WorldWideScience

Sample records for dynamic histone h3

  1. Modification of the histone tetramer at the H3-H3 interface impacts tetrasome conformations and dynamics

    Science.gov (United States)

    Ordu, Orkide; Kremser, Leopold; Lusser, Alexandra; Dekker, Nynke H.

    2018-03-01

    Nucleosomes consisting of a short piece of deoxyribonucleic acid (DNA) wrapped around an octamer of histone proteins form the fundamental unit of chromatin in eukaryotes. Their role in DNA compaction comes with regulatory functions that impact essential genomic processes such as replication, transcription, and repair. The assembly of nucleosomes obeys a precise pathway in which tetramers of histones H3 and H4 bind to the DNA first to form tetrasomes, and two dimers of histones H2A and H2B are subsequently incorporated to complete the complex. As viable intermediates, we previously showed that tetrasomes can spontaneously flip between a left-handed and right-handed conformation of DNA-wrapping. To pinpoint the underlying mechanism, here we investigated the role of the H3-H3 interface for tetramer flexibility in the flipping process at the single-molecule level. Using freely orbiting magnetic tweezers, we studied the assembly and structural dynamics of individual tetrasomes modified at the cysteines close to this interaction interface by iodoacetamide (IA) in real time. While such modification did not affect the structural properties of the tetrasomes, it caused a 3-fold change in their flipping kinetics. The results indicate that the IA-modification enhances the conformational plasticity of tetrasomes. Our findings suggest that subnucleosomal dynamics may be employed by chromatin as an intrinsic and adjustable mechanism to regulate DNA supercoiling.

  2. Dynamic regulation of six histone H3 lysine (K) methyltransferases in response to prolonged anoxia exposure in a freshwater turtle.

    Science.gov (United States)

    Wijenayake, Sanoji; Hawkins, Liam J; Storey, Kenneth B

    2018-04-05

    The importance of histone lysine methylation is well established in health, disease, early development, aging, and cancer. However, the potential role of histone H3 methylation in regulating gene expression in response to extended periods of oxygen deprivation (anoxia) in a natural, anoxia-tolerant model system is underexplored. Red-eared sliders (Trachemys scripta elegans) can tolerate and survive three months of absolute anoxia and recover without incurring detrimental cellular damage, mainly by reducing the overall metabolic rate by 90% when compared to normoxia. Stringent regulation of gene expression is a vital aspect of metabolic rate depression in red-eared sliders, and as such we examined the anoxia-responsive regulation of histone lysine methylation in the liver during 5 h and 20 h anoxia exposure. Interestingly, this is the first study to illustrate the existence of histone lysine methyltransferases (HKMTs) and corresponding histone H3 lysine methylation levels in the liver of anoxia-tolerant red-eared sliders. In brief, H3K4me1, a histone mark associated with active transcription, and two corresponding histone lysine methyltransferases that modify H3K4me1 site, significantly increased in response to anoxia. On the contrary, H3K27me1, another transcriptionally active histone mark, significantly decreased during 20 h anoxia, and a transcriptionally repressive histone mark, H3K9me3, and the corresponding KMTs, similarly increased during 20 h anoxia. Overall, the results suggest a dynamic regulation of histone H3 lysine methylation in the liver of red-eared sliders that could theoretically aid in the selective upregulation of genes that are necessary for anoxia survival, while globally suppressing others to conserve energy. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Dynamic changes of histone H3 marks during Caenorhabditis elegans lifecycle revealed by middle-down proteomics

    DEFF Research Database (Denmark)

    Sidoli, Simone; Vandamme, Julien; Elisabetta Salcini, Anna

    2016-01-01

    We applied a middle-down proteomics strategy for large scale protein analysis during in vivo development of Caenorhabditis elegans. We characterized post-translational modifications (PTMs) on histone H3 N-terminal tails at eight time points during the C. elegans lifecycle, including embryo, larval......-occurring PTMs. We measured temporally distinct combinatorial PTM profiles during C. elegans development. We show that the doubly modified form H3K23me3K27me3, which is rare or non-existent in mammals, is the most abundant PTM in all stages of C. elegans lifecycle. The abundance of H3K23me3 increased during...... that is transmitted during dauer formation. Collectively, our data describe the dynamics of histone H3 combinatorial code during C. elegans lifecycle and demonstrate the feasibility of using middle-down proteomics to study in vivo development of multicellular organisms. This article is protected by copyright. All...

  4. Dynamic acetylation of all lysine 4-methylated histone H3 in the mouse nucleus: analysis at c-fos and c-jun.

    Directory of Open Access Journals (Sweden)

    Catherine A Hazzalin

    2005-12-01

    Full Text Available A major focus of current research into gene induction relates to chromatin and nucleosomal regulation, especially the significance of multiple histone modifications such as phosphorylation, acetylation, and methylation during this process. We have discovered a novel physiological characteristic of all lysine 4 (K4-methylated histone H3 in the mouse nucleus, distinguishing it from lysine 9-methylated H3. K4-methylated histone H3 is subject to continuous dynamic turnover of acetylation, whereas lysine 9-methylated H3 is not. We have previously reported dynamic histone H3 phosphorylation and acetylation as a key characteristic of the inducible proto-oncogenes c-fos and c-jun. We show here that dynamically acetylated histone H3 at these genes is also K4-methylated. Although all three modifications are proven to co-exist on the same nucleosome at these genes, phosphorylation and acetylation appear transiently during gene induction, whereas K4 methylation remains detectable throughout this process. Finally, we address the functional significance of the turnover of histone acetylation on the process of gene induction. We find that inhibition of turnover, despite causing enhanced histone acetylation at these genes, produces immediate inhibition of gene induction. These data show that all K4-methylated histone H3 is subject to the continuous action of HATs and HDACs, and indicates that at c-fos and c-jun, contrary to the predominant model, turnover and not stably enhanced acetylation is relevant for efficient gene induction.

  5. Dynamic variation of histone H3 trimethyl Lys4 (H3K4me3) and heterochromatin protein 1 (HP1) with employment length in nickel smelting workers.

    Science.gov (United States)

    Zhao, Yanhong; Cheng, Ning; Dai, Min; Pu, Hongquan; Zheng, Tongzhang; Li, Haiyan; He, Jie; Bai, Yana

    2017-07-01

    To investigate the dynamic variation in H3K4me3 and HP1 with employment length in nickel smelting workers. Blood samples were collected from 140 nickel smelting workers and 140 age-matched office workers to test for H3K4me3, and HP1 levels. H3K4me3 was statistically significantly different (p exposure to nickel can induce oxidative damage, and increase H3K4me3 expression and inhibit HP1 expression.

  6. Molecular recognition of H3/H4 histone tails by the tudor domains of JMJD2A: a comparative molecular dynamics simulations study.

    Directory of Open Access Journals (Sweden)

    Musa Ozboyaci

    Full Text Available BACKGROUND: Histone demethylase, JMJD2A, specifically recognizes and binds to methylated lysine residues at histone H3 and H4 tails (especially trimethylated H3K4 (H3K4me3, trimethylated H3K9 (H3K9me3 and di,trimethylated H4K20 (H4K20me2, H4K20me3 via its tandem tudor domains. Crystal structures of JMJD2A-tudor binding to H3K4me3 and H4K20me3 peptides are available whereas the others are not. Complete picture of the recognition of the four histone peptides by the tandem tudor domains yet remains to be clarified. METHODOLOGY/PRINCIPAL FINDINGS: We report a detailed molecular dynamics simulation and binding energy analysis of the recognition of JMJD2A-tudor with four different histone tails. 25 ns fully unrestrained molecular dynamics simulations are carried out for each of the bound and free structures. We investigate the important hydrogen bonds and electrostatic interactions between the tudor domains and the peptide molecules and identify the critical residues that stabilize the complexes. Our binding free energy calculations show that H4K20me2 and H3K9me3 peptides have the highest and lowest affinity to JMJD2A-tudor, respectively. We also show that H4K20me2 peptide adopts the same binding mode with H4K20me3 peptide, and H3K9me3 peptide adopts the same binding mode with H3K4me3 peptide. Decomposition of the enthalpic and the entropic contributions to the binding free energies indicate that the recognition of the histone peptides is mainly driven by favourable van der Waals interactions. Residue decomposition of the binding free energies with backbone and side chain contributions as well as their energetic constituents identify the hotspots in the binding interface of the structures. CONCLUSION: Energetic investigations of the four complexes suggest that many of the residues involved in the interactions are common. However, we found two receptor residues that were related to selective binding of the H3 and H4 ligands. Modifications or mutations

  7. Biochemical Analysis Reveals the Multifactorial Mechanism of Histone H3 Clipping by Chicken Liver Histone H3 Protease

    KAUST Repository

    Chauhan, Sakshi

    2016-09-02

    Proteolytic clipping of histone H3 has been identified in many organisms. Despite several studies, the mechanism of clipping, the substrate specificity, and the significance of this poorly understood epigenetic mechanism are not clear. We have previously reported histone H3 specific proteolytic clipping and a protein inhibitor in chicken liver. However, the sites of clipping are still not known very well. In this study, we attempt to identify clipping sites in histone H3 and to determine the mechanism of inhibition by stefin B protein, a cysteine protease inhibitor. By employing site-directed mutagenesis and in vitro biochemical assays, we have identified three distinct clipping sites in recombinant human histone H3 and its variants (H3.1, H3.3, and H3t). However, post-translationally modified histones isolated from chicken liver and Saccharomyces cerevisiae wild-type cells showed different clipping patterns. Clipping of histone H3 N-terminal tail at three sites occurs in a sequential manner. We have further observed that clipping sites are regulated by the structure of the N-terminal tail as well as the globular domain of histone H3. We also have identified the QVVAG region of stefin B protein to be very crucial for inhibition of the protease activity. Altogether, our comprehensive biochemical studies have revealed three distinct clipping sites in histone H3 and their regulation by the structure of histone H3, histone modifications marks, and stefin B.

  8. Distribution pattern of histone H3 phosphorylation at serine 10 ...

    Indian Academy of Sciences (India)

    2013-08-06

    Aug 6, 2013 ... tant consequences for chromatin packing due to change in histone load ... Minas Gerais, Brazil), in B. brizantha (cultivar Marandu, ... (2005), who state that the ..... Mitotic microtubule development and histone H3 phosphoryla-.

  9. Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36

    DEFF Research Database (Denmark)

    Jung, Hye Ryung; Pasini, Diego; Helin, Kristian

    2010-01-01

    distinct coexisting modifications. In certain cases, high mass accuracy LTQ-Orbitrap MS/MS allowed precise localization of near isobaric coexisting PTMs such as trimethylation and acetylation within individual peptides. ETD MS/MS facilitated sequencing and annotation of phosphorylated histone peptides....... The combined use of ETD and CID MS/MS increased the total number of identified modified peptides. Comparative quantitative analysis of histones from wild type and Suz12-deficient ESCs using stable isotope labeling with amino acids in cell culture and LC-MS/MS revealed a dramatic reduction of H3K27me2 and H3K27......me3 and an increase of H3K27ac, thereby uncovering an antagonistic methyl/acetyl switch at H3K27. The reduction in H3K27 methylation and increase in H3K27 acetylation was accompanied by H3K36 acetylation and methylation. Estimation of the global isoform percentage of unmodified and modified histone...

  10. Biochemical Analysis Reveals the Multifactorial Mechanism of Histone H3 Clipping by Chicken Liver Histone H3 Protease

    KAUST Repository

    Chauhan, Sakshi; Mandal, Papita; Tomar, Raghuvir S.

    2016-01-01

    Proteolytic clipping of histone H3 has been identified in many organisms. Despite several studies, the mechanism of clipping, the substrate specificity, and the significance of this poorly understood epigenetic mechanism are not clear. We have

  11. Structural basis for recognition of H3K56-acetylated histone H3-H4 by the chaperone Rtt106

    Energy Technology Data Exchange (ETDEWEB)

    Su, Dan; Hu, Qi; Li, Qing; Thompson, James R; Cui, Gaofeng; Fazly, Ahmed; Davies, Brian A; Botuyan, Maria Victoria; Zhang, Zhiguo; Mer, Georges [Mayo

    2013-04-08

    Dynamic variations in the structure of chromatin influence virtually all DNA-related processes in eukaryotes and are controlled in part by post-translational modifications of histones. One such modification, the acetylation of lysine 56 (H3K56ac) in the amino-terminal α-helix (αN) of histone H3, has been implicated in the regulation of nucleosome assembly during DNA replication and repair, and nucleosome disassembly during gene transcription. In Saccharomyces cerevisiae, the histone chaperone Rtt106 contributes to the deposition of newly synthesized H3K56ac-carrying H3-H4 complex on replicating DNA, but it is unclear how Rtt106 binds H3-H4 and specifically recognizes H3K56ac as there is no apparent acetylated lysine reader domain in Rtt106. Here, we show that two domains of Rtt106 are involved in a combinatorial recognition of H3-H4. An N-terminal domain homodimerizes and interacts with H3-H4 independently of acetylation while a double pleckstrin-homology (PH) domain binds the K56-containing region of H3. Affinity is markedly enhanced upon acetylation of K56, an effect that is probably due to increased conformational entropy of the αN helix of H3. Our data support a mode of interaction where the N-terminal homodimeric domain of Rtt106 intercalates between the two H3-H4 components of the (H3-H4)2 tetramer while two double PH domains in the Rtt106 dimer interact with each of the two H3K56ac sites in (H3-H4)2. We show that the Rtt106-(H3-H4)2 interaction is important for gene silencing and the DNA damage response.

  12. Low Proteolytic Clipping of Histone H3 in Cervical Cancer

    Science.gov (United States)

    Sandoval-Basilio, Jorge; Serafín-Higuera, Nicolás; Reyes-Hernandez, Octavio D.; Serafín-Higuera, Idanya; Leija-Montoya, Gabriela; Blanco-Morales, Magali; Sierra-Martínez, Monica; Ramos-Mondragon, Roberto; García, Silvia; López-Hernández, Luz Berenice; Yocupicio-Monroy, Martha; Alcaraz-Estrada, Sofia L.

    2016-01-01

    Chromatin in cervical cancer (CC) undergoes chemical and structural changes that alter the expression pattern of genes. Recently, a potential mechanism, which regulates gene expression at transcriptional levels is the proteolytic clipping of histone H3. However, until now this process in CC has not been reported. Using HeLa cells as a model of CC and human samples from patients with CC, we identify that the H3 cleavage was lower in CC compared with control tissue. Additionally, the histone H3 clipping was performed by serine and aspartyl proteases in HeLa cells. These results suggest that histone H3 clipping operates as part of post-translational modification system in CC. PMID:27698925

  13. Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant.

    Science.gov (United States)

    Earnshaw, W C; Allshire, R C; Black, B E; Bloom, K; Brinkley, B R; Brown, W; Cheeseman, I M; Choo, K H A; Copenhaver, G P; Deluca, J G; Desai, A; Diekmann, S; Erhardt, S; Fitzgerald-Hayes, M; Foltz, D; Fukagawa, T; Gassmann, R; Gerlich, D W; Glover, D M; Gorbsky, G J; Harrison, S C; Heun, P; Hirota, T; Jansen, L E T; Karpen, G; Kops, G J P L; Lampson, M A; Lens, S M; Losada, A; Luger, K; Maiato, H; Maddox, P S; Margolis, R L; Masumoto, H; McAinsh, A D; Mellone, B G; Meraldi, P; Musacchio, A; Oegema, K; O'Neill, R J; Salmon, E D; Scott, K C; Straight, A F; Stukenberg, P T; Sullivan, B A; Sullivan, K F; Sunkel, C E; Swedlow, J R; Walczak, C E; Warburton, P E; Westermann, S; Willard, H F; Wordeman, L; Yanagida, M; Yen, T J; Yoda, K; Cleveland, D W

    2013-04-01

    The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres.

  14. DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition

    Energy Technology Data Exchange (ETDEWEB)

    Elsässer, Simon J; Huang, Hongda; Lewis, Peter W; Chin, Jason W; Allis, C David; Patel, Dinshaw J [MSKCC; (Rockefeller); (MRC)

    2013-01-24

    Histone chaperones represent a structurally and functionally diverse family of histone-binding proteins that prevent promiscuous interactions of histones before their assembly into chromatin. DAXX is a metazoan histone chaperone specific to the evolutionarily conserved histone variant H3.3. Here we report the crystal structures of the DAXX histone-binding domain with a histone H3.3–H4 dimer, including mutants within DAXX and H3.3, together with in vitro and in vivo functional studies that elucidate the principles underlying H3.3 recognition specificity. Occupying 40% of the histone surface-accessible area, DAXX wraps around the H3.3–H4 dimer, with complex formation accompanied by structural transitions in the H3.3–H4 histone fold. DAXX uses an extended α-helical conformation to compete with major inter-histone, DNA and ASF1 interaction sites. Our structural studies identify recognition elements that read out H3.3-specific residues, and functional studies address the contributions of Gly90 in H3.3 and Glu225 in DAXX to chaperone-mediated H3.3 variant recognition specificity.

  15. Dynamic link between histone H3 acetylation and an increase in the functional characteristics of human ESC/iPSC-derived cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Tomomi G Otsuji

    Full Text Available Cardiomyocytes (CMs derived from human embryonic stem cells (hESCs or human induced pluripotent stem cells (hiPSCs are functionally heterogeneous, display insufficient biological efficacy and generally possess the electrophysiological properties seen in fetal CMs. However, a homogenous population of hESC/hiPSC-CMs, with properties similar to those of adult human ventricular cells, is required for use in drug cardiotoxicity screening. Unfortunately, despite the requirement for the functional characteristics of post-mitotic beating cell aggregates to mimic the behavior of mature cardiomyocytes in vitro, few technological improvements have been made in this field to date. Previously, we showed that culturing hESC-CMs under low-adhesion conditions with cyclic replating confers continuous contractility on the cells, leading to a functional increase in cardiac gene expression and electrophysiological properties over time. The current study reveals that culturing hESC/hiPSC-CMs under non-adhesive culture conditions enhances the electrophysiological properties of the CMs through an increase in the acetylation of histone H3 lysine residues, as confirmed by western blot analyses. Histone H3 acetylation was induced chemically by treating primitive hESC/hiPSC-CMs with Trichostatin A (TSA, a histone deacetylase (HDAC inhibitor, resulting in an immediate increase in global cardiac gene expression. In functional analyses using multi-electrode array (MEA recordings, TSA-treated hESC/hiPSC-CM colonies showed appropriate responses to particular concentrations of known potassium ion channel inhibitors. Thus, the combination of a cell-autonomous functional increase in response to non-adhesive culture and short-term TSA treatment of hESC/hiPSC-CM colonies cultured on MEA electrodes will help to make cardiac toxicity tests more accurate and reproducible via genome-wide chromatin activation.

  16. Testis-Specific Histone Variant H3t Gene Is Essential for Entry into Spermatogenesis

    Directory of Open Access Journals (Sweden)

    Jun Ueda

    2017-01-01

    Full Text Available Cellular differentiation is associated with dynamic chromatin remodeling in establishing a cell-type-specific epigenomic landscape. Here, we find that mouse testis-specific and replication-dependent histone H3 variant H3t is essential for very early stages of spermatogenesis. H3t gene deficiency leads to azoospermia because of the loss of haploid germ cells. When differentiating spermatogonia emerge in normal spermatogenesis, H3t appears and replaces the canonical H3 proteins. Structural and biochemical analyses reveal that H3t-containing nucleosomes are more flexible than the canonical nucleosomes. Thus, by incorporating H3t into the genome during spermatogonial differentiation, male germ cells are able to enter meiosis and beyond.

  17. dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing

    NARCIS (Netherlands)

    A. Lagarou (Anna); A.B. Mohd Sarip; Y.M. Moshkin (Yuri); G.E. Chalkley (Gillian); K. Bezstarosti (Karel); J.A.A. Demmers (Jeroen); C.P. Verrijzer (Peter)

    2008-01-01

    textabstractTranscription regulation involves enzyme-mediated changes in chromatin structure. Here, we describe a novel mode of histone crosstalk during gene silencing, in which histone H2A monoubiquitylation is coupled to the removal of histone H3 Lys 36 dimethylation (H3K36me2). This pathway was

  18. Sulforaphane Modifies Histone H3, Unpacks Chromatin, and Primes Defense.

    Science.gov (United States)

    Schillheim, Britta; Jansen, Irina; Baum, Stephani; Beesley, Alexander; Bolm, Carsten; Conrath, Uwe

    2018-03-01

    Modern crop production calls for agrochemicals that prime plants for enhanced defense. Reliable test systems for spotting priming-inducing chemistry, however, are rare. We developed an assay for the high-throughput search for compounds that prime microbial pattern-induced secretion of antimicrobial furanocoumarins (phytoalexins) in cultured parsley cells. The screen produced 1-isothiocyanato-4-methylsulfinylbutane (sulforaphane; SFN), a secondary metabolite in many crucifers, as a novel defense priming compound. While elucidating SFN's mode of action in defense priming, we found that in Arabidopsis ( Arabidopsis thaliana ) the isothiocyanate provokes covalent modification (K4me3, K9ac) of histone H3 in the promoter and promoter-proximal region of defense genes WRKY6 and PDF1 2 , but not PR1 SFN-triggered H3K4me3 and H3K9ac coincide with chromatin unpacking in the WRKY6 and PDF1 2 regulatory regions, primed WRKY6 expression, unprimed PDF1 2 activation, and reduced susceptibility to downy mildew disease ( Hyaloperonospora arabidopsidis ). Because SFN also directly inhibits H arabidopsidis and other plant pathogens, the isothiocyanate is promising for the development of a plant protectant with a dual mode of action. © 2018 American Society of Plant Biologists. All Rights Reserved.

  19. Precision mapping of coexisting modifications in histone H3 tails from embryonic stem cells by ETD-MS/MS

    DEFF Research Database (Denmark)

    Jung, Hye Ryung; Sidoli, Simone; Haldbo, Simon

    2013-01-01

    Post-translational modifications (PTMs) of histones play a major role in regulating chromatin dynamics and influence processes such as transcription and DNA replication. Here, we report 114 distinct combinations of coexisting PTMs of histone H3 obtained from mouse embryonic stem (ES) cells. Histo...

  20. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks.

    Science.gov (United States)

    Huang, Hongda; Strømme, Caroline B; Saredi, Giulia; Hödl, Martina; Strandsby, Anne; González-Aguilera, Cristina; Chen, Shoudeng; Groth, Anja; Patel, Dinshaw J

    2015-08-01

    During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase, chaperones histones H3-H4. Our first structure shows an H3-H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3-H4 dimer. Mutational analyses show that the MCM2 HBD is required for MCM2-7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3-H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling histones genome wide during DNA replication.

  1. Evidence for gene-specific rather than transcription rate-dependent histone H3 exchange in yeast coding regions.

    Science.gov (United States)

    Gat-Viks, Irit; Vingron, Martin

    2009-02-01

    In eukaryotic organisms, histones are dynamically exchanged independently of DNA replication. Recent reports show that different coding regions differ in their amount of replication-independent histone H3 exchange. The current paradigm is that this histone exchange variability among coding regions is a consequence of transcription rate. Here we put forward the idea that this variability might be also modulated in a gene-specific manner independently of transcription rate. To that end, we study transcription rate-independent replication-independent coding region histone H3 exchange. We term such events relative exchange. Our genome-wide analysis shows conclusively that in yeast, relative exchange is a novel consistent feature of coding regions. Outside of replication, each coding region has a characteristic pattern of histone H3 exchange that is either higher or lower than what was expected by its RNAPII transcription rate alone. Histone H3 exchange in coding regions might be a way to add or remove certain histone modifications that are important for transcription elongation. Therefore, our results that gene-specific coding region histone H3 exchange is decoupled from transcription rate might hint at a new epigenetic mechanism of transcription regulation.

  2. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks

    DEFF Research Database (Denmark)

    Huang, Hongda; Strømme, Caroline B; Saredi, Giulia

    2015-01-01

    During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase......, chaperones histones H3-H4. Our first structure shows an H3-H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3-H4 dimer. Mutational analyses show that the MCM2 HBD is required...... for MCM2-7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3-H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling...

  3. Histone H3 Lysine Methylation in Cognition and Intellectual Disability Disorders

    Science.gov (United States)

    Parkel, Sven; Lopez-Atalaya, Jose P.; Barco, Angel

    2013-01-01

    Recent research indicates that epigenetic mechanisms and, in particular, the post-translational modification (PTM) of histones may contribute to memory encoding and storage. Among the dozens of possible histone PTMs, the methylation/demethylation of lysines in the N-terminal tail of histone H3 exhibits particularly strong links with cognitive…

  4. Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast

    International Nuclear Information System (INIS)

    Yang, Hanna; Kwon, Chang Seob; Choi, Yoonjung; Lee, Daeyoup

    2016-01-01

    Nucleosome dynamics facilitated by histone turnover is required for transcription as well as DNA replication and repair. Histone turnover is often associated with various histone modifications such as H3K56 acetylation (H3K56Ac), H3K36 methylation (H3K36me), and H4K20 methylation (H4K20me). In order to correlate histone modifications and transcription-dependent histone turnover, we performed genome wide analyses for euchromatic regions in G2/M-arrested fission yeast. The results show that transcription-dependent histone turnover at 5′ promoter and 3′ termination regions is directly correlated with the occurrence of H3K56Ac and H4K20 mono-methylation (H4K20me1) in actively transcribed genes. Furthermore, the increase of H3K56Ac and H4K20me1 and antisense RNA production was observed in the absence of the histone H3K36 methyltransferase Set2 and histone deacetylase complex (HDAC) that are involved in the suppression of histone turnover within the coding regions. These results together indicate that H4K20me1 as well as H3K56Ac are bona fide marks for transcription-dependent histone turnover in fission yeast.

  5. Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hanna [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Kwon, Chang Seob [Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan, 614-822 (Korea, Republic of); Choi, Yoonjung, E-mail: jjungii@kaist.ac.kr [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Lee, Daeyoup, E-mail: daeyoup@kaist.ac.kr [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2016-08-05

    Nucleosome dynamics facilitated by histone turnover is required for transcription as well as DNA replication and repair. Histone turnover is often associated with various histone modifications such as H3K56 acetylation (H3K56Ac), H3K36 methylation (H3K36me), and H4K20 methylation (H4K20me). In order to correlate histone modifications and transcription-dependent histone turnover, we performed genome wide analyses for euchromatic regions in G2/M-arrested fission yeast. The results show that transcription-dependent histone turnover at 5′ promoter and 3′ termination regions is directly correlated with the occurrence of H3K56Ac and H4K20 mono-methylation (H4K20me1) in actively transcribed genes. Furthermore, the increase of H3K56Ac and H4K20me1 and antisense RNA production was observed in the absence of the histone H3K36 methyltransferase Set2 and histone deacetylase complex (HDAC) that are involved in the suppression of histone turnover within the coding regions. These results together indicate that H4K20me1 as well as H3K56Ac are bona fide marks for transcription-dependent histone turnover in fission yeast.

  6. Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation

    OpenAIRE

    Metzger, Eric; Yin, Na; Wissmann, Melanie; Kunowska, Natalia; Fischer, Kristin; Friedrichs, Nicolaus; Patnaik, Debasis; Higgins, Jonathan M.G.; Potier, Noelle; Scheidtmann, Karl-Heinz; Buettner, Reinhard; Schüle, Roland

    2007-01-01

    Posttranslational modifications of histones such as methylation, acetylation, and phosphorylation regulate chromatin structure and gene expression. Here we show that protein kinase C-related kinase 1 (PRK1) phosphorylates histone H3 at threonine 11 (H3T11) upon ligand-dependent recruitment to androgen receptor (AR) target genes. PRK1 is pivotal to AR function since PRK1 knockdown or inhibition impedes AR-dependent transcription. Blocking PRK1 function abrogates androgen-induced H3T11 phosphor...

  7. Effect of gamma irradiation on rat thymus arginine-rich H3 histone in vitro

    International Nuclear Information System (INIS)

    Patil, M.S.; Narasimhan, Saroja; Sreenivasan, A.

    1977-01-01

    Physicochemical properties of rat thymus H3 histone have been studied following gamma radiation (25-90 krad) in 0.2 N HCl. Polyacrylamide gel electrophoretic pattern (PGE) of H3 histone indicated that aggregates were formed in the histone fraction following gamma irradiation. The PGE pattern of the irradiated-histone fraction remained unaltered even after it was treated with 8.0 M urea to eliminate noncovalent bonding. On the other hand, the irradiated sample treated with β-mercaptoethanol exhibited the PGE pattern which was essentially similar to that of unirradiated sample. These results indicate that the aggregates seen in the PGE pattern of irradiated-H3 histone may be formed through interpolypeptide chain disulphide linkeges rather than by noncovalent bonding. This contention is also supported by the fact that irradiated-H3 histone exhibited hyperchromic shift at 240-250 nm region as well as increased disulphide content. Other results revealed that DNA-dependent RNA synthesis in vitro was inhibited to a greater extent by irradiated-H3 histone than by unirradiated-H3 histone. (author)

  8. A histone H3K9M mutation traps histone methyltransferase Clr4 to prevent heterochromatin spreading

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Chun-Min; Wang, Jiyong; Xu, Ke; Chen, Huijie; Yue, Jia-Xing; Andrews, Stuart; Moresco, James J.; Yates, John R.; Nagy, Peter L.; Tong, Liang; Jia, Songtao

    2016-09-20

    Histone lysine-to-methionine (K-to-M) mutations are associated with multiple cancers, and they function in a dominant fashion to block the methylation of corresponding lysines on wild type histones. However, their mechanisms of function are controversial. Here we show that in fission yeast, introducing the K9M mutation into one of the three histone H3 genes dominantly blocks H3K9 methylation on wild type H3 across the genome. In addition, H3K9M enhances the interaction of histone H3 tail with the H3K9 methyltransferase Clr4 in a SAM (S-adenosyl-methionine)-dependent manner, and Clr4 is trapped at nucleation sites to prevent its spreading and the formation of large heterochromatin domains. We further determined the crystal structure of an H3K9M peptide in complex with human H3K9 methyltransferase G9a and SAM, which reveales that the methionine side chain had enhanced van der Waals interactions with G9a. Therefore, our results provide a detailed mechanism by which H3K9M regulates H3K9 methylation.

  9. Mass spectrometry analysis of the variants of histone H3 and H4 of soybean and their post-translational modifications

    Directory of Open Access Journals (Sweden)

    Lam Hon-Ming

    2009-07-01

    Full Text Available Abstract Background Histone modifications and histone variants are of importance in many biological processes. To understand the biological functions of the global dynamics of histone modifications and histone variants in higher plants, we elucidated the variants and post-translational modifications of histones in soybean, a legume plant with a much bigger genome than that of Arabidopsis thaliana. Results In soybean leaves, mono-, di- and tri-methylation at Lysine 4, Lysine 27 and Lysine 36, and acetylation at Lysine 14, 18 and 23 were detected in HISTONE H3. Lysine 27 was prone to being mono-methylated, while tri-methylation was predominant at Lysine 36. We also observed that Lysine 27 methylation and Lysine 36 methylation usually excluded each other in HISTONE H3. Although methylation at HISTONE H3 Lysine 79 was not reported in A. thaliana, mono- and di-methylated HISTONE H3 Lysine 79 were detected in soybean. Besides, acetylation at Lysine 8 and 12 of HISTONE H4 in soybean were identified. Using a combination of mass spectrometry and nano-liquid chromatography, two variants of HISTONE H3 were detected and their modifications were determined. They were different at positions of A31F41S87S90 (HISTONE variant H3.1 and T31Y41H87L90 (HISTONE variant H3.2, respectively. The methylation patterns in these two HISTONE H3 variants also exhibited differences. Lysine 4 and Lysine 36 methylation were only detected in HISTONE H3.2, suggesting that HISTONE variant H3.2 might be associated with actively transcribing genes. In addition, two variants of histone H4 (H4.1 and H4.2 were also detected, which were missing in other organisms. In the histone variant H4.1 and H4.2, the amino acid 60 was isoleucine and valine, respectively. Conclusion This work revealed several distinct variants of soybean histone and their modifications that were different from A. thaliana, thus providing important biological information toward further understanding of the histone

  10. Distribution pattern of histone H3 phosphorylation at serine 10

    Indian Academy of Sciences (India)

    We evaluated the pattern of H3 phosphorylation using immunodetection during mitosis and meiosis in both diploid and tetraploid genotypes of Brachiaria species. Results revealed differences in chromosome distribution of H3S10ph when mitosis and meiosis were compared. Whole chromosomes were phosphorylated ...

  11. Somatic mutations of the histone H3K27 demethylase, UTX, in human cancer

    Science.gov (United States)

    van Haaften, Gijs; Dalgliesh, Gillian L; Davies, Helen; Chen, Lina; Bignell, Graham; Greenman, Chris; Edkins, Sarah; Hardy, Claire; O’Meara, Sarah; Teague, Jon; Butler, Adam; Hinton, Jonathan; Latimer, Calli; Andrews, Jenny; Barthorpe, Syd; Beare, Dave; Buck, Gemma; Campbell, Peter J; Cole, Jennifer; Dunmore, Rebecca; Forbes, Simon; Jia, Mingming; Jones, David; Kok, Chai Yin; Leroy, Catherine; Lin, Meng-Lay; McBride, David J; Maddison, Mark; Maquire, Simon; McLay, Kirsten; Menzies, Andrew; Mironenko, Tatiana; Lee, Mulderrig; Mudie, Laura; Pleasance, Erin; Shepherd, Rebecca; Smith, Raffaella; Stebbings, Lucy; Stephens, Philip; Tang, Gurpreet; Tarpey, Patrick S; Turner, Rachel; Turrell, Kelly; Varian, Jennifer; West, Sofie; Widaa, Sara; Wray, Paul; Collins, V Peter; Ichimura, Koichi; Law, Simon; Wong, John; Yuen, Siu Tsan; Leung, Suet Yi; Tonon, Giovanni; DePinho, Ronald A; Tai, Yu-Tzu; Anderson, Kenneth C; Kahnoski, Richard J.; Massie, Aaron; Khoo, Sok Kean; Teh, Bin Tean; Stratton, Michael R; Futreal, P Andrew

    2010-01-01

    Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase, UTX, pointing to histone H3 lysine methylation deregulation in multiple tumour types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene. PMID:19330029

  12. Modulations of DNA Contacts by Linker Histones and Post-translational Modifications Determine the Mobility and Modifiability of Nucleosomal H3 Tails.

    Science.gov (United States)

    Stützer, Alexandra; Liokatis, Stamatios; Kiesel, Anja; Schwarzer, Dirk; Sprangers, Remco; Söding, Johannes; Selenko, Philipp; Fischle, Wolfgang

    2016-01-21

    Post-translational histone modifications and linker histone incorporation regulate chromatin structure and genome activity. How these systems interface on a molecular level is unclear. Using biochemistry and NMR spectroscopy, we deduced mechanistic insights into the modification behavior of N-terminal histone H3 tails in different nucleosomal contexts. We find that linker histones generally inhibit modifications of different H3 sites and reduce H3 tail dynamics in nucleosomes. These effects are caused by modulations of electrostatic interactions of H3 tails with linker DNA and largely depend on the C-terminal domains of linker histones. In agreement, linker histone occupancy and H3 tail modifications segregate on a genome-wide level. Charge-modulating modifications such as phosphorylation and acetylation weaken transient H3 tail-linker DNA interactions, increase H3 tail dynamics, and, concomitantly, enhance general modifiability. We propose that alterations of H3 tail-linker DNA interactions by linker histones and charge-modulating modifications execute basal control mechanisms of chromatin function. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes

    International Nuclear Information System (INIS)

    Yoshida, Ikuma; Ibuki, Yuko

    2014-01-01

    Graphical abstract: - Highlights: • Formaldehyde modified histones. • The phosphorylation of H3S10 was increased at the promoter regions of proto-oncogenes. • The phosphorylation of H2AXS139 was attributed to FA-induced DNA damage. • The FA-induced initiation and promotion of cancer could be judged by these modifications. - Abstract: Formaldehyde (FA) is a very reactive compound that forms DNA adducts and DNA-protein crosslinks, which are known to contribute to FA-induced mutations and carcinogenesis. Post-translational modifications to histones have recently attracted attention due to their link with cancer. In the present study, we examined histone modifications following a treatment with FA. FA significantly phosphorylated histone H3 at serine 10 (H3S10), and at serine 28 (H3S28), the time-course of which was similar to the phosphorylation of H2AX at serine 139 (γ-H2AX), a marker of DNA double strand breaks. The temporal deacetylation of H3 was observed due to the reaction of FA with the lysine residues of histones. The phosphorylation mechanism was then analyzed by focusing on H3S10. The nuclear distribution of the phosphorylation of H3S10 and γ-H2AX did not overlap, and the phosphorylation of H3S10 could not be suppressed with an inhibitor of ATM/ATR, suggesting that the phosphorylation of H3S10 was independent of the DNA damage response. ERK and JNK in the MAPK pathways were phosphorylated by the treatment with FA, in which the JNK pathway was the main target for phosphorylation. The phosphorylation of H3S10 increased at the promoter regions of c-fos and c-jun, indicating a relationship between FA-induced tumor promotion activity and phosphorylation of H3S10. These results suggested that FA both initiates and promotes cancer, as judged by an analysis of histone modifications

  14. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ikuma; Ibuki, Yuko, E-mail: ibuki@u-shizuoka-ken.ac.jp

    2014-12-15

    Graphical abstract: - Highlights: • Formaldehyde modified histones. • The phosphorylation of H3S10 was increased at the promoter regions of proto-oncogenes. • The phosphorylation of H2AXS139 was attributed to FA-induced DNA damage. • The FA-induced initiation and promotion of cancer could be judged by these modifications. - Abstract: Formaldehyde (FA) is a very reactive compound that forms DNA adducts and DNA-protein crosslinks, which are known to contribute to FA-induced mutations and carcinogenesis. Post-translational modifications to histones have recently attracted attention due to their link with cancer. In the present study, we examined histone modifications following a treatment with FA. FA significantly phosphorylated histone H3 at serine 10 (H3S10), and at serine 28 (H3S28), the time-course of which was similar to the phosphorylation of H2AX at serine 139 (γ-H2AX), a marker of DNA double strand breaks. The temporal deacetylation of H3 was observed due to the reaction of FA with the lysine residues of histones. The phosphorylation mechanism was then analyzed by focusing on H3S10. The nuclear distribution of the phosphorylation of H3S10 and γ-H2AX did not overlap, and the phosphorylation of H3S10 could not be suppressed with an inhibitor of ATM/ATR, suggesting that the phosphorylation of H3S10 was independent of the DNA damage response. ERK and JNK in the MAPK pathways were phosphorylated by the treatment with FA, in which the JNK pathway was the main target for phosphorylation. The phosphorylation of H3S10 increased at the promoter regions of c-fos and c-jun, indicating a relationship between FA-induced tumor promotion activity and phosphorylation of H3S10. These results suggested that FA both initiates and promotes cancer, as judged by an analysis of histone modifications.

  15. Altered nucleosomes of active nucleolar chromatin contain accessible histone H3 in its hyperacetylated forms

    International Nuclear Information System (INIS)

    Johnson, E.M.; Sterner, R.; Allfrey, V.G.

    1987-01-01

    Chromatin of the organism Physarum polycephalum contains a class of conformationally altered nucleosomes previously localized to the transcribing regions of ribosomal genes in nucleoli. When nuclei are treated with 2-iodo[2-tritium]acetate, the histone H3 sulfhydryl group of the altered nucleosomes is derivatized while that of folded nucleosomes is not, and the labeled histones can then be identified by autoradiography of gels that separate H3 isoforms. The H3 derivatized is predominantly of tri- and tetraacetylated forms. In contrast, total free histone reacted with iodoacetate shows no preferential labeling of isoforms. Selective reaction of acetylated H3 is prevalent in both nucleolar and non-nucleolar chromatin. The results link specific patterns of H3 acetylation to changes in nucleosome conformation that occur during transcription

  16. Characterization of histone H3K27 modifications in the β-globin locus

    International Nuclear Information System (INIS)

    Kim, Yea Woon; Kim, AeRi

    2011-01-01

    Research highlights: → The β-globin locus control region is hyperacetylated and monomethylated at histone H3K27. → Highly transcribed globin genes are marked by H3K27ac, but H3K27me2 is remarkable at silent globin genes in erythroid K562 cells. → Association of PRC2 subunits is comparable with H3K27me3 pattern. → Modifications of histone H3K27 are established in an enhancer-dependent manner. -- Abstract: Histone H3K27 is acetylated or methylated in the environment of nuclear chromatin. Here, to characterize the modification pattern of H3K27 in locus control region (LCR) and to understand the correlation of various H3K27 modifications with transcriptional activity of genes, we analyzed the human β-globin locus using the ChIP assay. The LCR of the human β-globin locus was enriched by H3K27ac and H3K27me1 in erythroid K562 cells. The highly transcribed globin genes were hyperacetylated at H3K27, but the repressed globin genes were highly dimethylated at this lysine in these cells. However, in non-erythroid 293FT cells, the β-globin locus was marked by a high level of H3K27me3. EZH2 and SUZ12, subunits of polycomb repressive complex 2, were comparably detected with the H3K27me3 pattern in K562 and 293FT cells. In addition, H3K27ac, H3K27me1 and H3K27me3 were established in an enhancer-dependent manner in a model minichromosomal locus containing an enhancer and its target gene. Taken together, these results show that H3K27 modifications have distinctive correlations with the chromatin state or transcription level of genes and are influenced by an enhancer.

  17. Excess free histone H3 localizes to centrosomes for proteasome-mediated degradation during mitosis in metazoans.

    Science.gov (United States)

    Wike, Candice L; Graves, Hillary K; Wason, Arpit; Hawkins, Reva; Gopalakrishnan, Jay; Schumacher, Jill; Tyler, Jessica K

    2016-08-17

    The cell tightly controls histone protein levels in order to achieve proper packaging of the genome into chromatin, while avoiding the deleterious consequences of excess free histones. Our accompanying study has shown that a histone modification that loosens the intrinsic structure of the nucleosome, phosphorylation of histone H3 on threonine 118 (H3 T118ph), exists on centromeres and chromosome arms during mitosis. Here, we show that H3 T118ph localizes to centrosomes in humans, flies, and worms during all stages of mitosis. H3 abundance at the centrosome increased upon proteasome inhibition, suggesting that excess free histone H3 localizes to centrosomes for degradation during mitosis. In agreement, we find ubiquitinated H3 specifically during mitosis and within purified centrosomes. These results suggest that targeting of histone H3 to the centrosome for proteasome-mediated degradation is a novel pathway for controlling histone supply, specifically during mitosis.

  18. Histone H3 Serine 28 Is Essential for Efficient Polycomb-Mediated Gene Repression in Drosophila

    Directory of Open Access Journals (Sweden)

    Philip Yuk Kwong Yung

    2015-06-01

    Full Text Available Trimethylation at histone H3K27 is central to the polycomb repression system. Juxtaposed to H3K27 is a widely conserved phosphorylatable serine residue (H3S28 whose function is unclear. To assess the importance of H3S28, we generated a Drosophila H3 histone mutant with a serine-to-alanine mutation at position 28. H3S28A mutant cells lack H3S28ph on mitotic chromosomes but support normal mitosis. Strikingly, all methylation states of H3K27 drop in H3S28A cells, leading to Hox gene derepression and to homeotic transformations in adult tissues. These defects are not caused by active H3K27 demethylation nor by the loss of H3S28ph. Biochemical assays show that H3S28A nucleosomes are a suboptimal substrate for PRC2, suggesting that the unphosphorylated state of serine 28 is important for assisting in the function of polycomb complexes. Collectively, our data indicate that the conserved H3S28 residue in metazoans has a role in supporting PRC2 catalysis.

  19. Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis.

    Science.gov (United States)

    Wang, Likai; Zhang, Fan; Rode, Siddharth; Chin, Kevin K; Ko, Eun Esther; Kim, Jonghwan; Iyer, Vishwanath R; Qiao, Hong

    2017-07-17

    Histone acetylation and deacetylation are essential for gene regulation and have been implicated in the regulation of plant hormone responses. Many studies have indicated the role of histone acetylation in ethylene signaling; however, few studies have investigated how ethylene signaling regulates the genomic landscape of chromatin states. Recently, we found that ethylene can specifically elevate histone H3K14 acetylation and the non-canonical histone H3K23 acetylation in etiolated seedlings and the gene activation is positively associated with the elevation of H3K14Ac and H3K23Ac in response to ethylene. To assess the role of H3K9, H3K14, and H3K23 histone modifications in the ethylene response, we examined how ethylene regulates histone acetylation and the transcriptome at global level and in ethylene regulated genes both in wild type (Col-0) and ein2-5 seedlings. Our results revealed that H3K9Ac, H3K14Ac, and H3K23Ac are preferentially enriched around the transcription start sites and are positively correlated with gene expression levels in Col-0 and ein2-5 seedlings both with and without ethylene treatment. In the absence of ethylene, no combinatorial effect of H3K9Ac, H3K14Ac, and H3K23Ac on gene expression was detected. In the presence of ethylene, however, combined enrichment of the three histone acetylation marks was associated with high gene expression levels, and this ethylene-induced change was EIN2 dependent. In addition, we found that ethylene-regulated genes are expressed at medium or high levels, and a group of ethylene regulated genes are marked by either one of H3K9Ac, H3K14Ac or H3K23Ac. In this group of genes, the levels of H3K9Ac were altered by ethylene, but in the absence of ethylene the levels of H3K9Ac and peak breadths are distinguished in up- and down- regulated genes. In the presence of ethylene, the changes in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expressions. Our study reveals that

  20. CFP1 Regulates Histone H3K4 Trimethylation and Developmental Potential in Mouse Oocytes

    Directory of Open Access Journals (Sweden)

    Chao Yu

    2017-08-01

    Full Text Available Trimethylation of histone H3 at lysine-4 (H3K4me3 is associated with eukaryotic gene promoters and poises their transcriptional activation during development. To examine the in vivo function of H3K4me3 in the absence of DNA replication, we deleted CXXC finger protein 1 (CFP1, the DNA-binding subunit of the SETD1 histone H3K4 methyltransferase, in developing oocytes. We find that CFP1 is required for H3K4me3 accumulation and the deposition of histone variants onto chromatin during oocyte maturation. Decreased H3K4me3 in oocytes caused global downregulation of transcription activity. Oocytes lacking CFP1 failed to complete maturation and were unable to gain developmental competence after fertilization, due to defects in cytoplasmic lattice formation, meiotic division, and maternal-zygotic transition. Our study highlights the importance of H3K4me3 in continuous histone replacement for transcriptional regulation, chromatin remodeling, and normal developmental progression in a non-replicative system.

  1. Histone H3 is absent from organelle nucleoids in BY-2 cultured tobacco cells.

    Science.gov (United States)

    Takusagawa, Mari; Tamotsu, Satoshi; Sakai, Atsushi

    2013-07-01

    The core histone proteins (H2A, H2B, H3 and H4) are nuclear-localised proteins that play a central role in the formation of nucleosome structure. They have long been considered to be absent from extra-nuclear, DNA-containing organelles; that is plastids and mitochondria. Recently, however, the targeting of core histone H3 to mitochondria, and the presence of nucleosome-like structures in mitochondrial nucleoids, were proposed in cauliflower and tobacco respectively. Thus, we examined whether histone H3 was present in plant organelles and participated in the organisation of nucleoid structure, using highly purified organelles and organelle nucleoids isolated from BY-2 cultured tobacco cells. Immunofluorescence microscopic observations and Western blotting analyses demonstrated that histone H3 was absent from organelles and organelle nucleoids, consistent with the historical hypothesis. Thus, the organisation of organelle nucleoids, including putative nucleosome-like repetitive structures, should be constructed and maintained without participation of histone H3. © 2013 International Federation for Cell Biology.

  2. Stress-induced brain histone H3 phosphorylation: contribution of the intensity of stressors and length of exposure.

    Science.gov (United States)

    Rotllant, David; Pastor-Ciurana, Jordi; Armario, Antonio

    2013-05-01

    Expression of c-fos is used for the characterization of brain areas activated by stressors. Recently, some epigenetic markers associated with enhanced transcription have been identified that may be also useful to detect neuronal populations important for the processing of stressors: phosphorylation of histone H3 in serine 10 or 28 (pH3S₁₀ or pH3S₂₈). Then, we compared in rats the response to stress of c-fos and these epigenetic changes. More specifically, we studied the influence of the type of stressor (novel environment vs. immobilization, IMO) and the dynamics of the response to IMO. Stress increased pH3S₁₀ positive neurons, with a more restricted pattern than that of c-fos, both in terms of brain areas activated and number of positive neurons. Changes in pH3S₁₀ showed a maximum at 30 min, then progressively declining in most areas in spite of the persistence of IMO. Moreover, the decline was in general more sensitive than c-fos to the termination of IMO. The pattern of pH3S₂₈ was even more restricted that of pH3S₁₀, but they showed co-localization. The present data demonstrate a more selective pattern of stress-induced histone H3 phosphorylation than c-fos. The factors determining such a selectivity and its biological meaning remain to be studied. © 2013 International Society for Neurochemistry.

  3. Acidic ribosomal proteins and histone H3 from Leishmania present a high rate of divergence

    Directory of Open Access Journals (Sweden)

    Ysabel Montoya

    2000-08-01

    Full Text Available Another additional peculiarity in Leishmania will be discussed about of the amino acid divergence rate of three structural proteins: acidic ribosomal P1 and P2b proteins, and histone H3 by using multiple sequence alignment and dendrograms. These structural proteins present a high rate of divergence regarding to their homologous protein in Trypanosoma cruzi. At this regard, L. (V. peruviana P1 and T. cruzi P1 showed 57.4% of divergence rate. Likewise, L. (V. braziliensis histone H3 and acidic ribosomal P2 protein exhibited 31.8% and 41.7% respectively of rate of divergence in comparison with their homologous in T. cruzi.

  4. Covalent Modifications of Histone H3K9 Promote Binding of CHD3

    Directory of Open Access Journals (Sweden)

    Adam H. Tencer

    2017-10-01

    Full Text Available Chromatin remodeling is required for genome function and is facilitated by ATP-dependent complexes, such as nucleosome remodeling and deacetylase (NuRD. Among its core components is the chromodomain helicase DNA binding protein 3 (CHD3 whose functional significance is not well established. Here, we show that CHD3 co-localizes with the other NuRD subunits, including HDAC1, near the H3K9ac-enriched promoters of the NuRD target genes. The tandem PHD fingers of CHD3 bind histone H3 tails and posttranslational modifications that increase hydrophobicity of H3K9—methylation or acetylation (H3K9me3 or H3K9ac—enhance this interaction. Binding of CHD3 PHDs promotes H3K9Cme3-nucleosome unwrapping in vitro and perturbs the pericentric heterochromatin structure in vivo. Methylation or acetylation of H3K9 uniquely alleviates the intra-nucleosomal interaction of histone H3 tails, increasing H3K9 accessibility. Collectively, our data suggest that the targeting of covalently modified H3K9 by CHD3 might be essential in diverse functions of NuRD.

  5. A mouse speciation gene encodes a meiotic histone H3 methyltransferase

    Czech Academy of Sciences Publication Activity Database

    Mihola, Ondřej; Trachtulec, Zdeněk; Vlček, Čestmír; Schimenti, J.C.; Forejt, Jiří

    2009-01-01

    Roč. 323, č. 5912 (2009), s. 373-375 ISSN 0036-8075 Institutional research plan: CEZ:AV0Z50520514 Keywords : hybrid sterility * histone H3K4 methyltransferase * Prdm9 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 29.747, year: 2009

  6. Ornithine decarboxylase antizyme induces hypomethylation of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2 in human oral cancer cell line.

    Directory of Open Access Journals (Sweden)

    Daisuke Yamamoto

    2010-09-01

    Full Text Available Methylation of CpG islands of genome DNA and lysine residues of histone H3 and H4 tails regulates gene transcription. Inhibition of polyamine synthesis by ornithine decarboxylase antizyme-1 (OAZ in human oral cancer cell line resulted in accumulation of decarboxylated S-adenosylmethionine (dcSAM, which acts as a competitive inhibitor of methylation reactions. We anticipated that accumulation of dcSAM impaired methylation reactions and resulted in hypomethylation of genome DNA and histone tails.Global methylation state of genome DNA and lysine residues of histone H3 and H4 tails were assayed by Methylation by Isoschizomers (MIAMI method and western blotting, respectively, in the presence or absence of OAZ expression. Ectopic expression of OAZ mediated hypomethylation of CpG islands of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2. Protein level of DNA methyltransferase 3B (DNMT3B and histone H3K9me specific methyltransferase G9a were down-regulated in OAZ transfectant.OAZ induced hypomethylation of CpG islands of global genome DNA and H3K9me2 by down-regulating DNMT3B and G9a protein level. Hypomethylation of CpG islands of genome DNA and histone H3K9me2 is a potent mechanism of induction of the genes related to tumor suppression and DNA double strand break repair.

  7. Histone H3 Methylated at Arginine 17 Is Essential for Reprogramming the Paternal Genome in Zygotes

    Directory of Open Access Journals (Sweden)

    Yuki Hatanaka

    2017-09-01

    Full Text Available At fertilization, the paternal genome undergoes extensive reprogramming through protamine-histone exchange and active DNA demethylation, but only a few maternal factors have been defined in these processes. We identified maternal Mettl23 as a protein arginine methyltransferase (PRMT, which most likely catalyzes the asymmetric dimethylation of histone H3R17 (H3R17me2a, as indicated by in vitro assays and treatment with TBBD, an H3R17 PRMT inhibitor. Maternal histone H3.3, which is essential for paternal nucleosomal assembly, is unable to be incorporated into the male pronucleus when it lacks R17me2a. Mettl23 interacts with Tet3, a 5mC-oxidizing enzyme responsible for active DNA demethylation, by binding to another maternal factor, GSE (gonad-specific expression. Depletion of Mettl23 from oocytes resulted in impaired accumulation of GSE, Tet3, and 5hmC in the male pronucleus, suggesting that Mettl23 may recruit GSE-Tet3 to chromatin. Our findings establish H3R17me2a and its catalyzing enzyme Mettl23 as key regulators of paternal genome reprogramming.

  8. RPA binds histone H3-H4 and functions in DNA replication-coupled nucleosome assembly.

    Science.gov (United States)

    Liu, Shaofeng; Xu, Zhiyun; Leng, He; Zheng, Pu; Yang, Jiayi; Chen, Kaifu; Feng, Jianxun; Li, Qing

    2017-01-27

    DNA replication-coupled nucleosome assembly is essential to maintain genome integrity and retain epigenetic information. Multiple involved histone chaperones have been identified, but how nucleosome assembly is coupled to DNA replication remains elusive. Here we show that replication protein A (RPA), an essential replisome component that binds single-stranded DNA, has a role in replication-coupled nucleosome assembly. RPA directly binds free H3-H4. Assays using a synthetic sequence that mimics freshly unwound single-stranded DNA at replication fork showed that RPA promotes DNA-(H3-H4) complex formation immediately adjacent to double-stranded DNA. Further, an RPA mutant defective in H3-H4 binding exhibited attenuated nucleosome assembly on nascent chromatin. Thus, we propose that RPA functions as a platform for targeting histone deposition to replication fork, through which RPA couples nucleosome assembly with ongoing DNA replication. Copyright © 2017, American Association for the Advancement of Science.

  9. Histone H3 lysine 36 methyltransferase mobilizes NER factors to regulate tolerance against alkylation damage in fission yeast.

    Science.gov (United States)

    Lim, Kim Kiat; Nguyen, Thi Thuy Trang; Li, Adelicia Yongling; Yeo, Yee Phan; Chen, Ee Sin

    2018-04-09

    The Set2 methyltransferase and its target, histone H3 lysine 36 (H3K36), affect chromatin architecture during the transcription and repair of DNA double-stranded breaks. Set2 also confers resistance against the alkylating agent, methyl methanesulfonate (MMS), through an unknown mechanism. Here, we show that Schizosaccharomyces pombe (S. pombe) exhibit MMS hypersensitivity when expressing a set2 mutant lacking the catalytic histone methyltransferase domain or a H3K36R mutant (reminiscent of a set2-null mutant). Set2 acts synergistically with base excision repair factors but epistatically with nucleotide excision repair (NER) factors, and determines the timely nuclear accumulation of the NER initiator, Rhp23, in response to MMS. Set2 facilitates Rhp23 recruitment to chromatin at the brc1+ locus, presumably to repair alkylating damage and regulate the expression of brc1+ in response to MMS. Set2 also show epistasis with DNA damage checkpoint proteins; regulates the activation of Chk1, a DNA damage response effector kinase; and acts in a similar functional group as proteins involved in homologous recombination. Consistently, Set2 and H3K36 ensure the dynamicity of Rhp54 in DNA repair foci formation after MMS treatment. Overall, our results indicate a novel role for Set2/H3K36me in coordinating the recruitment of DNA repair machineries to timely manage alkylating damage.

  10. JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against Pseudomonas syringae and flowering time.

    Science.gov (United States)

    Dutta, Aditya; Choudhary, Pratibha; Caruana, Julie; Raina, Ramesh

    2017-09-01

    Histone methylation is known to dynamically regulate diverse developmental and physiological processes. Histone methyl marks are written by methyltransferases and erased by demethylases, and result in modification of chromatin structure to repress or activate transcription. However, little is known about how histone methylation may regulate defense mechanisms and flowering time in plants. Here we report characterization of JmjC DOMAIN-CONTAINING PROTEIN 27 (JMJ27), an Arabidopsis JHDM2 (JmjC domain-containing histone demethylase 2) family protein, which modulates defense against pathogens and flowering time. JMJ27 is a nuclear protein containing a zinc-finger motif and a catalytic JmjC domain with conserved Fe(II) and α-ketoglutarate binding sites, and displays H3K9me1/2 demethylase activity both in vitro and in vivo. JMJ27 is induced in response to virulent Pseudomonas syringae pathogens and is required for resistance against these pathogens. JMJ27 is a negative modulator of WRKY25 (a repressor of defense) and a positive modulator of several pathogenesis-related (PR) proteins. Additionally, loss of JMJ27 function leads to early flowering. JMJ27 negatively modulates the major flowering regulator CONSTANS (CO) and positively modulates FLOWERING LOCUS C (FLC). Taken together, our results indicate that JMJ27 functions as a histone demethylase to modulate both physiological (defense) and developmental (flowering time) processes in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas

    Science.gov (United States)

    Fang, Dong; Gan, Haiyun; Lee, Jeong-Heon; Han, Jing; Wang, Zhiquan; Riester, Scott M.; Jin, Long; Chen, Jianji; Zhou, Hui; Wang, Jinglong; Zhang, Honglian; Yang, Na; Bradley, Elizabeth W.; Ho, Thai H.; Rubin, Brian P.; Bridge, Julia A.; Thibodeau, Stephen N; Ordog, Tamas; Chen, Yue; van Wijnen, Andre J.; Oliveira, Andre M.; Xu, Rui-Ming; Westendorf, Jennifer J.; Zhang, Zhiguo

    2016-01-01

    Over 90% of chondroblastomas contain a heterozygous mutation replacing lysine 36 with methionine (K36M) in the histone H3 variant H3.3. Here, we show that H3K36 methylation is reduced globally in chondroblastomas and in chondrocytes harboring the same genetic mutation due to inhibition of at least two H3K36 methyltransferases, MMSET and SETD2, by the H3.3K36M mutant proteins. Genes with altered expression as well as H3K36 di- and trimethylation in H3.3K36M cells are enriched in cancer pathways. In addition, H3.3K36M chondrocytes exhibit several hallmarks of cancer cells including increased ability to form colonies, resistance to apoptosis and defects in differentiation. Thus, H3.3K36M proteins reprogram H3K36 methylation landscape and contribute to tumorigenesis in part through altering the expression of cancer-associated genes. PMID:27229140

  12. Basal aurora kinase B activity is sufficient for histone H3 phosphorylation in prophase

    Directory of Open Access Journals (Sweden)

    Ly-Thuy-Tram Le

    2013-02-01

    Histone H3 phosphorylation is the hallmark of mitosis deposited by aurora kinase B. Benzo[e]pyridoindoles are a family of potent, broad, ATP-competitive aurora kinase inhibitors. However, benzo[e]pyridoindole C4 only inhibits histone H3 phosphorylation in prophase but not in metaphase. Under the C4 treatment, the cells enter into mitosis with dephosphorylated histone H3, assemble chromosomes normally and progress to metaphase, and then to anaphase. C4 also induces lagging chromosome in anaphase but we demonstrated that these chromosome compaction defects are not related to the absence of H3 phosphorylation in prophase. As a result of C4 action, mitosis lasts longer and the cell cycle is slowed down. We reproduced the mitotic defects with reduced concentrations of potent pan aurora kinase as well as with a specific aurora B ATP-competitive inhibitor; we therefore propose that histone H3 phosphorylation and anaphase chromosome compaction involve the basal activity of aurora kinase B. Our data suggest that aurora kinase B is progressively activated at mitosis entry and at anaphase onset. The full activation of aurora kinase B by its partners, in prometaphase, induces a shift in the catalytic domain of aurora B that modifies its affinity for ATP. These waves of activation/deactivation of aurora B correspond to different conformations of the chromosomal complex revealed by FRAP. The presence of lagging chromosomes may have deleterious consequences on the daughter cells and, unfortunately, the situation may be encountered in patients receiving treatment with aurora kinase inhibitors.

  13. Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia

    DEFF Research Database (Denmark)

    Müller-Tidow, Carsten; Klein, Hans-Ulrich; Hascher, Antje

    2010-01-01

    Acute Myeloid Leukemia (AML) is commonly associated with alterations in transcription factors due to altered expression or gene mutations. These changes might induce leukemia- specific patterns of histone modifications. We used ChIP-Chip to analyze histone H3 Lysine 9 trimethylation (H3K9me3) pat...

  14. Deposition of newly synthesized histones: new histones H2A and H2B do not deposit in the same nucleosome with new Histones H3 and H4

    International Nuclear Information System (INIS)

    Jackson, V.

    1987-01-01

    The authors have developed procedures to study histone-histone interactions during the deposition of histones in replicating cells. Cells are labeled for 60 min with dense amino acids, and subsequently, the histones within the nucleosomes are cross-linked into an octameric complex with formaldehyde. These complexes are sedimented to equilibrium in density gradients and octamer and dioctamer complexes separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With reversal of the cross-link, the distribution of the individual density-labeled histones in the octamer is determined. Newly synthesized H3 and H4 deposits as a tetramer and are associated with old H2A and H2B. Newly synthesized H2A and H2B deposit as a dimer associated with old H2A, H2B, H3, and H4. The significance of these results with respect to the dynamics of histone interactions in the nucleus is discussed. Control experiments are presented to test for artifactual formation of these complexes during preparative procedures. In addition, reconstitution experiments were performed to demonstrate that the composition of these octameric complexes can be determined from their distribution of density gradients

  15. Mitotic accumulation of dimethylated lysine 79 of histone H3 is important for maintaining genome integrity during mitosis in human cells.

    Science.gov (United States)

    Guppy, Brent J; McManus, Kirk J

    2015-02-01

    The loss of genome stability is an early event that drives the development and progression of virtually all tumor types. Recent studies have revealed that certain histone post-translational modifications exhibit dynamic and global increases in abundance that coincide with mitosis and exhibit essential roles in maintaining genomic stability. Histone H2B ubiquitination at lysine 120 (H2Bub1) is regulated by RNF20, an E3 ubiquitin ligase that is altered in many tumor types. Through an evolutionarily conserved trans-histone pathway, H2Bub1 is an essential prerequisite for subsequent downstream dimethylation events at lysines 4 (H3K4me2) and 79 (H3K79me2) of histone H3. Although the role that RNF20 plays in tumorigenesis has garnered much attention, the downstream components of the trans-histone pathway, H3K4me2 and H3K79me2, and their potential contributions to genome stability remain largely overlooked. In this study, we employ single-cell imaging and biochemical approaches to investigate the spatial and temporal patterning of RNF20, H2Bub1, H3K4me2, and H3K79me2 throughout the cell cycle, with a particular focus on mitosis. We show that H2Bub1, H3K4me2, and H3K79me2 exhibit distinct temporal progression patterns throughout the cell cycle. Most notably, we demonstrate that H3K79me2 is a highly dynamic histone post-translational modification that reaches maximal abundance during mitosis in an H2Bub1-independent manner. Using RNAi and chemical genetic approaches, we identify DOT1L as a histone methyltransferase required for the mitotic-associated increases in H3K79me2. We also demonstrate that the loss of mitotic H3K79me2 levels correlates with increases in chromosome numbers and increases in mitotic defects. Collectively, these data suggest that H3K79me2 dynamics during mitosis are normally required to maintain genome stability and further implicate the loss of H3K79me2 during mitosis as a pathogenic event that contributes to the development and progression of tumors

  16. Analysis of Primary Structural Determinants That Distinguish the Centromere-Specific Function of Histone Variant Cse4p from Histone H3

    OpenAIRE

    Keith, Kevin C.; Baker, Richard E.; Chen, Yinhuai; Harris, Kendra; Stoler, Sam; Fitzgerald-Hayes, Molly

    1999-01-01

    Cse4p is a variant of histone H3 that has an essential role in chromosome segregation and centromere chromatin structure in budding yeast. Cse4p has a unique 135-amino-acid N terminus and a C-terminal histone-fold domain that is more than 60% identical to histone H3 and the mammalian centromere protein CENP-A. Cse4p and CENP-A have biochemical properties similar to H3 and probably replace H3 in centromere-specific nucleosomes in yeasts and mammals, respectively. In order to identify regions o...

  17. The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition.

    Science.gov (United States)

    Singhal, N K; Huang, H; Li, S; Clements, R; Gadd, J; Daniels, A; Kooijman, E E; Bannerman, P; Burns, T; Guo, F; Pleasure, D; Freeman, E; Shriver, L; McDonough, J

    2017-01-01

    The neuronal mitochondrial metabolite N-acetylaspartate (NAA) is decreased in the multiple sclerosis (MS) brain. NAA is synthesized in neurons by the enzyme N-acetyltransferase-8-like (NAT8L) and broken down in oligodendrocytes by aspartoacylase (ASPA) into acetate and aspartate. We have hypothesized that NAA links the metabolism of axons with oligodendrocytes to support myelination. To test this hypothesis, we performed lipidomic analyses using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high-performance thin-layer chromatography (HPTLC) to identify changes in myelin lipid composition in postmortem MS brains and in NAT8L knockout (NAT8L -/- ) mice which do not synthesize NAA. We found reduced levels of sphingomyelin in MS normal appearing white matter that mirrored decreased levels of NAA. We also discovered decreases in the amounts of sphingomyelin and sulfatide lipids in the brains of NAT8L -/- mice compared to controls. Metabolomic analysis of primary cultures of oligodendrocytes treated with NAA revealed increased levels of α-ketoglutarate, which has been reported to regulate histone demethylase activity. Consistent with this, NAA treatment resulted in alterations in the levels of histone H3 methylation, including H3K4me3, H3K9me2, and H3K9me3. The H3K4me3 histone mark regulates cellular energetics, metabolism, and growth, while H3K9me3 has been linked to alterations in transcriptional repression in developing oligodendrocytes. We also noted the NAA treatment was associated with increases in the expression of genes involved in sulfatide and sphingomyelin synthesis in cultured oligodendrocytes. This is the first report demonstrating that neuronal-derived NAA can signal to the oligodendrocyte nucleus. These data suggest that neuronal-derived NAA signals through epigenetic mechanisms in oligodendrocytes to support or maintain myelination.

  18. Global differences in specific histone H3 methylation are associated with overweight and type 2 diabetes

    OpenAIRE

    Jufvas, ?sa; Sj?din, Simon; Lundqvist, Kim; Amin, Risul; Vener, Alexander V; Str?lfors, Peter

    2013-01-01

    BACKGROUND: Epidemiological evidence indicates yet unknown epigenetic mechanisms underlying a propensity for overweight and type 2 diabetes. We analyzed the extent of methylation at lysine 4 and lysine 9 of histone H3 in primary human adipocytes from 43 subjects using modification-specific antibodies. RESULTS: The level of lysine 9 dimethylation was stable, while adipocytes from type 2 diabetic and non-diabetic overweight subjects exhibited about 40% lower levels of lysine 4 dimethylation com...

  19. Drosophila Kismet regulates histone H3 lysine 27 methylation and early elongation by RNA polymerase II.

    Directory of Open Access Journals (Sweden)

    Shrividhya Srinivasan

    2008-10-01

    Full Text Available Polycomb and trithorax group proteins regulate cellular pluripotency and differentiation by maintaining hereditable states of transcription. Many Polycomb and trithorax group proteins have been implicated in the covalent modification or remodeling of chromatin, but how they interact with each other and the general transcription machinery to regulate transcription is not well understood. The trithorax group protein Kismet-L (KIS-L is a member of the CHD subfamily of chromatin-remodeling factors that plays a global role in transcription by RNA polymerase II (Pol II. Mutations in CHD7, the human counterpart of kis, are associated with CHARGE syndrome, a developmental disorder affecting multiple tissues and organs. To clarify how KIS-L activates gene expression and counteracts Polycomb group silencing, we characterized defects resulting from the loss of KIS-L function in Drosophila. These studies revealed that KIS-L acts downstream of P-TEFb recruitment to stimulate elongation by Pol II. The presence of two chromodomains in KIS-L suggested that its recruitment or function might be regulated by the methylation of histone H3 lysine 4 by the trithorax group proteins ASH1 and TRX. Although we observed significant overlap between the distributions of KIS-L, ASH1, and TRX on polytene chromosomes, KIS-L did not bind methylated histone tails in vitro, and loss of TRX or ASH1 function did not alter the association of KIS-L with chromatin. By contrast, loss of kis function led to a dramatic reduction in the levels of TRX and ASH1 associated with chromatin and was accompanied by increased histone H3 lysine 27 methylation-a modification required for Polycomb group repression. A similar increase in H3 lysine 27 methylation was observed in ash1 and trx mutant larvae. Our findings suggest that KIS-L promotes early elongation and counteracts Polycomb group repression by recruiting the ASH1 and TRX histone methyltransferases to chromatin.

  20. Genome Editing a Mouse Locus Encoding a Variant Histone, H3.3B, to Report on its Expression in Live Animals

    Science.gov (United States)

    Wen, Duancheng; Noh, Kyung-Min; Goldberg, Aaron D.; Allis, C. David; Rosenwaks, Zev; Rafii, Shahin; Banaszynski, Laura A.

    2018-01-01

    Summary Chromatin remodeling via incorporation of histone variants plays a key role in the regulation of embryonic development. The histone variant H3.3 has been associated with a number of early events including formation of the paternal pronucleus upon fertilization. The small number of amino acid differences between H3.3 and its canonical counterparts (H3.1 and H3.2) has limited studies of the developmental significance of H3.3 deposition into chromatin due to difficulties in distinguishing the H3 isoforms. To this end, we used zinc-finger nuclease (ZFN) mediated gene editing to introduce a small C-terminal hemagglutinin (HA) tag to the endogenous H3.3B locus in mouse embryonic stem cells (ESCs), along with an internal ribosome entry site (IRES) and a separately translated fluorescent reporter of expression. This system will allow detection of expression driven by the reporter in cells, animals, and embryos, and will facilitate investigation of differential roles of paternal and maternal H3.3 protein during embryogenesis that would not be possible using variant-specific antibodies. Further, the ability to monitor endogenous H3.3 protein in various cell lineages will enhance our understanding of the dynamics of this histone variant over the course of development. genesis PMID:25262655

  1. The COMPASS Family of Histone H3K4 Methylases: Mechanisms of Regulation in Development and Disease Pathogenesis

    Science.gov (United States)

    Shilatifard, Ali

    2014-01-01

    The Saccharomyces cerevisiae Set1/COMPASS was the first histone H3 lysine 4 (H3K4) methylase identified over ten years ago. Since then, it has been demonstrated that Set1/COMPASS and its enzymatic product, H3K4 methylation, is highly conserved across the evolutionary tree. Although there is only one COMPASS in yeast, human cells bear at least six COMPASS family members each capable of methylating H3K4 with non-redundant functions. In yeast, the monoubiquitination of histone H2B by Rad6/Bre1 is required for proper H3K4 and H3K79 trimethylations. This histone crosstalk and its machinery are also highly conserved from yeast to human. In this review, the process of histone H2B monoubiquitination-dependent and independent histone H3K4 methylation as a mark of active transcription, enhancer signatures, and developmentally poised genes will be discussed. The misregulation of histone H2B monoubiquitination and H3K4 methylation results in the pathogenesis of human diseases including cancer. Recent findings in this regard will also be examined. PMID:22663077

  2. Analysis of Histones H3 and H4 Reveals Novel and Conserved Post-Translational Modifications in Sugarcane.

    Science.gov (United States)

    Moraes, Izabel; Yuan, Zuo-Fei; Liu, Shichong; Souza, Glaucia Mendes; Garcia, Benjamin A; Casas-Mollano, J Armando

    2015-01-01

    Histones are the main structural components of the nucleosome, hence targets of many regulatory proteins that mediate processes involving changes in chromatin. The functional outcome of many pathways is "written" in the histones in the form of post-translational modifications that determine the final gene expression readout. As a result, modifications, alone or in combination, are important determinants of chromatin states. Histone modifications are accomplished by the addition of different chemical groups such as methyl, acetyl and phosphate. Thus, identifying and characterizing these modifications and the proteins related to them is the initial step to understanding the mechanisms of gene regulation and in the future may even provide tools for breeding programs. Several studies over the past years have contributed to increase our knowledge of epigenetic gene regulation in model organisms like Arabidopsis, yet this field remains relatively unexplored in crops. In this study we identified and initially characterized histones H3 and H4 in the monocot crop sugarcane. We discovered a number of histone genes by searching the sugarcane ESTs database. The proteins encoded correspond to canonical histones, and their variants. We also purified bulk histones and used them to map post-translational modifications in the histones H3 and H4 using mass spectrometry. Several modifications conserved in other plants, and also novel modified residues, were identified. In particular, we report O-acetylation of serine, threonine and tyrosine, a recently identified modification conserved in several eukaryotes. Additionally, the sub-nuclear localization of some well-studied modifications (i.e., H3K4me3, H3K9me2, H3K27me3, H3K9ac, H3T3ph) is described and compared to other plant species. To our knowledge, this is the first report of histones H3 and H4 as well as their post-translational modifications in sugarcane, and will provide a starting point for the study of chromatin regulation in

  3. Differential Expression of Histone H3.3 Genes and Their Role in Modulating Temperature Stress Response in Caenorhabditis elegans.

    Science.gov (United States)

    Delaney, Kamila; Mailler, Jonathan; Wenda, Joanna M; Gabus, Caroline; Steiner, Florian A

    2018-04-10

    Replication-independent variant histones replace canonical histones in nucleosomes and act as important regulators of chromatin function. H3.3 is a major variant of histone H3 that is remarkably conserved across all taxa and is distinguished from canonical H3 by just four key amino acids. Most genomes contain two or more genes expressing H3.3, and complete loss of the protein usually causes sterility or embryonic lethality. Here we investigated the developmental expression pattern of the five Caenorhabditis elegans H3.3 homologues and identified two previously uncharacterized homologues to be restricted to the germ line. We demonstrate an essential role for the conserved histone chaperone HIRA in the nucleosomal loading of all H3.3 variants. This requirement can be bypassed by mutation of the H3.3-specific residues to those found in H3. Analysis of H3.3 knockout mutants revealed a surprising absence of developmental phenotypes. While removal of all H3.3 homologues did not result in lethality, it led to reduced fertility and viability in response to high temperature stress. Our results thus show that H3.3 is non-essential in C. elegans , but is critical for ensuring adequate response to stress. Copyright © 2018, Genetics.

  4. Thermodynamic stability of Hoogsteen and Watson-Crick base pairs in the presence of histone H3-mimicking peptide.

    Science.gov (United States)

    Pramanik, Smritimoy; Nakamura, Kaori; Usui, Kenji; Nakano, Shu-ichi; Saxena, Sarika; Matsui, Jun; Miyoshi, Daisuke; Sugimoto, Naoki

    2011-03-14

    We found that Hoogsteen base pairs were stabilized by molecular crowding and a histone H3-mimicking peptide, which was not observed for Watson-Crick base pairs. Our findings demonstrate that the type of DNA base pair is critical for the interaction between DNA and histones.

  5. The SUVR4 histone lysine methyltransferase binds ubiquitin and converts H3K9me1 to H3K9me3 on transposon chromatin in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Silje V Veiseth

    2011-03-01

    Full Text Available Chromatin structure and gene expression are regulated by posttranslational modifications (PTMs on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3 is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences. Besides the evolutionarily conserved SET domain which is responsible for enzyme activity, most HKMTases also contain additional domains which enable them to respond to other PTMs or cellular signals. Here we show that the N-terminal WIYLD domain of the Arabidopsis SUVR4 HKMTase binds ubiquitin and that the SUVR4 product specificity shifts from di- to trimethylation in the presence of free ubiquitin, enabling conversion of H3K9me1 to H3K9me3 in vitro. Chromatin immunoprecipitation and immunocytological analysis showed that SUVR4 in vivo specifically converts H3K9me1 to H3K9me3 at transposons and pseudogenes and has a locus-specific repressive effect on the expression of such elements. Bisulfite sequencing indicates that this repression involves both DNA methylation-dependent and -independent mechanisms. Transcribed genes with high endogenous levels of H3K4me3, H3K9me3, and H2Bub1, but low H3K9me1, are generally unaffected by SUVR4 activity. Our results imply that SUVR4 is involved in the epigenetic defense mechanism by trimethylating H3K9 to suppress potentially harmful transposon activity.

  6. Trithorax monomethylates histone H3K4 and interacts directly with CBP to promote H3K27 acetylation and antagonize Polycomb silencing

    Science.gov (United States)

    Tie, Feng; Banerjee, Rakhee; Saiakhova, Alina R.; Howard, Benny; Monteith, Kelsey E.; Scacheri, Peter C.; Cosgrove, Michael S.; Harte, Peter J.

    2014-01-01

    Trithorax (TRX) antagonizes epigenetic silencing by Polycomb group (PcG) proteins, stimulates enhancer-dependent transcription, and establishes a ‘cellular memory’ of active transcription of PcG-regulated genes. The mechanisms underlying these TRX functions remain largely unknown, but are presumed to involve its histone H3K4 methyltransferase activity. We report that the SET domains of TRX and TRX-related (TRR) have robust histone H3K4 monomethyltransferase activity in vitro and that Tyr3701 of TRX and Tyr2404 of TRR prevent them from being trimethyltransferases. The trxZ11 missense mutation (G3601S), which abolishes H3K4 methyltransferase activity in vitro, reduces the H3K4me1 but not the H3K4me3 level in vivo. trxZ11 also suppresses the impaired silencing phenotypes of the Pc3 mutant, suggesting that H3K4me1 is involved in antagonizing Polycomb silencing. Polycomb silencing is also antagonized by TRX-dependent H3K27 acetylation by CREB-binding protein (CBP). We show that perturbation of Polycomb silencing by TRX overexpression requires CBP. We also show that TRX and TRR are each physically associated with CBP in vivo, that TRX binds directly to the CBP KIX domain, and that the chromatin binding patterns of TRX and TRR are highly correlated with CBP and H3K4me1 genome-wide. In vitro acetylation of H3K27 by CBP is enhanced on K4me1-containing H3 substrates, and independently altering the H3K4me1 level in vivo, via the H3K4 demethylase LSD1, produces concordant changes in H3K27ac. These data indicate that the catalytic activities of TRX and CBP are physically coupled and suggest that both activities play roles in antagonizing Polycomb silencing, stimulating enhancer activity and cellular memory. PMID:24550119

  7. The Histone H3K27 Demethylase UTX Regulates Synaptic Plasticity and Cognitive Behaviors in Mice

    Directory of Open Access Journals (Sweden)

    Gang-Bin Tang

    2017-08-01

    Full Text Available Histone demethylase UTX mediates removal of repressive trimethylation of histone H3 lysine 27 (H3K27me3 to establish a mechanistic switch to activate large sets of genes. Mutation of Utx has recently been shown to be associated with Kabuki syndrome, a rare congenital anomaly syndrome with dementia. However, its biological function in the brain is largely unknown. Here, we observe that deletion of Utx results in increased anxiety-like behaviors and impaired spatial learning and memory in mice. Loss of Utx in the hippocampus leads to reduced long-term potentiation and amplitude of miniature excitatory postsynaptic current, aberrant dendrite development and defective synapse formation. Transcriptional profiling reveals that Utx regulates a subset of genes that are involved in the regulation of dendritic morphology, synaptic transmission, and cognition. Specifically, Utx deletion disrupts expression of neurotransmitter 5-hydroxytryptamine receptor 5B (Htr5b. Restoration of Htr5b expression in newborn hippocampal neurons rescues the defects of neuronal morphology by Utx ablation. Therefore, we provide evidence that Utx plays a critical role in modulating synaptic transmission and cognitive behaviors. Utx cKO mouse models like ours provide a valuable means to study the underlying mechanisms of the etiology of Kabuki syndrome.

  8. Mitochondrial control through nutritionally regulated global histone H3 lysine-4 demethylation.

    Science.gov (United States)

    Soloveychik, Maria; Xu, Mengshu; Zaslaver, Olga; Lee, Kwanyin; Narula, Ashrut; Jiang, River; Rosebrock, Adam P; Caudy, Amy A; Meneghini, Marc D

    2016-11-29

    Histone demethylation by Jumonji-family proteins is coupled with the decarboxylation of α-ketoglutarate (αKG) to yield succinate, prompting hypotheses that their activities are responsive to levels of these metabolites in the cell. Consistent with this paradigm we show here that the Saccharomyces cerevisiae Jumonji demethylase Jhd2 opposes the accumulation of H3K4me3 in fermenting cells only when they are nutritionally manipulated to contain an elevated αKG/succinate ratio. We also find that Jhd2 opposes H3K4me3 in respiratory cells that do not exhibit such an elevated αKG/succinate ratio. While jhd2∆ caused only limited gene expression defects in fermenting cells, transcript profiling and physiological measurements show that JHD2 restricts mitochondrial respiratory capacity in cells grown in non-fermentable carbon in an H3K4me-dependent manner. In association with these phenotypes, we find that JHD2 limits yeast proliferative capacity under physiologically challenging conditions as measured by both replicative lifespan and colony growth on non-fermentable carbon. JHD2's impact on nutrient response may reflect an ancestral role of its gene family in mediating mitochondrial regulation.

  9. Mitochondrial control through nutritionally regulated global histone H3 lysine-4 demethylation

    Science.gov (United States)

    Soloveychik, Maria; Xu, Mengshu; Zaslaver, Olga; Lee, Kwanyin; Narula, Ashrut; Jiang, River; Rosebrock, Adam P.; Caudy, Amy A.; Meneghini, Marc D.

    2016-01-01

    Histone demethylation by Jumonji-family proteins is coupled with the decarboxylation of α-ketoglutarate (αKG) to yield succinate, prompting hypotheses that their activities are responsive to levels of these metabolites in the cell. Consistent with this paradigm we show here that the Saccharomyces cerevisiae Jumonji demethylase Jhd2 opposes the accumulation of H3K4me3 in fermenting cells only when they are nutritionally manipulated to contain an elevated αKG/succinate ratio. We also find that Jhd2 opposes H3K4me3 in respiratory cells that do not exhibit such an elevated αKG/succinate ratio. While jhd2∆ caused only limited gene expression defects in fermenting cells, transcript profiling and physiological measurements show that JHD2 restricts mitochondrial respiratory capacity in cells grown in non-fermentable carbon in an H3K4me-dependent manner. In association with these phenotypes, we find that JHD2 limits yeast proliferative capacity under physiologically challenging conditions as measured by both replicative lifespan and colony growth on non-fermentable carbon. JHD2’s impact on nutrient response may reflect an ancestral role of its gene family in mediating mitochondrial regulation. PMID:27897198

  10. Structure-based nuclear import mechanism of histones H3 and H4 mediated by Kap123

    Energy Technology Data Exchange (ETDEWEB)

    An, Sojin [Department of Biological Chemistry, University of Michigan Medical School, Michigan, United States; Yoon, Jungmin [Structural Biology Laboratory of Epigenetics, Department of Biological Sciences, Graduate school of Nanoscience and Technology (World Class University), KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Kim, Hanseong [Department of Biological Chemistry, University of Michigan Medical School, Michigan, United States; Song, Ji-Joon [Structural Biology Laboratory of Epigenetics, Department of Biological Sciences, Graduate school of Nanoscience and Technology (World Class University), KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Cho, Uhn-soo [Department of Biological Chemistry, University of Michigan Medical School, Michigan, United States

    2017-10-16

    Kap123, a major karyopherin protein of budding yeast, recognizes the nuclear localization signals (NLSs) of cytoplasmic histones H3 and H4 and translocates them into the nucleus during DNA replication. Mechanistic questions include H3- and H4-NLS redundancy toward Kap123 and the role of the conserved diacetylation of cytoplasmic H4 (K5ac and K12ac) in Kap123-mediated histone nuclear translocation. Here, we report crystal structures of full-length Kluyveromyces lactis Kap123 alone and in complex with H3- and H4-NLSs. Structures reveal the unique feature of Kap123 that possesses two discrete lysine-binding pockets for NLS recognition. Structural comparison illustrates that H3- and H4-NLSs share at least one of two lysine-binding pockets, suggesting that H3- and H4-NLSs are mutually exclusive. Additionally, acetylation of key lysine residues at NLS, particularly H4-NLS diacetylation, weakens the interaction with Kap123. These data support that cytoplasmic histone H4 diacetylation weakens the Kap123-H4-NLS interaction thereby facilitating histone Kap123-H3-dependent H3:H4/Asf1 complex nuclear translocation.

  11. Characterization of centromeric histone H3 (CENH3 variants in cultivated and wild carrots (Daucus sp..

    Directory of Open Access Journals (Sweden)

    Frank Dunemann

    Full Text Available In eukaryotes, centromeres are the assembly sites for the kinetochore, a multi-protein complex to which spindle microtubules are attached at mitosis and meiosis, thereby ensuring segregation of chromosomes during cell division. They are specified by incorporation of CENH3, a centromere specific histone H3 variant which replaces canonical histone H3 in the nucleosomes of functional centromeres. To lay a first foundation of a putative alternative haploidization strategy based on centromere-mediated genome elimination in cultivated carrots, in the presented research we aimed at the identification and cloning of functional CENH3 genes in Daucus carota and three distantly related wild species of genus Daucus varying in basic chromosome numbers. Based on mining the carrot transcriptome followed by a subsequent PCR-based cloning, homologous coding sequences for CENH3s of the four Daucus species were identified. The ORFs of the CENH3 variants were very similar, and an amino acid sequence length of 146 aa was found in three out of the four species. Comparison of Daucus CENH3 amino acid sequences with those of other plant CENH3s as well as their phylogenetic arrangement among other dicot CENH3s suggest that the identified genes are authentic CENH3 homologs. To verify the location of the CENH3 protein in the kinetochore regions of the Daucus chromosomes, a polyclonal antibody based on a peptide corresponding to the N-terminus of DcCENH3 was developed and used for anti-CENH3 immunostaining of mitotic root cells. The chromosomal location of CENH3 proteins in the centromere regions of the chromosomes could be confirmed. For genetic localization of the CENH3 gene in the carrot genome, a previously constructed linkage map for carrot was used for mapping a CENH3-specific simple sequence repeat (SSR marker, and the CENH3 locus was mapped on the carrot chromosome 9.

  12. Analysis of the histone protein tail and DNA in nucleosome using molecular dynamics simulation

    Science.gov (United States)

    Fujimori, R.; Komatsu, Y.; Fukuda, M.; Miyakawa, T.; Morikawa, R.; Takasu, M.

    2013-02-01

    We study the effect of the tails of H3 and H4 histones in the nucleosomes, where DNA and histones are packed in the form of chromatin. We perform molecular dynamics simulations of the complex of DNA and histones and calculate the mean square displacement and the gyration radius of the complex of DNA and histones for the cases with tails intact and the cases with tails missing. Our results show that the H3 tails are important for the motion of the histones. We also find that the motion of one tail is affected by other tails, although the tails are distanced apart, suggesting the correlated motion in biological systems.

  13. Systems Level Analysis of Histone H3 Post-translational Modifications (PTMs) Reveals Features of PTM Crosstalk in Chromatin Regulation

    DEFF Research Database (Denmark)

    Schwämmle, Veit; Sidoli, Simone; Ruminowicz, Chrystian

    2016-01-01

    molecules contain multiple coexisting PTMs, some of which exhibit crosstalk, i.e. coordinated or mutually exclusive activities. Here, we present an integrated experimental and computational systems level molecular characterization of histone PTMs and PTM crosstalk. Using wild type and engineered mouse....... We characterized combinatorial PTM features across the four mESC lines and then applied statistical data analysis to predict crosstalk between histone H3 PTMs. We detected an overrepresentation of positive crosstalk (codependent marks) between adjacent mono-methylated and acetylated marks......, and negative crosstalk (mutually exclusive marks) among most of the seven characterized di- and tri-methylated lysine residues in the H3 tails. We report novel features of PTM interplay involving hitherto poorly characterized arginine methylation and lysine methylation sites, including H3R2me, H3R8me and H3K37...

  14. Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function.

    Science.gov (United States)

    Bergmann, Jan H; Jakubsche, Julia N; Martins, Nuno M; Kagansky, Alexander; Nakano, Megumi; Kimura, Hiroshi; Kelly, David A; Turner, Bryan M; Masumoto, Hiroshi; Larionov, Vladimir; Earnshaw, William C

    2012-01-15

    Human kinetochores are transcriptionally active, producing very low levels of transcripts of the underlying alpha-satellite DNA. However, it is not known whether kinetochores can tolerate acetylated chromatin and the levels of transcription that are characteristic of housekeeping genes, or whether kinetochore-associated 'centrochromatin', despite being transcribed at a low level, is essentially a form of repressive chromatin. Here, we have engineered two types of acetylated chromatin within the centromere of a synthetic human artificial chromosome. Tethering a minimal NF-κB p65 activation domain within kinetochore-associated chromatin produced chromatin with high levels of histone H3 acetylated on lysine 9 (H3K9ac) and an ~10-fold elevation in transcript levels, but had no substantial effect on kinetochore assembly or function. By contrast, tethering the herpes virus VP16 activation domain produced similar modifications in the chromatin but resulted in an ~150-fold elevation in transcripts, approaching the level of transcription of an endogenous housekeeping gene. This rapidly inactivated kinetochores, causing a loss of assembled CENP-A and blocking further CENP-A assembly. Our data reveal that functional centromeres in vivo show a remarkable plasticity--kinetochores tolerate profound changes to their chromatin environment, but appear to be critically sensitive to the level of centromeric transcription.

  15. SETD2 and histone H3 lysine 36 methylation deficiency in advanced systemic mastocytosis.

    Science.gov (United States)

    Martinelli, G; Mancini, M; De Benedittis, C; Rondoni, M; Papayannidis, C; Manfrini, M; Meggendorfer, M; Calogero, R; Guadagnuolo, V; Fontana, M C; Bavaro, L; Padella, A; Zago, E; Pagano, L; Zanotti, R; Scaffidi, L; Specchia, G; Albano, F; Merante, S; Elena, C; Savini, P; Gangemi, D; Tosi, P; Ciceri, F; Poletti, G; Riccioni, L; Morigi, F; Delledonne, M; Haferlach, T; Cavo, M; Valent, P; Soverini, S

    2018-01-01

    The molecular basis of advanced systemic mastocytosis (SM) is not fully understood and despite novel therapies the prognosis remains dismal. Exome sequencing of an index-patient with mast cell leukemia (MCL) uncovered biallelic loss-of-function mutations in the SETD2 histone methyltransferase gene. Copy-neutral loss-of-heterozygosity at 3p21.3 (where SETD2 maps) was subsequently found in SM patients and prompted us to undertake an in-depth analysis of SETD2 copy number, mutation status, transcript expression and methylation levels, as well as functional studies in the HMC-1 cell line and in a validation cohort of 57 additional cases with SM, including MCL, aggressive SM and indolent SM. Reduced or no SETD2 protein expression-and consequently, H3K36 trimethylation-was found in all cases and inversely correlated with disease aggressiveness. Proteasome inhibition rescued SETD2 expression and H3K36 trimethylation and resulted in marked accumulation of ubiquitinated SETD2 in SETD2-deficient patients but not in patients with near-normal SETD2 expression. Bortezomib and, to a lesser extent, AZD1775 alone or in combination with midostaurin induced apoptosis and reduced clonogenic growth of HMC-1 cells and of neoplastic mast cells from advanced SM patients. Our findings may have implications for prognostication of SM patients and for the development of improved treatment approaches in advanced SM.

  16. Inhibition of H3K27me3 Histone Demethylase Activity Prevents the Proliferative Regeneration of Zebrafish Lateral Line Neuromasts

    Science.gov (United States)

    Bao, Beier; He, Yingzi; Tang, Dongmei; Li, Wenyan; Li, Huawei

    2017-01-01

    The H3K27 demethylases are involved in a variety of biological processes, including cell differentiation, proliferation, and cell death by regulating transcriptional activity. However, the function of H3K27 demethylation in the field of hearing research is poorly understood. Here, we investigated the role of H3K27me3 histone demethylase activity in hair cell regeneration using an in vivo animal model. Our data showed that pharmacologic inhibition of H3K27 demethylase activity with the specific small-molecule inhibitor GSK-J4 decreased the number of regenerated hair cells in response to neomycin damage. Furthermore, inhibition of H3K27me3 histone demethylase activity dramatically suppressed cell proliferation and activated caspase-3 levels in the regenerating neuromasts of the zebrafish lateral line. GSK-J4 administration also increased the expression of p21 and p27 in neuromast cells and inhibited the ERK signaling pathway. Collectively, our findings indicate that H3K27me3 demethylation is a key epigenetic regulator in the process of hair cell regeneration in zebrafish and suggest that H3K27me3 histone demethylase activity might be a novel therapeutic target for the treatment of hearing loss. PMID:28348517

  17. Arsenic silences hepatic PDK4 expression through activation of histone H3K9 methylatransferase G9a

    International Nuclear Information System (INIS)

    Zhang, Xi; Wu, Jianguo; Choiniere, Jonathan; Yang, Zhihong; Huang, Yi; Bennett, Jason; Wang, Li

    2016-01-01

    It is well established that increased liver cancer incidence is strongly associated with epigenetic silencing of tumor suppressor genes; the latter is contributed by the environmental exposure to arsenic. Pyruvate dehydrogenase kinase 4 (PDK4) is a mitochondrial protein that regulates the TCA cycle. However, the epigenetic mechanisms mediated by arsenic to control PDK4 expression remain elusive. In the present study, we showed that histone methyltransferase G9a- and Suv39H-mediated histone H3 lysine 9 (H3K9) methylations contributed to PDK4 silencing in hepatic cells. The PDK4 expression was induced by G9a inhibitor BRD4770 (BRD) and Suv39H inhibitor Chaetocin (CHA). In contrast, arsenic exposure decreased PDK4 expression by inducing G9a and increasing H3K9 di- and tri-methylations levels (H3K9me2/3). In addition, arsenic exposure antagonizes the effect of BRD by enhancing the enrichment of H3K9me2/3 in the PKD4 promoter. Moreover, knockdown of G9a using siRNA induced PDK4 expression in HCC cells. Furthermore, arsenic decreased hepatic PDK4 expression as well as diminished the induction of PDK4 by BRD in mouse liver and hepatocytes. Overall, the results suggest that arsenic causes aberrant repressive histone modification to silence PDK4 in both HCC cells and in mouse liver. - Graphical abstract: Schematic showing arsenic-mediated epigenetic pathway that inhibits PDK4 expression. (A) BRD induces PDK4 expression by decreasing G9a protein and histone H3K9me2 and H3K9me3 levels as well as diminishing their recruitment to the PDK4 promoter. (B) Arsenic counteracts the effect of BRD by increasing histone H3K9me2 and H3K9me3 levels as well as enhancing their enrichment to the PDK4 promoter. Display Omitted - Highlights: • Histone methyltrasferase G9a inhibitor BRD induces PDK4 expression. • Arsenic decreases PDK4 expression and increases H3K9me2 and me3 levels. • Arsenic enhances H3K9me2/me3 enrichment in the PDK4 promoter. • Arsenic antagonizes the activation of

  18. Arsenic silences hepatic PDK4 expression through activation of histone H3K9 methylatransferase G9a

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xi; Wu, Jianguo; Choiniere, Jonathan [Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 062696 (United States); Yang, Zhihong [Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 062696 (United States); Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516 (United States); Huang, Yi [Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 062696 (United States); School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Bennett, Jason [Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 062696 (United States); Wang, Li, E-mail: li.wang@uconn.edu [Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 062696 (United States); Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516 (United States); School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06520 (United States)

    2016-08-01

    It is well established that increased liver cancer incidence is strongly associated with epigenetic silencing of tumor suppressor genes; the latter is contributed by the environmental exposure to arsenic. Pyruvate dehydrogenase kinase 4 (PDK4) is a mitochondrial protein that regulates the TCA cycle. However, the epigenetic mechanisms mediated by arsenic to control PDK4 expression remain elusive. In the present study, we showed that histone methyltransferase G9a- and Suv39H-mediated histone H3 lysine 9 (H3K9) methylations contributed to PDK4 silencing in hepatic cells. The PDK4 expression was induced by G9a inhibitor BRD4770 (BRD) and Suv39H inhibitor Chaetocin (CHA). In contrast, arsenic exposure decreased PDK4 expression by inducing G9a and increasing H3K9 di- and tri-methylations levels (H3K9me2/3). In addition, arsenic exposure antagonizes the effect of BRD by enhancing the enrichment of H3K9me2/3 in the PKD4 promoter. Moreover, knockdown of G9a using siRNA induced PDK4 expression in HCC cells. Furthermore, arsenic decreased hepatic PDK4 expression as well as diminished the induction of PDK4 by BRD in mouse liver and hepatocytes. Overall, the results suggest that arsenic causes aberrant repressive histone modification to silence PDK4 in both HCC cells and in mouse liver. - Graphical abstract: Schematic showing arsenic-mediated epigenetic pathway that inhibits PDK4 expression. (A) BRD induces PDK4 expression by decreasing G9a protein and histone H3K9me2 and H3K9me3 levels as well as diminishing their recruitment to the PDK4 promoter. (B) Arsenic counteracts the effect of BRD by increasing histone H3K9me2 and H3K9me3 levels as well as enhancing their enrichment to the PDK4 promoter. Display Omitted - Highlights: • Histone methyltrasferase G9a inhibitor BRD induces PDK4 expression. • Arsenic decreases PDK4 expression and increases H3K9me2 and me3 levels. • Arsenic enhances H3K9me2/me3 enrichment in the PDK4 promoter. • Arsenic antagonizes the activation of

  19. Distinct chromatin environment associated with phosphorylated H3S10 histone during pollen mitosis I in orchids.

    Science.gov (United States)

    Sharma, Santosh Kumar; Yamamoto, Maki; Mukai, Yasuhiko

    2017-01-01

    Pollen developmental pathway in plants involving synchronized transferal of cellular divisions from meiosis (microsporogenesis) to mitosis (pollen mitosis I/II) eventually offers a unique "meiosis-mitosis shift" at pollen mitosis I. Since the cell type (haploid microspore) and fate of pollen mitosis I differ from typical mitosis (in meristem cells), it is immensely important to analyze the chromosomal distribution of phosphorylated H3S10 histone during atypical pollen mitosis I to comprehend the role of histone phosphorylation in pollen development. We investigated the chromosomal phosphorylation of H3S10 histone during pollen mitosis I in orchids using immunostaining technique. The chromosomal distribution of H3S10ph during pollen mitosis I revealed differential pattern than that of typical mitosis in plants, however, eventually following the similar trends of mitosis in animals where H3S10 phosphorylation begins in the pericentromeric regions first, later extending to the whole chromosomes, and finally declining at anaphase/early cytokinesis (differentiation of vegetative and generative cells). The study suggests that the chromosomal distribution of H3S10ph during cell division is not universal and can be altered between different cell types encoded for diverse cellular processes. During pollen development, phosphorylation of histone might play a critical role in chromosome condensation events throughout pollen mitosis I in plants.

  20. Accumulation of histone variant H3.3 with age is associated with profound changes in the histone methylation landscape

    DEFF Research Database (Denmark)

    Tvardovskiy, Andrey; Schwämmle, Veit; Kempf, Stefan J

    2017-01-01

    a causal relationship between H3 variant replacement and age-dependent changes in H3 methylation. Furthermore, the H3.3 level is drastically reduced in human hepatocarcinoma cells as compared to nontumoral hepatocytes, suggesting the potential utility of the H3.3 relative abundance as a biomarker...

  1. 3-Deoxyglucosone: a potential glycating agent accountable for structural alteration in H3 histone protein through generation of different AGEs.

    Directory of Open Access Journals (Sweden)

    Jalaluddin M Ashraf

    Full Text Available Advanced glycation end-products (AGEs are heterogeneous group of compounds, known to be implicated in diabetic complications. One of the consequences of the Maillard reaction is attributed to the production of reactive intermediate products such as α-oxoaldehydes. 3-deoxyglucosone (3-DG, an α-oxoaldehyde has been found to be involved in accelerating vascular damage during diabetes. In the present study, calf thymus histone H3 was treated with 3-deoxyglucosone to investigate the generation of AGEs (Nε-carboxymethyllysine, pentosidine, by examining the degree of side chain modifications and formation of different intermediates and employing various physicochemical techniques. The results clearly indicate the formation of AGEs and structural changes upon glycation of H3 by 3-deoxyglucosone, which may hamper the normal functioning of H3 histone, that may compromise the veracity of chromatin structures and function in secondary complications of diabetes.

  2. High levels of glucose induce "metabolic memory" in cardiomyocyte via epigenetic histone H3 lysine 9 methylation.

    Science.gov (United States)

    Yu, Xi-Yong; Geng, Yong-Jian; Liang, Jia-Liang; Zhang, Saidan; Lei, He-Ping; Zhong, Shi-Long; Lin, Qiu-Xiong; Shan, Zhi-Xin; Lin, Shu-Guang; Li, Yangxin

    2012-09-01

    Diabetic patients continue to develop inflammation and cardiovascular complication even after achieving glycemic control, suggesting a "metabolic memory". Metabolic memory is a major challenge in the treatment of diabetic complication, and the mechanisms underlying metabolic memory are not clear. Recent studies suggest a link between chromatin histone methylation and metabolic memory. In this study, we tested whether histone 3 lysine-9 tri-methylation (H3K9me3), a key epigenetic chromatin marker, was involved in high glucose (HG)-induced inflammation and metabolic memory. Incubating cardiomyocyte cells in HG resulted in increased levels of inflammatory cytokine IL-6 mRNA when compared with myocytes incubated in normal culture media, whereas mannitol (osmotic control) has no effect. Chromatin immunoprecipitation (ChIP) assays showed that H3K9me3 levels were significantly decreased at the promoters of IL-6. Immunoblotting demonstrated that protein levels of the H3K9me3 methyltransferase, Suv39h1, were also reduced after HG treatment. HG-induced apoptosis, mitochondrial dysfunction and cytochrome-c release were reversible. However, the effects of HG on the expression of IL-6 and the levels of H3K9me3 were irreversible after the removal of HG from the culture. These results suggest that HG-induced sustained inflammatory phenotype and epigenetic histone modification, rather than HG-induced mitochondrial dysfunction and apoptosis, are main mechanisms responsible for metabolic memory. In conclusion, our data demonstrate that HG increases expression of inflammatory cytokine and decreases the levels of histone-3 methylation at the cytokine promoter, and suggest that modulating histone 3 methylation and inflammatory cytokine expression may be a useful strategy to prevent metabolic memory and cardiomyopathy in diabetic patients.

  3. H3K9me-independent gene silencing in fission yeast heterochromatin by Clr5 and histone deacetylases

    DEFF Research Database (Denmark)

    Hansen, Klavs R; Hazan, Idit; Shanker, Sreenath

    2011-01-01

    organisms such as fission yeast. In spite of numerous studies, the relative contributions of the various heterochromatic histone marks to the properties of heterochromatin remain largely undefined. Here, we report that silencing of the fission yeast mating-type cassettes, which are located in a well......, our results point to histone deacetylases as prominent repressors of gene expression in fission yeast heterochromatin. These deacetylases can act in concert with, or independently of, the widely studied H3K9me mark to influence gene silencing at heterochromatic loci....

  4. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition

    DEFF Research Database (Denmark)

    Dahl, John Arne; Jung, Inkyung; Aanes, Håvard

    2016-01-01

    device that is not readily available. We developed a micro-scale chromatin immunoprecipitation and sequencing (μChIP-seq) method, which we used to profile genome-wide histone H3 lysine methylation (H3K4me3) and acetylation (H3K27ac) in mouse immature and metaphase II oocytes and in 2-cell and 8-cell....... Active removal of broad H3K4me3 domains by the lysine demethylases KDM5A and KDM5B is required for normal zygotic genome activation and is essential for early embryo development. Our results provide insight into the onset of the developmental program in mouse embryos and demonstrate a role for broad H3K4...

  5. A reversible histone H3 acetylation cooperates with mismatch repair and replicative polymerases in maintaining genome stability.

    Directory of Open Access Journals (Sweden)

    Lyudmila Y Kadyrova

    2013-10-01

    Full Text Available Mutations are a major driving force of evolution and genetic disease. In eukaryotes, mutations are produced in the chromatin environment, but the impact of chromatin on mutagenesis is poorly understood. Previous studies have determined that in yeast Saccharomyces cerevisiae, Rtt109-dependent acetylation of histone H3 on K56 is an abundant modification that is introduced in chromatin in S phase and removed by Hst3 and Hst4 in G2/M. We show here that the chromatin deacetylation on histone H3 K56 by Hst3 and Hst4 is required for the suppression of spontaneous gross chromosomal rearrangements, base substitutions, 1-bp insertions/deletions, and complex mutations. The rate of base substitutions in hst3Δ hst4Δ is similar to that in isogenic mismatch repair-deficient msh2Δ mutant. We also provide evidence that H3 K56 acetylation by Rtt109 is important for safeguarding DNA from small insertions/deletions and complex mutations. Furthermore, we reveal that both the deacetylation and acetylation on histone H3 K56 are involved in mutation avoidance mechanisms that cooperate with mismatch repair and the proofreading activities of replicative DNA polymerases in suppressing spontaneous mutagenesis. Our results suggest that cyclic acetylation and deacetylation of chromatin contribute to replication fidelity and play important roles in the protection of nuclear DNA from diverse spontaneous mutations.

  6. Evidence for the role of oxidative stress in the acetylation of histone H3 by ethanol in rat hepatocytes

    Science.gov (United States)

    Choudhury, Mahua; Park, Pil-Hoon; Jackson, Daniel; Shukla, Shivendra D.

    2010-01-01

    The relationship between ethanol induced oxidative stress and acetylation of histone H3 at lysine 9 (H3AcK9) remains unknown and was therefore investigated in primary cultures of rat hepatocytes. Cells were treated with ethanol and a select group of pharmacological agents and the status of H3AcK9 and reactive oxygen species (ROS) were monitored. When hepatocytes were exposed to ethanol (50 mM, 24 hr) in the presence of N-acetyl cystein (ROS reducer) or dietary antioxidants (quercetin, resveratrol), or NADPH oxidase inhibitor apocynin, ethanol induced increases in ROS and H3AcK9, both were significantly reduced. On the other hand, l-buthionine-sulfoximine (ROS inducer) and inhibitor of mitochondrial complex I (rotenone) and III (antimycin) increased ethanol induced H3AcK9 (p<0.01). Oxidative stress also affected ethanol induced alcohol dehydrogenase 1 (ADH1) mRNA expression. These results demonstrate for the first time that oxidative stress is involved in the ethanol induced histone H3 acetylation in hepatocytes. PMID:20705415

  7. Variations in DNA methylation, acetylated histone H4, and methylated histone H3 during Pinus radiata needle maturation in relation to the loss of in vitro organogenic capability.

    Science.gov (United States)

    Valledor, Luis; Meijón, Mónica; Hasbún, Rodrigo; Jesús Cañal, Maria; Rodríguez, Roberto

    2010-03-15

    Needle differentiation is a very complex process associated with the formation of a mature photosynthetic organ. From meristem differentiation to leaf maturation, gene control must play an important role switching required genes on and off to define tissue functions, with the epigenetic code being one of the main regulation mechanisms. In this work, we examined the connections between the variation in the levels of some epigenetic players (DNA methylation, acetylated histone H4 and histone H3 methylation at Lys 4 and Lys 9) at work during needle maturation. Our results indicate that needle maturation, which is associated with a decrease in organogenic capability, is related to an increase in heterochromatin-related epigenetic markers (high DNA methylation and low acetylated histone H4 levels, and the presence of histone H3 methylated at lys 9). Immunohistochemical analyses also showed that the DNA methylation of palisade parenchyma cell layers during the transition from immature to mature scions is associated with the loss of the capacity to induce adventitious organs. Copyright 2009 Elsevier GmbH. All rights reserved.

  8. Increased histone H3 phosphorylation in neurons in specific brain structures after induction of status epilepticus in mice.

    Directory of Open Access Journals (Sweden)

    Tetsuji Mori

    Full Text Available Status epilepticus (SE induces pathological and morphological changes in the brain. Recently, it has become clear that excessive neuronal excitation, stress and drug abuse induce chromatin remodeling in neurons, thereby altering gene expression. Chromatin remodeling is a key mechanism of epigenetic gene regulation. Histone H3 phosphorylation is frequently used as a marker of chromatin remodeling and is closely related to the upregulation of mRNA transcription. In the present study, we analyzed H3 phosphorylation levels in vivo using immunohistochemistry in the brains of mice with pilocarpine-induced SE. A substantial increase in H3 phosphorylation was detected in neurons in specific brain structures. Increased H3 phosphorylation was dependent on neuronal excitation. In particular, a robust upregulation of H3 phosphorylation was detected in the caudate putamen, and there was a gradient of phosphorylated H3(+ (PH3(+ neurons along the medio-lateral axis. After unilateral ablation of dopaminergic neurons in the substantia nigra by injection of 6-hydroxydopamine, the distribution of PH3(+ neurons changed in the caudate putamen. Moreover, our histological analysis suggested that, in addition to the well-known MSK1 (mitogen and stress-activated kinase/H3 phosphorylation/c-fos pathway, other signaling pathways were also activated. Together, our findings suggest that a number of genes involved in the pathology of epileptogenesis are upregulated in PH3(+ brain regions, and that H3 phosphorylation is a suitable indicator of strong neuronal excitation.

  9. Characterization of protein/ligand interactions by 1H/3H exchange: application to the hAsf1/ histone H3 complex

    International Nuclear Information System (INIS)

    Mousseau, G.

    2007-05-01

    In the first chapter will be exposed the main current methods of identification to high debit of the interactions protein-protein. Then the methods allowing to characterize the surfaces of interaction or to determine the structures of the complexes will be listed by discussing the main advantages and the inconveniences. Our approach of characterization of the zones of interaction protein-protein is a method of 'foot-printing' 1, based on the identification and radicals' quantification formed on the residues of proteins accessible to the water. The second chapter will so discuss the development of this method of radical identification using the atom of tritium as radioactive label. Our approach will finally be validated in the third chapter by applying it to the characterization of amino acids involved in the interaction enter the human protein anti silencing factor 1 (hAsf11-156) and a fragment of the histone H 3 . (N.C.)

  10. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos.

    Science.gov (United States)

    Kong, Qingran; Banaszynski, Laura A; Geng, Fuqiang; Zhang, Xiaolei; Zhang, Jiaming; Zhang, Heng; O'Neill, Claire L; Yan, Peidong; Liu, Zhonghua; Shido, Koji; Palermo, Gianpiero D; Allis, C David; Rafii, Shahin; Rosenwaks, Zev; Wen, Duancheng

    2018-03-09

    Derepression of chromatin-mediated transcriptional repression of paternal and maternal genomes is considered the first major step that initiates zygotic gene expression after fertilization. The histone variant H3.3 is present in both male and female gametes and is thought to be important for remodeling the paternal and maternal genomes for activation during both fertilization and embryogenesis. However, the underlying mechanisms remain poorly understood. Using our H3.3B-HA-tagged mouse model, engineered to report H3.3 expression in live animals and to distinguish different sources of H3.3 protein in embryos, we show here that sperm-derived H3.3 (sH3.3) protein is removed from the sperm genome shortly after fertilization and extruded from the zygotes via the second polar bodies (PBII) during embryogenesis. We also found that the maternal H3.3 (mH3.3) protein is incorporated into the paternal genome as early as 2 h postfertilization and is detectable in the paternal genome until the morula stage. Knockdown of maternal H3.3 resulted in compromised embryonic development both of fertilized embryos and of androgenetic haploid embryos. Furthermore, we report that mH3.3 depletion in oocytes impairs both activation of the Oct4 pluripotency marker gene and global de novo transcription from the paternal genome important for early embryonic development. Our results suggest that H3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Lymphocytes From Patients With Type 1 Diabetes Display a Distinct Profile of Chromatin Histone H3 Lysine 9 Dimethylation

    Science.gov (United States)

    Miao, Feng; Smith, David D.; Zhang, Lingxiao; Min, Andrew; Feng, Wei; Natarajan, Rama

    2008-01-01

    OBJECTIVE—The complexity of interactions between genes and the environment is a major challenge for type 1 diabetes studies. Nuclear chromatin is the interface between genetics and environment and the principal carrier of epigenetic information. Because histone tail modifications in chromatin are linked to gene transcription, we hypothesized that histone methylation patterns in cells from type 1 diabetic patients can provide novel epigenetic insights into type 1 diabetes and its complications. RESEARCH DESIGN AND METHODS—We used chromatin immunoprecipitation (ChIP) linked to microarray (ChIP-chip) approach to compare genome-wide histone H3 lysine 9 dimethylation (H3K9me2) patterns in blood lymphocytes and monocytes from type 1 diabetic patients versus healthy control subjects. Bioinformatics evaluation of methylated candidates was performed by Ingenuity Pathway Analysis (IPA) tools. RESULTS—A subset of genes in the type 1 diabetic cohort showed significant increase in H3K9me2 in lymphocytes but not in monocytes. CLTA4, a type 1 diabetes susceptibility gene, was one of the candidates displaying increased promoter H3K9me2 in type 1 diabetes. IPA identified two high-scoring networks that encompassed genes showing altered H3K9me2. Many of them were associated with autoimmune and inflammation-related pathways, such as transforming growth factor-β, nuclear factor-κB, p38 mitogen-activated protein kinase, toll-like receptor, and interleukin-6. IPA also revealed biological relationships between these networks and known type 1 diabetes candidate genes. CONCLUSIONS—The concerted and synergistic alteration of histone methylation within the identified network in lymphocytes might have an effect on the etiology of type 1 diabetes and its complications. These studies provide evidence of a novel association between type 1 diabetes and altered histone methylation of key genes that are components of type 1 diabetes–related biological pathways and also a new

  12. Adult Diffuse Astrocytoma in the Medulla Oblongata: Molecular Biological Analyses Including H3F3A Mutation of Histone H3.3.

    Science.gov (United States)

    Uekawa, Ken; Nakamura, Hideo; Shinojima, Naoki; Takezaki, Tatsuya; Yano, Shigetoshi; Kuratsu, Jun-Ichi

    2016-04-01

    Unlike in children, brain stem gliomas in adult are rare and still poorly understood. In addition, most adult brain stem gliomas result predominantly in the pons and are less often found in the medulla oblongata. Here, we report a case of an adult glioma in the medulla oblongata and its molecular biological features. A 46-year-old male presented with gait disturbance, paresthesia, and dysphagia. Magnetic resonance imaging (MRI) showed a diffuse hyper-intensive lesion in the medulla oblongata on a T 2 -weighted image without gadolinium contrast enhancement. We performed an open biopsy and the lesion was pathologically diagnosed as a diffuse astrocytoma. Molecular biological analyses revealed the absence of histone H3.3 mutation (H3F3A K27M), and presence of methylation of O-6-methylguanine-DNA methyltransferase (MGMT) promoter and a mutation in isocitrate dehydrogenase 1 (IDH-1). The patient received local radiotherapy and temozolomide chemotherapy. The patient's symptoms were ameliorated, and MRI showed no tumor growth at 6 months after the initial treatment. Biopsy for brain stem lesions is generally thought to have risk of complications, but if performed minimally, it is useful to diagnose and determine treatment strategy. Obtaining patient characteristics and molecular biological features will provide insight towards therapeutic treatment for adult brain stem gliomas.

  13. Defects in Histone H3.3 Phosphorylation and ATRX Recruitment to Misaligned Chromosomes during Mitosis Contribute to the Development of Pediatric Glioblastomas

    Science.gov (United States)

    2015-09-01

    aneuploidy. 2. Keywords: aneuploidy, ATRX, cell cycle, chromosome missegregation, CRISPR /Cas9, DAXX, glioblastoma, histone H3.3, microinjection, mitosis...histone H3.3 with mutant constructs. We have switched from shRNA hairpins to CRISPR /Cas9 gene editing to silence both alleles of H3.3 (and an H3.3...plasmids against H3F3B. Both plasmids had the Cas9 gene and a soluble GFP reporter. The CRISPR guide sequence in one of these plasmids was 100% match

  14. Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2.

    Science.gov (United States)

    Bheda, Poonam; Swatkoski, Stephen; Fiedler, Katherine L; Boeke, Jef D; Cotter, Robert J; Wolberger, Cynthia

    2012-04-17

    Although the biological roles of many members of the sirtuin family of lysine deacetylases have been well characterized, a broader understanding of their role in biology is limited by the challenges in identifying new substrates. We present here an in vitro method that combines biotinylation and mass spectrometry (MS) to identify substrates deacetylated by sirtuins. The method permits labeling of deacetylated residues with amine-reactive biotin on the ε-nitrogen of lysine. The biotin can be utilized to purify the substrate and identify the deacetylated lysine by MS. The biotinyl-lysine method was used to compare deacetylation of chemically acetylated histones by the yeast sirtuins, Sir2 and Hst2. Intriguingly, Sir2 preferentially deacetylates histone H3 lysine 79 as compared to Hst2. Although acetylation of K79 was not previously reported in Saccharomyces cerevisiae, we demonstrate that a minor population of this residue is indeed acetylated in vivo and show that Sir2, and not Hst2, regulates the acetylation state of H3 lysine 79. The in vitro biotinyl-lysine method combined with chemical acetylation made it possible to identify this previously unknown, low-abundance histone acetyl modification in vivo. This method has further potential to identify novel sirtuin deacetylation substrates in whole cell extracts, enabling large-scale screens for new deacetylase substrates.

  15. Genome-wide mapping of histone H3 lysine 4 trimethylation in Eucalyptus grandis developing xylem

    Science.gov (United States)

    Steven G Hussey; Eshchar Mizrachi; Andrew Groover; Dave K Berger; Alexander A Myburg

    2015-01-01

    Background: Histone modifications play an integral role in plant development, but have been poorly studied inwoody plants. Investigating chromatin organization in wood-forming tissue and its role in regulating gene expression allows us to understand the mechanisms underlying cellular differentiation during xylogenesis (wood...

  16. Saturated fatty acid palmitate induces extracellular release of histone H3: A possible mechanistic basis for high-fat diet-induced inflammation and thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Chandan [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Ito, Takashi [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Kawahara, Ko-ichi [Department of Biomedical Engineering, Osaka Institute of Technology, Osaka (Japan); Shrestha, Binita; Yamakuchi, Munekazu; Hashiguchi, Teruto [Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Maruyama, Ikuro, E-mail: rinken@m3.kufm.kagoshima-u.ac.jp [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan)

    2013-08-09

    Highlights: •High-fat diet feeding and palmitate induces the release of nuclear protein histone H3. •ROS production and JNK signaling mediates the release of histone H3. •Extracellular histones induces proinflammatory and procoagulant response. -- Abstract: Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infiltration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molecular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show that histone H3, a major protein component of chromatin, is released into the extracellular space when mice are fed a HFD or macrophages are stimulated with the saturated fatty acid palmitate. In a murine macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extracellular histone activated endothelial cells toexpress the adhesion molecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogenesis of HFD-induced inflammation and thrombosis.

  17. Saturated fatty acid palmitate induces extracellular release of histone H3: A possible mechanistic basis for high-fat diet-induced inflammation and thrombosis

    International Nuclear Information System (INIS)

    Shrestha, Chandan; Ito, Takashi; Kawahara, Ko-ichi; Shrestha, Binita; Yamakuchi, Munekazu; Hashiguchi, Teruto; Maruyama, Ikuro

    2013-01-01

    Highlights: •High-fat diet feeding and palmitate induces the release of nuclear protein histone H3. •ROS production and JNK signaling mediates the release of histone H3. •Extracellular histones induces proinflammatory and procoagulant response. -- Abstract: Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infiltration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molecular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show that histone H3, a major protein component of chromatin, is released into the extracellular space when mice are fed a HFD or macrophages are stimulated with the saturated fatty acid palmitate. In a murine macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extracellular histone activated endothelial cells toexpress the adhesion molecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogenesis of HFD-induced inflammation and thrombosis

  18. Structural basis for site-specific reading of unmodified R2 of histone H3 tail by UHRF1 PHD finger

    Institute of Scientific and Technical Information of China (English)

    Chengkun Wang; Jie Shen; Zhongzheng Yang; Ping Chen; Bin Zhao; Wei Hu; Wenxian Lan

    2011-01-01

    Dear Editor,We report two NMR complex structures of PHDUHRF1 binding to unmodified or K9 trimethylated histone tails,which clarify a controversy regarding how the binding of UHRF1 to H3 tails is mediated.Based on our structures,H3R2,not H3K9,mediates PHD binding.

  19. Cloning and Functional Analysis of Histones H3 and H4 in Nuclear Shaping during Spermatogenesis of the Chinese Mitten Crab, Eriocheir sinensis.

    Directory of Open Access Journals (Sweden)

    Jiang-Li Wu

    Full Text Available During spermatogenesis in most animals, the basic proteins associated with DNA are continuously changing and somatic-typed histones are partly replaced by sperm-specific histones, which are then successively replaced by transition proteins and protamines. With the replacement of sperm nuclear basic proteins, nuclei progressively undergo chromatin condensation. The Chinese Mitten Crab (Eriocheir sinensis is also known as the hairy crab or river crab (phylum Arthropoda, subphylum Crustacea, order Decapoda, and family Grapsidae. The spermatozoa of this species are aflagellate, and each has a spherical acrosome surrounded by a cup-shaped nucleus, peculiar to brachyurans. An interesting characteristic of the E. sinensis sperm nucleus is its lack of electron-dense chromatin. However, its formation is not clear. In this study, sequences encoding histones H3 and H4 were cloned by polymerase chain reaction amplification. Western blotting indicated that H3 and H4 existed in the sperm nuclei. Immunofluorescence and ultrastructural immunocytochemistry demonstrated that histones H3 and H4 were both present in the nuclei of spermatogonia, spermatocytes, spermatids and mature spermatozoa. The nuclear labeling density of histone H4 decreased in sperm nuclei, while histone H3 labeling was not changed significantly. Quantitative real-time PCR showed that the mRNA expression levels of histones H3 and H4 were higher at mitotic and meiotic stages than in later spermiogenesis. Our study demonstrates that the mature sperm nuclei of E. sinensis contain histones H3 and H4. This is the first report that the mature sperm nucleus of E. sinensis contains histones H3 and H4. This finding extends the study of sperm histones of E. sinensis and provides some basic data for exploring how decapod crustaceans form uncondensed sperm chromatin.

  20. Cloning and Functional Analysis of Histones H3 and H4 in Nuclear Shaping during Spermatogenesis of the Chinese Mitten Crab, Eriocheir sinensis.

    Science.gov (United States)

    Wu, Jiang-Li; Kang, Xian-Jiang; Guo, Ming-Shen; Mu, Shu-Mei; Zhang, Zhao-Hui

    2015-01-01

    During spermatogenesis in most animals, the basic proteins associated with DNA are continuously changing and somatic-typed histones are partly replaced by sperm-specific histones, which are then successively replaced by transition proteins and protamines. With the replacement of sperm nuclear basic proteins, nuclei progressively undergo chromatin condensation. The Chinese Mitten Crab (Eriocheir sinensis) is also known as the hairy crab or river crab (phylum Arthropoda, subphylum Crustacea, order Decapoda, and family Grapsidae). The spermatozoa of this species are aflagellate, and each has a spherical acrosome surrounded by a cup-shaped nucleus, peculiar to brachyurans. An interesting characteristic of the E. sinensis sperm nucleus is its lack of electron-dense chromatin. However, its formation is not clear. In this study, sequences encoding histones H3 and H4 were cloned by polymerase chain reaction amplification. Western blotting indicated that H3 and H4 existed in the sperm nuclei. Immunofluorescence and ultrastructural immunocytochemistry demonstrated that histones H3 and H4 were both present in the nuclei of spermatogonia, spermatocytes, spermatids and mature spermatozoa. The nuclear labeling density of histone H4 decreased in sperm nuclei, while histone H3 labeling was not changed significantly. Quantitative real-time PCR showed that the mRNA expression levels of histones H3 and H4 were higher at mitotic and meiotic stages than in later spermiogenesis. Our study demonstrates that the mature sperm nuclei of E. sinensis contain histones H3 and H4. This is the first report that the mature sperm nucleus of E. sinensis contains histones H3 and H4. This finding extends the study of sperm histones of E. sinensis and provides some basic data for exploring how decapod crustaceans form uncondensed sperm chromatin.

  1. Dynamics of Histone Tails within Chromatin

    Science.gov (United States)

    Bernier, Morgan; North, Justin; Page, Michael; Jaroniec, Christopher; Hammel, Christopher; Poirier, Michael

    2012-02-01

    Genetic information in humans is encoded within DNA molecules that is wrapped around histone octamer proteins and compacted into a highly conserved structural polymer, chromatin. The physical and material properties of chromatin appear to influence gene expression by altering the accessibility of proteins to the DNA. The tails of the histones are flexible domains that are thought to play a role in regulating DNA accessibility and compaction; however the molecular mechanisms for these phenomena are not understood. I will present CW-EPR studies on site directed spin labeled nucleosomes that probe the structure and dynamics of these histone tails within nucleosomes.

  2. Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yuan eShen

    2014-06-01

    Full Text Available Histone H3 lysine 4 trimethylation (H3K4me3 has been shown to be involved in stress-responsive gene expression and gene priming in plants. However, the role of H3K4me3 resetting in the processes is not clear. In this work we studied the expression and function of Arabidopsis H3K4 demethylase gene JMJ15. We show that the expression of JMJ15 was relatively low and was limited to a number of tissues during vegetative growth but was higher in young floral organs. Over-expression of the gene in gain-of-function mutants reduced the plant height with accumulation of lignin in stems, while the loss-of-function mutation did not produce any visible phenotype. The gain-of-function mutants showed enhanced salt tolerance, whereas the loss-of-function mutant was more sensitive to salt compared to the wild type. Transcriptomic analysis revealed that over-expression of JMJ15 down-regulated many genes which are preferentially marked by H3K4me3 and H3K4me2. Many of the down-regulated genes encode transcription regulators involved in stress responses. The data suggest that increased JMJ15 levels may regulate the gene expression program that enhances stress tolerance.

  3. Reduced Histone H3 Lysine 9 Methylation Contributes to the Pathogenesis of Latent Autoimmune Diabetes in Adults via Regulation of SUV39H2 and KDM4C

    Directory of Open Access Journals (Sweden)

    Xi-yu Liu

    2017-01-01

    Full Text Available Aims. Latent autoimmune diabetes in adults (LADA is an autoimmune disease of which the mechanism is not clear. Emerging evidence suggests that histone methylation contributes to autoimmunity. Methods. Blood CD4+ T lymphocytes from 26 LADA patients and 26 healthy controls were isolated to detect histone H3 lysine 4 and H3 lysine 9 methylation status. Results. Reduced global H3 lysine 9 methylation was observed in LADA patients’ CD4+ T lymphocytes, compared to healthy controls (P < 0.05. H3 lysine 4 methylation was not statistically different. The reduced H3 lysine 9 methylation was associated with GADA titer but not correlated with glycosylated hemoglobin (HbA1c. When the LADA patient group was divided into those with complication and those without, relatively reduced global H3 lysine 9 methylation was observed in LADA patients with complication (P < 0.05. The expression of histone methyltransferase SUV39H2 for H3 lysine 9 methylation was downregulated in LADA patients, and the expression of histone demethylase KDM4C which made H3 lysine 9 demethylation was upregulated. Conclusion. The reduction of histone H3 lysine 9 methylation which may due to the downregulation of methyltransferase SUV39H2 and the upregulation of demethylase KDM4C was found in CD4+ T lymphocytes of LADA patients.

  4. Involvement of histone methyltransferase GLP in HIV-1 latency through catalysis of H3K9 dimethylation

    International Nuclear Information System (INIS)

    Ding, Donglin; Qu, Xiying; Li, Lin; Zhou, Xin; Liu, Sijie; Lin, Shiguan; Wang, Pengfei; Liu, Shaohui; Kong, Chuijin; Wang, Xiaohui; Liu, Lin; Zhu, Huanzhang

    2013-01-01

    Understanding the mechanism of HIV-1 latency is crucial to eradication of the viral reservoir in HIV-1-infected individuals. However, the role of histone methyltransferase (HMT) G9a-like protein (GLP) in HIV-1 latency is still unclear. In the present work, we established four clonal cell lines containing HIV-1 vector. We found that the integration sites of most clonal cell lines favored active gene regions. However, we also observed hypomethylation of CpG of HIV 5′LTR in all four clonal cell lines. Additionally, 5′-deoxy-5′-methylthioadenosine (MTA), a broad-spectrum histone methyltransferase inhibitor, was used to examine the role of histone methylation in HIV-1 latency. MTA was found to decrease the level of H3K9 dimethylation, causing reactivation of latent HIV-1 in C11 cells. GLP knockdown by small interfering RNA clearly induced HIV-1 LTR expression. Results suggest that GLP may play a significant role in the maintenance of HIV-1 latency by catalyzing dimethylation of H3K9. - Highlights: ► We have established an in vitro model of HIV-1 latency. ► The integration sites of most clonal cell lines favor in active gene regions. ► Hypomethylation occurs in CpG islands of HIV 5′LTR in all four clonal cell lines. ► MTA can reactivate latent HIV-1 by decreasing the level of H3K9 me2 in C11 cells. ► HMT GLP may play a significant role in the maintenance of HIV-1 latency

  5. cAMP Signaling Regulates Histone H3 Phosphorylation and Mitotic Entry Through a Disruption of G2 Progression

    OpenAIRE

    Rodriguez-Collazo, Pedro; Snyder, Sara K.; Chiffer, Rebecca C.; Bressler, Erin A.; Voss, Ty C.; Anderson, Eric P.; Genieser, Hans-Gottfried; Smith, Catharine L.

    2008-01-01

    cAMP signaling is known to have significant effects on cell growth, either inhibitory or stimulatory depending on the cell type. Study of cAMP-induced growth inhibition in mammalian somatic cells has focused mainly on the combined role of protein kinase A (PKA) and mitogen-activated protein (MAP) kinases in regulation of progression through the G1 phase of the cell cycle. Here we show that cAMP signaling regulates histone H3 phosphorylation in a cell cycle-dependent fashion, increasing it in ...

  6. Reduced Histone H3 Lysine 9 Methylation Contributes to the Pathogenesis of Latent Autoimmune Diabetes in Adults via Regulation of SUV39H2 and KDM4C

    OpenAIRE

    Liu, Xi-yu; Li, Hong

    2017-01-01

    Aims. Latent autoimmune diabetes in adults (LADA) is an autoimmune disease of which the mechanism is not clear. Emerging evidence suggests that histone methylation contributes to autoimmunity. Methods. Blood CD4+ T lymphocytes from 26 LADA patients and 26 healthy controls were isolated to detect histone H3 lysine 4 and H3 lysine 9 methylation status. Results. Reduced global H3 lysine 9 methylation was observed in LADA patients’ CD4+ T lymphocytes, compared to healthy controls (P < 0.05). H3 l...

  7. Increased phosphorylation of histone H3 at serine 10 is involved in Epstein-Barr virus latent membrane protein-1-induced carcinogenesis of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Li, Binbin; Huang, Guoliang; Zhang, Xiangning; Li, Rong; Wang, Jian; Dong, Ziming; He, Zhiwei

    2013-01-01

    Increased histone H3 phosphorylation is an essential regulatory mechanism for neoplastic cell transformation. We aimed to explore the role of histone H3 phosphorylation at serine10 (p-H3Ser10) in Epstein-Barr virus (EBV) latent membrane protein-1 (LMP1)-induced carcinogenesis of nasopharyngeal carcinoma (NPC). The expression of p-H3Ser10 was detected by the immunohistochemical analysis in NPC, chronic nasopharyngitis and normal nasopharynx tissues, and its correlation with LMP1 was analyzed in NPC tissues and cell lines. Using the small interfering RNA (siRNA)-H3 and histone H3 mutant (S10A), the effect of histone H3 Ser10 motif on LMP1-induced CNE1 cell proliferation, transformation and activator protein-1 (AP-1) activation were evaluated by CCK-8, focus-forming and reporter gene assay respectively. Mitogen- and stress-activated kinase 1 (MSK1) kinase activity and phosphorylation were detected by in vitro kinase assay and western blot. Using MSK1 inhibitor H89 or siRNA-MSK1, the regulatory role of MSK1 on histone H3 phosphorylation and AP-1 activation were analyzed. Immunohistochemical analysis revealed that the expression of p-H3Ser10 was significantly higher in the poorly differentiated NPC tissues than that in chronic nasopharyngitis (p <0.05) and normal nasopharynx tissues (p <0.001). Moreover, high level of p-H3Ser10 was positively correlated with the expression of LMP1 in NPC tissues (χ 2 =6.700, p =0.01; C=0.350) and cell lines. The knockdown and mutant (S10A) of histone H3 suppressed LMP1-induced CNE1 cell proliferation, foci formation and AP-1 activation. In addition, LMP1 could increase MSK1 kinase activity and phosphorylation. MSK1 inhibitor H89 or knockdown of MSK1 by siRNA blocked LMP1-induced phosphorylation of histone H3 at Ser10 and AP-1 activation. EBV-LMP1 can induce phosphorylation of histone H3 at Ser10 via MSK1. Increased phosphorylation of histone H3 at Ser10 is likely a crucial regulatory mechanism involved in LMP1-induced carcinogenesis of

  8. Acetylated Histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast

    Science.gov (United States)

    Yamada, Shintaro; Ohta, Kunihiro; Yamada, Takatomi

    2013-01-01

    Histone modifications are associated with meiotic recombination hotspots, discrete sites with augmented recombination frequency. For example, trimethylation of histone H3 lysine4 (H3K4me3) marks most hotspots in budding yeast and mouse. Modified histones are known to regulate meiotic recombination partly by promoting DNA double-strand break (DSB) formation at hotspots, but the role and precise landscape of involved modifications remain unclear. Here, we studied hotspot-associated modifications in fission yeast and found general features: acetylation of H3 lysine9 (H3K9ac) is elevated, and H3K4me3 is not significantly enriched. Mutating H3K9 to non-acetylatable alanine mildly reduced levels of the DSB-inducing protein Rec12 (the fission yeast homologue of Spo11) and DSB at hotspots, indicating that H3K9ac may be involved in DSB formation by enhancing the interaction between Rec12 and hotspots. In addition, we found that the lack of the H3K4 methyltransferase Set1 generally increased Rec12 binding to chromatin but partially reduced DSB formation at some loci, suggesting that Set1 is also involved in DSB formation. These results suggest that meiotic DSB formation is redundantly regulated by multiple chromatin-related factors including H3K9ac and Set1 in fission yeast. PMID:23382177

  9. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human.

    Science.gov (United States)

    Takahashi, Yoh-hei; Westfield, Gerwin H; Oleskie, Austin N; Trievel, Raymond C; Shilatifard, Ali; Skiniotis, Georgios

    2011-12-20

    Histone H3 lysine 4 (H3K4) methylation is catalyzed by the highly evolutionarily conserved multiprotein complex known as Set1/COMPASS or MLL/COMPASS-like complexes from yeast to human, respectively. Here we have reconstituted fully functional yeast Set1/COMPASS and human MLL/COMPASS-like complex in vitro and have identified the minimum subunit composition required for histone H3K4 methylation. These subunits include the methyltransferase C-terminal SET domain of Set1/MLL, Cps60/Ash2L, Cps50/RbBP5, Cps30/WDR5, and Cps25/Dpy30, which are all common components of the COMPASS family from yeast to human. Three-dimensional (3D) cryo-EM reconstructions of the core yeast complex, combined with immunolabeling and two-dimensional (2D) EM analysis of the individual subcomplexes reveal a Y-shaped architecture with Cps50 and Cps30 localizing on the top two adjacent lobes and Cps60-Cps25 forming the base at the bottom. EM analysis of the human complex reveals a striking similarity to its yeast counterpart, suggesting a common subunit organization. The SET domain of Set1 is located at the juncture of Cps50, Cps30, and the Cps60-Cps25 module, lining the walls of a central channel that may act as the platform for catalysis and regulative processing of various degrees of H3K4 methylation. This structural arrangement suggested that COMPASS family members function as exo-methylases, which we have confirmed by in vitro and in vivo studies.

  10. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation

    DEFF Research Database (Denmark)

    Alamdar, Ambreen; Xi, Guochen; Huang, Qingyu

    2017-01-01

    methylation. The results showed that H3K9me2/3 demethylase (JMJD2A) inhibitor, quercetin (Que) significantly attenuated the decrease of H3K9me2/3 and increase of 3β-HSD expression induced by arsenic. To further elucidate the mechanism for the activation of 3β-HSD, we determined the histone H3K9 methylation......Arsenic exposure has been associated with male reproductive dysfunction by disrupting steroidogenesis; however, the roles of epigenetic drivers, especially histone methylation in arsenic-induced steroidogenic toxicity remain not well documented. In this study, we investigated the role of histone H3...... lysine 9 (H3K9) methylation in steroidogenesis disturbance in mouse Leydig cells (MLTC-1) due to arsenic exposure. Our results indicated that mRNA and protein expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) were both significantly up-regulated while the rest of key genes involved...

  11. The histone H3 lysine 9 methyltransferase DIM-5 modifies chromatin at frequency and represses light-activated gene expression.

    Science.gov (United States)

    Ruesch, Catherine E; Ramakrishnan, Mukund; Park, Jinhee; Li, Na; Chong, Hin S; Zaman, Riasat; Joska, Tammy M; Belden, William J

    2014-11-25

    The transcriptional program controlling the circadian rhythm requires coordinated regulation of chromatin. Characterization of the chromodomain helicase DNA-binding enzyme CHD1 revealed DNA methylation in the promoter of the central clock gene frequency (frq) in Neurospora crassa. In this report, we show that the DNA methylation at frq is not only dependent on the DNA methyltransferase DIM-2 but also on the H3K9 methyltransferase DIM-5 and HP1. Histone H3 lysine 9 trimethylation (H3K9me3) occurs at frq and is most prominent 30 min after light-activated expression. Strains lacking dim-5 have an increase in light-induced transcription, and more White Collar-2 is found associated with the frq promoter. Consistent with the notion that DNA methylation assists in establishing the proper circadian phase, loss of H3K9 methylation results in a phase advance suggesting it delays the onset of frq expression. The dim-5 deletion strain displays an increase in circadian-regulated conidia formation on race tubes and there is a synthetic genetic interaction between dim-5 and ras-1(bd). These results indicate DIM-5 has a regulatory role in muting circadian output. Overall, the data support a model where facultative heterochromatic at frq serves to establish the appropriate phase, mute the light response, and repress circadian output. Copyright © 2015 Ruesch et al.

  12. Histone H3 lysine 56 acetylation and the response to DNA replication fork damage

    DEFF Research Database (Denmark)

    Wurtele, Hugo; Kaiser, Gitte Schalck; Bacal, Julien

    2012-01-01

    but are only mildly affected by hydroxyurea. We demonstrate that, after exposure to MMS, H3K56ac-deficient cells cannot complete DNA replication and eventually segregate chromosomes with intranuclear foci containing the recombination protein Rad52. In addition, we provide evidence that these phenotypes...

  13. Validation of an enzyme-linked immunosorbent assay for the quantification of citrullinated histone H3 as a marker for neutrophil extracellular traps in human plasma.

    Science.gov (United States)

    Thålin, Charlotte; Daleskog, Maud; Göransson, Sophie Paues; Schatzberg, Daphne; Lasselin, Julie; Laska, Ann-Charlotte; Kallner, Anders; Helleday, Thomas; Wallén, Håkan; Demers, Mélanie

    2017-06-01

    There is an emerging interest in the diverse functions of neutrophil extracellular traps (NETs) in a variety of disease settings. However, data on circulating NETs rely largely upon surrogate NET markers such as cell-free DNA, nucleosomes, and NET-associated enzymes. Citrullination of histone H3 by peptidyl arginine deiminase 4 (PAD4) is central for NET formation, and citrullinated histone H3 (H3Cit) is considered a NET-specific biomarker. We therefore aimed to optimize and validate a new enzyme-linked immunosorbent assay (ELISA) to quantify the levels of H3Cit in human plasma. A standard curve made of in vitro PAD4-citrullinated histones H3 allows for the quantification of H3Cit in plasma using an anti-histone antibody as capture antibody and an anti-histone H3 citrulline antibody for detection. The assay was evaluated for linearity, stability, specificity, and precision on plasma samples obtained from a human model of inflammation before and after lipopolysaccharide injection. The results revealed linearity and high specificity demonstrated by the inability of detecting non-citrullinated histone H3. Coefficients of variation for intra- and inter-assay variability ranged from 2.1 to 5.1% and from 5.8 to 13.5%, respectively, allowing for a high precision. Furthermore, our results support an inflammatory induction of a systemic NET burden by showing, for the first time, clear intra-individual elevations of plasma H3Cit in a human model of lipopolysaccharide-induced inflammation. Taken together, our work demonstrates the development of a new method for the quantification of H3Cit by ELISA that can reliably be used for the detection of NETs in human plasma.

  14. Vitamin K3 (menadione)-induced oncosis associated with keratin 8 phosphorylation and histone H3 arylation.

    Science.gov (United States)

    Scott, Gary K; Atsriku, Christian; Kaminker, Patrick; Held, Jason; Gibson, Brad; Baldwin, Michael A; Benz, Christopher C

    2005-09-01

    The vitamin K analog menadione (K3), capable of both redox cycling and arylating nucleophilic substrates by Michael addition, has been extensively studied as a model stress-inducing quinone in both cell culture and animal model systems. Exposure of keratin 8 (k-8) expressing human breast cancer cells (MCF7, T47D, SKBr3) to K3 (50-100 microM) induced rapid, sustained, and site-specific k-8 serine phosphorylation (pSer73) dependent on signaling by a single mitogen activated protein kinase (MAPK) pathway, MEK1/2. Normal nuclear morphology and k-8 immunofluorescence coupled with the lack of DNA laddering or other features of apoptosis indicated that K3-induced cytotoxicity, evident within 4 h of treatment and delayed but not prevented by MEK1/2 inhibition, was due to a form of stress-activated cell death known as oncosis. Independent of MAPK signaling was the progressive appearance of K3-induced cellular fluorescence, principally nuclear in origin and suggested by in vitro fluorimetry to have been caused by K3 thiol arylation. Imaging by UV transillumination of protein gels containing nuclear extracts from K3-treated cells revealed a prominent 17-kDa band shown to be histone H3 by immunoblotting and mass spectrometry (MS). K3 arylation of histones in vitro followed by electrospray ionization-tandem MS analyses identified the unique Cys110 residue within H3, exposed only in the open chromatin of transcriptionally active genes, as a K3 arylation target. These findings delineate new pathways associated with K3-induced stress and suggest a potentially novel role for H3 Cys110 as a nuclear stress sensor.

  15. The ASH1 HOMOLOG 2 (ASHH2 histone H3 methyltransferase is required for ovule and anther development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Paul E Grini

    Full Text Available BACKGROUND: SET-domain proteins are histone lysine (K methyltransferases (HMTase implicated in defining transcriptionally permissive or repressive chromatin. The Arabidopsis ASH1 HOMOLOG 2 (ASHH2 protein (also called SDG8, EFS and CCR1 has been suggested to methylate H3K4 and/or H3K36 and is similar to Drosophila ASH1, a positive maintainer of gene expression, and yeast Set2, a H3K36 HMTase. Mutation of the ASHH2 gene has pleiotropic developmental effects. Here we focus on the role of ASHH2 in plant reproduction. METHODOLOGY/PRINCIPAL FINDINGS: A slightly reduced transmission of the ashh2 allele in reciprocal crosses implied involvement in gametogenesis or gamete function. However, the main requirement of ASHH2 is sporophytic. On the female side, close to 80% of mature ovules lack embryo sac. On the male side, anthers frequently develop without pollen sacs or with specific defects in the tapetum layer, resulting in reduction in the number of functional pollen per anther by up to approximately 90%. In consistence with the phenotypic findings, an ASHH2 promoter-reporter gene was expressed at the site of megaspore mother cell formation as well as tapetum layers and pollen. ashh2 mutations also result in homeotic changes in floral organ identity. Transcriptional profiling identified more than 300 up-regulated and 600 down-regulated genes in ashh2 mutant inflorescences, whereof the latter included genes involved in determination of floral organ identity, embryo sac and anther/pollen development. This was confirmed by real-time PCR. In the chromatin of such genes (AP1, AtDMC1 and MYB99 we observed a reduction of H3K36 trimethylation (me3, but not H3K4me3 or H3K36me2. CONCLUSIONS/SIGNIFICANCE: The severe distortion of reproductive organ development in ashh2 mutants, argues that ASHH2 is required for the correct expression of genes essential to reproductive development. The reduction in the ashh2 mutant of H3K36me3 on down-regulated genes relevant to

  16. Involvement of the 5'-leader sequence in coupling the stability of a human H3 histone mRNA with DNA replication

    International Nuclear Information System (INIS)

    Morris, T.; Marashi, F.; Weber, L.; Hickey, E.; Greenspan, D.; Bonner, J.; Stein, J.; Stein, G.

    1986-01-01

    Two lines of evidence derived from fusion gene constructs indicate that sequences residing in the 5'-nontranslated region of a cell cycle-dependent human H3 histone mRNA are involved in the selective destabilization that occurs when DNA synthesis is terminated. The experimental approach was to construct chimeric genes in which fragments of the mRNA coding regions of the H3 histone gene were fused with fragments of genes not expressed in a cell cycle-dependent manner. After transfection in HeLa S3 cells with the recombinant plasmids, levels of fusion mRNAs were determined by S1 nuclease analysis prior to and following DNA synthesis inhibition. When the first 20 nucleotides of an H3 histone mRNA leader were replaced with 89 nucleotides of the leader from a Drosophila heat-shock (hsp70) mRNA, the fusion transcript remained stable during inhibition of DNA synthesis, in contrast to the rapid destabilization of the endogenous histone mRNA in these cells. In a reciprocal experiment, a histone-globin fusion gene was constructed that produced a transcript with the initial 20 nucleotides of the H3 histone mRNA substituted for the human β-globin mRNA leader. In HeLa cells treated with inhibitors of DNA synthesis and/or protein synthesis, cellular levels of this histone-globin fusion mRNA appeared to be regulated in a manner similar to endogenous histone mRNA levels. These results suggest that the first 20 nucleotides of the leader are sufficient to couple histone mRNA stability with DNA replication

  17. Chromatin replication and histone dynamics

    DEFF Research Database (Denmark)

    Alabert, Constance; Jasencakova, Zuzana; Groth, Anja

    2017-01-01

    Inheritance of the DNA sequence and its proper organization into chromatin is fundamental for genome stability and function. Therefore, how specific chromatin structures are restored on newly synthesized DNA and transmitted through cell division remains a central question to understand cell fate...... choices and self-renewal. Propagation of genetic information and chromatin-based information in cycling cells entails genome-wide disruption and restoration of chromatin, coupled with faithful replication of DNA. In this chapter, we describe how cells duplicate the genome while maintaining its proper...... organization into chromatin. We reveal how specialized replication-coupled mechanisms rapidly assemble newly synthesized DNA into nucleosomes, while the complete restoration of chromatin organization including histone marks is a continuous process taking place throughout the cell cycle. Because failure...

  18. Individual Impact of Distinct Polysialic Acid Chain Lengths on the Cytotoxicity of Histone H1, H2A, H2B, H3 and H4

    Directory of Open Access Journals (Sweden)

    Kristina Zlatina

    2017-12-01

    Full Text Available Neutrophils are able to neutralize pathogens by phagocytosis, by the release of antimicrobial components, as well as by the formation of neutrophil extracellular traps (NETs. The latter possibility is a DNA-meshwork mainly consisting of highly concentrated extracellular histones, which are not only toxic for pathogens, but also for endogenous cells triggering several diseases. To reduce the negative outcomes initiated by extracellular histones, different approaches like antibodies against histones, proteases, and the polysaccharide polysialic acid (polySia were discussed. We examined whether each of the individual histones is a binding partner of polySia, and analyzed their respective cytotoxicity in the presence of this linear homopolymer. Interestingly, all of the histones (H1, H2A, H2B, H3, and H4 seem to interact with α2,8-linked sialic acids. However, we observed strong differences regarding the required chain length of polySia to bind histone H1, H2A, H2B, H3, and H4. Moreover, distinct degrees of polymerization were necessary to act as a cytoprotective agent in the presence of the individual histones. In sum, the outlined results described polySia-based strategies to bind and/or to reduce the cytotoxicity of individual histones using distinct polySia chain length settings.

  19. PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum

    DEFF Research Database (Denmark)

    Jiang, Lubin; Mu, Jianbing; Zhang, Qingfeng

    2013-01-01

    The variant antigen Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), which is expressed on the surface of P. falciparum-infected red blood cells, is a critical virulence factor for malaria. Each parasite has 60 antigenically distinct var genes that each code for a different PfEMP1...... parasite nuclei and their expression as proteins on the surface of individual infected red blood cells. PfSETvs-dependent H3K36me3 is present along the entire gene body, including the transcription start site, to silence var genes. With low occupancy of PfSETvs at both the transcription start site of var...... protein. During infection the clonal parasite population expresses only one gene at a time before switching to the expression of a new variant antigen as an immune-evasion mechanism to avoid the host antibody response. The mechanism by which 59 of the 60 var genes are silenced remains largely unknown...

  20. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation

    Energy Technology Data Exchange (ETDEWEB)

    Alamdar, Ambreen; Xi, Guochen [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Huang, Qingyu, E-mail: qyhuang@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Centre for Epigenetics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M (Denmark); Tian, Meiping [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Eqani, Syed Ali Musstjab Akber Shah [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Public Health and Environment Division, Department of Biosciences, COMSAT Institute of Information & Technology, Islamabad (Pakistan); Shen, Heqing, E-mail: hqshen@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2017-07-01

    Arsenic exposure has been associated with male reproductive dysfunction by disrupting steroidogenesis; however, the roles of epigenetic drivers, especially histone methylation in arsenic-induced steroidogenic toxicity remain not well documented. In this study, we investigated the role of histone H3 lysine 9 (H3K9) methylation in steroidogenesis disturbance in mouse Leydig cells (MLTC-1) due to arsenic exposure. Our results indicated that mRNA and protein expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) were both significantly up-regulated while the rest of key genes involved in steroidogenesis were down-regulated. Moreover, arsenic exposure significantly decreased the histone H3K9 di- and tri-methylation (H3K9me2/3) levels in MLTC-1 cells. Since H3K9 demethylation leads to gene activation, we further investigated whether the induction of 3β-HSD expression was ascribed to reduced H3K9 methylation. The results showed that H3K9me2/3 demethylase (JMJD2A) inhibitor, quercetin (Que) significantly attenuated the decrease of H3K9me2/3 and increase of 3β-HSD expression induced by arsenic. To further elucidate the mechanism for the activation of 3β-HSD, we determined the histone H3K9 methylation levels in Hsd3b gene promoter, which also showed significant decrease of H3K9me2/3 in the investigated region after arsenic exposure. Considering these results, we conclude that arsenic exposure induced 3β-HSD up-regulation by suppressing H3K9me2/3 status, which is suggested as a compensatory mechanism for steroidogenic disturbance in MLTC-1 cells. - Highlights: • Epigenetic mechanisms of arsenic-induced male reproductive toxicity remain unclear. • Arsenic disturbs the expression of key steroidogenic genes in MLTC-1 cells. • Histone H3K9 di- and tri-methylation was suppressed in arsenic-exposed cells. • Arsenic activates 3β-HSD expression through repression of histone H3K9 methylation.

  1. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation

    International Nuclear Information System (INIS)

    Alamdar, Ambreen; Xi, Guochen; Huang, Qingyu; Tian, Meiping; Eqani, Syed Ali Musstjab Akber Shah; Shen, Heqing

    2017-01-01

    Arsenic exposure has been associated with male reproductive dysfunction by disrupting steroidogenesis; however, the roles of epigenetic drivers, especially histone methylation in arsenic-induced steroidogenic toxicity remain not well documented. In this study, we investigated the role of histone H3 lysine 9 (H3K9) methylation in steroidogenesis disturbance in mouse Leydig cells (MLTC-1) due to arsenic exposure. Our results indicated that mRNA and protein expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) were both significantly up-regulated while the rest of key genes involved in steroidogenesis were down-regulated. Moreover, arsenic exposure significantly decreased the histone H3K9 di- and tri-methylation (H3K9me2/3) levels in MLTC-1 cells. Since H3K9 demethylation leads to gene activation, we further investigated whether the induction of 3β-HSD expression was ascribed to reduced H3K9 methylation. The results showed that H3K9me2/3 demethylase (JMJD2A) inhibitor, quercetin (Que) significantly attenuated the decrease of H3K9me2/3 and increase of 3β-HSD expression induced by arsenic. To further elucidate the mechanism for the activation of 3β-HSD, we determined the histone H3K9 methylation levels in Hsd3b gene promoter, which also showed significant decrease of H3K9me2/3 in the investigated region after arsenic exposure. Considering these results, we conclude that arsenic exposure induced 3β-HSD up-regulation by suppressing H3K9me2/3 status, which is suggested as a compensatory mechanism for steroidogenic disturbance in MLTC-1 cells. - Highlights: • Epigenetic mechanisms of arsenic-induced male reproductive toxicity remain unclear. • Arsenic disturbs the expression of key steroidogenic genes in MLTC-1 cells. • Histone H3K9 di- and tri-methylation was suppressed in arsenic-exposed cells. • Arsenic activates 3β-HSD expression through repression of histone H3K9 methylation.

  2. Hyperacetylation and differential deacetylation of histones H4 and H3 define two distinct classes of acetylated SV40 chromosomes early in infection

    International Nuclear Information System (INIS)

    Milavetz, Barry

    2004-01-01

    SV40 chromosomes undergoing encapsidation late in infection and SV40 chromatin in virions are hyperacetylated on histones H4 and H3. However, the fate of the SV40 chromosomes containing hyperacetylated histones in a subsequent round of infection has not been determined. In order to determine if SV40 chromosomes undergo changes in the extent of histone acetylation during early infection, we have analyzed SV40 chromosomes isolated 30 min and 3 h postinfection by quantitative ChIP assays, depletion ChIP assays, competitive ChIP assays, and ChIP assays combined with restriction endonuclease sensitivity using antibodies to hyperacetylated histones H4 and H3. We have shown that at 30 min postinfection, the hyperacetylated histones are associated with two distinct classes of SV40 chromosomes. One form is hyperacetylated specifically on histone H4 while a second form is hyperacetylated on both H4 and H3. Both forms of chromosomes appear to contain a nucleosome-free promoter region. Over the course of the next few hours of infection, the class of SV40 chromosomes hyperacetylated on only H4 is reduced or completely eliminated through deacetylation

  3. Dynamics of gene expression with positive feedback to histone modifications at bivalent domains

    Science.gov (United States)

    Huang, Rongsheng; Lei, Jinzhi

    2018-03-01

    Experiments have shown that in embryonic stem cells, the promoters of many lineage-control genes contain “bivalent domains”, within which the nucleosomes possess both active (H3K4me3) and repressive (H3K27me3) marks. Such bivalent modifications play important roles in maintaining pluripotency in embryonic stem cells. Here, to investigate gene expression dynamics when there are regulations in bivalent histone modifications and random partition in cell divisions, we study how positive feedback to histone methylation/demethylation controls the transition dynamics of the histone modification patterns along with cell cycles. We constructed a computational model that includes dynamics of histone marks, three-stage chromatin state transitions, transcription and translation, feedbacks from protein product to enzymes to regulate the addition and removal of histone marks, and the inheritance of nucleosome state between cell cycles. The model reveals how dynamics of both nucleosome state transition and gene expression are dependent on the enzyme activities and feedback regulations. Results show that the combination of stochastic histone modification at each cell division and the deterministic feedback regulation work together to adjust the dynamics of chromatin state transition in stem cell regenerations.

  4. Pre-analytical variables of circulating cell-free nucleosomes containing 5-methylcytosine DNA or histone modification H3K9Me3

    DEFF Research Database (Denmark)

    Rasmussen, Louise; Herzog, Marielle; Rømer, Eva

    2016-01-01

    Aim: To evaluate pre-analytical variables of circulating cell-free nucleosomes containing 5-methylcytosine DNA (5mC) or histone modification H3K9Me3 (H3K9Me3). Materials and methods: Six studies were designed to assess the possible influence of pre-analytical variables. Study 1: influence of stasis...... significantly lower levels of 5mC or H3K9Me3 compared to levels in healthy individuals. Conclusion: Levels of 5mC or H3K9Me3 appear stable in most pre-analytical settings if blood samples are stored at room temperature until centrifugation....

  5. Nicotinamide N-Methyltransferase Suppression Participates in Nickel-Induced Histone H3 Lysine9 Dimethylation in BEAS-2B Cells

    Directory of Open Access Journals (Sweden)

    Qian Li

    2017-04-01

    Full Text Available Background: Nickel compounds are well-established human carcinogens with weak mutagenic activity. Histone methylation has been proposed to play an important role in nickel-induced carcinogenesis. Nicotinamide N-methyltransferase (NNMT decreases histone methylation in several cancer cells by altering the cellular ratio of S-adenosylmethionine (SAM to S-adenosylhomocysteine (SAH. However, the role of NNMT in nickel-induced histone methylation remains unclear. Methods: BEAS-2B cells were exposed to different concentrations of nickel chloride (NiCl2 for 72 h or 200 μM NiCl2 for different time periods. Histone H3 on lysine 9 (H3K9 mono-, di-, and trimethylation and NNMT protein levels were measured by western blot analysis. Expressions of NNMT mRNA and the H3k9me2-associated genes, mitogen-activated protein kinase 3 (MAP2K3 and dickkopf1 (DKK1, were determined by qPCR analysis. The cellular ratio of nicotinamide adenine dinucleotide (NAD+ to reduced NAD (NADH and SAM/SAH ratio were determined. Results: Exposure of BEAS-2B cells to nickel increased H3K9 dimethylation (H3K9me2, suppressed the expressions of H3K9me2-associated genes (MAP2K3 and DKK1, and induced NNMT repression at both the protein and mRNA levels. Furthermore, over-expression of NNMT inhibited nickel-induced H3K9me2 and altered the cellular SAM/SAH ratio. Additionally, the NADH oxidant phenazine methosulfate (PMS not only reversed the nickel-induced reduction in NAD+/NADH but also inhibited the increase in H3K9me2. Conclusions: These findings indicate that the repression of NNMT may underlie nickel-induced H3K9 dimethylation by altering the cellular SAM/SAH ratio.

  6. Muscle-Specific Histone H3K36 Dimethyltransferase SET-18 Shortens Lifespan of Caenorhabditis elegans by Repressing daf-16a Expression

    Directory of Open Access Journals (Sweden)

    Liangping Su

    2018-03-01

    Full Text Available Mounting evidence shows that histone methylation, a typical epigenetic mark, is crucial for gene expression regulation during aging. Decreased trimethylation of Lys 36 on histone H3 (H3K36me3 in worms and yeast is reported to shorten lifespan. The function of H3K36me2 in aging remains unclear. In this study, we identified Caenorhabditis elegans SET-18 as a histone H3K36 dimethyltransferase. SET-18 deletion extended lifespan and increased oxidative stress resistance, dependent on daf-16 activity in the insulin/IGF pathway. In set-18 mutants, transcription of daf-16 isoform a (daf-16a was specifically upregulated. Accordingly, a decrease in H3K36me2 on daf-16a promoter was observed. Muscle-specific expression of SET-18 increased in aged worms (day 7 and day 11, attributable to elevation of global H3K36me2 and inhibition of daf-16a expression. Consequently, longevity was shortened. These findings suggested that chromatic repression mediated by tissue-specific H3K36 dimethyltransferase might be detrimental to lifespan and may have implications in human age-related diseases.

  7. Muscle-Specific Histone H3K36 Dimethyltransferase SET-18 Shortens Lifespan of Caenorhabditis elegans by Repressing daf-16a Expression.

    Science.gov (United States)

    Su, Liangping; Li, Hongyuan; Huang, Cheng; Zhao, Tingting; Zhang, Yongjun; Ba, Xueqing; Li, Zhongwei; Zhang, Yu; Huang, Baiqu; Lu, Jun; Zhao, Yanmei; Li, Xiaoxue

    2018-03-06

    Mounting evidence shows that histone methylation, a typical epigenetic mark, is crucial for gene expression regulation during aging. Decreased trimethylation of Lys 36 on histone H3 (H3K36me3) in worms and yeast is reported to shorten lifespan. The function of H3K36me2 in aging remains unclear. In this study, we identified Caenorhabditis elegans SET-18 as a histone H3K36 dimethyltransferase. SET-18 deletion extended lifespan and increased oxidative stress resistance, dependent on daf-16 activity in the insulin/IGF pathway. In set-18 mutants, transcription of daf-16 isoform a (daf-16a) was specifically upregulated. Accordingly, a decrease in H3K36me2 on daf-16a promoter was observed. Muscle-specific expression of SET-18 increased in aged worms (day 7 and day 11), attributable to elevation of global H3K36me2 and inhibition of daf-16a expression. Consequently, longevity was shortened. These findings suggested that chromatic repression mediated by tissue-specific H3K36 dimethyltransferase might be detrimental to lifespan and may have implications in human age-related diseases. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Characterization of a Linked Jumonji Domain of the KDM5/JARID1 Family of Histone H3 Lysine 4 Demethylases.

    Science.gov (United States)

    Horton, John R; Engstrom, Amanda; Zoeller, Elizabeth L; Liu, Xu; Shanks, John R; Zhang, Xing; Johns, Margaret A; Vertino, Paula M; Fu, Haian; Cheng, Xiaodong

    2016-02-05

    The KDM5/JARID1 family of Fe(II)- and α-ketoglutarate-dependent demethylases remove methyl groups from tri- and dimethylated lysine 4 of histone H3. Accumulating evidence from primary tumors and model systems supports a role for KDM5A (JARID1A/RBP2) and KDM5B (JARID1B/PLU1) as oncogenic drivers. The KDM5 family is unique among the Jumonji domain-containing histone demethylases in that there is an atypical insertion of a DNA-binding ARID domain and a histone-binding PHD domain into the Jumonji domain, which separates the catalytic domain into two fragments (JmjN and JmjC). Here we demonstrate that internal deletion of the ARID and PHD1 domains has a negligible effect on in vitro enzymatic kinetics of the KDM5 family of enzymes. We present a crystal structure of the linked JmjN-JmjC domain from KDM5A, which reveals that the linked domain fully reconstitutes the cofactor (metal ion and α-ketoglutarate) binding characteristics of other structurally characterized Jumonji domain demethylases. Docking studies with GSK-J1, a selective inhibitor of the KDM6/KDM5 subfamilies, identify critical residues for binding of the inhibitor to the reconstituted KDM5 Jumonji domain. Further, we found that GSK-J1 inhibited the demethylase activity of KDM5C with 8.5-fold increased potency compared with that of KDM5B at 1 mm α-ketoglutarate. In contrast, JIB-04 (a pan-inhibitor of the Jumonji demethylase superfamily) had the opposite effect and was ~8-fold more potent against KDM5B than against KDM5C. Interestingly, the relative selectivity of JIB-04 toward KDM5B over KDM5C in vitro translates to a ~10-50-fold greater growth-inhibitory activity against breast cancer cell lines. These data define the minimal requirements for enzymatic activity of the KDM5 family to be the linked JmjN-JmjC domain coupled with the immediate C-terminal helical zinc-binding domain and provide structural characterization of the linked JmjN-JmjC domain for the KDM5 family, which should prove useful in the

  9. The Histone Demethylase Jarid1b Ensures Faithful Mouse Development by Protecting Developmental Genes from Aberrant H3K4me3

    DEFF Research Database (Denmark)

    Albert, Mareike; Schmitz, Sandra U; Kooistra, Susanne M

    2013-01-01

    of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line...

  10. Structural Insights into the Association of Hif1 with Histones H2A-H2B Dimer and H3-H4 Tetramer.

    Science.gov (United States)

    Zhang, Mengying; Liu, Hejun; Gao, Yongxiang; Zhu, Zhongliang; Chen, Zijun; Zheng, Peiyi; Xue, Lu; Li, Jixi; Teng, Maikun; Niu, Liwen

    2016-10-04

    Histone chaperones are critical for guiding specific post-transcriptional modifications of histones, safeguarding the histone deposition (or disassociation) of nucleosome (dis)assembly, and regulating chromatin structures to change gene activities. HAT1-interacting factor 1 (Hif1) has been reported to be an H3-H4 chaperone and to be involved in telomeric silencing and nucleosome (dis)assembly. However, the structural basis for the interaction of Hif1 with histones remains unknown. Here, we report the complex structure of Hif1 binding to H2A-H2B for uncovering the chaperone specificities of Hif1 on binding to both the H2A-H2B dimer and the H3-H4 tetramer. Our findings reveal that Hif1 interacts with the H2A-H2B dimer and the H3-H4 tetramer via distinct mechanisms, suggesting that Hif1 is a pivotal scaffold on alternate binding of H2A-H2B and H3-H4. These specificities are conserved features of the Sim3-Hif1-NASP interrupted tetratricopeptide repeat proteins, which provide clues for investigating their potential roles in nucleosome (dis)assembly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway*

    Science.gov (United States)

    Foda, Bardees M.; Singh, Upinder

    2015-01-01

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5′-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica. PMID:26149683

  12. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway.

    Science.gov (United States)

    Foda, Bardees M; Singh, Upinder

    2015-08-21

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5'-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. KdmB, a Jumonji Histone H3 Demethylase, Regulates Genome-Wide H3K4 Trimethylation and Is Required for Normal Induction of Secondary Metabolism in Aspergillus nidulans.

    Directory of Open Access Journals (Sweden)

    Agnieszka Gacek-Matthews

    2016-08-01

    Full Text Available Histone posttranslational modifications (HPTMs are involved in chromatin-based regulation of fungal secondary metabolite biosynthesis (SMB in which the corresponding genes-usually physically linked in co-regulated clusters-are silenced under optimal physiological conditions (nutrient-rich but are activated when nutrients are limiting. The exact molecular mechanisms by which HPTMs influence silencing and activation, however, are still to be better understood. Here we show by a combined approach of quantitative mass spectrometry (LC-MS/MS, genome-wide chromatin immunoprecipitation (ChIP-seq and transcriptional network analysis (RNA-seq that the core regions of silent A. nidulans SM clusters generally carry low levels of all tested chromatin modifications and that heterochromatic marks flank most of these SM clusters. During secondary metabolism, histone marks typically associated with transcriptional activity such as H3 trimethylated at lysine-4 (H3K4me3 are established in some, but not all gene clusters even upon full activation. KdmB, a Jarid1-family histone H3 lysine demethylase predicted to comprise a BRIGHT domain, a zinc-finger and two PHD domains in addition to the catalytic Jumonji domain, targets and demethylates H3K4me3 in vivo and mediates transcriptional downregulation. Deletion of kdmB leads to increased transcription of about ~1750 genes across nutrient-rich (primary metabolism and nutrient-limiting (secondary metabolism conditions. Unexpectedly, an equally high number of genes exhibited reduced expression in the kdmB deletion strain and notably, this group was significantly enriched for genes with known or predicted functions in secondary metabolite biosynthesis. Taken together, this study extends our general knowledge about multi-domain KDM5 histone demethylases and provides new details on the chromatin-level regulation of fungal secondary metabolite production.

  14. Trivalent dimethylarsenic compound induces histone H3 phosphorylation and abnormal localization of Aurora B kinase in HepG2 cells

    International Nuclear Information System (INIS)

    Suzuki, Toshihide; Miyazaki, Koichi; Kita, Kayoko; Ochi, Takafumi

    2009-01-01

    Trivalent dimethylarsinous acid [DMA(III)] has been shown to induce mitotic abnormalities, such as centrosome abnormality, multipolar spindles, multipolar division, and aneuploidy, in several cell lines. In order to elucidate the mechanisms underlying these mitotic abnormalities, we investigated DMA(III)-mediated changes in histone H3 phosphorylation and localization of Aurora B kinase, which is a key molecule in cell mitosis. DMA(III) caused the phosphorylation of histone H3 (ser10) and was distributed predominantly in mitotic cells, especially in prometaphase cells. By contrast, most of the phospho-histone H3 was found to be localized in interphase cells after treatment with inorganic arsenite [iAs(III)], suggesting the involvement of a different pathway in phosphorylation. DMA(III) activated Aurora B kinase and slightly activated ERK MAP kinase. Phosphorylation of histone H3 by DMA(III) was effectively reduced by ZM447439 (Aurora kinase inhibitor) and slightly reduced by U0126 (MEK inhibitor). By contrast, iAs(III)-dependent histone H3 phosphorylation was markedly reduced by U0126. Aurora B kinase is generally localized in the midbody during telophase and plays an important role in cytokinesis. However, in some cells treated with DMA(III), Aurora B was not localized in the midbody of telophase cells. These findings suggested that DMA(III) induced a spindle abnormality, thereby activating the spindle assembly checkpoint (SAC) through the Aurora B kinase pathway. In addition, cytokinesis was not completed because of the abnormal localization of Aurora B kinase by DMA(III), thereby resulting in the generation of multinucleated cells. These results provide insight into the mechanism of arsenic tumorigenesis.

  15. Histone H3 lysine 9 methyltransferase FvDim5 regulates fungal development, pathogenicity and osmotic stress responses in Fusarium verticillioides.

    Science.gov (United States)

    Gu, Qin; Ji, Tiantian; Sun, Xiao; Huang, Hai; Zhang, Hao; Lu, Xi; Wu, Liming; Huo, Rong; Wu, Huijun; Gao, Xuewen

    2017-10-16

    Histone methylation plays important biological roles in eukaryotic cells. Methylation of lysine 9 at histone H3 (H3K9me) is critical for regulating chromatin structure and gene transcription. Dim5 is a lysine histone methyltransferase (KHMTase) enzyme, which is responsible for the methylation of H3K9 in eukaryotes. In the current study, we identified a single ortholog of Neurospora crassa Dim5 in Fusarium verticillioides. In this study, we report that FvDim5 regulates the trimethylation of H3K9 (H3K9me3). The FvDIM5 deletion mutant (ΔFvDim5) showed significant defects in conidiation, perithecium production and fungal virulence. Unexpectedly, we found that deletion of FvDIM5 resulted in increased tolerance to osmotic stresses and upregulated FvHog1 phosphorylation. These results indicate the importance of FvDim5 for the regulation of fungal development, pathogenicity and osmotic stress responses in F. verticillioides. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes

    DEFF Research Database (Denmark)

    Pasini, Diego; Malatesta, Martina; Jung, Hye Ryung

    2010-01-01

    Polycomb group (PcG) proteins are transcriptional repressors, which regulate proliferation and cell fate decisions during development, and their deregulated expression is a frequent event in human tumours. The Polycomb repressive complex 2 (PRC2) catalyzes trimethylation (me3) of histone H3 lysine...... are poorly understood. To gain insight into these mechanisms, we have determined the global changes in histone modifications in embryonic stem (ES) cells lacking the PcG protein Suz12 that is essential for PRC2 activity. We show that loss of PRC2 activity results in a global increase in H3K27 acetylation....... The methylation to acetylation switch correlates with the transcriptional activation of PcG target genes, both during ES cell differentiation and in MLL-AF9-transduced hematopoietic stem cells. Moreover, we provide evidence that the acetylation of H3K27 is catalyzed by the acetyltransferases p300 and CBP. Based...

  17. Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response in human cells

    International Nuclear Information System (INIS)

    Sharma, Ajit K.; Bhattacharya, Saikat; Khan, Shafqat A.; Khade, Bharat; Gupta, Sanjay

    2015-01-01

    Highlights: • Loss of H3S10P in response to DNA damage is a universal phenomenon from G1 cells. • The loss happens predominantly from histone H3.3, a transcription activation mark. • Compaction of chromatin occurs during repair stage of DDR. • The alteration of H3S10P shows an inverse correlation with γH2AX. - Abstract: Chromatin acts as a natural barrier in DNA-damage recognition and repair. Histones undergo differential post-translational modification(s) to facilitate DNA damage response (DDR). Importance of modifications like phosphorylation of histone variant H2A.X in DNA repair is very well understood, however, ambiguous results exist in literature regarding the levels of certain histone modifications and their possible role in repair. In the present study, we have investigated in depth the alteration in the level of the highly dynamic histone mark H3S10P as it plays a dual role in different phases of the cell cycle. We show here that H3S10P decreases specifically from irradiated G1-enriched cells irrespective of the damaging agent or the cell line used in the study. Interestingly, the loss occurs predominantly from H3.3 variant which is a transcription activation mark like H3S10P itself, suggesting that the alteration might be implicated in transcription repression. The decrease in other transcription marks like H3K9Ac, H3K14Ac, H3K56Ac and H3S28P along with the occurrence of chromatin condensation in response to DNA damage in G1 phase strengthens the hypothesis. In addition, the alteration in the level of H3S10P shows an inverse correlation with that of γH2AX in a dose-dependent manner and probably occurs from the same mononucleosome. We propose that the drop in the levels of histone H3S10 phosphorylation is a universal phenomenon in response to DNA damage and is a trigger to induce transcription repressive state to facilitate repair

  18. Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ajit K.; Bhattacharya, Saikat; Khan, Shafqat A.; Khade, Bharat; Gupta, Sanjay, E-mail: sgupta@actrec.gov.in

    2015-03-15

    Highlights: • Loss of H3S10P in response to DNA damage is a universal phenomenon from G1 cells. • The loss happens predominantly from histone H3.3, a transcription activation mark. • Compaction of chromatin occurs during repair stage of DDR. • The alteration of H3S10P shows an inverse correlation with γH2AX. - Abstract: Chromatin acts as a natural barrier in DNA-damage recognition and repair. Histones undergo differential post-translational modification(s) to facilitate DNA damage response (DDR). Importance of modifications like phosphorylation of histone variant H2A.X in DNA repair is very well understood, however, ambiguous results exist in literature regarding the levels of certain histone modifications and their possible role in repair. In the present study, we have investigated in depth the alteration in the level of the highly dynamic histone mark H3S10P as it plays a dual role in different phases of the cell cycle. We show here that H3S10P decreases specifically from irradiated G1-enriched cells irrespective of the damaging agent or the cell line used in the study. Interestingly, the loss occurs predominantly from H3.3 variant which is a transcription activation mark like H3S10P itself, suggesting that the alteration might be implicated in transcription repression. The decrease in other transcription marks like H3K9Ac, H3K14Ac, H3K56Ac and H3S28P along with the occurrence of chromatin condensation in response to DNA damage in G1 phase strengthens the hypothesis. In addition, the alteration in the level of H3S10P shows an inverse correlation with that of γH2AX in a dose-dependent manner and probably occurs from the same mononucleosome. We propose that the drop in the levels of histone H3S10 phosphorylation is a universal phenomenon in response to DNA damage and is a trigger to induce transcription repressive state to facilitate repair.

  19. Differential regulation of the phosphorylation of Trimethyl-lysine27 histone H3 at serine 28 in distinct populations of striatal projection neurons

    DEFF Research Database (Denmark)

    Bonito-Oliva, Alessandra; Södersten, Erik; Spigolon, Giada

    2016-01-01

    Phosphorylation of histone H3 (H3) on serine 28 (S28) at genomic regions marked by trimethylation of lysine 27 (H3K27me3) often correlates with increased expression of genes normally repressed by Polycomb group proteins (PcG). We show that amphetamine, an addictive psychostimulant, and haloperidol...... of the protein phosphatase-1 inhibitor, dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), reduces the phosphorylation of H3K27me3S28 produced by amphetamine and haloperidol. In contrast, knockout of the mitogen- and stress activated kinase 1 (MSK1), which is implicated in the phosphorylation...... of histone H3, decreases the effect of amphetamine, but not that of haloperidol. Chromatin immunoprecipitation analysis shows that amphetamine and haloperidol increase the phosphorylation of H3K27me3S28 at the promoter regions of Atf3, Npas4 and Lipg, three genes repressed by PcG. These results identify H3K...

  20. Exploring PHD fingers and H3K4me0 interactions with molecular dynamics simulations and binding free energy calculations: AIRE-PHD1, a comparative study.

    Directory of Open Access Journals (Sweden)

    Dimitrios Spiliotopoulos

    Full Text Available PHD fingers represent one of the largest families of epigenetic readers capable of decoding post-translationally modified or unmodified histone H3 tails. Because of their direct involvement in human pathologies they are increasingly considered as a potential therapeutic target. Several PHD/histone-peptide structures have been determined, however relatively little information is available on their dynamics. Studies aiming to characterize the dynamic and energetic determinants driving histone peptide recognition by epigenetic readers would strongly benefit from computational studies. Herein we focus on the dynamic and energetic characterization of the PHD finger subclass specialized in the recognition of histone H3 peptides unmodified in position K4 (H3K4me0. As a case study we focused on the first PHD finger of autoimmune regulator protein (AIRE-PHD1 in complex with H3K4me0. PCA analysis of the covariance matrix of free AIRE-PHD1 highlights the presence of a "flapping" movement, which is blocked in an open conformation upon binding to H3K4me0. Moreover, binding free energy calculations obtained through Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA methodology are in good qualitative agreement with experiments and allow dissection of the energetic terms associated with native and alanine mutants of AIRE-PHD1/H3K4me0 complexes. MM/PBSA calculations have also been applied to the energetic analysis of other PHD fingers recognizing H3K4me0. In this case we observe excellent correlation between computed and experimental binding free energies. Overall calculations show that H3K4me0 recognition by PHD fingers relies on compensation of the electrostatic and polar solvation energy terms and is stabilized by non-polar interactions.

  1. Rtt109-dependent histone H3 K56 acetylation and gene activity are essential for the biological control potential of Beauveria bassiana.

    Science.gov (United States)

    Cai, Qing; Wang, Juan-Juan; Shao, Wei; Ying, Sheng-Hua; Feng, Ming-Guang

    2018-04-27

    Rtt109 is a histone acetyltransferase that catalyzes histone H3K56 acetylation required for genomic stability, DNA damage repair and virulence-related gene activity in yeast-like human pathogens but remains functionally unknown in fungal insect pathogens. This study seeks to elucidate catalytic activity of Rtt109 orthologue and its possible role in sustaining biological control potential of Beauveria bassiana, a fungal entomopathogen. Deletion of rtt109 in B. bassiana abolished histone H3K56 acetylation and triggered histone H2A-S129 phosphorylation. Consequently, the deletion mutant showed increased sensitivities to the stresses of DNA damage, oxidation, cell wall perturbation, high osmolarity and heat shock during colony growth, severe conidiation defects under normal culture conditions, reduced conidial hydrophobicity, decreased conidial UV-B resistance, and attenuated virulence through normal cuticle infection. These phenotypic changes correlated well with reduced transcript levels of many genes, which encode the families of H2A-S129 dephosphorylation-related protein phosphotases, DNA damage-repairing factors, antioxidant enzymes, heat-shock proteins, key developmental activators, hydrophobins and cuticle-degrading Pr1 proteases respectively. Rtt109 can acetylate H3K56 and dephosphorylate H2A-S129 in direct and indirect manners respectively, and hence plays an essential role in sustaining genomic stability and global gene activity required for conidiation capacity, environmental fitness and pest-control potential in B. bassiana. This article is protected by copyright. All rights reserved.

  2. Damaged DNA-binding protein down-regulates epigenetic mark H3K56Ac through histone deacetylase 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qianzheng; Battu, Aruna; Ray, Alo; Wani, Gulzar; Qian, Jiang; He, Jinshan; Wang, Qi-en [Department of Radiology, The Ohio State University, Columbus, OH 43210 (United States); Wani, Altaf A., E-mail: wani.2@osu.edu [Department of Radiology, The Ohio State University, Columbus, OH 43210 (United States); Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210 (United States); James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210 (United States)

    2015-06-15

    Highlights: • HDAC1 and HDAC2 co-localize with UV radiation-induced DNA damage sites. • HDAC1 translocation to chromatin is dependent on DDB2 function. • HDAC1 and HDAC2 are involved in H3K56Ac deacetylation. • H3K56Ac deacetylation requires DDB1 and DDB2 but not XPA or XPC functions. • HDAC1/2 depletion decreases XPC ubiquitination and local γH2AX accumulation. - Abstract: Acetylated histone H3 lysine 56 (H3K56Ac) is one of the reversible histone post-translational modifications (PTMs) responsive to DNA damage. We previously described a biphasic decrease and increase of epigenetic mark H3K56Ac in response to ultraviolet radiation (UVR)-induced DNA damage. Here, we report a new function of UV damaged DNA-binding protein (DDB) in deacetylation of H3K56Ac through specific histone deacetylases (HDACs). We show that simultaneous depletion of HDAC1/2 compromises the deacetylation of H3K56Ac, while depletion of HDAC1 or HDAC2 alone has no effect on H3K56Ac. The H3K56Ac deacetylation does not require functional nucleotide excision repair (NER) factors XPA and XPC, but depends on the function of upstream factors DDB1 and DDB2. UVR enhances the association of DDB2 with HDAC1 and, enforced DDB2 expression leads to translocation of HDAC1 to UVR-damaged chromatin. HDAC1 and HDAC2 are recruited to UVR-induced DNA damage spots, which are visualized by anti-XPC immunofluorescence. Dual HDAC1/2 depletion decreases XPC ubiquitination, but does not affect the recruitment of DDB2 to DNA damage. By contrast, the local accumulation of γH2AX at UVR-induced DNA damage spots was compromised upon HDAC1 as well as dual HDAC1/2 depletions. Additionally, UVR-induced ATM activation decreased in H12899 cells expressing H3K56Ac-mimicing H3K56Q. These results revealed a novel role of DDB in H3K56Ac deacetylation during early step of NER and the existence of active functional cross-talk between DDB-mediated damage recognition and H3K56Ac deacetylation.

  3. Differential regulation of the phosphorylation of Trimethyl-lysine27 histone H3 at serine 28 in distinct populations of striatal projection neurons.

    Science.gov (United States)

    Bonito-Oliva, Alessandra; Södersten, Erik; Spigolon, Giada; Hu, Xiaochen; Hellysaz, Arash; Falconi, Anastasia; Gomes, Ana-Luisa; Broberger, Christian; Hansen, Klaus; Fisone, Gilberto

    2016-08-01

    Phosphorylation of histone H3 (H3) on serine 28 (S28) at genomic regions marked by trimethylation of lysine 27 (H3K27me3) often correlates with increased expression of genes normally repressed by Polycomb group proteins (PcG). We show that amphetamine, an addictive psychostimulant, and haloperidol, a typical antipsychotic drug, increase the phosphorylation of H3 at S28 and that this effect occurs in the context of H3K27me3. The increases in H3K27me3S28p occur in distinct populations of projection neurons located in the striatum, the major component of the basal ganglia. Genetic inactivation of the protein phosphatase-1 inhibitor, dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), reduces the phosphorylation of H3K27me3S28 produced by amphetamine and haloperidol. In contrast, knockout of the mitogen- and stress activated kinase 1 (MSK1), which is implicated in the phosphorylation of histone H3, decreases the effect of amphetamine, but not that of haloperidol. Chromatin immunoprecipitation analysis shows that amphetamine and haloperidol increase the phosphorylation of H3K27me3S28 at the promoter regions of Atf3, Npas4 and Lipg, three genes repressed by PcG. These results identify H3K27me3S28p as a potential mediator of the effects exerted by amphetamine and haloperidol, and suggest that these drugs may act by re-activating PcG repressed target genes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Genome-wide analysis of histone H3 acetylation patterns in AML identifies PRDX2 as an epigenetically silenced tumor suppressor gene

    DEFF Research Database (Denmark)

    Agrawal-Singh, Shuchi; Isken, Fabienne; Agelopoulos, Konstantin

    2012-01-01

    to have lower H3Ac levels in AML compared with progenitor cells, which suggested that a large number of genes are epigenetically silenced in AML. Intriguingly, we identified peroxiredoxin 2 (PRDX2) as a novel potential tumor suppressor gene in AML. H3Ac was decreased at the PRDX2 gene promoter in AML......With the use of ChIP on microarray assays in primary leukemia samples, we report that acute myeloid leukemia (AML) blasts exhibit significant alterations in histone H3 acetylation (H3Ac) levels at > 1000 genomic loci compared with CD34+ progenitor cells. Importantly, core promoter regions tended......, which correlated with low mRNA and protein expression. We also observed DNA hypermethylation at the PRDX2 promoter in AML. Low protein expression of the antioxidant PRDX2 gene was clinically associated with poor prognosis in patients with AML. Functionally, PRDX2 acted as inhibitor of myeloid cell...

  5. Histone demethylase JMJD3 regulates CD11a expression through changes in histone H3K27 tri-methylation levels in CD4+ T cells of patients with systemic lupus erythematosus.

    Science.gov (United States)

    Yin, Heng; Wu, Haijing; Zhao, Ming; Zhang, Qing; Long, Hai; Fu, Siqi; Lu, Qianjin

    2017-07-25

    Aberrant CD11a overexpression in CD4+ T cells induces T cell auto-reactivity, which is an important factor for systemic lupus erythematosus (SLE) pathogenesis. Although many studies have focused on CD11a epigenetic regulation, little is known about histone methylation. JMJD3, as a histone demethylase, is capable of specifically removing the trimethyl group from the H3K27 lysine residue, triggering target gene activation. Here, we examined the expression and function of JMJD3 in CD4+ T cells from SLE patients. Significantly decreased H3K27me3 levels and increased JMJD3 binding were detected within the ITGAL (CD11a) promoter locus in SLE CD4+ T cells compared with those in healthy CD4+ T cells. Moreover, overexpressing JMJD3 through the transfection of pcDNA3.1-JMJD3 into healthy donor CD4+ T cells increased JMJD3 enrichment and decreased H3K27me3 enrichment within the ITGAL (CD11a) promoter and up-regulated CD11a expression, leading to T and B cell hyperactivity. Inhibition of JMJD3 via JMJD3-siRNA in SLE CD4+ T cells showed the opposite effects. These results demonstrated that histone demethylase JMJD3 regulates CD11a expression in lupus T cells by affecting the H3K27me3 levels in the ITGAL (CD11a) promoter region, and JMJD3 might thereby serve as a potential therapeutic target for SLE.

  6. Neutron scattering studies of the H2a-H2b and (H3-H4)2 histone complexes

    International Nuclear Information System (INIS)

    Carlson, R.D.

    1984-01-01

    Neutron scattering experiments have shown that both the (H3-H4)2 and H2a-H2b histone complexes are quite asymmetric in solution. The (H3-H4)2 tetramer is an oblate or flattened structure, with a radius of gyration almost as large as that of the core octamer. If the tetramer is primarily globular, it must have an axial ratio of about 1:5. It is more likely, however, that this asymmetry results in part from N-terminal arms that extend outward approximately within the major plane of the particle. If this is the case, less asymmetric models for the globular part of the tetramer, including a dislocated disk of the type proposed by Klug et al. (23), can be made consistent with the scattering data. The H2a-H2b dimer, on the other hand, is an elongated structure. The low resolution data are in good agreement with those calculated for a cylindrical model 64 X 27 A, but other elongated models fit those data almost as well, including one that approximates free N-terminal arms at each end. Free arms are not necessary, but they must extend from the ends if they exist. A contrast matching experiment done with 50% deuterated H2b and undeuterated H2a in the reconstituted dimer showed that these two histones must each be rather elongated within the complex and are not just confined to one end. The amount of scattering contrast between the undeuterated and 50% deuterated histones was sufficient to suggest further experiments using complexes reconstituted from mixtures of undeuterated and partially deuterated histones which will help elucidate their arrangement within the histone complexes and within the octamer core of the nucleosome core particle

  7. Identification and Characterization of the Spodoptera Su(var) 3-9 Histone H3K9 trimethyltransferase and Its Effect in AcMNPV Infection

    Science.gov (United States)

    Li, Binbin; Li, Sisi; Yin, Juan; Zhong, Jiang

    2013-01-01

    Histone H3-lysine9 (H3K9) trimethyltransferase gene Su(var) 3-9 was cloned and identified in three Spodoptera insects, Spodoptera frugiperda ( S . frugiperda ), S . exigua and S . litura . Sequence analysis showed that Spodoptera Su(var) 3-9 is highly conserved evolutionarily. Su(var) 3-9 protein was found to be localized in the nucleus in Sf9 cells, and interact with histone H3, and the heterochromatin protein 1a (HP1a) and HP1b. A dose-dependent enzymatic activity was found at both 27 °C and 37 °C in vitro, with higher activity at 27 °C. Addition of specific inhibitor chaetocin resulted in decreased histone methylation level and host chromatin relaxation. In contrast, overexpression of Su(var) 3-9 caused increased histone methylation level and cellular genome compaction. In AcMNV-infected Sf9 cells, the transcription of Su(var) 3-9 increased at late time of infection, although the mRNA levels of most cellular genes decreased. Pre-treatment of Sf9 cells with chaetocin speeded up viral DNA replication, and increased the transcription level of a variety of virus genes, whereas in Sf9 cells pre-transformed with Su(var) 3-9 expression vector, viral DNA replication slow down slightly. These findings suggest that Su(var) 3-9 might participate in the viral genes expression an genome replication repression during AcMNPV infection. It provided a new insight for the understanding virus–host interaction mechanism. PMID:23894480

  8. Identification and characterization of the Spodoptera Su(var) 3-9 histone H3K9 trimethyltransferase and its effect in AcMNPV infection.

    Science.gov (United States)

    Li, Binbin; Li, Sisi; Yin, Juan; Zhong, Jiang

    2013-01-01

    Histone H3-lysine(9) (H3K9) trimethyltransferase gene Su(var) 3-9 was cloned and identified in three Spodoptera insects, Spodopterafrugiperda (S. frugiperda), S. exigua and S. litura. Sequence analysis showed that Spodoptera Su(var) 3-9 is highly conserved evolutionarily. Su(var) 3-9 protein was found to be localized in the nucleus in Sf9 cells, and interact with histone H3, and the heterochromatin protein 1a (HP1a) and HP1b. A dose-dependent enzymatic activity was found at both 27 °C and 37 °C in vitro, with higher activity at 27 °C. Addition of specific inhibitor chaetocin resulted in decreased histone methylation level and host chromatin relaxation. In contrast, overexpression of Su(var) 3-9 caused increased histone methylation level and cellular genome compaction. In AcMNV-infected Sf9 cells, the transcription of Su(var) 3-9 increased at late time of infection, although the mRNA levels of most cellular genes decreased. Pre-treatment of Sf9 cells with chaetocin speeded up viral DNA replication, and increased the transcription level of a variety of virus genes, whereas in Sf9 cells pre-transformed with Su(var) 3-9 expression vector, viral DNA replication slow down slightly. These findings suggest that Su(var) 3-9 might participate in the viral genes expression an genome replication repression during AcMNPV infection. It provided a new insight for the understanding virus-host interaction mechanism.

  9. Brain pattern of histone H3 phosphorylation after acute amphetamine administration: its relationship to brain c-fos induction is strongly dependent on the particular brain area.

    Science.gov (United States)

    Rotllant, David; Armario, Antonio

    2012-02-01

    Recent evidence strongly suggests a critical role of chromatin remodelling in the acute and chronic effects of addictive drugs. We reasoned that Immunohistochemical detection of certain histone modifications may be a more specific tool than induction of immediate early genes (i.e. c-fos) to detect brain areas and neurons that are critical for the action of addictive drugs. Thus, in the present work we studied in adult male rats the effects of a high dose of amphetamine on brain pattern of histone H3 phosphorylation in serine 10 (pH3S(10)) and c-fos expression. We firstly observed that amphetamine-induced an increase in the number of pH3S(10) positive neurons in a restricted number of brain areas, with maximum levels at 30 min after the drug administration that declined at 90 min in most areas. In a second experiment we studied colocalization of pH3S(10) immunoreactivity (pH3S(10)-IR) and c-fos expression. Amphetamine increased c-fos expression in medial prefrontal cortex (mPFC), dorsal striatum, nucleus accumbens (Acb), major Island of Calleja (ICjM), central amygdala (CeA), bed nucleus of stria terminalis lateral dorsal (BSTld) and paraventricular nucleus of the hypothalamus (PVN). Whereas no evidence for increase in pH3S(10) positive neurons was found in the mPFC and the PVN, in the striatum and the Acb basically all pH3S(10) positive neurons showed colocalization with c-fos. In ICjM, CeA and BSTld a notable degree of colocalization was found, but an important number of neurons expressing c-fos were negative for pH3S(10). The present results give support to the hypothesis that amphetamine-induced pH3S(10)-IR showed a more restricted pattern than brain c-fos induction, being this difference strongly dependent on the particular brain area studied. It is likely that those nuclei and neurons showing pH3S(10)-IR are more specifically associated to important effects of the drug, including neural plasticity. This article is part of a Special Issue entitled 'Post

  10. Interactions of nickel(II) with histones. Stability and solution structure of complexes with CH3CO-Cys-Ala-Ile-His-NH2, a putative metal binding sequence of histone H3.

    Science.gov (United States)

    Bal, W; Lukszo, J; Jezowska-Bojczuk, M; Kasprzak, K S

    1995-01-01

    Nickel(II) compounds are established human carcinogens, but the molecular mechanisms underlying their activity are only partially known. One mechanism may include mediation by nickel of promutagenic oxidative DNA damage that depends on Ni(II) binding to chromatin. To characterize such binding at the histone moiety of chromatin, we synthesized the peptide CH3CO-Cys-Ala-Ile-His-NH2 (L), a model of the evolutionarily conserved motif in histone H3 with expected affinity for transition metals, and evaluated its reactivity toward Ni(II). Combined spectroscopic (UV/vis, CD, NMR) and potentiometric measurements showed that, at physiological pH, mixtures of Ni(II) and L yielded unusual macrochelate complexes, NiL and NiL2, in which the metal cation was bound through Cys and His side chains in a square-planar arrangement. Above pH 9, a NiH-3L complex was formed, structurally analogous to typical square-planar nickel complexes. These complexes are expected to catalyze oxidation reactions, and therefore, coordination of Ni(II) by the L motif in core histone H3 may be a key event in oxidative DNA base damage observed in the process of Ni(II)-induced carcinogenesis.

  11. In silico probing and biological evaluation of SETDB1/ESET-targeted novel compounds that reduce tri-methylated histone H3K9 (H3K9me3) level

    Science.gov (United States)

    Park, Insun; Hwang, Yu Jin; Kim, TaeHun; Viswanath, Ambily Nath Indu; Londhe, Ashwini M.; Jung, Seo Yun; Sim, Kyoung Mi; Min, Sun-Joon; Lee, Ji Eun; Seong, Jihye; Kim, Yun Kyung; No, Kyoung Tai; Ryu, Hoon; Pae, Ae Nim

    2017-10-01

    ERG-associated protein with the SET domain (ESET/SET domain bifurcated 1/SETDB1/KMT1E) is a histone lysine methyltransferase (HKMT) and it preferentially tri-methylates lysine 9 of histone H3 (H3K9me3). SETDB1/ESET leads to heterochromatin condensation and epigenetic gene silencing. These functional changes are reported to correlate with Huntington's disease (HD) progression and mood-related disorders which make SETDB1/ESET a viable drug target. In this context, the present investigation was performed to identify novel peptide-competitive small molecule inhibitors of the SETDB1/ESET by a combined in silico-in vitro approach. A ligand-based pharmacophore model was built and employed for the virtual screening of ChemDiv and Asinex database. Also, a human SETDB1/ESET homology model was constructed to supplement the data further. Biological evaluation of the selected 21 candidates singled out 5 compounds exhibiting a notable reduction of the H3K9me3 level via inhibitory potential of SETDB1/ESET activity in SETDB1/ESET-inducible cell line and HD striatal cells. Later on, we identified two compounds as final hits that appear to have neuronal effects without cytotoxicity based on the result from MTT assay. These compounds hold the calibre to become the future lead compounds and can provide structural insights into more SETDB1/ESET-focused drug discovery research. Moreover, these SETDB1/ESET inhibitors may be applicable for the preclinical study to ameliorate neurodegenerative disorders via epigenetic regulation.

  12. In silico probing and biological evaluation of SETDB1/ESET-targeted novel compounds that reduce tri-methylated histone H3K9 (H3K9me3) level.

    Science.gov (United States)

    Park, Insun; Hwang, Yu Jin; Kim, TaeHun; Viswanath, Ambily Nath Indu; Londhe, Ashwini M; Jung, Seo Yun; Sim, Kyoung Mi; Min, Sun-Joon; Lee, Ji Eun; Seong, Jihye; Kim, Yun Kyung; No, Kyoung Tai; Ryu, Hoon; Pae, Ae Nim

    2017-10-01

    ERG-associated protein with the SET domain (ESET/SET domain bifurcated 1/SETDB1/KMT1E) is a histone lysine methyltransferase (HKMT) and it preferentially tri-methylates lysine 9 of histone H3 (H3K9me3). SETDB1/ESET leads to heterochromatin condensation and epigenetic gene silencing. These functional changes are reported to correlate with Huntington's disease (HD) progression and mood-related disorders which make SETDB1/ESET a viable drug target. In this context, the present investigation was performed to identify novel peptide-competitive small molecule inhibitors of the SETDB1/ESET by a combined in silico-in vitro approach. A ligand-based pharmacophore model was built and employed for the virtual screening of ChemDiv and Asinex database. Also, a human SETDB1/ESET homology model was constructed to supplement the data further. Biological evaluation of the selected 21 candidates singled out 5 compounds exhibiting a notable reduction of the H3K9me3 level via inhibitory potential of SETDB1/ESET activity in SETDB1/ESET-inducible cell line and HD striatal cells. Later on, we identified two compounds as final hits that appear to have neuronal effects without cytotoxicity based on the result from MTT assay. These compounds hold the calibre to become the future lead compounds and can provide structural insights into more SETDB1/ESET-focused drug discovery research. Moreover, these SETDB1/ESET inhibitors may be applicable for the preclinical study to ameliorate neurodegenerative disorders via epigenetic regulation.

  13. Effect of SPL (Spent Pot Liner) and its main components on root growth, mitotic activity and phosphorylation of Histone H3 in Lactuca sativa L.

    Science.gov (United States)

    Freitas, Aline Silva; Fontes Cunha, Isabela Martinez; Andrade-Vieira, Larissa Fonseca; Techio, Vânia Helena

    2016-02-01

    Spent Pot Liner (SPL) is a solid waste from the aluminum industry frequently disposed of in industrial landfills; it can be leached and contaminate the soil, sources of drinking water and plantations, and thus may pose a risk to human health and to ecosystems. Its composition is high variable, including cyanide, fluoride and aluminum salts, which are highly toxic and environmental pollutants. This study evaluated the effect of SPL and its main components on root growth and the mitosis of Lactuca sativa, by investigating the mechanisms of cellular and chromosomal alterations with the aid of immunolocalization. To this end, newly emerged roots of L. sativa were exposed to SPL and its main components (solutions of cyanide, fluoride and aluminum) and to calcium chloride (control) for 48h. After this, root length was measured and cell cycle was examined by means of conventional cytogenetics and immunolocalization. Root growth was inhibited in the treatments with SPL and aluminum; chromosomal and nuclear alterations were observed in all treatments. The immunolocalization evidenced normal dividing cells with regular temporal and spatial distribution of histone H3 phosphorylation at serine 10 (H3S10ph). However, SPL and its main components inhibited the phosphorylation of histone H3 at serine 10, inactivated pericentromeric regions and affected the cohesion of sister chromatids, thus affecting the arrangement of chromosomes in the metaphase plate and separation of chromatids in anaphase. In addition, these substances induced breaks in pericentromeric regions, characterized as fragile sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Supplementation of fetal bovine serum alters histone modification H3R26me2 during preimplantation development of in vitro produced bovine embryos

    Directory of Open Access Journals (Sweden)

    Daniel R. Arnold

    2015-07-01

    Full Text Available Abstract In vitro production (IVP of bovine embryos is not only of great economic importance to the cattle industry, but is also an important model for studying embryo development. The aim of this study was to evaluate the histone modification, H3R26me2 during pre-implantation development of IVP bovine embryos cultured with or without serum supplementation and how these in vitro treatments compared to in vivo embryos at the morula stage. After in vitro maturation and fertilization, bovine embryos were cultured with either 0 or 2.5% fetal bovine serum (FBS. Development was evaluated and embryos were collected and fixed at different stages during development (2-, 4-, 8-, 16-cell, morula and blastocyst. Fixed embryos were then used for immunofluorescence utilizing an antibody for H3R26me2. Images of stained embryos were analyzed as a percentage of total DNA. Embryos cultured with 2.5% FBS developed to blastocysts at a greater rate than 0%FBS groups (34.85±5.43% vs. 23.38±2.93%; P<0.05. Levels of H3R26me2 changed for both groups over development. In the 0%FBS group, the greatest amount of H3R26me2 staining was at the 4-cell (P<0.05, 16-cell (P<0.05 and morula (P<0.05 stages. In the 2.5%FBS group, only 4-cell stage embryos were significantly higher than all other stages (P<0.01. Morula stage in vivo embryos had similar levels as the 0%FBS group, and both were significantly higher than the 2.5%FBS group. These results suggest that the histone modification H3R26me2 is regulated during development of pre-implantation bovine embryos, and that culture conditions greatly alter this regulation.

  15. Histone H3.3 promotes IgV gene diversification by?enhancing formation of AID?accessible single?stranded DNA

    OpenAIRE

    Romanello, Marina; Schiavone, Davide; Frey, Alexander; Sale, Julian E

    2016-01-01

    Abstract Immunoglobulin diversification is driven by activation?induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single?stranded DNA (ssDNA), the enzymatic substrate of AID. Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV sequence diversification. We show that this results from impairment of the ability of AID t...

  16. The histone H3K9 methylation and RNAi pathways regulate normalnucleolar and repeated DNA organization by inhibiting formation ofextrachromosomal DNAs

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C.; Karpen, Gary H.

    2006-06-15

    In order to identify regulators of nuclear organization, Drosophila mutants in the Su(var)3-9 histone H3K9 methyltransferase, RNAi pathway components, and other regulators of heterochromatin-mediated gene silencing were examined for altered nucleoli and positioning of repeated DNAs. Animals lacking components of the H3K9 methylation and RNAi pathways contained disorganized nucleoli, ribosomal DNA (rDNA) and satellite DNAs. The levels of H3K9 dimethylation (H3K9me2) in chromatin associated with repeated DNAs decreased dramatically in Su(var)3-9 and dcr-2 (dicer-2) mutant tissues compared to wild type. We also observed a substantial increase in extrachromosomal repeated DNAs in mutant tissues. The disorganized nucleolus phenotype depends on the presence of Ligase 4 (Lig4), and ecc DNA formation is not induced by removal of cohesin. We conclude that H3K9 methylation of rDNA and satellites, maintained by Su(var)3-9, HP1, and the RNAi pathway, is necessary for the structural stability of repeated DNAs, which is mediated through suppression of non-homologous end joining (NHEJ). These results suggest a mechanism for how local chromatin structure can regulate genome stability, and the organization of chromosomal elements and nuclear organelles.

  17. Neutron scattering studies of the H2a-H2b and (H3-H4)/sub 2/ histone complexes

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, R.D.

    1982-01-01

    Neutron scattering experiments have shown that both the (H3-H4)/sub 2/ and H2a-H2b histone complexes are quite asymmetric in solution. The (H3-H4)/sub 2/ tetramer is an oblate or flattened structure, with a radius of gyration almost as large as that of the core octamer. If the tetramer is primarily globular, it must have an axial ratio of about 1:5. It is more likely, however, that this asymmetry results in part from N-terminal arms that extend outward approximately within the major plane of the particle. If this is the case, less asymmetric models for the globular part of the tetramer, including a dislocated disk, can be made consistent with the scattering data. The H2a-H2b dimer, on the other hand, is an elongated structure. 48 references, 12 figures, 1 table.

  18. Neutron scattering studies of the H2a-H2b and (H3-H4)2 histone complexes

    International Nuclear Information System (INIS)

    Carlson, R.D.

    1982-01-01

    Neutron scattering experiments have shown that both the (H3-H4) 2 and H2a-H2b histone complexes are quite asymmetric in solution. The (H3-H4) 2 tetramer is an oblate or flattened structure, with a radius of gyration almost as large as that of the core octamer. If the tetramer is primarily globular, it must have an axial ratio of about 1:5. It is more likely, however, that this asymmetry results in part from N-terminal arms that extend outward approximately within the major plane of the particle. If this is the case, less asymmetric models for the globular part of the tetramer, including a dislocated disk, can be made consistent with the scattering data. The H2a-H2b dimer, on the other hand, is an elongated structure. 48 references, 12 figures, 1 table

  19. ChIP-seq analysis of histone H3K9 trimethylation in peripheral blood mononuclear cells of membranous nephropathy patients

    Energy Technology Data Exchange (ETDEWEB)

    Sui, W.G. [Guangxi Key Laboratory of Metabolic Diseases Research, Nephrology Department, 181st Hospital, Guilin, Guangxi (China); He, H.Y. [The Life Science College, Guangxi Normal University, Guilin, Guangxi (China); Yan, Q.; Chen, J.J. [Guangxi Key Laboratory of Metabolic Diseases Research, Nephrology Department, 181st Hospital, Guilin, Guangxi (China); Zhang, R.H. [The Life Science College, Guangxi Normal University, Guilin, Guangxi (China); Dai, Y. [Clinical Medical Research Center, The Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, Guangdong (China)

    2013-12-12

    Membranous nephropathy (MN), characterized by the presence of diffuse thickening of the glomerular basement membrane and subepithelial in situ immune complex disposition, is the most common cause of idiopathic nephrotic syndrome in adults, with an incidence of 5-10 per million per year. A number of studies have confirmed the relevance of several experimental insights to the pathogenesis of human MN, but the specific biomarkers of MN have not been fully elucidated. As a result, our knowledge of the alterations in histone methylation in MN is unclear. We used chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) to analyze the variations in a methylated histone (H3K9me3) in peripheral blood mononuclear cells from 10 MN patients and 10 healthy subjects. There were 108 genes with significantly different expression in the MN patients compared with the normal controls. In MN patients, significantly increased activity was seen in 75 H3K9me3 genes, and decreased activity was seen in 33, compared with healthy subjects. Five positive genes, DiGeorge syndrome critical region gene 6 (DGCR6), sorting nexin 16 (SNX16), contactin 4 (CNTN4), baculoviral IAP repeat containing 3 (BIRC3), and baculoviral IAP repeat containing 2 (BIRC2), were selected and quantified. There were alterations of H3K9me3 in MN patients. These may be candidates to help explain pathogenesis in MN patients. Such novel findings show that H3K9me3 may be a potential biomarker or promising target for epigenetic-based MN therapies.

  20. Chromosomal Mapping of Repetitive DNAs in the Grasshopper Abracris flavolineata Reveal Possible Ancestry of the B Chromosome and H3 Histone Spreading

    Science.gov (United States)

    Bueno, Danilo; Palacios-Gimenez, Octavio Manuel; Cabral-de-Mello, Diogo Cavalcanti

    2013-01-01

    Supernumerary chromosomes (B chromosomes) occur in approximately 15% of eukaryote species. Although these chromosomes have been extensively studied, knowledge concerning their specific molecular composition is lacking in most cases. The accumulation of repetitive DNAs is one remarkable characteristic of B chromosomes, and the occurrence of distinct types of multigene families, satellite DNAs and some transposable elements have been reported. Here, we describe the organization of repetitive DNAs in the A complement and B chromosome system in the grasshopper species Abracris flavolineata using classical cytogenetic techniques and FISH analysis using probes for five multigene families, telomeric repeats and repetitive C0t-1 DNA fractions. The 18S rRNA and H3 histone multigene families are highly variable and well distributed in A. flavolineata chromosomes, which contrasts with the conservation of U snRNA genes and less variable distribution of 5S rDNA sequences. The H3 histone gene was an extensively distributed with clusters occurring in all chromosomes. Repetitive DNAs were concentrated in C-positive regions, including the pericentromeric region and small chromosomal arms, with some occurrence in C-negative regions, but abundance was low in the B chromosome. Finally, the first demonstration of the U2 snRNA gene in B chromosomes in A. flavolineata may shed light on its possible origin. These results provide new information regarding chromosomal variability for repetitive DNAs in grasshoppers and the specific molecular composition of B chromosomes. PMID:23826099

  1. Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression.

    Directory of Open Access Journals (Sweden)

    Marc Lavigne

    2009-12-01

    Full Text Available The heterochromatin-enriched HP1 proteins play a critical role in regulation of transcription. These proteins contain two related domains known as the chromo- and the chromoshadow-domain. The chromo-domain binds histone H3 tails methylated on lysine 9. However, in vivo and in vitro experiments have shown that the affinity of HP1 proteins to native methylated chromatin is relatively poor and that the opening of chromatin occurring during DNA replication facilitates their binding to nucleosomes. These observations prompted us to investigate whether HP1 proteins have additional histone binding activities, envisioning also affinity for regions potentially occluded by the nucleosome structure. We find that the chromoshadow-domain interacts with histone H3 in a region located partially inside the nucleosomal barrel at the entry/exit point of the nucleosome. Interestingly, this region is also contacted by the catalytic subunits of the human SWI/SNF complex. In vitro, efficient SWI/SNF remodeling requires this contact and is inhibited in the presence of HP1 proteins. The antagonism between SWI/SNF and HP1 proteins is also observed in vivo on a series of interferon-regulated genes. Finally, we show that SWI/SNF activity favors loading of HP1 proteins to chromatin both in vivo and in vitro. Altogether, our data suggest that HP1 chromoshadow-domains can benefit from the opening of nucleosomal structures to bind chromatin and that HP1 proteins use this property to detect and arrest unwanted chromatin remodeling.

  2. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA.

    Science.gov (United States)

    Romanello, Marina; Schiavone, Davide; Frey, Alexander; Sale, Julian E

    2016-07-01

    Immunoglobulin diversification is driven by activation-induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single-stranded DNA (ssDNA), the enzymatic substrate of AID Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV sequence diversification. We show that this results from impairment of the ability of AID to access the IgV genes due to reduced formation of ssDNA during IgV transcription. Loss of H3.3 also diminishes IgV R-loop formation. However, reducing IgV R-loops by RNase HI overexpression in wild-type cells does not affect IgV diversification, showing that these structures are not necessary intermediates for AID access. Importantly, the reduction in the formation of AID-accessible ssDNA in cells lacking H3.3 is independent of any effect on the level of transcription or the kinetics of RNAPII elongation, suggesting the presence of H3.3 in the nucleosomes of the IgV genes increases the chances of the IgV DNA becoming single-stranded, thereby creating an effective AID substrate. © 2016 MRC Laboratory of Molecular Biology. Published under the terms of the CC BY 4.0 license.

  3. Quantitative analysis of ChIP-seq data uncovers dynamic and sustained H3K4me3 and H3K27me3 modulation in cancer cells under hypoxia.

    Science.gov (United States)

    Adriaens, Michiel E; Prickaerts, Peggy; Chan-Seng-Yue, Michelle; van den Beucken, Twan; Dahlmans, Vivian E H; Eijssen, Lars M; Beck, Timothy; Wouters, Bradly G; Voncken, Jan Willem; Evelo, Chris T A

    2016-01-01

    A comprehensive assessment of the epigenetic dynamics in cancer cells is the key to understanding the molecular mechanisms underlying cancer and to improving cancer diagnostics, prognostics and treatment. By combining genome-wide ChIP-seq epigenomics and microarray transcriptomics, we studied the effects of oxygen deprivation and subsequent reoxygenation on histone 3 trimethylation of lysine 4 (H3K4me3) and lysine 27 (H3K27me3) in a breast cancer cell line, serving as a model for abnormal oxygenation in solid tumors. A priori, epigenetic markings and gene expression levels not only are expected to vary greatly between hypoxic and normoxic conditions, but also display a large degree of heterogeneity across the cell population. Where traditionally ChIP-seq data are often treated as dichotomous data, the model and experiment here necessitate a quantitative, data-driven analysis of both datasets. We first identified genomic regions with sustained epigenetic markings, which provided a sample-specific reference enabling quantitative ChIP-seq data analysis. Sustained H3K27me3 marking was located around centromeres and intergenic regions, while sustained H3K4me3 marking is associated with genes involved in RNA binding, translation and protein transport and localization. Dynamic marking with both H3K4me3 and H3K27me3 (hypoxia-induced bivalency) was found in CpG-rich regions at loci encoding factors that control developmental processes, congruent with observations in embryonic stem cells. In silico -identified epigenetically sustained and dynamic genomic regions were confirmed through ChIP-PCR in vitro, and obtained results are corroborated by published data and current insights regarding epigenetic regulation.

  4. Chromosomal mapping of H3 histone and 5S rRNA genes in eight species of Astyanax (Pisces, Characiformes) with different diploid numbers: syntenic conservation of repetitive genes.

    Science.gov (United States)

    Piscor, Diovani; Parise-Maltempi, Patricia Pasquali

    2016-03-01

    The genus Astyanax is widely distributed from the southern United States to northern Patagonia, Argentina. While cytogenetic studies have been performed for this genus, little is known about the histone gene families. The aim of this study was to examine the chromosomal relationships among the different species of Astyanax. The chromosomal locations of the 5S rRNA and H3 histone genes were determined in A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, A. mexicanus (all 2n = 50), A. fasciatus (2n = 46), and A. schubarti (2n = 36). All eight species exhibited H3 histone clusters on two chromosome pairs. In six species (A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, and A. fasciatus), syntenic clusters of H3 histone and 5S rDNA were observed on metacentric (m) or submetacentric (sm) chromosomes. In seven species, clusters of 5S rDNA sequences were located on one or two chromosome pairs. In A. mexicanus, 5S rDNA clusters were located on four chromosome pairs. This study demonstrates that H3 histone clusters are conserved on two chromosome pairs in the genus Astyanax, and specific chromosomal features may contribute to the genomic organization of the H3 histone and 5S rRNA genes.

  5. Effects of Forced Swimming Stress on ERK and Histone H3 Phosphorylation in Limbic Areas of Roman High- and Low-Avoidance Rats.

    Science.gov (United States)

    Morello, Noemi; Plicato, Ornella; Piludu, Maria Antonietta; Poddighe, Laura; Serra, Maria Pina; Quartu, Marina; Corda, Maria Giuseppa; Giorgi, Osvaldo; Giustetto, Maurizio

    2017-01-01

    Stressful events evoke molecular adaptations of neural circuits through chromatin remodeling and regulation of gene expression. However, the identity of the molecular pathways activated by stress in experimental models of depression is not fully understood. We investigated the effect of acute forced swimming (FS) on the phosphorylation of the extracellular signal-regulated kinase (ERK)1/2 (pERK) and histone H3 (pH3) in limbic brain areas of genetic models of vulnerability (RLA, Roman low-avoidance rats) and resistance (RHA, Roman high-avoidance rats) to stress-induced depression-like behavior. We demonstrate that FS markedly increased the density of pERK-positive neurons in the infralimbic (ILCx) and the prelimbic area (PrLCx) of the prefrontal cortex (PFCx), the nucleus accumbens, and the dorsal blade of the hippocampal dentate gyrus to the same extent in RLA and RHA rats. In addition, FS induced a significant increase in the intensity of pERK immunoreactivity (IR) in neurons of the PFCx in both rat lines. However, RHA rats showed stronger pERK-IR than RLA rats in the ILCx both under basal and stressed conditions. Moreover, the density of pH3-positive neurons was equally increased by FS in the PFCx of both rat lines. Interestingly, pH3-IR was higher in RHA than RLA rats in PrLCx and ILCx, either under basal conditions or upon FS. Finally, colocalization analysis showed that in the PFCx of both rat lines, almost all pERK-positive cells express pH3, whereas only 50% of the pH3-positive neurons is also pERK-positive. Moreover, FS increased the percentage of neurons that express exclusively pH3, but reduced the percentage of cells expressing exclusively pERK. These results suggest that (i) the distinctive patterns of FS-induced ERK and H3 phosphorylation in the PFCx of RHA and RLA rats may represent molecular signatures of the behavioural traits that distinguish the two lines and (ii) FS-induced H3 phosphorylation is, at least in part, ERK-independent.

  6. The Set1/COMPASS histone H3 methyltransferase helps regulate mitosis with the CDK1 and NIMA mitotic kinases in Aspergillus nidulans.

    Science.gov (United States)

    Govindaraghavan, Meera; Anglin, Sarah Lea; Osmani, Aysha H; Osmani, Stephen A

    2014-08-01

    Mitosis is promoted and regulated by reversible protein phosphorylation catalyzed by the essential NIMA and CDK1 kinases in the model filamentous fungus Aspergillus nidulans. Protein methylation mediated by the Set1/COMPASS methyltransferase complex has also been shown to regulate mitosis in budding yeast with the Aurora mitotic kinase. We uncover a genetic interaction between An-swd1, which encodes a subunit of the Set1 protein methyltransferase complex, with NIMA as partial inactivation of nimA is poorly tolerated in the absence of swd1. This genetic interaction is additionally seen without the Set1 methyltransferase catalytic subunit. Importantly partial inactivation of NIMT, a mitotic activator of the CDK1 kinase, also causes lethality in the absence of Set1 function, revealing a functional relationship between the Set1 complex and two pivotal mitotic kinases. The main target for Set1-mediated methylation is histone H3K4. Mutational analysis of histone H3 revealed that modifying the H3K4 target residue of Set1 methyltransferase activity phenocopied the lethality seen when either NIMA or CDK1 are partially functional. We probed the mechanistic basis of these genetic interactions and find that the Set1 complex performs functions with CDK1 for initiating mitosis and with NIMA during progression through mitosis. The studies uncover a joint requirement for the Set1 methyltransferase complex with the CDK1 and NIMA kinases for successful mitosis. The findings extend the roles of the Set1 complex to include the initiation of mitosis with CDK1 and mitotic progression with NIMA in addition to its previously identified interactions with Aurora and type 1 phosphatase in budding yeast. Copyright © 2014 by the Genetics Society of America.

  7. Menin regulates Inhbb expression through an Akt/Ezh2-mediated H3K27 histone modification.

    Science.gov (United States)

    Gherardi, Samuele; Ripoche, Doriane; Mikaelian, Ivan; Chanal, Marie; Teinturier, Romain; Goehrig, Delphine; Cordier-Bussat, Martine; Zhang, Chang X; Hennino, Ana; Bertolino, Philippe

    2017-04-01

    Although Men1 is a well-known tumour suppressor gene, little is known about the functions of Menin, the protein it encodes for. Since few years, numerous publications support a major role of Menin in the control of epigenetics gene regulation. While Menin interaction with MLL complex favours transcriptional activation of target genes through H3K4me3 marks, Menin also represses gene expression via mechanisms involving the Polycomb repressing complex (PRC). Interestingly, Ezh2, the PRC-methyltransferase that catalyses H3K27me3 repressive marks and Menin have been shown to co-occupy a large number of promoters. However, lack of binding between Menin and Ezh2 suggests that another member of the PRC complex is mediating this indirect interaction. Having found that ActivinB - a TGFβ superfamily member encoded by the Inhbb gene - is upregulated in insulinoma tumours caused by Men1 invalidation, we hypothesize that Menin could directly participate in the epigenetic-repression of Inhbb gene expression. Using Animal model and cell lines, we report that loss of Menin is directly associated with ActivinB-induced expression both in vivo and in vitro. Our work further reveals that ActivinB expression is mediated through a direct modulation of H3K27me3 marks on the Inhbb locus in Menin-KO cell lines. More importantly, we show that Menin binds on the promoter of Inhbb gene where it favours the recruitment of Ezh2 via an indirect mechanism involving Akt-phosphorylation. Our data suggests therefore that Menin could take an important part to the Ezh2-epigenetic repressive landscape in many cells and tissues through its capacity to modulate Akt phosphorylation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Sodium phenylbutyrate abrogates African swine fever virus replication by disrupting the virus-induced hypoacetylation status of histone H3K9/K14.

    Science.gov (United States)

    Frouco, Gonçalo; Freitas, Ferdinando B; Martins, Carlos; Ferreira, Fernando

    2017-10-15

    African swine fever virus (ASFV) causes a highly lethal disease in swine for which neither a vaccine nor treatment are available. Recently, a new class of drugs that inhibit histone deacetylases enzymes (HDACs) has received an increasing interest as antiviral agents. Considering studies by others showing that valproic acid, an HDAC inhibitor (HDACi), blocks the replication of enveloped viruses and that ASFV regulates the epigenetic status of the host cell by promoting heterochromatinization and recruitment of class I HDACs to viral cytoplasmic factories, the antiviral activity of four HDACi against ASFV was evaluated in this study. Results showed that the sodium phenylbutyrate fully abrogates the ASFV replication, whereas the valproic acid leads to a significant reduction of viral progeny at 48h post-infection (-73.9%, p=0.046), as the two pan-HDAC inhibitors tested (Trichostatin A: -82.2%, p=0.043; Vorinostat: 73.9%, p=0.043). Further evaluation showed that protective effects of NaPB are dose-dependent, interfering with the expression of late viral genes and reversing the ASFV-induced histone H3 lysine 9 and 14 (H3K9K14) hypoacetylation status, compatible to an open chromatin state and possibly enabling the expression of host genes non-beneficial to infection progression. Additionally, a synergic antiviral effect was detected when NaPB is combined with an ASFV-topoisomerase II poison (Enrofloxacin). Altogether, our results strongly suggest that cellular HDACs are involved in the establishment of ASFV infection and emphasize that further in vivo studies are needed to better understand the antiviral activity of HDAC inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Nuclear localization of CPI-17, a protein phosphatase-1 inhibitor protein, affects histone H3 phosphorylation and corresponds to proliferation of cancer and smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Masumi, E-mail: masumi.eto@jefferson.edu [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States); Kirkbride, Jason A.; Chugh, Rishika; Karikari, Nana Kofi [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States); Kim, Jee In [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States); Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 700-422 (Korea, Republic of)

    2013-04-26

    Highlights: •Non-canonical roles of the myosin phosphatase inhibitor (CPI-17) were studied. •CPI-17 is localized in the nucleus of hyperplastic cancer and smooth muscle cells. •CPI-17 Ser12 phosphorylation may regulate the nuclear import. •CPI-17 regulates histone H3 phosphorylation and cell proliferation. •The nuclear CPI-17-PP1 axis plays a proliferative role in cells. -- Abstract: CPI-17 (C-kinase-activated protein phosphatase-1 (PP1) inhibitor, 17 kDa) is a cytoplasmic protein predominantly expressed in mature smooth muscle (SM) that regulates the myosin-associated PP1 holoenzyme (MLCP). Here, we show CPI-17 expression in proliferating cells, such as pancreatic cancer and hyperplastic SM cells. Immunofluorescence showed that CPI-17 was concentrated in nuclei of human pancreatic cancer (Panc1) cells. Nuclear accumulation of CPI-17 was also detected in the proliferating vascular SM cell culture and cells at neointima of rat vascular injury model. The N-terminal 21-residue tail domain of CPI-17 was necessary for the nuclear localization. Phospho-mimetic Asp-substitution of CPI-17 at Ser12 attenuated the nuclear import. CPI-17 phosphorylated at Ser12 was not localized at nuclei, suggesting a suppressive role of Ser12 phosphorylation in the nuclear import. Activated CPI-17 bound to all three isoforms of PP1 catalytic subunit in Panc1 nuclear extracts. CPI-17 knockdown in Panc1 resulted in dephosphorylation of histone H3 at Thr3, Ser10 and Thr11, whereas it had no effects on the phosphorylation of myosin light chain and merlin, the known targets of MLCP. In parallel, CPI-17 knockdown suppressed Panc1 proliferation. We propose that CPI-17 accumulated in the nucleus through the N-terminal tail targets multiple PP1 signaling pathways regulating cell proliferation.

  10. Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions.

    Directory of Open Access Journals (Sweden)

    Kerstin Müller

    Full Text Available Plants have a remarkable ability to react to seasonal changes by synchronizing life-cycle transitions with environmental conditions. We addressed the question of how transcriptional re-programming occurs in response to an environmental cue that triggers the major life cycle transition from seed dormancy to germination and seedling growth. We elucidated an important mechanistic aspect of this process by following the chromatin dynamics of key regulatory genes with a focus on the two antagonistic marks, H3K4me3 and H3K27me3. Histone methylation patterns of major dormancy regulators changed during the transition to germination and seedling growth. We observed a switch from H3K4me3 and high transcription levels to silencing by the repressive H3K27me3 mark when dormancy was broken through exposure to moist chilling, underscoring that a functional PRC2 complex is necessary for this transition. Moreover, this reciprocal regulation by H3K4me3 and H3K27me3 is evolutionarily conserved from gymnosperms to angiosperms.

  11. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    International Nuclear Information System (INIS)

    Si, Lina; Shi, Jin; Gao, Wenqun; Zheng, Min; Liu, Lingjuan; Zhu, Jing; Tian, Jie

    2014-01-01

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part by increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of

  12. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Si, Lina; Shi, Jin; Gao, Wenqun [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Zheng, Min [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Liu, Lingjuan; Zhu, Jing [Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Tian, Jie, E-mail: jietian@cqmu.edu.cn [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China)

    2014-07-18

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part by increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of

  13. The PR-Set7 binding domain of Riz1 is required for the H4K20me1-H3K9me1 trans-tail ‘histone code’ and Riz1 tumor suppressor function

    Science.gov (United States)

    Congdon, Lauren M.; Sims, Jennifer K.; Tuzon, Creighton T.; Rice, Judd C.

    2014-01-01

    PR-Set7/Set8/KMT5a is the sole histone H4 lysine 20 monomethyltransferase (H4K20me1) in metazoans and is essential for proper cell division and genomic stability. We unexpectedly discovered that normal cellular levels of monomethylated histone H3 lysine 9 (H3K9me1) were also dependent on PR-Set7, but independent of its catalytic activity. This observation suggested that PR-Set7 interacts with an H3K9 monomethyltransferase to establish the previously reported H4K20me1-H3K9me1 trans-tail ‘histone code’. Here we show that PR-Set7 specifically and directly binds the C-terminus of the Riz1/PRDM2/KMT8 tumor suppressor and demonstrate that the N-terminal PR/SET domain of Riz1 preferentially monomethylates H3K9. The PR-Set7 binding domain was required for Riz1 nuclear localization and maintenance of the H4K20me1-H3K9me1 trans-tail ‘histone code’. Although Riz1 can function as a repressor, Riz1/H3K9me1 was dispensable for the repression of genes regulated by PR-Set7/H4K20me1. Frameshift mutations resulting in a truncated Riz1 incapable of binding PR-Set7 occur frequently in various aggressive cancers. In these cancer cells, expression of wild-type Riz1 restored tumor suppression by decreasing proliferation and increasing apoptosis. These phenotypes were not observed in cells expressing either the Riz1 PR/SET domain or PR-Set7 binding domain indicating that Riz1 methyltransferase activity and PR-Set7 binding domain are both essential for Riz1 tumor suppressor function. PMID:24423864

  14. The methyltransferase NSD3 has chromatin-binding motifs, PHD5-C5HCH, that are distinct from other NSD (nuclear receptor SET domain) family members in their histone H3 recognition.

    Science.gov (United States)

    He, Chao; Li, Fudong; Zhang, Jiahai; Wu, Jihui; Shi, Yunyu

    2013-02-15

    The NSD (nuclear receptor SET domain-containing) family members, consisting of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1), are SET domain-containing methyltransferases and aberrant expression of each member has been implicated in multiple diseases. They have specific mono- and dimethylase activities for H3K36, whereas play nonredundant roles during development. Aside from the well characterized catalytic SET domain, NSD proteins have multiple potential chromatin-binding motifs that are clinically relevant, including the fifth plant homeodomain (PHD5) and the adjacent Cys-His-rich domain (C5HCH) located at the C terminus. Herein, we report the crystal structures of the PHD5-C5HCH module of NSD3, in the free state and in complex with H3(1-7) (H3 residues 1-7), H3(1-15) (H3 residues 1-15), and H3(1-15)K9me3 (H3 residues 1-15 with trimethylation on K9) peptides. These structures reveal that the PHD5 and C5HCH domains fold into a novel integrated PHD-PHD-like structural module with H3 peptide bound only on the surface of PHD5 and provide the molecular basis for the recognition of unmodified H3K4 and trimethylated H3K9 by NSD3 PHD5. Structural studies and binding assays show that differences exist in histone binding specificity of the PHD5 domain between three members of the NSD family. For NSD2, the PHD5-C5HCH:H3 N terminus interaction is largely conserved, although with a stronger preference for unmethylated H3K9 (H3K9me0) than trimethylated H3K9 (H3K9me3), and NSD1 PHD5-C5HCH does not bind to H3 peptides. Our results shed light on how NSD proteins that mediate H3K36 methylation are localized to specific genomic sites and provide implications for the mechanism of functional diversity of NSD proteins.

  15. Regulation of replication fork progression through histone supply and demand

    DEFF Research Database (Denmark)

    Groth, Anja; Corpet, Armelle; Cook, Adam J L

    2007-01-01

    DNA replication in eukaryotes requires nucleosome disruption ahead of the replication fork and reassembly behind. An unresolved issue concerns how histone dynamics are coordinated with fork progression to maintain chromosomal stability. Here, we characterize a complex in which the human histone c...... progression and histone supply and demand.......1 chaperone function, histone supply, and replicative unwinding of DNA in chromatin. We propose that Asf1, as a histone acceptor and donor, handles parental and new histones at the replication fork via an Asf1-(H3-H4)-MCM2-7 intermediate and thus provides a means to fine-tune replication fork...

  16. A Ring Polymer Molecular Dynamics Approach to Study the Transition between Statistical and Direct Mechanisms in the H2 + H3+ → H3+ + H2 Reaction.

    Science.gov (United States)

    Suleimanov, Yury V; Aguado, Alfredo; Gómez-Carrasco, Susana; Roncero, Octavio

    2018-05-03

    Because of its fundamental importance in astrochemistry, the H 2 + H 3 + → H 3 + + H 2 reaction has been studied experimentally in a wide temperature range. Theoretical studies of the title reaction significantly lag primarily because of the challenges associated with the proper treatment of the zero-point energy (ZPE). As a result, all previous theoretical estimates for the ratio between a direct proton-hop and indirect exchange (via the H 5 + complex) channels deviate from the experiment, in particular, at lower temperatures where the quantum effects dominate. In this work, the ring polymer molecular dynamics (RPMD) method is applied to study this reaction, providing very good agreement with the experiment. RPMD is immune to the shortcomings associated with the ZPE leakage and is able to describe the transition from direct to indirect mechanisms below room temperature. We argue that RPMD represents a useful tool for further studies of numerous ZPE-sensitive chemical reactions that are of high interest in astrochemistry.

  17. Epigenetics and sex differences in the brain: A genome-wide comparison of histone-3 lysine-4 trimethylation (H3K4me3) in male and female mice.

    Science.gov (United States)

    Shen, Erica Y; Ahern, Todd H; Cheung, Iris; Straubhaar, Juerg; Dincer, Aslihan; Houston, Isaac; de Vries, Geert J; Akbarian, Schahram; Forger, Nancy G

    2015-06-01

    Many neurological and psychiatric disorders exhibit gender disparities, and sex differences in the brain likely explain some of these effects. Recent work in rodents points to a role for epigenetics in the development or maintenance of neural sex differences, although genome-wide studies have so far been lacking. Here we review the existing literature on epigenetics and brain sexual differentiation and present preliminary analyses on the genome-wide distribution of histone-3 lysine-4 trimethylation in a sexually dimorphic brain region in male and female mice. H3K4me3 is a histone mark primarily organized as 'peaks' surrounding the transcription start site of active genes. We microdissected the bed nucleus of the stria terminalis and preoptic area (BNST/POA) in adult male and female mice and used ChIP-Seq to compare the distribution of H3K4me3 throughout the genome. We found 248 genes and loci with a significant sex difference in H3K4me3. Of these, the majority (71%) had larger H3K4me3 peaks in females. Comparisons with existing databases indicate that genes and loci with increased H3K4me3 in females are associated with synaptic function and with expression atlases from related brain areas. Based on RT-PCR, only a minority of genes with a sex difference in H3K4me3 has detectable sex differences in expression at baseline conditions. Together with previous findings, our data suggest that there may be sex biases in the use of epigenetic marks. Such biases could underlie sex differences in vulnerabilities to drugs or diseases that disrupt specific epigenetic processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The H3K4me3/2 histone demethylase RBR-2 controls axon guidance by repressing the actin-remodeling gene wsp-1

    DEFF Research Database (Denmark)

    Mariani, Luca; Lussi, Yvonne C.; Vandamme, Julien

    2016-01-01

    . Here, we show that RBR-2, the sole homolog of the KDM5 family of H3K4me3/2 demethylases in Caenorhabditis elegans, ensures correct axon guidance by controlling the expression of the actin regulator wsp-1. Loss of rbr-2 results in increased levels of H3K4me3 at the transcriptional start site of wsp-1...

  19. Current Proteomic Methods to Investigate the Dynamics of Histone Turnover in the Central Nervous System.

    Science.gov (United States)

    Farrelly, L A; Dill, B D; Molina, H; Birtwistle, M R; Maze, I

    2016-01-01

    Characterizing the dynamic behavior of nucleosomes in the central nervous system is vital to our understanding of brain-specific chromatin-templated processes and their roles in transcriptional plasticity. Histone turnover-the complete loss of old, and replacement by new, nucleosomal histones-is one such phenomenon that has recently been shown to be critical for cell-type-specific transcription in brain, synaptic plasticity, and cognition. Such revelations that histones, long believed to static proteins in postmitotic cells, are highly dynamic in neurons were only possible owing to significant advances in analytical chemistry-based techniques, which now provide a platform for investigations of histone dynamics in both healthy and diseased tissues. Here, we discuss both past and present proteomic methods (eg, mass spectrometry, human "bomb pulse labeling") for investigating histone turnover in brain with the hope that such information may stimulate future investigations of both adaptive and aberrant forms of "neuroepigenetic" plasticity. © 2016 Elsevier Inc. All rights reserved.

  20. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation.

    Science.gov (United States)

    Grandy, Rodrigo A; Whitfield, Troy W; Wu, Hai; Fitzgerald, Mark P; VanOudenhove, Jennifer J; Zaidi, Sayyed K; Montecino, Martin A; Lian, Jane B; van Wijnen, André J; Stein, Janet L; Stein, Gary S

    2016-02-15

    Stem cell phenotypes are reflected by posttranslational histone modifications, and this chromatin-related memory must be mitotically inherited to maintain cell identity through proliferative expansion. In human embryonic stem cells (hESCs), bivalent genes with both activating (H3K4me3) and repressive (H3K27me3) histone modifications are essential to sustain pluripotency. Yet, the molecular mechanisms by which this epigenetic landscape is transferred to progeny cells remain to be established. By mapping genomic enrichment of H3K4me3/H3K27me3 in pure populations of hESCs in G2, mitotic, and G1 phases of the cell cycle, we found striking variations in the levels of H3K4me3 through the G2-M-G1 transition. Analysis of a representative set of bivalent genes revealed that chromatin modifiers involved in H3K4 methylation/demethylation are recruited to bivalent gene promoters in a cell cycle-dependent fashion. Interestingly, bivalent genes enriched with H3K4me3 exclusively during mitosis undergo the strongest upregulation after induction of differentiation. Furthermore, the histone modification signature of genes that remain bivalent in differentiated cells resolves into a cell cycle-independent pattern after lineage commitment. These results establish a new dimension of chromatin regulation important in the maintenance of pluripotency. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) mediates repression of TNF-α by decreasing levels of acetylated histone H3 and H4 at its promoter

    International Nuclear Information System (INIS)

    Engdahl, Ryan; Monroy, M. Alexandra; Daly, John M.

    2007-01-01

    Prostaglandin metabolite 15-Deoxy-Δ 12,14 -prostaglandin J2 (15d-PGJ2) is known to inhibit a number of pro-inflammatory cytokines as well as being a ligand for nuclear receptor PPARγ. We investigated the ability of 15d-PGJ2 to inhibit TNF-α gene expression through mechanisms that involve histone modification. Pretreatment with 15d-PGJ2 (10 μM) inhibited LPS-stimulated TNF-α mRNA in THP-1 monocytes or PMA-differentiated cells to nearly basal levels. A specific PPARγ ligand, GW1929, failed to inhibit LPS-induced TNF-α mRNA expression nor did a PPARγ antagonist, GW9662, alter the repression of TNF-α mRNA in LPS-stimulated cells pretreated with 15d-PGJ2 suggesting a PPARγ-independent inhibition of TNF-α mRNA in THP-1 cells. Transfection studies with a reporter construct and subsequent treatment with 15d-PGJ2 demonstrated a dose-dependent inhibition of the TNF-α promoter. Additional studies demonstrated that inhibition of histone deacetylases with trichostatin A (TSA) or overexpression of histone acetyltransferase CBP could overcome 15d-PGJ2-mediated repression of the TNF-α promoter, suggesting that an important mechanism whereby 15d-PGJ2 suppresses a cytokine is through factors that regulate histone modifications. To examine the endogenous TNF-α promoter, chromatin immunoprecipitations (ChIP) were performed. ChIP assays demonstrated that LPS stimulation induced an increase in histone H3 and H4 acetylation at the TNF-α promoter, which was reduced in cells pretreated with 15d-PGJ2. These results highlight the ability of acetylation and deacetylation factors to affect the TNF-α promoter and demonstrate that an additional important mechanism whereby 15d-PGJ2 mediates TNF-α transcriptional repression by altering levels of acetylated histone H3 and H4 at its promoter

  2. Histones of Chlamydomonas reinhardtii. Synthesis, acetylation, and methylation

    International Nuclear Information System (INIS)

    Waterborg, J.H.; Robertson, A.J.; Tatar, D.L.; Borza, C.M.; Davie, J.R.

    1995-01-01

    Histones of the green alga Chlamydomonas reinhardtii were prepared by a new method and fractionated by reversed-phase high-performance liquid chromatography. Acid-urea-Triton gel analysis and tritiated acetate labeling demonstrated high levels of steady-state acetylation for the single histone H3 protein, in contrast to low levels on histones H4 and H2B. Twenty percent of histone H3 is subject to dynamic acetylation with, on average, three acetylated lysine residues per protein molecule. Histone synthesis in light-dark-synchronized cultures was biphasic with pattern differences between two histone H1 variants, between two H2A variants, and between H2B and ubiquitinated H2B. Automated protein sequence analysis of histone H3 demonstrated a site-specific pattern of steady-state acetylation between 7 and 17% at five of the six amino-terminal lysines and of monomethylation between 5 and 81% at five of the eight amino-terminal lysines in a pattern that may limit dynamic acetylation. An algal histone H3 sequence was confirmed by protein sequencing with a since threonine as residue 28 instead of the serine(28)-alanine(29) sequence, present in all other known plant and animal H3 histones

  3. A wide reprogramming of histone H3 modifications during male meiosis I in rice is dependent on the Argonaute protein MEL1.

    Science.gov (United States)

    Liu, Hua; Nonomura, Ken-Ichi

    2016-10-01

    The roles of epigenetic mechanisms, including small-RNA-mediated silencing, in plant meiosis largely remain unclear, despite their importance in plant reproduction. This study unveiled that rice chromosomes are reprogrammed during the premeiosis-to-meiosis transition in pollen mother cells (PMCs). This large-scale meiotic chromosome reprogramming (LMR) continued throughout meiosis I, during which time H3K9 dimethylation (H3K9me2) was increased, and H3K9 acetylation and H3S10 phosphorylation were broadly decreased, with an accompanying immunostaining pattern shift of RNA polymerase II. LMR was dependent on the rice Argonaute protein, MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1), which is specifically expressed in germ cells prior to meiosis, because LMR was severely diminished in mel1 mutant anthers. Pivotal meiotic events, such as pre-synaptic centromere association, DNA double-strand break initiation and synapsis of homologous chromosomes, were also disrupted in this mutant. Interestingly, and as opposed to the LMR loss in most chromosomal regions, aberrant meiotic protein loading and hypermethylation of H3K9 emerged on the nucleolar organizing region in the mel1 PMCs. These results suggest that MEL1 plays important roles in epigenetic LMR to promote faithful homologous recombination and synapsis during rice meiosis. © 2016. Published by The Company of Biologists Ltd.

  4. Dynamic changes in the interchromosomal interaction of early histone gene loci during development of sea urchin.

    Science.gov (United States)

    Matsushita, Masaya; Ochiai, Hiroshi; Suzuki, Ken-Ichi T; Hayashi, Sayaka; Yamamoto, Takashi; Awazu, Akinori; Sakamoto, Naoaki

    2017-12-15

    The nuclear positioning and chromatin dynamics of eukaryotic genes are closely related to the regulation of gene expression, but they have not been well examined during early development, which is accompanied by rapid cell cycle progression and dynamic changes in nuclear organization, such as nuclear size and chromatin constitution. In this study, we focused on the early development of the sea urchin Hemicentrotus pulcherrimus and performed three-dimensional fluorescence in situ hybridization of gene loci encoding early histones (one of the types of histone in sea urchin). There are two non-allelic early histone gene loci per sea urchin genome. We found that during the morula stage, when the early histone gene expression levels are at their maximum, interchromosomal interactions were often formed between the early histone gene loci on separate chromosomes and that the gene loci were directed to locate to more interior positions. Furthermore, these interactions were associated with the active transcription of the early histone genes. Thus, such dynamic interchromosomal interactions may contribute to the efficient synthesis of early histone mRNA during the morula stage of sea urchin development. © 2017. Published by The Company of Biologists Ltd.

  5. Live imaging of H3K9 acetylation in plant cells

    Science.gov (United States)

    Kurita, Kazuki; Sakamoto, Takuya; Yagi, Noriyoshi; Sakamoto, Yuki; Ito, Akihiro; Nishino, Norikazu; Sako, Kaori; Yoshida, Minoru; Kimura, Hiroshi; Seki, Motoaki; Matsunaga, Sachihiro

    2017-01-01

    Proper regulation of histone acetylation is important in development and cellular responses to environmental stimuli. However, the dynamics of histone acetylation at the single-cell level remains poorly understood. Here we established a transgenic plant cell line to track histone H3 lysine 9 acetylation (H3K9ac) with a modification-specific intracellular antibody (mintbody). The H3K9ac-specific mintbody fused to the enhanced green fluorescent protein (H3K9ac-mintbody-GFP) was introduced into tobacco BY-2 cells. We successfully demonstrated that H3K9ac-mintbody-GFP interacted with H3K9ac in vivo. The ratio of nuclear/cytoplasmic H3K9ac-mintbody-GFP detected in quantitative analysis reflected the endogenous H3K9ac levels. Under chemically induced hyperacetylation conditions with histone deacetylase inhibitors including trichostatin A, Ky-2 and Ky-14, significant enhancement of H3K9ac was detected by H3K9ac-mintbody-GFP dependent on the strength of inhibitors. Conversely, treatment with a histone acetyltransferase inhibitor, C646 caused a reduction in the nuclear to cytoplasmic ratio of H3K9ac-mintbody-GFP. Using this system, we assessed the environmental responses of H3K9ac and found that cold and salt stresses enhanced H3K9ac in tobacco BY-2 cells. In addition, a combination of H3K9ac-mintbody-GFP with 5-ethynyl-2′-deoxyuridine labelling confirmed that H3K9ac level is constant during interphase. PMID:28418019

  6. Fumonisin FB1 treatment acts synergistically with methyl donor deficiency during rat pregnancy to produce alterations of H3- and H4-histone methylation patterns in fetuses.

    Science.gov (United States)

    Pellanda, Hélène; Forges, Thierry; Bressenot, Aude; Chango, Abalo; Bronowicki, Jean-Pierre; Guéant, Jean-Louis; Namour, Fares

    2012-06-01

    Prenatal folate and methyl donor malnutrition lead to epigenetic alterations that could enhance susceptibility to disease. Methyl-deficient diet (MDD) and fumonisin FB1 are risk factors for neural tube defects and cancers. Evidence indicates that FB1 impairs folate metabolism. Folate receptors and four heterochromatin markers were investigated in rat fetuses liver derived from dams exposed to MDD and/or FB1 administered at a dose twice higher than the provisional maximum tolerable daily intake (PMTDI = 2 μg/kg/day). Even though folate receptors transcription seemed up-regulated by methyl depletion regardless of FB1 treatment, combined MDD/FB1 exposure might reverse this up-regulation since folate receptors transcripts were lower in the MDD/FB1 versus MDD group. Methyl depletion decreased H4K20me3. Combined MDD/FB1 decreased H4K20me3 even more and increased H3K9me3. The elevated H3K9me3 can be viewed as a defense mechanism inciting the cell to resist heterochromatin disorganization. H3R2me2 and H4K16Ac varied according to this mechanism even though statistical significance was not consistent. Considering that humans are exposed to FB1 levels above the PMTDI, this study is relevant because it suggests that low doses of FB1 interact with MDD thus contributing to disrupt the epigenetic landscape. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Brownian dynamics simulation of the cross-talking effect among modified histones on conformations of nucleosomes

    Science.gov (United States)

    Duan, Zhao-Wen; Li, Wei; Xie, Ping; Dou, Shuo-Xing; Wang, Peng-Ye

    2010-04-01

    Using Brownian dynamics simulation, we studied the effect of histone modifications on conformations of an array of nucleosomes in a segment of chromatin. The simulation demonstrated that the segment of chromatin shows the dynamic behaviour that its conformation can switch between a state with nearly all of the histones being wrapped by DNA and a state with nearly all of the histones being unwrapped by DNA, thus involving the “cross-talking" interactions among the histones. Each state can stay for a sufficiently long time. These conformational states are essential for gene expression or gene silence. The simulation also shows that these conformational states can be inherited by the daughter DNAs during DNA replication, giving a theoretical explanation of the epigenetic phenomenon.

  8. Brownian dynamics simulation of the cross-talking effect among modified histones on conformations of nucleosomes

    International Nuclear Information System (INIS)

    Zhao-Wen, Duan; Wei, Li; Ping, Xie; Shuo-Xing, Dou; Peng-Ye, Wang

    2010-01-01

    Using Brownian dynamics simulation, we studied the effect of histone modifications on conformations of an array of nucleosomes in a segment of chromatin. The simulation demonstrated that the segment of chromatin shows the dynamic behaviour that its conformation can switch between a state with nearly all of the histones being wrapped by DNA and a state with nearly all of the histones being unwrapped by DNA, thus involving the “cross-talking” interactions among the histones. Each state can stay for a sufficiently long time. These conformational states are essential for gene expression or gene silence. The simulation also shows that these conformational states can be inherited by the daughter DNAs during DNA replication, giving a theoretical explanation of the epigenetic phenomenon. (cross-disciplinary physics and related areas of science and technology)

  9. Genome-wide methylation profiling identifies an essential role of reactive oxygen species in pediatric glioblastoma multiforme and validates a methylome specific for H3 histone family 3A with absence of G-CIMP/isocitrate dehydrogenase 1 mutation.

    Science.gov (United States)

    Jha, Prerana; Pia Patric, Irene Rosita; Shukla, Sudhanshu; Pathak, Pankaj; Pal, Jagriti; Sharma, Vikas; Thinagararanjan, Sivaarumugam; Santosh, Vani; Suri, Vaishali; Sharma, Mehar Chand; Arivazhagan, Arimappamagan; Suri, Ashish; Gupta, Deepak; Somasundaram, Kumaravel; Sarkar, Chitra

    2014-12-01

    Pediatric glioblastoma multiforme (GBM) is rare, and there is a single study, a seminal discovery showing association of histone H3.3 and isocitrate dehydrogenase (IDH)1 mutation with a DNA methylation signature. The present study aims to validate these findings in an independent cohort of pediatric GBM, compare it with adult GBM, and evaluate the involvement of important functionally altered pathways. Genome-wide methylation profiling of 21 pediatric GBM cases was done and compared with adult GBM data (GSE22867). We performed gene mutation analysis of IDH1 and H3 histone family 3A (H3F3A), status evaluation of glioma cytosine-phosphate-guanine island methylator phenotype (G-CIMP), and Gene Ontology analysis. Experimental evaluation of reactive oxygen species (ROS) association was also done. Distinct differences were noted between methylomes of pediatric and adult GBM. Pediatric GBM was characterized by 94 hypermethylated and 1206 hypomethylated cytosine-phosphate-guanine (CpG) islands, with 3 distinct clusters, having a trend to prognostic correlation. Interestingly, none of the pediatric GBM cases showed G-CIMP/IDH1 mutation. Gene Ontology analysis identified ROS association in pediatric GBM, which was experimentally validated. H3F3A mutants (36.4%; all K27M) harbored distinct methylomes and showed enrichment of processes related to neuronal development, differentiation, and cell-fate commitment. Our study confirms that pediatric GBM has a distinct methylome compared with that of adults. Presence of distinct clusters and an H3F3A mutation-specific methylome indicate existence of epigenetic subgroups within pediatric GBM. Absence of IDH1/G-CIMP status further indicates that findings in adult GBM cannot be simply extrapolated to pediatric GBM and that there is a strong need for identification of separate prognostic markers. A possible role of ROS in pediatric GBM pathogenesis is demonstrated for the first time and needs further evaluation. © The Author(s) 2014

  10. The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway.

    Science.gov (United States)

    Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M

    2008-05-01

    The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.

  11. Interactions of nickel(II) with histones: enhancement of 2'-deoxyguanosine oxidation by Ni(II) complexes with CH3CO-Cys-Ala-Ile-His-NH2, a putative metal binding sequence of histone H3.

    Science.gov (United States)

    Bal, W; Lukszo, J; Kasprazak, K S

    1996-03-01

    Studies of 2'-deoxyguanosine oxidation by hydrogen peroxide in the presence of CH3CO-Cys-Ala-Ile-His-NH2 (CAIH) and/or NiCl2 have been carried out in 100 mM phosphate buffer (pH 7.4) at 37 degrees C. The dimeric CAIH oxidation product, CAIH disulfide, and its weak, octahedral Ni(II) complex, rather than the monomeric CAIH and its strong, square-planar Ni(II) complex, were found to be major catalysts of 8-oxo-2'-deoxyguanosine (8-oxo-dG) formation. The presence of Ni(II) largely enhanced 8-oxo-dG yield, especially at submillimolar concentrations of H2O2. The reaction was found not to involve detectable amounts of free radicals or Ni(III). These results, together with those published previously [Bal, W. et al. (1995) Chem. Res. Toxicol. 8, 683-692], lay a framework for the detailed investigations of the interactions of histone octamer with Ni(II) and other metal ions. They also suggest that molecular mechanisms of nickel carcinogenesis may involve oxidative damage processes catalyzed by weak Ni(II) complexes with cellular components.

  12. Trichostatin-A induces differential changes in histone protein dynamics and expression in HeLa cells

    International Nuclear Information System (INIS)

    Rao, Jyothsna; Bhattacharya, Dipanjan; Banerjee, Bidisha; Sarin, Apurva; Shivashankar, G.V.

    2007-01-01

    Trichostatin-A (TSA), a histone deacetylase (HDAC) inhibitor, results in enhanced acetylation of core histones thereby disrupting chromatin organization within living cells. We report on changes in chromatin organization and the resultant alteration in nuclear architecture following treatment with TSA using fluorescence imaging. TSA triggers an expected increase in the euchromatin fraction which is accompanied by a significant increase in nuclear volume and alterations in chromatin compaction mapped using fluorescence anisotropy imaging. We observe differential changes in the mobility of core and linker histones as measured by fluorescence recovery after photo-bleaching (FRAP) and fluorescence correlation spectroscopy (FCS) methods. Further TSA induces a differential increase in linker histone transcription and increased phosphorylation of linker histone proteins accompanying an expected increase in core histone acetylation patterns. Thus subtle feedback responses triggered by changes in chromatin configurations impinge selectively on linker histone mobility and its expression. These observations have implications for understanding the role of HDAC in the dynamic maintenance of chromatin organization

  13. Origins and Evolutionary Dynamics of H3N2 Canine Influenza Virus.

    Science.gov (United States)

    Zhu, Henan; Hughes, Joseph; Murcia, Pablo R

    2015-05-01

    Influenza A viruses (IAVs) are maintained mainly in wild birds, and despite frequent spillover infections of avian IAVs into mammals, only a small number of viruses have become established in mammalian hosts. A new H3N2 canine influenza virus (CIV) of avian origin emerged in Asia in the mid-2000s and is now circulating in dog populations of China and South Korea, and possibly in Thailand. The emergence of CIV provides new opportunities for zoonotic infections and interspecies transmission. We examined 14,764 complete IAV genomes together with all CIV genomes publicly available since its first isolation until 2013. We show that CIV may have originated as early as 1999 as a result of segment reassortment among Eurasian and North American avian IAV lineages. We also identified amino acid changes that might have played a role in CIV emergence, some of which have not been previously identified in other cross-species jumps. CIV evolves at a lower rate than H3N2 human influenza viruses do, and viral phylogenies exhibit geographical structure compatible with high levels of local transmission. We detected multiple intrasubtypic and heterosubtypic reassortment events, including the acquisition of the NS segment of an H5N1 avian influenza virus that had previously been overlooked. In sum, our results provide insight into the adaptive changes required by avian viruses to establish themselves in mammals and also highlight the potential role of dogs to act as intermediate hosts in which viruses with zoonotic and/or pandemic potential could originate, particularly with an estimated dog population of ∼ 700 million. Influenza A viruses circulate in humans and animals. This multihost ecology has important implications, as past pandemics were caused by IAVs carrying gene segments of both human and animal origin. Adaptive evolution is central to cross-species jumps, and this is why understanding the evolutionary processes that shape influenza A virus genomes is key to elucidating

  14. Dynamically biased statistical model for the ortho/para conversion in the H2 + H3+ → H3+ + H2 reaction

    OpenAIRE

    Gómez-Carrasco, Susana; González-Sánchez, Lola; Aguado, Alfredo; Sanz-Sanz, Cristina; Zanchet, Alexandre; Roncero, Octavio

    2012-01-01

    In this work we present a dynamically biased statistical model to describe the evolution of the title reaction from statistical to a more direct mechanism, using quasi-classical trajectories (QCT). The method is based on the one previously proposed by Park and Light [J. Chem. Phys. 126, 044305 (2007)10.1063/1.2430711]. A recent global potential energy surface is used here to calculate the capture probabilities, instead of the long-range ion-induced dipole interactions. The dynamical constrain...

  15. Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1-activated transcription of the interferon regulatory factor 1 gene (IRF1

    Directory of Open Access Journals (Sweden)

    Buro Lauren J

    2010-09-01

    Full Text Available Abstract Background Signal transducer and activator of transcription (STAT activation of gene expression is both rapid and transient, and when properly executed it affects growth, differentiation, homeostasis and the immune response, but when dysregulated it contributes to human disease. Transcriptional activation is regulated by alterations to the chromatin template. However, the role of histone modification at gene loci that are activated for transcription in response to STAT signaling is poorly defined. Results Using chromatin immunoprecipitation, we profiled several histone modifications during STAT1 activation of the interferon regulatory factor 1 gene (IRF1. Methylated lysine histone proteins H3K4me2, H3K4me3, H3K79me3, H3K36me3 and monoubiquitinated histone ubH2B are dynamic and correlate with interferon (IFNγ induction of STAT1 activity. Chemical inhibition of H3K4 methylation downregulates IRF1 transcription and decreases RNA polymerase II (Pol II occupancy at the IRF1 promoter. MEN1, a component of a complex proteins associated with Set1 (COMPASS-like complex and the hBRE1 component, RNF20, are localized to IRF1 in the uninduced state and are further recruited when IRF1 is activated. RNAi-mediated depletion of RNF20 lowers both ubH2B and H3K4me3, but surprisingly, upregulates IFNγ induced IRF1 transcription. The dynamics of phosphorylation in the C-terminal domain (CTD of Pol II are disrupted during gene activation as well. Conclusions H2B monoubiquitination promotes H3K4 methylation, but the E3 ubiquitin ligase, RNF20, is repressive of inducible transcription at the IRF1 gene locus, suggesting that ubH2B can, directly or indirectly, affect Pol II CTD phosphorylation cycling to exert control on ongoing transcription.

  16. HDAC1 and HDAC3 underlie dynamic H3K9 acetylation during embryonic neurogenesis and in schizophrenia-like animals.

    Science.gov (United States)

    Večeřa, Josef; Bártová, Eva; Krejčí, Jana; Legartová, Soňa; Komůrková, Denisa; Rudá-Kučerová, Jana; Štark, Tibor; Dražanová, Eva; Kašpárek, Tomáš; Šulcová, Alexandra; Dekker, Frank J; Szymanski, Wiktor; Seiser, Christian; Weitzer, Georg; Mechoulam, Raphael; Micale, Vincenzo; Kozubek, Stanislav

    2018-01-01

    Although histone acetylation is one of the most widely studied epigenetic modifications, there is still a lack of information regarding how the acetylome is regulated during brain development and pathophysiological processes. We demonstrate that the embryonic brain (E15) is characterized by an increase in H3K9 acetylation as well as decreases in the levels of HDAC1 and HDAC3. Moreover, experimental induction of H3K9 hyperacetylation led to the overexpression of NCAM in the embryonic cortex and depletion of Sox2 in the subventricular ependyma, which mimicked the differentiation processes. Inducing differentiation in HDAC1-deficient mouse ESCs resulted in early H3K9 deacetylation, Sox2 downregulation, and enhanced astrogliogenesis, whereas neuro-differentiation was almost suppressed. Neuro-differentiation of (wt) ESCs was characterized by H3K9 hyperacetylation that was associated with HDAC1 and HDAC3 depletion. Conversely, the hippocampi of schizophrenia-like animals showed H3K9 deacetylation that was regulated by an increase in both HDAC1 and HDAC3. The hippocampi of schizophrenia-like brains that were treated with the cannabinoid receptor-1 inverse antagonist AM251 expressed H3K9ac at the level observed in normal brains. Together, the results indicate that co-regulation of H3K9ac by HDAC1 and HDAC3 is important to both embryonic brain development and neuro-differentiation as well as the pathophysiology of a schizophrenia-like phenotype. © 2017 Wiley Periodicals, Inc.

  17. Regulation of Cellular Dynamics and Chromosomal Binding Site Preference of Linker Histones H1.0 and H1.X.

    Science.gov (United States)

    Okuwaki, Mitsuru; Abe, Mayumi; Hisaoka, Miharu; Nagata, Kyosuke

    2016-11-01

    Linker histones play important roles in the genomic organization of mammalian cells. Of the linker histone variants, H1.X shows the most dynamic behavior in the nucleus. Recent research has suggested that the linker histone variants H1.X and H1.0 have different chromosomal binding site preferences. However, it remains unclear how the dynamics and binding site preferences of linker histones are determined. Here, we biochemically demonstrated that the DNA/nucleosome and histone chaperone binding activities of H1.X are significantly lower than those of other linker histones. This explains why H1.X moves more rapidly than other linker histones in vivo Domain swapping between H1.0 and H1.X suggests that the globular domain (GD) and C-terminal domain (CTD) of H1.X independently contribute to the dynamic behavior of H1.X. Our results also suggest that the N-terminal domain (NTD), GD, and CTD cooperatively determine the preferential binding sites, and the contribution of each domain for this determination is different depending on the target genes. We also found that linker histones accumulate in the nucleoli when the nucleosome binding activities of the GDs are weak. Our results contribute to understanding the molecular mechanisms of dynamic behaviors, binding site selection, and localization of linker histones. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Chromosome segregation regulation in human zygotes: altered mitotic histone phosphorylation dynamics underlying centromeric targeting of the chromosomal passenger complex.

    Science.gov (United States)

    van de Werken, C; Avo Santos, M; Laven, J S E; Eleveld, C; Fauser, B C J M; Lens, S M A; Baart, E B

    2015-10-01

    Are the kinase feedback loops that regulate activation and centromeric targeting of the chromosomal passenger complex (CPC), functional during mitosis in human embryos? Investigation of the regulatory kinase pathways involved in centromeric CPC targeting revealed normal phosphorylation dynamics of histone H2A at T120 (H2ApT120) by Bub1 kinase and subsequent recruitment of Shugoshin, but phosphorylation of histone H3 at threonine 3 (H3pT3) by Haspin failed to show the expected centromeric enrichment on metaphase chromosomes in the zygote. Human cleavage stage embryos show high levels of chromosomal instability. What causes this high error rate is unknown, as mechanisms used to ensure proper chromosome segregation in mammalian embryos are poorly described. In this study, we investigated the pathways regulating CPC targeting to the inner centromere in human embryos. We characterized the distribution of the CPC in relation to activity of its two main centromeric targeting pathways: the Bub1-H2ApT120-Sgo-CPC and Haspin-H3pT3-CPC pathways. The study was conducted between May 2012 and March 2014 on human surplus embryos resulting from in vitro fertilization treatment and donated for research. In zygotes, nuclear envelope breakdown was monitored by time-lapse imaging to allow timed incubations with specific inhibitors to arrest at prometaphase and metaphase, and to interfere with Haspin and Aurora B/C kinase activity. Functionality of the targeting pathways was assessed through characterization of histone phosphorylation dynamics by immunofluorescent analysis, combined with gene expression by RT-qPCR and immunofluorescent localization of key pathway proteins. Immunofluorescent analysis of the CPC subunit Inner Centromere Protein revealed the pool of stably bound CPC proteins was not strictly confined to the inner centromere of prometaphase chromosomes in human zygotes, as observed in later stages of preimplantation development and somatic cells. Investigation of the

  19. Involvement of histone H3 phosphorylation via the activation of p38 MAPK pathway and intracellular redox status in cytotoxicity of HL-60 cells induced by Vitex agnus-castus fruit extract.

    Science.gov (United States)

    Kikuchi, Hidetomo; Yuan, Bo; Yuhara, Eisuke; Imai, Masahiko; Furutani, Ryota; Fukushima, Shin; Hazama, Shingo; Hirobe, Chieko; Ohyama, Kunio; Takagi, Norio; Toyoda, Hiroo

    2014-08-01

    We have demonstrated that an extract from the ripe fruit of Vitex angus-castus (Vitex), might be a promising anticancer candidate. In order to further provide a molecular rationale for clinical development in anticancer therapy, a detailed mechanism underlying the efficacy of Vitex against HL-60 cells was investigated. Vitex induced a dose- and time-dependent decrease in cell viability associated with induction of apoptosis and G(2)/M cell cycle arrest, both of which were suppressed by the addition of SB203580, an inhibitor for p38 MAPK. Furthermore, SB203580 significantly suppressed Vitex-induced phosphorylation of histone H3, a downstream molecule of p38 MAPK known to be involved in apoptosis induction in tumor cells. Notably, Vitex induced upregulation of intracellular ATP, known to bind its binding pocket inside activated p38 MAPK and to be required for the activation of p38 MAPK pathway. These results, thus, suggest that upregulation of intracellular ATP and phosphorylation of histone H3 are closely associated with the activation of p38 MAPK pathway, consequently contributing to Vitex-mediated cytotoxicity. Intriguingly, a significant decrease of intracellular ROS levels and downregulation of expression level of gp91(phox), an important component of NADPH oxidase, were observed in Vitex-treated cells. A greater decline in ROS levels along with enhanced apoptosis was observed after treatment with Vitex in combination with SnPP, an inhibitor specific for HO-1. Since NADPH oxidase and HO-1 are closely correlated to redox status associated with intracellular ROS levels, the two enzymes are suggested to be implicated in Vitex-mediated cytotoxicity in HL-60 cells by regulating ROS generation. We also suggest that activation of the p38 MAPK pathway may be dependent on the alterations of intracellular ATP levels, rather than that of intracellular ROS levels. These results may have important implications for appropriate clinical uses of Vitex and provide novel insights

  20. Characterization of Chromatin Structure-associated Histone Modifications in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chang Pyo Hong

    2012-09-01

    Full Text Available Chromatin structure and dynamics that are influenced by epigenetic marks, such as histone modification and DNA methylation, play a crucial role in modulating gene transcription. To understand the relationship between histone modifications and regulatory elements in breast cancer cells, we compared our chromatin immunoprecipitation sequencing (ChIP-Seq histone modification patterns for histone H3K4me1, H3K4me3, H3K9/16ac, and H3K27me3 in MCF-7 cells with publicly available formaldehyde-assisted isolation of regulatory elements (FAIRE-chip signals in human chromosomes 8, 11, and 12, identified by a method called FAIRE. Active regulatory elements defined by FAIRE were highly associated with active histone modifications, like H3K4me3 and H3K9/16ac, especially near transcription start sites. The H3K9/16ac-enriched genes that overlapped with FAIRE signals (FAIRE-H3K9/14ac were moderately correlated with gene expression levels. We also identified functional sequence motifs at H3K4me1-enriched FAIRE sites upstream of putative promoters, suggesting that regulatory elements could be associated with H3K4me1 to be regarded as distal regulatory elements. Our results might provide an insight into epigenetic regulatory mechanisms explaining the association of histone modifications with open chromatin structure in breast cancer cells.

  1. Dynamically biased statistical model for the ortho/para conversion in the H2 + H3+ → H3+ + H2 reaction.

    Science.gov (United States)

    Gómez-Carrasco, Susana; González-Sánchez, Lola; Aguado, Alfredo; Sanz-Sanz, Cristina; Zanchet, Alexandre; Roncero, Octavio

    2012-09-07

    In this work we present a dynamically biased statistical model to describe the evolution of the title reaction from statistical to a more direct mechanism, using quasi-classical trajectories (QCT). The method is based on the one previously proposed by Park and Light [J. Chem. Phys. 126, 044305 (2007)]. A recent global potential energy surface is used here to calculate the capture probabilities, instead of the long-range ion-induced dipole interactions. The dynamical constraints are introduced by considering a scrambling matrix which depends on energy and determine the probability of the identity/hop/exchange mechanisms. These probabilities are calculated using QCT. It is found that the high zero-point energy of the fragments is transferred to the rest of the degrees of freedom, what shortens the lifetime of H(5)(+) complexes and, as a consequence, the exchange mechanism is produced with lower proportion. The zero-point energy (ZPE) is not properly described in quasi-classical trajectory calculations and an approximation is done in which the initial ZPE of the reactants is reduced in QCT calculations to obtain a new ZPE-biased scrambling matrix. This reduction of the ZPE is explained by the need of correcting the pure classical level number of the H(5)(+) complex, as done in classical simulations of unimolecular processes and to get equivalent quantum and classical rate constants using Rice-Ramsperger-Kassel-Marcus theory. This matrix allows to obtain a ratio of hop/exchange mechanisms, α(T), in rather good agreement with recent experimental results by Crabtree et al. [J. Chem. Phys. 134, 194311 (2011)] at room temperature. At lower temperatures, however, the present simulations predict too high ratios because the biased scrambling matrix is not statistical enough. This demonstrates the importance of applying quantum methods to simulate this reaction at the low temperatures of astrophysical interest.

  2. Dynamically biased statistical model for the ortho/para conversion in the H2+H3+ --> H3++ H2 reaction

    Science.gov (United States)

    Gómez-Carrasco, Susana; González-Sánchez, Lola; Aguado, Alfredo; Sanz-Sanz, Cristina; Zanchet, Alexandre; Roncero, Octavio

    2012-09-01

    In this work we present a dynamically biased statistical model to describe the evolution of the title reaction from statistical to a more direct mechanism, using quasi-classical trajectories (QCT). The method is based on the one previously proposed by Park and Light [J. Chem. Phys. 126, 044305 (2007), 10.1063/1.2430711]. A recent global potential energy surface is used here to calculate the capture probabilities, instead of the long-range ion-induced dipole interactions. The dynamical constraints are introduced by considering a scrambling matrix which depends on energy and determine the probability of the identity/hop/exchange mechanisms. These probabilities are calculated using QCT. It is found that the high zero-point energy of the fragments is transferred to the rest of the degrees of freedom, what shortens the lifetime of H_5^+ complexes and, as a consequence, the exchange mechanism is produced with lower proportion. The zero-point energy (ZPE) is not properly described in quasi-classical trajectory calculations and an approximation is done in which the initial ZPE of the reactants is reduced in QCT calculations to obtain a new ZPE-biased scrambling matrix. This reduction of the ZPE is explained by the need of correcting the pure classical level number of the H_5^+ complex, as done in classical simulations of unimolecular processes and to get equivalent quantum and classical rate constants using Rice-Ramsperger-Kassel-Marcus theory. This matrix allows to obtain a ratio of hop/exchange mechanisms, α(T), in rather good agreement with recent experimental results by Crabtree et al. [J. Chem. Phys. 134, 194311 (2011), 10.1063/1.3587246] at room temperature. At lower temperatures, however, the present simulations predict too high ratios because the biased scrambling matrix is not statistical enough. This demonstrates the importance of applying quantum methods to simulate this reaction at the low temperatures of astrophysical interest.

  3. Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b.

    Science.gov (United States)

    Ebata, Kevin T; Mesh, Kathryn; Liu, Shichong; Bilenky, Misha; Fekete, Alexander; Acker, Michael G; Hirst, Martin; Garcia, Benjamin A; Ramalho-Santos, Miguel

    2017-01-01

    Histone methylation patterns regulate gene expression and are highly dynamic during development. The erasure of histone methylation is carried out by histone demethylase enzymes. We had previously shown that vitamin C enhances the activity of Tet enzymes in embryonic stem (ES) cells, leading to DNA demethylation and activation of germline genes. We report here that vitamin C induces a remarkably specific demethylation of histone H3 lysine 9 dimethylation (H3K9me2) in naïve ES cells. Vitamin C treatment reduces global levels of H3K9me2, but not other histone methylation marks analyzed, as measured by western blot, immunofluorescence and mass spectrometry. Vitamin C leads to widespread loss of H3K9me2 at large chromosomal domains as well as gene promoters and repeat elements. Vitamin C-induced loss of H3K9me2 occurs rapidly within 24 h and is reversible. Importantly, we found that the histone demethylases Kdm3a and Kdm3b are required for vitamin C-induced demethylation of H3K9me2. Moreover, we show that vitamin C-induced Kdm3a/b-mediated H3K9me2 demethylation and Tet-mediated DNA demethylation are independent processes at specific loci. Lastly, we document Kdm3a/b are partially required for the upregulation of germline genes by vitamin C. These results reveal a specific role for vitamin C in histone demethylation in ES cells and document that DNA methylation and H3K9me2 cooperate to silence germline genes in pluripotent cells.

  4. Genome-wide ChIP-seq mapping and analysis of butyrate-induced H3K9 and H3K27 acetylation and epigenomic landscape alteration in bovine cells

    Science.gov (United States)

    Utilizing next-generation sequencing technology, combined with ChIP (Chromatin Immunoprecipitation) technology, we analyzed histone modification (acetylation) induced by butyrate and the large-scale mapping of the epigenomic landscape of normal histone H3 and acetylated histone H3K9 and H3K27. To d...

  5. NH4(+) Resides Inside the Water 20-mer Cage As Opposed to H3O(+), Which Resides on the Surface: A First Principles Molecular Dynamics Simulation Study.

    Science.gov (United States)

    Willow, Soohaeng Yoo; Singh, N Jiten; Kim, Kwang S

    2011-11-08

    Experimental vibrational predissociation spectra of the magic NH4(+)(H2O)20 clusters are close to those of the magic H3O(+)(H2O)20 clusters. It has been assumed that the geometric features of NH4(+)(H2O)20 clusters might be close to those of H3O(+)(H2O)20 clusters, in which H3O(+) resides on the surface. Car-Parrinello molecular dynamics simulations in conjunction with density functional theory calculations are performed to generate the infrared spectra of the magic NH4(+)(H2O)20 clusters. In comparison with the experimental vibrational predissociation spectra of NH4(+)(H2O)20, we find that NH4(+) is inside the cage structure of NH4(+)(H2O)20 as opposed to on the surface structure. This shows a clear distinction between the structures of NH4(+)(H2O)20 and H3O(+)(H2O)20 as well as between the hydration phenomena of NH4(+) and H3O(+).

  6. The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean.

    Directory of Open Access Journals (Sweden)

    Yuguang Song

    Full Text Available Epigenetic modification contributes to the regulation of gene expression and plant development under salinity stress. Here we describe the identification of 49 soybean transcription factors by microarray analysis as being inducible by salinity stress. A semi-quantitative RT-PCR-based expression assay confirmed the salinity stress inducibility of 45 of these 49 transcription factors, and showed that ten of them were up-regulated when seedlings were exposed to the demethylation agent 5-aza-2-deoxycytidine. Salinity stress was shown to affect the methylation status of four of these ten transcription factors (one MYB, one b-ZIP and two AP2/DREB family members using a combination of bisulfite sequencing and DNA methylation-sensitive DNA gel blot analysis. ChIP analysis indicated that the activation of three of the four DNA methylated transcription factors was correlated with an increased level of histone H3K4 trimethylation and H3K9 acetylation, and/or a reduced level of H3K9 demethylation in various parts of the promoter or coding regions. Our results suggest a critical role for some transcription factors' activation/repression by DNA methylation and/or histone modifications in soybean tolerance to salinity stress.

  7. Two-photon Photoactivation to Measure Histone Exchange Dynamics in Plant Root Cells.

    Science.gov (United States)

    Rosa, Stefanie; Shaw, Peter

    2015-10-20

    Chromatin-binding proteins play a crucial role in chromatin structure and gene expression. Direct binding of chromatin proteins both maintains and regulates transcriptional states. It is therefore important to study the binding properties of these proteins in vivo within the natural environment of the nucleus. Photobleaching, photoactivation and photoconversion (photoswitching) can provide a non-invasive experimental approach to study dynamic properties of living cells and organisms. We used photoactivation to determine exchange dynamics of histone H2B in plant stem cells of the root (Rosa et al. , 2014). The stem cells of the root are located in the middle of the tissue, which made it impossible to carry out photoactivation of sufficiently small and well-defined sub-cellular regions with conventional laser illumination in the confocal microscope, mainly because scattering and refraction effects within the root tissue dispersed the focal spot and caused photoactivation of too large a region. We therefore used 2-photon activation, which has much better inherent resolution of the illuminated region. This is because the activation depends on simultaneous absorption of two or more photons, which in turns depends on the square (or higher power) of the intensity-a much sharper peak. In this protocol we will describe the experimental procedure to perform two-photon photoactivation experiments and the corresponding image analysis. This protocol can be used for nuclear proteins tagged with photoactivable GFP (PA-GFP) expressed in root tissues.

  8. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail.

    Science.gov (United States)

    Brasacchio, Daniella; Okabe, Jun; Tikellis, Christos; Balcerczyk, Aneta; George, Prince; Baker, Emma K; Calkin, Anna C; Brownlee, Michael; Cooper, Mark E; El-Osta, Assam

    2009-05-01

    Results from the Diabetes Control Complications Trial (DCCT) and the subsequent Epidemiology of Diabetes Interventions and Complications (EDIC) Study and more recently from the U.K. Prospective Diabetes Study (UKPDS) have revealed that the deleterious end-organ effects that occurred in both conventional and more aggressively treated subjects continued to operate >5 years after the patients had returned to usual glycemic control and is interpreted as a legacy of past glycemia known as "hyperglycemic memory." We have hypothesized that transient hyperglycemia mediates persistent gene-activating events attributed to changes in epigenetic information. Models of transient hyperglycemia were used to link NFkappaB-p65 gene expression with H3K4 and H3K9 modifications mediated by the histone methyltransferases (Set7 and SuV39h1) and the lysine-specific demethylase (LSD1) by the immunopurification of soluble NFkappaB-p65 chromatin. The sustained upregulation of the NFkappaB-p65 gene as a result of ambient or prior hyperglycemia was associated with increased H3K4m1 but not H3K4m2 or H3K4m3. Furthermore, glucose was shown to have other epigenetic effects, including the suppression of H3K9m2 and H3K9m3 methylation on the p65 promoter. Finally, there was increased recruitment of the recently identified histone demethylase LSD1 to the p65 promoter as a result of prior hyperglycemia. These studies indicate that the active transcriptional state of the NFkappaB-p65 gene is linked with persisting epigenetic marks such as enhanced H3K4 and reduced H3K9 methylation, which appear to occur as a result of effects of the methyl-writing and methyl-erasing histone enzymes.

  9. Enhancer-associated H3K4 monomethylation by trithorax-related, the drosophila homolog of mammalian MLL3/MLL4

    NARCIS (Netherlands)

    H.-M. Herz (Hans-Martin); M. Mohan (Man); A.S. Garruss (Alexander); K. Liang (Kaiwei); Y.-H. Takahashi (Yoh-hei); K. Mickey (Kristen); O. Voets (Olaf); C.P. Verrijzer (Peter); A. Shilatifard (Ali)

    2012-01-01

    textabstractMonomethylation of histone H3 on Lys 4 (H3K4me1) and acetylation of histone H3 on Lys 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and on enhancers. Although in yeast all H3K4 methylation patterns, including H3K4me1, are

  10. A classical approach in simple nuclear fusion reaction 1H2+1H3 using two-dimension granular molecular dynamics model

    International Nuclear Information System (INIS)

    Viridi, S.; Kurniadi, R.; Waris, A.; Perkasa, Y. S.

    2012-01-01

    Molecular dynamics in 2-D accompanied by granular model provides an opportunity to investigate binding between nuclei particles and its properties that arises during collision in a fusion reaction. A fully classical approach is used to observe the influence of initial angle of nucleus orientation to the product yielded by the reaction. As an example, a simplest fusion reaction between 1 H 2 and 1 H 3 is observed. Several products of the fusion reaction have been obtained, even the unreported ones, including temporary 2 He 4 nucleus.

  11. Proton transfer and unimolecular decay in the low-energy-reaction dynamics of H3O+ with acetone

    International Nuclear Information System (INIS)

    Creasy, W.R.; Farrar, J.M.

    1983-01-01

    The title reaction has been studied at collision energies of 0.83 and 2.41 eV. Direct reaction dynamics have been observed at both energies and an increasingly high fraction of the total energy appears in product translation as the collision energy increases. This result is consistent with the concept of induced repulsive energy release, which becomes more effective as trajectories sample the corner of the potential energy surface. At the higher collision energy, the protonated acetone cation undergoes two unimolecular decay channels: C-C bond cleavage to CH 3 CO + and CH 4 , and C-O bond cleavagto C 3 H 5 + (presumably to allyl cation) and H 2 O. The CH 3 CO + channel, endothermic relative to ground state protonated acetone cations by 0.74 eV, appears to liberate 0.4 eV in relative product translation while the C 3 H 5 + channel, endothermic by 2.17 eV, liberates only 0.07 eV in relative translation. These results are discussed in terms of the location on the reaction coordinate and magnitudes of potential energy barriers to 1,3-hydrogen atoms shifts which must precede the bond cleavage processes

  12. Top-down and Middle-down Protein Analysis Reveals that Intact and Clipped Human Histones Differ in Post-translational Modification Patterns

    DEFF Research Database (Denmark)

    Tvardovskiy, Andrey; Wrzesinski, Krzysztof; Sidoli, Simone

    2015-01-01

    Post-translational modifications (PTMs) of histone proteins play a fundamental role in regulation of DNA-templated processes. There is also growing evidence that proteolytic cleavage of histone N-terminal tails, known as histone clipping, influences nucleosome dynamics and functional properties...... hepatocytes and the hepatocellular carcinoma cell line HepG2/C3A when grown in spheroid (3D) culture, but not in a flat (2D) culture. Using tandem mass spectrometry we localized four different clipping sites in H3 and one clipping site in H2B. We show that in spheroid culture clipped H3 proteoforms are mainly...

  13. Analysis of Myc-induced histone modifications on target chromatin.

    Directory of Open Access Journals (Sweden)

    Francesca Martinato

    Full Text Available The c-myc proto-oncogene is induced by mitogens and is a central regulator of cell growth and differentiation. The c-myc product, Myc, is a transcription factor that binds a multitude of genomic sites, estimated to be over 10-15% of all promoter regions. Target promoters generally pre-exist in an active or poised chromatin state that is further modified by Myc, contributing to fine transcriptional regulation (activation or repression of the afferent gene. Among other mechanisms, Myc recruits histone acetyl-transferases to target chromatin and locally promotes hyper-acetylation of multiple lysines on histones H3 and H4, although the identity and combination of the modified lysines is unknown. Whether Myc dynamically regulates other histone modifications (or marks at its binding sites also remains to be addressed. Here, we used quantitative chromatin immunoprecipitation (qChIP to profile a total of 24 lysine-acetylation and -methylation marks modulated by Myc at target promoters in a human B-cell line with a regulatable c-myc transgene. Myc binding promoted acetylation of multiple lysines, primarily of H3K9, H3K14, H3K18, H4K5 and H4K12, but significantly also of H4K8, H4K91 and H2AK5. Dimethylation of H3K79 was also selectively induced at target promoters. A majority of target promoters showed co-induction of multiple marks - in various combinations - correlating with recruitment of the two HATs tested (Tip60 and HBO1, incorporation of the histone variant H2A.Z and transcriptional activation. Based on this and previous findings, we surmise that Myc recruits the Tip60/p400 complex to achieve a coordinated histone acetylation/exchange reaction at activated promoters. Our data are also consistent with the additive and redundant role of multiple acetylation events in transcriptional activation.

  14. H3K23me2 is a new heterochromatic mark in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Vandamme, Julien; Sidoli, Simone; Mariani, Luca

    2015-01-01

    described in this organism. We used mass spectrometry based middle-down proteomics to analyze histone H3 N-terminal tails from C. elegans embryos for the presence, the relative abundance and the potential cross-talk of co-existing PTMs. This analysis highlighted that the lysine 23 of histone H3 (H3K23......Genome-wide analyses in Caenorhabditis elegans show that post-translational modifications (PTMs) of histones are evolutionary conserved and distributed along functionally distinct genomic domains. However, a global profile of PTMs and their co-occurrence on the same histone tail has not been...

  15. Histone Methylation and Epigenetic Silencing in Breast Cancer

    National Research Council Canada - National Science Library

    Simon, Jeffrey A; Lange, Carol A

    2008-01-01

    .... EZH2 is a histone methyltransferase which modifies lysine-27 of histone H3 an epigenetic mark which is generally linked to gene silencing and is implicated in tumor suppressor silencing during breast cancer progression...

  16. Functional Roles of Acetylated Histone Marks at Mouse Meiotic Recombination Hot Spots

    Science.gov (United States)

    Wu, Zhen; Fallahi, Mohammad; Ouizem, Souad; Liu, Qin; Li, Weimin; Costi, Roberta; Roush, William R.; Bois, Philippe R. J.

    2016-01-01

    ABSTRACT Meiotic recombination initiates following the formation of DNA double-strand breaks (DSBs) by the Spo11 endonuclease early in prophase I, at discrete regions in the genome coined “hot spots.” In mammals, meiotic DSB site selection is directed in part by sequence-specific binding of PRDM9, a polymorphic histone H3 (H3K4Me3) methyltransferase. However, other chromatin features needed for meiotic hot spot specification are largely unknown. Here we show that the recombinogenic cores of active hot spots in mice harbor several histone H3 and H4 acetylation and methylation marks that are typical of open, active chromatin. Further, deposition of these open chromatin-associated histone marks is dynamic and is manifest at spermatogonia and/or pre-leptotene-stage cells, which facilitates PRDM9 binding and access for Spo11 to direct the formation of DSBs, which are initiated at the leptotene stage. Importantly, manipulating histone acetylase and deacetylase activities established that histone acetylation marks are necessary for both hot spot activity and crossover resolution. We conclude that there are functional roles for histone acetylation marks at mammalian meiotic recombination hot spots. PMID:27821479

  17. Solar Simulated Ultraviolet Radiation Induces Global Histone Hypoacetylation in Human Keratinocytes.

    Science.gov (United States)

    Zhang, Xiaoru; Kluz, Thomas; Gesumaria, Lisa; Matsui, Mary S; Costa, Max; Sun, Hong

    2016-01-01

    Ultraviolet radiation (UVR) from sunlight is the primary effector of skin DNA damage. Chromatin remodeling and histone post-translational modification (PTM) are critical factors in repairing DNA damage and maintaining genomic integrity, however, the dynamic changes of histone marks in response to solar UVR are not well characterized. Here we report global changes in histone PTMs induced by solar simulated UVR (ssUVR). A decrease in lysine acetylation of histones H3 and H4, particularly at positions of H3 lysine 9, lysine 56, H4 lysine 5, and lysine 16, was found in human keratinocytes exposed to ssUVR. These acetylation changes were highly associated with ssUVR in a dose-dependent and time-specific manner. Interestingly, H4K16ac, a mark that is crucial for higher order chromatin structure, exhibited a persistent reduction by ssUVR that was transmitted through multiple cell divisions. In addition, the enzymatic activities of histone acetyltransferases were significantly reduced in irradiated cells, which may account for decreased global acetylation. Moreover, depletion of histone deacetylase SIRT1 in keratinocytes rescued ssUVR-induced H4K16 hypoacetylation. These results indicate that ssUVR affects both HDAC and HAT activities, leading to reduced histone acetylation.

  18. Mouse MORC3 is a GHKL ATPase that localizes to H3K4me3 marked chromatin.

    Science.gov (United States)

    Li, Sisi; Yen, Linda; Pastor, William A; Johnston, Jonathan B; Du, Jiamu; Shew, Colin J; Liu, Wanlu; Ho, Jamie; Stender, Bryan; Clark, Amander T; Burlingame, Alma L; Daxinger, Lucia; Patel, Dinshaw J; Jacobsen, Steven E

    2016-08-30

    Microrchidia (MORC) proteins are GHKL (gyrase, heat-shock protein 90, histidine kinase, MutL) ATPases that function in gene regulation in multiple organisms. Animal MORCs also contain CW-type zinc finger domains, which are known to bind to modified histones. We solved the crystal structure of the murine MORC3 ATPase-CW domain bound to the nucleotide analog AMPPNP (phosphoaminophosphonic acid-adenylate ester) and in complex with a trimethylated histone H3 lysine 4 (H3K4) peptide (H3K4me3). We observed that the MORC3 N-terminal ATPase domain forms a dimer when bound to AMPPNP. We used native mass spectrometry to show that dimerization is ATP-dependent, and that dimer formation is enhanced in the presence of nonhydrolyzable ATP analogs. The CW domain uses an aromatic cage to bind trimethylated Lys4 and forms extensive hydrogen bonds with the H3 tail. We found that MORC3 localizes to promoters marked by H3K4me3 throughout the genome, consistent with its binding to H3K4me3 in vitro. Our work sheds light on aspects of the molecular dynamics and function of MORC3.

  19. H3K27 methylation and H3S28 phosphorylation-dependent transcriptional regulation by INHAT subunit SET/TAF-Iβ.

    Science.gov (United States)

    Kim, Ji-Young; Kim, Kee-Beom; Son, Hye-Ju; Chae, Yun-Cheol; Oh, Si-Taek; Kim, Dong-Wook; Pak, Jhang Ho; Seo, Sang-Beom

    2012-09-21

    Significant progress has been made in understanding the relationship between histone modifications and 'reader' molecules and their effects on transcriptional regulation. A previously identified INHAT complex subunit, SET/TAF-Iβ, binds to histones and inhibits histone acetylation. To investigate the binding specificities of SET/TAF-Iβ to various histone modifications, we employed modified histone tail peptide array analyses. SET/TAF-Iβ strongly recognized PRC2-mediated H3K27me1/2/3; however, the bindings were completely disrupted by H3S28 phosphorylation. We have demonstrated that SET/TAF-Iβ is sequentially recruited to the target gene promoter ATF3 after the PRC2 complex via H3K27me recognition and may offer additive effects in the repression of the target gene. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. HDAC1 and HDAC3 underlie dynamic H3K9 acetylation during embryonic neurogenesis and in schizophrenia-like animals

    Czech Academy of Sciences Publication Activity Database

    Veceřa, J.; Bártová, Eva; Krejčí, Jana; Legartová, Soňa; Komůrková, Denisa; Rudá-Kučerová, J.; Štark, T.; Dražanová, Eva; Kašpárek, T.; Šulcová, A.; Dekker, F.J.; Szymanski, W.; Seiser, C.; Weitzer, G.; Mechoulam, R.; Micale, V.; Kozubek, Stanislav

    2018-01-01

    Roč. 233, č. 1 (2018), s. 530-548 ISSN 0021-9541 R&D Projects: GA ČR GBP302/12/G157 Institutional support: RVO:68081707 ; RVO:68081731 Keywords : cell-adhesion molecule * histone deacetylase inhibitors * neuronal differentiation Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 4.080, year: 2016

  1. Arabidopsis ATRX Modulates H3.3 Occupancy and Fine-Tunes Gene Expression

    KAUST Repository

    Duc, Céline

    2017-07-07

    Histones are essential components of the nucleosome, the major chromatin subunit that structures linear DNA molecules and regulates access of other proteins to DNA. Specific histone chaperone complexes control the correct deposition of canonical histones and their variants to modulate nucleosome structure and stability. In this study, we characterize the Arabidopsis Alpha Thalassemia-mental Retardation X-linked (ATRX) ortholog and show that ATRX is involved in histone H3 deposition. Arabidopsis ATRX mutant alleles are viable, but show developmental defects and reduced fertility. Their combination with mutants of the histone H3.3 chaperone HIRA (Histone Regulator A) results in impaired plant survival, suggesting that HIRA and ATRX function in complementary histone deposition pathways. Indeed, ATRX loss of function alters cellular histone H3.3 pools and in consequence modulates the H3.1/H3.3 balance in the cell. H3.3 levels are affected especially at genes characterized by elevated H3.3 occupancy, including the 45S ribosomal DNA (45S rDNA) loci, where loss of ATRX results in altered expression of specific 45S rDNA sequence variants. At the genome-wide scale, our data indicate that ATRX modifies gene expression concomitantly to H3.3 deposition at a set of genes characterized both by elevated H3.3 occupancy and high expression. Altogether, our results show that ATRX is involved in H3.3 deposition and emphasize the role of histone chaperones in adjusting genome expression.

  2. Dynamic behavior of histone H1 microinjected into HeLa cells

    International Nuclear Information System (INIS)

    Wu, L.H.; Kuehl, L.; Rechsteiner, M.

    1986-01-01

    Histone H1 was purified from bovine thymus and radiolabeled with tritium by reductive methylation or with 125 I using chloramine-T. Red blood cell-mediated microinjection was then used to introduce the labeled H1 molecules into HeLa cells synchronized in S phase. The injected H1 molecules rapidly entered HeLa nuclei, and a number of tests indicate that their association with chromatin was equivalent to that of endogenous histone H1. The injected molecules copurified with HeLa cell nucleosomes, exhibited a half-life of ∼100h, and were hyperphosphorylated at mitosis. When injected HeLa cells were fused with mouse 3T3 fibroblasts < 10% of the labeled H1 molecules migrated to mouse nuclei during the next 48 h. Despite their slow rate of migration between nuclei, the injected H1 molecules were evenly distributed on mouse and human genomes soon after mitosis of HeLa-3T3 heterokaryons. These results suggest that although most histone H1 molecules are stably associated with interphase chromatin, they undergo extensive redistribution after mitosis

  3. Modify the Histone to Win the Battle: Chromatin Dynamics in Plant–Pathogen Interactions

    KAUST Repository

    Ramirez Prado, Juan Sebastian

    2018-03-19

    Relying on an immune system comes with a high energetic cost for plants. Defense responses in these organisms are therefore highly regulated and fine-tuned, permitting them to respond pertinently to the attack of a microbial pathogen. In recent years, the importance of the physical modification of chromatin, a highly organized structure composed of genomic DNA and its interacting proteins, has become evident in the research field of plant-pathogen interactions. Several processes, including DNA methylation, changes in histone density and variants, and various histone modifications, have been described as regulators of various developmental and defense responses. Herein, we review the state of the art in the epigenomic aspects of plant immunity, focusing on chromatin modifications, chromatin modifiers, and their physiological consequences. In addition, we explore the exciting field of understanding how plant pathogens have adapted to manipulate the plant epigenomic regulation in order to weaken their immune system and thrive in their host, as well as how histone modifications in eukaryotic pathogens are involved in the regulation of their virulence.

  4. Modify the Histone to Win the Battle: Chromatin Dynamics in Plant–Pathogen Interactions

    KAUST Repository

    Ramirez Prado, Juan Sebastian; Piquerez, Sophie J. M.; Bendahmane, Abdelhafid; Hirt, Heribert; Raynaud, Cé cile; Benhamed, Moussa

    2018-01-01

    Relying on an immune system comes with a high energetic cost for plants. Defense responses in these organisms are therefore highly regulated and fine-tuned, permitting them to respond pertinently to the attack of a microbial pathogen. In recent years, the importance of the physical modification of chromatin, a highly organized structure composed of genomic DNA and its interacting proteins, has become evident in the research field of plant-pathogen interactions. Several processes, including DNA methylation, changes in histone density and variants, and various histone modifications, have been described as regulators of various developmental and defense responses. Herein, we review the state of the art in the epigenomic aspects of plant immunity, focusing on chromatin modifications, chromatin modifiers, and their physiological consequences. In addition, we explore the exciting field of understanding how plant pathogens have adapted to manipulate the plant epigenomic regulation in order to weaken their immune system and thrive in their host, as well as how histone modifications in eukaryotic pathogens are involved in the regulation of their virulence.

  5. The CENP-T C-Terminus Is Exclusively Proximal to H3.1 and not to H3.2 or H3.3

    Science.gov (United States)

    Abendroth, Christian; Hofmeister, Antje; Hake, Sandra B.; Kamweru, Paul K.; Miess, Elke; Dornblut, Carsten; Küffner, Isabell; Deng, Wen; Leonhardt, Heinrich; Orthaus, Sandra; Hoischen, Christian; Diekmann, Stephan

    2015-01-01

    The kinetochore proteins assemble onto centromeric chromatin and regulate DNA segregation during cell division. The inner kinetochore proteins bind centromeres while most outer kinetochore proteins assemble at centromeres during mitosis, connecting the complex to microtubules. The centromere–kinetochore complex contains specific nucleosomes and nucleosomal particles. CENP-A replaces canonical H3 in centromeric nucleosomes, defining centromeric chromatin. Next to CENP-A, the CCAN multi-protein complex settles which contains CENP-T/W/S/X. These four proteins are described to form a nucleosomal particle at centromeres. We had found the CENP-T C-terminus and the CENP-S termini next to histone H3.1 but not to CENP-A, suggesting that the Constitutive Centromere-Associated Network (CCAN) bridges a CENP-A- and a H3-containing nucleosome. Here, we show by in vivo FRET that this proximity between CENP-T and H3 is specific for H3.1 but neither for the H3.1 mutants H3.1C96A and H3.1C110A nor for H3.2 or H3.3. We also found CENP-M next to H3.1 but not to these H3.1 mutants. Consistently, we detected CENP-M next to CENP-S. These data elucidate the local molecular neighborhood of CCAN proteins next to a H3.1-containing centromeric nucleosome. They also indicate an exclusive position of H3.1 clearly distinct from H3.2, thus documenting a local, and potentially also functional, difference between H3.1 and H3.2. PMID:25775162

  6. The CENP-T C-Terminus Is Exclusively Proximal to H3.1 and not to H3.2 or H3.3

    Directory of Open Access Journals (Sweden)

    Christian Abendroth

    2015-03-01

    Full Text Available The kinetochore proteins assemble onto centromeric chromatin and regulate DNA segregation during cell division. The inner kinetochore proteins bind centromeres while most outer kinetochore proteins assemble at centromeres during mitosis, connecting the complex to microtubules. The centromere–kinetochore complex contains specific nucleosomes and nucleosomal particles. CENP-A replaces canonical H3 in centromeric nucleosomes, defining centromeric chromatin. Next to CENP-A, the CCAN multi-protein complex settles which contains CENP-T/W/S/X. These four proteins are described to form a nucleosomal particle at centromeres. We had found the CENP-T C-terminus and the CENP-S termini next to histone H3.1 but not to CENP-A, suggesting that the Constitutive Centromere-Associated Network (CCAN bridges a CENP-A- and a H3-containing nucleosome. Here, we show by in vivo FRET that this proximity between CENP-T and H3 is specific for H3.1 but neither for the H3.1 mutants H3.1C96A and H3.1C110A nor for H3.2 or H3.3. We also found CENP-M next to H3.1 but not to these H3.1 mutants. Consistently, we detected CENP-M next to CENP-S. These data elucidate the local molecular neighborhood of CCAN proteins next to a H3.1-containing centromeric nucleosome. They also indicate an exclusive position of H3.1 clearly distinct from H3.2, thus documenting a local, and potentially also functional, difference between H3.1 and H3.2.

  7. Simplified Method for Rapid Purification of Soluble Histones

    Directory of Open Access Journals (Sweden)

    Nives Ivić

    2016-06-01

    Full Text Available Functional and structural studies of histone-chaperone complexes, nucleosome modifications, their interactions with remodelers and regulatory proteins rely on obtaining recombinant histones from bacteria. In the present study, we show that co-expression of Xenopus laevis histone pairs leads to production of soluble H2AH2B heterodimer and (H3H42 heterotetramer. The soluble histone complexes are purified by simple chromatographic techniques. Obtained H2AH2B dimer and H3H4 tetramer are proficient in histone chaperone binding and histone octamer and nucleosome formation. Our optimized protocol enables rapid purification of multiple soluble histone variants with a remarkable high yield and simplifies histone octamer preparation. We expect that this simple approach will contribute to the histone chaperone and chromatin research. This work is licensed under a Creative Commons Attribution 4.0 International License.

  8. Real-Time Tracking of Parental Histones Reveals Their Contribution to Chromatin Integrity Following DNA Damage.

    Science.gov (United States)

    Adam, Salomé; Dabin, Juliette; Chevallier, Odile; Leroy, Olivier; Baldeyron, Céline; Corpet, Armelle; Lomonte, Patrick; Renaud, Olivier; Almouzni, Geneviève; Polo, Sophie E

    2016-10-06

    Chromatin integrity is critical for cell function and identity but is challenged by DNA damage. To understand how chromatin architecture and the information that it conveys are preserved or altered following genotoxic stress, we established a system for real-time tracking of parental histones, which characterize the pre-damage chromatin state. Focusing on histone H3 dynamics after local UVC irradiation in human cells, we demonstrate that parental histones rapidly redistribute around damaged regions by a dual mechanism combining chromatin opening and histone mobilization on chromatin. Importantly, parental histones almost entirely recover and mix with new histones in repairing chromatin. Our data further define a close coordination of parental histone dynamics with DNA repair progression through the damage sensor DDB2 (DNA damage-binding protein 2). We speculate that this mechanism may contribute to maintaining a memory of the original chromatin landscape and may help preserve epigenome stability in response to DNA damage. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. histone H3 predominantly mark the pericentromeric chromatin

    Indian Academy of Sciences (India)

    SANTOSH KUMAR SHARMA

    pericentromeric chromatin during mitosis in monokinetic plants. J. Genet. .... bigger), cytological preparations (easy to difficult) as well as their habitat ... Poaceae. Monocot. Land. 14. Triticum aestivum. Common wheat. Poaceae. Monocot. Land.

  10. histone H3 predominantly mark the pericentromeric chromatin ...

    Indian Academy of Sciences (India)

    2016-12-01

    Dec 1, 2016 ... events vis-à-vis cell cycle and other cellular functions. Materials and ... buffer (50 mM PIPES, 25 mM HEPES, 5 mM MgCl2 and. 5 mM ethylene ... selected and the chromosome count could be precisely deter- mined in all the ...

  11. histone H3 predominantly mark the pericentromeric chromatin

    Indian Academy of Sciences (India)

    SANTOSH KUMAR SHARMA

    packaging of eukaryotic DNA in nucleoprotein complex known as .... The plant material used in the present study has ... materials (root tips/flower buds) were fixed in PHEMES ..... fications that mark active chromatin, while there are no data.

  12. Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice

    Directory of Open Access Journals (Sweden)

    Papaioannou Virginia E

    2004-12-01

    Full Text Available Abstract Background Advances in optical imaging modalities and the continued evolution of genetically-encoded fluorescent proteins are coming together to facilitate the study of cell behavior at high resolution in living organisms. As a result, imaging using autofluorescent protein reporters is gaining popularity in mouse transgenic and targeted mutagenesis applications. Results We have used embryonic stem cell-mediated transgenesis to label cells at sub-cellular resolution in vivo, and to evaluate fusion of a human histone protein to green fluorescent protein for ubiquitous fluorescent labeling of nucleosomes in mice. To this end we have generated embryonic stem cells and a corresponding strain of mice that is viable and fertile and exhibits widespread chromatin-localized reporter expression. High levels of transgene expression are maintained in a constitutive manner. Viability and fertility of homozygous transgenic animals demonstrates that this reporter is developmentally neutral and does not interfere with mitosis or meiosis. Conclusions Using various optical imaging modalities including wide-field, spinning disc confocal, and laser scanning confocal and multiphoton excitation microscopy, we can identify cells in various stages of the cell cycle. We can identify cells in interphase, cells undergoing mitosis or cell death. We demonstrate that this histone fusion reporter allows the direct visualization of active chromatin in situ. Since this reporter segments three-dimensional space, it permits the visualization of individual cells within a population, and so facilitates tracking cell position over time. It is therefore attractive for use in multidimensional studies of in vivo cell behavior and cell fate.

  13. The histones of the endosymbiont alga of Peridinium balticum (Dinophyceae).

    Science.gov (United States)

    Rizzo, P J; Morris, R L; Zweidler, A

    1988-01-01

    The histones of the endosymbiont nucleus of the binucleate dinoflagellate Peridinium balticum were characterized by amino acid analysis and peptide mapping, and compared to calf thymus histones. Using these and various other criteria we have identified two H1-like histones as well as the highly conserved histones H3 and H4. A 13,000 dalton component in sodium dodecyl sulphate (SDS) gels can be separated into two components in Triton-containing gels. We suggest that these histones (HPb1 and HPb2) correspond to the vertebrate histones H2A and H2B, respectively.

  14. Molecular Basis for the Regulation of the H3K4 Methyltransferase Activity of PRDM9

    Directory of Open Access Journals (Sweden)

    Hong Wu

    2013-10-01

    Full Text Available PRDM9, a histone lysine methyltransferase, is a key determinant of the localization of meiotic recombination hot spots in humans and mice and the only vertebrate protein known to be involved in hybrid sterility. Here, we report the crystal structure of the PRDM9 methyltransferase domain in complex with a histone H3 peptide dimethylated on lysine 4 (H3K4me2 and S-adenosylhomocysteine (AdoHcy, which provides insights into the methyltransferase activity of PRDM proteins. We show that the genuine substrate of PRDM9 is histone H3 lysine 4 (H3K4 and that the enzyme possesses mono-, di-, and trimethylation activities. We also determined the crystal structure of PRDM9 in its autoinhibited state, which revealed a rearrangement of the substrate and cofactor binding sites by a concerted action of the pre-SET and post-SET domains, providing important insights into the regulatory mechanisms of histone lysine methyltransferase activity.

  15. Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Ziqing Liu

    2016-03-01

    Full Text Available Direct conversion of fibroblasts into induced cardiomyocytes (iCMs offers an alternative strategy for cardiac disease modeling and regeneration. During iCM reprogramming, the starting fibroblasts must overcome existing epigenetic barriers to acquire the CM-like chromatin pattern. However, epigenetic dynamics along this reprogramming process have not been studied. Here, we took advantage of our recently generated polycistronic system and determined the dynamics of two critical histone marks, H3K27me3 and H3K4me3, in parallel with gene expression at a set of carefully selected cardiac and fibroblast loci during iCM reprogramming. We observed reduced H3K27me3 and increased H3K4me3 at cardiac promoters as early as day 3, paralleled by a rapid significant increase in their mRNA expression. In contrast, H3K27me3 at loci encoding fibroblast marker genes did not increase until day 10 and H3K4me3 progressively decreased along the reprogramming process; these changes were accompanied by a gradual decrease in the mRNA expression of fibroblast marker genes. Further analyses of fibroblast-enriched transcription factors revealed a similarly late deposition of H3K27me3 and decreased mRNA expression of Sox9, Twist1 and Twist2, three important players in epithelial−mesenchymal transition. Our data suggest early rapid activation of the cardiac program and later progressive suppression of fibroblast fate at both epigenetic and transcriptional levels. Additionally, we determined the DNA methylation states of representative cardiac promoters and found that not every single CpG was equally demethylated during early stages of iCM reprogramming. Rather, there are specific CpGs, whose demethylation states correlated tightly with transcription activation, that we propose are the major contributing CpGs. Our work thus reveals a differential re-patterning of H3K27me3, H3K4me3 at cardiac and fibroblast loci during iCM reprogramming and could provide future genome

  16. Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast.

    Science.gov (United States)

    Kaplan, Tommy; Liu, Chih Long; Erkmann, Judith A; Holik, John; Grunstein, Michael; Kaufman, Paul D; Friedman, Nir; Rando, Oliver J

    2008-11-01

    Acetylation of histone H3 lysine 56 is a covalent modification best known as a mark of newly replicated chromatin, but it has also been linked to replication-independent histone replacement. Here, we measured H3K56ac levels at single-nucleosome resolution in asynchronously growing yeast cultures, as well as in yeast proceeding synchronously through the cell cycle. We developed a quantitative model of H3K56ac kinetics, which shows that H3K56ac is largely explained by the genomic replication timing and the turnover rate of each nucleosome, suggesting that cell cycle profiles of H3K56ac should reveal most first-time nucleosome incorporation events. However, since the deacetylases Hst3/4 prevent use of H3K56ac as a marker for histone deposition during M phase, we also directly measured M phase histone replacement rates. We report a global decrease in turnover rates during M phase and a further specific decrease in turnover at several early origins of replication, which switch from rapidly replaced in G1 phase to stably bound during M phase. Finally, by measuring H3 replacement in yeast deleted for the H3K56 acetyltransferase Rtt109 and its two co-chaperones Asf1 and Vps75, we find evidence that Rtt109 and Asf1 preferentially enhance histone replacement at rapidly replaced nucleosomes, whereas Vps75 appears to inhibit histone turnover at those loci. These results provide a broad perspective on histone replacement/incorporation throughout the cell cycle and suggest that H3K56 acetylation provides a positive-feedback loop by which replacement of a nucleosome enhances subsequent replacement at the same location.

  17. Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast.

    Directory of Open Access Journals (Sweden)

    Tommy Kaplan

    2008-11-01

    Full Text Available Acetylation of histone H3 lysine 56 is a covalent modification best known as a mark of newly replicated chromatin, but it has also been linked to replication-independent histone replacement. Here, we measured H3K56ac levels at single-nucleosome resolution in asynchronously growing yeast cultures, as well as in yeast proceeding synchronously through the cell cycle. We developed a quantitative model of H3K56ac kinetics, which shows that H3K56ac is largely explained by the genomic replication timing and the turnover rate of each nucleosome, suggesting that cell cycle profiles of H3K56ac should reveal most first-time nucleosome incorporation events. However, since the deacetylases Hst3/4 prevent use of H3K56ac as a marker for histone deposition during M phase, we also directly measured M phase histone replacement rates. We report a global decrease in turnover rates during M phase and a further specific decrease in turnover at several early origins of replication, which switch from rapidly replaced in G1 phase to stably bound during M phase. Finally, by measuring H3 replacement in yeast deleted for the H3K56 acetyltransferase Rtt109 and its two co-chaperones Asf1 and Vps75, we find evidence that Rtt109 and Asf1 preferentially enhance histone replacement at rapidly replaced nucleosomes, whereas Vps75 appears to inhibit histone turnover at those loci. These results provide a broad perspective on histone replacement/incorporation throughout the cell cycle and suggest that H3K56 acetylation provides a positive-feedback loop by which replacement of a nucleosome enhances subsequent replacement at the same location.

  18. H3 and H4 Lysine Acetylation Correlates with Developmental and Experimentally Induced Adult Experience-Dependent Plasticity in the Mouse Visual Cortex

    Directory of Open Access Journals (Sweden)

    Gabriela Vierci

    2016-01-01

    Full Text Available Histone posttranslational modifications play a fundamental role in orchestrating gene expression. In this work, we analyzed the acetylation of H3 and H4 histones (AcH3-AcH4 and its modulation by visual experience in the mouse visual cortex (VC during normal development and in two experimental conditions that restore juvenile-like plasticity levels in adults (fluoxetine treatment and enriched environment. We found that AcH3-AcH4 declines with age and is upregulated by treatments restoring plasticity in the adult. We also found that visual experience modulates AcH3-AcH4 in young and adult plasticity-restored mice but not in untreated ones. Finally, we showed that the transporter vGAT is downregulated in adult plasticity-restored models. In summary, we identified a dynamic regulation of AcH3-AcH4, which is associated with high plasticity levels and enhanced by visual experience. These data, along with recent ones, indicate H3-H4 acetylation as a central hub in the control of experience-dependent plasticity in the VC.

  19. AKT phosphorylates H3-threonine 45 to facilitate termination of gene transcription in response to DNA damage

    OpenAIRE

    Lee, Jong-Hyuk; Kang, Byung-Hee; Jang, Hyonchol; Kim, Tae Wan; Choi, Jinmi; Kwak, Sojung; Han, Jungwon; Cho, Eun-Jung; Youn, Hong-Duk

    2015-01-01

    Post-translational modifications of core histones affect various cellular processes, primarily through transcription. However, their relationship with the termination of transcription has remained largely unknown. In this study, we show that DNA damage-activated AKT phosphorylates threonine 45 of core histone H3 (H3-T45). By genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis, H3-T45 phosphorylation was distributed throughout DNA damage-responsive gene loci, particularly ...

  20. Exon resequencing of H3K9 methyltransferase complex genes, EHMT1, EHTM2 and WIZ, in Japanese autism subjects

    OpenAIRE

    Balan, Shabeesh; Iwayama, Yoshimi; Maekawa, Motoko; Toyota, Tomoko; Ohnishi, Tetsuo; Toyoshima, Manabu; Shimamoto, Chie; Esaki, Kayoko; Yamada, Kazuo; Iwata, Yasuhide; Suzuki, Katsuaki; Ide, Masayuki; Ota, Motonori; Fukuchi, Satoshi; Tsujii, Masatsugu

    2014-01-01

    Background Histone H3 methylation at lysine 9 (H3K9) is a conserved epigenetic signal, mediating heterochromatin formation by trimethylation, and transcriptional silencing by dimethylation. Defective GLP (Ehmt1) and G9a (Ehmt2) histone lysine methyltransferases, involved in mono and dimethylation of H3K9, confer autistic phenotypes and behavioral abnormalities in animal models. Moreover, EHMT1 loss of function results in Kleefstra syndrome, characterized by severe intellectual disability, dev...

  1. Replication stress interferes with histone recycling and predeposition marking of new histones

    DEFF Research Database (Denmark)

    Jasencakova, Zuzana; Scharf, Annette N D; Ask, Katrine

    2010-01-01

    To restore chromatin on new DNA during replication, recycling of histones evicted ahead of the fork is combined with new histone deposition. The Asf1 histone chaperone, which buffers excess histones under stress, is a key player in this process. Yet how histones handled by human Asf1 are modified...... remains unclear. Here we identify marks on histones H3-H4 bound to Asf1 and changes induced upon replication stress. In S phase, distinct cytosolic and nuclear Asf1b complexes show ubiquitous H4K5K12diAc and heterogeneous H3 marks, including K9me1, K14ac, K18ac, and K56ac. Upon acute replication arrest......, the predeposition mark H3K9me1 and modifications typical of chromatin accumulate in Asf1 complexes. In parallel, ssDNA is generated at replication sites, consistent with evicted histones being trapped with Asf1. During recovery, histones stored with Asf1 are rapidly used as replication resumes. This shows...

  2. Oncogenic N-Ras Stimulates SRF-Mediated Transactivation via H3 Acetylation at Lysine 9

    Directory of Open Access Journals (Sweden)

    Sun-Ju Yi

    2018-01-01

    Full Text Available Signal transduction pathways regulate the gene expression by altering chromatin dynamics in response to mitogens. Ras proteins are key regulators linking extracellular stimuli to a diverse range of biological responses associated with gene regulation. In mammals, the three ras genes encode four Ras protein isoforms: H-Ras, K-Ras4A, K-Ras4B, and N-Ras. Although emerging evidence suggests that Ras isoforms differentially regulate gene expressions and are functionally nonredundant, the mechanisms underlying Ras specificity and Ras signaling effects on gene expression remain unclear. Here, we show that oncogenic N-Ras acts as the most potent regulator of SRF-, NF-κB-, and AP-1-dependent transcription. N-Ras-RGL2 axis is a distinct signaling pathway for SRF target gene expression such as Egr1 and JunB, as RGL2 Ras binding domain (RBD significantly impaired oncogenic N-Ras-induced SRE activation. By monitoring the effect of Ras isoforms upon the change of global histone modifications in oncogenic Ras-overexpressed cells, we discovered that oncogenic N-Ras elevates H3K9ac/H3K23ac levels globally in the chromatin context. Importantly, chromatin immunoprecipitation (ChIP assays revealed that H3K9ac is significantly enriched at the promoter and coding regions of Egr1 and JunB. Collectively, our findings define an undocumented role of N-Ras in modulating of H3 acetylation and in gene regulation.

  3. The histone codes for meiosis.

    Science.gov (United States)

    Wang, Lina; Xu, Zhiliang; Khawar, Muhammad Babar; Liu, Chao; Li, Wei

    2017-09-01

    Meiosis is a specialized process that produces haploid gametes from diploid cells by a single round of DNA replication followed by two successive cell divisions. It contains many special events, such as programmed DNA double-strand break (DSB) formation, homologous recombination, crossover formation and resolution. These events are associated with dynamically regulated chromosomal structures, the dynamic transcriptional regulation and chromatin remodeling are mainly modulated by histone modifications, termed 'histone codes'. The purpose of this review is to summarize the histone codes that are required for meiosis during spermatogenesis and oogenesis, involving meiosis resumption, meiotic asymmetric division and other cellular processes. We not only systematically review the functional roles of histone codes in meiosis but also discuss future trends and perspectives in this field. © 2017 Society for Reproduction and Fertility.

  4. Interactions of Histone Acetyltransferase p300 with the Nuclear Proteins Histone and HMGB1, As Revealed by Single Molecule Atomic Force Spectroscopy.

    Science.gov (United States)

    Banerjee, S; Rakshit, T; Sett, S; Mukhopadhyay, R

    2015-10-22

    One of the important properties of the transcriptional coactivator p300 is histone acetyltransferase (HAT) activity that enables p300 to influence chromatin action via histone modulation. p300 can exert its HAT action upon the other nuclear proteins too--one notable example being the transcription-factor-like protein HMGB1, which functions also as a cytokine, and whose accumulation in the cytoplasm, as a response to tissue damage, is triggered by its acetylation. Hitherto, no information on the structure and stability of the complexes between full-length p300 (p300FL) (300 kDa) and the histone/HMGB1 proteins are available, probably due to the presence of unstructured regions within p300FL that makes it difficult to be crystallized. Herein, we have adopted the high-resolution atomic force microscopy (AFM) approach, which allows molecularly resolved three-dimensional contour mapping of a protein molecule of any size and structure. From the off-rate and activation barrier values, obtained using single molecule dynamic force spectroscopy, the biochemical proposition of preferential binding of p300FL to histone H3, compared to the octameric histone, can be validated. Importantly, from the energy landscape of the dissociation events, a model for the p300-histone and the p300-HMGB1 dynamic complexes that HAT forms, can be proposed. The lower unbinding forces of the complexes observed in acetylating conditions, compared to those observed in non-acetylating conditions, indicate that upon acetylation, p300 tends to weakly associate, probably as an outcome of charge alterations on the histone/HMGB1 surface and/or acetylation-induced conformational changes. To our knowledge, for the first time, a single molecule level treatment of the interactions of HAT, where the full-length protein is considered, is being reported.

  5. Identification and Interrogation of Combinatorial Histone Modifications

    Directory of Open Access Journals (Sweden)

    Kelly R Karch

    2013-12-01

    Full Text Available Histone proteins are dynamically modified to mediate a variety of cellular processes including gene transcription, DNA damage repair, and apoptosis. Regulation of these processes occurs through the recruitment of non-histone proteins to chromatin by specific combinations of histone post-translational modifications (PTMs. Mass spectrometry has emerged as an essential tool to discover and quantify histone PTMs both within and between samples in an unbiased manner. Developments in mass spectrometry that allow for characterization of large histone peptides or intact protein has made it possible to determine which modifications occur simultaneously on a single histone polypeptide. A variety of techniques from biochemistry, biophysics, and chemical biology have been employed to determine the biological relevance of discovered combinatorial codes. This review first describes advancements in the field of mass spectrometry that have facilitated histone PTM analysis and then covers notable approaches to probe the biological relevance of these modifications in their nucleosomal context.

  6. Structural Basis of Histone Demethylase KDM6B Histone 3 Lysine 27 Specificity

    DEFF Research Database (Denmark)

    Jones, Sarah E; Olsen, Lars; Gajhede, Michael

    2018-01-01

    KDM subfamily 6 enzymes KDM6A and KDM6B specifically catalyze demethylation of di- and trimethylated lysine on histone 3 lysine 27 (H3K27me3/2) and play an important role in repression of developmental genes. Despite identical amino acid sequence in the immediate surroundings of H3K9me3/2 (ARKS...

  7. Post-Translational Modifications of Histones in Human Sperm.

    Science.gov (United States)

    Krejčí, Jana; Stixová, Lenka; Pagáčová, Eva; Legartová, Soňa; Kozubek, Stanislav; Lochmanová, Gabriela; Zdráhal, Zbyněk; Sehnalová, Petra; Dabravolski, Siarhei; Hejátko, Jan; Bártová, Eva

    2015-10-01

    We examined the levels and distribution of post-translationally modified histones and protamines in human sperm. Using western blot immunoassay, immunofluorescence, mass spectrometry (MS), and FLIM-FRET approaches, we analyzed the status of histone modifications and the protamine P2. Among individual samples, we observed variability in the levels of H3K9me1, H3K9me2, H3K27me3, H3K36me3, and H3K79me1, but the level of acetylated (ac) histones H4 was relatively stable in the sperm head fractions, as demonstrated by western blot analysis. Sperm heads with lower levels of P2 exhibited lower levels of H3K9ac, H3K9me1, H3K27me3, H3K36me3, and H3K79me1. A very strong correlation was observed between the levels of P2 and H3K9me2. FLIM-FRET analysis additionally revealed that acetylated histones H4 are not only parts of sperm chromatin but also appear in a non-integrated form. Intriguingly, H4ac and H3K27me3 were detected in sperm tail fractions via western blot analysis. An appearance of specific histone H3 and H4 acetylation and H3 methylation in sperm tail fractions was also confirmed by both LC-MS/MS and MALDI-TOF MS analysis. Taken together, these data indicate that particular post-translational modifications of histones are uniquely distributed in human sperm, and this distribution varies among individuals and among the sperm of a single individual. © 2015 Wiley Periodicals, Inc.

  8. MKP1 phosphatase mediates G1-specific dephosphorylation of H3Serine10P in response to DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ajit K.; Khan, Shafqat A.; Sharda, Asmita; Reddy, Divya V; Gupta, Sanjay, E-mail: sgupta@actrec.gov.in

    2015-08-15

    Highlights: • Reversible reduction of H3S10 phosphorylation after DNA damage is G1 phase specific. • Dynamic balance between MAP kinases, MKP1 and MSK1 regulate H3S10P during DDR. • MKP1 associates with chromatin bearing γH2AX in response to DNA damage. • Inhibition of MKP1 activity with specific inhibitor promotes radiation-induced cell death. - Abstract: Histone mark, H3S10 phosphorylation plays a dual role in a cell by maintaining relaxed chromatin for active transcription in interphase and condensed chromatin state in mitosis. The level of H3S10P has also been shown to alter on DNA damage; however, its cell cycle specific behavior and regulation during DNA damage response is largely unexplored. In the present study, we demonstrate G1 cell cycle phase specific reversible loss of H3S10P in response to IR-induced DNA damage is mediated by opposing activities of phosphatase, MKP1 and kinase, MSK1 of the MAP kinase pathway. We also show that the MKP1 recruits to the chromatin in response to DNA damage and correlates with the decrease of H3S10P, whereas MKP1 is released from chromatin during recovery phase of DDR. Furthermore, blocking of H3S10 dephosphorylation by MKP1 inhibition impairs DNA repair process and results in poor survival of WRL68 cells. Collectively, our data proposes a pathway regulating G1 cell cycle phase specific reversible reduction of H3S10P on IR induced DNA damage and also raises the possibility of combinatorial modulation of H3S10P with specific inhibitors to target the cancer cells in G1-phase of cell cycle.

  9. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas

    DEFF Research Database (Denmark)

    Mohammad, Faizaan; Weissmann, Simon; Leblanc, Benjamin Olivier

    2017-01-01

    Diffuse intrinsic pontine glioma (DIPG) is an aggressive brain tumor that is located in the pons and primarily affects children. Nearly 80% of DIPGs harbor mutations in histone H3 genes, wherein lysine 27 is substituted with methionine (H3K27M). H3K27M has been shown to inhibit polycomb repressiv...

  10. File list: His.PSC.10.H3K122ac.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.10.H3K122ac.AllCell mm9 Histone H3K122ac Pluripotent stem cell ERX631826,ER...X631814 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.10.H3K122ac.AllCell.bed ...

  11. File list: His.PSC.10.H3K56ac.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.10.H3K56ac.AllCell mm9 Histone H3K56ac Pluripotent stem cell SRX873352,SRX8...73346,SRX873350,SRX873348 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.10.H3K56ac.AllCell.bed ...

  12. File list: His.PSC.05.H3K122ac.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.05.H3K122ac.AllCell mm9 Histone H3K122ac Pluripotent stem cell ERX631826,ER...X631814 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.05.H3K122ac.AllCell.bed ...

  13. File list: His.PSC.50.H3K9K14ac.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.H3K9K14ac.AllCell hg19 Histone H3K9K14ac Pluripotent stem cell SRX037086... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.50.H3K9K14ac.AllCell.bed ...

  14. File list: His.PSC.50.H3K122ac.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.H3K122ac.AllCell mm9 Histone H3K122ac Pluripotent stem cell ERX631826,ER...X631814 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.50.H3K122ac.AllCell.bed ...

  15. Histone and Ribosomal RNA Repetitive Gene Clusters of the Boll Weevil are Linked in a Tandem Array

    Science.gov (United States)

    Histones are the major protein component of chromatin structure. The histone family is made up of a quintet of proteins, four core histones (H2A, H2B, H3 & H4) and the linker histones (H1). Spacers are found between the coding regions. Among insects this quintet of genes is usually clustered and ...

  16. Two distinct modes for propagation of histone PTMs across the cell cycle

    DEFF Research Database (Denmark)

    Alabert, Constance; Barth, Teresa K; Reverón-Gómez, Nazaret

    2015-01-01

    Epigenetic states defined by chromatin can be maintained through mitotic cell division. However, it remains unknown how histone-based information is transmitted. Here we combine nascent chromatin capture (NCC) and triple-SILAC (stable isotope labeling with amino acids in cell culture) labeling...... to track histone modifications and histone variants during DNA replication and across the cell cycle. We show that post-translational modifications (PTMs) are transmitted with parental histones to newly replicated DNA. Di- and trimethylation marks are diluted twofold upon DNA replication, as a consequence...... of new histone deposition. Importantly, within one cell cycle, all PTMs are restored. In general, new histones are modified to mirror the parental histones. However, H3K9 trimethylation (H3K9me3) and H3K27me3 are propagated by continuous modification of parental and new histones because the establishment...

  17. Identification and characterization of the genes encoding the core histones and histone variants of Neurospora crassa.

    OpenAIRE

    Hays, Shan M; Swanson, Johanna; Selker, Eric U

    2002-01-01

    We have identified and characterized the complete complement of genes encoding the core histones of Neurospora crassa. In addition to the previously identified pair of genes that encode histones H3 and H4 (hH3 and hH4-1), we identified a second histone H4 gene (hH4-2), a divergently transcribed pair of genes that encode H2A and H2B (hH2A and hH2B), a homolog of the F/Z family of H2A variants (hH2Az), a homolog of the H3 variant CSE4 from Saccharomyces cerevisiae (hH3v), and a highly diverged ...

  18. Biological significance of lysine mono-, di- and trimethylation on histone and non-histone proteins

    International Nuclear Information System (INIS)

    Perez-Burgos, L.

    2006-01-01

    Histones are the proteins that compact DNA into the repeating unit of chromatin known as the nucleosome. The N-termini of histones are subject to a series of post-translational modifications, one of which is methylation. This modification is termed 'epigenetic' because it extends the information encoded in the genome. Lysines can be mono-, di- or tri-methylated at different positions on histones H1, H3 and H4. In order to study the biological role of histone lysine methylation, antibodies were generated against mono-, di- and trimethylated H3-K9 and H3-27. Indeed, different chromatin domains in the mouse nucleus are enriched in distinct forms of histone lysine methylation, such as pericentric heterochromatin and the inactive X chromosome. Interestingly, heterochromatin in Arabidopsis thaliana is enriched in the mono- and di-, but not the trimethylated form of H3-K9. Furthermore, there exists a hierarchy of epigenetic modifications in which H3-K9 trimethylation is found to be upstream of DNA methylation on mouse major satellites. Histone lysine methylation is also involved in gene regulation upon development. One example is the chicken 61538;-globin locus, a region of facultative chromatin that undergoes a loss of di- and trimethylated H3-K27 in mature red blood cells, concomitant with expression of the 61538;-globin genes. SET-domain proteins are enzymes that methylate histones, but some of them are also able to methylate non-histone substrates. In particular, p53 is methylated by Set9 on lysine 372, G9a and Glp-1 on lysine 373 and by Smyd2 on lysine 370. Smyd2 transcript levels are greatly increased upon irradiation and dimethylated p53-370 specifically binds to 53BP1, a protein involved in recognizing DNA double-stranded breaks upon ionizing radiation. These results argue for a novel role of p53-K370 methylation in the biology of DNA damage. In summary, lysine methylation is a post-translational modification that can occur both on histone and non-histone proteins

  19. A computational model for histone mark propagation reproduces the distribution of heterochromatin in different human cell types.

    Science.gov (United States)

    Schwämmle, Veit; Jensen, Ole Nørregaard

    2013-01-01

    Chromatin is a highly compact and dynamic nuclear structure that consists of DNA and associated proteins. The main organizational unit is the nucleosome, which consists of a histone octamer with DNA wrapped around it. Histone proteins are implicated in the regulation of eukaryote genes and they carry numerous reversible post-translational modifications that control DNA-protein interactions and the recruitment of chromatin binding proteins. Heterochromatin, the transcriptionally inactive part of the genome, is densely packed and contains histone H3 that is methylated at Lys 9 (H3K9me). The propagation of H3K9me in nucleosomes along the DNA in chromatin is antagonizing by methylation of H3 Lysine 4 (H3K4me) and acetylations of several lysines, which is related to euchromatin and active genes. We show that the related histone modifications form antagonized domains on a coarse scale. These histone marks are assumed to be initiated within distinct nucleation sites in the DNA and to propagate bi-directionally. We propose a simple computer model that simulates the distribution of heterochromatin in human chromosomes. The simulations are in agreement with previously reported experimental observations from two different human cell lines. We reproduced different types of barriers between heterochromatin and euchromatin providing a unified model for their function. The effect of changes in the nucleation site distribution and of propagation rates were studied. The former occurs mainly with the aim of (de-)activation of single genes or gene groups and the latter has the power of controlling the transcriptional programs of entire chromosomes. Generally, the regulatory program of gene transcription is controlled by the distribution of nucleation sites along the DNA string.

  20. An efficient immunodetection method for histone modifications in plants.

    Science.gov (United States)

    Nic-Can, Geovanny; Hernández-Castellano, Sara; Kú-González, Angela; Loyola-Vargas, Víctor M; De-la-Peña, Clelia

    2013-12-16

    Epigenetic mechanisms can be highly dynamic, but the cross-talk among them and with the genome is still poorly understood. Many of these mechanisms work at different places in the cell and at different times of organism development. Covalent histone modifications are one of the most complex and studied epigenetic mechanisms involved in cellular reprogramming and development in plants. Therefore, the knowledge of the spatial distribution of histone methylation in different tissues is important to understand their behavior on specific cells. Based on the importance of epigenetic marks for biology, we present a simplified, inexpensive and efficient protocol for in situ immunolocalization on different tissues such as flowers, buds, callus, somatic embryo and meristematic tissue from several plants of agronomical and biological importance. Here, we fully describe all the steps to perform the localization of histone modifications. Using this method, we were able to visualize the distribution of H3K4me3 and H3K9me2 without loss of histological integrity of tissues from several plants, including Agave tequilana, Capsicum chinense, Coffea canephora and Cedrela odorata, as well as Arabidopsis thaliana. There are many protocols to study chromatin modifications; however, most of them are expensive, difficult and require sophisticated equipment. Here, we provide an efficient protocol for in situ localization of histone methylation that dispenses with the use of expensive and sensitive enzymes. The present method can be used to investigate the cellular distribution and localization of a wide array of proteins, which could help to clarify the biological role that they play at specific times and places in different tissues of various plant species.

  1. Association with the origin recognition complex suggests a novel role for histone acetyltransferase Hat1p/Hat2p

    Directory of Open Access Journals (Sweden)

    Greenblatt Jack F

    2007-09-01

    Full Text Available Abstract Background Histone modifications have been implicated in the regulation of transcription and, more recently, in DNA replication and repair. In yeast, a major conserved histone acetyltransferase, Hat1p, preferentially acetylates lysine residues 5 and 12 on histone H4. Results Here, we report that a nuclear sub-complex consisting of Hat1p and its partner Hat2p interacts physically and functionally with the origin recognition complex (ORC. While mutational inactivation of the histone acetyltransferase (HAT gene HAT1 alone does not compromise origin firing or initiation of DNA replication, a deletion in HAT1 (or HAT2 exacerbates the growth defects of conditional orc-ts mutants. Thus, the ORC-associated Hat1p-dependent histone acetyltransferase activity suggests a novel linkage between histone modification and DNA replication. Additional genetic and biochemical evidence points to the existence of partly overlapping histone H3 acetyltransferase activities in addition to Hat1p/Hat2p for proper DNA replication efficiency. Furthermore, we demonstrated a dynamic association of Hat1p with chromatin during S-phase that suggests a role of this enzyme at the replication fork. Conclusion We have found an intriguing new association of the Hat1p-dependent histone acetyltransferase in addition to its previously known role in nuclear chromatin assembly (Hat1p/Hat2p-Hif1p. The participation of a distinct Hat1p/Hat2p sub-complex suggests a linkage of histone H4 modification with ORC-dependent DNA replication.

  2. Histone modification alteration coordinated with acquisition of promoter DNA methylation during Epstein-Barr virus infection.

    Science.gov (United States)

    Funata, Sayaka; Matsusaka, Keisuke; Yamanaka, Ryota; Yamamoto, Shogo; Okabe, Atsushi; Fukuyo, Masaki; Aburatani, Hiroyuki; Fukayama, Masashi; Kaneda, Atsushi

    2017-08-15

    Aberrant DNA hypermethylation is a major epigenetic mechanism to inactivate tumor suppressor genes in cancer. Epstein-Barr virus positive gastric cancer is the most frequently hypermethylated tumor among human malignancies. Herein, we performed comprehensive analysis of epigenomic alteration during EBV infection, by Infinium HumanMethylation 450K BeadChip for DNA methylation and ChIP-sequencing for histone modification alteration during EBV infection into gastric cancer cell line MKN7. Among 7,775 genes with increased DNA methylation in promoter regions, roughly half were "DNA methylation-sensitive" genes, which acquired DNA methylation in the whole promoter regions and thus were repressed. These included anti-oncogenic genes, e.g. CDKN2A . The other half were "DNA methylation-resistant" genes, where DNA methylation is acquired in the surrounding of promoter regions, but unmethylated status is protected in the vicinity of transcription start site. These genes thereby retained gene expression, and included DNA repair genes. Histone modification was altered dynamically and coordinately with DNA methylation alteration. DNA methylation-sensitive genes significantly correlated with loss of H3K27me3 pre-marks or decrease of active histone marks, H3K4me3 and H3K27ac. Apoptosis-related genes were significantly enriched in these epigenetically repressed genes. Gain of active histone marks significantly correlated with DNA methylation-resistant genes. Genes related to mitotic cell cycle and DNA repair were significantly enriched in these epigenetically activated genes. Our data show that orchestrated epigenetic alterations are important in gene regulation during EBV infection, and histone modification status in promoter regions significantly associated with acquisition of de novo DNA methylation or protection of unmethylated status at transcription start site.

  3. Laboratory Measurements for H3+ Deuteration Reactions

    Science.gov (United States)

    Bowen, Kyle; Hillenbrand, Pierre-Michel; Urbain, Xavier; Savin, Daniel Wolf

    2018-06-01

    Deuterated molecules are important chemical tracers of protostellar cores. At the ~106 cm-3 particle densities and ~20 K temperatures typical for protostellar cores, most molecules freeze onto dust grains. A notable exception is H3+ and its isotopologues. These become important carriers of positive charge in the gas, can couple to any ambient magnetic field, and can thereby alter the cloud dynamics. Knowing the total abundance of H3+ and its isotopologues is important for studying the evolution of protostellar cores. However, H3+ and D3+ have no dipole moment. They lack a pure rotational spectrum and are not observable at protostellar core temperatures. Fortunately H2D+ and D2H+ have dipole moments and a pure rotational spectrum that can be excited in protostellar cores. Observations of these two molecules, combined with astrochemical models, provide information about the total abundance of H3+ and all its isotopologues. The inferred abundances, though, rely on accurate astrochemical data for the deuteration of H3+ and its isotopologues.Here we present laboratory measurements of the rate coefficients for three important deuterating reactions, namely D + H3+/H2D+/D2H+ → H + H2D+/ D2H+/D3+. Astrochemical models currently rely on rate coefficients from classical (Langevin) or semi-classical methods for these reactions, as fully quantum-mechanical calculations are beyond current computational capabilities. Laboratory studies are the most tractable means of providing the needed data. For our studies we used our novel dual-source, merged fast-beams apparatus, which enables us to study reactions of neutral atoms and molecular ions. Co-propagating beams allow us to measure experimental rate coefficients as a function of collision energy. We extract cross section data from these results, which we then convolve with a Maxwell-Boltzmann distribution to generate thermal rate coefficients. Here we present our results for these three reactions and discuss some implications.

  4. Comparison of temporal and spatial dynamics of seasonal H3N2, pandemic H1N1 and highly pathogenic avian influenza H5N1 virus infections in ferrets.

    Directory of Open Access Journals (Sweden)

    Judith M A van den Brand

    Full Text Available Humans may be infected by different influenza A viruses--seasonal, pandemic, and zoonotic--which differ in presentation from mild upper respiratory tract disease to severe and sometimes fatal pneumonia with extra-respiratory spread. Differences in spatial and temporal dynamics of these infections are poorly understood. Therefore, we inoculated ferrets with seasonal H3N2, pandemic H1N1 (pH1N1, and highly pathogenic avian H5N1 influenza virus and performed detailed virological and pathological analyses at time points from 0.5 to 14 days post inoculation (dpi, as well as describing clinical signs and hematological parameters. H3N2 infection was restricted to the nose and peaked at 1 dpi. pH1N1 infection also peaked at 1 dpi, but occurred at similar levels throughout the respiratory tract. H5N1 infection occurred predominantly in the alveoli, where it peaked for a longer period, from 1 to 3 dpi. The associated lesions followed the same spatial distribution as virus infection, but their severity peaked between 1 and 6 days later. Neutrophil and monocyte counts in peripheral blood correlated with inflammatory cell influx in the alveoli. Of the different parameters used to measure lower respiratory tract disease, relative lung weight and affected lung tissue allowed the best quantitative distinction between the virus groups. There was extra-respiratory spread to more tissues--including the central nervous system--for H5N1 infection than for pH1N1 infection, and to none for H3N2 infection. This study shows that seasonal, pandemic, and zoonotic influenza viruses differ strongly in the spatial and temporal dynamics of infection in the respiratory tract and extra-respiratory tissues of ferrets.

  5. Spectroscopy of H3+: planets, chaos and the Universe

    International Nuclear Information System (INIS)

    Tennyson, J.

    1995-01-01

    This review discusses the H 3 + molecular ion and its deuterated isotopomers. The ion is important because of its fundamental nature, astrophysical significance and dynamical richness. The following topics are discussed: the discovery of H 3 + , its unusual bonding and the important role played by ab initio electronic-structure calculations; the formation of H 3 + and its importance in models of the interstellar medium; the unusual spectroscopy of H 3 + and the accurate quantum calculations which led to laboratory observations; the failure to detect H 3 + in the interstellar medium and its accidental observation in Jupiter; work on H 3 + in the giant planets and other astronomical emission spectra; the very unusual infrared photodissociation spectrum of H 3 + ; and the classical and quantal behaviour of the molecule at its dissociation limit. (author)

  6. The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots In Vivo.

    Science.gov (United States)

    Powers, Natalie R; Parvanov, Emil D; Baker, Christopher L; Walker, Michael; Petkov, Petko M; Paigen, Kenneth

    2016-06-01

    In many mammals, including humans and mice, the zinc finger histone methyltransferase PRDM9 performs the first step in meiotic recombination by specifying the locations of hotspots, the sites of genetic recombination. PRDM9 binds to DNA at hotspots through its zinc finger domain and activates recombination by trimethylating histone H3K4 on adjacent nucleosomes through its PR/SET domain. Recently, the isolated PR/SET domain of PRDM9 was shown capable of also trimethylating H3K36 in vitro, raising the question of whether this reaction occurs in vivo during meiosis, and if so, what its function might be. Here, we show that full-length PRDM9 does trimethylate H3K36 in vivo in mouse spermatocytes. Levels of H3K4me3 and H3K36me3 are highly correlated at hotspots, but mutually exclusive elsewhere. In vitro, we find that although PRDM9 trimethylates H3K36 much more slowly than it does H3K4, PRDM9 is capable of placing both marks on the same histone molecules. In accord with these results, we also show that PRDM9 can trimethylate both K4 and K36 on the same nucleosomes in vivo, but the ratio of K4me3/K36me3 is much higher for the pair of nucleosomes adjacent to the PRDM9 binding site compared to the next pair further away. Importantly, H3K4me3/H3K36me3-double-positive nucleosomes occur only in regions of recombination: hotspots and the pseudoautosomal (PAR) region of the sex chromosomes. These double-positive nucleosomes are dramatically reduced when PRDM9 is absent, showing that this signature is PRDM9-dependent at hotspots; the residual double-positive nucleosomes most likely come from the PRDM9-independent PAR. These results, together with the fact that PRDM9 is the only known mammalian histone methyltransferase with both H3K4 and H3K36 trimethylation activity, suggest that trimethylation of H3K36 plays an important role in the recombination process. Given the known requirement of H3K36me3 for double strand break repair by homologous recombination in somatic cells, we

  7. The dynamics of histone H2A ubiquitination in HeLa cells exposed to rapamycin, ethanol, hydroxyurea, ER stress, heat shock and DNA damage.

    Science.gov (United States)

    Nakata, Shiori; Watanabe, Tadashi; Nakagawa, Koji; Takeda, Hiroshi; Ito, Akihiro; Fujimuro, Masahiro

    2016-03-25

    Polyubiquitination plays key roles in proteasome-dependent and independent cellular events, whereas monoubiquitination is involved in gene expression, DNA repair, protein-protein interaction, and protein trafficking. We previously developed an FK2 antibody, which specifically recognizes poly-Ub moieties but not free Ub. To elucidate the role of Ub conjugation in response to cellular stress, we used FK2 to investigate whether chemical stress (rapamycin, ethanol, or hydroxyurea), ER stress (thapsigargin or tunicamycin), heat shock or DNA damage (H2O2 or methyl methanesulfonate) affect the formation of Ub conjugates including histone H2A (hH2A) ubiquitination. First, we found that all forms of stress tested increased poly-ubiquitinated proteins in HeLa cells. Furthermore, rapamycin and hydroxyurea treatment, and ER stress increased ubiquitination of hH2A, while methyl methanesulfonate (MMS) treatment induced deubiquitination of hH2A. The ethanol and H2O2 treatments, and heat shock transiently induced hH2A de-ubiquitination, although deubiquitinated hH2A were ubiquitinated again by subsequent cultivation. We also revealed that FK2 reacts with not only polyubiquitinated proteins but also mono-ubiquitinated hH2A. With the exception of MMS, all forms of stress tested increased the acetylation of K5-hH2A, K9-hH3 and K8-hH4 in addition to ubiquitination. K118 and K119 of hH2A were ubiquitinated in cells under normal conditions, and K119 was the major ubiquitination site. The MMS-treatment and heat shock induced the deubiquitination of both K118 and K119-histone H2A. Interestingly, MMS treatment did not affect cell HeLa cell viability expressing double-mutant hH2A (KK118,119AA-hH2A), while heat shock slightly but significantly decreased viability of double-mutant hH2A expressing cells, indicating that ubiquitination of both sites associates with recovery from heat shock but not MMS treatment. Thus, we characterized FK2 reactivity and demonstrated that various stresses alter

  8. Histone modifications influence mediator interactions with chromatin

    Science.gov (United States)

    Zhu, Xuefeng; Zhang, Yongqiang; Bjornsdottir, Gudrun; Liu, Zhongle; Quan, Amy; Costanzo, Michael; Dávila López, Marcela; Westholm, Jakub Orzechowski; Ronne, Hans; Boone, Charles; Gustafsson, Claes M.; Myers, Lawrence C.

    2011-01-01

    The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. Genome wide localization studies have demonstrated that Mediator occupancy not only correlates with high levels of transcription, but that the complex also is present at transcriptionally silenced locations. We provide evidence that Mediator localization is guided by an interaction with histone tails, and that this interaction is regulated by their post-translational modifications. A quantitative, high-density genetic interaction map revealed links between Mediator components and factors affecting chromatin structure, especially histone deacetylases. Peptide binding assays demonstrated that pure wild-type Mediator forms stable complexes with the tails of Histone H3 and H4. These binding assays also showed Mediator—histone H4 peptide interactions are specifically inhibited by acetylation of the histone H4 lysine 16, a residue critical in transcriptional silencing. Finally, these findings were validated by tiling array analysis that revealed a broad correlation between Mediator and nucleosome occupancy in vivo, but a negative correlation between Mediator and nucleosomes acetylated at histone H4 lysine 16. Our studies show that chromatin structure and the acetylation state of histones are intimately connected to Mediator localization. PMID:21742760

  9. Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease

    DEFF Research Database (Denmark)

    Cloos, Paul A C; Christensen, Jesper; Agger, Karl

    2008-01-01

    The enzymes catalyzing lysine and arginine methylation of histones are essential for maintaining transcriptional programs and determining cell fate and identity. Until recently, histone methylation was regarded irreversible. However, within the last few years, several families of histone...... demethylases erasing methyl marks associated with gene repression or activation have been identified, underscoring the plasticity and dynamic nature of histone methylation. Recent discoveries have revealed that histone demethylases take part in large multiprotein complexes synergizing with histone deacetylases......, histone methyltransferases, and nuclear receptors to control developmental and transcriptional programs. Here we review the emerging biochemical and biological functions of the histone demethylases and discuss their potential involvement in human diseases, including cancer....

  10. JMJD1B Demethylates H4R3me2s and H3K9me2 to Facilitate Gene Expression for Development of Hematopoietic Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Sihui Li

    2018-04-01

    Full Text Available Summary: The arginine methylation status of histones dynamically changes during many cellular processes, including hematopoietic stem/progenitor cell (HSPC development. The arginine methyltransferases and the readers that transduce the histone codes have been defined. However, whether arginine demethylation actively occurs in cells and what enzyme demethylates the methylarginine residues during various cellular processes are unknown. We report that JMJD1B, previously identified as a lysine demethylase for H3K9me2, mediates arginine demethylation of H4R3me2s and its intermediate, H4R3me1. We show that demethylation of H4R3me2s and H3K9me2s in promoter regions is correlated with active gene expression. Furthermore, knockout of JMJD1B blocks demethylation of H4R3me2s and/or H3K9me2 at distinct clusters of genes and impairs the activation of genes important for HSPC differentiation and development. Consequently, JMJD1B−/− mice show defects in hematopoiesis. Altogether, our study demonstrates that demethylase-mediated active arginine demethylation process exists in eukaryotes and that JMJD1B demethylates both H4R3me2s and H3K9me2 for epigenetic programming during hematopoiesis. : Li et al. identify the arginine demethylase (RDM activity of JMJD1B, a known lysine demethylase (KDM. They reveal that JMJD1B actively mediates demethylation of histone markers H4R3me2s and H3K9me2 in hematopoietic stem/progenitor cells (HSPCs. Keywords: JMJD1B, KDM3B, PRMT5, arginine demethylase, histone, epigenetic programming, gene expression, hematopoiesis

  11. DNA replication origin function is promoted by H3K4 di-methylation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Rizzardi, Lindsay F; Dorn, Elizabeth S; Strahl, Brian D; Cook, Jeanette Gowen

    2012-10-01

    DNA replication is a highly regulated process that is initiated from replication origins, but the elements of chromatin structure that contribute to origin activity have not been fully elucidated. To identify histone post-translational modifications important for DNA replication, we initiated a genetic screen to identify interactions between genes encoding chromatin-modifying enzymes and those encoding proteins required for origin function in the budding yeast Saccharomyces cerevisiae. We found that enzymes required for histone H3K4 methylation, both the histone methyltransferase Set1 and the E3 ubiquitin ligase Bre1, are required for robust growth of several hypomorphic replication mutants, including cdc6-1. Consistent with a role for these enzymes in DNA replication, we found that both Set1 and Bre1 are required for efficient minichromosome maintenance. These phenotypes are recapitulated in yeast strains bearing mutations in the histone substrates (H3K4 and H2BK123). Set1 functions as part of the COMPASS complex to mono-, di-, and tri-methylate H3K4. By analyzing strains lacking specific COMPASS complex members or containing H2B mutations that differentially affect H3K4 methylation states, we determined that these replication defects were due to loss of H3K4 di-methylation. Furthermore, histone H3K4 di-methylation is enriched at chromosomal origins. These data suggest that H3K4 di-methylation is necessary and sufficient for normal origin function. We propose that histone H3K4 di-methylation functions in concert with other histone post-translational modifications to support robust genome duplication.

  12. Posttranslational Modifications of the Histone 3 Tail and Their Impact on the Activity of Histone Lysine Demethylases In Vitro

    DEFF Research Database (Denmark)

    Lohse, Brian; Helgstrand, Charlotte; Andersson, Jan Legaard

    2013-01-01

    mimicking histone H3. Various combinations with other PTMs were employed to study possible cross-talk effects by comparing enzyme kinetic characteristics. We compared the kinetics of histone tail substrates for truncated histone lysine demethylases KDM4A and KDM4C containing only the catalytic core (cc...... toward bis-trimethylated substrates could be observed. Furthermore, a significant difference in the catalytic activity between dimethylated and trimethylated substrates was found for full length demethylases in line with what has been reported previously for truncated demethylases. Histone peptide...

  13. Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells*

    Science.gov (United States)

    Lin, Shu; Yuan, Zuo-Fei; Han, Yumiao; Marchione, Dylan M.; Garcia, Benjamin A.

    2016-01-01

    How histone post-translational modifications (PTMs) are inherited through the cell cycle remains poorly understood. Canonical histones are made in the S phase of the cell cycle. Combining mass spectrometry-based technologies and stable isotope labeling by amino acids in cell culture, we question the distribution of multiple histone PTMs on old versus new histones in synchronized human cells. We show that histone PTMs can be grouped into three categories according to their distributions. Most lysine mono-methylation and acetylation PTMs are either symmetrically distributed on old and new histones or are enriched on new histones. In contrast, most di- and tri-methylation PTMs are enriched on old histones, suggesting that the inheritance of different PTMs is regulated distinctly. Intriguingly, old and new histones are distinct in their phosphorylation status during early mitosis in the following three human cell types: HeLa, 293T, and human foreskin fibroblast cells. The mitotic hallmark H3S10ph is predominantly associated with old H3 at early mitosis and becomes symmetric with the progression of mitosis. This same distribution was observed with other mitotic phosphorylation marks, including H3T3/T6ph, H3.1/2S28ph, and H1.4S26ph but not S28/S31ph on the H3 variant H3.3. Although H3S10ph often associates with the neighboring Lys-9 di- or tri-methylations, they are not required for the asymmetric distribution of Ser-10 phosphorylation on the same H3 tail. Inhibition of the kinase Aurora B does not change the distribution despite significant reduction of H3S10ph levels. However, K9me2 abundance on the new H3 is significantly reduced after Aurora B inhibition, suggesting a cross-talk between H3S10ph and H3K9me2. PMID:27226594

  14. Helicobacter pylori infection-induced H3Ser10 phosphorylation in stepwise gastric carcinogenesis and its clinical implications.

    Science.gov (United States)

    Yang, Tao-Tao; Cao, Na; Zhang, Hai-Hui; Wei, Jian-Bo; Song, Xiao-Xia; Yi, Dong-Min; Chao, Shuai-Heng; Zhang, Li-Da; Kong, Ling-Fei; Han, Shuang-Yin; Yang, Yu-Xiu; Ding, Song-Ze

    2018-04-15

    Our previous works have demonstrated that Helicobacter pylori (Hp) infection can alter histone H3 serine 10 phosphorylation status in gastric epithelial cells. However, whether Helicobacter pylori-induced histone H3 serine 10 phosphorylation participates in gastric carcinogenesis is unknown. We investigate the expression of histone H3 serine 10 phosphorylation in various stages of gastric disease and explore its clinical implication. Stomach biopsy samples from 129 patients were collected and stained with histone H3 serine 10 phosphorylation, Ki67, and Helicobacter pylori by immunohistochemistry staining, expressed as labeling index. They were categorized into nonatrophic gastritis, chronic atrophic gastritis, intestinal metaplasia, low-grade intraepithelial neoplasia, high-grade intraepithelial neoplasia, and intestinal-type gastric cancer groups. Helicobacter pylori infection was determined by either 13 C-urea breath test or immunohistochemistry staining. In Helicobacter pylori-negative patients, labeling index of histone H3 serine 10 phosphorylation was gradually increased in nonatrophic gastritis, chronic atrophic gastritis, intestinal metaplasia groups, peaked at low-grade intraepithelial neoplasia, and declined in high-grade intraepithelial neoplasia and gastric cancer groups. In Helicobacter pylori-infected patients, labeling index of histone H3 serine 10 phosphorylation followed the similar pattern as above, with increased expression over the corresponding Helicobacter pylori-negative controls except in nonatrophic gastritis patient whose labeling index was decreased when compared with Helicobacter pylori-negative control. Labeling index of Ki67 in Helicobacter pylori-negative groups was higher in gastric cancer than chronic atrophic gastritis and low-grade intraepithelial neoplasia groups, and higher in intestinal metaplasia group compared with chronic atrophic gastritis group. In Helicobacter pylori-positive groups, Ki67 labeling index was increased

  15. A brief histone in time: understanding the combinatorial functions of histone PTMs in the nucleosome context.

    Science.gov (United States)

    Ng, Marlee K; Cheung, Peter

    2016-02-01

    It has been over 50 years since Allfrey et al. proposed that histone acetylation regulates RNA synthesis, and the study of histone modifications has progressed at an extraordinary pace for the past two decades. In this review, we provide a perspective on some key events and advances in our understanding of histone modifications. We also highlight reagents and tools from past to present that facilitated progress in this research field. Using histone H3 phosphorylation as an underlying thread, we review the rationale that led to the proposal of the histone code hypothesis, as well as examples that illustrate the concepts of combinatorial histone modifications and cross-talk pathways. We further highlight the importance of investigating these mechanisms in the context of nucleosomes rather than just at the histone level and present current and developing approaches for such studies. Overall, research on histone modifications has yielded great mechanistic insights into the regulation of genomic functions, and extending these studies using nucleosomes will further elucidate the complexity of these pathways in a more physiologically relevant context.

  16. H3 internationalization to Brazil

    OpenAIRE

    Carona, Eduardo João Bonneville Torres

    2012-01-01

    A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics h3 is a Portuguese firm competing in the fast food market with a hamburger gourmet concept. The firm is now a strong player in Portugal (39 stores); Poland, Warsaw (1 store); Spain, Madrid (1 store) and Brazil, São Paulo (2 stores). As a result of their successes in the domestic market, internationalization was a natural step. One o...

  17. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    Science.gov (United States)

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  18. Investigation of histone H4 hyperacetylation dynamics in the 5S rRNA genes family by chromatin immunoprecipitation assay.

    Science.gov (United States)

    Burlibașa, Liliana; Suciu, Ilinca

    2015-12-01

    Oogenesis is a critical event in the formation of female gamete, whose role in development is to transfer genomic information to the next generation. During this process, the gene expression pattern changes dramatically concomitant with genome remodelling, while genomic information is stably maintained. The aim of the present study was to investigate the presence of H4 acetylation of the oocyte and somatic 5S rRNA genes in Triturus cristatus, using chromatin immunoprecipitation assay (ChIP). Our findings suggest that some epigenetic mechanisms such as histone acetylation could be involved in the transcriptional regulation of 5S rRNA gene families.

  19. Polycomb Group Protein Displacement and Gene Activation through MSK-Dependent H3K27me3S28 Phosphorylation

    DEFF Research Database (Denmark)

    Gehani, Simmi Suman; Agrawal-Singh, Shuchi; Dietrich, Nikolaj

    2010-01-01

    Epigenetic regulation of chromatin structure is essential for the expression of genes determining cellular specification and function. The Polycomb repressive complex 2 (PRC2) di- and trimethylates histone H3 on lysine 27 (H3K27me2/me3) to establish repression of specific genes in embryonic stem ...

  20. Radiation response and chromatin dynamics

    International Nuclear Information System (INIS)

    Ikura, Tsuyoshi

    2009-01-01

    Described is a recent progress in studies of chromatin structural alterations induced by DNA damage by radiation. DNA in eukaryotes exists in the chromatin structure and different mechanisms of response to damage and repair of DNA from those in prokaryotes have been recognized. Chromatin is composed from its unit structure of mono-nucleosome, which is formed from DNA and an octamer of core histones of H2A, H2B, H3 and H4. When DNA is damaged, histone structural alterations are required for repair factors and checkpoint proteins to access the damaged site. At the actual genome damage, chemical modification of histone to work as a code occurs dependently on the damage where chromatin remodeling factors and histone chaperone participate for structural alteration and remodeling. As well, the exchange of histone variants and fluidization of histones are recently reported. Known chemical modification involves phosphorylation, acetylation and ubiquitination of H2AX (a variant of H2A), and acetylation and methylation of H3. Each complex of TIP60, NuA4 and INO80 is known to be included in the regulation of chromatin with damaged/repaired DNA for remodeling, but little is known about recruitment of the factors concerned at the damage site. Regulatory mechanisms in above chromatin dynamics with consideration of quality and timing of radiation should be further elucidated for understanding the precise response to DNA damage. (K.T.)

  1. Drosophila KDM2 is a H3K4me3 demethylase regulating nucleolar organization

    Directory of Open Access Journals (Sweden)

    Birchler James A

    2009-10-01

    Full Text Available Abstract Background CG11033 (dKDM2 is the Drosophila homolog of the gene KDM2B. dKDM2 has been known to possess histone lysine demethylase activity towards H3K36me2 in cell lines and it regulates H2A ubiquitination. The human homolog of the gene has dual activity towards H3K36me2 as well as H3K4me3, and plays an important role in cellular senescence. Findings We have used transgenic flies bearing an RNAi construct for the dKDM2 gene. The knockdown of dKDM2 gene was performed by crossing UAS-RNAi-dKDM2 flies with actin-Gal4 flies. Western blots of acid extracted histones and immunofluoresence analysis of polytene chromosome showed the activity of the enzyme dKDM2 to be specific for H3K4me3 in adult flies. Immunofluoresence analysis of polytene chromosome also revealed the presence of multiple nucleoli in RNAi knockdown mutants of dKDM2 and decreased H3-acetylation marks associated with active transcription. Conclusion Our findings indicate that dKDM2 is a histone lysine demethylase with specificity for H3K4me3 and regulates nucleolar organization.

  2. ERRα induces H3K9 demethylation by LSD1 to promote cell invasion

    Science.gov (United States)

    Carnesecchi, Julie; Forcet, Christelle; Zhang, Ling; Tribollet, Violaine; Barenton, Bruno; Boudra, Rafik; Cerutti, Catherine; Billas, Isabelle M. L.; Sérandour, Aurélien A.; Carroll, Jason S.; Beaudoin, Claude; Vanacker, Jean-Marc

    2017-01-01

    Lysine Specific Demethylase 1 (LSD1) removes mono- and dimethyl groups from lysine 4 of histone H3 (H3K4) or H3K9, resulting in repressive or activating (respectively) transcriptional histone marks. The mechanisms that control the balance between these two antagonist activities are not understood. We here show that LSD1 and the orphan nuclear receptor estrogen-related receptor α (ERRα) display commonly activated genes. Transcriptional activation by LSD1 and ERRα involves H3K9 demethylation at the transcriptional start site (TSS). Strikingly, ERRα is sufficient to induce LSD1 to demethylate H3K9 in vitro. The relevance of this mechanism is highlighted by functional data. LSD1 and ERRα coregulate several target genes involved in cell migration, including the MMP1 matrix metallo-protease, also activated through H3K9 demethylation at the TSS. Depletion of LSD1 or ERRα reduces the cellular capacity to invade the extracellular matrix, a phenomenon that is rescued by MMP1 reexpression. Altogether our results identify a regulatory network involving a direct switch in the biochemical activities of a histone demethylase, leading to increased cell invasion. PMID:28348226

  3. ERRα induces H3K9 demethylation by LSD1 to promote cell invasion.

    Science.gov (United States)

    Carnesecchi, Julie; Forcet, Christelle; Zhang, Ling; Tribollet, Violaine; Barenton, Bruno; Boudra, Rafik; Cerutti, Catherine; Billas, Isabelle M L; Sérandour, Aurélien A; Carroll, Jason S; Beaudoin, Claude; Vanacker, Jean-Marc

    2017-04-11

    Lysine Specific Demethylase 1 (LSD1) removes mono- and dimethyl groups from lysine 4 of histone H3 (H3K4) or H3K9, resulting in repressive or activating (respectively) transcriptional histone marks. The mechanisms that control the balance between these two antagonist activities are not understood. We here show that LSD1 and the orphan nuclear receptor estrogen-related receptor α (ERRα) display commonly activated genes. Transcriptional activation by LSD1 and ERRα involves H3K9 demethylation at the transcriptional start site (TSS). Strikingly, ERRα is sufficient to induce LSD1 to demethylate H3K9 in vitro. The relevance of this mechanism is highlighted by functional data. LSD1 and ERRα coregulate several target genes involved in cell migration, including the MMP1 matrix metallo-protease, also activated through H3K9 demethylation at the TSS. Depletion of LSD1 or ERRα reduces the cellular capacity to invade the extracellular matrix, a phenomenon that is rescued by MMP1 reexpression. Altogether our results identify a regulatory network involving a direct switch in the biochemical activities of a histone demethylase, leading to increased cell invasion.

  4. Crucial role of dynamic linker histone binding and divalent ions for DNA accessibility and gene regulation revealed by mesoscale modeling of oligonucleosomes

    Science.gov (United States)

    Collepardo-Guevara, Rosana; Schlick, Tamar

    2012-01-01

    Monte Carlo simulations of a mesoscale model of oligonucleosomes are analyzed to examine the role of dynamic-linker histone (LH) binding/unbinding in high monovalent salt with divalent ions, and to further interpret noted chromatin fiber softening by dynamic LH in monovalent salt conditions. We find that divalent ions produce a fiber stiffening effect that competes with, but does not overshadow, the dramatic softening triggered by dynamic-LH behavior. Indeed, we find that in typical in vivo conditions, dynamic-LH binding/unbinding reduces fiber stiffening dramatically (by a factor of almost 5, as measured by the elasticity modulus) compared with rigidly fixed LH, and also the force needed to initiate chromatin unfolding, making it consistent with those of molecular motors. Our data also show that, during unfolding, divalent ions together with LHs induce linker-DNA bending and DNA–DNA repulsion screening, which guarantee formation of heteromorphic superbeads-on-a-string structures that combine regions of loose and compact fiber independently of the characteristics of the LH–core bond. These structures might be important for gene regulation as they expose regions of the DNA selectively. Dynamic control of LH binding/unbinding, either globally or locally, in the presence of divalent ions, might constitute a mechanism for regulation of gene expression. PMID:22790986

  5. Structure and Functions of Linker Histones.

    Science.gov (United States)

    Lyubitelev, A V; Nikitin, D V; Shaytan, A K; Studitsky, V M; Kirpichnikov, M P

    2016-03-01

    Linker histones such as variants H1, H5, and other similar proteins play an important role in regulation of chromatin structure and dynamics. However, interactions of linker histones with DNA and proteins, as well as specific functions of their different variants, are poorly studied. This is because they acquire tertiary structure only when interacting with a nucleosome, and because of limitations of currently available methods. However, deeper investigation of linker histones and their interactions with other proteins will address a number of important questions - from structure of compacted chromatin to regulation of early embryogenesis. In this review, structures of histone H1 variants and its interaction with chromatin DNA are considered. A possible functional significance of different H1 variants, a role of these proteins in maintaining interphase chromatin structure, and interactions of linker histones with other cellular proteins are also discussed.

  6. Association between H3K4 methylation and cancer prognosis: A meta-analysis.

    Science.gov (United States)

    Li, Simin; Shen, Luyan; Chen, Ke-Neng

    2018-05-08

    Histone H3 lysine 4 methylation (H3K4 methylation), including mono-methylation (H3K4me1), di-methylation (H3K4me2), or tri-methylation (H3K4me3), is one of the epigenetic modifications to histone proteins, which are related to the transcriptional activation of genes. H3K4 methylation has both tumor inhibiting and promoting effects, and the prognostic value of H3K4 methylation in cancer remains controversial. Therefore, we performed a systematic review and meta-analysis to examine the association between H3K4 methylation and cancer prognosis. A comprehensive search of PubMed, Web of Science, ScienceDirect, Embase, and Ovid databases was conducted to identify studies investigating the association between H3K4 methylation and prognosis of patients with malignant tumors. The data and characteristics of each study were extracted, and the hazard ratio (HR) at a 95% confidence interval (CI) was calculated to estimate the effect. A total of 1474 patients in 10 studies were enrolled in this meta-analysis. The pooled HR of 1.52 (95% CI 1.02-2.26) indicated that patients with a lower level of H3K4me2 expression were expected to have shorter overall survival, while the pooled HR of 0.45 (95% CI 0.27-0.74) indicated that patients with a lower level of H3K4me3 expression were expected to have longer overall survival. This meta-analysis indicates that increased H3K4me3 expression and decreased H3K4me2 expression might be predictive factors of poor prognosis in cancer. Further large cohort studies are needed to confirm these findings. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  7. TALE-directed local modulation of H3K9 methylation shapes exon recognition

    Czech Academy of Sciences Publication Activity Database

    Bieberstein, Nicole; Kozáková, Eva; Huranová, Martina; Thakur, P.K.; Krchňáková, Zuzana; Krausová, Michaela; Oesterreich, F.C.; Staněk, David

    2016-01-01

    Roč. 6, jaro (2016), č. článku 29961. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GBP305/12/G034 Institutional support: RVO:68378050 Keywords : histone h3 * human genome * efficient design * chromatin * methyltransferase * transcription * trimethylation * identification * recruitment * annotation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.259, year: 2016

  8. Flexible histone tails in a new mesoscopic oligonucleosome model.

    Science.gov (United States)

    Arya, Gaurav; Zhang, Qing; Schlick, Tamar

    2006-07-01

    We describe a new mesoscopic model of oligonucleosomes that incorporates flexible histone tails. The nucleosome cores are modeled using the discrete surface-charge optimization model, which treats the nucleosome as an electrostatic surface represented by hundreds of point charges; the linker DNAs are treated using a discrete elastic chain model; and the histone tails are modeled using a bead/chain hydrodynamic approach as chains of connected beads where each bead represents five protein residues. Appropriate charges and force fields are assigned to each histone chain so as to reproduce the electrostatic potential, structure, and dynamics of the corresponding atomistic histone tails at different salt conditions. The dynamics of resulting oligonucleosomes at different sizes and varying salt concentrations are simulated by Brownian dynamics with complete hydrodynamic interactions. The analyses demonstrate that the new mesoscopic model reproduces experimental results better than its predecessors, which modeled histone tails as rigid entities. In particular, our model with flexible histone tails: correctly accounts for salt-dependent conformational changes in the histone tails; yields the experimentally obtained values of histone-tail mediated core/core attraction energies; and considers the partial shielding of electrostatic repulsion between DNA linkers as a result of the spatial distribution of histone tails. These effects are crucial for regulating chromatin structure but are absent or improperly treated in models with rigid histone tails. The development of this model of oligonucleosomes thus opens new avenues for studying the role of histone tails and their variants in mediating gene expression through modulation of chromatin structure.

  9. Antifungal properties of wheat histones (H1-H4) and purified wheat histone H1

    Science.gov (United States)

    Wheat (Triticum sp.) histones H1, H2, H3, and H4 were extracted. H1 was further purified. Their activities against fungi with varying degrees of wheat pathogenicity were determined. They included Aspergillus flavus, A. fumigatus, A. niger, F. oxysporum, F. verticillioides, F. solani, F. graminearu...

  10. Prepatterning of developmental gene expression by modified histones before zygotic genome activation

    DEFF Research Database (Denmark)

    Lindeman, Leif C.; Andersen, Ingrid S.; Reiner, Andrew H.

    2011-01-01

    A hallmark of anamniote vertebrate development is a window of embryonic transcription-independent cell divisions before onset of zygotic genome activation (ZGA). Chromatin determinants of ZGA are unexplored; however, marking of developmental genes by modified histones in sperm suggests a predictive...... role of histone marks for ZGA. In zebrafish, pre-ZGA development for ten cell cycles provides an opportunity to examine whether genomic enrichment in modified histones is present before initiation of transcription. By profiling histone H3 trimethylation on all zebrafish promoters before and after ZGA......, we demonstrate here an epigenetic prepatterning of developmental gene expression. This involves pre-ZGA marking of transcriptionally inactive genes involved in homeostatic and developmental regulation by permissive H3K4me3 with or without repressive H3K9me3 or H3K27me3. Our data suggest that histone...

  11. File list: His.PSC.10.H3K27ac.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.10.H3K27ac.AllCell hg19 Histone H3K27ac Pluripotent stem cell SRX693093,SRX...jp/kyushu-u/hg19/assembled/His.PSC.10.H3K27ac.AllCell.bed ... ...X059363,SRX027485,SRX833405,SRX702014,SRX729674,SRX702010,SRX702013,SRX702007,SRX381312,SRX825312 http://dbarchive.biosciencedbc.

  12. File list: His.PSC.20.H3K9ac.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.20.H3K9ac.AllCell mm9 Histone H3K9ac Pluripotent stem cell SRX185844,SRX185...848,SRX873351,SRX873349,SRX873345,SRX097641,SRX130021,SRX873347,SRX187620 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.20.H3K9ac.AllCell.bed ...

  13. File list: His.PSC.05.H3K27ac.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.05.H3K27ac.AllCell hg19 Histone H3K27ac Pluripotent stem cell SRX693093,SRX...jp/kyushu-u/hg19/assembled/His.PSC.05.H3K27ac.AllCell.bed ... ...702006,SRX702010,SRX1091515,SRX059363,SRX825318,SRX381318,SRX381312,SRX702015,SRX702014,SRX825312 http://dbarchive.biosciencedbc.

  14. Biotinylation is a natural, albeit rare, modification of human histones

    Science.gov (United States)

    Kuroishi, Toshinobu; Rios-Avila, Luisa; Pestinger, Valerie; Wijeratne, Subhashinee S. K.; Zempleni, Janos

    2011-01-01

    Previous studies suggest that histones H3 and H4 are posttranslationally modified by binding of the vitamin biotin, catalyzed by holocarboxylase synthetase (HCS). Albeit a rare epigenetic mark, biotinylated histones were repeatedly shown to be enriched in repeat regions and repressed loci, participating in the maintenance of genome stability and gene regulation. Recently, a team of investigators failed to detect biotinylated histones and proposed that biotinylation is not a natural modification of histones, but rather an assay artifact. Here, we describe the results of experiments, including the comparison of various analytical protocols, antibodies, cell lines, classes of histones, and radiotracers. These studies provide unambiguous evidence that biotinylation is a natural, albeit rare, histone modification. Less than 0.001% of human histones H3 and H4 are biotinylated, raising concerns that the abundance might too low to elicit biological effects in vivo. We integrated information from this study, previous studies, and ongoing research efforts to present a new working model in which biological effects are caused by a role of HCS in multiprotein complexes in chromatin. In this model, docking of HCS in chromatin causes the occasional binding of biotin to histones as a tracer for HCS binding sites. PMID:21930408

  15. [PHI regulates histone methylation and acetylation in Burkitt lymphoma Daudi cell line].

    Science.gov (United States)

    Hong, Ling-Ling; Ma, Xu-Dong; Huang, Yi-Qun

    2011-02-01

    This study was purposed to investigate the effects of phenylhexyl isothiocyanate (PHI) on Burkitt lymphoma Daudi cell line and regulation of histone acetylation and methylation in Daudi cells, and to explore the potential mechanism. The apoptotic rate of Daudi cells treated with PHI was measured by flow cytometry, the changes of histone H3 and H4 acetylation, histone H3K9 and H3K4 methylation in Daudi cells treated with PHI were detected by Western blot. The results showed that PHI could induce apoptosis of Daudi cells, increased the acetylation level of H3 and H4, enhanced the methylation of H3K4, but reduced the methylation of H3K9. It is concluded that the PHI can up-regulate the acetylation level of histone H3 associated with transcription stimulation and the methylation of histone H3K4, down-regulate the methylation on histone H3K9 associated with transcription inhibition, promotes the apoptosis of Daudi cells. PHI may be a potential agent for target therapy of lymphoma.

  16. H3K27me3 and H3K4me3 chromatin environment at super-induced dehydration stress memory genes of Arabidopsis thaliana.

    Science.gov (United States)

    Liu, Ning; Fromm, Michael; Avramova, Zoya

    2014-03-01

    Pre-exposure to a stress may alter the plant's cellular, biochemical, and/or transcriptional responses during future encounters as a 'memory' from the previous stress. Genes increasing transcription in response to a first dehydration stress, but producing much higher transcript levels in a subsequent stress, represent the super-induced 'transcription memory' genes in Arabidopsis thaliana. The chromatin environment (histone H3 tri-methylations of Lys 4 and Lys 27, H3K4me3, and H3K27me3) studied at five dehydration stress memory genes revealed existence of distinct memory-response subclasses that responded differently to CLF deficiency and displayed different transcriptional activities during the watered recovery periods. Among the most important findings is the novel aspect of the H3K27me3 function observed at specific dehydration stress memory genes. In contrast to its well-known role as a chromatin repressive mechanism at developmentally regulated genes, H3K27me3 did not prevent transcription from the dehydration stress-responding genes. The high H3K27me3 levels present during transcriptionally inactive states did not interfere with the transition to active transcription and with H3K4me3 accumulation. H3K4me3 and H3K27me3 marks function independently and are not mutually exclusive at the dehydration stress-responding memory genes.

  17. Transcriptional repression is epigenetically marked by H3K9 methylation during SV40 replication

    OpenAIRE

    Kallestad, Les; Christensen, Kendra; Woods, Emily; Milavetz, Barry

    2014-01-01

    Background We have recently shown that T-antigen binding to Site I results in the replication-dependent introduction of H3K9me1 into SV40 chromatin late in infection. Since H3K9me2 and H3K9me3 are also present late in infection, we determined whether their presence was also related to the status of ongoing transcription and replication. Transcription was either inhibited with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidizole (DRB) or stimulated with sodium butyrate and the effects on histone m...

  18. Toxic effects of extracellular histones and their neutralization by vitreous in retinal detachment.

    Science.gov (United States)

    Kawano, Hiroki; Ito, Takashi; Yamada, Shingo; Hashiguchi, Teruto; Maruyama, Ikuro; Hisatomi, Toshio; Nakamura, Makoto; Sakamoto, Taiji

    2014-05-01

    Histones are DNA-binding proteins and are involved in chromatin remodeling and regulation of gene expression. Histones can be released after tissue injuries, and the extracellular histones cause cellular damage and organ dysfunction. Regardless of their clinical significance, the role and relevance of histones in ocular diseases are unknown. We studied the role of histones in eyes with retinal detachment (RD). Vitreous samples were collected during vitrectomy, and the concentration of histone H3 was measured by enzyme-linked immunosorbent assay. The location of the histones and related molecules was examined in a rat RD model. The release of histones and their effects on rat retinal progenitor cells R28 and ARPE-19 were evaluated in vitro. In addition, the protective role of the vitreous body against histones was tested. The intravitreal concentration of histones was higher in eyes with RD (mean, 30.9 ± 9.8 ng/ml) than in control eyes (below the limit of detection, Phistone H3 was observed on the outer side of the detached retina and was associated with photoreceptor death. Histone H3 was released from cultured R28 by oxidative stress. Histones at a concentration 10 μg/ml induced the production of interleukin-8 in ARPE-19 cells (2.5-fold increase, PHistones were toxic to cells at concentrations of ≥ 20 μg/ml. Vitreous body or hyaluronan decreased toxicity of histones by inhibiting diffusion of histones. These results indicate that histones are released from retinas with RD and may modulate the subretinal microenvironment by functioning as damage-associated molecular pattern molecules, thereby inducing proinflammatory cytokines or cell toxicity. In addition, the important role of the vitreous body and hyaluronan in protecting the retina from these toxic effects is suggested.

  19. Destabilization of the Outer and Inner Mitochondrial Membranes by Core and Linker Histones

    Science.gov (United States)

    Cascone, Annunziata; Bruelle, Celine; Lindholm, Dan; Bernardi, Paolo; Eriksson, Ove

    2012-01-01

    Background Extensive DNA damage leads to apoptosis. Histones play a central role in DNA damage sensing and may mediate signals of genotoxic damage to cytosolic effectors including mitochondria. Methodology/Principal Findings We have investigated the effects of histones on mitochondrial function and membrane integrity. We demonstrate that both linker histone H1 and core histones H2A, H2B, H3, and H4 bind strongly to isolated mitochondria. All histones caused a rapid and massive release of the pro-apoptotic intermembrane space proteins cytochrome c and Smac/Diablo, indicating that they permeabilize the outer mitochondrial membrane. In addition, linker histone H1, but not core histones, permeabilized the inner membrane with a collapse of the membrane potential, release of pyridine nucleotides, and mitochondrial fragmentation. Conclusions We conclude that histones destabilize the mitochondrial membranes, a mechanism that may convey genotoxic signals to mitochondria and promote apoptosis following DNA damage. PMID:22523586

  20. Nickel compounds induce histone ubiquitination by inhibiting histone deubiquitinating enzyme activity

    International Nuclear Information System (INIS)

    Ke Qingdong; Ellen, Thomas P.; Costa, Max

    2008-01-01

    Nickel (Ni) compounds are known carcinogens but underlying mechanisms are not clear. Epigenetic changes are likely to play an important role in nickel ion carcinogenesis. Previous studies have shown epigenetic effects of nickel ions, including the loss of histone acetylation and a pronounced increase in dimethylated H3K9 in nickel-exposed cells. In this study, we demonstrated that both water-soluble and insoluble nickel compounds induce histone ubiquitination (uH2A and uH2B) in a variety of cell lines. Investigations of the mechanism by which nickel increases histone ubiquitination in cells reveal that nickel does not affect cellular levels of the substrates of this modification, i.e., ubiquitin, histones, and other non-histone ubiquitinated proteins. In vitro ubiquitination and deubiquitination assays have been developed to further investigate possible effects of nickel on enzymes responsible for histone ubiquitination. Results from the in vitro assays demonstrate that the presence of nickel did not affect the levels of ubiquitinated histones in the ubiquitinating assay. Instead, the addition of nickel significantly prevents loss of uH2A and uH2B in the deubiquitinating assay, suggesting that nickel-induced histone ubiquitination is the result of inhibition of (a) putative deubiquitinating enzyme(s). Additional supporting evidence comes from the comparison of the response to nickel ions with a known deubiquitinating enzyme inhibitor, iodoacetamide (IAA). This study is the first to demonstrate such effects of nickel ions on histone ubiquitination. It also sheds light on the possible mechanisms involved in altering the steady state of this modification. The study provides further evidence that supports the notion that nickel ions alter epigenetic homeostasis in cells, which may lead to altered programs of gene expression and carcinogenesis

  1. Acid-Urea Gel Electrophoresis and Western Blotting of Histones.

    Science.gov (United States)

    Hazzalin, Catherine A; Mahadevan, Louis C

    2017-01-01

    Acid-urea gel electrophoresis offers significant advantages over SDS-PAGE for analysis of post-translational protein modifications, being capable of resolving proteins of similar size but varying in charge. Hence, it can be used to separate protein variants with small charge-altering differences in primary sequence, and is particularly useful in the analysis of histones whose charge variation arises from post-translational modification, such as phosphorylation or acetylation. On acid-urea gels, histones that carry multiple modifications, each with a characteristic charge, are resolved into distinct bands, the so-called "histone ladder." Thus, the extent and distribution of different modification states of histones can be visualized. Here, we describe the analysis of histone H3 by acid-urea gel electrophoresis and western blotting.

  2. HSI2/VAL1 PHD-like domain promotes H3K27 trimethylation to repress the expression of seed maturation genes and complex transgenes in Arabidopsis seedlings.

    Science.gov (United States)

    Veerappan, Vijaykumar; Chen, Naichong; Reichert, Angelika I; Allen, Randy D

    2014-11-01

    The novel mutant allele hsi2-4 was isolated in a genetic screen to identify Arabidopsis mutants with constitutively elevated expression of a glutathione S-transferase F8::luciferase (GSTF8::LUC) reporter gene in Arabidopsis. The hsi2-4 mutant harbors a point mutation that affects the plant homeodomain (PHD)-like domain in HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE GENE2 (HSI2)/VIVIPAROUS1/ABI3-LIKE1 (VAL1). In hsi2-4 seedlings, expression of this LUC transgene and certain endogenous seed-maturation genes is constitutively enhanced. The parental reporter line (WT LUC ) that was used for mutagenesis harbors two independent transgene loci, Kan R and Kan S . Both loci express luciferase whereas only the Kan R locus confers resistance to kanamycin. Here we show that both transgene loci harbor multiple tandem insertions at single sites. Luciferase expression from these sites is regulated by the HSI2 PHD-like domain, which is required for the deposition of repressive histone methylation marks (H3K27me3) at both Kan R and Kan S loci. Expression of LUC and Neomycin Phosphotransferase II transgenes is associated with dynamic changes in H3K27me3 levels, and the activation marks H3K4me3 and H3K36me3 but does not appear to involve repressive H3K9me2 marks, DNA methylation or histone deacetylation. However, hsi2-2 and hsi2-4 mutants are partially resistant to growth inhibition associated with exposure to the DNA methylation inhibitor 5-aza-2'-deoxycytidine. HSI2 is also required for the repression of a subset of regulatory and structural seed maturation genes in vegetative tissues and H3K27me3 marks associated with most of these genes are also HSI2-dependent. These data implicate HSI2 PHD-like domain in the regulation of gene expression involving histone modifications and DNA methylation-mediated epigenetic mechanisms.

  3. A model for transmission of the H3K27me3 epigenetic mark

    DEFF Research Database (Denmark)

    Hansen, Klaus H; Bracken, Adrian P; Pasini, Diego

    2008-01-01

    Organization of chromatin by epigenetic mechanisms is essential for establishing and maintaining cellular identity in developing and adult organisms. A key question that remains unresolved about this process is how epigenetic marks are transmitted to the next cell generation during cell division...... during incorporation of newly synthesized histones. This mechanism ensures maintenance of the H3K27me3 epigenetic mark in proliferating cells, not only during DNA replication when histones synthesized de novo are incorporated, but also outside S phase, thereby preserving chromatin structure...

  4. Middle-down hybrid chromatography/tandem mass spectrometry workflow for characterization of combinatorial post-translational modifications in histones.

    Science.gov (United States)

    Sidoli, Simone; Schwämmle, Veit; Ruminowicz, Chrystian; Hansen, Thomas A; Wu, Xudong; Helin, Kristian; Jensen, Ole N

    2014-10-01

    We present an integrated middle-down proteomics platform for sensitive mapping and quantification of coexisting PTMs in large polypeptides (5-7 kDa). We combined an RP trap column with subsequent weak cation exchange-hydrophilic interaction LC interfaced directly to high mass accuracy ESI MS/MS using electron transfer dissociation. This enabled automated and efficient separation and sequencing of hypermodified histone N-terminal tails for unambiguous localization of combinatorial PTMs. We present Histone Coder and IsoScale software to extract, filter, and analyze MS/MS data, including quantification of cofragmenting isobaric polypeptide species. We characterized histone tails derived from murine embryonic stem cells knockout in suppressor of zeste12 (Suz12(-/-) ) and quantified 256 combinatorial histone marks in histones H3, H4, and H2A. Furthermore, a total of 713 different combinatorial histone marks were identified in purified histone H3. We measured a seven-fold reduction of H3K27me2/me3 (where me2 and me3 are dimethylation and trimethylation, respectively) in Suz12(-) (/) (-) cells and detected significant changes of the relative abundance of 16 other single PTMs of histone H3 and other combinatorial marks. We conclude that the inactivation of Suz12 is associated with changes in the abundance of not only H3K27 methylation but also multiple other PTMs in histone H3 tails. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Specific histone modification responds to arsenic-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lu [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Li, Jun [Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China); Zhan, Zhengbao; Chen, Liping; Li, Daochuan; Bai, Qing; Gao, Chen; Li, Jie; Zeng, Xiaowen; He, Zhini; Wang, Shan; Xiao, Yongmei [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Chen, Wen, E-mail: chenwen@mail.sysu.edu.cn [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Zhang, Aihua, E-mail: aihuagzykd@163.com [Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China)

    2016-07-01

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showed that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO{sub 2} treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.

  6. Specific histone modification responds to arsenic-induced oxidative stress

    International Nuclear Information System (INIS)

    Ma, Lu; Li, Jun; Zhan, Zhengbao; Chen, Liping; Li, Daochuan; Bai, Qing; Gao, Chen; Li, Jie; Zeng, Xiaowen; He, Zhini; Wang, Shan; Xiao, Yongmei; Chen, Wen; Zhang, Aihua

    2016-01-01

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showed that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO 2 treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.

  7. Rapid divergence of histones in Hydrozoa (Cnidaria) and evolution of a novel histone involved in DNA damage response in hydra.

    Science.gov (United States)

    Reddy, Puli Chandramouli; Ubhe, Suyog; Sirwani, Neha; Lohokare, Rasika; Galande, Sanjeev

    2017-08-01

    Histones are fundamental components of chromatin in all eukaryotes. Hydra, an emerging model system belonging to the basal metazoan phylum Cnidaria, provides an ideal platform to understand the evolution of core histone components at the base of eumetazoan phyla. Hydra exhibits peculiar properties such as tremendous regenerative capacity, lack of organismal senescence and rarity of malignancy. In light of the role of histone modifications and histone variants in these processes it is important to understand the nature of histones themselves and their variants in hydra. Here, we report identification of the complete repertoire of histone-coding genes in the Hydra magnipapillata genome. Hydra histones were classified based on their copy numbers, gene structure and other characteristic features. Genomic organization of canonical histone genes revealed the presence of H2A-H2B and H3-H4 paired clusters in high frequency and also a cluster with all core histones along with H1. Phylogenetic analysis of identified members of H2A and H2B histones suggested rapid expansion of these groups in Hydrozoa resulting in the appearance of unique subtypes. Amino acid sequence level comparisons of H2A and H2B forms with bilaterian counterparts suggest the possibility of a highly mobile nature of nucleosomes in hydra. Absolute quantitation of transcripts confirmed the high copy number of histones and supported the canonical nature of H2A. Furthermore, functional characterization of H2A.X.1 and a unique variant H2A.X.2 in the gastric region suggest their role in the maintenance of genome integrity and differentiation processes. These findings provide insights into the evolution of histones and their variants in hydra. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Arginine-rich histones have strong antiviral activity for influenza A viruses.

    Science.gov (United States)

    Hoeksema, Marloes; Tripathi, Shweta; White, Mitchell; Qi, Li; Taubenberger, Jeffery; van Eijk, Martin; Haagsman, Henk; Hartshorn, Kevan L

    2015-10-01

    While histones are best known for DNA binding and transcription-regulating properties, they also have antimicrobial activity against a broad range of potentially pathogenic organisms. Histones are abundant in neutrophil extracellular traps, where they play an important role in NET-mediated antimicrobial killing. Here, we show anti-influenza activity of histones against both seasonal H3N2 and H1N1, but not pandemic H1N1. The arginine rich histones, H3 and H4, had greater neutralizing and viral aggregating activity than the lysine rich histones, H2A and H2B. Of all core histones, histone H4 is most potent in neutralizing IAV, and incubation with IAV with histone H4 results in a decrease in uptake and viral replication by epithelial cells when measured by qRT-PCR. The antiviral activity of histone H4 is mediated principally by direct effects on viral particles. Histone H4 binds to IAV as assessed by ELISA and co-sedimentation of H4 with IAV. H4 also induces aggregation, as assessed by confocal microscopy and light transmission assays. Despite strong antiviral activity against the seasonal IAV strains, H4 was inactive against pandemic H1N1. These findings indicate a possible role for histones in the innate immune response against IAV. © The Author(s) 2015.

  9. Phylogenetic analysis of the core histone doublet and DNA topo II genes of Marseilleviridae: evidence of proto-eukaryotic provenance.

    Science.gov (United States)

    Erives, Albert J

    2017-11-28

    While the genomes of eukaryotes and Archaea both encode the histone-fold domain, only eukaryotes encode the core histone paralogs H2A, H2B, H3, and H4. With DNA, these core histones assemble into the nucleosomal octamer underlying eukaryotic chromatin. Importantly, core histones for H2A and H3 are maintained as neofunctionalized paralogs adapted for general bulk chromatin (canonical H2 and H3) or specialized chromatin (H2A.Z enriched at gene promoters and cenH3s enriched at centromeres). In this context, the identification of core histone-like "doublets" in the cytoplasmic replication factories of the Marseilleviridae (MV) is a novel finding with possible relevance to understanding the origin of eukaryotic chromatin. Here, we analyze and compare the core histone doublet genes from all known MV genomes as well as other MV genes relevant to the origin of the eukaryotic replisome. Using different phylogenetic approaches, we show that MV histone domains encode obligate H2B-H2A and H4-H3 dimers of possible proto-eukaryotic origin. MV core histone moieties form sister clades to each of the four eukaryotic clades of canonical and variant core histones. This suggests that MV core histone moieties diverged prior to eukaryotic neofunctionalizations associated with paired linear chromosomes and variant histone octamer assembly. We also show that MV genomes encode a proto-eukaryotic DNA topoisomerase II enzyme that forms a sister clade to eukaryotes. This is a relevant finding given that DNA topo II influences histone deposition and chromatin compaction and is the second most abundant nuclear protein after histones. The combined domain architecture and phylogenomic analyses presented here suggest that a primitive origin for MV histone genes is a more parsimonious explanation than horizontal gene transfers + gene fusions + sufficient divergence to eliminate relatedness to eukaryotic neofunctionalizations within the H2A and H3 clades without loss of relatedness to each of

  10. Modulation of histone methylation and MLH1 gene silencing by hexavalent chromium

    International Nuclear Information System (INIS)

    Sun Hong; Zhou Xue; Chen Haobin; Li Qin; Costa, Max

    2009-01-01

    Hexavalent chromium [Cr(VI)] is a mutagen and carcinogen, and occupational exposure can lead to lung cancers and other adverse health effects. Genetic changes resulting from DNA damage have been proposed as an important mechanism that mediates chromate's carcinogenicity. Here we show that chromate exposure of human lung A549 cells increased global levels of di- and tri-methylated histone H3 lysine 9 (H3K9) and lysine 4 (H3K4) but decreased the levels of tri-methylated histone H3 lysine 27 (H3K27) and di-methylated histone H3 arginine 2 (H3R2). Most interestingly, H3K9 dimethylation was enriched in the human MLH1 gene promoter following chromate exposure and this was correlated with decreased MLH1 mRNA expression. Chromate exposure increased the protein as well as mRNA levels of G9a a histone methyltransferase that specifically methylates H3K9. This Cr(VI)-induced increase in G9a may account for the global elevation of H3K9 dimethylation. Furthermore, supplementation with ascorbate, the primary reductant of Cr(VI) and also an essential cofactor for the histone demethylase activity, partially reversed the H3K9 dimethylation induced by chromate. Thus our studies suggest that Cr(VI) may target histone methyltransferases and demethylases, which in turn affect both global and gene promoter specific histone methylation, leading to the silencing of specific tumor suppressor genes such as MLH1.

  11. Studies of H3K4me3 demethylation by KDM5B/Jarid1B/PLU1 reveals strong substrate recognition in vitro and identifies 2,4-pyridine-dicarboxylic acid as an in vitro and in cell inhibitor

    DEFF Research Database (Denmark)

    Kristensen, Line Hyltoft; Nielsen, Anders Laerke; Helgstrand, Charlotte

    2012-01-01

    Dynamic methylations and demethylations of histone lysine residues are important for gene regulation and are facilitated by histone methyltransferases and histone demethylases (HDMs). KDM5B/Jarid1B/PLU1 is an H3K4me3/me2 specific lysine demethylase belonging to the family of JmjC domain containing...... lysine specific HDMs (JHDMs). Several studies have linked KDM5B to breast, prostate and skin cancer, highlighting its potential as a drug target. However, most inhibitor studies have focused on other JHDMs, and inhibitors for KDM5B remain to be explored. Here, we report the expression, purification...... and characterization of the catalytic core of recombinant KDM5B (residues 1-769, ccKDM5B). We show that ccKDM5B, recombinantly expressed in insect cells, demethylates H3K4me3 and H3K4me2 in vitro. The kinetic characterization showed that ccKDM5B has a K(m) (app) value of 0.5 µM for its tri-methylated substrate H3...

  12. Mechanisms of transcriptional repression by histone lysine methylation

    DEFF Research Database (Denmark)

    Hublitz, Philip; Albert, Mareike; Peters, Antoine H F M

    2009-01-01

    . In this report, we review the recent literature to deduce mechanisms underlying Polycomb and H3K9 methylation mediated repression, and describe the functional interplay with activating H3K4 methylation. We summarize recent data that indicate a close relationship between GC density of promoter sequences......, transcription factor binding and the antagonizing activities of distinct epigenetic regulators such as histone methyltransferases (HMTs) and histone demethylases (HDMs). Subsequently, we compare chromatin signatures associated with different types of transcriptional outcomes from stable repression to highly...

  13. Histone variants and lipid metabolism

    NARCIS (Netherlands)

    Borghesan, Michela; Mazzoccoli, Gianluigi; Sheedfar, Fareeba; Oben, Jude; Pazienza, Valerio; Vinciguerra, Manlio

    2014-01-01

    Within nucleosomes, canonical histones package the genome, but they can be opportunely replaced with histone variants. The incorporation of histone variants into the nucleosome is a chief cellular strategy to regulate transcription and cellular metabolism. In pathological terms, cellular steatosis

  14. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4.

    Science.gov (United States)

    Herz, Hans-Martin; Mohan, Man; Garruss, Alexander S; Liang, Kaiwei; Takahashi, Yoh-Hei; Mickey, Kristen; Voets, Olaf; Verrijzer, C Peter; Shilatifard, Ali

    2012-12-01

    Monomethylation of histone H3 on Lys 4 (H3K4me1) and acetylation of histone H3 on Lys 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and on enhancers. Although in yeast all H3K4 methylation patterns, including H3K4me1, are implemented by Set1/COMPASS (complex of proteins associated with Set1), there are three classes of COMPASS-like complexes in Drosophila that could carry out H3K4me1 on enhancers: dSet1, Trithorax, and Trithorax-related (Trr). Here, we report that Trr, the Drosophila homolog of the mammalian Mll3/4 COMPASS-like complexes, can function as a major H3K4 monomethyltransferase on enhancers in vivo. Loss of Trr results in a global decrease of H3K4me1 and H3K27ac levels in various tissues. Assays with the cut wing margin enhancer implied a functional role for Trr in enhancer-mediated processes. A genome-wide analysis demonstrated that Trr is required to maintain the H3K4me1 and H3K27ac chromatin signature that resembles the histone modification patterns described for enhancers. Furthermore, studies in the mammalian system suggested a role for the Trr homolog Mll3 in similar processes. Since Trr and mammalian Mll3/4 complexes are distinguished by bearing a unique subunit, the H3K27 demethylase UTX, we propose a model in which the H3K4 monomethyltransferases Trr/Mll3/Mll4 and the H3K27 demethylase UTX cooperate to regulate the transition from inactive/poised to active enhancers.

  15. Histone fractionation by high-performance liquid chromatography on cyanoalkylsilane (CN) reverse-phase columns

    International Nuclear Information System (INIS)

    Gurley, L.R.; Prentice, D.A.; Valdez, J.G.; Spall, W.D.

    1983-01-01

    Previous work described conditions for the rapid fractionation of histones by high-performance liquid chromatography (HPLC) using a reverse-phase μBondapak C 18 column. That procedure resolved the major classes of histones with one exception: the more hydrophobic H2A variant, (MHP)H2A, was not resolved from the H4 histone class. This report extends that work describing experiments using a μBondapak CN column which better resolves the classes of histones from each other including the resolution of (MHP)H2A from the H4. In addition, the less hydrophobic H2A variant, (LHP)H2A, is partially resolved from the (MHP)H2A, and the less hydrophobic H3 variant, (LHP)H3, is resolved from the more hydrophobic H3 variant, (MHP)H3. Lower trifluoroacetic acid (TFA) concentrations (0.1%) in the eluting water/acetonitrile solvent were used with the CN column than were used with the C 18 column which increased the sensitivity of histone detection by ultraviolet absorption at 206 nm. Greater than 95% of the total [ 3 H]lysine-labeled protein applied to the CN column was eluted from the column. Contaminating nonhistone proteins were found to chromatograph in the region of histone elution. These were greatly reduced by isolating nuclei prior to histone preparation. The fractionation of the histones appears to be based on the hydrophobic properties of the proteins. The histone fractions (identified by their electrophoretic mobilities) were eluted from the CN column in the following order: H1, H2B, (LHP)H2A, (MHP)H2A, H4, (LHP)H3, and (MHP)H3. Phosphorylated and acetylated histone species were not resolved from their unmodified parental species

  16. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases1[OPEN

    Science.gov (United States)

    Mengel, Alexander; Ageeva, Alexandra; Durner, Jörg

    2017-01-01

    Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes. PMID:27980017

  17. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases.

    Science.gov (United States)

    Mengel, Alexander; Ageeva, Alexandra; Georgii, Elisabeth; Bernhardt, Jörg; Wu, Keqiang; Durner, Jörg; Lindermayr, Christian

    2017-02-01

    Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. H3S10ph broadly marks early-replicating domains in interphase ESCs and shows reciprocal antagonism with H3K9me2.

    Science.gov (United States)

    Chen, Carol C L; Goyal, Preeti; Karimi, Mohammad M; Abildgaard, Marie H; Kimura, Hiroshi; Lorincz, Matthew C

    2018-01-01

    Phosphorylation of histone H3 at serine 10 (H3S10ph) by Aurora kinases plays an important role in mitosis; however, H3S10ph also marks regulatory regions of inducible genes in interphase mammalian cells, implicating mitosis-independent functions. Using the fluorescent ubiquitin-mediated cell cycle indicator (FUCCI), we found that 30% of the genome in interphase mouse embryonic stem cells (ESCs) is marked with H3S10ph. H3S10ph broadly demarcates gene-rich regions in G1 and is positively correlated with domains of early DNA replication timing (RT) but negatively correlated with H3K9me2 and lamin-associated domains (LADs). Consistent with mitosis-independent kinase activity, this pattern was preserved in ESCs treated with Hesperadin, a potent inhibitor of Aurora B/C kinases. Disruption of H3S10ph by expression of nonphosphorylatable H3.3S10A results in ectopic spreading of H3K9me2 into adjacent euchromatic regions, mimicking the phenotype observed in Drosophila JIL-1 kinase mutants . Conversely, interphase H3S10ph domains expand in Ehmt1 (also known as Glp ) null ESCs, revealing that H3S10ph deposition is restricted by H3K9me2. Strikingly, spreading of H3S10ph at RT transition regions (TTRs) is accompanied by aberrant transcription initiation of genes co-oriented with the replication fork in Ehmt1 -/- and Ehmt2 -/- ESCs, indicating that establishment of repressive chromatin on the leading strand following DNA synthesis may depend upon these lysine methyltransferases. H3S10ph is also anti-correlated with H3K9me2 in interphase murine embryonic fibroblasts (MEFs) and is restricted to intragenic regions of actively transcribing genes by EHMT2. Taken together, these observations reveal that H3S10ph may play a general role in restricting the spreading of repressive chromatin in interphase mammalian cells. © 2018 Chen et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity

    DEFF Research Database (Denmark)

    Pasini, Diego; Bracken, Adrian P; Jensen, Michael R

    2004-01-01

    SUZ12 is a recently identified Polycomb group (PcG) protein, which together with EZH2 and EED forms different Polycomb repressive complexes (PRC2/3). These complexes contain histone H3 lysine (K) 27/9 and histone H1 K26 methyltransferase activity specified by the EZH2 SET domain. Here we show...

  20. Extranuclear detection of histones and nucleosomes in activated human lymphoblasts as an early event in apoptosis.

    NARCIS (Netherlands)

    Gabler, C.; Blank, N.; Hieronymus, T.; Schiller, M.; Berden, J.H.M.; Kalden, J.R.; Lorenz, H.M.

    2004-01-01

    OBJECTIVE: To evaluate the presence of histones and nucleosomes in cell lysates of freshly isolated peripheral blood mononuclear cells (PBMC), fully activated lymphoblasts, or lymphoblasts after induction of apoptosis. METHODS: Each histone class (H1, H2A, H2B, H3, and H4) was detected by western

  1. ERRα induces H3K9 demethylation by LSD1 to promote cell invasion

    OpenAIRE

    Carnesecchi, Julie; Forcet, Christelle; Zhang, Ling; Tribollet, Violaine; Barenton, Bruno; Boudra, Rafik; Cerutti, Catherine; Billas, Isabelle M. L.; Sérandour, Aurélien A.; Carroll, Jason S.; Beaudoin, Claude; Vanacker, Jean-Marc

    2017-01-01

    Dynamic demethylation of histone residues plays a crucial role in the regulation of gene expression. Lysine Specific Demethylase 1 (LSD1) can remove both transcriptionally permissive and repressive histone marks. How these activities are controlled is not clearly understood. Here, we show that the estrogen-related receptor α (ERRα) induces LSD1 to erase repressive marks in vitro. Through such a mechanism, LSD1 and ERRα commonly activate a set of transcriptional targets that include genes invo...

  2. Global turnover of histone post-translational modifications and variants in human cells

    Directory of Open Access Journals (Sweden)

    Zee Barry M

    2010-12-01

    peptide. Lastly, we observed little difference in the turnover between nearly all modified forms of the H3.1, H3.2 and H3.3 variants, with the notable exception that H3.2K36me2 has a faster turnover than this mark on the other H3 variants. Conclusions Quantitative proteomics provides complementary insight to previous work aimed at quantitatively measuring histone turnover, and our results suggest that turnover rates are dependent upon site-specific post-translational modifications and sequence variants.

  3. Targeting post-translational modifications of histones for cancer therapy.

    Science.gov (United States)

    Hsu, Y-C; Hsieh, Y-H; Liao, C-C; Chong, L-W; Lee, C-Y; Yu, Y-L; Chou, R-H

    2015-10-30

    Post-translational modifications (PTMs) on histones including acetylation, methylation, phosphorylation, citrullination, ubiquitination, ADP ribosylation, and sumoylation, play important roles in different biological events including chromatin dynamics, DNA replication, and transcriptional regulation. Aberrant histones PTMs leads to abnormal gene expression and uncontrolled cell proliferation, followed by development of cancers. Therefore, targeting the enzymes required for specific histone PTMs holds a lot of potential for cancer treatment. In this review article, we retrospect the latest studies in the regulations of acetylation, methylation, and phosphorylation of histones. We also summarize inhibitors/drugs that target these modifications for cancer treatment.

  4. Histone Lysine Methylation in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Guang-dong Sun

    2014-01-01

    Full Text Available Diabetic nephropathy (DN belongs to debilitating microvascular complications of diabetes and is the leading cause of end-stage renal diseases worldwide. Furthermore, outcomes from the DCCT/EDIC study showed that DN often persists and progresses despite intensive glucose control in many diabetes patients, possibly as a result of prior episode of hyperglycemia, which is called “metabolic memory.” The underlying mechanisms responsible for the development and progression of DN remain poorly understood. Activation of multiple signaling pathways and key transcription factors can lead to aberrant expression of DN-related pathologic genes in target renal cells. Increasing evidence suggests that epigenetic mechanisms in chromatin such as DNA methylation, histone acetylation, and methylation can influence the pathophysiology of DN and metabolic memory. Exciting researches from cell culture and experimental animals have shown that key histone methylation patterns and the related histone methyltransferases and histone demethylases can play important roles in the regulation of inflammatory and profibrotic genes in renal cells under diabetic conditions. Because histone methylation is dynamic and potentially reversible, it can provide a window of opportunity for the development of much-needed novel therapeutic potential for DN in the future. In this minireview, we discuss recent advances in the field of histone methylation and its roles in the pathogenesis and progression of DN.

  5. Recombinant thrombomodulin protects mice against histone-induced lethal thromboembolism.

    Directory of Open Access Journals (Sweden)

    Mayumi Nakahara

    Full Text Available INTRODUCTION: Recent studies have shown that histones, the chief protein component of chromatin, are released into the extracellular space during sepsis, trauma, and ischemia-reperfusion injury, and act as major mediators of the death of an organism. This study was designed to elucidate the cellular and molecular basis of histone-induced lethality and to assess the protective effects of recombinant thrombomodulin (rTM. rTM has been approved for the treatment of disseminated intravascular coagulation (DIC in Japan, and is currently undergoing a phase III clinical trial in the United States. METHODS: Histone H3 levels in plasma of healthy volunteers and patients with sepsis and DIC were measured using enzyme-linked immunosorbent assay. Male C57BL/6 mice were injected intravenously with purified histones, and pathological examinations were performed. The protective effects of rTM against histone toxicity were analyzed both in vitro and in mice. RESULTS: Histone H3 was not detectable in plasma of healthy volunteers, but significant levels were observed in patients with sepsis and DIC. These levels were higher in non-survivors than in survivors. Extracellular histones triggered platelet aggregation, leading to thrombotic occlusion of pulmonary capillaries and subsequent right-sided heart failure in mice. These mice displayed symptoms of DIC, including thrombocytopenia, prolonged prothrombin time, decreased fibrinogen, fibrin deposition in capillaries, and bleeding. Platelet depletion protected mice from histone-induced death in the first 30 minutes, suggesting that vessel occlusion by platelet-rich thrombi might be responsible for death during the early phase. Furthermore, rTM bound to extracellular histones, suppressed histone-induced platelet aggregation, thrombotic occlusion of pulmonary capillaries, and dilatation of the right ventricle, and rescued mice from lethal thromboembolism. CONCLUSIONS: Extracellular histones cause massive

  6. The Utility of Phosphohistone H3 in Breast Cancer Grading.

    Science.gov (United States)

    Cui, Xiaoyan; Harada, Shuko; Shen, Dejun; Siegal, Gene P; Wei, Shi

    2015-01-01

    The commonly used Nottingham Grading System in breast cancer takes into consideration the presence of tubular formation, nuclear pleomorphism, and the mitotic index (MI), among which the latter has been shown to be the most powerful prognostic factor. In practice, histologic grading is highly subjective, with only moderate interobserver reproducibility. Phosphorylation of histone H3 has been demonstrated to be a specific event in the mitotic phase, and is negligible during interphase. In this study, we evaluated the efficacy of Phosphohistone H3 (PHH3) in the breast cancer grading of 97 consecutive biopsy specimens. PHH3 antibodies clearly revealed discrete, strong nuclear immunoreactivity in mitotically active cells even under low magnification. The PHH3 MI showed a significant correlation with that derived by hematoxylin and eosin (H&E) staining as well as the Ki-67 proliferation index. Further, the pairwise κ-value of the MI was significantly increased, and the pairwise agreement was also markedly improved by PHH3 immunostaining, although a significant proportion of breast cancer cases were upgraded by use of the PHH3 MI. Our data showed that PHH3 provided a more sensitive and accurate MI with less interobserver variability when compared with conventional H&E staining, thus emphasizing its potentially increased value in practice. Reconsideration of breast cancer grading with integration of PHH3 should be considered if it continues to demonstrate superiorly to traditional H&E staining.

  7. Role of H3K4 demethylases in complex neurodevelopmental diseases.

    Science.gov (United States)

    Wynder, Christopher; Stalker, Leanne; Doughty, Martin L

    2010-06-01

    Significant neurological disorders can result from subtle perturbations of gene regulation that are often linked to epigenetic regulation. Proteins that regulate the methylation of lysine 4 of histone H3 (H3K4) and play a central role in epigenetic regulation, and mutations in genes encoding these enzymes have been identified in both autism and Rett syndrome. The H3K4 demethylases remove methyl groups from lysine 4 leading to loss of RNA polymerase binding and transcriptional repression. When these proteins are mutated, brain development is altered. Currently, little is known regarding how these gene regulators function at the genomic level. In this article, we will discuss findings that link H3K4 demethylases to neurodevelopment and neurological disease.

  8. DOT1L and H3K79 Methylation in Transcription and Genomic Stability.

    Science.gov (United States)

    Wood, Katherine; Tellier, Michael; Murphy, Shona

    2018-02-27

    The organization of eukaryotic genomes into chromatin provides challenges for the cell to accomplish basic cellular functions, such as transcription, DNA replication and repair of DNA damage. Accordingly, a range of proteins modify and/or read chromatin states to regulate access to chromosomal DNA. Yeast Dot1 and the mammalian homologue DOT1L are methyltransferases that can add up to three methyl groups to histone H3 lysine 79 (H3K79). H3K79 methylation is implicated in several processes, including transcription elongation by RNA polymerase II, the DNA damage response and cell cycle checkpoint activation. DOT1L is also an important drug target for treatment of mixed lineage leukemia (MLL)-rearranged leukemia where aberrant transcriptional activation is promoted by DOT1L mislocalisation. This review summarizes what is currently known about the role of Dot1/DOT1L and H3K79 methylation in transcription and genomic stability.

  9. DOT1L and H3K79 Methylation in Transcription and Genomic Stability

    Directory of Open Access Journals (Sweden)

    Katherine Wood

    2018-02-01

    Full Text Available The organization of eukaryotic genomes into chromatin provides challenges for the cell to accomplish basic cellular functions, such as transcription, DNA replication and repair of DNA damage. Accordingly, a range of proteins modify and/or read chromatin states to regulate access to chromosomal DNA. Yeast Dot1 and the mammalian homologue DOT1L are methyltransferases that can add up to three methyl groups to histone H3 lysine 79 (H3K79. H3K79 methylation is implicated in several processes, including transcription elongation by RNA polymerase II, the DNA damage response and cell cycle checkpoint activation. DOT1L is also an important drug target for treatment of mixed lineage leukemia (MLL-rearranged leukemia where aberrant transcriptional activation is promoted by DOT1L mislocalisation. This review summarizes what is currently known about the role of Dot1/DOT1L and H3K79 methylation in transcription and genomic stability.

  10. Cu2+-assisted two dimensional charge-mass double focusing gel electrophoresis and mass spectrometric analysis of histone variants.

    Science.gov (United States)

    Zhang, Wenyang; Tang, Xuemei; Ding, Mengjie; Zhong, Hongying

    2014-12-10

    Abundant isoforms and dynamic posttranslational modifications cause the separation and identification of histone variants to be experimentally challenging. To meet this need, we employ two-dimensional electrophoretic gel separation followed by mass spectrometric detection which takes advantage of the chelation of Cu(2+) with amino acid residues exposed on the surfaces of the histone proteins. Acid-extracted rat liver histones were first mixed with CuSO4 solution and then separated in one dimension with triton-acid-urea (TAU) gel electrophoresis and in a second dimension using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The separations result from both the changes in charge and mass upon Cu(2+) chelation. Identities of each separated gel bands were obtained by using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). It was found that the migration of H3 histone isoforms of rat liver is markedly affected by the use of Cu(2+) ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Continual removal of H3K9 promoter methylation by Jmjd2 demethylases is vital for ESC self-renewal and early development

    NARCIS (Netherlands)

    Pedersen, Marianne Terndrup; Kooistra, Susanne Marije; Radzisheuskaya, Aliaksandra; Laugesen, Anne; Johansen, Jens Vilstrup; Hayward, Daniel Geoffrey; Nilsson, Jakob; Agger, Karl; Helin, Kristian

    2016-01-01

    Chromatin-associated proteins are essential for the specification and maintenance of cell identity. They exert these functions through modulating and maintaining transcriptional patterns. To elucidate the functions of the Jmjd2 family of H3K9/H3K36 histone demethylases, we generated conditional

  12. Molecular turnover, the H3.3 dilemma and organismal aging (hypothesis).

    Science.gov (United States)

    Saade, Evelyne; Pirozhkova, Iryna; Aimbetov, Rakhan; Lipinski, Marc; Ogryzko, Vasily

    2015-06-01

    The H3.3 histone variant has been a subject of increasing interest in the field of chromatin studies due to its two distinguishing features. First, its incorporation into chromatin is replication independent unlike the replication-coupled deposition of its canonical counterparts H3.1/2. Second, H3.3 has been consistently associated with an active state of chromatin. In accordance, this histone variant should be expected to be causally involved in the regulation of gene expression, or more generally, its incorporation should have downstream consequences for the structure and function of chromatin. This, however, leads to an apparent paradox: In cells that slowly replicate in the organism, H3.3 will accumulate with time, opening the way to aberrant effects on heterochromatin. Here, we review the indications that H3.3 is expected both to be incorporated in the heterochromatin of slowly replicating cells and to retain its functional downstream effects. Implications for organismal aging are discussed. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  13. Histone deacetylase inhibition abolishes stress-induced spatial memory impairment.

    Science.gov (United States)

    Vargas-López, Viviana; Lamprea, Marisol R; Múnera, Alejandro

    2016-10-01

    Acute stress induced before spatial training impairs memory consolidation. Although non-epigenetic underpinning of such effect has been described, the epigenetic mechanisms involved have not yet been studied. Since spatial training and intense stress have opposite effects on histone acetylation balance, it is conceivable that disruption of such balance may underlie acute stress-induced spatial memory consolidation impairment and that inhibiting histone deacetylases prevents such effect. Trichostatin-A (TSA, a histone deacetylase inhibitor) was used to test its effectiveness in preventing stress' deleterious effect on memory. Male Wistar rats were trained in a spatial task in the Barnes maze; 1-h movement restraint was applied to half of them before training. Immediately after training, stressed and non-stressed animals were randomly assigned to receive either TSA (1mg/kg) or vehicle intraperitoneal injection. Twenty-four hours after training, long-term spatial memory was tested; plasma and brain tissue were collected immediately after the memory test to evaluate corticosterone levels and histone H3 acetylation in several brain areas. Stressed animals receiving vehicle displayed memory impairment, increased plasma corticosterone levels and markedly reduced histone H3 acetylation in prelimbic cortex and hippocampus. Such effects did not occur in stressed animals treated with TSA. The aforementioned results support the hypothesis that acute stress induced-memory impairment is related to histone deacetylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The Histone Demethylase Jhdm1a Regulates Hepatic Gluconeogenesis

    Science.gov (United States)

    Zou, Tie; Yao, Annie Y.; Cooper, Marcus P.; Boyartchuk, Victor; Wang, Yong-Xu

    2012-01-01

    Hepatic gluconeogenesis is required for maintaining blood glucose homeostasis; yet, in diabetes mellitus, this process is unrestrained and is a major contributor to fasting hyperglycemia. To date, the impacts of chromatin modifying enzymes and chromatin landscape on gluconeogenesis are poorly understood. Through catalyzing the removal of methyl groups from specific lysine residues in the histone tail, histone demethylases modulate chromatin structure and, hence, gene expression. Here we perform an RNA interference screen against the known histone demethylases and identify a histone H3 lysine 36 (H3K36) demethylase, Jhdm1a, as a key negative regulator of gluconeogenic gene expression. In vivo, silencing of Jhdm1a promotes liver glucose synthesis, while its exogenous expression reduces blood glucose level. Importantly, the regulation of gluconeogenesis by Jhdm1a requires its demethylation activity. Mechanistically, we find that Jhdm1a regulates the expression of a major gluconeogenic regulator, C/EBPα. This is achieved, at least in part, by its USF1-dependent association with the C/EBPα promoter and its subsequent demethylation of dimethylated H3K36 on the C/EBPα locus. Our work provides compelling evidence that links histone demethylation to transcriptional regulation of gluconeogenesis and has important implications for the treatment of diabetes. PMID:22719268

  15. The histone demethylase Jhdm1a regulates hepatic gluconeogenesis.

    Directory of Open Access Journals (Sweden)

    Dongning Pan

    Full Text Available Hepatic gluconeogenesis is required for maintaining blood glucose homeostasis; yet, in diabetes mellitus, this process is unrestrained and is a major contributor to fasting hyperglycemia. To date, the impacts of chromatin modifying enzymes and chromatin landscape on gluconeogenesis are poorly understood. Through catalyzing the removal of methyl groups from specific lysine residues in the histone tail, histone demethylases modulate chromatin structure and, hence, gene expression. Here we perform an RNA interference screen against the known histone demethylases and identify a histone H3 lysine 36 (H3K36 demethylase, Jhdm1a, as a key negative regulator of gluconeogenic gene expression. In vivo, silencing of Jhdm1a promotes liver glucose synthesis, while its exogenous expression reduces blood glucose level. Importantly, the regulation of gluconeogenesis by Jhdm1a requires its demethylation activity. Mechanistically, we find that Jhdm1a regulates the expression of a major gluconeogenic regulator, C/EBPα. This is achieved, at least in part, by its USF1-dependent association with the C/EBPα promoter and its subsequent demethylation of dimethylated H3K36 on the C/EBPα locus. Our work provides compelling evidence that links histone demethylation to transcriptional regulation of gluconeogenesis and has important implications for the treatment of diabetes.

  16. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1.

    Science.gov (United States)

    Harrison, Joseph S; Cornett, Evan M; Goldfarb, Dennis; DaRosa, Paul A; Li, Zimeng M; Yan, Feng; Dickson, Bradley M; Guo, Angela H; Cantu, Daniel V; Kaustov, Lilia; Brown, Peter J; Arrowsmith, Cheryl H; Erie, Dorothy A; Major, Michael B; Klevit, Rachel E; Krajewski, Krzysztof; Kuhlman, Brian; Strahl, Brian D; Rothbart, Scott B

    2016-09-06

    The epigenetic inheritance of DNA methylation requires UHRF1, a histone- and DNA-binding RING E3 ubiquitin ligase that recruits DNMT1 to sites of newly replicated DNA through ubiquitylation of histone H3. UHRF1 binds DNA with selectivity towards hemi-methylated CpGs (HeDNA); however, the contribution of HeDNA sensing to UHRF1 function remains elusive. Here, we reveal that the interaction of UHRF1 with HeDNA is required for DNA methylation but is dispensable for chromatin interaction, which is governed by reciprocal positive cooperativity between the UHRF1 histone- and DNA-binding domains. HeDNA recognition activates UHRF1 ubiquitylation towards multiple lysines on the H3 tail adjacent to the UHRF1 histone-binding site. Collectively, our studies are the first demonstrations of a DNA-protein interaction and an epigenetic modification directly regulating E3 ubiquitin ligase activity. They also define an orchestrated epigenetic control mechanism involving modifications both to histones and DNA that facilitate UHRF1 chromatin targeting, H3 ubiquitylation, and DNA methylation inheritance.

  17. Genome-Wide H3K4me3 Analysis in Angus Cattle with Divergent Tenderness.

    Directory of Open Access Journals (Sweden)

    Chunping Zhao

    Full Text Available Tenderness is one of the most important properties of meat quality, which is influenced by genetic and environmental factors. As an intensively studied epigenetic marker, histone methylation, occurring on arginine and lysine residues, has pivotal regulatory functions on gene expression. To examine whether histone methylation involves in beef tenderness variation, we analyzed the transcriptome and H3K4me3 enrichment profiles of muscle strips obtained from the longissimus dorsi (LD of Angus steers previously classify to the tender or tough group. We first plotted a global bovine H3K4me3 map on chromosomes and called peak-enriched regions and genes. We found that majorities of H3K4me3 on genes were occupying the first intron and intergenic regions and its maps displayed similar patterns in tender and tough groups, with high H3K4me3 enrichment surrounding the transcription start site (TSS. We also explored the relationship of H3K4me3 and gene expression. The results showed that H3K4me3 enrichment is highly positively correlated with gene expression across the whole genome. Cluster analysis results confirmed the relationship of H3K4me3 enrichment and gene expression. By using a pathway-based approach in genes with H3K4me3 enrichment in promoter regions from the tender cluster, we revealed that those genes involved in the development of different tissues-connective tissue, skeletal and muscular system and functional tissues-; while in tough group those genes engaged in cell death, lipid metabolism and small molecule biochemistry. The results from this study provide a deep insight into understanding of the mechanisms of epigenetic regulations in meat quality and beef tenderness.

  18. Specific modifications of histone tails, but not DNA methylation, mirror the temporal variation of mammalian recombination hotspots.

    Science.gov (United States)

    Zeng, Jia; Yi, Soojin V

    2014-10-16

    Recombination clusters nonuniformly across mammalian genomes at discrete genomic loci referred to as recombination hotspots. Despite their ubiquitous presence, individual hotspots rapidly lose their activities, and the molecular and evolutionary mechanisms underlying such frequent hotspot turnovers (the so-called "recombination hotspot paradox") remain unresolved. Even though some sequence motifs are significantly associated with hotspots, multiple lines of evidence indicate that factors other than underlying sequences, such as epigenetic modifications, may affect the evolution of recombination hotspots. Thus, identifying epigenetic factors that covary with recombination at fine-scale is a promising step for this important research area. It was previously reported that recombination rates correlate with indirect measures of DNA methylation in the human genome. Here, we analyze experimentally determined DNA methylation and histone modification of human sperms, and show that the correlation between DNA methylation and recombination in long-range windows does not hold with respect to the spatial and temporal variation of recombination at hotspots. On the other hand, two histone modifications (H3K4me3 and H3K27me3) overlap extensively with recombination hotspots. Similar trends were observed in mice. These results indicate that specific histone modifications rather than DNA methylation are associated with the rapid evolution of recombination hotspots. Furthermore, many human recombination hotspots occupy "bivalent" chromatin regions that harbor both active (H3K4me3) and repressive (H3K27me3) marks. This may explain why human recombination hotspots tend to occur in nongenic regions, in contrast to yeast and Arabidopsis hotspots that are characterized by generally active chromatins. Our results highlight the dynamic epigenetic underpinnings of recombination hotspot evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for

  19. Cyclical DNA Methylation and Histone Changes Are Induced by LPS to Activate COX-2 in Human Intestinal Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Tiziana Angrisano

    Full Text Available Bacterial lipopolysaccharide (LPS induces release of inflammatory mediators both in immune and epithelial cells. We investigated whether changes of epigenetic marks, including selected histone modification and DNA methylation, may drive or accompany the activation of COX-2 gene in HT-29 human intestinal epithelial cells upon exposure to LPS. Here we describe cyclical histone acetylation (H3, methylation (H3K4, H3K9, H3K27 and DNA methylation changes occurring at COX-2 gene promoter overtime after LPS stimulation. Histone K27 methylation changes are carried out by the H3 demethylase JMJD3 and are essential for COX-2 induction by LPS. The changes of the histone code are associated with cyclical methylation signatures at the promoter and gene body of COX-2 gene.

  20. DAXX-dependent supply of soluble (H3.3-H4) dimers to PML bodies pending deposition into chromatin.

    Science.gov (United States)

    Delbarre, Erwan; Ivanauskiene, Kristina; Küntziger, Thomas; Collas, Philippe

    2013-03-01

    Replication-independent chromatin deposition of histone variant H3.3 is mediated by several chaperones. We report a multistep targeting of newly synthesized epitope-tagged H3.3 to chromatin via PML bodies. H3.3 is recruited to PML bodies in a DAXX-dependent manner, a process facilitated by ASF1A. DAXX is required for enrichment of ATRX, but not ASF1A or HIRA, with PML. Nonetheless, the chaperones colocalize with H3.3 at PML bodies and are found in one or more complexes with PML. Both DAXX and PML are necessary to prevent accumulation of a soluble, nonincorporated pool of H3.3. H3.3 targeting to PML is enhanced with an (H3.3-H4)2 tetramerization mutant of H3.3, suggesting H3.3 recruitment to PML as an (H3.3-H4) dimer rather than as a tetramer. Our data support a model of DAXX-mediated recruitment of (H3.3-H4) dimers to PML bodies, which may function as triage centers for H3.3 deposition into chromatin by distinct chaperones.

  1. Novel chemokine-like activities of histones in tumor metastasis.

    Science.gov (United States)

    Chen, Ruochan; Xie, Yangchun; Zhong, Xiao; Fu, Yongmin; Huang, Yan; Zhen, Yixiang; Pan, Pinhua; Wang, Haichao; Bartlett, David L; Billiar, Timothy R; Lotze, Michael T; Zeh, Herbert J; Fan, Xue-Gong; Tang, Daolin; Kang, Rui

    2016-09-20

    Histones are intracellular nucleosomal components and extracellular damage-associated molecular pattern molecules that modulate chromatin remodeling, as well as the immune response. However, their extracellular roles in cell migration and invasion remain undefined. Here, we demonstrate that histones are novel regulators of tumor metastasis with chemokine-like activities. Indeed, exogenous histones promote both hepatocellular carcinoma (HCC) cell migration and invasion through toll-like receptor (TLR)4, but not TLR2 or the receptor for advanced glycosylation end product. TLR4-mediated activation of nuclear factor-κB (NF-κB) by extracellular signal-regulated kinase (ERK) is required for histone-induced chemokine (e.g., C-C motif ligand 9/10) production. Pharmacological and genetic inhibition of TLR4-ERK-NF-κB signaling impairs histone-induced chemokine production and HCC cell migration. Additionally, TLR4 depletion (by using TLR4-/- mice and TLR4-shRNA) or inhibition of histone release/activity (by administration of heparin and H3 neutralizing antibody) attenuates lung metastasis of HCC cells injected via the tail vein of mice. Thus, histones promote tumor metastasis of HCC cells through the TLR4-NF-κB pathway and represent novel targets for treating patients with HCC.

  2. Germline-specific H1 variants: the "sexy" linker histones.

    Science.gov (United States)

    Pérez-Montero, Salvador; Carbonell, Albert; Azorín, Fernando

    2016-03-01

    The eukaryotic genome is packed into chromatin, a nucleoprotein complex mainly formed by the interaction of DNA with the abundant basic histone proteins. The fundamental structural and functional subunit of chromatin is the nucleosome core particle, which is composed by 146 bp of DNA wrapped around an octameric protein complex formed by two copies of each core histone H2A, H2B, H3, and H4. In addition, although not an intrinsic component of the nucleosome core particle, linker histone H1 directly interacts with it in a monomeric form. Histone H1 binds nucleosomes near the exit/entry sites of linker DNA, determines nucleosome repeat length and stabilizes higher-order organization of nucleosomes into the ∼30 nm chromatin fiber. In comparison to core histones, histone H1 is less well conserved through evolution. Furthermore, histone H1 composition in metazoans is generally complex with most species containing multiple variants that play redundant as well as specific functions. In this regard, a characteristic feature is the presence of specific H1 variants that replace somatic H1s in the germline and during early embryogenesis. In this review, we summarize our current knowledge about their structural and functional properties.

  3. Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells.

    Science.gov (United States)

    Lin, Shu; Yuan, Zuo-Fei; Han, Yumiao; Marchione, Dylan M; Garcia, Benjamin A

    2016-07-15

    How histone post-translational modifications (PTMs) are inherited through the cell cycle remains poorly understood. Canonical histones are made in the S phase of the cell cycle. Combining mass spectrometry-based technologies and stable isotope labeling by amino acids in cell culture, we question the distribution of multiple histone PTMs on old versus new histones in synchronized human cells. We show that histone PTMs can be grouped into three categories according to their distributions. Most lysine mono-methylation and acetylation PTMs are either symmetrically distributed on old and new histones or are enriched on new histones. In contrast, most di- and tri-methylation PTMs are enriched on old histones, suggesting that the inheritance of different PTMs is regulated distinctly. Intriguingly, old and new histones are distinct in their phosphorylation status during early mitosis in the following three human cell types: HeLa, 293T, and human foreskin fibroblast cells. The mitotic hallmark H3S10ph is predominantly associated with old H3 at early mitosis and becomes symmetric with the progression of mitosis. This same distribution was observed with other mitotic phosphorylation marks, including H3T3/T6ph, H3.1/2S28ph, and H1.4S26ph but not S28/S31ph on the H3 variant H3.3. Although H3S10ph often associates with the neighboring Lys-9 di- or tri-methylations, they are not required for the asymmetric distribution of Ser-10 phosphorylation on the same H3 tail. Inhibition of the kinase Aurora B does not change the distribution despite significant reduction of H3S10ph levels. However, K9me2 abundance on the new H3 is significantly reduced after Aurora B inhibition, suggesting a cross-talk between H3S10ph and H3K9me2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Radicals derived from histone hydroperoxides damage nucleobases in RNA and DNA

    DEFF Research Database (Denmark)

    Luxford, C; Dean, R T; Davies, Michael Jonathan

    2000-01-01

    Exposure of individual histone proteins (H1, H2A, H2B, H3, or H4) and histone octamers (consisting of two molecules each of H2A, H2B, H3, and H4) to hydroxyl radicals, generated by gamma-irradiation, in the presence of O(2) generates protein-bound hydroperoxides in a dose-dependent fashion......; this is in accord with previous studies with other proteins. These histone hydroperoxides are stable in the absence of exogenous catalysts (e.g., heat, light, and transition metal ions), but in the presence of these agents decompose rapidly to give a variety of radicals which have been identified by EPR spin...... trapping. Histone hydroperoxide-derived radicals generated on decomposition of the hydroperoxides with Cu(+) react with both pyrimidine and purine nucleobases. Thus, with uridine the histone hydroperoxide-derived radicals undergo addition across the C(5)-C(6) double bond of the pyrimidine ring to give...

  5. Cooperative DNA and histone binding by Uhrf2 links the two major repressive epigenetic pathways

    Science.gov (United States)

    Pichler, Garwin; Wolf, Patricia; Schmidt, Christine S; Meilinger, Daniela; Schneider, Katrin; Frauer, Carina; Fellinger, Karin; Rottach, Andrea; Leonhardt, Heinrich

    2011-01-01

    Gene expression is regulated by DNA as well as histone modifications but the crosstalk and mechanistic link between these epigenetic signals are still poorly understood. Here we investigate the multi-domain protein Uhrf2 that is similar to Uhrf1, an essential cofactor of maintenance DNA methylation. Binding assays demonstrate a cooperative interplay of Uhrf2 domains that induces preference for hemimethylated DNA, the substrate of maintenance methylation, and enhances binding to H3K9me3 heterochromatin marks. FRAP analyses revealed that localization and binding dynamics of Uhrf2 in vivo require an intact tandem Tudor domain and depend on H3K9 trimethylation but not on DNA methylation. Besides the cooperative DNA and histone binding that is characteristic for Uhrf2, we also found an opposite expression pattern of uhrf1 and uhrf2 during differentiation. While uhrf1 is mainly expressed in pluripotent stem cells, uhrf2 is upregulated during differentiation and highly expressed in differentiated mouse tissues. Ectopic expression of Uhrf2 in uhrf1−/− embryonic stem cells did not restore DNA methylation at major satellites indicating functional differences. We propose that the cooperative interplay of Uhrf2 domains may contribute to a tighter epigenetic control of gene expression in differentiated cells. PMID:21598301

  6. Radiation damage to histones

    International Nuclear Information System (INIS)

    Mee, L.K.; Adelstein, S.J.

    1985-01-01

    The damage to histones irradiated in isolation is being elaborated to aid the identification of the crosslinking sites in radiation-induced DNA-histone adducts. Histones are being examined by amino acid analysis to determine the destruction of residues and by polyacrylamide gel electrophoresis to delineate changes in conformation. For the slightly lysine-rich histone, H2A, a specific attack on selective residues has been established, the aromatic residues, tyrosine and phenylalanine, and the heterocyclic residue, histidine, being significantly destroyed. In addition, a significant increase in aspartic acid was found; this may represent a radiation product from scission of the ring in the histidine residues. The similarity of the effects on residues in nitrous oxide-saturated and nitrogen-saturated solutions suggests that OH . and e/sub aq//sup -/ are equally efficient and selective in their attack. On gel electrophoresis degradation of the histone H2A was found to be greatest for irradiations in nitrous oxide-saturated solutions, suggesting CH . is the most effective radical for producing changes in conformation; O/sub 2//sup -/ was essentially ineffective. Other histones are being examined for changes in amino acid composition, conformation, and for the formation of radiation products

  7. Financing exponential growth at H3

    OpenAIRE

    Silva, João Ricardo Ferreira Hipolito da

    2012-01-01

    H3 is a fast-food chain that introduced the concept of gourmet hamburgers in the Portuguese market. This case-study illustrates its financing strategy that supported an exponential growth represented by opening 33 restaurants within approximately 3 years of its inception. H3 is now faced with the challenge of structuring its foreign ventures and change its financial approach. The main covered topics are the options an entrepreneur has for financing a new venture and how it evolves along th...

  8. Diffuse high-grade gliomas with H3 K27M mutations carry a dismal prognosis independent of tumor location.

    Science.gov (United States)

    Karremann, Michael; Gielen, Gerrit H; Hoffmann, Marion; Wiese, Maria; Colditz, Niclas; Warmuth-Metz, Monika; Bison, Brigitte; Claviez, Alexander; van Vuurden, Dannis G; von Bueren, André O; Gessi, Marco; Kühnle, Ingrid; Hans, Volkmar H; Benesch, Martin; Sturm, Dominik; Kortmann, Rolf-Dieter; Waha, Andreas; Pietsch, Torsten; Kramm, Christof M

    2018-01-10

    The novel entity of "diffuse midline glioma, H3 K27M-mutant" has been defined in the 2016 revision of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS). Tumors of this entity arise in CNS midline structures of predominantly pediatric patients and are associated with an overall dismal prognosis. They are defined by K27M mutations in H3F3A or HIST1H3B/C, encoding for histone 3 variants H3.3 and H3.1, respectively, which are considered hallmark events driving gliomagenesis. Here, we characterized 85 centrally reviewed diffuse gliomas on midline locations enrolled in the nationwide pediatric German HIT-HGG registry regarding tumor site, histone 3 mutational status, WHO grade, age, sex, and extent of tumor resection. We found 56 H3.3 K27M-mutant tumors (66%), 6 H3.1 K27M-mutant tumors (7%), and 23 H3-wildtype tumors (27%). H3 K27M-mutant gliomas shared an aggressive clinical course independent of their anatomic location. Multivariate regression analysis confirmed the significant impact of the H3 K27M mutation as the only independent parameter predictive of overall survival (P = 0.009). In H3 K27M-mutant tumors, neither anatomic midline location nor histopathological grading nor extent of tumor resection had an influence on survival. These results substantiate the clinical significance of considering diffuse midline glioma, H3 K27M-mutant, as a distinct entity corresponding to WHO grade IV, carrying a universally fatal prognosis. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  9. BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation

    DEFF Research Database (Denmark)

    Feng, Yunpeng; Vlassis, Arsenios; Roques, Céline

    2016-01-01

    implicated in replication control by measuring RPA accumulation upon replication stress. We identify six factors required for normal rates of DNA replication and characterize a function of the bromodomain and PHD finger-containing protein 3 (BRPF3) in replication initiation. BRPF3 forms a complex with HBO1...

  10. Inhibition of histone deacetylases protects septic mice from lung and splenic apoptosis.

    Science.gov (United States)

    Takebe, Mariko; Oishi, Hirofumi; Taguchi, Kumiko; Aoki, Yuta; Takashina, Michinori; Tomita, Kengo; Yokoo, Hiroki; Takano, Yasuo; Yamazaki, Mitsuaki; Hattori, Yuichi

    2014-04-01

    Epigenetic programming, dynamically regulated by histone acetylation, may play a key role in the pathophysiology of sepsis. We examined whether histone deacetylase (HDAC) can contribute to sepsis-associated inflammation and apoptosis. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in BALB/c mice. An intraperitoneal injection of CG200745 (10 mg/kg), a novel broad-spectrum HDAC inhibitor, or valproic acid (500 mg/kg), a predominant inhibitor of class I HDACs, was given 3 h before surgery. HDAC1, HDAC2, and HDAC3 protein levels were decreased in lungs after CLP. Furthermore, CLP-induced sepsis increased both histone H3 and H4 acetylation levels in lungs. When CG200745 was given, apoptosis induction was strongly suppressed in lungs and spleens of septic mice. This antiapoptotic effect of CG200745 was not accompanied by upregulation of antiapoptotic and downregulation of proapoptotic Bcl-2 family member proteins. Treatment with CG200745 failed to inhibit elevated levels of serum cytokines and prevent lung inflammation in septic mice. Valproic acid also showed antiapoptotic but not anti-inflammatory effects in septic mice. These findings imply that HDAC inhibitors are a unique agent to prevent cell apoptosis in sepsis at their doses that do not improve inflammatory features, indicating that septic inflammation and apoptosis may not necessarily be essential for one another's existence. This study also represents the first report that CLP-induced sepsis downregulates HDACs. Nevertheless, the data with HDAC inhibitors suggest that imbalance in histone acetylation may play a contributory role in expression or repression of genes involved in septic cell apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. RPA Interacts with HIRA and Regulates H3.3 Deposition at Gene Regulatory Elements in Mammalian Cells.

    Science.gov (United States)

    Zhang, Honglian; Gan, Haiyun; Wang, Zhiquan; Lee, Jeong-Heon; Zhou, Hui; Ordog, Tamas; Wold, Marc S; Ljungman, Mats; Zhang, Zhiguo

    2017-01-19

    The histone chaperone HIRA is involved in depositing histone variant H3.3 into distinct genic regions, including promoters, enhancers, and gene bodies. However, how HIRA deposits H3.3 to these regions remains elusive. Through a short hairpin RNA (shRNA) screening, we identified single-stranded DNA binding protein replication protein A (RPA) as a regulator of the deposition of newly synthesized H3.3 into chromatin. We show that RPA physically interacts with HIRA to form RPA-HIRA-H3.3 complexes, and it co-localizes with HIRA and H3.3 at gene promoters and enhancers. Depletion of RPA1, the largest subunit of the RPA complex, dramatically reduces both HIRA association with chromatin and the deposition of newly synthesized H3.3 at promoters and enhancers and leads to altered transcription at gene promoters. These results support a model whereby RPA, best known for its role in DNA replication and repair, recruits HIRA to promoters and enhancers and regulates deposition of newly synthesized H3.3 to these regulatory elements for gene regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. AKT phosphorylates H3-threonine 45 to facilitate termination of gene transcription in response to DNA damage.

    Science.gov (United States)

    Lee, Jong-Hyuk; Kang, Byung-Hee; Jang, Hyonchol; Kim, Tae Wan; Choi, Jinmi; Kwak, Sojung; Han, Jungwon; Cho, Eun-Jung; Youn, Hong-Duk

    2015-05-19

    Post-translational modifications of core histones affect various cellular processes, primarily through transcription. However, their relationship with the termination of transcription has remained largely unknown. In this study, we show that DNA damage-activated AKT phosphorylates threonine 45 of core histone H3 (H3-T45). By genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis, H3-T45 phosphorylation was distributed throughout DNA damage-responsive gene loci, particularly immediately after the transcription termination site. H3-T45 phosphorylation pattern showed close-resemblance to that of RNA polymerase II C-terminal domain (CTD) serine 2 phosphorylation, which establishes the transcription termination signal. AKT1 was more effective than AKT2 in phosphorylating H3-T45. Blocking H3-T45 phosphorylation by inhibiting AKT or through amino acid substitution limited RNA decay downstream of mRNA cleavage sites and decreased RNA polymerase II release from chromatin. Our findings suggest that AKT-mediated phosphorylation of H3-T45 regulates the processing of the 3' end of DNA damage-activated genes to facilitate transcriptional termination. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Repressive histone methylation regulates cardiac myocyte cell cycle exit.

    Science.gov (United States)

    El-Nachef, Danny; Oyama, Kyohei; Wu, Yun-Yu; Freeman, Miles; Zhang, Yiqiang; Robb MacLellan, W

    2018-05-22

    Mammalian cardiac myocytes (CMs) stop proliferating soon after birth and subsequent heart growth comes from hypertrophy, limiting the adult heart's regenerative potential after injury. The molecular events that mediate CM cell cycle exit are poorly understood. To determine the epigenetic mechanisms limiting CM cycling in adult CMs (ACMs) and whether trimethylation of lysine 9 of histone H3 (H3K9me3), a histone modification associated with repressed chromatin, is required for the silencing of cell cycle genes, we developed a transgenic mouse model where H3K9me3 is specifically removed in CMs by overexpression of histone demethylase, KDM4D. Although H3K9me3 is found across the genome, its loss in CMs preferentially disrupts cell cycle gene silencing. KDM4D binds directly to cell cycle genes and reduces H3K9me3 levels at these promotors. Loss of H3K9me3 preferentially leads to increased cell cycle gene expression resulting in enhanced CM cycling. Heart mass was increased in KDM4D overexpressing mice by postnatal day 14 (P14) and continued to increase until 9-weeks of age. ACM number, but not size, was significantly increased in KDM4D expressing hearts, suggesting CM hyperplasia accounts for the increased heart mass. Inducing KDM4D after normal development specifically in ACMs resulted in increased cell cycle gene expression and cycling. We demonstrated that H3K9me3 is required for CM cell cycle exit and terminal differentiation in ACMs. Depletion of H3K9me3 in adult hearts prevents and reverses permanent cell cycle exit and allows hyperplastic growth in adult hearts in vivo. Copyright © 2017. Published by Elsevier Ltd.

  14. H3+-WZNW correlators from Liouville theory

    International Nuclear Information System (INIS)

    Ribault, Sylvain; Teschner, Joerg

    2005-01-01

    We prove that arbitrary correlation functions of the H 3 + -WZNW model on a sphere have a simple expression in terms of Liouville theory correlation functions. This is based on the correspondence between the KZ and BPZ equations, and on relations between the structure constants of Liouville theory and the H 3 + -WZNW model. In the critical level limit, these results imply a direct link between eigenvectors of the Gaudin hamiltonians and the problem of uniformization of Riemann surfaces. We also present an expression for correlation functions of the SL(2)/U(1) gauged WZNW model in terms of correlation functions in Liouville theory

  15. Beyond Born-Oppenheimer theory for ab initio constructed diabatic potential energy surfaces of singlet H3+ to study reaction dynamics using coupled 3D time-dependent wave-packet approach.

    Science.gov (United States)

    Ghosh, Sandip; Mukherjee, Saikat; Mukherjee, Bijit; Mandal, Souvik; Sharma, Rahul; Chaudhury, Pinaki; Adhikari, Satrajit

    2017-08-21

    The workability of beyond Born-Oppenheimer theory to construct diabatic potential energy surfaces (PESs) of a charge transfer atom-diatom collision process has been explored by performing scattering calculations to extract accurate integral cross sections (ICSs) and rate constants for comparison with most recent experimental quantities. We calculate non-adiabatic coupling terms among the lowest three singlet states of H 3 + system (1 1 A ' , 2 1 A ' , and 3 1 A ' ) using MRCI level of calculation and solve the adiabatic-diabatic transformation equation to formulate the diabatic Hamiltonian matrix of the same process [S. Mukherjee et al., J. Chem. Phys. 141, 204306 (2014)] for the entire region of nuclear configuration space. The nonadiabatic effects in the D + + H 2 reaction has been studied by implementing the coupled 3D time-dependent wave packet formalism in hyperspherical coordinates [S. Adhikari and A. J. C. Varandas, Comput. Phys. Commun. 184, 270 (2013)] with zero and non-zero total angular momentum (J) on such newly constructed accurate (ab initio) diabatic PESs of H 3 + . We have depicted the convergence profiles of reaction probabilities for the reactive non-charge transfer, non-reactive charge transfer, and reactive charge transfer processes for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. Finally, total and state-to-state ICSs are calculated as a function of collision energy for the initial rovibrational state (v = 0, j = 0) of the H 2 molecule, and consequently, those quantities are compared with previous theoretical and experimental results.

  16. Structural and Histone Binding Ability Characterizations of Human PWWP Domains

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zeng, Hong; Lam, Robert; Tempel, Wolfram; Amaya, Maria F.; Xu, Chao; Dombrovski, Ludmila; Qiu, Wei; Wang, Yanming; Min, Jinrong (Toronto); (Penn)

    2013-09-25

    The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.

  17. Codanin-1, mutated in the anaemic disease CDAI, regulates Asf1 function in S-phase histone supply

    DEFF Research Database (Denmark)

    Ask, Katrine; Jasencakova, Zusana; Menard, Patrice

    2012-01-01

    Efficient supply of new histones during DNA replication is critical to restore chromatin organization and maintain genome function. The histone chaperone anti-silencing function 1 (Asf1) serves a key function in providing H3.1-H4 to CAF-1 for replication-coupled nucleosome assembly. We identify C...

  18. Cell lineage specific distribution of H3K27 trimethylation accumulation in an in vitro model for human implantation.

    Directory of Open Access Journals (Sweden)

    Gijs Teklenburg

    Full Text Available Female mammals inactivate one of their two X-chromosomes to compensate for the difference in gene-dosage with males that have just one X-chromosome. X-chromosome inactivation is initiated by the expression of the non-coding RNA Xist, which coats the X-chromosome in cis and triggers gene silencing. In early mouse development the paternal X-chromosome is initially inactivated in all cells of cleavage stage embryos (imprinted X-inactivation followed by reactivation of the inactivated paternal X-chromosome exclusively in the epiblast precursors of blastocysts, resulting temporarily in the presence of two active X-chromosomes in this specific lineage. Shortly thereafter, epiblast cells randomly inactivate either the maternal or the paternal X-chromosome. XCI is accompanied by the accumulation of histone 3 lysine 27 trimethylation (H3K27me3 marks on the condensed X-chromosome. It is still poorly understood how XCI is regulated during early human development. Here we have investigated lineage development and the distribution of H3K27me3 foci in human embryos derived from an in-vitro model for human implantation. In this system, embryos are co-cultured on decidualized endometrial stromal cells up to day 8, which allows the culture period to be extended for an additional two days. We demonstrate that after the co-culture period, the inner cell masses have relatively high cell numbers and that the GATA4-positive hypoblast lineage and OCT4-positive epiblast cell lineage in these embryos have segregated. H3K27me3 foci were observed in ∼25% of the trophectoderm cells and in ∼7.5% of the hypoblast cells, but not in epiblast cells. In contrast with day 8 embryos derived from the co-cultures, foci of H3K27me3 were not observed in embryos at day 5 of development derived from regular IVF-cultures. These findings indicate that the dynamics of H3K27me3 accumulation on the X-chromosome in human development is regulated in a lineage specific fashion.

  19. A histone map of human chromosome 20q13.12.

    Directory of Open Access Journals (Sweden)

    Pelin Akan

    Full Text Available We present a systematic search for regulatory elements in a 3.5 Mb region on human chromosome 20q13.12, a region associated with a number of medical conditions such as type II diabetes and obesity.We profiled six histone modifications alongside RNA polymerase II (PolII and CTCF in two cell lines, HeLa S3 and NTERA-2 clone D1 (NT2/D1, by chromatin immunoprecipitation using an in-house spotted DNA array, constructed with 1.8 kb overlapping plasmid clones. In both cells, more than 90% of transcription start sites (TSSs of expressed genes showed enrichments with PolII, di-methylated lysine 4 of histone H3 (H3K4me2, tri-methylated lysine 4 of histone H3 (H3K4me3 or acetylated H3 (H3Ac, whereas mono-methylated lysine 4 of histone H3 (H3K4me1 signals did not correlate with expression. No TSSs were enriched with tri-methylated lysine 27 of histone H3 (H3K27me3 in HeLa S3, while eight TSSs (4 expressed showed enrichments in NT2/D1. We have also located several CTCF binding sites that are potential insulator elements.In summary, we annotated a number of putative regulatory elements in 20q13.12 and went on to verify experimentally a subset of them using dual luciferase reporter assays. Correlating this data to sequence variation can aid identification of disease causing variants.

  20. Histone Acetylome-wide Association Study of Autism Spectrum Disorder.

    Science.gov (United States)

    Sun, Wenjie; Poschmann, Jeremie; Cruz-Herrera Del Rosario, Ricardo; Parikshak, Neelroop N; Hajan, Hajira Shreen; Kumar, Vibhor; Ramasamy, Ramalakshmi; Belgard, T Grant; Elanggovan, Bavani; Wong, Chloe Chung Yi; Mill, Jonathan; Geschwind, Daniel H; Prabhakar, Shyam

    2016-11-17

    The association of histone modification changes with autism spectrum disorder (ASD) has not been systematically examined. We conducted a histone acetylome-wide association study (HAWAS) by performing H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) on 257 postmortem samples from ASD and matched control brains. Despite etiological heterogeneity, ≥68% of syndromic and idiopathic ASD cases shared a common acetylome signature at >5,000 cis-regulatory elements in prefrontal and temporal cortex. Similarly, multiple genes associated with rare genetic mutations in ASD showed common "epimutations." Acetylome aberrations in ASD were not attributable to genetic differentiation at cis-SNPs and highlighted genes involved in synaptic transmission, ion transport, epilepsy, behavioral abnormality, chemokinesis, histone deacetylation, and immunity. By correlating histone acetylation with genotype, we discovered >2,000 histone acetylation quantitative trait loci (haQTLs) in human brain regions, including four candidate causal variants for psychiatric diseases. Due to the relative stability of histone modifications postmortem, we anticipate that the HAWAS approach will be applicable to multiple diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Histone methylation and aging: Lessons learned from model systems

    Science.gov (United States)

    McCauley, Brenna S.; Dang, Weiwei

    2014-01-01

    Aging induces myriad cellular and, ultimately, physiological changes that cause a decline in an organism's functional capabilities. Although the aging process and pathways that regulate it have been extensively studied, only in the last decade have we begun to appreciate that dynamic histone methylation may contribute to this process. In this review, we discuss recent work implicating histone methylation in aging. Loss of certain histone methyltransferases and demethylases changes lifespan in invertebrates, and alterations in histone methylation in aged organisms regulate lifespan and aging phenotypes, including oxidative stress-induced hormesis in yeast, insulin signaling in Caenorhabiditis elegans and mammals, and the senescence-associated secretory phenotype in mammals. In all cases where histone methylation has been shown to impact aging and aging phenotypes, it does so by regulating transcription, suggesting that this is a major mechanism of its action in this context. Histone methylation additionally regulates or is regulated by other cellular pathways that contribute to or combat aging. Given the numerous processes that regulate aging and histone methylation, and are in turn regulated by them, the role of histone methylation in aging is almost certainly underappreciated. PMID:24859460

  2. Global analysis of H3K27me3 as an epigenetic marker in prostate cancer progression.

    Science.gov (United States)

    Ngollo, Marjolaine; Lebert, Andre; Daures, Marine; Judes, Gaelle; Rifai, Khaldoun; Dubois, Lucas; Kemeny, Jean-Louis; Penault-Llorca, Frederique; Bignon, Yves-Jean; Guy, Laurent; Bernard-Gallon, Dominique

    2017-04-12

    H3K27me3 histone marks shape the inhibition of gene transcription. In prostate cancer, the deregulation of H3K27me3 marks might play a role in prostate tumor progression. We investigated genome-wide H3K27me3 histone methylation profile using chromatin immunoprecipitation (ChIP) and 2X400K promoter microarrays to identify differentially-enriched regions in biopsy samples from prostate cancer patients. H3K27me3 marks were assessed in 34 prostate tumors: 11 with Gleason score > 7 (GS > 7), 10 with Gleason score ≤ 7 (GS ≤ 7), and 13 morphologically normal prostate samples. Here, H3K27me3 profiling identified an average of 386 enriched-genes on promoter regions in healthy control group versus 545 genes in GS ≤ 7 and 748 genes in GS > 7 group. We then ran a factorial discriminant analysis (FDA) and compared the enriched genes in prostate-tumor biopsies and normal biopsies using ANOVA to identify significantly differentially-enriched genes. The analysis identified ALG5, EXOSC8, CBX1, GRID2, GRIN3B, ING3, MYO1D, NPHP3-AS1, MSH6, FBXO11, SND1, SPATS2, TENM4 and TRA2A genes. These genes are possibly associated with prostate cancer. Notably, the H3K27me3 histone mark emerged as a novel regulatory mechanism in poor-prognosis prostate cancer. Our findings point to epigenetic mark H3K27me3 as an important event in prostate carcinogenesis and progression. The results reported here provide new molecular insights into the pathogenesis of prostate cancer.

  3. Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome.

    Directory of Open Access Journals (Sweden)

    Tobias D Schneider

    Full Text Available Vertebrate embryos are derived from a transitory pool of pluripotent cells. By the process of embryonic induction, these precursor cells are assigned to specific fates and differentiation programs. Histone post-translational modifications are thought to play a key role in the establishment and maintenance of stable gene expression patterns underlying these processes. While on gene level histone modifications are known to change during differentiation, very little is known about the quantitative fluctuations in bulk histone modifications during development. To investigate this issue we analysed histones isolated from four different developmental stages of Xenopus laevis by mass spectrometry. In toto, we quantified 59 modification states on core histones H3 and H4 from blastula to tadpole stages. During this developmental period, we observed in general an increase in the unmodified states, and a shift from histone modifications associated with transcriptional activity to transcriptionally repressive histone marks. We also compared these naturally occurring patterns with the histone modifications of murine ES cells, detecting large differences in the methylation patterns of histone H3 lysines 27 and 36 between pluripotent ES cells and pluripotent cells from Xenopus blastulae. By combining all detected modification transitions we could cluster their patterns according to their embryonic origin, defining specific histone modification profiles (HMPs for each developmental stage. To our knowledge, this data set represents the first compendium of covalent histone modifications and their quantitative flux during normogenesis in a vertebrate model organism. The HMPs indicate a stepwise maturation of the embryonic epigenome, which may be causal to the progressing restriction of cellular potency during development.

  4. Tandem affinity purification of histones, coupled to mass spectrometry, identifies associated proteins and new sites of post-translational modification in Saccharomyces cerevisiae.

    Science.gov (United States)

    Valero, M Luz; Sendra, Ramon; Pamblanco, Mercè

    2016-03-16

    Histones and their post-translational modifications contribute to regulating fundamental biological processes in all eukaryotic cells. We have applied a conventional tandem affinity purification strategy to histones H3 and H4 of the yeast Saccharomyces cerevisiae. Mass spectrometry analysis of the co-purified proteins revealed multiple associated proteins, including core histones, which indicates that tagged histones may be incorporated to the nucleosome particle. Among the many other co-isolated proteins there are histone chaperones, elements of chromatin remodeling, of nucleosome assembly/disassembly, and of histone modification complexes. The histone chaperone Rtt106p, two members of chromatin assembly FACT complex and Psh1p, an ubiquitin ligase, were the most abundant proteins obtained with both H3-TAP and H4-TAP, regardless of the cell extraction medium stringency. Our mass spectrometry analyses have also revealed numerous novel post-translational modifications, including 30 new chemical modifications in histones, mainly by ubiquitination. We have discovered not only new sites of ubiquitination but that, besides lysine, also serine and threonine residues are targets of ubiquitination on yeast histones. Our results show the standard tandem affinity purification procedure is suitable for application to yeast histones, in order to isolate and characterize histone-binding proteins and post-translational modifications, avoiding the bias caused by histone purification from a chromatin-enriched fraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Reduced H3K27me3 expression in Merkel cell polyoma virus-positive tumors.

    Science.gov (United States)

    Busam, Klaus J; Pulitzer, Melissa P; Coit, Daniel C; Arcila, Maria; Leng, Danielle; Jungbluth, Achim A; Wiesner, Thomas

    2017-06-01

    Merkel cell carcinoma is a primary cutaneous neuroendocrine carcinoma, which once metastatic is difficult to treat. Recent mutation analyses of Merkel cell carcinoma revealed a low number of mutations in Merkel cell polyomavirus-associated tumors, and a high number of mutations in virus-negative combined squamous cell and neuroendocrine carcinomas of chronically sun-damaged skin. We speculated that the paucity of mutations in virus-positive Merkel cell carcinoma may reflect a pathomechanism that depends on derangements of chromatin without alterations in the DNA sequence (epigenetic dysregulation). One central epigenetic regulator is the Polycomb repressive complex 2 (PRC2), which silences genomic regions by trimethylating (me3) lysine (K) 27 of histone H3, and thereby establishes the histone mark H3K27me3. Recent experimental research data demonstrated that PRC2 loss in mice skin results in the formation of Merkel cells. Prompted by these findings, we explored a possible contribution of PRC2 loss in human Merkel cell carcinoma. We examined the immunohistochemical expression of H3K27me3 in 35 Merkel cell carcinomas with pure histological features (22 primary and 13 metastatic lesions) and in 5 combined squamous and neuroendocrine carcinomas of the skin. We found a strong reduction of H3K27me3 staining in tumors with pure histologic features and virus-positive Merkel cell carcinomas. Combined neuroendocrine carcinomas had no or only minimal loss of H3K27me3 labeling. Our findings suggest that a PRC2-mediated epigenetic deregulation may play a role in the pathogenesis of virus-positive Merkel cell carcinomas and in tumors with pure histologic features.

  6. Eviction of linker histone H1 by NAP-family histone chaperones enhances activated transcription.

    Science.gov (United States)

    Zhang, Qian; Giebler, Holli A; Isaacson, Marisa K; Nyborg, Jennifer K

    2015-01-01

    In the Metazoan nucleus, core histones assemble the genomic DNA to form nucleosome arrays, which are further compacted into dense chromatin structures by the linker histone H1. The extraordinary density of chromatin creates an obstacle for accessing the genetic information. Regulation of chromatin dynamics is therefore critical to cellular homeostasis, and histone chaperones serve as prominent players in these processes. In the current study, we examined the role of specific histone chaperones in negotiating the inherently repressive chromatin structure during transcriptional activation. Using a model promoter, we demonstrate that the human nucleosome assembly protein family members hNap1 and SET/Taf1β stimulate transcription in vitro during pre-initiation complex formation, prior to elongation. This stimulatory effect is dependent upon the presence of activators, p300, and Acetyl-CoA. We show that transcription from our chromatin template is strongly repressed by H1, and that both histone chaperones enhance RNA synthesis by overcoming H1-induced repression. Importantly, both hNap1 and SET/Taf1β directly bind H1, and function to enhance transcription by evicting the linker histone from chromatin reconstituted with H1. In vivo studies demonstrate that SET/Taf1β, but not hNap1, strongly stimulates activated transcription from the chromosomally-integrated model promoter, consistent with the observation that SET/Taf1β is nuclear, whereas hNap1 is primarily cytoplasmic. Together, these observations indicate that SET/Taf1β may serve as a critical regulator of H1 dynamics and gene activation in vivo. These studies uncover a novel function for SET that mechanistically couples transcriptional derepression with H1 dynamics. Furthermore, they underscore the significance of chaperone-dependent H1 displacement as an essential early step in the transition of a promoter from a dense chromatin state into one that is permissive to transcription factor binding and robust

  7. Rapid purification of recombinant histones.

    Science.gov (United States)

    Klinker, Henrike; Haas, Caroline; Harrer, Nadine; Becker, Peter B; Mueller-Planitz, Felix

    2014-01-01

    The development of methods to assemble nucleosomes from recombinant histones decades ago has transformed chromatin research. Nevertheless, nucleosome reconstitution remains time consuming to this day, not least because the four individual histones must be purified first. Here, we present a streamlined purification protocol of recombinant histones from bacteria. We termed this method "rapid histone purification" (RHP) as it circumvents isolation of inclusion bodies and thereby cuts out the most time-consuming step of traditional purification protocols. Instead of inclusion body isolation, whole cell extracts are prepared under strongly denaturing conditions that directly solubilize inclusion bodies. By ion exchange chromatography, the histones are purified from the extracts. The protocol has been successfully applied to all four canonical Drosophila and human histones. RHP histones and histones that were purified from isolated inclusion bodies had similar purities. The different purification strategies also did not impact the quality of octamers reconstituted from these histones. We expect that the RHP protocol can be readily applied to the purification of canonical histones from other species as well as the numerous histone variants.

  8. Expression of P. falciparum var Genes Involves Exchange of the Histone Variant H2A.Z at the Promoter

    Science.gov (United States)

    Petter, Michaela; Lee, Chin Chin; Byrne, Timothy J.; Boysen, Katja E.; Volz, Jennifer; Ralph, Stuart A.; Cowman, Alan F.; Brown, Graham V.; Duffy, Michael F.

    2011-01-01

    Plasmodium falciparum employs antigenic variation to evade the human immune response by switching the expression of different variant surface antigens encoded by the var gene family. Epigenetic mechanisms including histone modifications and sub-nuclear compartmentalization contribute to transcriptional regulation in the malaria parasite, in particular to control antigenic variation. Another mechanism of epigenetic control is the exchange of canonical histones with alternative variants to generate functionally specialized chromatin domains. Here we demonstrate that the alternative histone PfH2A.Z is associated with the epigenetic regulation of var genes. In many eukaryotic organisms the histone variant H2A.Z mediates an open chromatin structure at promoters and facilitates diverse levels of regulation, including transcriptional activation. Throughout the asexual, intraerythrocytic lifecycle of P. falciparum we found that the P. falciparum ortholog of H2A.Z (PfH2A.Z) colocalizes with histone modifications that are characteristic of transcriptionally-permissive euchromatin, but not with markers of heterochromatin. Consistent with this finding, antibodies to PfH2A.Z co-precipitate the permissive modification H3K4me3. By chromatin-immunoprecipitation we show that PfH2A.Z is enriched in nucleosomes around the transcription start site (TSS) in both transcriptionally active and silent stage-specific genes. In var genes, however, PfH2A.Z is enriched at the TSS only during active transcription in ring stage parasites. Thus, in contrast to other genes, temporal var gene regulation involves histone variant exchange at promoter nucleosomes. Sir2 histone deacetylases are important for var gene silencing and their yeast ortholog antagonises H2A.Z function in subtelomeric yeast genes. In immature P. falciparum parasites lacking Sir2A or Sir2B high var transcription levels correlate with enrichment of PfH2A.Z at the TSS. As Sir2A knock out parasites mature the var genes are

  9. Comparison of temporal and spatial dynamics of seasonal H3N2, pandemic H1N1 and highly pathogenic avian influenza H5N1 virus infections in ferrets

    NARCIS (Netherlands)

    J.M.A. van den Brand (Judith); K.J. Stittelaar (Koert); G. van Amerongen (Geert); L.A. Reperant (Leslie); L. de Waal (Leon); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2012-01-01

    textabstractHumans may be infected by different influenza A viruses-seasonal, pandemic, and zoonotic-which differ in presentation from mild upper respiratory tract disease to severe and sometimes fatal pneumonia with extra-respiratory spread. Differences in spatial and temporal dynamics of these

  10. Male germ cell apoptosis and epigenetic histone modification induced by Tripterygium wilfordii Hook F.

    Directory of Open Access Journals (Sweden)

    Ji Xiong

    Full Text Available Multiglycosides of Tripterygium wilfordii Hook f (GTW, a Chinese herb-derived medicine used as a remedy for rheumatoid arthritis, are considered to be a reversible anti-fertility drug affecting the mammalian spermatids. However, the mechanism behind this effect is still unknown. To study the possible mechanism behind the impact of GTW on spermatogenesis, we administered 4 groups of 4-week-old male mice with different doses of GTW. We found a dose-dependent decrease in the number of germ cells after 40 days of GTW treatment, and an increase in apoptotic cells from the low-dose to the high-dose group. During this same period the dimethylated level of histone H3 lysine 9 (H3K9me2 in GTW-treated testes germ cells declined. Additionally, spermatogonial stem cells (SSCs from 6-day-old mice were isolated to evaluate the possible effect of GTW or triptolide on development of SSCs. We found a significantly higher incidence of apoptosis and lower dimethylation level of H3K9me2 in the SSCs of GTW or triptolide treatment than in controls. Thus, these data suggest that the GTW-induced apoptosis might be responsible for the fertility impairment in mice. This damage could be traced back to the early stages of spermatogenesis. GTW also affected the epigenetic modification of H3K9 in spermatogenesis. Molecular dynamics simulation suggested that triptolide and dimethylated or trimethylated H3K9 might have similar interaction mechanisms with EED (embryonic ectoderm development. These candidate activation mechanisms provide the first glimpse into the pathway of GTW-induced gonad toxicity, which is crucial for further research and clinical application.

  11. No need to be HAMLET or BAMLET to interact with histones: binding of monomeric alpha-lactalbumin to histones and basic poly-amino acids.

    Science.gov (United States)

    Permyakov, Serge E; Pershikova, Irina V; Khokhlova, Tatyana I; Uversky, Vladimir N; Permyakov, Eugene A

    2004-05-18

    The ability of a specific complex of human alpha-lactalbumin with oleic acid (HAMLET) to induce cell death with selectivity for tumor and undifferentiated cells was shown recently to be mediated by interaction of HAMLET with histone proteins irreversibly disrupting chromatin structure [Duringer, C., et al. (2003) J. Biol. Chem. 278, 42131-42135]. Here we show that monomeric alpha-lactalbumin (alpha-LA) in the absence of fatty acids is also able to bind efficiently to the primary target of HAMLET, histone HIII, regardless of Ca(2+) content. Thus, the modification of alpha-LA by oleic acid is not required for binding to histones. We suggest that interaction of negatively charged alpha-LA with the basic histone stabilizes apo-alpha-LA and destabilizes the Ca(2+)-bound protein due to compensation for excess negative charge of alpha-LA's Ca(2+)-binding loop by positively charged residues of the histone. Spectrofluorimetric curves of titration of alpha-LA by histone H3 were well approximated by a scheme of cooperative binding of four alpha-LA molecules per molecule of histone, with an equilibrium dissociation constant of 1.0 microM. Such a stoichiometry of binding implies that the binding process is not site-specific with respect to histone and likely is driven by just electrostatic interactions. Co-incubation of positively charged poly-amino acids (poly-Lys and poly-Arg) with alpha-LA resulted in effects which were similar to those caused by histone HIII, confirming the electrostatic nature of the alpha-LA-histone interaction. In all cases that were studied, the binding was accompanied by aggregation. The data indicate that alpha-lactalbumin can be used as a basis for the design of antitumor agents, acting through disorganization of chromatin structure due to interaction between alpha-LA and histone proteins.

  12. The histone genes in HeLa cells are on individual transcriptional units

    International Nuclear Information System (INIS)

    Hackett, P.B.; Traub, P.; Gallwitz, D.

    1978-01-01

    The distances of the five major histone genes from their promotors have been investigated in order to determine whether in human cells these genes could be transcribed as a single polycistronic transcriptional unit. By measuring the decreases of both histone protein and histone mRNA synthesis as functions of the ultraviolet light dosage, it was possible to calculate the distances of the histone genes from their promotors. The inactivation kinetics for histone genes H1 and H3 are first-order, indicating a single type of transcriptional unit for each gene. The dose-response kinetics for genes H2A, H2B and H4 are first-order with two distinct rates; 10 to 15% of the genes for each of these histones appear to be much more sensitive to ultraviolet light inactivation than are the majority. It is concluded that the transcriptional units for 85 to 90% of the genes for H2A, H2B and H4 are similar. As determined by the inhibition of protein synthesis, the inactivation coefficients for the major component of each histone are: H1, 907 mm 2 /erg; H2A, 878 mm 2 /erg; H2B, 871 mm 2 /erg; H3, 965 mm 2 /erg; and H4, 792 mm 2 /erg. The sensitivities of histone mRNA synthesis to irradiation were measured by translation in vitro with similar results. The calculated target sizes for the genes (in base-pairs) are: H1, 1190; H2A, 1240; H2B, 1250; H3, 1130; and H4, 1380. This similarity in target sizes for all five of the histones genes indicates that they are primarily transcribed from individual transcriptional units. (author)

  13. The Oncoprotein BRD4-NUT Generates Aberrant Histone Modification Patterns.

    Directory of Open Access Journals (Sweden)

    Barry M Zee

    Full Text Available Defects in chromatin proteins frequently manifest in diseases. A striking case of a chromatin-centric disease is NUT-midline carcinoma (NMC, which is characterized by expression of NUT as a fusion partner most frequently with BRD4. ChIP-sequencing studies from NMC patients revealed that BRD4-NUT (B4N covers large genomic regions and elevates transcription within these domains. To investigate how B4N modulates chromatin, we performed affinity purification of B4N when ectopically expressed in 293-TREx cells and quantified the associated histone posttranslational modifications (PTM using proteomics. We observed significant enrichment of acetylation particularly on H3 K18 and of combinatorial patterns such as H3 K27 acetylation paired with K36 methylation. We postulate that B4N complexes override the preexisting histone code with new PTM patterns that reflect aberrant transcription and that epigenetically modulate the nucleosome environment toward the NMC state.

  14. Meiosis-Specific Loading of the Centromere-Specific Histone CENH3 in Arabidopsis thaliana

    Science.gov (United States)

    Ravi, Maruthachalam; Shibata, Fukashi; Ramahi, Joseph S.; Nagaki, Kiyotaka; Chen, Changbin; Murata, Minoru; Chan, Simon W. L.

    2011-01-01

    Centromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation) and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres. Kinetochores are nucleated by the centromere-specific histone CENH3. Unlike conventional histone H3s, CENH3 is rapidly evolving, particularly in its N-terminal tail domain. Here we describe chimeric variants of CENH3 with alterations in the N-terminal tail that are specifically defective in meiosis. Arabidopsis thaliana cenh3 mutants expressing a GFP-tagged chimeric protein containing the H3 N-terminal tail and the CENH3 C-terminus (termed GFP-tailswap) are sterile because of random meiotic chromosome segregation. These defects result from the specific depletion of GFP-tailswap protein from meiotic kinetochores, which contrasts with its normal localization in mitotic cells. Loss of the GFP-tailswap CENH3 variant in meiosis affects recruitment of the essential kinetochore protein MIS12. Our findings suggest that CENH3 loading dynamics might be regulated differently in mitosis and meiosis. As further support for our hypothesis, we show that GFP-tailswap protein is recruited back to centromeres in a subset of pollen grains in GFP-tailswap once they resume haploid mitosis. Meiotic recruitment of the GFP-tailswap CENH3 variant is not restored by removal of the meiosis-specific cohesin subunit REC8. Our results reveal the existence of a specialized loading pathway for CENH3 during meiosis that is likely to involve the hypervariable N-terminal tail. Meiosis-specific CENH3 dynamics may play a role in modulating meiotic centromere behavior. PMID:21695238

  15. The chromosomal distribution of histone methylation marks in gymnosperms differs from that of angiosperms.

    Science.gov (United States)

    Fuchs, Jörg; Jovtchev, Gabriele; Schubert, Ingo

    2008-01-01

    The chromosomal distribution of seven histone methylation marks (H3K4me2, H3K9me1,2,3 and H3K27me1,2,3) was analysed in the gymnosperm species Pinus sylvestris and Picea abies. Similarly to the situation in other investigated eukaryotes, dimethylation of lysine 4 of histone H3 is restricted to euchromatin in gymnosperms. Surprisingly, also H3K9me1-a mark classified as heterochromatin-specific in angiosperms-labels the euchromatin in P. sylvestris and P. abies. The other investigated methylation marks are either equally distributed along the chromosomes, as H3K9me2 and H3K27me1 (in both species) and H3K9me3 (in P. abies), or enriched at specific types of heterochromatin, as H3K9me3 (in P. sylvestris) and H3K27me2 and H3K27me3 in both species. Although the methylation marks themselves are apparently conserved, their functional specificity within the frame of the 'epigenetic code' might have diverged during evolution.

  16. Differential patterns of histone acetylation in inflammatory bowel diseases

    Directory of Open Access Journals (Sweden)

    Adcock Ian M

    2011-01-01

    Full Text Available Abstract Post-translational modifications of histones, particularly acetylation, are associated with the regulation of inflammatory gene expression. We used two animal models of inflammation of the bowel and biopsy samples from patients with Crohn's disease (CD to study the expression of acetylated histones (H 3 and 4 in inflamed mucosa. Acetylation of histone H4 was significantly elevated in the inflamed mucosa in the trinitrobenzene sulfonic acid model of colitis particularly on lysine residues (K 8 and 12 in contrast to non-inflamed tissue. In addition, acetylated H4 was localised to inflamed tissue and to Peyer's patches (PP in dextran sulfate sodium (DSS-treated rat models. Within the PP, H3 acetylation was detected in the mantle zone whereas H4 acetylation was seen in both the periphery and the germinal centre. Finally, acetylation of H4 was significantly upregulated in inflamed biopsies and PP from patients with CD. Enhanced acetylation of H4K5 and K16 was seen in the PP. These results demonstrate that histone acetylation is associated with inflammation and may provide a novel therapeutic target for mucosal inflammation.

  17. H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells.

    Science.gov (United States)

    Fernández, Agustín F; Bayón, Gustavo F; Urdinguio, Rocío G; Toraño, Estela G; García, María G; Carella, Antonella; Petrus-Reurer, Sandra; Ferrero, Cecilia; Martinez-Camblor, Pablo; Cubillo, Isabel; García-Castro, Javier; Delgado-Calle, Jesús; Pérez-Campo, Flor M; Riancho, José A; Bueno, Clara; Menéndez, Pablo; Mentink, Anouk; Mareschi, Katia; Claire, Fabian; Fagnani, Corrado; Medda, Emanuela; Toccaceli, Virgilia; Brescianini, Sonia; Moran, Sebastián; Esteller, Manel; Stolzing, Alexandra; de Boer, Jan; Nisticò, Lorenza; Stazi, Maria A; Fraga, Mario F

    2015-01-01

    In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors. © 2015 Fernández et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Histone dosage regulates DNA damage sensitivity in a checkpoint-independent manner by the homologous recombination pathway

    Science.gov (United States)

    Liang, Dun; Burkhart, Sarah Lyn; Singh, Rakesh Kumar; Kabbaj, Marie-Helene Miquel; Gunjan, Akash

    2012-01-01

    In eukaryotes, multiple genes encode histone proteins that package genomic deoxyribonucleic acid (DNA) and regulate its accessibility. Because of their positive charge, ‘free’ (non-chromatin associated) histones can bind non-specifically to the negatively charged DNA and affect its metabolism, including DNA repair. We have investigated the effect of altering histone dosage on DNA repair in budding yeast. An increase in histone gene dosage resulted in enhanced DNA damage sensitivity, whereas deletion of a H3–H4 gene pair resulted in reduced levels of free H3 and H4 concomitant with resistance to DNA damaging agents, even in mutants defective in the DNA damage checkpoint. Studies involving the repair of a HO endonuclease-mediated DNA double-strand break (DSB) at the MAT locus show enhanced repair efficiency by the homologous recombination (HR) pathway on a reduction in histone dosage. Cells with reduced histone dosage experience greater histone loss around a DSB, whereas the recruitment of HR factors is concomitantly enhanced. Further, free histones compete with the HR machinery for binding to DNA and associate with certain HR factors, potentially interfering with HR-mediated repair. Our findings may have important implications for DNA repair, genomic stability, carcinogenesis and aging in human cells that have dozens of histone genes. PMID:22850743

  19. The C. elegans H3K27 Demethylase UTX-1 Is Essential for Normal Development, Independent of Its Enzymatic Activity

    DEFF Research Database (Denmark)

    Vandamme, Julien; Buchhorn, Gaëlle Lettier; Sidoli, Simone

    2012-01-01

    specific for H3K27me2/3. We demonstrate that utx-1 is an essential gene that is required for correct embryonic and postembryonic development. Consistent with its homology to UTX, UTX-1 regulates global levels of H3K27me2/3 in C. elegans. Surprisingly, we found that the catalytic activity is not required......Epigenetic modifications influence gene expression and provide a unique mechanism for fine-tuning cellular differentiation and development in multicellular organisms. Here we report on the biological functions of UTX-1, the Caenorhabditis elegans homologue of mammalian UTX, a histone demethylase...

  20. Inhibition of mitotic-specific histone phophorylation by sodium arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Cobo, J.M. [Universidad de Alcala de Henares, Madrid (Spain); Valdez, J.G.; Gurley, L.R. [Los Alamos National Lab., NM (United States)

    1994-10-01

    Synchronized cultures of Chinese hamster cells (line CHO) were used to measure the effects of 10{mu}M sodium arsenite on histone phosphorylation. This treatment caused cell proliferation to be temporarily arrested, after which the cells spontaneously resumed cell proliferation in a radiomimetric manner. Immediately following treatment, it was found that sodium arsenite affected only mitotic-specific HI and H3 phosphorylations. Neither interphase, nor mitotic, H2A and H4 phosphorylations were affected, nor was interphase HI Phosphorylation affected. The phosphorylation of HI was inhibited only in mitosis, reducing HI phosphorylation to 38.1% of control levels, which was the level of interphase HI phosphorylation. The phosphorylation of both H3 variants was inhibited in mitosis, the less hydrophobic H3 to 19% and the more hydrophobic H3 to 24% of control levels. These results suggest that sodium arsenite may inhibite cell proliferation by interfering with the cyclin B/p34{sup cdc2} histone kinase activity which is thought to play a key role in regulating the cell cycle. It has been proposed by our laboratory that HI and H3 phosphorylations play a role in restructuring interphase chromatin into metaphase chromosomes. Interference of this process by sodium arsenite may lead to structurally damaged chromosomes resulting in the increased cancer risks known to be produced by arsenic exposure from the environment.

  1. Selective Biological Responses of Phagocytes and Lungs to Purified Histones.

    Science.gov (United States)

    Fattahi, Fatemeh; Grailer, Jamison J; Lu, Hope; Dick, Rachel S; Parlett, Michella; Zetoune, Firas S; Nuñez, Gabriel; Ward, Peter A

    2017-01-01

    Histones invoke strong proinflammatory responses in many different organs and cells. We assessed biological responses to purified or recombinant histones, using human and murine phagocytes and mouse lungs. H1 had the strongest ability in vitro to induce cell swelling independent of requirements for toll-like receptors (TLRs) 2 or 4. These responses were also associated with lactate dehydrogenase release. H3 and H2B were the strongest inducers of [Ca2+]i elevations in phagocytes. Cytokine and chemokine release from mouse and human phagocytes was predominately a function of H2A and H2B. Double TLR2 and TLR4 knockout (KO) mice had dramatically reduced cytokine release induced in macrophages exposed to individual histones. In contrast, macrophages from single TLR-KO mice showed few inhibitory effects on cytokine production. Using the NLRP3 inflammasome protocol, release of mature IL-1β was predominantly a feature of H1. Acute lung injury following the airway delivery of histones suggested that H1, H2A, and H2B were linked to alveolar leak of albumin and the buildup of polymorphonuclear neutrophils as well as the release of chemokines and cytokines into bronchoalveolar fluids. These results demonstrate distinct biological roles for individual histones in the context of inflammation biology and the requirement of both TLR2 and TLR4. © 2017 S. Karger AG, Basel.

  2. LEPS potential for H3 from force field data

    International Nuclear Information System (INIS)

    Varandas, A.J.C.

    1979-01-01

    A new potential energy surface for H 3 of the London--Eyring--Polanyi--Sato type has been obtained which reproduces the best available estimates for the geometry, classical barrier height, and quadratic force constants of the D/sub infinityh/ saddle point. Other attributes of the surface, e.g., minimum energy profile for the exchange process, spherically averaged potential V 0 , and leading anisotropic potential V 2 , are also shown to be in good agreement with the best available estimates. The simplicity of its functional form further commends it for future dynamical studies

  3. Dynamic epigenetic regulation of gene expression during the life cycle of malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Archna P Gupta

    2013-02-01

    Full Text Available Epigenetic mechanisms are emerging as one of the major factors of the dynamics of gene expression in the human malaria parasite, Plasmodium falciparum. To elucidate the role of chromatin remodeling in transcriptional regulation associated with the progression of the P. falciparum intraerythrocytic development cycle (IDC, we mapped the temporal pattern of chromosomal association with histone H3 and H4 modifications using ChIP-on-chip. Here, we have generated a broad integrative epigenomic map of twelve histone modifications during the P. falciparum IDC including H4K5ac, H4K8ac, H4K12ac, H4K16ac, H3K9ac, H3K14ac, H3K56ac, H4K20me1, H4K20me3, H3K4me3, H3K79me3 and H4R3me2. While some modifications were found to be associated with the vast majority of the genome and their occupancy was constant, others showed more specific and highly dynamic distribution. Importantly, eight modifications displaying tight correlations with transcript levels showed differential affinity to distinct genomic regions with H4K8ac occupying predominantly promoter regions while others occurred at the 5' ends of coding sequences. The promoter occupancy of H4K8ac remained unchanged when ectopically inserted at a different locus, indicating the presence of specific DNA elements that recruit histone modifying enzymes regardless of their broad chromatin environment. In addition, we showed the presence of multivalent domains on the genome carrying more than one histone mark, highlighting the importance of combinatorial effects on transcription. Overall, our work portrays a substantial association between chromosomal locations of various epigenetic markers, transcriptional activity and global stage-specific transitions in the epigenome.

  4. Dynamic epigenetic regulation of gene expression during the life cycle of malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Gupta, Archna P; Chin, Wai Hoe; Zhu, Lei; Mok, Sachel; Luah, Yen-Hoon; Lim, Eng-How; Bozdech, Zbynek

    2013-02-01

    Epigenetic mechanisms are emerging as one of the major factors of the dynamics of gene expression in the human malaria parasite, Plasmodium falciparum. To elucidate the role of chromatin remodeling in transcriptional regulation associated with the progression of the P. falciparum intraerythrocytic development cycle (IDC), we mapped the temporal pattern of chromosomal association with histone H3 and H4 modifications using ChIP-on-chip. Here, we have generated a broad integrative epigenomic map of twelve histone modifications during the P. falciparum IDC including H4K5ac, H4K8ac, H4K12ac, H4K16ac, H3K9ac, H3K14ac, H3K56ac, H4K20me1, H4K20me3, H3K4me3, H3K79me3 and H4R3me2. While some modifications were found to be associated with the vast majority of the genome and their occupancy was constant, others showed more specific and highly dynamic distribution. Importantly, eight modifications displaying tight correlations with transcript levels showed differential affinity to distinct genomic regions with H4K8ac occupying predominantly promoter regions while others occurred at the 5' ends of coding sequences. The promoter occupancy of H4K8ac remained unchanged when ectopically inserted at a different locus, indicating the presence of specific DNA elements that recruit histone modifying enzymes regardless of their broad chromatin environment. In addition, we showed the presence of multivalent domains on the genome carrying more than one histone mark, highlighting the importance of combinatorial effects on transcription. Overall, our work portrays a substantial association between chromosomal locations of various epigenetic markers, transcriptional activity and global stage-specific transitions in the epigenome.

  5. Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1

    Science.gov (United States)

    Musselman, Catherine A.; Avvakumov, Nikita; Watanabe, Reiko; Abraham, Christopher G.; Lalonde, Marie-Eve; Hong, Zehui; Allen, Christopher; Roy, Siddhartha; Nuñez, James K.; Nickoloff, Jac; Kulesza, Caroline A.; Yasui, Akira; Côté, Jacques; Kutateladze, Tatiana G.

    2013-01-01

    The PHD finger protein 1 (PHF1) is essential in epigenetic regulation and genome maintenance. Here, we demonstrate that the Tudor domain of human PHF1 binds to histone H3 trimethylated at Lys36 (H3K36me3). We report a 1.9 Å resolution crystal structure of the Tudor domain in complex with H3K36me3 and describe the molecular mechanism of H3K36me3 recognition using NMR analysis. Binding of PHF1 to H3K36me3 inhibits the ability of the Polycomb PRC2 complex to methylate H3K27 in vitro and in vivo. Laser micro-irradiation data reveal that PHF1 is transiently recruited to DNA double-strand breaks (DSBs), and PHF1 mutants impaired in the H3K36me3 interaction exhibit reduced retention at DSB sites. Together, our findings suggest that PHF1 can mediate deposition of the repressive H3K27me3 mark and acts as an early DNA damage response cofactor. PMID:23142980

  6. The multi-domain protein Np95 connects DNA methylation and histone modification

    Science.gov (United States)

    Rottach, Andrea; Frauer, Carina; Pichler, Garwin; Bonapace, Ian Marc; Spada, Fabio; Leonhardt, Heinrich

    2010-01-01

    DNA methylation and histone modifications play a central role in the epigenetic regulation of gene expression and cell differentiation. Recently, Np95 (also known as UHRF1 or ICBP90) has been found to interact with Dnmt1 and to bind hemimethylated DNA, indicating together with genetic studies a central role in the maintenance of DNA methylation. Using in vitro binding assays we observed a weak preference of Np95 and its SRA (SET- and Ring-associated) domain for hemimethylated CpG sites. However, the binding kinetics of Np95 in living cells was not affected by the complete loss of genomic methylation. Investigating further links with heterochromatin, we could show that Np95 preferentially binds histone H3 N-terminal tails with trimethylated (H3K9me3) but not acetylated lysine 9 via a tandem Tudor domain. This domain contains three highly conserved aromatic amino acids that form an aromatic cage similar to the one binding H3K9me3 in the chromodomain of HP1ß. Mutations targeting the aromatic cage of the Np95 tandem Tudor domain (Y188A and Y191A) abolished specific H3 histone tail binding. These multiple interactions of the multi-domain protein Np95 with hemimethylated DNA and repressive histone marks as well as with DNA and histone methyltransferases integrate the two major epigenetic silencing pathways. PMID:20026581

  7. The multi-domain protein Np95 connects DNA methylation and histone modification.

    Science.gov (United States)

    Rottach, Andrea; Frauer, Carina; Pichler, Garwin; Bonapace, Ian Marc; Spada, Fabio; Leonhardt, Heinrich

    2010-04-01

    DNA methylation and histone modifications play a central role in the epigenetic regulation of gene expression and cell differentiation. Recently, Np95 (also known as UHRF1 or ICBP90) has been found to interact with Dnmt1 and to bind hemimethylated DNA, indicating together with genetic studies a central role in the maintenance of DNA methylation. Using in vitro binding assays we observed a weak preference of Np95 and its SRA (SET- and Ring-associated) domain for hemimethylated CpG sites. However, the binding kinetics of Np95 in living cells was not affected by the complete loss of genomic methylation. Investigating further links with heterochromatin, we could show that Np95 preferentially binds histone H3 N-terminal tails with trimethylated (H3K9me3) but not acetylated lysine 9 via a tandem Tudor domain. This domain contains three highly conserved aromatic amino acids that form an aromatic cage similar to the one binding H3K9me3 in the chromodomain of HP1ss. Mutations targeting the aromatic cage of the Np95 tandem Tudor domain (Y188A and Y191A) abolished specific H3 histone tail binding. These multiple interactions of the multi-domain protein Np95 with hemimethylated DNA and repressive histone marks as well as with DNA and histone methyltransferases integrate the two major epigenetic silencing pathways.

  8. Aberrant histone acetylation contributes to elevated interleukin-6 production in rheumatoid arthritis synovial fibroblasts.

    Science.gov (United States)

    Wada, Takuma Tsuzuki; Araki, Yasuto; Sato, Kojiro; Aizaki, Yoshimi; Yokota, Kazuhiro; Kim, Yoon Taek; Oda, Hiromi; Kurokawa, Riki; Mimura, Toshihide

    2014-02-21

    Accumulating evidence indicates that epigenetic aberrations have a role in the pathogenesis of rheumatoid arthritis (RA). However, reports on histone modifications are as yet quite limited in RA. Interleukin (IL)-6 is an inflammatory cytokine which is known to be involved in the pathogenesis of RA. Here we report the role of histone modifications in elevated IL-6 production in RA synovial fibroblasts (SFs). The level of histone H3 acetylation (H3ac) in the IL-6 promoter was significantly higher in RASFs than osteoarthritis (OA) SFs. This suggests that chromatin structure is in an open or loose state in the IL-6 promoter in RASFs. Furthermore, curcumin, a histone acetyltransferase (HAT) inhibitor, significantly reduced the level of H3ac in the IL-6 promoter, as well as IL-6 mRNA expression and IL-6 protein secretion by RASFs. Taken together, it is suggested that hyperacetylation of histone H3 in the IL-6 promoter induces the increase in IL-6 production by RASFs and thereby participates in the pathogenesis of RA. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. The H3K27 Demethylase JMJD3 Is Required for Maintenance of the Embryonic Respiratory Neuronal Network, Neonatal Breathing, and Survival

    Directory of Open Access Journals (Sweden)

    Thomas Burgold

    2012-11-01

    Full Text Available JMJD3 (KDM6B antagonizes Polycomb silencing by demethylating lysine 27 on histone H3. The interplay of methyltransferases and demethylases at this residue is thought to underlie critical cell fate transitions, and the dynamics of H3K27me3 during neurogenesis posited for JMJD3 a critical role in the acquisition of neural fate. Despite evidence of its involvement in early neural commitment, however, its role in the emergence and maturation of the mammalian CNS remains unknown. Here, we inactivated Jmjd3 in the mouse and found that its loss causes perinatal lethality with the complete and selective disruption of the pre-Bötzinger complex (PBC, the pacemaker of the respiratory rhythm generator. Through genetic and electrophysiological approaches, we show that the enzymatic activity of JMJD3 is selectively required for the maintenance of the PBC and controls critical regulators of PBC activity, uncovering an unanticipated role of this enzyme in the late structuring and function of neuronal networks.

  10. Comparative Analyses of H3K4 and H3K27 Trimethylations Between the Mouse Cerebrum and Testis

    KAUST Repository

    Cui, Peng; Liu, Wanfe; Zhao, Yuhui; Lin, Qiang; Zhang, Daoyong; Ding, Feng; Xin, Chengqi; Zhang, Zhang; Song, Shuhui; Sun, Fanglin; Yu, Jun; Hu, Songnian

    2012-01-01

    The global features of H3K4 and H3K27 trimethylations (H3K4me3 and H3K27me3) have been well studied in recent years, but most of these studies were performed in mammalian cell lines. In this work, we generated the genome-wide maps of H3K4me3 and H3K

  11. X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner

    NARCIS (Netherlands)

    Welstead, G.G.; Creyghton, M.P.; Bilodeau, S.; Cheng, A.W.; Markoulaki, S.; Young, R.A.; Jaenisch, R.

    2012-01-01

    Embryogenesis requires the timely and coordinated activation of developmental regulators. It has been suggested that the recently discovered class of histone demethylases (UTX and JMJD3) that specifically target the repressive H3K27me3 modification play an important role in the activation of

  12. High-resolution structure of the native histone octamer

    International Nuclear Information System (INIS)

    Wood, Christopher M.; Nicholson, James M.; Lambert, Stanley J.; Chantalat, Laurent; Reynolds, Colin D.; Baldwin, John P.

    2005-01-01

    The high-resolution (1.90 Å) model of the native histone octamer allows structural comparisons to be made with the nucleosome-core particle, along with an identification of a likely core-histone binding site. Crystals of native histone octamers (H2A–H2B)–(H4–H3)–(H3′–H4′)–(H2B′–H2A′) from chick erythrocytes in 2 M KCl, 1.35 M potassium phosphate pH 6.9 diffract X-rays to 1.90 Å resolution, yielding a structure with an R work value of 18.7% and an R free of 22.2%. The crystal space group is P6 5 , the asymmetric unit of which contains one complete octamer. This high-resolution model of the histone-core octamer allows further insight into intermolecular interactions, including water molecules, that dock the histone dimers to the tetramer in the nucleosome-core particle and have relevance to nucleosome remodelling. The three key areas analysed are the H2A′–H3–H4 molecular cluster (also H2A–H3′–H4′), the H4–H2B′ interaction (also H4′–H2B) and the H2A′–H4 β-sheet interaction (also H2A–H4′). The latter of these three regions is important to nucleosome remodelling by RNA polymerase II, as it is shown to be a likely core-histone binding site, and its disruption creates an instability in the nucleosome-core particle. A majority of the water molecules in the high-resolution octamer have positions that correlate to similar positions in the high-resolution nucleosome-core particle structure, suggesting that the high-resolution octamer model can be used for comparative studies with the high-resolution nucleosome-core particle

  13. Development of a new rapid HPLC method for the fractionation of histones

    International Nuclear Information System (INIS)

    Gurley, L.R.; Valdez, J.G.; Prentice, D.A.; Spall, W.D.

    1983-01-01

    To study histone functions, it is necessary to fractionate the histones into their five classes (H1, H2A, H2B, H3 and H4) and then to subfractionate these classes into variants having slightly different primary structures and into different phosphorylated and acetylated forms. With the advent of high-performance liquid chromatography (HPLC), it was hoped that laborious and time-consuming conventional methods could be replaced by a simple, rapid, high-resolving HPLC method for fractionating histones. However, problems of irreversible adsorption of the histones to HPLC column packings discouraged this development. Our laboratory has now determined that the strong adsorption of histones to HPLC columns results from two different forces: (1) polar interactions between the histones and the silanol groups of silica-based HPLC column packing, and (2) hydrophobic interactions between the histones and the bound organic phase of the column packings. By minimizing these forces, we have succeeded in developing an HPLC method suitable for histone studies

  14. Dengue Virus Capsid Protein Binds Core Histones and Inhibits Nucleosome Formation in Human Liver Cells

    Science.gov (United States)

    Colpitts, Tonya M.; Barthel, Sebastian; Wang, Penghua; Fikrig, Erol

    2011-01-01

    Dengue virus (DENV) is a member of the Flaviviridae and a globally (re)emerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C) is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection. PMID:21909430

  15. Histone methyltransferases in cancer

    DEFF Research Database (Denmark)

    Albert, Mareike; Helin, Kristian

    2009-01-01

    Cancer is perceived as a heterogeneous group of diseases that is characterized by aberrant patterns of gene expression. In the last decade, an increasing amount of data has pointed to a key role for epigenetic alterations in human cancer. In this review, we focus on a subclass of epigenetic...... regulators, namely histone methyltransferases (HMTs). Several HMTs have been linked to different types of cancer; however, in most cases we only have limited knowledge regarding the molecular mechanisms by which the HMTs contribute to disease development. We summarize the current knowledge regarding some...

  16. DNA methylation-histone modification relationships across the desmin locus in human primary cells

    Directory of Open Access Journals (Sweden)

    Clelland Gayle K

    2009-05-01

    Full Text Available Abstract Background We present here an extensive epigenetic analysis of a 500 kb region, which encompasses the human desmin gene (DES and its 5' locus control region (LCR, the only muscle-specific transcriptional regulatory element of this type described to date. These data complement and extend Encyclopaedia of DNA Elements (ENCODE studies on region ENr133. We analysed histone modifications and underlying DNA methylation patterns in physiologically relevant DES expressing (myoblast/myotube and non-expressing (peripheral blood mononuclear primary human cells. Results We found that in expressing myoblast/myotube but not peripheral blood mononuclear cell (PBMC cultures, histone H4 acetylation displays a broadly distributed enrichment across a gene rich 200 kb region whereas H3 acetylation localizes at the transcriptional start site (TSS of genes. We show that the DES LCR and TSS of DES are enriched with hyperacetylated domains of acetylated histone H3, with H3 lysine 4 di- and tri-methylation (H3K4me2 and me3 exhibiting a different distribution pattern across this locus. The CpG island that extends into the first intron of DES is methylation-free regardless of the gene's expression status and in non-expressing PBMCs is marked with histone H3 lysine 27 tri-methylation (H3K27me3. Conclusion Overall, our results constitute the first study correlating patterns of histone modifications and underlying DNA methylation of a muscle-specific LCR and its associated downstream gene region whilst additionally placing this within a much broader genomic context. Our results clearly show that there are distinct patterns of histone H3 and H4 acetylation and H3 methylation at the DES LCR, promoter and intragenic region. In addition, the presence of H3K27me3 at the DES methylation-free CpG only in non-expressing PBMCs may serve to silence this gene in non-muscle tissues. Generally, our work demonstrates the importance of using multiple, physiologically relevant

  17. Global levels of histone modifications in peripheral blood mononuclear cells of subjects with exposure to nickel.

    Science.gov (United States)

    Arita, Adriana; Niu, Jingping; Qu, Qingshan; Zhao, Najuan; Ruan, Ye; Nadas, Arthur; Chervona, Yana; Wu, Fen; Sun, Hong; Hayes, Richard B; Costa, Max

    2012-02-01

    Occupational exposure to nickel (Ni) is associated with an increased risk for lung and nasal cancers. Ni compounds exhibit weak mutagenic activity, cause gene amplification, and disrupt cellular epigenetic homeostasis. However, the Ni-induced changes in global histone modification levels have only been tested in vitro. This study was conducted in a Chinese population to determine whether occupational exposure to Ni is associated with alterations of global histone modification levels and to evaluate the inter- and intraindividual variance of global histone modification levels. Forty-five subjects with occupational exposure to Ni and 75 referents were recruited. Urinary Ni and global H3K4 trimethylation, H3K9 acetylation, and H3K9 dimethylation levels were measured in peripheral blood mononuclear cells (PBMCs) of subjects. H3K4me3 was elevated in Ni-exposed subjects (0.25% ± 0.11%) compared with referents (0.15% ± 0.04%; p = 0.0004), and H3K9me2 was decreased (Ni-exposed subjects, 0.11% ± 0.05%; referents, 0.15% ± 0.04%; p = 0.003). H3K4me3 was positively (r = 0.4, p = 0.0008) and H3K9ac was negatively (r = 0.1, p = 0.01) associated with urinary Ni. Interindividual variances of H3K4me3, H3K9ac, and H3K9me2 were larger compared with intraindividual variance in both exposure test groups, resulting in reliability coefficients (an estimate of consistency of a set of measurements) of 0.60, 0.67, and 0.79 for H3K4me3, H3K9ac, and H3K9me2, respectively, for Ni-exposed subjects and of 0.75, 0.74, and 0.97, respectively, for referent subjects. The results of this study indicate that occupational exposure to Ni is associated with alterations of global histone modification levels and that measurements of global levels of histone modifications are relatively stable over time in human PBMCs.

  18. The organization structure and regulatory elements of Chlamydomonas histone genes reveal features linking plant and animal genes.

    Science.gov (United States)

    Fabry, S; Müller, K; Lindauer, A; Park, P B; Cornelius, T; Schmitt, R

    1995-09-01

    The genome of the green alga Chlamydomonas reinhardtii contains approximately 15 gene clusters of the nucleosomal (or core) histone H2A, H2B, H3 and H4 genes and at least one histone H1 gene. Seven non-allelic histone gene loci were isolated from a genomic library, physically mapped, and the nucleotide sequences of three isotypes of each core histone gene species and one linked H1 gene determined. The core histone genes are organized in clusters of H2A-H2B and H3-H4 pairs, in which each gene pair shows outwardly divergent transcription from a short (< 300 bp) intercistronic region. These intercistronic regions contain typically conserved promoter elements, namely a TATA-box and the three motifs TGGCCAG-G(G/C)-CGAG, CGTTGACC and CGGTTG. Different from the genes of higher plants, but like those of animals and the related alga Volvox, the 3' untranslated regions contain no poly A signal, but a palindromic sequence (3' palindrome) essential for mRNA processing is present. One single H1 gene was found in close linkage to a H2A-H2B pair. The H1 upstream region contains the octameric promoter element GGTTGACC (also found upstream of the core histone genes) and two specific sequence motifs that are shared only with the Volvox H1 promoters. This suggests differential transcription of the H1 and the core histone genes. The H1 gene is interrupted by two introns. Unlike Volvox H3 genes, the three sequenced H3 isoforms are intron-free. Primer-directed PCR of genomic DNA demonstrated, however, that at least 8 of the about 15 H3 genes do contain one intron at a conserved position. In synchronized C. reinhardtii cells, H4 mRNA levels (representative of all core histone mRNAs) peak during cell division, suggesting strict replication-dependent gene control. The derived peptide sequences place C. reinhardtii core histones closer to plants than to animals, except that the H2A histones are more animal-like. The peptide sequence of histone H1 is closely related to the V. carteri VH1-II

  19. Histone turnover within nonproliferating cells

    International Nuclear Information System (INIS)

    Commerford, S.L.; Carsten, A.L.; Cronkite, E.P.

    1982-01-01

    The turnover of DNA and histones in the livers and brains of mice has been determined. These mice had been exposed to constant levels of tritiated water from conception until they were 8 months old. At this point, exposure to tritium was discontinued, and the tritium remaining in DNA and histones was measured at various intervals afterward. The half-lives calculated for these components (with 95% confidence limits given in parentheses) were 117 (85 to 188) days for liver histone, 318 (241 to 466) days for liver DNA, 159 (129 to 208) days for brain histone and 593 (376 to 1406) days for brain DNA. The difference between histone and DNA turnover is statistically significant for both tissues and indicates that histone turnover within tissues cannot be solely accounted for by cell turnover within the tissue but also must include histone turnover within living cells. The half-life of histone within cells is estimated to be 117 (88 to 178) days in liver and 223 (187 to 277) days in brain

  20. winged eye Induces Transdetermination of Drosophila Imaginal Disc by Acting in Concert with a Histone Methyltransferase, Su(var)3-9

    OpenAIRE

    Keita Masuko; Naoyuki Fuse; Kanae Komaba; Tomonori Katsuyama; Rumi Nakajima; Hirofumi Furuhashi; Shoichiro Kurata

    2018-01-01

    Summary: Drosophila imaginal disc cells exhibit a remarkable ability to convert cell fates in response to various perturbations, a phenomenon called transdetermination (TD). We previously identified winged eye (wge) as a factor that induces eye-to-wing TD upon overexpression in eye imaginal discs, but the molecular mechanisms underlying TD have remained largely unclear. Here, we found that wge induces various histone modifications and enhances the methylation of Lys9 on histone H3 (H3K9), a f...

  1. ChIPnorm: a statistical method for normalizing and identifying differential regions in histone modification ChIP-seq libraries.

    Science.gov (United States)

    Nair, Nishanth Ulhas; Sahu, Avinash Das; Bucher, Philipp; Moret, Bernard M E

    2012-01-01

    The advent of high-throughput technologies such as ChIP-seq has made possible the study of histone modifications. A problem of particular interest is the identification of regions of the genome where different cell types from the same organism exhibit different patterns of histone enrichment. This problem turns out to be surprisingly difficult, even in simple pairwise comparisons, because of the significant level of noise in ChIP-seq data. In this paper we propose a two-stage statistical method, called ChIPnorm, to normalize ChIP-seq data, and to find differential regions in the genome, given two libraries of histone modifications of different cell types. We show that the ChIPnorm method removes most of the noise and bias in the data and outperforms other normalization methods. We correlate the histone marks with gene expression data and confirm that histone modifications H3K27me3 and H3K4me3 act as respectively a repressor and an activator of genes. Compared to what was previously reported in the literature, we find that a substantially higher fraction of bivalent marks in ES cells for H3K27me3 and H3K4me3 move into a K27-only state. We find that most of the promoter regions in protein-coding genes have differential histone-modification sites. The software for this work can be downloaded from http://lcbb.epfl.ch/software.html.

  2. Characterization of Complete Histone Tail Proteoforms Using Differential Ion Mobility Spectrometry

    DEFF Research Database (Denmark)

    Shliaha, Pavel V; Baird, Matthew A; Nielsen, Mogens M

    2017-01-01

    Histone proteins are subject to dynamic post-translational modifications (PTMs) that cooperatively modulate the chromatin structure and function. Nearly all functional PTMs are found on the N-terminal histone domains (tails) of ∼50 residues protruding from the nucleosome core. Using high...

  3. Three dimensional analysis of histone methylation patterns in normal and tumor cell nuclei

    Directory of Open Access Journals (Sweden)

    M Cremer

    2009-06-01

    Full Text Available Histone modifications represent an important epigenetic mechanism for the organization of higher order chromatin structure and gene regulation. Methylation of position-specific lysine residues in the histone H3 and H4 amino termini has been linked with the formation of constitutive and facultative heterochromatin as well as with specifically repressed single gene loci. Using an antibody, directed against dimethylated lysine 9 of histone H3 and several other lysine methylation sites, we visualized the nuclear distribution pattern of chromatin flagged by these methylated lysines in 3D preserved nuclei of normal and malignant cell types. Optical confocal serial sections were used for a quantitative evaluation. We demonstrate distinct differences of these histone methylation patterns among nuclei of different cell types after exit of the cell cycle. Changes in the pattern formation were also observed during the cell cycle. Our data suggest an important role of methylated histones in the reestablishment of higher order chromatin arrangements during telophase/early G1. Cell type specific histone methylation patterns are possibly causally involved in the formation of cell type specific heterochromatin compartments, composed of (pericentromeric regions and chromosomal subregions from neighboring chromosome territories, which contain silent genes.

  4. Bioorthogonal Chemistry for the Isolation and Study of Newly Synthesized Histones and Their Modifications.

    Science.gov (United States)

    Arnaudo, Anna M; Link, A James; Garcia, Benjamin A

    2016-03-18

    The nucleosome is an octamer containing DNA wrapped around one histone H3-H4 tetramer and two histone H2A-H2B dimers. Within the nucleosome, histones are decorated with post-translational modifications. Previous studies indicate that the H3-H4 tetramer is conserved during DNA replication, suggesting that old tetramers serve as a template for the modification of newly synthesized tetramers. Here, we present a method that merges bioorthogonal chemistry with mass spectrometry for the study of modifications on newly synthesized histones in mammalian cells. HeLa S3 cells are dually labeled with the methionine analog azidohomoalanine and heavy (13)C6,(15)N4 isotope labeled arginine. Heavy amino acid labeling marks newly synthesized histones while azidohomoalanine incorporation allows for their isolation using bioorthogonal ligation. Labeled mononucleosomes were covalently linked via a copper catalyzed reaction to a FLAG-GGR-alkyne peptide, immunoprecipitated, and subjected to mass spectrometry for quantitative modification analysis. Mononucleosomes containing new histones were successfully isolated using this approach. Additionally, the development of this method highlights the potential deleterious effects of azidohomoalanine labeling on protein PTMs and cell cycle progression, which should be considered for future studies utilizing bioorthogonal labeling strategies in mammalian cells.

  5. DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination.

    Science.gov (United States)

    Qin, Weihua; Wolf, Patricia; Liu, Nan; Link, Stephanie; Smets, Martha; La Mastra, Federica; Forné, Ignasi; Pichler, Garwin; Hörl, David; Fellinger, Karin; Spada, Fabio; Bonapace, Ian Marc; Imhof, Axel; Harz, Hartmann; Leonhardt, Heinrich

    2015-08-01

    DNMT1 is recruited by PCNA and UHRF1 to maintain DNA methylation after replication. UHRF1 recognizes hemimethylated DNA substrates via the SRA domain, but also repressive H3K9me3 histone marks with its TTD. With systematic mutagenesis and functional assays, we could show that chromatin binding further involved UHRF1 PHD binding to unmodified H3R2. These complementation assays clearly demonstrated that the ubiquitin ligase activity of the UHRF1 RING domain is required for maintenance DNA methylation. Mass spectrometry of UHRF1-deficient cells revealed H3K18 as a novel ubiquitination target of UHRF1 in mammalian cells. With bioinformatics and mutational analyses, we identified a ubiquitin interacting motif (UIM) in the N-terminal regulatory domain of DNMT1 that binds to ubiquitinated H3 tails and is essential for DNA methylation in vivo. H3 ubiquitination and subsequent DNA methylation required UHRF1 PHD binding to H3R2. These results show the manifold regulatory mechanisms controlling DNMT1 activity that require the reading and writing of epigenetic marks by UHRF1 and illustrate the multifaceted interplay between DNA and histone modifications. The identification and functional characterization of the DNMT1 UIM suggests a novel regulatory principle and we speculate that histone H2AK119 ubiquitination might also lead to UIM-dependent recruitment of DNMT1 and DNA methylation beyond classic maintenance.

  6. Extracellular histones reduce survival and angiogenic responses of late outgrowth progenitor and mature endothelial cells.

    Science.gov (United States)

    Mena, H A; Carestia, A; Scotti, L; Parborell, F; Schattner, M; Negrotto, S

    2016-02-01

    ESSENTIALS: Extracellular histones are highly augmented in sites of neovessel formation, such as regeneration tissues. We studied histone effect on survival and angiogenic activity of mature and progenitor endothelial cells. Extracellular histones trigger apoptosis and pyroptosis and reduce angiogenesis in vivo and in vitro. Histone blockade can be useful as a therapeutic strategy to improve angiogenesis and tissue regeneration. Extracellular histones are highly augmented in sites of neovessel formation, like regeneration tissues. Their cytotoxic effect has been studied in endothelial cells, although the mechanism involved and their action on endothelial colony-forming cells (ECFCs) remain unknown. To study the effect of histones on ECFC survival and angiogenic functions and compare it with mature endothelial cells. Nuclear morphology analysis showed that each human recombinant histone triggered both apoptotic-like and necrotic-like cell deaths in both mature and progenitor endothelial cells. While H1 and H2A exerted a weak toxicity, H2B, H3 and H4 were the most powerful. The percentage of apoptosis correlated with the percentage of ECFCs exhibiting caspase-3 activation and was zeroed by the pan-caspase inhibitor Z-VAD-FMK. Necrotic-like cell death was also suppressed by this compound and the caspase-1 inhibitor Ac-YVAD-CMK, indicating that histones triggered ECFC pyroptosis. All histones, at non-cytotoxic concentrations, reduced migration and H2B, H3 and H4 induced cell cycle arrest and impaired tubulogenesis via p38 activation. Neutrophil-derived histones exerted similar effects. In vivo blood vessel formation in the quail chorioallantoic membrane was also reduced by H2B, H3 and H4. Their cytotoxic and antiangiogenic effects were suppressed by unfractioned and low-molecular-weight heparins and the combination of TLR2 and TLR4 blocking antibodies. Histones trigger both apoptosis and pyroptosis of ECFCs and inhibit their angiogenic functions. Their cytotoxic and

  7. Cell shape regulates global histone acetylation in human mammaryepithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Beyec, Johanne; Xu, Ren; Lee, Sun-Young; Nelson, Celeste M.; Rizki, Aylin; Alcaraz, Jordi; Bissell, Mina J.

    2007-02-28

    Extracellular matrix (ECM) regulates cell morphology and gene expression in vivo; these relationships are maintained in three-dimensional (3D) cultures of mammary epithelial cells. In the presence of laminin-rich ECM (lrECM), mammary epithelial cells round up and undergo global histone deacetylation, a process critical for their functional differentiation. However, it remains unclear whether lrECM-dependent cell rounding and global histone deacetylation are indeed part of a common physical-biochemical pathway. Using 3D cultures as well as nonadhesive and micropatterned substrata, here we showed that the cell 'rounding' caused by lrECM was sufficient to induce deacetylation of histones H3 and H4 in the absence of biochemical cues. Microarray and confocal analysis demonstrated that this deacetylation in 3D culture is associated with a global increase in chromatin condensation and a reduction in gene expression. Whereas cells cultured on plastic substrata formed prominent stress fibers, cells grown in 3D lrECM or on micropatterns lacked these structures. Disruption of the actin cytoskeleton with cytochalasin D phenocopied the lrECM-induced cell rounding and histone deacetylation. These results reveal a novel link between ECM-controlled cell shape and chromatin structure, and suggest that this link is mediated by changes in the actin cytoskeleton.

  8. Implication of Posttranslational Histone Modifications in Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    Shisheng Li

    2012-09-01

    Full Text Available Histones are highly alkaline proteins that package and order the DNA into chromatin in eukaryotic cells. Nucleotide excision repair (NER is a conserved multistep reaction that removes a wide range of generally bulky and/or helix-distorting DNA lesions. Although the core biochemical mechanism of NER is relatively well known, how cells detect and repair lesions in diverse chromatin environments is still under intensive research. As with all DNA-related processes, the NER machinery must deal with the presence of organized chromatin and the physical obstacles it presents. A huge catalogue of posttranslational histone modifications has been documented. Although a comprehensive understanding of most of these modifications is still lacking, they are believed to be important regulatory elements for many biological processes, including DNA replication and repair, transcription and cell cycle control. Some of these modifications, including acetylation, methylation, phosphorylation and ubiquitination on the four core histones (H2A, H2B, H3 and H4 or the histone H2A variant H2AX, have been found to be implicated in different stages of the NER process. This review will summarize our recent understanding in this area.

  9. The Cac2 subunit is essential for productive histone binding and nucleosome assembly in CAF-1

    Energy Technology Data Exchange (ETDEWEB)

    Mattiroli, Francesca; Gu, Yajie; Balsbaugh, Jeremy L.; Ahn, Natalie G.; Luger, Karolin

    2017-04-18

    Nucleosome assembly following DNA replication controls epigenome maintenance and genome integrity. Chromatin assembly factor 1 (CAF-1) is the histone chaperone responsible for histone (H3-H4)2 deposition following DNA synthesis. Structural and functional details for this chaperone complex and its interaction with histones are slowly emerging. Using hydrogen-deuterium exchange coupled to mass spectrometry, combined with in vitro and in vivo mutagenesis studies, we identified the regions involved in the direct interaction between the yeast CAF-1 subunits, and mapped the CAF-1 domains responsible for H3-H4 binding. The large subunit, Cac1 organizes the assembly of CAF-1. Strikingly, H3-H4 binding is mediated by a composite interface, shaped by Cac1-bound Cac2 and the Cac1 acidic region. Cac2 is indispensable for productive histone binding, while deletion of Cac3 has only moderate effects on H3-H4 binding and nucleosome assembly. These results define direct structural roles for yeast CAF-1 subunits and uncover a previously unknown critical function of the middle subunit in CAF-1.

  10. A fluorescence resonance energy transfer-based method for histone methyltransferases

    DEFF Research Database (Denmark)

    Devkota, Kanchan; Lohse, Brian; Nyby Jakobsen, Camilla

    2015-01-01

    A simple dye–quencher fluorescence resonance energy transfer (FRET)-based assay for methyltransferases was developed and used to determine kinetic parameters and inhibitory activity at EHMT1 and EHMT2. Peptides mimicking the truncated histone H3 tail were functionalized in each end with a dye...

  11. Tousled-like kinases phosphorylate Asf1 to promote histone supply during DNA replication

    DEFF Research Database (Denmark)

    Klimovskaia, Ilnaz M; Young, Clifford; Strømme, Caroline B

    2014-01-01

    During DNA replication, nucleosomes are rapidly assembled on newly synthesized DNA to restore chromatin organization. Asf1, a key histone H3-H4 chaperone required for this process, is phosphorylated by Tousled-like kinases (TLKs). Here, we identify TLK phosphorylation sites by mass spectrometry...

  12. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues.

    Directory of Open Access Journals (Sweden)

    Chongsheng He

    2012-08-01

    Full Text Available In plants, multiple detached tissues are capable of forming a pluripotent cell mass, termed callus, when cultured on media containing appropriate plant hormones. Recent studies demonstrated that callus resembles the root-tip meristem, even if it is derived from aerial organs. This finding improves our understanding of the regeneration process of plant cells; however, the molecular mechanism that guides cells of different tissue types to form a callus still remains elusive. Here, we show that genome-wide reprogramming of histone H3 lysine 27 trimethylation (H3K27me3 is a critical step in the leaf-to-callus transition. The Polycomb Repressive Complex 2 (PRC2 is known to function in establishing H3K27me3. By analyzing callus formation of mutants corresponding to different histone modification pathways, we found that leaf blades and/or cotyledons of the PRC2 mutants curly leaf swinger (clf swn and embryonic flower2 (emf2 were defective in callus formation. We identified the H3K27me3-covered loci in leaves and calli by a ChIP-chip assay, and we found that in the callus H3K27me3 levels decreased first at certain auxin-pathway genes. The levels were then increased at specific leaf genes but decreased at a number of root-regulatory genes. Changes in H3K27me3 levels were negatively correlated with expression levels of the corresponding genes. One possible role of PRC2-mediated H3K27me3 in the leaf-to-callus transition might relate to elimination of leaf features by silencing leaf-regulatory genes, as most leaf-preferentially expressed regulatory genes could not be silenced in the leaf explants of clf swn. In contrast to the leaf explants, the root explants of both clf swn and emf2 formed calli normally, possibly because the root-to-callus transition bypasses the leaf gene silencing process. Furthermore, our data show that PRC2-mediated H3K27me3 and H3K27 demethylation act in parallel in the reprogramming of H3K27me3 during the leaf-to-callus transition

  13. Post-Translational Modifications of H2A Histone Variants and Their Role in Cancer

    Directory of Open Access Journals (Sweden)

    David Corujo

    2018-02-01

    Full Text Available Histone variants are chromatin components that replace replication-coupled histones in a fraction of nucleosomes and confer particular characteristics to chromatin. H2A variants represent the most numerous and diverse group among histone protein families. In the nucleosomal structure, H2A-H2B dimers can be removed and exchanged more easily than the stable H3-H4 core. The unstructured N-terminal histone tails of all histones, but also the C-terminal tails of H2A histones protrude out of the compact structure of the nucleosome core. These accessible tails are the preferential target sites for a large number of post-translational modifications (PTMs. While some PTMs are shared between replication-coupled H2A and H2A variants, many modifications are limited to a specific histone variant. The present review focuses on the H2A variants H2A.Z, H2A.X, and macroH2A, and summarizes their functions in chromatin and how these are linked to cancer development and progression. H2A.Z primarily acts as an oncogene and macroH2A and H2A.X as tumour suppressors. We further focus on the regulation by PTMs, which helps to understand a degree of context dependency.

  14. Differentiation of eosinophilic leukemia EoL-1 cells into eosinophils induced by histone deacetylase inhibitors.

    Science.gov (United States)

    Ishihara, Kenji; Takahashi, Aki; Kaneko, Motoko; Sugeno, Hiroki; Hirasawa, Noriyasu; Hong, JangJa; Zee, OkPyo; Ohuchi, Kazuo

    2007-03-06

    EoL-1 cells differentiate into eosinophils in the presence of n-butyrate, but the mechanism has remained to be elucidated. Because n-butyrate can inhibit histone deacetylases, we hypothesized that the inhibition of histone deacetylases induces the differentiation of EoL-1 cells into eosinophils. In this study, using n-butyrate and two other histone deacetylase inhibitors, apicidin and trichostatin A, we have analyzed the relationship between the inhibition of histone deacetylases and the differentiation into eosinophils in EoL-1 cells. It was demonstrated that apicidin and n-butyrate induced a continuous acetylation of histones H4 and H3, inhibited the proliferation of EoL-1 cells without attenuating the level of FIP1L1-PDGFRA mRNA, and induced the expression of markers for mature eosinophils such as integrin beta7, CCR1, and CCR3 on EoL-1 cells, while trichostatin A evoked a transient acetylation of histones and induced no differentiation into eosinophils. These findings suggest that the continuous inhibition of histone deacetylases in EoL-1 cells induces the differentiation into mature eosinophils.

  15. Structure of the human histone chaperone FACT Spt16 N-terminal domain

    Energy Technology Data Exchange (ETDEWEB)

    Marcianò, G.; Huang, D. T., E-mail: d.huang@beatson.gla.ac.uk [Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland (United Kingdom)

    2016-01-22

    The Spt16–SSRP1 heterodimer is a histone chaperone that plays an important role in regulating chromatin assembly. Here, a crystal structure of the N-terminal domain of human Spt16 is presented and it is shown that this domain may contribute to histone binding. The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding.

  16. Structure of the human histone chaperone FACT Spt16 N-terminal domain

    International Nuclear Information System (INIS)

    Marcianò, G.; Huang, D. T.

    2016-01-01

    The Spt16–SSRP1 heterodimer is a histone chaperone that plays an important role in regulating chromatin assembly. Here, a crystal structure of the N-terminal domain of human Spt16 is presented and it is shown that this domain may contribute to histone binding. The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding

  17. Effect of solvent on the structure of a protein (H3.1) with a coarse-grained model with knowledge-based interactions

    Science.gov (United States)

    Pandey, Ras; Farmer, Barry

    2013-03-01

    Quality of solvent plays a critical role in modulating the structure of a protein along with the temperature. Using a coarse-grained Monte Carlo simulation based on three knowledge-based contact potentials (MJ, BT, BFKV) we examine the structure and dynamics of a histone (H3.1). The empty lattice sites constitute the effective solvent medium in which the protein is embedded. Residue-solvent characteristic interaction is based on the hydropathy index while the residue-residue interaction is used from the knowledge-based contact matrices derived from ensembles of protein structures in the protein data bank. Large scale simulations are performed to analyze the structure of protein for a range of residue-solvent interaction strength, a measure of the solvent quality with each potential. Unlike the monotonic thermal response, the radius of gyration of the protein exhibits non-monotonic dependence of the solvent strength. Quantitative comparison of the structure and dynamics emerging from three knowledge-based potentials will be presented in this talk. This work is supported by Air Force Research Laboratory.

  18. Regulation of H3K4me3 at Transcriptional Enhancers Characterizes Acquisition of Virus-Specific CD8+ T Cell-Lineage-Specific Function

    Directory of Open Access Journals (Sweden)

    Brendan E. Russ

    2017-12-01

    Full Text Available Infection triggers large-scale changes in the phenotype and function of T cells that are critical for immune clearance, yet the gene regulatory mechanisms that control these changes are largely unknown. Using ChIP-seq for specific histone post-translational modifications (PTMs, we mapped the dynamics of ∼25,000 putative CD8+ T cell transcriptional enhancers (TEs differentially utilized during virus-specific T cell differentiation. Interestingly, we identified a subset of dynamically regulated TEs that exhibited acquisition of a non-canonical (H3K4me3+ chromatin signature upon differentiation. This unique TE subset exhibited characteristics of poised enhancers in the naive CD8+ T cell subset and demonstrated enrichment for transcription factor binding motifs known to be important for virus-specific CD8+ T cell differentiation. These data provide insights into the establishment and maintenance of the gene transcription profiles that define each stage of virus-specific T cell differentiation.

  19. Experimental study of para- and ortho-H3+ recombination

    International Nuclear Information System (INIS)

    Plasil, R; Varju, J; Hejduk, M; Dohnal, P; KotrIk, T; Glosik, J

    2011-01-01

    Recombination of H 3 + with electrons is a key process for many plasmatic environments. Recent experiments on storage ring devices used ion sources producing H 3 + with enhanced populations of H 3 + ions in the para nuclear spin configuration to shed light on the theoretically predicted faster recombination of para states. Although increased recombination rates were observed, no in situ characterization of recombining ions was performed. We present a state selective recombination study of para- and ortho-H 3 + ions with electrons at 77 K in afterglow plasma in a He/Ar/H 2 gas-mixture. Both spin configurations of H 3 + have been observed in situ with a near infrared cavity ring down spectrometer (NIR-CRDS) using the two lowest energy levels of H 3 + . Using hydrogen with an enhanced population of H 2 molecules in para states allowed us to influence the [para-H 3 + ]/[ortho-H 3 + ] ratio in the discharge and in the afterglow. We observed an increase in the measured effective recombination rate coefficients with the increase of the fraction of para-H 3 + . Measurements with different fractions of para-H 3 + at otherwise identical conditions allowed us to determine the binary recombination rate coefficients for pure para-H 3 + p α bin (77 K) = (2.0±0.4)x10 -7 cm 3 s -1 and pure ortho-H 3 + o α bin (77 K) = (4±3)x10 -8 cm 3 s -1 .

  20. An H3K9/S10 methyl-phospho switch modulates Polycomb and Pol II binding at repressed genes during differentiation.

    Science.gov (United States)

    Sabbattini, Pierangela; Sjoberg, Marcela; Nikic, Svetlana; Frangini, Alberto; Holmqvist, Per-Henrik; Kunowska, Natalia; Carroll, Tom; Brookes, Emily; Arthur, Simon J; Pombo, Ana; Dillon, Niall

    2014-03-01

    Methylated histones H3K9 and H3K27 are canonical epigenetic silencing modifications in metazoan organisms, but the relationship between the two modifications has not been well characterized. H3K9me3 coexists with H3K27me3 in pluripotent and differentiated cells. However, we find that the functioning of H3K9me3 is altered by H3S10 phosphorylation in differentiated postmitotic osteoblasts and cycling B cells. Deposition of H3K9me3/S10ph at silent genes is partially mediated by the mitogen- and stress-activated kinases (MSK1/2) and the Aurora B kinase. Acquisition of H3K9me3/S10ph during differentiation correlates with loss of paused S5 phosphorylated RNA polymerase II, which is present on Polycomb-regulated genes in embryonic stem cells. Reduction of the levels of H3K9me3/S10ph by kinase inhibition results in increased binding of RNAPIIS5ph and the H3K27 methyltransferase Ezh1 at silent promoters. Our results provide evidence of a novel developmentally regulated methyl-phospho switch that modulates Polycomb regulation in differentiated cells and stabilizes repressed states.

  1. KDM1A triggers androgen-induced miRNA transcription via H3K4me2 demethylation and DNA oxidation.

    Science.gov (United States)

    Yang, Shu; Zhang, Jiyuan; Zhang, Yalong; Wan, Xuechao; Zhang, Congzhe; Huang, Xiaohui; Huang, Wenhua; Pu, Honglei; Pei, Chaohan; Wu, Hai; Huang, Yan; Huang, Shengdong; Li, Yao

    2015-06-15

    Androgen receptor (AR) is a ligand dependent transcription factor that regulates the transcription of target genes. AR activity is closely involved in the maintenance and progression of prostate cancer. After the binding with androgen, AR moves into nucleus and binds to DNA sequence containing androgen response elements (ARE). Flavin-dependent monoamine oxidase KDM1A is necessary for AR driven transcription while the mechanism remains unclear. The association between androgen-dependent transcription and oxidation was tested through pharmaceutical inhibitions and siRNA knockdown of DNA oxidation repair components in prostate cancer cells. The recruitment of involved proteins and the histone methylation dynamics on ARE region was explored by chromatin immunoprecipitation (ChIP). Oxidation inhibition reduced AR dependent expression of KLK3, TMPRSS2, hsa-miR-125b2, and hsa-miR-133b. And such reduction could be restored by H2 O2 treatment. KDM1A recruitment and H3K4me2 demethylation on ARE regions, which produce H2 O2 , are associated with AR targets transcription. AR targets transcription and coupled oxidation recruit 8-oxoguanine-DNA glycosylase (OGG1) and the nuclease APEX1 to ARE regions. Such recruitment depends on KDM1A, and is necessary for AR targets transcription. Our work underlined the importance of histone demethylation and DNA oxidation/repairing machinery in androgen-dependent transcription. The present finds have implications for research into new druggable targets for prostate cancer relying on the cascade of AR activity regulation. © 2015 Wiley Periodicals, Inc.

  2. Identification of distinct SET/TAF-Ibeta domains required for core histone binding and quantitative characterisation of the interaction.

    Science.gov (United States)

    Karetsou, Zoe; Emmanouilidou, Anastasia; Sanidas, Ioannis; Liokatis, Stamatis; Nikolakaki, Eleni; Politou, Anastasia S; Papamarcaki, Thomais

    2009-04-09

    The assembly of nucleosomes to higher-order chromatin structures is finely tuned by the relative affinities of histones for chaperones and nucleosomal binding sites. The myeloid leukaemia protein SET/TAF-Ibeta belongs to the NAP1 family of histone chaperones and participates in several chromatin-based mechanisms, such as chromatin assembly, nucleosome reorganisation and transcriptional activation. To better understand the histone chaperone function of SET/TAF-Ibeta, we designed several SET/TAF-Ibeta truncations, examined their structural integrity by circular Dichroism and assessed qualitatively and quantitatively the histone binding properties of wild-type protein and mutant forms using GST-pull down experiments and fluorescence spectroscopy-based binding assays. Wild type SET/TAF-Ibeta binds to histones H2B and H3 with Kd values of 2.87 and 0.15 microM, respectively. The preferential binding of SET/TAF-Ibeta to histone H3 is mediated by its central region and the globular part of H3. On the contrary, the acidic C-terminal tail and the amino-terminal dimerisation domain of SET/TAF-Ibeta, as well as the H3 amino-terminal tail, are dispensable for this interaction. This type of analysis allowed us to assess the relative affinities of SET/TAF-Ibeta for different histones and identify the domains of the protein required for effective histone recognition. Our findings are consistent with recent structural studies of SET/TAF-Ibeta and can be valuable to understand the role of SET/TAF-Ibeta in chromatin function.

  3. Identification of distinct SET/TAF-Iβ domains required for core histone binding and quantitative characterisation of the interaction

    Science.gov (United States)

    Karetsou, Zoe; Emmanouilidou, Anastasia; Sanidas, Ioannis; Liokatis, Stamatis; Nikolakaki, Eleni; Politou, Anastasia S; Papamarcaki, Thomais

    2009-01-01

    Background The assembly of nucleosomes to higher-order chromatin structures is finely tuned by the relative affinities of histones for chaperones and nucleosomal binding sites. The myeloid leukaemia protein SET/TAF-Iβ belongs to the NAP1 family of histone chaperones and participates in several chromatin-based mechanisms, such as chromatin assembly, nucleosome reorganisation and transcriptional activation. To better understand the histone chaperone function of SET/TAF-Iβ, we designed several SET/TAF-Iβ truncations, examined their structural integrity by circular Dichroism and assessed qualitatively and quantitatively the histone binding properties of wild-type protein and mutant forms using GST-pull down experiments and fluorescence spectroscopy-based binding assays. Results Wild type SET/TAF-Iβ binds to histones H2B and H3 with Kd values of 2.87 and 0.15 μM, respectively. The preferential binding of SET/TAF-Iβ to histone H3 is mediated by its central region and the globular part of H3. On the contrary, the acidic C-terminal tail and the amino-terminal dimerisation domain of SET/TAF-Iβ, as well as the H3 amino-terminal tail, are dispensable for this interaction. Conclusion This type of analysis allowed us to assess the relative affinities of SET/TAF-Iβ for different histones and identify the domains of the protein required for effective histone recognition. Our findings are consistent with recent structural studies of SET/TAF-Iβ and can be valuable to understand the role of SET/TAF-Iβ in chromatin function. PMID:19358706

  4. An NF-Y-dependent switch of positive and negative histone methyl marks on CCAAT promoters.

    Directory of Open Access Journals (Sweden)

    Giacomo Donati

    Full Text Available BACKGROUND: Histone tails have a plethora of different post-translational modifications, which are located differently in "open" and "closed" parts of genomes. H3K4me3/H3K79me2 and H4K20me3 are among the histone marks associated with the early establishment of active and inactive chromatin, respectively. One of the most widespread promoter elements is the CCAAT box, bound by the NF-Y trimer. Two of NF-Y subunits have an H2A-H2B-like structure. PRINCIPAL FINDINGS: We established the causal relationship between NF-Y binding and positioning of methyl marks, by ChIP analysis of mouse and human cells infected with a dominant negative NF-YA: a parallel decrease in NF-Y binding, H3K4me3, H3K79me2 and transcription was observed in promoters that are dependent upon NF-Y. On the contrary, changes in the levels of H3K9-14ac were more subtle. Components of the H3K4 methylating MLL complex are not recruited in the absence of NF-Y. As for repressed promoters, NF-Y removal leads to a decrease in the H4K20me3 mark and deposition of H3K4me3. CONCLUSIONS: Two relevant findings are reported: (i NF-Y gains access to its genomic locations independently from the presence of methyl histone marks, either positive or negative; (ii NF-Y binding has profound positive or negative consequences on the deposition of histone methyl marks. Therefore NF-Y is a fundamental switch at the heart of decision between gene activation and repression in CCAAT regulated genes.

  5. Histone hypoacetylation is required to maintain late replication timing of constitutive heterochromatin.

    Science.gov (United States)

    Casas-Delucchi, Corella S; van Bemmel, Joke G; Haase, Sebastian; Herce, Henry D; Nowak, Danny; Meilinger, Daniela; Stear, Jeffrey H; Leonhardt, Heinrich; Cardoso, M Cristina

    2012-01-01

    The replication of the genome is a spatio-temporally highly organized process. Yet, its flexibility throughout development suggests that this process is not genetically regulated. However, the mechanisms and chromatin modifications controlling replication timing are still unclear. We made use of the prominent structure and defined heterochromatic landscape of pericentric regions as an example of late replicating constitutive heterochromatin. We manipulated the major chromatin markers of these regions, namely histone acetylation, DNA and histone methylation, as well as chromatin condensation and determined the effects of these altered chromatin states on replication timing. Here, we show that manipulation of DNA and histone methylation as well as acetylation levels caused large-scale heterochromatin decondensation. Histone demethylation and the concomitant decondensation, however, did not affect replication timing. In contrast, immuno-FISH and time-lapse analyses showed that lowering DNA methylation, as well as increasing histone acetylation, advanced the onset of heterochromatin replication. While dnmt1(-)(/)(-) cells showed increased histone acetylation at chromocenters, histone hyperacetylation did not induce DNA demethylation. Hence, we propose that histone hypoacetylation is required to maintain normal heterochromatin duplication dynamics. We speculate that a high histone acetylation level might increase the firing efficiency of origins and, concomitantly, advances the replication timing of distinct genomic regions.

  6. Biophysical characterization of the association of histones with single-stranded DNA.

    Science.gov (United States)

    Wang, Ying; van Merwyk, Luis; Tönsing, Katja; Walhorn, Volker; Anselmetti, Dario; Fernàndez-Busquets, Xavier

    2017-11-01

    Despite the profound current knowledge of the architecture and dynamics of nucleosomes, little is known about the structures generated by the interaction of histones with single-stranded DNA (ssDNA), which is widely present during replication and transcription. Non-denaturing gel electrophoresis, transmission electron microscopy, atomic force microscopy, magnetic tweezers. Histones have a high affinity for ssDNA in 0.15M NaCl ionic strength, with an apparent binding constant similar to that calculated for their association with double-stranded DNA (dsDNA). The length of DNA (number of nucleotides in ssDNA or base pairs in dsDNA) associated with a fixed core histone mass is the same for both ssDNA and dsDNA. Although histone-ssDNA complexes show a high tendency to aggregate, nucleosome-like structures are formed at physiological salt concentrations. Core histones are able to protect ssDNA from digestion by micrococcal nuclease, and a shortening of ssDNA occurs upon its interaction with histones. The purified (+) strand of a cloned DNA fragment of nucleosomal origin has a higher affinity for histones than the purified complementary (-) strand. At physiological ionic strength histones have high affinity for ssDNA, possibly associating with it into nucleosome-like structures. In the cell nucleus histones may spontaneously interact with ssDNA to facilitate their participation in the replication and transcription of chromatin. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Genome-wide evaluation of histone methylation changes associated with leaf senescence in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Judy A Brusslan

    Full Text Available Leaf senescence is the orderly dismantling of older tissue that allows recycling of nutrients to developing portions of the plant and is accompanied by major changes in gene expression. Histone modifications correlate to levels of gene expression, and this study utilizes ChIP-seq to classify activating H3K4me3 and silencing H3K27me3 marks on a genome-wide scale for soil-grown mature and naturally senescent Arabidopsis leaves. ChIPnorm was used to normalize data sets and identify genomic regions with significant differences in the two histone methylation patterns, and the differences were correlated to changes in gene expression. Genes that showed an increase in the H3K4me3 mark in older leaves were senescence up-regulated, while genes that showed a decrease in the H3K4me3 mark in the older leaves were senescence down-regulated. For the H3K27me3 modification, genes that lost the H3K27me3 mark in older tissue were senescence up-regulated. Only a small number of genes gained the H3K27me3 mark, and these were senescence down-regulated. Approximately 50% of senescence up-regulated genes lacked the H3K4me3 mark in both mature and senescent leaf tissue. Two of these genes, SAG12 and At1g73220, display strong senescence up-regulation without the activating H3K4me3 histone modification. This study provides an initial epigenetic framework for the developmental transition into senescence.

  8. Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells

    Directory of Open Access Journals (Sweden)

    Yoda Satoshi

    2008-11-01

    Full Text Available Abstract Background Alterations in the processing of the genetic information in carcinogenesis result from stable genetic mutations or epigenetic modifications. It is becoming clear that nucleosomal histones are central to proper gene expression and that aberrant DNA methylation of genes and histone methylation plays important roles in tumor progression. To date, several histone lysine methyltransferases (HKMTs have been identified and histone lysine methylation is now considered to be a critical regulator of transcription. However, still relatively little is known about the role of HKMTs in tumorigenesis. Results We observed differential HKMT expression in a lung cancer model in which normal human bronchial epithelial (NHBE cells expressing telomerase, SV40 large T antigen, and Ras were immortal, formed colonies in soft agar, and expressed specific HKMTs for H3 lysine 9 and 27 residues but not for H3 lysine 4 residue. Modifications in the H3 tails affect the binding of proteins to the histone tails and regulate protein function and the position of lysine methylation marks a gene to be either activated or repressed. In the present study, suppression by siRNA of HKMTs (EZH2, G9A, SETDB1 and SUV39H1 that are over-expressed in immortalized and transformed cells lead to reduced cell proliferation and much less anchorage-independent colony growth. We also found that the suppression of H3-K9, G9A and SUV39H1 induced apoptosis and the suppression of H3-K27, EZH2 caused G1 arrest. Conclusion Our results indicate the potential of these HKMTs in addition to the other targets for epigenetics such as DNMTs and HDACs to be interesting therapeutic targets.

  9. MET-2-Dependent H3K9 Methylation Suppresses Transgenerational Small RNA Inheritance.

    Science.gov (United States)

    Lev, Itamar; Seroussi, Uri; Gingold, Hila; Bril, Roberta; Anava, Sarit; Rechavi, Oded

    2017-04-24

    In C. elegans, alterations to chromatin produce transgenerational effects, such as inherited increase in lifespan and gradual loss of fertility. Inheritance of histone modifications can be induced by double-stranded RNA-derived heritable small RNAs. Here, we show that the mortal germline phenotype, which is typical of met-2 mutants, defective in H3K9 methylation, depends on HRDE-1, an argonaute that carries small RNAs across generations, and is accompanied by accumulated transgenerational misexpression of heritable small RNAs. We discovered that MET-2 inhibits small RNA inheritance, and, as a consequence, induction of RNAi in met-2 mutants leads to permanent RNAi responses that do not terminate even after more than 30 generations. We found that potentiation of heritable RNAi in met-2 animals results from global hyperactivation of the small RNA inheritance machinery. Thus, changes in histone modifications can give rise to drastic transgenerational epigenetic effects, by controlling the overall potency of small RNA inheritance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A Common histone modification code on C4 genes in maize and its conservation in Sorghum and Setaria italica.

    Science.gov (United States)

    Heimann, Louisa; Horst, Ina; Perduns, Renke; Dreesen, Björn; Offermann, Sascha; Peterhansel, Christoph

    2013-05-01

    C4 photosynthesis evolved more than 60 times independently in different plant lineages. Each time, multiple genes were recruited into C4 metabolism. The corresponding promoters acquired new regulatory features such as high expression, light induction, or cell type-specific expression in mesophyll or bundle sheath cells. We have previously shown that histone modifications contribute to the regulation of the model C4 phosphoenolpyruvate carboxylase (C4-Pepc) promoter in maize (Zea mays). We here tested the light- and cell type-specific responses of three selected histone acetylations and two histone methylations on five additional C4 genes (C4-Ca, C4-Ppdk, C4-Me, C4-Pepck, and C4-RbcS2) in maize. Histone acetylation and nucleosome occupancy assays indicated extended promoter regions with regulatory upstream regions more than 1,000 bp from the transcription initiation site for most of these genes. Despite any detectable homology of the promoters on the primary sequence level, histone modification patterns were highly coregulated. Specifically, H3K9ac was regulated by illumination, whereas H3K4me3 was regulated in a cell type-specific manner. We further compared histone modifications on the C4-Pepc and C4-Me genes from maize and the homologous genes from sorghum (Sorghum bicolor) and Setaria italica. Whereas sorghum and maize share a common C4 origin, C4 metabolism evolved independently in S. italica. The distribution of histone modifications over the promoters differed between the species, but differential regulation of light-induced histone acetylation and cell type-specific histone methylation were evident in all three species. We propose that a preexisting histone code was recruited into C4 promoter control during the evolution of C4 metabolism.

  11. Core Histones H2B and H4 Are Mobilized during Infection with Herpes Simplex