the actual fluid dynamics which is observed in the experiments and on the corresponding code behaviour. Shortcomings of the present models are clearly identified. New developments are proposed which should extend the code capabilities

  13. Dynamics of motion of a clot through an arterial bifurcation: a finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Abolfazli, Ehsan; Fatouraee, Nasser [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Vahidi, Bahman, E-mail: e.abolfazli@aut.ac.ir, E-mail: nasser@aut.ac.ir, E-mail: bahman_vahidi@ut.ac.ir [Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran (Iran, Islamic Republic of)

    2014-10-01

    Although arterial embolism is important as a major cause of brain infarction, little information is available about the hemodynamic factors which govern the path emboli tend to follow. A method which predicts the trajectory of emboli in carotid arteries would be of a great value in understanding ischemic attack mechanisms and eventually devising hemodynamically optimal techniques for prevention of strokes. In this paper, computational models are presented to investigate the motion of a blood clot in a human carotid artery bifurcation. The governing equations for blood flow are the Navier–Stokes formulations. To achieve large structural movements, the arbitrary Lagrangian–Eulerian formulation (ALE) with an adaptive mesh method was employed for the fluid domain. The problem was solved by simultaneous solution of the fluid and the structure equations. In this paper, the phenomenon was simulated under laminar and Newtonian flow conditions. The measured stress–strain curve obtained from ultrasound elasticity imaging of the thrombus was set to a Sussman–Bathe material model representing embolus material properties. Shear stress magnitudes in the inner wall of the internal carotid artery (ICA) were measured. High magnitudes of wall shear stress (WSS) occurred in the areas in which the embolus and arterial are in contact with each other. Stress distribution in the embolus was also calculated and areas prone to rapture were identified. Effects of embolus size and embolus density on its motion velocity were investigated and it was observed that an increase in either embolus size or density led to a reduction in movement velocity of the embolus. Embolus trajectory and shear stress from a simulation of embolus movement in a three-dimensional model with patient-specific carotid artery bifurcation geometry are also presented.

  14. Informational and emotional elements in online support groups: a Bayesian approach to large-scale content analysis.

    Science.gov (United States)

    Deetjen, Ulrike; Powell, John A

    2016-05-01

    This research examines the extent to which informational and emotional elements are employed in online support forums for 14 purposively sampled chronic medical conditions and the factors that influence whether posts are of a more informational or emotional nature. Large-scale qualitative data were obtained from Dailystrength.org. Based on a hand-coded training dataset, all posts were classified into informational or emotional using a Bayesian classification algorithm to generalize the findings. Posts that could not be classified with a probability of at least 75% were excluded. The overall tendency toward emotional posts differs by condition: mental health (depression, schizophrenia) and Alzheimer's disease consist of more emotional posts, while informational posts relate more to nonterminal physical conditions (irritable bowel syndrome, diabetes, asthma). There is no gender difference across conditions, although prostate cancer forums are oriented toward informational support, whereas breast cancer forums rather feature emotional support. Across diseases, the best predictors for emotional content are lower age and a higher number of overall posts by the support group member. The results are in line with previous empirical research and unify empirical findings from single/2-condition research. Limitations include the analytical restriction to predefined categories (informational, emotional) through the chosen machine-learning approach. Our findings provide an empirical foundation for building theory on informational versus emotional support across conditions, give insights for practitioners to better understand the role of online support groups for different patients, and show the usefulness of machine-learning approaches to analyze large-scale qualitative health data from online settings. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Residential dynamics: the co-existence of formal and informal systems in Khartoum, Sudan

    CSIR Research Space (South Africa)

    Osman, A

    2010-05-01

    Full Text Available This paper looks at the residential dynamics in Khartoum, Sudan. Some patterns demonstrate that formal and informal systems co-exist and are mutually supportive. There are also particular spatial manifestations that have resulted from a unique socio...

  16. Understanding the Online Informal Learning of English as a Complex Dynamic System: An Emic Approach

    Science.gov (United States)

    Sockett, Geoffrey

    2013-01-01

    Research into the online informal learning of English has already shown it to be a widespread phenomenon involving a range of comprehension and production activities such as viewing original version television series, listening to music on demand and social networking with other English users. Dynamic systems theory provides a suitable framework…

  17. Study on the Reduced Traffic Congestion Method Based on Dynamic Guidance Information

    Science.gov (United States)

    Li, Shu-Bin; Wang, Guang-Min; Wang, Tao; Ren, Hua-Ling; Zhang, Lin

    2018-05-01

    This paper studies how to generate the reasonable information of travelers’ decision in real network. This problem is very complex because the travelers’ decision is constrained by different human behavior. The network conditions can be predicted by using the advanced dynamic OD (Origin-Destination, OD) estimation techniques. Based on the improved mesoscopic traffic model, the predictable dynamic traffic guidance information can be obtained accurately. A consistency algorithm is designed to investigate the travelers’ decision by simulating the dynamic response to guidance information. The simulation results show that the proposed method can provide the best guidance information. Further, a case study is conducted to verify the theoretical results and to draw managerial insights into the potential of dynamic guidance strategy in improving traffic performance. Supported by National Natural Science Foundation of China under Grant Nos. 71471104, 71771019, 71571109, and 71471167; The University Science and Technology Program Funding Projects of Shandong Province under Grant No. J17KA211; The Project of Public Security Department of Shandong Province under Grant No. GATHT2015-236; The Major Social and Livelihood Special Project of Jinan under Grant No. 20150905

  18. Dynamic behavioral fingerprinting': What drives the deployment of environmental information and communication capabilities?

    NARCIS (Netherlands)

    Bremmers, H.J.; Haverkamp, D.J.; Omta, S.W.F.

    2009-01-01

    This article investigates the impact of organizational drivers for the implementation of business process and network information and communication capabilities (ICCs) supporting cleaner production in the Dutch food and beverage industry. We do so with the intention to promote `dynamic behavioral

  19. A dynamic-epistemic hybrid logic for intentions and information changes in strategic games

    NARCIS (Netherlands)

    Roy, O.

    2009-01-01

    In this paper I present a dynamic-epistemic hybrid logic for reasoning about information and intention changes in situations of strategic interaction. I provide a complete axiomatization for this logic, and then use it to study intentions-based transformations of decision problems.

  20. Towards the prediction of multiple necking during dynamic extension of round bar: linear stability approach versus finite element calculations

    International Nuclear Information System (INIS)

    Maï, S El; Petit, J; Mercier, S; Molinari, A

    2014-01-01

    The fragmentation of structures subject to dynamic conditions is a matter of interest for civil industries as well as for Defence institutions. Dynamic expansions of structures, such as cylinders or rings, have been performed to obtain crucial information on fragment distributions. Many authors have proposed to capture by FEA the experimental distribution of fragment size by introducing in the FE model a perturbation. Stability and bifurcation analyses have also been proposed to describe the evolution of the perturbation growth rate. In the proposed contribution, the multiple necking of a round bar in dynamic tensile loading is analysed by the FE method. A perturbation on the initial flow stress is introduced in the numerical model to trigger instabilities. The onset time and the dominant mode of necking have been characterized precisely and showed power law evolutions, with the loading velocities and moderately with the amplitudes and the cell sizes of the perturbations. In the second part of the paper, the development of linear stability analysis and the use of salient criteria in terms of the growth rate of perturbations enabled comparisons with the numerical results. A good correlation in terms of onset time of instabilities and of number of necks is shown.

  1. INFORMATION MINING OF SPATIO-TEMPORAL EVOLUTION OF LAKES BASED ON MULTIPLE DYNAMIC MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    W. Feng

    2017-09-01

    Full Text Available Lakes are important water resources and integral parts of the natural ecosystem, and it is of great significance to study the evolution of lakes. The area of each lake increased and decreased at the same time in natural condition, only but the net change of lakes’ area is the result of the bidirectional evolution of lakes. In this paper, considering the effects of net fragmentation, net attenuation, swap change and spatial invariant part in lake evolution, a comprehensive evaluation indexes of lake dynamic evolution were defined,. Such degree contains three levels of measurement: 1 the swap dynamic degree (SDD reflects the space activity of lakes in the study period. 2 the attenuation dynamic degree (ADD reflects the net attenuation of lakes into non-lake areas. 3 the fragmentation dynamic degree (FDD reflects the trend of lakes to be divided and broken into smaller lakes. Three levels of dynamic measurement constitute the three-dimensional "Swap - attenuation – fragmentation" dynamic evolution measurement system of lakes. To show its effectiveness, the dynamic measurement was applied to lakes in Jianghan Plain, the middle Yangtze region of China for a more detailed analysis of lakes from 1984 to 2014. In combination with spatial-temporal location characteristics of lakes, the hidden information in lake evolution in the past 30 years can be revealed.

  2. Effects of Common Factors on Dynamics of Stocks Traded by Investors with Limited Information Capacity

    Directory of Open Access Journals (Sweden)

    Songtao Wu

    2017-01-01

    Full Text Available An artificial stock market with agent-based model is built to investigate effects of different information characteristics of common factors on the dynamics stock returns. Investors with limited information capacity update their beliefs based on the information they have obtained and processed and optimize portfolios based on beliefs. We find that with changing of concerned information characteristics the uncertainty of stock price returns rises and is higher than the uncertainty of intrinsic value returns. However, this increase is constrained by the limited information capacity of investors. At the same time, we also find that dependence between returns of stock prices also increased with the changing information environment. The uncertainty and dependency pertaining to prices show a positive relationship. However, the positive relationship is weakened when taking into account the features of intrinsic values, based on which prices are generated.

  3. An information-theoretic approach to assess practical identifiability of parametric dynamical systems.

    Science.gov (United States)

    Pant, Sanjay; Lombardi, Damiano

    2015-10-01

    A new approach for assessing parameter identifiability of dynamical systems in a Bayesian setting is presented. The concept of Shannon entropy is employed to measure the inherent uncertainty in the parameters. The expected reduction in this uncertainty is seen as the amount of information one expects to gain about the parameters due to the availability of noisy measurements of the dynamical system. Such expected information gain is interpreted in terms of the variance of a hypothetical measurement device that can measure the parameters directly, and is related to practical identifiability of the parameters. If the individual parameters are unidentifiable, correlation between parameter combinations is assessed through conditional mutual information to determine which sets of parameters can be identified together. The information theoretic quantities of entropy and information are evaluated numerically through a combination of Monte Carlo and k-nearest neighbour methods in a non-parametric fashion. Unlike many methods to evaluate identifiability proposed in the literature, the proposed approach takes the measurement-noise into account and is not restricted to any particular noise-structure. Whilst computationally intensive for large dynamical systems, it is easily parallelisable and is non-intrusive as it does not necessitate re-writing of the numerical solvers of the dynamical system. The application of such an approach is presented for a variety of dynamical systems--ranging from systems governed by ordinary differential equations to partial differential equations--and, where possible, validated against results previously published in the literature. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Transposable element dynamics and PIWI regulation impacts lncRNA and gene expression diversity in Drosophila ovarian cell cultures.

    Science.gov (United States)

    Sytnikova, Yuliya A; Rahman, Reazur; Chirn, Gung-Wei; Clark, Josef P; Lau, Nelson C

    2014-12-01

    Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposable elements (TEs) from mobilizing in gonadal cells. To determine the spectrum of piRNA-regulated targets that may extend beyond TEs, we conducted a genome-wide survey for transcripts associated with PIWI and for transcripts affected by PIWI knockdown in Drosophila ovarian somatic sheet (OSS) cells, a follicle cell line expressing the Piwi pathway. Despite the immense sequence diversity among OSS cell piRNAs, our analysis indicates that TE transcripts are the major transcripts associated with and directly regulated by PIWI. However, several coding genes were indirectly regulated by PIWI via an adjacent de novo TE insertion that generated a nascent TE transcript. Interestingly, we noticed that PIWI-regulated genes in OSS cells greatly differed from genes affected in a related follicle cell culture, ovarian somatic cells (OSCs). Therefore, we characterized the distinct genomic TE insertions across four OSS and OSC lines and discovered dynamic TE landscapes in gonadal cultures that were defined by a subset of active TEs. Particular de novo TEs appeared to stimulate the expression of novel candidate long noncoding RNAs (lncRNAs) in a cell lineage-specific manner, and some of these TE-associated lncRNAs were associated with PIWI and overlapped PIWI-regulated genes. Our analyses of OSCs and OSS cells demonstrate that despite having a Piwi pathway to suppress endogenous mobile elements, gonadal cell TE landscapes can still dramatically change and create transcriptome diversity. © 2014 Sytnikova et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Two dissimilar approaches to dynamical systems on hyper MV -algebras and their information entropy

    Science.gov (United States)

    Mehrpooya, Adel; Ebrahimi, Mohammad; Davvaz, Bijan

    2017-09-01

    Measuring the flow of information that is related to the evolution of a system which is modeled by applying a mathematical structure is of capital significance for science and usually for mathematics itself. Regarding this fact, a major issue in concern with hyperstructures is their dynamics and the complexity of the varied possible dynamics that exist over them. Notably, the dynamics and uncertainty of hyper MV -algebras which are hyperstructures and extensions of a central tool in infinite-valued Lukasiewicz propositional calculus that models many valued logics are of primary concern. Tackling this problem, in this paper we focus on the subject of dynamical systems on hyper MV -algebras and their entropy. In this respect, we adopt two varied approaches. One is the set-based approach in which hyper MV -algebra dynamical systems are developed by employing set functions and set partitions. By the other method that is based on points and point partitions, we establish the concept of hyper injective dynamical systems on hyper MV -algebras. Next, we study the notion of entropy for both kinds of systems. Furthermore, we consider essential ergodic characteristics of those systems and their entropy. In particular, we introduce the concept of isomorphic hyper injective and hyper MV -algebra dynamical systems, and we demonstrate that isomorphic systems have the same entropy. We present a couple of theorems in order to help calculate entropy. In particular, we prove a contemporary version of addition and Kolmogorov-Sinai Theorems. Furthermore, we provide a comparison between the indispensable properties of hyper injective and semi-independent dynamical systems. Specifically, we present and prove theorems that draw comparisons between the entropies of such systems. Lastly, we discuss some possible relationships between the theories of hyper MV -algebra and MV -algebra dynamical systems.

  6. Technical and functional analysis of Spanish windmills: 3D modeling, computational-fluid-dynamics simulation and finite-element analysis

    International Nuclear Information System (INIS)

    Rojas-Sola, José Ignacio; Bouza-Rodríguez, José Benito; Menéndez-Díaz, Agustín

    2016-01-01

    Highlights: • Technical and functional analysis of the two typologies of windmills in Spain. • Spatial distribution of velocities and pressures by computational-fluid dynamics (CFD). • Finite-element analysis (FEA) of the rotors of these two types of windmills. • Validation of the operative functionality of these windmills. - Abstract: A detailed study has been made of the two typologies of windmills in Spain, specifically the rectangular-bladed type, represented by the windmill ‘Sardinero’, located near the town of Campo de Criptana (Ciudad Real province, Spain) and the type with triangular sails (lateens), represented by the windmill ‘San Francisco’, in the town of Vejer de la Frontera (Cádiz province, Spain). For this, an ad hoc research methodology has been applied on the basis of three aspects: three-dimensional geometric modeling, analysis by computational-fluid dynamics (CFD), and finite-element analysis (FEA). The results found with the CFD technique show the correct functioning of the two windmills in relation to the spatial distribution of the wind velocities and pressures to which each is normally exposed (4–7 m/s in the case of ‘Sardinero’, and 5–11 for ‘San Francisco’), thereby validating the operative functionality of both types. In addition, as a result of the FEA, the spatial distribution of stresses on the rotor has revealed that the greatest concentrations of these occurs in the teeth of the head wheel in ‘Sardinero’, reaching a value of 12 MPa, and at the base of the masts in the case of the ‘San Francisco’, with a value of 24 MPa. Also, this analysis evidences that simple, effective designs to reinforce the masts absorb a great concentration of stresses that would otherwise cause breakage. Furthermore, it was confirmed that the oak wood from which the rotors were made functioned properly, as the windmill never exceeded the maximum admissible working stress, demonstrating the effectiveness of the materials

  7. Elements of spatial data quality as information technology support for sustainable development planning

    Directory of Open Access Journals (Sweden)

    Joksić Dušan

    2004-01-01

    Full Text Available We are witnessing nowadays that the last decade of the past century, as well as the first years of the present one, have brought technology expansion with respect to spatial data gathering and processing which makes a physical basis for management of spatial development. This has resulted in enlargement of the spatial data market. New technologies, presented in computer applications, have greatly expanded the number of users of these products. The philosophy of spatial data collecting has changed; analogue maps and plans printed on paper have been replaced by digital data bases which enable their presentation in a way that is the best for a particular user. Further, digital spatial data bases provide the possibility of their further upgrading by users. The two aspects, with respect to circumstances mentioned above, are very important in the process of data bases production and distribution. Firstly, the users of these data bases should be the ones who decide which of the available bases could satisfy their requirements, or in other words, what is the data quality level necessary for a certain application. On the other hand, the visualization of digital data bases could often mislead, since review of data bases could present data with better accuracy then the actual one. Thus, certain methods that would point to a quality of the selected data in the process of their analysis should be available to users. Specific, already adopted international standards, or specially developed procedures and methodologies, so called de facto standards, could be used in this data processing, enabling the estimation of these data quality. The development of Open GIS concept requires the adoption of widely accepted standards for spatial data quality. It is recommended that ISO standards should be accepted, firstly TC211 standards which are related to geographic information and geomatics. The realization of projects on ISO standards should be finished by 2006, so

  8. A Dynamic Microblog Network and Information Dissemination in “@” Mode

    Directory of Open Access Journals (Sweden)

    Mingsheng Tang

    2014-01-01

    Full Text Available Social media, especially the microblogs, emerge as a part of our daily life and become a key way to information spread. Thus, information dissemination in the microblog became a research hotspot. Based on some principles that are summarized from the microblog users’ behaviors, this paper proposes a dynamic microblog network model. Through simulations this network has the features of periodicity of average degree, high clustering coefficient, high degree of modularity, and community. Besides, an information dissemination model through “@” in the microblog has been presented. With the microblog network model and the zombie-city model, this paper has modelled an artificial microblog and has simulated the information dissemination in the artificial microblog with different scenes. Therefore, some interesting findings have been presented. (1 Due to a better connectivity, information could spread widely in a random network; (2 information spreads more quickly in a stable microblog network; (3 the decay rate of the relationships will have an effect on information dissemination; that is, with a lower decay rate, information spreads more quickly and widely; (4 the higher active level of users in microblog could promote information spread widely and quickly; (5 the “@” mode of information dissemination makes a high modularity of the information diffusion network.

  9. Substance and Dynamics: Two Elements of Aristotelian-Thomistic Philosophy of Nature in the Foundation of Mathematics in Physics

    Directory of Open Access Journals (Sweden)

    Rudolf Larenz

    2017-09-01

    Full Text Available The article aims at proposing a way of solution to the problem why mathematics is efficient in physics. Its strategy consists in, first, identifying servere reductionisms performed on physical processes in order to have them correspond to mathematics. As this makes it impossible to understand the real relationship between matter and mathematics, a necessary step on the way to an understanding is to abandon the reductionisms from the very outset. Consequently, one is faced with the need of searching for mathematical elements in nature, as if there never had been any successful mathematics in physics. And for this search, one has to rely on experience alone. To this end, the article takes its inspiration from two pillars of Aristotelian philosophy of nature, the notions of ‘substance’ and ‘dynamics’, together with a careful examination of the treasure of accumulated experience in physics. Upon this basis, the hylomorphic structure of elementary particles, which are considered to be at the basis of all material substances, is the source for the most common features of the dynamical order of material things in general. This dynamical order, in turn, is quite likely to be reflected in mathematical terms. This is a novel approach because, at present, the most common framework for dealing with the question of mathematics in physics is Scientific Realism. It addresses the question why the existent physico-mathematical theories are successful. In order to find an answer, it starts from these theories and some methodological considerations, but does not address the question of where these theories stem from. In particular, it does not consider the possibility that these theories might, at least in part, stem from the material things they are referring to. The latter approach is what is suggested here. It is that of Natural Realism, of which Aristotle is an eminent representative.

  10. Complexity characterization in a probabilistic approach to dynamical systems through information geometry and inductive inference

    International Nuclear Information System (INIS)

    Ali, S A; Kim, D-H; Cafaro, C; Giffin, A

    2012-01-01

    Information geometric techniques and inductive inference methods hold great promise for solving computational problems of interest in classical and quantum physics, especially with regard to complexity characterization of dynamical systems in terms of their probabilistic description on curved statistical manifolds. In this paper, we investigate the possibility of describing the macroscopic behavior of complex systems in terms of the underlying statistical structure of their microscopic degrees of freedom by the use of statistical inductive inference and information geometry. We review the maximum relative entropy formalism and the theoretical structure of the information geometrodynamical approach to chaos on statistical manifolds M S . Special focus is devoted to a description of the roles played by the sectional curvature K M S , the Jacobi field intensity J M S and the information geometrodynamical entropy S M S . These quantities serve as powerful information-geometric complexity measures of information-constrained dynamics associated with arbitrary chaotic and regular systems defined on M S . Finally, the application of such information-geometric techniques to several theoretical models is presented.

  11. Non-Markovianity Measure Based on Brukner-Zeilinger Invariant Information for Unital Quantum Dynamical Maps

    Science.gov (United States)

    He, Zhi; Zhu, Lie-Qiang; Li, Li

    2017-03-01

    A non-Markovianity measure based on Brukner-Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner-Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner-Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. Supported by the National Natural Science Foundation of China under Grant No. 61505053, the Natural Science Foundation of Hunan Province under Grant No. 2015JJ3092, the Research Foundation of Education Bureau of Hunan Province, China under Grant No. 16B177, the School Foundation from the Hunan University of Arts and Science under Grant No. 14ZD01

  12. Non-Markovianity Measure Based on Brukner–Zeilinger Invariant Information for Unital Quantum Dynamical Maps

    International Nuclear Information System (INIS)

    He Zhi; Zhu Lie-Qiang; Li Li

    2017-01-01

    A non-Markovianity measure based on Brukner–Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner–Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner–Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. (paper)

  13. A New Recommendation Algorithm Based on User’s Dynamic Information in Complex Social Network

    Directory of Open Access Journals (Sweden)

    Jiujun Cheng

    2015-01-01

    Full Text Available The development of recommendation system comes with the research of data sparsity, cold start, scalability, and privacy protection problems. Even though many papers proposed different improved recommendation algorithms to solve those problems, there is still plenty of room for improvement. In the complex social network, we can take full advantage of dynamic information such as user’s hobby, social relationship, and historical log to improve the performance of recommendation system. In this paper, we proposed a new recommendation algorithm which is based on social user’s dynamic information to solve the cold start problem of traditional collaborative filtering algorithm and also considered the dynamic factors. The algorithm takes user’s response information, dynamic interest, and the classic similar measurement of collaborative filtering algorithm into account. Then, we compared the new proposed recommendation algorithm with the traditional user based collaborative filtering algorithm and also presented some of the findings from experiment. The results of experiment demonstrate that the new proposed algorithm has a better recommended performance than the collaborative filtering algorithm in cold start scenario.

  14. Algorithmic Information Dynamics of Persistent Patterns and Colliding Particles in the Game of Life

    KAUST Repository

    Zenil, Hector

    2018-02-18

    We demonstrate the way to apply and exploit the concept of \\\\textit{algorithmic information dynamics} in the characterization and classification of dynamic and persistent patterns, motifs and colliding particles in, without loss of generalization, Conway\\'s Game of Life (GoL) cellular automaton as a case study. We analyze the distribution of prevailing motifs that occur in GoL from the perspective of algorithmic probability. We demonstrate how the tools introduced are an alternative to computable measures such as entropy and compression algorithms which are often nonsensitive to small changes and features of non-statistical nature in the study of evolving complex systems and their emergent structures.

  15. Dynamics in two-elevator traffic system with real-time information

    Energy Technology Data Exchange (ETDEWEB)

    Nagatani, Takashi, E-mail: wadokeioru@yahoo.co.jp

    2013-12-17

    We study the dynamics of traffic system with two elevators using a elevator choice scenario. The two-elevator traffic system with real-time information is similar to the two-route vehicular traffic system. The dynamics of two-elevator traffic system is described by the two-dimensional nonlinear map. An elevator runs a neck-and-neck race with another elevator. The motion of two elevators displays such a complex behavior as quasi-periodic one. The return map of two-dimensional map shows a piecewise map.

  16. The computer code EURDYN - 1 M (release 1) for transient dynamic fluid-structure interaction. Pt.1: governing equations and finite element modelling

    International Nuclear Information System (INIS)

    Donea, J.; Fasoli-Stella, P.; Giuliani, S.; Halleux, J.P.; Jones, A.V.

    1980-01-01

    This report describes the governing equations and the finite element modelling used in the computer code EURDYN - 1 M. The code is a non-linear transient dynamic program for the analysis of coupled fluid-structure systems; It is designed for safety studies on LMFBR components (primary containment and fuel subassemblies)

  17. Spreading dynamics of an e-commerce preferential information model on scale-free networks

    Science.gov (United States)

    Wan, Chen; Li, Tao; Guan, Zhi-Hong; Wang, Yuanmei; Liu, Xiongding

    2017-02-01

    In order to study the influence of the preferential degree and the heterogeneity of underlying networks on the spread of preferential e-commerce information, we propose a novel susceptible-infected-beneficial model based on scale-free networks. The spreading dynamics of the preferential information are analyzed in detail using the mean-field theory. We determine the basic reproductive number and equilibria. The theoretical analysis indicates that the basic reproductive number depends mainly on the preferential degree and the topology of the underlying networks. We prove the global stability of the information-elimination equilibrium. The permanence of preferential information and the global attractivity of the information-prevailing equilibrium are also studied in detail. Some numerical simulations are presented to verify the theoretical results.

  18. Study on the fluid dynamics of nitrogen and hydrogen gases subjected to wires element in monolithic channel

    Directory of Open Access Journals (Sweden)

    Rashidi Amirah

    2017-01-01

    Full Text Available Ammonia has a very significant value in the fertilizer industry where it was being synthesized via Haber-Bosch process in the early 19th century. As the process utilize high operating conditions, it imposes high capital cost and is an energy-consuming process. Due to this unsustainable process, researchers have initiated an alternative to overcome this drawback by performing a simulation in microfluidic environment using ambient temperature and pressure (25°C and 1 atm. Wires element configured in a 50 mm x 10 mm, (L x D dimension monolithic channel with different spacing and number of wires, arranged axially in 60o pitch have been introduced to investigate the dynamic mixing of nitrogen and hydrogen for ammonia synthesis. As the wires are configured in a different manner, the results show dissimilar volume fraction profile, contours and mixing index. Creating suitable obstruction with larger obstruction space enhanced the mixing. Reducing spacing from 2 mm to 1.5 mm illustrates fluctuating velocity at the centre of the channel causing the flow velocity become less than the set velocity 0.05ms-1. By substituting from 19 wires to 13 wires to the flow, chaotic advection occurs lead to the increased of mixing index up to 94%.

  19. Dynamic leaching and fractionation of trace elements from environmental solids exploiting a novel circulating-flow platform.

    Science.gov (United States)

    Mori, Masanobu; Nakano, Koji; Sasaki, Masaya; Shinozaki, Haruka; Suzuki, Shiho; Okawara, Chitose; Miró, Manuel; Itabashi, Hideyuki

    2016-02-01

    A dynamic flow-through microcolumn extraction system based on extractant re-circulation is herein proposed as a novel analytical approach for simplification of bioaccessibility tests of trace elements in sediments. On-line metal leaching is undertaken in the format of all injection (AI) analysis, which is a sequel of flow injection analysis, but involving extraction under steady-state conditions. The minimum circulation times and flow rates required to determine the maximum bioaccessible pools of target metals (viz., Cu, Zn, Cd, and Pb) from lake and river sediment samples were estimated using Tessier's sequential extraction scheme and an acid single extraction test. The on-line AIA method was successfully validated by mass balance studies of CRM and real sediment samples. Tessier's test in on-line AI format demonstrated to be carried out by one third of extraction time (6h against more than 17 h by the conventional method), with better analytical precision (15% by the conventional method) and significant decrease in blank readouts as compared with the manual batch counterpart. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) Study of Mass-Transfer Mechanisms in Riser Flow.

    Science.gov (United States)

    Carlos Varas, Álvaro E; Peters, E A J F; Kuipers, J A M

    2017-05-17

    We report a computational fluid dynamics-discrete element method (CFD-DEM) simulation study on the interplay between mass transfer and a heterogeneous catalyzed chemical reaction in cocurrent gas-particle flows as encountered in risers. Slip velocity, axial gas dispersion, gas bypassing, and particle mixing phenomena have been evaluated under riser flow conditions to study the complex system behavior in detail. The most important factors are found to be directly related to particle cluster formation. Low air-to-solids flux ratios lead to more heterogeneous systems, where the cluster formation is more pronounced and mass transfer more influenced. Falling clusters can be partially circumvented by the gas phase, which therefore does not fully interact with the cluster particles, leading to poor gas-solid contact efficiencies. Cluster gas-solid contact efficiencies are quantified at several gas superficial velocities, reaction rates, and dilution factors in order to gain more insight regarding the influence of clustering phenomena on the performance of riser reactors.

  1. Dynamic Analysis of Three-Layer Sandwich Beams with Thick Viscoelastic Damping Core for Finite Element Applications

    Directory of Open Access Journals (Sweden)

    Fernando Cortés

    2015-01-01

    Full Text Available This paper presents an analysis of the dynamic behaviour of constrained layer damping (CLD beams with thick viscoelastic layer. A homogenised model for the flexural stiffness is formulated using Reddy-Bickford’s quadratic shear in each layer, and it is compared with Ross-Kerwin-Ungar (RKU classical model, which considers a uniform shear deformation for the viscoelastic core. In order to analyse the efficiency of both models, a numerical application is accomplished and the provided results are compared with those of a 2D model using finite elements, which considers extensional and shear stress and longitudinal, transverse, and rotational inertias. The intermediate viscoelastic material is characterised by a fractional derivative model, with a frequency dependent complex modulus. Eigenvalues and eigenvectors are obtained from an iterative method avoiding the computational problems derived from the frequency dependence of the stiffness matrices. Also, frequency response functions are calculated. The results show that the new model provides better accuracy than the RKU one as the thickness of the core layer increases. In conclusion, a new model has been developed, being able to reproduce the mechanical behaviour of thick CLD beams, reducing storage needs and computational time compared with a 2D model, and improving the results from the RKU model.

  2. Comparison of explicit finite element and mechanical simulation of the proximal femur during dynamic drop-tower testing.

    Science.gov (United States)

    Ariza, O; Gilchrist, S; Widmer, R P; Guy, P; Ferguson, S J; Cripton, P A; Helgason, B

    2015-01-21

    Current screening techniques based on areal bone mineral density (aBMD) measurements are unable to identify the majority of people who sustain hip fractures. Biomechanical examination of such events may help determine what predisposes a hip to be susceptible to fracture. Recently, drop-tower simulations of in-vitro sideways falls have allowed the study of the mechanical response of the proximal human femur at realistic impact speeds. This technique has created an opportunity to validate explicit finite element (FE) models against dynamic test data. This study compared the outcomes of 15 human femoral specimens fractured using a drop tower with complementary specimen-specific explicit FE analysis. Correlation coefficient and root mean square error (RMSE) were found to be moderate for whole bone stiffness comparison (R(2)=0.3476 and 22.85% respectively). No correlation was found between experimentally and computationally predicted peak force, however, energy absorption comparison produced moderate correlation and RMSE (R(2)=0.4781 and 29.14% respectively). By comparing predicted strain maps to high speed video data we demonstrated the ability of the FE models to detect vulnerable portions of the bones. Based on our observations, we conclude that there exists a need to extend the current apparent level material models for bone to cover higher strain rates than previously tested experimentally. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer.

    Science.gov (United States)

    Besserve, Michel; Lowe, Scott C; Logothetis, Nikos K; Schölkopf, Bernhard; Panzeri, Stefano

    2015-01-01

    Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50-80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections.

  4. Dynamic information processing states revealed through neurocognitive models of object semantics

    Science.gov (United States)

    Clarke, Alex

    2015-01-01

    Recognising objects relies on highly dynamic, interactive brain networks to process multiple aspects of object information. To fully understand how different forms of information about objects are represented and processed in the brain requires a neurocognitive account of visual object recognition that combines a detailed cognitive model of semantic knowledge with a neurobiological model of visual object processing. Here we ask how specific cognitive factors are instantiated in our mental processes and how they dynamically evolve over time. We suggest that coarse semantic information, based on generic shared semantic knowledge, is rapidly extracted from visual inputs and is sufficient to drive rapid category decisions. Subsequent recurrent neural activity between the anterior temporal lobe and posterior fusiform supports the formation of object-specific semantic representations – a conjunctive process primarily driven by the perirhinal cortex. These object-specific representations require the integration of shared and distinguishing object properties and support the unique recognition of objects. We conclude that a valuable way of understanding the cognitive activity of the brain is though testing the relationship between specific cognitive measures and dynamic neural activity. This kind of approach allows us to move towards uncovering the information processing states of the brain and how they evolve over time. PMID:25745632

  5. FOUNDATION AND DESCRIPTION OF INFORMATIONAL AND PSYCHOLOGICAL DESTRUCTIVE NATURE INFLUENCES DYNAMICS MODEL IN SOCIAL NETWORKS

    Directory of Open Access Journals (Sweden)

    V. A. Minaev

    2016-10-01

    Full Text Available The article provides a definition of information and psychological technologies and the main channels of information and psychological influences (IPI on social groups. A detailed analysis of the modeling human behavior experience, including the work of Soviet, Russian and foreign scientists is given. It is concluded that mathematical models of information-psychological dynamics influence on the current stage of psychological science development perspective only in relation to mass consciousness. Due to the complexity and poor knowledge of processes occurring in the human psyche and determined his personal peculiarities, the creation of adequate mathematical models of IPI in the individual consciousness is impossible, but for the expert prediction and assessment of the IPI dynamics on a particular member of a social group should use existing proven scientific tests and technique. It has been shown that a significant improvement in the predictability of mathematical models expected in the transition to a dynamic model in the state space. Given verbal and formal description of the model, leading to a form of non-linear differential equation describing the diffusion of innovations. The models take into account of the mass media influence on society, interpersonal information exchange, the effect of forgetting influence. It was emphasized that similar modified mathematical model has given good results in its application to the description of the electoral processes in Russia and spread of ideas of the "Arabian Spring" through social networks.

  6. Elements of Dynamic Programming,

    Science.gov (United States)

    1981-02-02

    step/pitch lies in the fact that us ia .o eacerprise P, cf means x". to enter.rise P2 - means xan sc L Jsing widely used teraiAo.j, :onrrol U, it is... acca ~acj ,,L ra sauticn of protlem. Is qenertity intuitively it ii cliax thi-t with at. increat-e in the number aoc = 80151502 FAG E of stips/pitches...Ad.aua inccme W*.. 5S on the ,raph/curve Fig. 9.10 bitn ;.A Leut Z, = 0.75.x2 + 0.3 (Z, - xl); it is obtained value w. 4 . .o.& acca ayq.n they are

  7. Recent advances in organic one-dimensional composite materials: design, construction, and photonic elements for information processing.

    Science.gov (United States)

    Yan, Yongli; Zhang, Chuang; Yao, Jiannian; Zhao, Yong Sheng

    2013-07-19

    Many recent activities in the use of one-dimensional nanostructures as photonic elements for optical information processing are explained by huge advantages that photonic circuits possess over traditional silicon-based electronic ones in bandwidth, heat dissipation, and resistance to electromagnetic wave interference. Organic materials are a promising candidate to support these optical-related applications, as they combine the properties of plastics with broad spectral tunability, high optical cross-section, easy fabrication, as well as low cost. Their outstanding compatibility allows organic composite structures which are made of two or more kinds of materials combined together, showing great superiority to single-component materials due to the introduced interactions among multiple constituents, such as energy transfer, electron transfer, exciton coupling, etc. The easy processability of organic 1D crystalline heterostructures enables a fine topological control of both composition and geometry, which offsets the intrinsic deficiencies of individual material. At the same time, the strong exciton-photon coupling and exciton-exciton interaction impart the excellent confinement of photons in organic microstructures, thus light can be manipulated according to our intention to realize specific functions. These collective properties indicate a potential utility of organic heterogeneous material for miniaturized photonic circuitry. Herein, focus is given on recent advances of 1D organic crystalline heterostructures, with special emphasis on the novel design, controllable construction, diverse performance, as well as wide applications in isolated photonic elements for integration. It is proposed that the highly coupled, hybrid optical networks would be an important material basis towards the creation of on-chip optical information processing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Does dynamic information about the speaker's face contribute to semantic speech processing? ERP evidence.

    Science.gov (United States)

    Hernández-Gutiérrez, David; Abdel Rahman, Rasha; Martín-Loeches, Manuel; Muñoz, Francisco; Schacht, Annekathrin; Sommer, Werner

    2018-07-01

    Face-to-face interactions characterize communication in social contexts. These situations are typically multimodal, requiring the integration of linguistic auditory input with facial information from the speaker. In particular, eye gaze and visual speech provide the listener with social and linguistic information, respectively. Despite the importance of this context for an ecological study of language, research on audiovisual integration has mainly focused on the phonological level, leaving aside effects on semantic comprehension. Here we used event-related potentials (ERPs) to investigate the influence of facial dynamic information on semantic processing of connected speech. Participants were presented with either a video or a still picture of the speaker, concomitant to auditory sentences. Along three experiments, we manipulated the presence or absence of the speaker's dynamic facial features (mouth and eyes) and compared the amplitudes of the semantic N400 elicited by unexpected words. Contrary to our predictions, the N400 was not modulated by dynamic facial information; therefore, semantic processing seems to be unaffected by the speaker's gaze and visual speech. Even though, during the processing of expected words, dynamic faces elicited a long-lasting late posterior positivity compared to the static condition. This effect was significantly reduced when the mouth of the speaker was covered. Our findings may indicate an increase of attentional processing to richer communicative contexts. The present findings also demonstrate that in natural communicative face-to-face encounters, perceiving the face of a speaker in motion provides supplementary information that is taken into account by the listener, especially when auditory comprehension is non-demanding. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The Logical Dynamics of Information; Deacon’s “Incomplete Nature”

    Directory of Open Access Journals (Sweden)

    Joseph E. Brenner

    2012-11-01

    Full Text Available In his Incomplete Nature, Deacon extends a thermodynamic concept of energy to yield a description of complex processes in which absence plays a critical role in their emergence and evolution. Starting from a quantum-mechanical picture of energy as an energy-matter duality, the critical role of potential as well as actual properties of processes is also described in the new extension of logic to real phenomena, Logic in Reality (LIR, which I have proposed. Deacon shows how an interactive operation of both Shannon entropy and Boltzmann entropy must be taken into account in information. Here, I demonstrate the complementarity of our two approaches to what is not, or not fully, present for an understanding of the dynamics of complex phenomena, especially, of intentionality, information and meaning. Deacon shows that the hallmark of information is its absent content, and LIR shows that presence (actuality and absence (potentiality in such processes are related dynamically. Deacon’s approach and LIR ground and extend Logan’s concepts of biotic information and the relativity of information vs. meaning. Their conjunction constitutes a new conceptual structure for exploring the relationship of information to materiality, that is, to the matter-energy that constitutes it as its carrier and/or substrate.

  10. Assessing the role of informal sector in WEEE management systems: A System Dynamics approach.

    Science.gov (United States)

    Ardi, Romadhani; Leisten, Rainer

    2016-11-01

    Generally being ignored by academia and regulators, the informal sector plays important roles in Waste Electrical and Electronic Equipment (WEEE) management systems, especially in developing countries. This study aims: (1) to capture and model the variety of informal operations in WEEE management systems, (2) to capture the dynamics existing within the informal sector, and (3) to assess the role of the informal sector as the key player in the WEEE management systems, influencing both its future operations and its counterpart, the formal sector. By using System Dynamics as the methodology and India as the reference system, this study is able to explain the reasons behind, on the one hand, the superiority of the informal sector in WEEE management systems and, on the other hand, the failure of the formal systems. Additionally, this study reveals the important role of the second-hand market as the determinant of the rise and fall of the informal sector in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Information Dynamics in the Interaction between a Prey and a Predator Fish

    Directory of Open Access Journals (Sweden)

    Feng Hu

    2015-10-01

    Full Text Available Accessing information efficiently is vital for animals to make the optimal decisions, and it is particularly important when they are facing predators. Yet until now, very few quantitative conclusions have been drawn about the information dynamics in the interaction between animals due to the lack of appropriate theoretic measures. Here, we employ transfer entropy (TE, a new information-theoretic and model-free measure, to explore the information dynamics in the interaction between a predator and a prey fish. We conduct experiments in which a predator and a prey fish are confined in separate parts of an arena, but can communicate with each other visually and tactilely. TE is calculated on the pair’s coarse-grained state of the trajectories. We find that the prey’s TE is generally significantly bigger than the predator’s during trials, which indicates that the dominant information is transmitted from predator to prey. We then demonstrate that the direction of information flow is irrelevant to the parameters used in the coarse-grained procedures. We further calculate the prey’s TE at different distances between it and the predator. The resulted figure shows that there is a high plateau in the mid-range of the distance and that drops quickly at both the near and the far ends. This result reflects that there is a sensitive space zone where the prey is highly vigilant of the predator’s position.

  12. Experiential knowledge of expert coaches can help identify informational constraints on performance of dynamic interceptive actions.

    Science.gov (United States)

    Greenwood, Daniel; Davids, Keith; Renshaw, Ian

    2014-01-01

    Coordination of dynamic interceptive movements is predicated on cyclical relations between an individual's actions and information sources from the performance environment. To identify dynamic informational constraints, which are interwoven with individual and task constraints, coaches' experiential knowledge provides a complementary source to support empirical understanding of performance in sport. In this study, 15 expert coaches from 3 sports (track and field, gymnastics and cricket) participated in a semi-structured interview process to identify potential informational constraints which they perceived to regulate action during run-up performance. Expert coaches' experiential knowledge revealed multiple information sources which may constrain performance adaptations in such locomotor pointing tasks. In addition to the locomotor pointing target, coaches' knowledge highlighted two other key informational constraints: vertical reference points located near the locomotor pointing target and a check mark located prior to the locomotor pointing target. This study highlights opportunities for broadening the understanding of perception and action coupling processes, and the identified information sources warrant further empirical investigation as potential constraints on athletic performance. Integration of experiential knowledge of expert coaches with theoretically driven empirical knowledge represents a promising avenue to drive future applied science research and pedagogical practice.

  13. Stochastic and information-thermodynamic structures of population dynamics in a fluctuating environment

    Science.gov (United States)

    Kobayashi, Tetsuya J.; Sughiyama, Yuki

    2017-07-01

    Adaptation in a fluctuating environment is a process of fueling environmental information to gain fitness. Living systems have gradually developed strategies for adaptation from random and passive diversification of the phenotype to more proactive decision making, in which environmental information is sensed and exploited more actively and effectively. Understanding the fundamental relation between fitness and information is therefore crucial to clarify the limits and universal properties of adaptation. In this work, we elucidate the underlying stochastic and information-thermodynamic structure in this process, by deriving causal fluctuation relations (FRs) of fitness and information. Combined with a duality between phenotypic and environmental dynamics, the FRs reveal the limit of fitness gain, the relation of time reversibility with the achievability of the limit, and the possibility and condition for gaining excess fitness due to environmental fluctuation. The loss of fitness due to causal constraints and the limited capacity of real organisms is shown to be the difference between time-forward and time-backward path probabilities of phenotypic and environmental dynamics. Furthermore, the FRs generalize the concept of the evolutionary stable state (ESS) for fluctuating environment by giving the probability that the optimal strategy on average can be invaded by a suboptimal one owing to rare environmental fluctuation. These results clarify the information-thermodynamic structures in adaptation and evolution.

  14. Stochastic feeding dynamics arise from the need for information and energy.

    Science.gov (United States)

    Scholz, Monika; Dinner, Aaron R; Levine, Erel; Biron, David

    2017-08-29

    Animals regulate their food intake in response to the available level of food. Recent observations of feeding dynamics in small animals showed feeding patterns of bursts and pauses, but their function is unknown. Here, we present a data-driven decision-theoretical model of feeding in Caenorhabditis elegans Our central assumption is that food intake serves a dual purpose: to gather information about the external food level and to ingest food when the conditions are good. The model recapitulates experimentally observed feeding patterns. It naturally implements trade-offs between speed versus accuracy and exploration versus exploitation in responding to a dynamic environment. We find that the model predicts three distinct regimes in responding to a dynamical environment, with a transition region where animals respond stochastically to periodic signals. This stochastic response accounts for previously unexplained experimental data.

  15. Spatially dynamic recurrent information flow across long-range dorsal motor network encodes selective motor goals.

    Science.gov (United States)

    Yoo, Peter E; Hagan, Maureen A; John, Sam E; Opie, Nicholas L; Ordidge, Roger J; O'Brien, Terence J; Oxley, Thomas J; Moffat, Bradford A; Wong, Yan T

    2018-03-08

    Performing voluntary movements involves many regions of the brain, but it is unknown how they work together to plan and execute specific movements. We recorded high-resolution ultra-high-field blood-oxygen-level-dependent signal during a cued ankle-dorsiflexion task. The spatiotemporal dynamics and the patterns of task-relevant information flow across the dorsal motor network were investigated. We show that task-relevant information appears and decays earlier in the higher order areas of the dorsal motor network then in the primary motor cortex. Furthermore, the results show that task-relevant information is encoded in general initially, and then selective goals are subsequently encoded in specifics subregions across the network. Importantly, the patterns of recurrent information flow across the network vary across different subregions depending on the goal. Recurrent information flow was observed across all higher order areas of the dorsal motor network in the subregions encoding for the current goal. In contrast, only the top-down information flow from the supplementary motor cortex to the frontoparietal regions, with weakened recurrent information flow between the frontoparietal regions and bottom-up information flow from the frontoparietal regions to the supplementary cortex were observed in the subregions encoding for the opposing goal. We conclude that selective motor goal encoding and execution rely on goal-dependent differences in subregional recurrent information flow patterns across the long-range dorsal motor network areas that exhibit graded functional specialization. © 2018 Wiley Periodicals, Inc.

  16. The Modeling and Complexity of Dynamical Systems by Means of Computation and Information Theories

    Directory of Open Access Journals (Sweden)

    Robert Logozar

    2011-12-01

    Full Text Available We present the modeling of dynamical systems and finding of their complexity indicators by the use of concepts from computation and information theories, within the framework of J. P. Crutchfield's theory of  ε-machines. A short formal outline of the  ε-machines is given. In this approach, dynamical systems are analyzed directly from the time series that is received from a properly adjusted measuring instrument. The binary strings are parsed through the parse tree, within which morphologically and probabilistically unique subtrees or morphs are recognized as system states. The outline and precise interrelation of the information-theoretic entropies and complexities emanating from the model is given. The paper serves also as a theoretical foundation for the future presentation of the DSA program that implements the  ε-machines modeling up to the stochastic finite automata level.

  17. Dynamics of quantum Fisher information in a two-level system coupled to multiple bosonic reservoirs

    Science.gov (United States)

    Wang, Guo-You; Guo, You-Neng; Zeng, Ke

    2015-11-01

    We consider the optimal parameter estimation for a two-level system coupled to multiple bosonic reservoirs. By using quantum Fisher information (QFI), we investigate the effect of the Markovian reservoirs’ number N on QFI in both weak and strong coupling regimes for a two-level system surrounded by N zero-temperature reservoirs of field modes initially in the vacua. The results show that the dynamics of QFI non-monotonically decays to zero with revival oscillations at some time in the weak coupling regime depending on the reservoirs’ parameters. Furthermore, we also present the relations between the QFI flow, the flows of energy and information, and the sign of the decay rate to gain insight into the physical processes characterizing the dynamics. Project supported by the Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2014B194) and the Scientific Research Foundation of Hunan Provincial Education Department, China (Grant No. 13C039).

  18. Models of neural dynamics in brain information processing - the developments of 'the decade'

    International Nuclear Information System (INIS)

    Borisyuk, G N; Borisyuk, R M; Kazanovich, Yakov B; Ivanitskii, Genrikh R

    2002-01-01

    Neural network models are discussed that have been developed during the last decade with the purpose of reproducing spatio-temporal patterns of neural activity in different brain structures. The main goal of the modeling was to test hypotheses of synchronization, temporal and phase relations in brain information processing. The models being considered are those of temporal structure of spike sequences, of neural activity dynamics, and oscillatory models of attention and feature integration. (reviews of topical problems)

  19. Corporate Social Responsibility in the Dynamic Information Age of Inter-Systems Connectivity

    OpenAIRE

    Arvind Ashta

    2009-01-01

    The Information Age, with its new technologies, is accompanied by an accelerating shift in work relations, of which this article focuses on connectivity, interdependence and dynamism. Along with this change in relations, new ethical cultures and responsibilities are evolving at different levels: individual, corporate, governmental, NGO, and global. This article zooms in on theoretical developments related to Corporate Social Responsibility to see how they have evolved to adapt to the new mode...

  20. Algorithm for predicting the evolution of series of dynamics of complex systems in solving information problems

    Science.gov (United States)

    Kasatkina, T. I.; Dushkin, A. V.; Pavlov, V. A.; Shatovkin, R. R.

    2018-03-01

    In the development of information, systems and programming to predict the series of dynamics, neural network methods have recently been applied. They are more flexible, in comparison with existing analogues and are capable of taking into account the nonlinearities of the series. In this paper, we propose a modified algorithm for predicting the series of dynamics, which includes a method for training neural networks, an approach to describing and presenting input data, based on the prediction by the multilayer perceptron method. To construct a neural network, the values of a series of dynamics at the extremum points and time values corresponding to them, formed based on the sliding window method, are used as input data. The proposed algorithm can act as an independent approach to predicting the series of dynamics, and be one of the parts of the forecasting system. The efficiency of predicting the evolution of the dynamics series for a short-term one-step and long-term multi-step forecast by the classical multilayer perceptron method and a modified algorithm using synthetic and real data is compared. The result of this modification was the minimization of the magnitude of the iterative error that arises from the previously predicted inputs to the inputs to the neural network, as well as the increase in the accuracy of the iterative prediction of the neural network.

  1. A dynamic identity based authentication scheme using chaotic maps for telecare medicine information systems.

    Science.gov (United States)

    Wang, Zhiheng; Huo, Zhanqiang; Shi, Wenbo

    2015-01-01

    With rapid development of computer technology and wide use of mobile devices, the telecare medicine information system has become universal in the field of medical care. To protect patients' privacy and medial data's security, many authentication schemes for the telecare medicine information system have been proposed. Due to its better performance, chaotic maps have been used in the design of authentication schemes for the telecare medicine information system. However, most of them cannot provide user's anonymity. Recently, Lin proposed a dynamic identity based authentication scheme using chaotic maps for the telecare medicine information system and claimed that their scheme was secure against existential active attacks. In this paper, we will demonstrate that their scheme cannot provide user anonymity and is vulnerable to the impersonation attack. Further, we propose an improved scheme to fix security flaws in Lin's scheme and demonstrate the proposed scheme could withstand various attacks.

  2. Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics

    Science.gov (United States)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.

  3. Information quality and dynamics of patients' interactions on tonsillectomy web resources

    Directory of Open Access Journals (Sweden)

    Marianne Arsenault

    2016-05-01

    Full Text Available Information technologies have drastically altered the way patients gather health-related information. By analysing web resources on tonsillectomy, we expose information quality and dynamics of patients' interactions in the online continuum. Readability was assessed using Flesch Reading Ease (FRE, Flesch Kincaid Grade Level (FKGL, Simple Measure of Gobbledygook (SMOG, and Gunning Fog Index (GFI. Comprehensibility and actionability were assessed using the Patient Education Materials Assessment Tool (PEMAT. Metrics of forums included author characteristics (level of disclosure, gender, age, avatar image, etc., posts' motive (community support vs. medical information and content (word count, emoticon use, number of replies, etc.. Analysis of 6 professional medical websites, of 10 health information portals, and of 3 discussion forums totalizing 1369 posts on 358 threads, from January 1, 2007 to December 31, 2014, reveals that online resources exceed understandability recommendations. Women were more present on online health forums (68.2% of authors disclosing their gender and invested themselves more in their avatar. Authors replying were significantly older than authors of original posts (39.7 ± 0.8 years vs. 29.2 ± 0.9 years, p < 0.001. The degree of self-disclosure was inversely proportional to the requests for medical information (p < 0.001. Men and women were equally seeking medical information (men: 74.0%, women: 77.0% and community support (men: 65.7%, women: 70.4%, however women responded more supportively (women 86.2%, men 59.1%, p < 0.001. The dynamics of patients' interactions used to overcome accessibility difficulties encountered is complex. This work outlines the necessity for comprehensible medical information to adequately answer patients' needs.

  4. An empirically-derived approach for investigating Health Information Technology: the Elementally Entangled Organisational Communication (EEOC) framework.

    Science.gov (United States)

    Georgiou, Andrew; Westbrook, Johanna I; Braithwaite, Jeffrey

    2012-07-12

    The purpose of this paper is to illustrate the Elementally Entangled Organisational Communication (EEOC) framework by drawing on a set of three case studies which assessed the impact of new Health Information Technology (HIT) on a pathology service. The EEOC framework was empirically developed as a tool to tackle organisational communication challenges in the implementation and evaluation of health information systems. The framework was synthesised from multiple research studies undertaken across a major metropolitan hospital pathology service during the period 2005 to 2008. These studies evaluated the impact of new HIT systems in pathology departments (Laboratory Information System) and an Emergency Department (Computerised Provider Order Entry) located in Sydney, Australia. Key dimensions of EEOC are illustrated by the following case studies: 1) the communication infrastructure between the Blood Bank and the ward for the coordination and distribution of blood products; 2) the organisational environment in the Clinical Chemistry and Haematology departments and their attempts to organise, plan and control the processing of laboratory specimens; and 3) the temporal make up of the organisation as revealed in changes to the way the Central Specimen Reception allocated, sequenced and synchronised work tasks. The case studies not only highlight the pre-existing communication architecture within the organisation but also the constitutive role communication plays in the way organisations go about addressing their requirements. HIT implementation involves a mutual transformation of the organisation and the technology. This is a vital consideration because of the dangers associated with poor organisational planning and implementation of HIT, and the potential for unintended adverse consequences, workarounds and risks to the quality and safety of patient care. The EEOC framework aims to account for the complex range of contextual factors and triggers that play a role in the

  5. Quality of service management framework for dynamic chaining of geographic information services

    Science.gov (United States)

    Onchaga, Richard

    2006-06-01

    Dynamic chaining of geographic information services (geo-services) is gaining popularity as a new paradigm for evolving flexible geo-information systems and for providing on-demand access to geo-information. In dynamic chaining, disparate geo-services are discovered and composed at run time to yield more elaborate functionality and create value-added geo-information. Common approaches to service chaining discover and compose disparate geo-services based on the functional capability of individual geo-services. The primary concern of common approaches is thus the emergent behavior of the resulting composite geo-service. However, as geo-services become mundane and take on a greater and more strategic role in mission critical processes, deliverable quality of service (QoS) becomes an important concern. QoS concerns operational characteristics of a service that determine its utility in an application context. To address pertinent QoS requirements, a new approach to service chaining becomes necessary. In this paper we propose a QoS-aware chaining approach in which geo-services are discovered, composed and executed considering both functional and QoS requirements. We prescribe a QoS management framework that defines fundamental principles, concepts and mechanisms which can be applied to evolve an effective distributed computing platform for QoS-aware chaining of geo-services - the so-called geo-service infrastructure. The paper also defines an extensible QoS model for services delivered by dynamic compositions of geo-services. The process of orthophoto generation is used to demonstrate the applicability of the prescribed framework to service-oriented geographic information processing.

  6. CCM Continuity Constraint Method: A finite-element computational fluid dynamics algorithm for incompressible Navier-Stokes fluid flows

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P. T. [Univ. of Tennessee, Knoxville, TN (United States)

    1993-09-01

    As the field of computational fluid dynamics (CFD) continues to mature, algorithms are required to exploit the most recent advances in approximation theory, numerical mathematics, computing architectures, and hardware. Meeting this requirement is particularly challenging in incompressible fluid mechanics, where primitive-variable CFD formulations that are robust, while also accurate and efficient in three dimensions, remain an elusive goal. This dissertation asserts that one key to accomplishing this goal is recognition of the dual role assumed by the pressure, i.e., a mechanism for instantaneously enforcing conservation of mass and a force in the mechanical balance law for conservation of momentum. Proving this assertion has motivated the development of a new, primitive-variable, incompressible, CFD algorithm called the Continuity Constraint Method (CCM). The theoretical basis for the CCM consists of a finite-element spatial semi-discretization of a Galerkin weak statement, equal-order interpolation for all state-variables, a 0-implicit time-integration scheme, and a quasi-Newton iterative procedure extended by a Taylor Weak Statement (TWS) formulation for dispersion error control. Original contributions to algorithmic theory include: (a) formulation of the unsteady evolution of the divergence error, (b) investigation of the role of non-smoothness in the discretized continuity-constraint function, (c) development of a uniformly H1 Galerkin weak statement for the Reynolds-averaged Navier-Stokes pressure Poisson equation, (d) derivation of physically and numerically well-posed boundary conditions, and (e) investigation of sparse data structures and iterative methods for solving the matrix algebra statements generated by the algorithm.

  7. Trace element and isotopic compositions of Vietnamese basalts: implications for mantle dynamics in the southeast Asian region

    International Nuclear Information System (INIS)

    Nguyen, H.; Fower, M.; Nguyen, H.; Nguyen, X.B.; Nguyen, T.Y.

    1996-01-01

    Cenozoic basalts in Indo-China are part of a regional melting episode along the rifted Eurasian margin. Trace element and isotopic compositions of Vietnamese basalts are used to place constraints on the extent of lithospheric and asthenosphere contributions to the melts and possible mantle dynamic implications. The 87 Sr/ 86 Sr, 207 Pb/ 204 Pb, and 208 Pb/ 204 Pb isotopic ratios of the basalts reflect minimal crustal wall rock reaction, and variable enrichment in EM1 and EM2 of a 208 Pb-rich MORB-like source. Some, but not all, of this variation corresponds to the age of lithospheric sector penetrated. Basalts erupted through a cratonic, central sector (e.g. at Quang Ngai, Pleiku, Song Cau, Kong Plong, and Buon Ma Thuot) and off-cratonic, southwest sector (e.g. Phuoc Long) resemble those of EM2-rich basalts from southern and southeaster China and the South China Sea. Basalts from an off-cratonic, southeast sector (e.g. from Dalat, Xuan Loc, and the offshore Ile des Cendres-Phu Cuy complex) reflect mixing between a low- 206 Pb/ 204 Pb, high- 208 Pb/ 204 Pb, EM1-like component, and resemble basalts from northwest Taiwan, eastern and northeastern China, and parts of the Japan Sea. While EM2 tends to characterise lithospheric sectors, presence of EM1 in off-cratonic rather than cratonic basalts implies an asthenosphere rather than lithospheric source. Pervasive presence of EM1 in southeast Asian and marginal basin asthenosphere corresponds with thermally-anomalous mantle and may involve delaminated cratonic substrate entrained by mobile, extruded asthenosphere. (authors)

  8. Main Dynamics of the Transition from Industrial Society to Information Society

    Directory of Open Access Journals (Sweden)

    Yaşar Tonta

    2005-12-01

    Full Text Available Industrial Society is based on mass production and mass distribution of standardized goods and services. The objective of companies is to reduce the unit cost by producing and distributing the same goods in large quantities cheaper than their competitors. Mass production and mass distribution requires an economic model based on centralization; mechanistical, rigid/hierarchical organizational structures; and traditional education. Companies act on the basis of the logic of “produce, store, and sell”. Information Society on the other hand is an indication of a more complex and richer social structure. The objective of companies is to produce mass customized and personalized goods and services for their customers. The customer can buy a personalized good or service with the best price from anywhere in the world. Called “The Age of Terrific Deal” by Robert B. Reich, Information Society requires an economic model based on personalization; dynamic and flat organizational structures; and customer focused education. Companies must act on the basis of the logic of “sell, produce, and deliver”. This paper discusses the major changes that take place during the transition from Industrial Society to Information Society along with basic dynamics of the Information Society.

  9. An Experimental Investigation of Self-Excited Combustion Dynamics in a Single Element Lean Direct Injection (LDI) Combustor

    Science.gov (United States)

    Gejji, Rohan M.

    The management of combustion dynamics in gas turbine combustors has become more challenging as strict NOx/CO emission standards have led to engine operation in a narrow, lean regime. While premixed or partially premixed combustor configurations such as the Lean Premixed Pre-vaporized (LPP), Rich Quench Lean burn (RQL), and Lean Direct Injection (LDI) have shown a potential for reduced NOx emissions, they promote a coupling between acoustics, hydrodynamics and combustion that can lead to combustion instabilities. These couplings can be quite complex, and their detailed understanding is a pre-requisite to any engine development program and for the development of predictive capability for combustion instabilities through high-fidelity models. The overarching goal of this project is to assess the capability of high-fidelity simulation to predict combustion dynamics in low-emissions gas turbine combustors. A prototypical lean-direct-inject combustor was designed in a modular configuration so that a suitable geometry could be found by test. The combustor comprised a variable length air plenum and combustion chamber, air swirler, and fuel nozzle located inside a subsonic venturi. The venturi cross section and the fuel nozzle were consistent with previous studies. Test pressure was 1 MPa and variables included geometry and acoustic resonance, inlet temperatures, equivalence ratio, and type of liquid fuel. High-frequency pressure measurements in a well-instrumented metal chamber yielded frequencies and mode shapes as a function of inlet air temperature, equivalence ratio, fuel nozzle placement, and combustor acoustic resonances. The parametric survey was a significant effort, with over 105 tests on eight geometric configurations. A good dataset was obtained that could be used for both operating-point-dependent quantitative comparisons, and testing the ability of the simulation to predict more global trends. Results showed a very strong dependence of instability amplitude on

  10. A Dynamic Information Framework (DIF): A Portal for the Changing Biogeochemistry of Aquatic Systems

    Science.gov (United States)

    Richey, J. E.; Fernandes, E. C. M.

    2014-12-01

    The ability of societies to adapt to climate and landuse change in aquatic systems is functionally and practically expressed by how regional stakeholders are able to address complex management issues. These targets represent a very complex set of intersecting issues of scale, cross-sector science and technology, education, politics, and economics. Implications transcend individual projects and ministries. An immediate challenge is to incorporate the realities of changing environmental conditions in these sectors into the policies and projects of the Ministries nominally responsible. Ideally this would be done on the basis of the absolute best understanding of the issues involved, and done in a way that optimizes a multi-stakeholder return. Central to a response is "actionable information-" the synthesis and "bringing to life" of the key information that integrates the end-to-end knowledge required to provide the high-level decision support to make the most informed decisions. But, in practice, the information necessary and even perspectives are virtually absent, in much of especially the developing world. To meet this challenge, we have been developing a Dynamic Information Framework (DIF), primarily through collaborations with the World Bank in Asia, Africa, and Brazil. The DIF is, essentially a decision support structure, built around "earth system" models. The environment is built on progressive information layers that are fed through hydrological and geospatial landscape models to produce outputs that address specific science questions related to water resources management of the region. Information layers from diverse sources are assembled, according to the principles of how the landscape is organized, and computer models are used to bring the information "to life." A fundamental aspect to a DIF is not only the convergence of multi-sector information, but how that information can be conveyed, in the most compelling, and visual, manner. Deployment of the

  11. Network information analysis reveals risk perception transmission in a behaviour-influenza dynamics system.

    Science.gov (United States)

    Liao, C-M; You, S-H; Cheng, Y-H

    2015-01-01

    Influenza poses a significant public health burden worldwide. Understanding how and to what extent people would change their behaviour in response to influenza outbreaks is critical for formulating public health policies. We incorporated the information-theoretic framework into a behaviour-influenza (BI) transmission dynamics system in order to understand the effects of individual behavioural change on influenza epidemics. We showed that information transmission of risk perception played a crucial role in the spread of health-seeking behaviour throughout influenza epidemics. Here a network BI model provides a new approach for understanding the risk perception spread and human behavioural change during disease outbreaks. Our study allows simultaneous consideration of epidemiological, psychological, and social factors as predictors of individual perception rates in behaviour-disease transmission systems. We suggest that a monitoring system with precise information on risk perception should be constructed to effectively promote health behaviours in preparation for emerging disease outbreaks.

  12. The effect of heterogeneous dynamics of online users on information filtering

    International Nuclear Information System (INIS)

    Chen, Bo-Lun; Zeng, An; Chen, Ling

    2015-01-01

    The rapid expansion of the Internet requires effective information filtering techniques to extract the most essential and relevant information for online users. Many recommendation algorithms have been proposed to predict the future items that a given user might be interested in. However, there is an important issue that has always been ignored so far in related works, namely the heterogeneous dynamics of online users. The interest of active users changes more often than that of less active users, which asks for different update frequency of their recommendation lists. In this paper, we develop a framework to study the effect of heterogeneous dynamics of users on the recommendation performance. We find that the personalized application of recommendation algorithms results in remarkable improvement in the recommendation accuracy and diversity. Our findings may help online retailers make better use of the existing recommendation methods. - Highlights: • We study the effect of heterogeneous dynamics of users on recommendation. • Due to the user heterogeneity, their amount of links in the probe set is different. • The personalized algorithm implementation improves the recommendation performance. • Our results suggest different update frequency for users – recommendation list.

  13. The relationship between hospital and ehr vendor market dynamics on health information organization presence and participation.

    Science.gov (United States)

    Lin, Sunny C; Adler-Milstein, Julia

    2018-05-08

    Health Information Organizations (HIOs) are third party organizations that facilitate electronic health information exchange (HIE) between providers in a geographic area. Despite benefits from HIE, HIOs have struggled to form and subsequently gain broad provider participation. We sought to assess whether market-level hospital and EHR vendor dynamics are associated with presence and level of hospital participation in HIOs. 2014 data on 4523 hospitals and their EHR vendors were aggregated to the market level. We used multivariate OLS regression to analyze the relationship between hospital and vendor dynamics and (1) probability of HIO presence and (2) percent of hospitals participating in an HIO. 298 of 469 markets (64%) had HIO presence, and in those markets, 47% of hospitals participated in an HIO on average. In multivariate analysis, four characteristics were associated with HIO presence. Markets with more hospitals, markets with more EHR vendors, and markets with an EHR vendor-led HIE approach were more likely to have an HIO. Compared to markets with low hospital competition, markets with high hospital competition had a 25 percentage point lower probability of HIO presence. Two characteristics were associated with level of hospital HIO participation. Markets with more hospitals as well as markets with high vendor competition (compared to low competition) had lower participation. Both hospital and EHR vendor dynamics are associated with whether a market has an HIO as well as the level of hospital participation in HIOs.

  14. The effect of heterogeneous dynamics of online users on information filtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bo-Lun [Department of Computer Science, Yangzhou University of China, Yangzhou 225127 (China); Department of Computer Science, Nanjing University of Aeronautics and Astronautics of China, Nanjing 210016 (China); Department of Physics, University of Fribourg, Chemin du Musee 3, CH-1700 Fribourg (Switzerland); Zeng, An, E-mail: anzeng@bnu.edu.cn [School of Systems Science, Beijing Normal University, Beijing 100875 (China); Chen, Ling [Department of Computer Science, Yangzhou University of China, Yangzhou 225127 (China); Department of Computer Science, Nanjing University of Aeronautics and Astronautics of China, Nanjing 210016 (China)

    2015-11-06

    The rapid expansion of the Internet requires effective information filtering techniques to extract the most essential and relevant information for online users. Many recommendation algorithms have been proposed to predict the future items that a given user might be interested in. However, there is an important issue that has always been ignored so far in related works, namely the heterogeneous dynamics of online users. The interest of active users changes more often than that of less active users, which asks for different update frequency of their recommendation lists. In this paper, we develop a framework to study the effect of heterogeneous dynamics of users on the recommendation performance. We find that the personalized application of recommendation algorithms results in remarkable improvement in the recommendation accuracy and diversity. Our findings may help online retailers make better use of the existing recommendation methods. - Highlights: • We study the effect of heterogeneous dynamics of users on recommendation. • Due to the user heterogeneity, their amount of links in the probe set is different. • The personalized algorithm implementation improves the recommendation performance. • Our results suggest different update frequency for users – recommendation list.

  15. Context-dependent retrieval of information by neural-network dynamics with continuous attractors.

    Science.gov (United States)

    Tsuboshita, Yukihiro; Okamoto, Hiroshi

    2007-08-01

    Memory retrieval in neural networks has traditionally been described by dynamic systems with discrete attractors. However, recent neurophysiological findings of graded persistent activity suggest that memory retrieval in the brain is more likely to be described by dynamic systems with continuous attractors. To explore what sort of information processing is achieved by continuous-attractor dynamics, keyword extraction from documents by a network of bistable neurons, which gives robust continuous attractors, is examined. Given an associative network of terms, a continuous attractor led by propagation of neuronal activation in this network appears to represent keywords that express underlying meaning of a document encoded in the initial state of the network-activation pattern. A dominant hypothesis in cognitive psychology is that long-term memory is archived in the network structure, which resembles associative networks of terms. Our results suggest that keyword extraction by the neural-network dynamics with continuous attractors might symbolically represent context-dependent retrieval of short-term memory from long-term memory in the brain.

  16. An enhanced dynamic ID-based authentication scheme for telecare medical information systems

    Directory of Open Access Journals (Sweden)

    Ankita Chaturvedi

    2017-01-01

    Full Text Available The authentication schemes for telecare medical information systems (TMIS try to ensure secure and authorized access. ID-based authentication schemes address secure communication, but privacy is not properly addressed. In recent times, dynamic ID-based remote user authentication schemes for TMIS have been presented to protect user’s privacy. The dynamic ID-based authentication schemes efficiently protect the user’s privacy. Unfortunately, most of the existing dynamic ID-based authentication schemes for TMIS ignore the input verifying condition. This makes login and password change phases inefficient. Inefficiency of the password change phase may lead to denial of service attack in the case of incorrect input in the password change phase. To overcome these weaknesses, we proposed a new dynamic ID-based authentication scheme using a smart card. The proposed scheme can quickly detect incorrect inputs which makes the login and password change phase efficient. We adopt the approach with the aim to protect privacy, and efficient login and password change phases. The proposed scheme also resists off-line password guessing attack and denial of service attack. We also demonstrate the validity of the proposed scheme by utilizing the widely-accepted BAN (Burrows, Abadi, and Needham logic. In addition, our scheme is comparable in terms of the communication and computational overheads with relevant schemes for TMIS.

  17. Study on the dynamics of halogen elements in the agro-environment and these element`s deficiency, toxicity and environmental hazards by the application of the neutron activation analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Yuita, Kouichi [National Inst. of Agro-Environmental Sciences, Tsukuba, Ibaraki (Japan)

    1998-03-01

    A neutron activation analysis method is an accurate and highly sensitive method for analyzing halogen elements (iodine, bromine and chlorine) except fluorine. It is unsubstitutable and valuable method especially for iodine (including radioactive {sup 129}I) and bromine which are present at lower levels. Halogen elements have high chemical and physiological activities and move widely in the environment. As a result, deficiency and an excess of halogen elements in plants and animals have occurred and artificial halogen compounds have caused environmental pollution in wide areas. We efficiently utilized the neutron activation analysis method and an activable tracer method to obtain valuable findings which contribute to the clarification of and measures against these actual problems and which are also concerned with the occurrence, distribution and migration of halogen elements in the environment, especially agricultural and forestry ecosystems in space and in time. (author)

  18. Human dietary intakes of trace elements: A global literature survey mainly for the period 1970-1991: 1. Data listings and sources of information

    International Nuclear Information System (INIS)

    Parr, R.M.; Crawley, H.; Abdulla, M.; Iyengar, G.V.; Kumpulainen, J.

    1992-01-01

    A database has been compiled on human dietary intakes of trace elements by populations groups living in various countries. The main sources of information used were (1) publications in the open scientific literature, and (2) data submitted to the IAEA in response to a questionnaire. The database contains 1,758 intake values covering 35 elements and 47 countries. In this report the data are listed in various ways to facilitate identification of intake values for any specified country, element and population group. 4 refs, 5 tabs

  19. Managing Identifiers for Elements of Provenance of the Third National Climate Assessment in the Global Change Information System (Invited)

    Science.gov (United States)

    Tilmes, C.; Aulenbach, S.; Duggan, B.; Goldstein, J.

    2013-12-01

    A Federal Advisory Committee (The "National Climate Assessment and Development Advisory Committee" or NCADAC) has overseen the development of a draft climate report that after extensive review will be considered by the Federal Government in the Third National Climate Assessment (NCA). This comprehensive report (1) Integrates, evaluates, and interprets the findings of the Program and discusses the scientific uncertainties associated with such findings; (2) Analyzes the effects of global change on the natural environment, agriculture, energy production and use, land and water resources, transportation, human health and welfare, human social systems, and biological diversity; and (3) Analyzes current trends in global change, both human-induced and natural, and projects major trends for the subsequent 25 to 100 years. The U.S. Global Change Program (USGCRP), composed of the 13 federal agencies most concerned with global change, is building a Global Change Information System (GCIS) that will ultimately organize access to all of the research, data, and information about global change from across the system. A prototype of the system has been constructed that captures and presents all of the elements of provenance of the NCA through a coherent data model and friendly front end web site. This work will focus on the globally unique and persistent identifiers used to reference and organize those items. These include externally referenced items, such as DOIs used by scientific journal publishers for research articles or by agencies as dataset identifiers, as well as our own internal approach to identifiers, our overall data model and experiences managing persistent identifiers within the GCIS.

  20. From structure from motion to historical building information modeling: populating a semantic-aware library of architectural elements

    Science.gov (United States)

    Santagati, Cettina; Lo Turco, Massimiliano

    2017-01-01

    In recent years, we have witnessed a huge diffusion of building information modeling (BIM) approaches in the field of architectural design, although very little research has been undertaken to explore the value, criticalities, and advantages attributable to the application of these methodologies in the cultural heritage domain. Furthermore, the last developments in digital photogrammetry lead to the easy generation of reliable low-cost three-dimensional textured models that could be used in BIM platforms to create semantic-aware objects that could compose a specific library of historical architectural elements. In this case, the transfer between the point cloud and its corresponding parametric model is not so trivial and the level of geometrical abstraction could not be suitable with the scope of the BIM. The aim of this paper is to explore and retrace the milestone works on this crucial topic in order to identify the unsolved issues and to propose and test a unique and simple workflow practitioner centered and based on the use of the latest available solutions for point cloud managing into commercial BIM platforms.