Energy Technology Data Exchange (ETDEWEB)
Ji, Pengfei; Zhang, Yuwen, E-mail: zhangyu@missouri.edu [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Yang, Mo [College of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China)
2013-12-21
The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.
International Nuclear Information System (INIS)
Ji, Pengfei; Zhang, Yuwen; Yang, Mo
2013-01-01
The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective
Ji, Pengfei; Zhang, Yuwen; Yang, Mo
2013-12-01
The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.
Effect of heat transfer tube leak on dynamic characteristic of steam generator
International Nuclear Information System (INIS)
Sun Baozhi; Shi Jianxin; Li Na; Zheng Lusong; Liu Shanghua; Lei Yu
2015-01-01
Taking the steam generator of Daya Bay Nuclear Power Station as the research object, one-dimensional dynamic model of the steam generator based on drift flux theory and leak model of heat transfer tube were established. Steady simulation of steam generator under different conditions was carried out. Based on verifying the drift flux model and leak model of heat transfer tube, the effect of leak location and flow rate under different conditions on steam generator's key parameters was studied. The results show that the drift flux model and leak model can reflect the law of key parameter change accurately such as vapor mass fraction and steam pressure under different leak cases. The variation of the parameters is most apparent when the leak is at the entrance of boiling section and vapor mass fraction varies from 0.261 to 0.163 when leakage accounts for 5% of coolant flow rate. The successful prediction of the effect of heat transfer tube leak on dynamic characteristics of the steam generator based on drift flux theory supplies some references for monitoring and taking precautionary measures to prevent heat transfer tube leak accident. (authors)
Molecular dynamics simulation of heat transfer through a water layer between two platinum slabs
International Nuclear Information System (INIS)
Iype, E; Arlemark, E J; Nedea, S V; Rindt, C C M; Zondag, H A
2012-01-01
Heat transfer through micro channels is being investigated due to its importance in micro channel cooling applications. Molecular dynamics simulation is regarded as a potential tool for studying such microscopic phenomena in detail. However, the applicability of molecular dynamics method is limited due to scarcely known inter atomic interactions involved in complex fluids. In this study we use an empirical force field (ReaxFF), which is parameterized using accurate quantum chemical simulation results for water, to simulate heat transfer phenomena through a layer of water confined between two platinum slabs. The model for water seems to reproduce the macroscopic properties such as density, radial distribution function and diffusivity quite well. The heat transfer phenomena through a channel filled with water, which is confined by two platinum (100) surfaces are studied using ReaxFF. The model accurately predicts the formation of surface mono-layer. The heat transfer analysis shows temperature jumps near the walls which are creating significant heat transfer resistances. A low bulk density in the channel creates a multi-phase region with vapor transport in the region.
Ji, Pengfei; Zhang, Yuwen; Yang, Mo
2016-01-01
The structural, dynamic, and vibrational properties during the heat transfer process in Si/Ge superlattices, are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) ar...
International Nuclear Information System (INIS)
Ventola, Luigi; Dialameh, Masoud; Fasano, Matteo; Chiavazzo, Eliodoro; Asinari, Pietro
2016-01-01
Highlights: • A novel methodology for optimal design of patterned heat sink surfaces is proposed. • Heat transfer enhancement by patterned surfaces is measured experimentally. • Role of fluid dynamics and geometrical scales on heat transfer is clarified. - Abstract: In the present work, micro-protruded patterns on flush mounted heat sinks for convective heat transfer enhancement are investigated and a novel methodology for thermal optimization is proposed. Patterned heat sinks are experimentally characterized in fully turbulent regime, and the role played by geometrical parameters and fluid dynamic scales is discussed. A methodology specifically suited for micro-protruded pattern optimization is designed, leading to 73% enhancement in thermal performance respect to commercially available heat sinks, at fixed costs. This work is expected to introduce a new methodological approach for a more systematic and efficient development of solutions for electronics cooling.
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
PREFACE: 32nd UIT (Italian Union of Thermo-fluid-dynamics) Heat Transfer Conference
2014-11-01
The annual Conference of the ''Unione Italiana di Termofluidodinamica'' (UIT) aims to promote cooperation in the field of heat transfer and thermal sciences by bringing together scientists and engineers working in related areas. The 32nd UIT Conference was held in Pisa, from the 23rd to the 25th of June, 2014 in the buildings of the School of Engineering, just a few months after the celebration of the 100th anniversary of the first Institution of the School of Engineering at the University of Pisa. The response was very good, with more than 100 participants and 80 high-quality contributions from 208 authors on seven different heat transfer related topics: Heat transfer and efficiency in energy systems, environmental technologies, and buildings (25 papers); Micro and nano scale thermo-fluid dynamics (9 papers); Multi-phase fluid dynamics, heat transfer and interface phenomena (14 papers); Computational fluid dynamics and heat transfer (10 papers); Heat transfer in nuclear plants (8 papers); Natural, forced and mixed convection (10 papers) and Conduction and radiation (4 papers). To encourage the debate, the Conference Program scheduled 16 oral sessions (44 papers), three ample poster sessions (36 papers) and four invited lectures given by experts in the various fields both from Industry and from University. Keynote Lectures were given by Dr. Roberto Parri (ENEL, Italy), Prof. Peter Stephan (TU Darmstadt, Germany), Prof. Bruno Panella (Politecnico di Torino), and Prof. Sara Rainieri (Universit;aacute; di Parma). This special volume collects a selection of the scientific contributions discussed during this conference. A total of 46 contributions, two keynote lectures and 44 papers both from oral and poster sessions, have been selected for publication in this special issue, after a second accurate revision process. These works give a good overview of the state of the art of Italian research in the field of Heat Transfer related topics at the date. The editors of the
Heat-transfer dynamics during cryogen spray cooling of substrate at different initial temperatures
International Nuclear Information System (INIS)
Jia Wangcun; Aguilar, Guillermo; Wang Guoxiang; Nelson, J Stuart
2004-01-01
Cryogen spray cooling (CSC) is used to minimize the risk of epidermal damage during laser dermatologic therapy. However, the dominant mechanisms of heat transfer during the transient cooling process are incompletely understood. The objective of this study is to elucidate the physics of CSC by measuring the effect of initial substrate temperature (T 0 ) on cooling dynamics. Cryogen was delivered by a straight-tube nozzle onto a skin phantom. A fast-response thermocouple was used to record the phantom temperature changes before, during and after the cryogen spray. Surface heat fluxes (q'') and heat-transfer coefficients (h) were computed using an inverse heat conduction algorithm. The maximum surface heat flux (q'' max ) was observed to increase with T 0 . The surface temperature corresponding to q'' max also increased with T 0 but the latter has no significant effect on h. It is concluded that heat transfer between the cryogen spray and skin phantom remains in the nucleate boiling region even if T 0 is 80 0 C
Fluid mechanics and heat transfer advances in nonlinear dynamics modeling
Asli, Kaveh Hariri
2015-01-01
This valuable new book focuses on new methods and techniques in fluid mechanics and heat transfer in mechanical engineering. The book includes the research of the authors on the development of optimal mathematical models and also uses modern computer technology and mathematical methods for the analysis of nonlinear dynamic processes. It covers technologies applicable to both fluid mechanics and heat transfer problems, which include a combination of physical, mechanical, and thermal techniques. The authors develop a new method for the calculation of mathematical models by computer technology, using parametric modeling techniques and multiple analyses for mechanical system. The information in this book is intended to help reduce the risk of system damage or failure. Included are sidebar discussions, which contain information and facts about each subject area that help to emphasize important points to remember.
Bubble Dynamics, Two-Phase Flow, and Boiling Heat Transfer in Microgravity
Chung, Jacob N.
1998-01-01
This report contains two independent sections. Part one is titled "Terrestrial and Microgravity Pool Boiling Heat Transfer and Critical heat flux phenomenon in an acoustic standing wave." Terrestrial and microgravity pool boiling heat transfer experiments were performed in the presence of a standing acoustic wave from a platinum wire resistance heater using degassed FC-72 Fluorinert liquid. The sound wave was created by driving a half wavelength resonator at a frequency of 10.15 kHz. Microgravity conditions were created using the 2.1 second drop tower on the campus of Washington State University. Burnout of the heater wire, often encountered with heat flux controlled systems, was avoided by using a constant temperature controller to regulate the heater wire temperature. The amplitude of the acoustic standing wave was increased from 28 kPa to over 70 kPa and these pressure measurements were made using a hydrophone fabricated with a small piezoelectric ceramic. Cavitation incurred during experiments at higher acoustic amplitudes contributed to the vapor bubble dynamics and heat transfer. The heater wire was positioned at three different locations within the acoustic field: the acoustic node, antinode, and halfway between these locations. Complete boiling curves are presented to show how the applied acoustic field enhanced boiling heat transfer and increased critical heat flux in microgravity and terrestrial environments. Video images provide information on the interaction between the vapor bubbles and the acoustic field. Part two is titled, "Design and qualification of a microscale heater array for use in boiling heat transfer." This part is summarized herein. Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of
Thermal parameter identification for non-Fourier heat transfer from molecular dynamics
Singh, Amit; Tadmor, Ellad B.
2015-10-01
Fourier's law leads to a diffusive model of heat transfer in which a thermal signal propagates infinitely fast and the only material parameter is the thermal conductivity. In micro- and nano-scale systems, non-Fourier effects involving coupled diffusion and wavelike propagation of heat can become important. An extension of Fourier's law to account for such effects leads to a Jeffreys-type model for heat transfer with two relaxation times. We propose a new Thermal Parameter Identification (TPI) method for obtaining the Jeffreys-type thermal parameters from molecular dynamics simulations. The TPI method makes use of a nonlinear regression-based approach for obtaining the coefficients in analytical expressions for cosine and sine-weighted averages of temperature and heat flux over the length of the system. The method is applied to argon nanobeams over a range of temperature and system sizes. The results for thermal conductivity are found to be in good agreement with standard Green-Kubo and direct method calculations. The TPI method is more efficient for systems with high diffusivity and has the advantage, that unlike the direct method, it is free from the influence of thermostats. In addition, the method provides the thermal relaxation times for argon. Using the determined parameters, the Jeffreys-type model is able to reproduce the molecular dynamics results for a short-duration heat pulse where wavelike propagation of heat is observed thereby confirming the existence of second sound in argon. An implementation of the TPI method in MATLAB is available as part of the online supplementary material.
Yu, Yuelong; Liu, Yingzheng; Chen, Yujia
2018-04-01
The influence of an inverted flag's length-to-channel-width ratio (C* = L/W) on its oscillating behavior in a channel flow and the resultant vortex dynamics and heat transfer are determined experimentally. Three systems with C* values of 0.125, 0.250, and 0.375 were chosen for comparison. The interaction of highly unsteady flow with the inverted flag is measured with time-resolved particle image velocimetry. Variations in the underlying flow physics are discussed in terms of the statistical flow quantities, flag displacement, phase-averaged flow field, and vortex dynamics. The results show that the increase in C* shifts the occurrence of the flapping regime at high dimensionless bending stiffness. With the flag in the flapping region, three distinct vortex dynamics—the von Kármán vortex street, the G mode, and the singular mode—are identified at C* values of 0.375, 0.250, and 0.125, respectively. Finally, the heat transfer enhancement from the self-oscillating inverted flag is measured to serve as complementary information to quantify the cause-and-effect relationship between vortex dynamics and wall heat transfer. The increase in C* strongly promotes wall heat removal because disruption of the boundary layer by the energetic vortices is substantially intensified. Among all systems, wall heat transfer removal is most efficient at the intermediate C* value of 0.250.
International Nuclear Information System (INIS)
Mahdi, M.; Ebrahimi, R.; Shams, M.
2011-01-01
A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack. -- Highlights: → Heat transfer and ionization energy losses were analyzed in the cavitation bubble. → Radiation of hydrodynamic bubble was approximately equal to the black body. → Radiation heat transfer did not affect the bubble dynamic. → Conduction decreased the bubble pressure and increased the bubble temperature. → Ionization decreased the temperature and increased the pressure in the bubble.
Directory of Open Access Journals (Sweden)
Bao-guo Yao
2017-10-01
Full Text Available Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials.
Chemical Kinetics, Heat Transfer, and Sensor Dynamics Revisited in a Simple Experiment
Sad, Maria E.; Sad, Mario R.; Castro, Alberto A.; Garetto, Teresita F.
2008-01-01
A simple experiment about thermal effects in chemical reactors is described, which can be used to illustrate chemical reactor models, the determination and validation of their parameters, and some simple principles of heat transfer and sensor dynamics. It is based in the exothermic reaction between aqueous solutions of sodium thiosulfate and…
International Nuclear Information System (INIS)
Farah, Amjad; Harvel, Glenn; Pioro, Igor
2015-01-01
Computational Fluid Dynamics (CFD) is a numerical approach to model fluids in multidimensional space using the Navier-Stokes equations and databases of fluid properties to arrive at a full simulation of a fluid dynamics and heat transfer system. A numerical study on heat transfer to supercritical water (SCW) flowing in a vertical tube is carried out using the ANSYS FLUENT code and employing the SST k-ω turbulence model. The 3D mesh consists of a 1/8 section (45deg radially) of a bare tube. The numerical results on wall temperature distributions under normal and deteriorated heat transfer conditions are compared to experimental results. The same geometry is then simulated with an orifice to study the effect of geometrical perturbation on the flow and heat transfer characteristics of SCW. The orifice is placed areas to test the effect on normal, deteriorated and enhanced heat transfer regimes. The flow effects and heat transfer characteristics will be studied around the appendages to arrive at a fundamental understanding of the phenomena related to supercritical water turbulence. (author)
Proceedings of the 33rd national heat transfer conference NHTC'99
International Nuclear Information System (INIS)
Jensen, M.K.; Di Marzo, M.
1999-01-01
The papers in this conference were divided into the following sections: Radiation Heat Transfer in Fires; Computational Fluid Dynamics Methods in Two-Phase Flow; Heat Transfer in Microchannels; Thin Film Heat Transfer; Thermal Design of Electronics; Enhanced Heat Transfer I; Porous Media Convection; Contact Resistance Heat Transfer; Materials Processing in Solidification and Crystal Growth; Fundamentals of Combustion; Challenging Modeling Aspects of Radiative Transfer; Fundamentals of Microscale Transport; Laser Processing and Diagnostics for Manufacturing and Materials Processing; Experimental Studies of Multiphase Flow; Enhanced Heat Transfer II; Heat and Mass Transfer in Porous Media; Heat Transfer in Turbomachinery and Gas Turbine Systems; Conduction Heat Transfer; General Papers; Open Forum on Combustion; Combustion and Instrumentation and Diagnostics I; Radiative Heat Transfer and Interactions in Participating and Nonparticipating Media; Applications of Computational Heat Transfer; Heat Transfer and Fluid Aspects of Heat Exchangers; Two-Phase Flow and Heat Transfer Phenomena; Fundamentals of Natural and Mixed Convection Heat Transfer I; Fundamental of Natural and Mixed Convection Heat Transfer II; Combustion and Instrumentation and Diagnostics II; Computational Methods for Multidimensional Radiative Transfer; Process Heat Transfer; Advances in Computational Heat and Mass Transfer; Numerical Methods for Porous Media; Transport Phenomena in Manufacturing and Materials Processing; Practical Combustion; Melting and Solidification Heat Transfer; Transients in Dynamics of Two-Phase Flow; Basic Aspects of Two-Phase Flow; Turbulent Heat Transfer; Convective Heat Transfer in Electronics; Thermal Problems in Radioactive and Mixed Waste Management; and Transport Phenomena in Oscillatory Flows. Separate abstracts were prepared for most papers in this conference
International Nuclear Information System (INIS)
Saad, M.A.
1985-01-01
Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously
Numerical study on boiling heat transfer enhancement in a microchannel heat exchanger
International Nuclear Information System (INIS)
Jeon, Jin Ho; Suh, Young Ho; Son, Gi Hun
2008-01-01
Flow boiling in a microchannel heat exchanger has received attention as an effective heat removal mechanism for high power-density microelectronics. Despite extensive experimental studied, the bubble dynamics coupled with boiling heat transfer in a microchannel heat exchanger is still not well understood due to the technological difficulties in obtaining detailed measurements of microscale two-phase flows. In this study, complete numerical simulations are performed to further clarify the dynamics of flow boiling in a microchannel heat exchanger. The level set method for tracking the liquid-vapor interface is modified to include the effects of phase change and contact angle and to treat an immersed solid surface. Based on the numerical results, the effects of modified channel shape on the bubble growth and heat transfer are quantified
Numerical investigation of heat transfer effects in small wave rotor
International Nuclear Information System (INIS)
Deng, Shi; Okamoto, Koji; Teramoto, Susumu
2015-01-01
Although a wave rotor is expected to enhance the performance of the ultra-micro gas turbine, the device itself may be affected by downsizing. Apart from the immediate effect of viscosity on flow dynamics when downscaled, the effects of heat transfer on flow field increase at such small scales. To gain an insight into the effects of heat transfer on the internal flow dynamics, numerical investigations were carried out with adiabatic, isothermal and conjugate heat transfer boundary treatments at the wall, and the results compared and discussed in the present study. With the light shed by the discussion of adiabatic and conjugate heat transfer boundary treatments, this work presents investigations of the heat flux distributions, as well as the effects of heat transfer on the internal flow dynamics and the consequent charging and discharging processes for various sizes. When heat transfer is taken into account, states of fluid in the cell before compression process varies, shock waves in compression process are found to be weaker, and changes in the charging and discharging processes are observed. Heat transfer differences between conjugate heat transfer boundary treatment and isothermal boundary treatment are addressed through comparisons of local wall temperature and heat flux. As a result, the difference in discharging temperature of high pressure fluid is noticeable in all sizes investigated, and the rapid increase of differences between results of isothermal and conjugate heat transfer boundary treatment in small size reveals that for certain small sizes (length of cell < 23 mm) the thermal boundary treatment should be taken care of.
International Nuclear Information System (INIS)
Walter, H.; Hofmann, R.
2011-01-01
This paper presents the results of a theoretical investigation on the influence of different heat transfer correlations for finned-tubes to the dynamic behavior of a heat recovery steam generator (HRSG). The investigation was done for a vertical type natural circulation HRSG with 3 pressure stages under hot start-up and shutdown conditions. For the calculation of the flue gas-side heat transfer coefficient the well known correlations for segmented finned-tubes according to Schmidt, VDI and ESCOA TM (traditional and revised) as well as a new correlation, which was developed at the Institute for Energy Systems and Thermodynamics, are used. The simulation results show a good agreement in the overall behavior of the boiler between the different correlations. But there are still some important differences found in the detail analysis of the boiler behavior. - Research highlights: → Numerical simulation is performed to explore the influence of different heat transfer correlations for finned-tubes to the dynamic behavior of a heat recovery steam generator. → Differences in the steam generator behavior are found. → In the worst case the boiler can lead to unfavorable operation conditions, e.g. reverse flow.
Energy Technology Data Exchange (ETDEWEB)
Mahdi, M. [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Ebrahimi, R. [Faculty of Aerospace Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shams, M., E-mail: shams@kntu.ac.ir [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Pardis St., Molla-Sadra Ave, Vanak. Sq., P.O. Box: 19395-1999, Tehran (Iran, Islamic Republic of)
2011-06-13
A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack. -- Highlights: → Heat transfer and ionization energy losses were analyzed in the cavitation bubble. → Radiation of hydrodynamic bubble was approximately equal to the black body. → Radiation heat transfer did not affect the bubble dynamic. → Conduction decreased the bubble pressure and increased the bubble temperature. → Ionization decreased the temperature and increased the pressure in the bubble.
International Nuclear Information System (INIS)
Hasatani, Masanobu; Itaya, Yoshinori
1985-01-01
In order to develop energy-saving techniques and new energy techniques, and also most advanced techniques by making industrial equipment with high performance, heat transfer performance frequently becomes an important problem. In addition, the improvement of conventional heat transfer techniques and the device of new heat transfer techniques are often required. It is most proper that chemical engineers engage in the research and development for enhancing heat transfer. The research and development for enhancing heat transfer are important to heighten heat exchange efficiency or to cool equipment for preventing overheat in high temperature heat transfer system. In this paper, the techniques of enhancing radiative heat transfer and the improvement of radiative heat transfer characteristics are reported. Radiative heat transfer is proportional to fourth power of absolute temperature, and it does not require any heat transfer medium, but efficient heat-radiation converters are necessary. As the techniques of enhancing radiative heat transfer, the increase of emission and absorption areas, the installation of emissive structures and the improvement of radiative characteristics are discussed. (Kako, I.)
Heat transfer in intermediate heat exchanger under low flow rate conditions
International Nuclear Information System (INIS)
Mochizuki, H.
2008-01-01
The present paper describes the heat transfer in intermediate heat exchangers (IHXs) of liquid metal cooled fast reactors when flow rate is low such as a natural circulation condition. Although empirical correlations of heat transfer coefficients for IHX were derived using test data at the fast reactor 'Monju' and 'Joyo' and also at the 50 MW steam generator facility, the heat transfer coefficient was very low compared to the well known correlation for liquid metals proposed by Seban-Shimazaki. The heat conduction in IHX was discussed as a possible cause of the low Nusselt number. As a result, the heat conduction is not significant under the natural circulation condition, and the heat conduction term in the energy equation can be neglected in the one-dimensional plant dynamics calculation. (authors)
Numerical simulation of fluid flow and heat transfer in a concentric tube heat exchanger
International Nuclear Information System (INIS)
Mokamati, S.V.; Prasad, R.C.
2003-01-01
In this paper, numerical simulation of a concentric tube heat exchanger is presented to determine the convective heat transfer coefficient and friction factor in a smooth tube. Increasing the convective heat transfer coefficient can increase heat transfer rate in a concentric tube heat exchanger from a given tubular surface area. This can be achieved by using heat transfer augmentation devices. This work constitutes the initial phase of the numerical simulation of heat transfer from tubes employing augmentation devices, such as twisted tapes, wire-coil inserts, for heat transfer enhancement. A computational fluid dynamics (CFD) simulation tool was developed with CFX software and the results obtained from the simulations are validated with the empirical correlations for a smooth tube heat exchanger. The difficulties associated with the simulation of a heat exchanger augmented with wire-coil inserts are discussed. (author)
Flow dynamics of volume-heated boiling pools
International Nuclear Information System (INIS)
Ginsberg, T.; Jones, O.C.; Chen, J.C.
1979-01-01
Safety analyses of fast breeder reactors require understanding of the two-phase fluid dynamic and heat transfer characteristics of volume-heated boiling pool systems. Design of direct contact three-phase boilers, of practical interest in the chemical industries also requires understanding of the fundamental two-phase flow and heat transfer behavior of volume boiling systems. Several experiments have been recently reported relevant to the boundary heat-loss mechanisms of boiling pool systems. Considerably less is known about the two-phase fluid dynamic behavior of such systems. This paper describes an experimental investigation of the steady-state flow dynamics of volume-heated boiling pool systems
Barron, Randall F
2016-01-01
Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.
Refrigerant falling film evaporation review: Description, fluid dynamics and heat transfer
International Nuclear Information System (INIS)
Fernández-Seara, José; Pardiñas, Ángel Á.
2014-01-01
Falling film horizontal tube evaporators for refrigeration equipment are an interesting alternative to pool boiling evaporators concerning operation costs, safety, thermodynamic efficiency, charge of refrigerant or size. Plenty of literature works studied falling film evaporation, but for its application in fields such as desalination and petrochemical industry or OTEC. This review focuses mainly on those works from the literature that analysed the main issues of falling film evaporation of refrigerants, to better understand heat transfer and fluid dynamics in such evaporators. First, falling film evaporation is described and compared to pool boiling, to define its main advantages and inconveniences. Then, the literature concerning film around the tubes and between them is analysed, as well as the phenomenon of film breakdown, which sharply deteriorates the heat transfer performance of falling film evaporators. After it, the results from those works that studied analytically and experimentally the heat transfer coefficients (HTCs) with different types of tubes and refrigerants are discussed. The review finishes with a brief summary of important parameters of falling film evaporation, which might be useful for the design of such equipment. - Highlights: •We defined falling film evaporation and compared it with pool boiling. •We reviewed works from the literature concerning refrigerant falling film evaporation. •We classified the ideas from the works attending to crucial aspects of the process. •We developed a summary of the main ideas which could be useful for design purpose
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.
International Nuclear Information System (INIS)
La Madrid, Raul; Marcelo, Daniel; Orbegoso, Elder Mendoza; Saavedra, Rafael
2016-01-01
Highlights: • Heat transfer modeling and simulation between flue gases and sugar cane juice. • Use of Computational Fluid Dynamics to get thermal parameters of a jaggery furnace. • Data acquisition system installed in the jaggery production module. • Parametric analysis changing the flue-gases velocity to represent temperature drops. - Abstract: Jaggery (also called organic sugar) is a concentrated product of sugarcane juice that is produced in rural communities in the highlands and jungle of Peru. In the last few years there has been an increase in the exports of jaggery and higher volumes of production are required driving this activity from a rural process with small production to an industry seeking greater productivity. In this framework, optimization of the use of energy becomes essential for the proper development of the process of production and the correct performance of the involved equipment. Open heat exchangers made of stainless steel are used in the production of jaggery. These heat exchangers containing sugarcane juice are placed over a flue gas duct. The thermal energy contained in the gas is used to evaporate the water contained in the sugarcane juice thickening the juice and after evaporating almost all the water, a pasty crystalline yellow substance is left in the boiling pan which becomes solid after cooling, this is the jaggery. The modeling and simulation of heat transfer between the combustion gases and the juice is very important in order to improve the thermal efficiency of the process. It permits to know with a high level of detail the physical phenomena of heat transfer occurring from bagasse combustion flue gases to sugarcane juice. This paper presents the results of the numerical simulation of heat transfer phenomena in the open heat exchangers and those results are compared to field measured data. Numerical results about temperature drop of flue gases in the several locations of the jaggery furnace are in good accordance with
A study on the heat transfer characteristics of a self-oscillating heat pipe
International Nuclear Information System (INIS)
Yoon, Seok Hun; Oh, Cheol; Choi, Jae Hyuk
2002-01-01
In this paper, the heat transfer characteristics of a self-oscillating heat pipe are experimentally investigated for the effect of various working fluid fill charge ratios and heat loads. The characteristics of temperature oscillations of the working fluid are also analysed based on chaotic dynamics. The heat pipe is composed of a heating section, a cooling section and an adiabatic section, and has a 0.002m internal diameter, a 0.34m length in each turn and consists of 19 turns. The heating and the cooling portion of each turn has a length of 70mm. A series of experiments was carried out to measure the temperature distributions and the pressure variations of the heat pipe. Furthermore, heat transfer performance, effective thermal conductivity, boiling heat transfer and condensation heat transfer coefficients are calculated for various operating conditions. Experimental results show the efficacy of this type of heat pipe
Kakac, Sadik; Pramuanjaroenkij, Anchasa
2014-01-01
Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....
Heat transfer: Pittsburgh 1987
International Nuclear Information System (INIS)
Lyczkowski, R.W.
1987-01-01
This book contains papers divided among the following sections: Process Heat Transfer; Thermal Hydraulics and Phase Change Phenomena; Analysis of Multicomponent Multiphase Flow and Heat Transfer; Heat Transfer in Advanced Reactors; General Heat Transfer in Solar Energy; Numerical Simulation of Multiphase Flow and Heat Transfer; High Temperature Heat Transfer; Heat Transfer Aspects of Severe Reactor Accidents; Hazardous Waste On-Site Disposal; and General Papers
Not Available
1980-03-07
A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.
Directory of Open Access Journals (Sweden)
WANG Fang
2017-04-01
Full Text Available Aimed to insufficient heat transfer of heat exchanger, research the influence on the heat transfer coefficient impacted by velocity and heat transfer temperature difference of tube heat exchanger. According to the different heat transfer temperature difference and gas velocity，the experimental data were divided into group. Using the control variable method，the above two factors were analyzed separately. K一△T and k一:fitting curve were clone to obtain empirical function. The entire heat exchanger is as the study object，using numerical simulation methods，porous media，k一￡model，second order upwind mode，and pressure一velocity coupling with SIMPLE algorithm，the entire heat exchanger temperature field and the heat transfer coefficient distribution were given. Finally the trend of the heat transfer coefficient effected by the above two factors was gotten.
The effect of plate heat exchanger’s geometry on heat transfer
Directory of Open Access Journals (Sweden)
Oana GIURGIU
2014-11-01
Full Text Available The study presents further Computational Fluid Dynamics (CFD numerical analysis for two models of plate heat exchangers. Comparatively was studied the influence of geometric characteristics of plates on the intensification process of heat exchange. For this purpose, it was examined the distribution of velocity and temperatures fields on active plate height. Heat transfer characteristics were analysed through the variation of mass flow on the primary heat agent.
Bacon, D H
2013-01-01
Basic Heat Transfer aims to help readers use a computer to solve heat transfer problems and to promote greater understanding by changing data values and observing the effects, which are necessary in design and optimization calculations.The book is concerned with applications including insulation and heating in buildings and pipes, temperature distributions in solids for steady state and transient conditions, the determination of surface heat transfer coefficients for convection in various situations, radiation heat transfer in grey body problems, the use of finned surfaces, and simple heat exc
Study on heat transfer coefficients during cooling of PET bottles for food beverages
Liga, Antonio; Montesanto, Salvatore; Mannella, Gianluca A.; La Carrubba, Vincenzo; Brucato, Valerio; Cammalleri, Marco
2016-08-01
The heat transfer properties of different cooling systems dealing with Poly-Ethylene-Terephthalate (PET) bottles were investigated. The heat transfer coefficient (Ug) was measured in various fluid dynamic conditions. Cooling media were either air or water. It was shown that heat transfer coefficients are strongly affected by fluid dynamics conditions, and range from 10 W/m2 K to nearly 400 W/m2 K. PET bottle thickness effect on Ug was shown to become relevant under faster fluid dynamics regimes.
Mahdi, M.; Ebrahimi, R.; Shams, M.
2011-06-01
A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack.
Molecular dynamics study of solid-liquid heat transfer and passive liquid flow
Yesudasan Daisy, Sumith
High heat flux removal is a challenging problem in boilers, electronics cooling, concentrated photovoltaic and other power conversion devices. Heat transfer by phase change is one of the most efficient mechanisms for removing heat from a solid surface. Futuristic electronic devices are expected to generate more than 1000 W/cm2 of heat. Despite the advancements in microscale and nanoscale manufacturing, the maximum passive heat flux removal has been 300 W/cm2 in pool boiling. Such limitations can be overcome by developing nanoscale thin-film evaporation based devices, which however require a better understanding of surface interactions and liquid vapor phase change process. Evaporation based passive flow is an inspiration from the transpiration process that happens in trees. If we can mimic this process and develop heat removal devices, then we can develop efficient cooling devices. The existing passive flow based cooling devices still needs improvement to meet the future demands. To improve the efficiency and capacity of these devices, we need to explore and quantify the passive flow happening at nanoscales. Experimental techniques have not advanced enough to study these fundamental phenomena at the nanoscale, an alternative method is to perform theoretical study at nanoscales. Molecular dynamics (MD) simulation is a widely accepted powerful tool for studying a range of fundamental and engineering problems. MD simulations can be utilized to study the passive flow mechanism and heat transfer due to it. To study passive flow using MD, apart from the conventional methods available in MD, we need to have methods to simulate the heat transfer between solid and liquid, local pressure, surface tension, density, temperature calculation methods, realistic boundary conditions, etc. Heat transfer between solid and fluids has been a challenging area in MD simulations, and has only been minimally explored (especially for a practical fluid like water). Conventionally, an
International Nuclear Information System (INIS)
Guangming, Xiao; Yanxia, Du; Yewei, Gui; Lei, Liu; Xiaofeng, Yang; Dong, Wei
2014-01-01
The theories of heat transfer, thermodynamics and fluid dynamics are employed to develop the coupled heat transfer analytical methods for the heat-pipe-cooled thermal protection structure (HPC TPS), and a three-dimensional numerical method considering the sonic limit of heat pipe is proposed. To verify the calculation correctness, computations are carried out for a typical heat pipe and the results agree well with experimental data. Then, the heat transfer characteristics and limitations of HPC TPS are mainly studied. The studies indicate that the use of heat pipe can reduce the temperature at high heat flux region of structure efficiently. However, there is a frozen startup period before the heat pipe reaching a steady operating state, and the sonic limit will be a restriction on the heat transfer capability. Thus, the effects of frozen startup must be considered for the design of HPC TPS. The simulation model and numerical method proposed in this paper can predict the heat transfer characteristics of HPC TPS quickly and exactly, and the results will provide important references for the design or performance evaluation of HPC TPS. - Highlights: • Numerical methods for the heat-pipe-cooled thermal protection structure are studied. • Three-dimensional simulation model considering sonic limit of heat pipe is proposed. • The frozen startup process of the embedded heat pipe can be predicted exactly. • Heat transfer characteristics of TPS and limitations of heat pipe are discussed
Conjugate Compressible Fluid Flow and Heat Transfer in Ducts
Cross, M. F.
2011-01-01
A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.
Component Cooling Heat Exchanger Heat Transfer Capability Operability Monitoring
International Nuclear Information System (INIS)
Mihalina, M.; Djetelic, N.
2010-01-01
.g. using CC Heat Exchanger bypass valves for CC temperature control, variation of plant heat loads, pumps performance, and day-night temperature difference, with lagging effects on heat transfer dynamics). Krsko NPP is continuously monitoring the Component Cooling (CC) Heat Exchanger performance using the on-line process information system (PIS). By defining the mathematical algorithm, it is possible to continuously evaluate the CC Heat Exchanger operability by verifying if the heat transfer rate calculation is in accordance with the heat exchanger design specification sheet requirements. These calculations are limited to summer periods only when the bypass valves are neither throttled nor open.(author).
Combined Steady-State and Dynamic Heat Exchanger Experiment
Luyben, William L.; Tuzla, Kemal; Bader, Paul N.
2009-01-01
This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…
International Nuclear Information System (INIS)
Cui, Wenzheng; Shen, Zhaojie; Yang, Jianguo; Wu, Shaohua
2015-01-01
Through Molecular Dynamics simulation, the chaotic movements of nanoparticles in base fluid are investigated. Based on the simulated results of translational and rotational velocities of nanoparticles, the effect of nanoparticle movements for heat transfer in nanofluids is discussed. Furthermore, the influence of nanoparticle movements for the base fluid is studied. The fluid near a nanoparticle is divided into three levels: (1) absorption layer, (2) rotating fluid, and (3) spherical existential space, or called rotating fluid element. And the microscopic structure of nanofluid which is composed of countless rotating fluid elements is proposed. - Highlights: • The orders of magnitude of translational and rotational motions for nanoparticles are given. • The microscopic structure around a nanoparticle is proposed. • Mechanisms of heat transfer enhancement in nanofluids are discussed
Morimoto, Kenichi; Kinoshita, Hidenori; Matsushita, Ryo; Suzuki, Yuji
2017-11-01
With abundance of low-temperature geothermal energy source, small-scale binary-cycle power generation system has gained renewed attention. Although heat exchangers play a dominant role in thermal efficiency and the system size, the optimum design strategy has not been established due to complex flow phenomena and the lack of versatile heat transfer models. In the present study, the concept of oblique wavy walls, with which high j/f factor is achieved by strong secondary flows in single-phase system, is extended to two-phase exchangers. The present analyses are based on evaporation model coupled to a VOF technique, and a train of isolated bubbles is generated under the controlled inlet quality. R245fa is adopted as a low boiling-point working media, and two types of channels are considered with a hydraulic diameter of 4 mm: (i) a straight circular pipe and (ii) a duct with oblique wavy walls. The focus is on slug-flow dynamics with evaporation under small capillary but moderate Weber numbers, where the inertial effect as well as the surface tension is of significance. A possible direction of the change in thermo-physical properties is explored by assuming varied thermal conductivity. Effects of the vortical motions on evaporative heat transfer are highlighted. This work has been supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.
Heat transfer in turbocharger turbines under steady, pulsating and transient conditions
International Nuclear Information System (INIS)
Burke, R.D.; Vagg, C.R.M.; Chalet, D.; Chesse, P.
2015-01-01
Highlights: • Compare turbine heat transfer correlations from different studies. • Compare heat transfer for a same turbine on-engine and on gas-stand. • Analyse heat transfer under steady and transient operating conditions. • Gas stand heat transfer correlations are transferrable to engine conditions. • Heat flows can be reversed compared to steady conditions during transients. - Abstract: Heat transfer is significant in turbochargers and a number of mathematical models have been proposed to account for the heat transfer, however these have predominantly been validated under steady flow conditions. A variable geometry turbocharger from a 2.2 L Diesel engine was studied, both on gas stand and on-engine, under steady and transient conditions. The results showed that heat transfer accounts for at least 20% of total enthalpy change in the turbine and significantly more at lower mechanical powers. A convective heat transfer correlation was derived from experimental measurements to account for heat transfer between the gases and the turbine housing and proved consistent with those published from other researchers. This relationship was subsequently shown to be consistent between engine and gas stand operation: using this correlation in a 1D gas dynamics simulation reduced the turbine outlet temperature error from 33 °C to 3 °C. Using the model under transient conditions highlighted the effect of housing thermal inertia. The peak transient heat flow was strongly linked to the dynamics of the turbine inlet temperature: for all increases, the peak heat flow was higher than under thermally stable conditions due to colder housing. For all decreases in gas temperature, the peak heat flow was lower and for temperature drops of more than 100 °C the heat flow was reversed during the transient
Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers
Directory of Open Access Journals (Sweden)
Hanuszkiewicz-Drapała Małgorzata
2016-03-01
Full Text Available A cross-flow, tube and fin heat exchanger of the water – air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.
International Nuclear Information System (INIS)
2003-08-01
This book deals with analysis of heat transfer which includes nonlinear analysis examples, radiation heat transfer, analysis of heat transfer in ANSYS, verification of analysis result, analysis of heat transfer of transition with automatic time stepping and open control, analysis of heat transfer using arrangement of ANSYS, resistance of thermal contact, coupled field analysis such as of thermal-structural interaction, cases of coupled field analysis, and phase change.
Boudjada, Nazim; Segal, Dvira
2014-11-26
We study in a unified manner the dissipative dynamics and the transfer of heat in the two-bath spin-boson model. We use the Bloch-Redfield (BR) formalism, valid in the very weak system-bath coupling limit, the noninteracting-blip approximation (NIBA), applicable in the nonadiabatic limit, and iterative, numerically exact path integral tools. These methodologies were originally developed for the description of the dissipative dynamics of a quantum system, and here they are applied to explore the problem of quantum energy transport in a nonequilibrium setting. Specifically, we study the weak-to-intermediate system-bath coupling regime at high temperatures kBT/ħ > ε, with ε as the characteristic frequency of the two-state system. The BR formalism and NIBA can lead to close results for the dynamics of the reduced density matrix (RDM) in a certain range of parameters. However, relatively small deviations in the RDM dynamics propagate into significant qualitative discrepancies in the transport behavior. Similarly, beyond the strict nonadiabatic limit NIBA's prediction for the heat current is qualitatively incorrect: It fails to capture the turnover behavior of the current with tunneling energy and temperature. Thus, techniques that proved meaningful for describing the RDM dynamics, to some extent even beyond their rigorous range of validity, should be used with great caution in heat transfer calculations, because qualitative-serious failures develop once parameters are mildly stretched beyond the techniques' working assumptions.
Core-concrete molten pool dynamics and interfacial heat transfer
International Nuclear Information System (INIS)
Benjamin, A.S.
1980-01-01
Theoretical models are derived for the heat transfer from molten oxide pools to an underlying concrete surface and from molten steel pools to a general concrete containment. To accomplish this, two separate effects models are first developed, one emphasizing the vigorous agitation of the molten pool by gases evolving from the concrete and the other considering the insulating effect of a slag layer produced by concrete melting. The resulting algebraic expressions, combined into a general core-concrete heat transfer representation, are shown to provide very good agreement with experiments involving molten steel pours into concrete crucibles
Zhang, Yue; Barnes, George L; Yan, Tianying; Hase, William L
2010-05-07
Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Science, 2007, 317, 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface, and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly, much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM, perpendicular to the interface, results in nearly identical temperatures for the CH(2) and CH(3) groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate, the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM, there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.
Directory of Open Access Journals (Sweden)
Andreas Velte
2017-08-01
Full Text Available Thermally-driven heat pumps can help to mitigate CO2 emissions by enhancing the efficiency of heating systems or by driving cooling systems with waste or solar heat. In order to make the thermally-driven systems more attractive for the end consumer, these systems need a higher power density. A higher power density can be achieved by intensifying the heat and mass transfer processes within the adsorption heat exchanger. For the optimization of this key component, a numerical model of the non-isothermal adsorption dynamics can be applied. The calibration of such a model can be difficult, since heat and mass transfer processes are strongly coupled. We present a measurement and simulation procedure that makes it possible to calibrate the heat transfer part of the numerical model separately from the mass transfer part. Furthermore, it is possible to identify the parts of the model that need to be improved. For this purpose, a modification of the well-known large temperature jump method is developed. The newly-introduced measurements are conducted under an inert N2 atmosphere, and the surface temperature of the sample is measured with an infrared sensor. We show that the procedure is applicable for two completely different types of samples: a loose grains configuration and a fibrous structure that is directly crystallized.
Proceedings of the 29th heat transfer and fluid mechanics institute
International Nuclear Information System (INIS)
Reardon, F.H.; Ngo, D.T.
1985-01-01
This book presents the papers given at a conference on two-phase flow and heat transfer. Topics considered at the conference included two-phase flow in zero gravity, approximate characteristics for one-dimensional two-phase flows, Soret transport in the production of silicon for solar cells, the dynamics of heat transfer in packed beds, and heat transfer in variable-property MHD entrance flow with a generalized temperature boundary condition
Turbulent heat transfer for heating of water in a short vertical tube
International Nuclear Information System (INIS)
Hata, Koichi; Noda, Nobuaki
2008-01-01
The turbulent heat transfer coefficients for the flow velocities (u=4.0 to 21 m/s), the inlet liquid temperatures (T in =296.5 to 353.4 K), the inlet pressures (P in =810 to 1014 kPa) and the increasing heat inputs (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured by an experimental water loop. The Platinum test tubes of test tube inner diameters (d=3, 6 and 9 mm), heated lengths (L=32.7 to 100 mm), ratios of heated length to inner diameter (L/d=5.51 to 33.3) and wall thickness (δ=0.3, 0.4 and 0.5 mm) with surface roughness (Ra=0.40 to 0.78 μm) are used in this work. The turbulent heat transfer data for Platinum test tubes were compared with the values calculated by other workers' correlations for the turbulent heat transfer. The influence of Reynolds number (Re), Prandtl number (Pr), Dynamic viscosity (μ) and L/d on the turbulent heat transfer is investigated into details and, the widely and precisely predictable correlation of the turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data. The correlation can describe the turbulent heat transfer coefficients obtained in this work for the wide range of the temperature difference between heater inner surface temperature and average bulk liquid temperature (ΔT L =5 to 140 K) with d=3, 6 and 9 mm, L=32.7 to 100 mm and u=4.0 to 21 m/s within ±15%, difference. (author)
Turbulent heat transfer for heating of water in a short vertical tube
International Nuclear Information System (INIS)
Hata, Koichi; Noda, Nobuaki
2007-01-01
The turbulent heat transfer coefficients for the flow velocities (u=4.0 to 21 m/s), the inlet liquid temperatures (T in =296.5 to 353.4 K), the inlet pressures (P in =810 to 1014 kPa) and the increasing heat inputs (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured by the experimental water loop. The Platinum test tubes of test tube inner diameters (d=3, 6 and 9 mm), heated lengths (L=32.7 to 100 mm), ratios of heated length to inner diameter (L/d=5.51 to 33.3) and wall thicknesses (δ=0.3, 0.4 and 0.5 mm) with surface roughness (Ra=0.40 to 0.78 μm) are used in this work. The turbulent heat transfer data for Platinum test tubes were compared with the values calculated by other workers' correlations for the turbulent heat transfer. The influences of Reynolds number (Re), Prandtl number (Pr), Dynamic viscosity (μ) and L/d on the turbulent heat transfer are investigated into details and, the widely and precisely predictable correlation of the turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data. The correlation can describe the turbulent heat transfer coefficients obtained in this work for wide range of the temperature difference between heater inner surface temperature and average bulk liquid temperature (ΔT L =5 to 140 K) with d=3, 6 and 9 mm, L=32.7 to 100 mm and u=4.0 to 21 m/s within ±15% difference. (author)
Ohara, Taku; Yuan, Tan Chia; Torii, Daichi; Kikugawa, Gota; Kosugi, Naohiro
2011-07-21
In this paper, the molecular mechanisms which determine the thermal conductivity of long chain polymer liquids are discussed, based on the results observed in molecular dynamics simulations. Linear n-alkanes, which are typical polymer molecules, were chosen as the target of our studies. Non-equilibrium molecular dynamics simulations of bulk liquid n-alkanes under a constant temperature gradient were performed. Saturated liquids of n-alkanes with six different chain lengths were examined at the same reduced temperature (0.7T(c)), and the contributions of inter- and intramolecular energy transfer to heat conduction flux, which were identified as components of heat flux by the authors' previous study [J. Chem. Phys. 128, 044504 (2008)], were observed. The present study compared n-alkane liquids with various molecular lengths at the same reduced temperature and corresponding saturated densities, and found that the contribution of intramolecular energy transfer to the total heat flux, relative to that of intermolecular energy transfer, increased with the molecular length. The study revealed that in long chain polymer liquids, thermal energy is mainly transferred in the space along the stiff intramolecular bonds. This finding implies a connection between anisotropic thermal conductivity and the orientation of molecules in various organized structures with long polymer molecules aligned in a certain direction, which includes confined polymer liquids and self-organized structures such as membranes of amphiphilic molecules in water.
PREFACE: 31st UIT (Italian Union of Thermo-fluid-dynamics) Heat Transfer Conference 2013
Vitali, Luigi; Niro, Alfonso; Colombo, Luigi; Sotgia, Giorgio
2014-04-01
The annual Conference of the ''Unione Italiana di Termofluidodinamica'' (UIT) aims at promoting cooperation in the field of heat transfer and thermal sciences, by bringing together scientists and engineers working in related areas. The 31st UIT Conference was held in Moltrasio (Como), Italy, 25-27 June, 2013 at the Grand Hotel Imperiale. The response has been enthusiastic, with more than 70 quality contributions from 224 authors on heat transfer related topics: natural, forced and mixed convection, conduction, radiation, multi-phase fluid dynamics and interface phenomena, computational fluid dynamics, micro- and nano-scales, efficiency in energy systems, environmental technologies and buildings. To encourage the debate, the Conference Program has scheduled ample poster sessions and invited lectures from the best experts in the field along with a few of the most talented researchers. Keynote Lectures were given by Professor Roberto Mauri (University of Pisa), Professor Lounés Tadrist (Polytech Marseille) and Professor Maurizio Quadrio (Politecnico di Milano). This special volume collects a selection of the scientific contributions discussed during this conference; these works give a good overview of the state-of-the art Italian research in the field of Heat Transfer related topics. I would like to thank sincerely the authors for presenting their works at the conference and in this special issue. I would also like to extend my thanks to the Scientific Committee and the authors for their accurate review process of each paper for this special issue. Special thanks go to the organizing committee and to our sponsors. As a professor of Politecnico di Milano, let me say I am very proud to have been the chair of this conference in the 150th anniversary of my university. Professor Alfonso Niro Details of organizers, sponsors and committees, as well as further information, are available in the PDF
SUNDÉN, B
2012-01-01
Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.
Modelling of heat and mass transfer processes in neonatology
Energy Technology Data Exchange (ETDEWEB)
Ginalski, Maciej K [FLUENT Europe, Sheffield Business Park, Europa Link, Sheffield S9 1XU (United Kingdom); Nowak, Andrzej J [Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22, 44-100 Gliwice (Poland); Wrobel, Luiz C [School of Engineering and Design, Brunel University, Uxbridge UB8 3PH (United Kingdom)], E-mail: maciej.ginalski@ansys.com, E-mail: Andrzej.J.Nowak@polsl.pl, E-mail: luiz.wrobel@brunel.ac.uk
2008-09-01
This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices.
Modelling of heat and mass transfer processes in neonatology
International Nuclear Information System (INIS)
Ginalski, Maciej K; Nowak, Andrzej J; Wrobel, Luiz C
2008-01-01
This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices
Computational Fluid Dynamics Uncertainty Analysis Applied to Heat Transfer over a Flat Plate
Groves, Curtis Edward; Ilie, Marcel; Schallhorn, Paul A.
2013-01-01
There have been few discussions on using Computational Fluid Dynamics (CFD) without experimental validation. Pairing experimental data, uncertainty analysis, and analytical predictions provides a comprehensive approach to verification and is the current state of the art. With pressed budgets, collecting experimental data is rare or non-existent. This paper investigates and proposes a method to perform CFD uncertainty analysis only from computational data. The method uses current CFD uncertainty techniques coupled with the Student-T distribution to predict the heat transfer coefficient over a at plate. The inputs to the CFD model are varied from a specified tolerance or bias error and the difference in the results are used to estimate the uncertainty. The variation in each input is ranked from least to greatest to determine the order of importance. The results are compared to heat transfer correlations and conclusions drawn about the feasibility of using CFD without experimental data. The results provide a tactic to analytically estimate the uncertainty in a CFD model when experimental data is unavailable
Molecular engineering problems in heat and mass transfer
International Nuclear Information System (INIS)
Kotake, S.
1991-01-01
As for developing, manufacturing and applying new materials of advanced functions such as high-performance devices and high-temperature materials, fundamental understanding of the phenomena from the standpoint of molecular and atomic levels has been required. In these problems, the processes of heat and mass transfer play an important role, being one of the rate-controlling factors. But the energy levels associated with heat and mass transfer are of the orders much less than those of chemical reaction, and it is not easy to understand the thermal problems on the molecular and atomic basis. This paper views the processes of heat and mass transfer from the dynamical motions of atom and molecule for thermal engineering problems. Especially, problems are considered of heat conduction in fine-ceramics, sintered materials of high heat conductivity or high heat-insulation, phase change of condensation in vapor deposition processes such as CVD and PVD, and radiation in laser processing
Heat transfer fluids containing nanoparticles
Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.
2016-05-17
A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.
Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer
Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso
2014-01-01
This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758
Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer
Directory of Open Access Journals (Sweden)
Giovanni Maria Carlomagno
2014-11-01
Full Text Available This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.
Heat transfer corrected isothermal model for devolatilization of thermally-thick biomass particles
DEFF Research Database (Denmark)
Luo, Hao; Wu, Hao; Lin, Weigang
Isothermal model used in current computational fluid dynamic (CFD) model neglect the internal heat transfer during biomass devolatilization. This assumption is not reasonable for thermally-thick particles. To solve this issue, a heat transfer corrected isothermal model is introduced. In this model......, two heat transfer corrected coefficients: HT-correction of heat transfer and HR-correction of reaction, are defined to cover the effects of internal heat transfer. A series of single biomass devitalization case have been modeled to validate this model, the results show that devolatilization behaviors...... of both thermally-thick and thermally-thin particles are predicted reasonable by using heat transfer corrected model, while, isothermal model overestimate devolatilization rate and heating rate for thermlly-thick particle.This model probably has better performance than isothermal model when it is coupled...
Heat transfer direction dependence of heat transfer coefficients in annuli
Prinsloo, Francois P. A.; Dirker, Jaco; Meyer, Josua P.
2018-04-01
In this experimental study the heat transfer phenomena in concentric annuli in tube-in-tube heat exchangers at different annular Reynolds numbers, annular diameter ratios, and inlet fluid temperatures using water were considered. Turbulent flow with Reynolds numbers ranging from 15,000 to 45,000, based on the average bulk fluid temperature was tested at annular diameter ratios of 0.327, 0.386, 0.409 and 0.483 with hydraulic diameters of 17.00, 22.98, 20.20 and 26.18 mm respectively. Both heated and cooled annuli were investigated by conducting tests at a range of inlet temperatures between 10 °C to 30 °C for heating cases, and 30 °C to 50 °C for cooling cases. Of special interest was the direct measurement of local wall temperatures on the heat transfer surface, which is often difficult to obtain and evasive in data-sets. Continuous verification and re-evaluation of temperatures measurements were performed via in-situ calibration. It is shown that inlet fluid temperature and the heat transfer direction play significant roles on the magnitude of the heat transfer coefficient. A new adjusted Colburn j-factor definition is presented to describe the heating and cooling cases and is used to correlate the 894 test cases considered in this study.
Chen, Hongzhang; Qin, Lanzhi; Li, Hongqiang
2014-02-01
Internal air circulation affects the temperature field distribution in a gas double-dynamic solid-state fermentation bioreactor (GDSFB). To enhance heat transfer through strengthening internal air circulation in a GDSFB, we put an air distribution plate (ADP) into the bioreactor and studied the effects of forced internal air circulation on airflow, heat transfer, and cellulase activity of Trichoderma viride L3. Results showed that ADP could help form a steady and uniform airflow distribution, and with gas-guide tubes, air reversal was formed inside the bioreactor, thus resulting in a smaller temperature difference between medium and air by enhancing convective heat transfer inside the bioreactor. Using an ADP of 5.35 % aperture ratio caused a 1 °C decrease in the average temperature difference during the solid-state fermentation process of T. viride L3. Meanwhile, the cellulase activity of T. viride L3 increased by 13.5 %. The best heat-transfer effect was attained when using an ADP of 5.35 % aperture ratio and setting the fan power to 125 V (4.81 W) in the gas double-dynamic solid-state fermentation (GDSF) process. An option of suitable aperture ratio and fan power may be conducive to ADPs' industrial amplification.
Hosseinian, A.; Meghdadi Isfahani, A. H.
2018-04-01
In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.
HTCC - a heat transfer model for gas-steam mixtures
International Nuclear Information System (INIS)
Papadimitriou, P.
1983-01-01
The mathematical model HTCC (Heat Transfer Coefficient in Containment) has been developed for RALOC after a loss-of-coolant accident in order to determine the local heat transfer coefficients for transfer between the containment atmosphere and the walls of the reactor building. The model considers the current values of room and wall temperature, the concentration of steam and non-condensible gases, geometry data and those of fluid dynamics together with thermodynamic parameters and from these determines the heat transfer mechanisms due to convection, radiation and condensation. The HTCC is implemented in the RALOC program. Comparative analyses of computed temperature profiles, for HEDL Standard problems A and B on hydrogen distribution, and of computed temperature profiles determined during the heat-up phase in the CSE-A5 experiment show a good agreement with experimental data. (orig.) [de
Modest, Michael F
2013-01-01
The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...
International Nuclear Information System (INIS)
Zhang Tao; Liu Xiaohua; Zhang Lun; Jiang Yi
2012-01-01
Highlights: ► Investigates match properties of heat or mass transfer processes in HVAC system. ► Losses are caused by limited transfer ability, flow and parameter mismatching. ► Condition of flow matching is the same heat capacity of the fluids. ► Parameter matching is only reached along the saturation line in air–water system. ► Analytical solutions of heat and mass transfer resistance are derived. - Abstract: Sensible heat exchangers and coupled heat and mass transfer devices between humid air and water/desiccant are commonly used devices in air-conditioning systems. This paper focuses on the match properties of sensible heat transfer processes and coupled heat and mass transfer processes in an effort to understand the reasons for performance limitations in order to optimize system performance. Limited heat transfer capability and flow mismatching resulted in heat resistance of the sensible heat transfer process. Losses occurred during the heat and mass transfer processes due to limited transfer capability, flow mismatching, and parameter mismatching. Flow matching was achieved when the heat capacities of the fluids were identical, and parameter matching could only be reached along the saturation line in air–water systems or the iso-concentration line in air–desiccant systems. Analytical solutions of heat transfer resistance and mass transfer resistance were then derived. The heat and mass transfer process close to the saturation line is recommended, and heating sprayed water resulted in better humidification performance than heating inlet air in the air humidifier.
Transient heat transfer into superfluid helium under confined conditions
International Nuclear Information System (INIS)
Filippov, Yu.P.; Miklyaev, V.M.; Sergeev, I.A.
1988-01-01
Transient thermal processes at solid-HeII interface at input of step pulse of heat load was investigated. Particular attention is given to the study of influence of geometry of experimental specimen upon the heat transfer dynamics. Abrupt breakdown of highly efficient transfer modes caused by the developmet of superfluid turbulence under confined condition is revealed, and accompanying temperature shift is registered. Some characteristic parameters are selected, their dependence on experimental conditions is established
Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.
2000-01-01
A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.
Kaviany, Massoud
2014-01-01
This graduate textbook describes atomic-level kinetics (mechanisms and rates) of thermal energy storage, transport (conduction, convection, and radiation), and transformation (various energy conversions) by principal energy carriers. The approach combines the fundamentals of molecular orbitals-potentials, statistical thermodynamics, computational molecular dynamics, quantum energy states, transport theories, solid-state and fluid-state physics, and quantum optics. The textbook presents a unified theory, over fine-structure/molecular-dynamics/Boltzmann/macroscopic length and time scales, of heat transfer kinetics in terms of transition rates and relaxation times, and its modern applications, including nano- and microscale size effects. Numerous examples, illustrations, and homework problems with answers that enhance learning are included. This new edition includes applications in energy conversion (including chemical bond, nuclear, and solar), expanded examples of size effects, inclusion of junction quantum tr...
DEFF Research Database (Denmark)
Mohammadi, Soma; Bojesen, Carsten
2015-01-01
the temperature in DH systems. The main focus is on modeling transient heat transfer in pipe networks regarding the time delays between the heat supply unit and the consumers, the heat loss in the pipe networks and the consumers’ dynamic heat loads. A pseudo-dynamic approach is adopted and also the implicit...... district heating networks [DHN] characteristics. This paper is presenting a new developed model, which reflects the thermo-dynamic behavior of DHN. It is designed for tree network topologies. The purpose of the model is to serve as a basis for applying a variety of scenarios towards lowering...... finite element method is applied to simulate transient temperature changes in pipe networks. The model is calculating time series data related to supply temperature to the DHN from heat production units, heat loads and return temperature related to each consumer to calculate dynamic temperature changes...
Heat transfer with geometric shape of micro-fin tubes (I) - Condensing heat transfer
Energy Technology Data Exchange (ETDEWEB)
Kwak, K M; Chang, J S; Bai, C H; Chung, M [Yeungnam University, Kyungsan (Korea)
1999-11-01
To examine the enhancement mechanism of condensing heat transfer through microfin tube, the condensation experiments with refrigerant HCFC 22 are performed using 4 and 6 kinds of microfin tubes with outer diameter of 9.52 mm and 7.0 mm, respectively. Used microfin tubes have different shape and number of fins with each other. The main heat transfer enhancement mechanism is known to be the enlargement of heat transfer area and turbulence promotion. Together with these main factors, we can find other enhancement factors by the experimental data, which are the overflow of the refrigerant over the microfin and microfin arrangement. The overflow of the refrigerant over the microfin can be analyzed by the geometric shape of the microfin. microfin tubes having a shape which can give much overflow over the microfin show large condensing heat transfer coefficients. The effect of microfin arrangement is related to the heat transfer resistance of liquid film of refrigerant. The condensing heat transfer coefficients are high for the microfin tube with even distribution of liquid film. 17 refs., 14 figs., 3 tabs.
Energy Technology Data Exchange (ETDEWEB)
Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Martinek, Janna G [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-06-03
Concentrating solar power (CSP) technology is moving toward high-temperature and high-performance design. One technology approach is to explore high-temperature heat-transfer fluids and storage, integrated with a high-efficiency power cycle such as the supercritical carbon dioxide (s-CO2) Brayton power cycle. The s-CO2 Brayton power system has great potential to enable the future CSP system to achieve high solar-to-electricity conversion efficiency and to reduce the cost of power generation. Solid particles have been proposed as a possible high-temperature heat-transfer medium that is inexpensive and stable at high temperatures above 1,000 degrees C. The particle/heat exchanger provides a connection between the particles and s-CO2 fluid in the emerging s-CO2 power cycles in order to meet CSP power-cycle performance targets of 50% thermal-to-electric efficiency, and dry cooling at an ambient temperature of 40 degrees C. The development goals for a particle/s-CO2 heat exchanger are to heat s-CO2 to =720 degrees C and to use direct thermal storage with low-cost, stable solid particles. This paper presents heat-transfer modeling to inform the particle/s-CO2 heat-exchanger design and assess design tradeoffs. The heat-transfer process was modeled based on a particle/s-CO2 counterflow configuration. Empirical heat-transfer correlations for the fluidized bed and s-CO2 were used in calculating the heat-transfer area and optimizing the tube layout. A 2-D computational fluid-dynamics simulation was applied for particle distribution and fluidization characterization. The operating conditions were studied from the heat-transfer analysis, and cost was estimated from the sizing of the heat exchanger. The paper shows the path in achieving the cost and performance objectives for a heat-exchanger design.
Measuring of heat transfer coefficient
DEFF Research Database (Denmark)
Henningsen, Poul; Lindegren, Maria
Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...
Capillary-Condenser-Pumped Heat-Transfer Loop
Silverstein, Calvin C.
1989-01-01
Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.
The Dynamics of Heat A Unified Approach to Thermodynamics and Heat Transfer
Fuchs, Hans U
2010-01-01
Based on courses for students of science, engineering, and systems science at the Zurich University of Applied Sciences at Winterthur, this text approaches the fundamentals of thermodynamics from the point of view of continuum physics. By describing physical processes in terms of the flow and balance of physical quantities, the author achieves a unified approach to hydraulics, electricity, mechanics and thermodynamics. In this way, it becomes clear that entropy is the fundamental property that is transported in thermal processes (i.e., heat), and that temperature is the corresponding potential. The resulting theory of the creation, flow, and balance of entropy provides the foundation of a dynamical theory of heat. This extensively revised and updated second edition includes new material on dynamical chemical processes, thermoelectricity, and explicit dynamical modeling of thermal and chemical processes. To make the book more useful for courses on thermodynamics and physical chemistry at different levels, cove...
Ben Yaghlene, H; Leguerinel, I; Hamdi, M; Mafart, P
2009-07-31
In this study, predictive microbiology and food engineering were combined in order to develop a new analytical model predicting the bacterial growth under dynamic temperature conditions. The proposed model associates a simplified primary bacterial growth model without lag, the secondary Ratkowsky "square root" model and a simplified two-parameter heat transfer model regarding an infinite slab. The model takes into consideration the product thickness, its thermal properties, the ambient air temperature, the convective heat transfer coefficient and the growth parameters of the micro organism of concern. For the validation of the overall model, five different combinations of ambient air temperature (ranging from 8 degrees C to 12 degrees C), product thickness (ranging from 1 cm to 6 cm) and convective heat transfer coefficient (ranging from 8 W/(m(2) K) to 60 W/(m(2) K)) were tested during a cooling procedure. Moreover, three different ambient air temperature scenarios assuming alternated cooling and heating stages, drawn from real refrigerated food processes, were tested. General agreement between predicted and observed bacterial growth was obtained and less than 5% of the experimental data fell outside the 95% confidence bands estimated by the bootstrap percentile method, at all the tested conditions. Accordingly, the overall model was successfully validated for isothermal and dynamic refrigeration cycles allowing for temperature dynamic changes at the centre and at the surface of the product. The major impact of the convective heat transfer coefficient and the product thickness on bacterial growth during the product cooling was demonstrated. For instance, the time needed for the same level of bacterial growth to be reached at the product's half thickness was estimated to be 5 and 16.5 h at low and high convection level, respectively. Moreover, simulation results demonstrated that the predicted bacterial growth at the air ambient temperature cannot be assumed to be
Radiation effects on heat transfer in heat exchangers, (2)
International Nuclear Information System (INIS)
Mori, Yasuo; Watanabe, Kenji; Taira, Tatsuji.
1980-01-01
In a high temperature gas-cooled reactor system, in which the working fluid exchanges heat at high temperature near 1000 deg C, the heat transfer acceleration by positively utilizing the radiation heat transfer between solid surfaces should be considered. This paper reports on the results of experiment and analysis for the effects of radiant heat on the heat transfer performance at elevated temperature by applying the heat transfer-accelerating method using radiators to the heat exchanger with tube bundle composed of two channels of heating and heated sides. As the test heat exchangers, a parallel counter flow exchanger and the cross flow exchanger simulating helical tubes were employed, and the results studied on the characteristics of each heat exchanger are described. The plates placed in parallel to flow in every space of the tube bundle arranged in a matrix were used as the heat transfer accelerator. The effects of acceleration with the plates were the increase of heat transmission from 12 to 24% and 12 to 38% in the parallel flow and cross flow heat exchangers, respectively. Also, it was clarified that the theoretical analysis, in which it was assumed that the region within pitch S and two radiator plates, with a heat-transferring tube placed at the center, is the minimum domain for calculation, and that the heat exchange by radiation occurs only between the domain and the adjacent domains, can estimate the heat transfer-accelerating effect and the temperature distribution in a heat exchanger with sufficient accuracy. (Wakatsuki, Y.)
Heat-balance integral method for heat transfer in superfluid helium
Directory of Open Access Journals (Sweden)
Baudouy Bertrand
2009-01-01
Full Text Available The heat-balance integral method is used to solve the non-linear heat diffusion equation in static turbulent superfluid helium (He II. Although this is an approximate method, it has proven that it gives solutions with fairly good accuracy in non-linear fluid dynamics and heat transfer. Using this method, it has been possible to develop predictive solutions that reproduce analytical solution and experimental data. We present the solutions of the clamped heat flux case and the clamped temperature case in a semi-infinite using independent variable transformation to take account of temperature dependency of the thermophysical properties. Good accuracy is obtained using the Kirchhoff transform whereas the method fails with the Goodman transform for larger temperature range.
Heat transfer from internally heated hemispherical pools
International Nuclear Information System (INIS)
Gabor, J.D.; Ellsion, P.G.; Cassulo, J.C.
1980-01-01
Experiments were conducted on heat transfer from internally heated ZnSO 4 -H 2 O pools to the walls of hemispherical containers. This experimental technique provides data for a heat transfer system that has to date been only theoretically treated. Three different sizes of copper hemispherical containers were used: 240, 280, 320 mm in diameter. The pool container served both as a heat transfer surface and as an electrode. The opposing electrode was a copper disk, 50 mm in diameter located at the top of the pool in the center. The top surface of the pool was open to the atmosphere
Application of flexibility model in modeling of flow boiling heat transfer
International Nuclear Information System (INIS)
Peng Jinfeng; Zhao Fuyu
2009-01-01
The mathematical modeling and computer simulation have been widely used in the analysis of system's dynamic characteristics, and often useful for system control. One of the popular methods for this purpose is the lumped parameter method. For flow boiling heat transfer system, the traditional lumped parameter modeling method has a problem that the heat transfer coefficients change suddenly at the boundary of coolant phase change. It can cause error. In this paper, an idea of flexibility model is developed to deal with the boundary problem and to improve the model of flow boiling heat transfer. The segments of coolant phase change's boundary are identified, and the membership functions which are derived from Fuzzy Mathematics are used to derive approximate expressions of heat transfer coefficient in those regions. The continuity of heat transfer coefficient can be described by those expressions. The membership functions are derived from mathematical analysis and transformation. The result shows that this idea is feasible and the conclusion is practicable.
Energy Technology Data Exchange (ETDEWEB)
Lee, Youho, E-mail: euo@kaist.ac.kr; Lee, Jeong Ik, E-mail: jeongiklee@kaist.ac.kr; NO, Hee Cheon, E-mail: hcno@kaist.ac.kr
2016-03-15
Highlights: • Use of constant heat transfer coefficient for fracture analysis is not sound. • On-time heat transfer coefficient should be used for thermal fracture prediction. • ∼90% of the actual fracture stresses were predicted with the on-time transient h. • Thermal-hydraulic codes can be used to better predict brittle cladding fracture. • Effects of surface oxides on thermal shock fracture should be accounted by h. - Abstract: This study presents the importance of coherency in modeling thermal-hydraulics and mechanical behavior of a solid for an advanced prediction of cladding thermal shock fracture. In water quenching, a solid experiences dynamic heat transfer rate evolutions with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates has been overlooked in the analysis of thermal shock fracture. In this study, we are presenting quantitative evidence against the prevailing use of a constant heat transfer coefficient for thermal shock fracture analysis in water. We conclude that no single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials. The presented results show a remarkable stress prediction improvement up to 80–90% of the actual stress with the use of the surface temperature dependent heat transfer coefficient. For thermal shock fracture analysis of brittle fuel cladding such as oxidized zirconium-based alloy or silicon carbide during LWR reflood, transient subchannel heat transfer coefficients obtained from a thermal-hydraulics code should be used as input for stress analysis. Such efforts will lead to a fundamental improvement in thermal shock fracture predictability over the current experimental empiricism for cladding fracture analysis during reflood.
Eleiwi, Fadi
2015-12-01
Sustainable desalination technologies are the smart solution for producing fresh water and preserve the environment and energy by using sustainable renewable energy sources. Membrane distillation (MD) is an emerging technology which can be driven by renewable energy. It is an innovative method for desalinating seawater and brackish water with high quality production, and the gratitude is to its interesting potentials. MD includes a transfer of water vapor from a feed solution to a permeate solution through a micro-porous hydrophobic membrane, rejecting other non-volatile constituents present in the influent water. The process is driven by the temperature difference along the membrane boundaries. Different control applications and supervision techniques would improve the performance and the efficiency of the MD process, however controlling the MD process requires comprehensive mathematical model for the distributed heat transfer mechanisms inside the process. Our objective is to propose a dynamic mathematical model that accounts for the time evolution of the involved heat transfer mechanisms in the process, and to be capable of hosting intermittent energy supplies, besides managing the production rate of the process, and optimizing its energy consumption. Therefore, we propose the 2D Advection-Diffusion Equation model to account for the heat diffusion and the heat convection mechanisms inside the process. Furthermore, experimental validations have proved high agreement between model simulations and experiments with less than 5% relative error. Enhancing the MD production is an anticipated goal, therefore, two main control strategies are proposed. Consequently, we propose a nonlinear controller for a semi-discretized version of the dynamic model to achieve an asymptotic tracking for a desired temperature difference. Similarly, an observer-based feedback control is used to track sufficient temperature difference for better productivity. The second control strategy
Heat transfer from two-side heated helical channels
International Nuclear Information System (INIS)
Shimonis, V.; Ragaishis, V.; Poshkas, P.
1995-01-01
Experimental results are presented on the heat transfer from two-side heated helical channels to gas (air) flows. The study covered six configurations and wide ranges of geometrical (D/h=5.5 to 84.2) and performance (Re=10 3 to 2*10 5 ) parameters. Under the influence of Re and of the channel curvature, the heat transfer from both the convex and the concave surfaces for two-side heating (q w1 ≅ q w2 ) is augmented by 20-30% over one-side heating. Improved relations to predict the critical values of Reynolds Re cr1 and Re cr2 are suggested. They enable more exact predictions of the heat transfer from convex surface in transient flows for one-side heating. The relation for annular channels is suggested for the turbulent heat transfer from the convex and concave surfaces of two-side heated helical channels. It can be adapted by introducing earlier expresions for one-side heated helical channels. (author). 6 refs., 2 tabs., 3 figs
Bejan, Adrian
2013-01-01
Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.
Influence of heat transfer on the dynamic response of a spherical gas/vapour bubble
International Nuclear Information System (INIS)
Hegedus, Ferenc; Hos, Csaba; Kullmann, Laszlo
2010-01-01
The standard approach to analyse the bubble motion is the well known Rayleigh-Plesset equation. When applying the toolbox of nonlinear dynamical systems to this problem several aspects of physical modelling are usually sacrificed. Particularly in vapour bubbles the heat transfer in the liquid domain has a significant effect on the bubble motion; therefore the nonlinear energy equation coupled with the Rayleigh-Plesset equation must be solved. The main aim of this paper is to find an efficient numerical method to transform the energy equation into an ODE system, which, after coupling with the Rayleigh-Plesset equation can be analysed with the help of bifurcation theory. Due to the strong nonlinearity and violent bubble motions the computational effort can be high, thus it is essential to reduce the size of the problem as much as possible. In the first part of the paper finite difference, Galerkin and spectral collocation methods are examined and compared in terms of efficiency. In the second part free and forced oscillations are analysed with an emphasis on the influence of heat transfer. In the case of forced oscillations the unstable branches of the amplification diagrams are also computed.
Heat transfer characteristics of a direct contact heat exchanger
International Nuclear Information System (INIS)
Kinoshita, I.; Nishi, Y.
1993-01-01
As a first step for development of a direct contact steam generator for FBRs, fundamental heat transfer characteristics of a liquid-liquid contact heat exchanger were evaluated by heat transfer experiment with low melting point alloy and water. Distinctive characteristics of direct contact heat transfer with liquid metal and water was obtained. (author)
Directory of Open Access Journals (Sweden)
Balla Hyder H.
2015-01-01
Full Text Available Cu and Zn-water nanofluid is a suspension of the Cu and Zn nanoparticles with the size 50 nm in the water base fluid for different volume fractions to enhance its Thermophysical properties. The determination and measuring the enhancement of Thermophysical properties depends on many limitations. Nanoparticles were suspended in a base fluid to prepare a nanofluid. A coated transient hot wire apparatus was calibrated after the building of the all systems. The vibro-viscometer was used to measure the dynamic viscosity. The measured dynamic viscosity and thermal conductivity with all parameters affected on the measurements such as base fluids thermal conductivity, volume factions, and the temperatures of the base fluid were used as input to the Artificial Neural Fuzzy inference system to modeling both dynamic viscosity and thermal conductivity of the nanofluids. Then, the ANFIS modeling equations were used to calculate the enhancement in heat transfer coefficient using CFD software. The heat transfer coefficient was determined for flowing flow in a circular pipe at constant heat flux. It was found that the thermal conductivity of the nanofluid was highly affected by the volume fraction of nanoparticles. A comparison of the thermal conductivity ratio for different volume fractions was undertaken. The heat transfer coefficient of nanofluid was found to be higher than its base fluid. Comparisons of convective heat transfer coefficients for Cu and Zn nanofluids with the other correlation for the nanofluids heat transfer enhancement are presented. Moreover, the flow demonstrates anomalous enhancement in heat transfer nanofluids.
Heat transfer 1990. Proceedings of the ninth international heat transfer conference
International Nuclear Information System (INIS)
Hetsroni, G.
1990-01-01
This book contains the proceedings of the Ninth International Heat Transfer Conference. Included in Volume 3 are the following chapters: Refrigerant vapor condensation on a horizontal tube bundle. Local heat transfer in a reflux condensation inside a closed two-phase thermosyphon and surface temperature by means of a pulsed photothermal effects
Selection of Rational Heat Transfer Intensifiers in the Heat Exchanger
Directory of Open Access Journals (Sweden)
S. A. Burtsev
2016-01-01
Full Text Available The paper considers the applicability of different types of heat transfer intensifiers in the heat exchange equipment. A review of the experimental and numerical works devoted to the intensification of the dimpled surface, surfaces with pins and internally ribbed surface were presented and data on the thermal-hydraulic characteristics of these surfaces were given. We obtained variation of thermal-hydraulic efficiency criteria for 4 different objective functions and 15 options for the intensification of heat transfer. This makes it possible to evaluate the advantages of the various heat transfer intensifiers. These equations show influence of thermal and hydraulic characteristics of the heat transfer intensifiers (the values of the relative heat transfer and drag coefficients on the basic parameters of the shell-and-tube heat exchanger: the number and length of the tubes, the volume of the heat exchanger matrix, the coolant velocity in the heat exchanger matrix, coolant flow rate, power to pump coolant (or pressure drop, the amount of heat transferred, as well as the average logarithmic temperature difference. The paper gives an example to compare two promising heat transfer intensifiers in the tubes and shows that choosing the required efficiency criterion to search for optimal heat exchanger geometry is of importance. Analysis is performed to show that a dimpled surface will improve the effectiveness of the heat exchanger despite the relatively small value of the heat transfer intensification, while a significant increase in drag of other heat transfer enhancers negatively affects their thermalhydraulic efficiency. For example, when comparing the target functions of reducing the heat exchanger volume, the data suggest that application of dimpled surfaces in various fields of technology is possible. But there are also certain surfaces that can reduce the parameters of a heat exchanger. It is shown that further work development should be aimed at
Sun, Mingye; Zheng, Youjin; Zhang, Lei; Zhao, Liping; Zhang, Bing
2017-08-01
The influence of heat treatment on hole transfer (HT) processes from the CdSe/ZnS and CdSe/CdS/ZnS quantum dots (QDs) to 4,4‧,4″-Tris(carbazol-9-yl)-triphenylamine (TCTA) in QD/TCTA hybrid films has been researched with time-resolved photoluminescence (PL) spectroscopy. The PL dynamic results demonstrated a heat-treatment-temperature-dependent HT process from the core-shell CdSe QDs to TCTA. The HT rates and efficiencies can be effectively increased due to reduced distance between core-shell CdSe QDs and TCTA after heat treatment. The CdS shell exhibited a more obvious effect on HT from the core-shell CdSe QDs to TCTA than on electron transfer to TiO2, due to higher barrier for holes to tunnel through CdS shell and larger effective mass of holes in CdS than electrons. These results indicate that heat treatment would be an effective means to further optimize solid-state QD sensitized solar cells and rational design of CdS shell is significant.
Heat transfer in an asymmetrically heated duct, 2
International Nuclear Information System (INIS)
Satoh, Isao; Kurosaki, Yasuo
1986-01-01
The objective of this article is to study theoretically and experimentally the effects of nonuniform heating on turbulent heat transfer characteristics for flow in a horizontal rectangular duct ; a vertical side wall was uniformly heated, and the other wall were insulated. In our theoretical approach, the zero-equation model for turbulent eddy viscosity was employed. The effects of mesh size of finite difference on the calculation results were examined, and some refined compensation for wall temperatures and wall shear stresses by no use of fine mesh were proposed to reduce the calculation time. The heat transfer coefficients in thermally developing region for a nonuniformly heated duct obtained from numerical solutions are larger than the one for uniformly heated case. The buoyancy effects on heat transfer were evaluated. However, it was seen that the secondary flow due to buoyancy force was hardly expected to enhance heat transfer in a turbulent duct flow. Experiments were performed to measure the velocity and temperature profiles in a turbulent duct flow with a nonuniform heated wall. The experimental results were in good agreement with the theoretical ones. (author)
International Nuclear Information System (INIS)
Jeong, Jong Yun; Kang, Yong Tae; Nam, Sang Chul
2008-01-01
Numerical analysis was carried out to examine the heat transfer and pressure drop characteristics of plate heat exchangers for absorption application using computational Fluid Dynamics(CFD) technique. A commercial CFD software package, FLUENT was used to predict the characteristics of heat transfer, pressure drop and flow distribution within plate heat exchangers. In this paper, a welded plate heat exchanger with the plate of chevron embossing type was numerically analyzed by controlling mass flow rate, solution concentration, and inlet temperatures. The working fluid is H 2 O/LiBr solution with the LiBr concentration of 50∼60% in mass. The numerical simulation show reasonably good agreement with the experimental results. Also, the numerical results show that plate of the chevron shape gives better results than plate of the elliptical shape from the view points of heat transfer and pressure drop. These results provide a guideline to apply the welded PHE for the solution heat exchanger of absorption systems
Heat transfer--Orlando (Symposium), 1980
International Nuclear Information System (INIS)
Stein, R.P.
1980-01-01
This conference proceedings contains 36 papers of which 3 appear as abstracts. 23 papers are indexed separately. Topics covered include: thermodynamics of PWR and LMFBR Steam Generators; two-phase flow in parallel channels; geothermal heat transfer; natural circulation in complex geometries; heat transfer in non-Newtonian systems; and process heat transfer
Analysis of the flow structure and heat transfer in a vertical mantle heat exchanger
DEFF Research Database (Denmark)
Knudsen, Søren; Morrison, GL; Behnia, M
2005-01-01
initially mixed and initially stratified inner tank and mantle. The analysis of the heat transfer showed that the flow in the mantle near the inlet is mixed convection flow and that the heat transfer is dependent on the mantle inlet temperature relative to the core tank temperature at the mantle level. (C......The flow structure inside the inner tank and inside the mantle of a vertical mantle heat exchanger was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the inner tank and in the mantle were measured using a Particle Image...... Velocimetry (PIV) system. A Computational Fluid Dynamics (CFD) model of the vertical mantle heat exchanger was also developed for a detailed evaluation of the heat flux at the mantle wall and at the tank wall. The flow structure was evaluated for both high and low temperature incoming flows and for both...
Vapordynamic thermosyphon - heat transfer two-phase device for wide applications
Vasiliev, Leonard; Vasiliev, Leonid; Zhuravlyov, Alexander; Shapovalov, Aleksander; Rodin, Aleksei
2015-12-01
Vapordynamic thermosyphon (VDT) is an efficient heat transfer device. The two-phase flow generation and dynamic interaction between the liquid slugs and vapor bubbles in the annular minichannel of the VDT condenser are the main features of such thermosyphon, which allowed to increase its thermodynamic efficiency. VDT can transfer heat in horizontal position over a long distance. The condenser is nearly isothermal with the length of tens of meters. The VDT evaporators may have different forms. Some practical applications of VDT are considered.
Containment condensing heat transfer
International Nuclear Information System (INIS)
Gido, R.G.; Koestel, A.
1983-01-01
This report presents a mechanistic heat-transfer model that is valid for large scale containment heat sinks. The model development is based on the determination that the condensation is controlled by mass diffusion through the vapor-air boundary layer, and the application of the classic Reynolds' analogy to formulate expressions for the transfer of heat and mass based on hydrodynamic measurements of the momentum transfer. As a result, the analysis depends on the quantification of the shear stress (momentum transfer) at the interface between the condensate film and the vapor-air boundary layer. In addition, the currently used Tagami and Uchida test observations and their range of applicability are explained
Heat transfer enhancement for fin-tube heat exchanger using vortex generators
International Nuclear Information System (INIS)
Yoo, Seong Yeon; Park, Dong Seong; Chung, Min Ho; Lee, Sang Yun
2002-01-01
Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin-circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of fin-flat tube heat exchanger without vortex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger. At the same time, pressure losses for four types of heat exchanger is measured and compared
Mckillop, A. A.; Baughn, J. W.; Dwyer, H. A.
1976-01-01
Major research advances in heat transfer and fluid dynamics are outlined, with particular reference to relevant energy problems. Of significant importance are such topics as synthetic fuels in combustion, turbulence models, combustion modeling, numerical methods for interacting boundary layers, and light-scattering diagnostics for gases. The discussion covers thermal convection, two-phase flow and boiling heat transfer, turbulent flows, combustion, and aerospace heat transfer problems. Other areas discussed include compressible flows, fluid mechanics and drag, and heat exchangers. Featured topics comprise heat and salt transfer in double-diffusive systems, limits of boiling heat transfer in a liquid-filled enclosure, investigation of buoyancy-induced flow stratification in a cylindrical plenum, and digital algorithms for dynamic analysis of a heat exchanger. Individual items are announced in this issue.
Radiation and combined heat transfer in channels
International Nuclear Information System (INIS)
Tamonis, M.
1986-01-01
This book presents numerical methods of calculation of radiative and combined heat transfer in channel flows of radiating as well as nonradiating media. Results obtained in calculations for flow conditions of combustion products from organic fuel products are given and methods used in determining the spectral optical properties of molecular gases are analyzed. The book presents applications of heat transfer in solving problems. Topic covered are as follows: optical properties of molecular gases; transfer equations for combined heat transfer; experimental technique; convective heat transfer in heated gas flows; radiative heat transfer in gaseous media; combined heat transfer; and radiative and combined heat transfer in applied problems
Heat transfer between adsorbate and laser-heated hot electrons
International Nuclear Information System (INIS)
Ueba, H; Persson, B N J
2008-01-01
Strong short laser pulses can give rise to a strong increase in the electronic temperature at metal surfaces. Energy transfer from the hot electrons to adsorbed molecules may result in adsorbate reactions, e.g. desorption or diffusion. We point out the limitations of an often used equation to describe the heat transfer process in terms of a friction coupling. We propose a simple theory for the energy transfer between the adsorbate and hot electrons using a newly introduced heat transfer coefficient, which depends on the adsorbate temperature. We calculate the transient adsorbate temperature and the reaction yield for a Morse potential as a function of the laser fluency. The results are compared to those obtained using a conventional heat transfer equation with temperature-independent friction. It is found that our equation of energy (heat) transfer gives a significantly lower adsorbate peak temperature, which results in a large modification of the reaction yield. We also consider the heat transfer between different vibrational modes excited by hot electrons. This mode coupling provides indirect heating of the vibrational temperature in addition to the direct heating by hot electrons. The formula of heat transfer through linear mode-mode coupling of two harmonic oscillators is applied to the recent time-resolved study of carbon monoxide and atomic oxygen hopping on an ultrafast laser-heated Pt(111) surface. It is found that the maximum temperature of the frustrated translation mode can reach high temperatures for hopping, even when direct friction coupling to the hot electrons is not strong enough
Generalized irreversible heat-engine experiencing a complex heat-transfer law
International Nuclear Information System (INIS)
Chen Lingen; Li Jun; Sun Fengrui
2008-01-01
The fundamental optimal relation between optimal power-output and efficiency of a generalized irreversible Carnot heat-engine is derived based on a generalized heat-transfer law, including a generalized convective heat-transfer law and a generalized radiative heat-transfer law, q ∝ (ΔT n ) m . The generalized irreversible Carnot-engine model incorporates several internal and external irreversibilities, such as heat resistance, bypass heat-leak, friction, turbulence and other undesirable irreversibility factors. The added irreversibilities, besides heat resistance, are characterized by a constant parameter and a constant coefficient. The effects of heat-transfer laws and various loss terms are analyzed. The results obtained corroborate those in the literature
International Nuclear Information System (INIS)
Park, J.S.; Kim, H.; Bae, S.W.; Kim, K.D.
2015-01-01
Droplet-wall collision heat transfer during dispersed flow film boiling plays a role in predicting cooling rate and peak cladding temperature of overheated fuels during reflood following a LOCA accident in nuclear power plants. This study aims at experimentally studying effects of collision velocity and angle, as dynamic characteristics of the colliding droplet, on heat transfer. The experiments were performed by varying collision velocity from 0.2 to 1.5 m/s and collision angle between the droplet path and the wall in the range from 30 to 90 degrees under atmosphere condition. A single droplet was impinged on an infrared-opaque Pt film deposited on an infrared-transparent sapphire plate, which combination permits to measure temperature distribution of the collision surface using a high-speed infrared camera from below. The instantaneous local surface heat flux was obtained by solving transient heat conduction equation for the heated substrate using the measured surface temperature data as the boundary condition of the collision surface. Total heat transfer amount of a single droplet collision was calculated by integrating the local heat flux distribution on the effective heat transfer area during the collision time. The obtained results confirmed the finding from the previous studies that with increasing collision velocity, the heat transfer effectiveness increases due to the increase of the heat transfer area and the local heat flux value. Interestingly, it was found that as collision angle of a droplet with a constant collision velocity decreases from 90 to 50 degrees and thus the vertical velocity component of the collision decreases, the total heat transfer amount per a collision increases. It was observed that the droplet colliding with an angle less than 90 degrees slides on the surface during the collision and the resulting collision area is larger than that in the normal collision. On the other hand, further decrease of collision angle below 40 degrees
Boiling heat transfer and stability problems. Final report, November 1, 1976--March 31, 1979
International Nuclear Information System (INIS)
Hsieh, D.Y.
1979-03-01
Substantial progress has been made in two areas relating to the boiling heat transfer: the stability of a vapor-liquid system and the dynamics of bubbles. For the stability problem, a simplified formulation retaining the essential feature of the interfacial mass transfer has been established for the complex interfacial stability problem with mass and heat transfer. The simplified version was first applied to the linear Rayleigh-Taylor and Kelvin--Helmholtz stability problems. General agreement with results from previous more comprehensive treatment is obtained. Then the simplified formulation is utilized to study the nonlinear Rayleigh-Taylor stability problem. It is found that the combined effects of finite amplitude and the heat and mass transfer can stabilize the system in a regime which is linearly unstable. A single non-dimensional parameter can be found to characterize the stability criterion for certain configuration relevant to the problem of boiling heat transfer. For the problem of bubble dynamics, the investigation of the nonlinear coupling between the subharmonic spherical oscillation and the nonspherical oscillation has been carried out
Phase change heat transfer device for process heat applications
International Nuclear Information System (INIS)
Sabharwall, Piyush; Patterson, Mike; Utgikar, Vivek; Gunnerson, Fred
2010-01-01
The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ∼1300 K) and industrial scale power transport (≥50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+ m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via 'pumping a fluid', a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.
Heat transfer study under supercritical pressure conditions
International Nuclear Information System (INIS)
Yamashita, Tohru; Yoshida, Suguru; Mori, Hideo; Morooka, Shinichi; Komita, Hideo; Nishida, Kouji
2003-01-01
Experiments were performed on heat transfer and pressure drop of a supercritical pressure fluid flowing upward in a uniformly heated vertical tube of a small diameter, using HCFC22 as a test fluid. Following results were obtained. (1) Characteristics of the heat transfer are similar to those for the tubes of large diameter. (2) The effect of tube diameter on the heat transfer was seen for a 'normal heat transfer, but not for a 'deteriorated' heat transfer. (3) The limit heat flux for the occurrence of deterioration in heat transfer becomes larger with smaller diameter tube. (4) The Watts and Chou correlation has the best prediction performance for the present data in the 'normal' heat transfer region. (5) Frictional pressure drop becomes smaller than that for an isothermal flow in the region near the pseudocritical point, and this reduction was more remarkable for the deteriorated' heat transfer. (author)
Ong, Robert H.; King, Andrew J. C.; Mullins, Benjamin J.; Cooper, Timothy F.; Caley, M. Julian
2012-01-01
We present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching. PMID:22701582
The transfer function model for dynamic response of wet cooling coils
International Nuclear Information System (INIS)
Yao Ye; Liu Shiqing
2008-01-01
This paper mainly concerned about the dynamic response model of wet cooling coils that is developed by the Laplace transform method. The theoretic equations are firstly established based on the theory of energy conservation. Then, the transfer functions on the transient responses of wet cooling coils have been deduced using the method of Laplace transform. The transfer functions reveal the dynamic relationships between the inlet variables and the outlet ones of the cooling coils. Partial-fraction method and Newton-Raphson method are both used in the inversion of the transfer functions from the s-domain to τ-domain. To make the dynamic model of wet cooling coils more adaptive, RBFNN method is employed to determine the coefficients of heat and mass transfer. Experiments have been done and manifested that the coefficients of heat and mass transfer by RBFNN will be of great value to the validity of the transient response model of wet cooling coils in this study
[Modeling of processes of heat transfer in whole-body hyperthermia].
Kinsht, D N
2006-01-01
The method of whole-body hyperthermia in which the body temperature for a short time reaches values up to 43-44 degrees C holds currently much promise. However, at body temperatures above 42 degrees C, the risks associated with the hemodynamic instability and the appearance of arrhythmia in the patient increase. A model of heat transfer has been created to increase the efficiency and safety of the immersion-convectional method of whole-body hyperthermia. This model takes into account changes in the skin blood flow and the dynamics of pulse rate depending on body temperature. The model of heat transfer adequately reflects processes of heating of the organism and can form a basis for the calculation of distribution of heat inside the organism.
Energy Technology Data Exchange (ETDEWEB)
Dyrboel, Susanne
1998-05-01
Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For lager thickness dimensions the resulting heat transfer through the
Stokes flow heat transfer in an annular, rotating heat exchanger
International Nuclear Information System (INIS)
Saatdjian, E.; Rodrigo, A.J.S.; Mota, J.P.B.
2011-01-01
The heat transfer rate into highly viscous, low thermal-conductivity fluids can be enhanced significantly by chaotic advection in three-dimensional flows dominated by viscous forces. The physical effect of chaotic advection is to render the cross-sectional temperature field uniform, thus increasing both the wall temperature gradient and the heat flux into the fluid. A method of analysis for one such flow-the flow in the eccentric, annular, rotating heat exchanger-and a procedure to determine the best heat transfer conditions, namely the optimal values of the eccentricity ratio and time-periodic rotating protocol, are discussed. It is shown that in continuous flows, such as the one under consideration, there exists an optimum frequency of the rotation protocol for which the heat transfer rate is a maximum. - Highlights: → The eccentric, annular, rotating heat exchanger is studied for periodic Stokes flow. → Counter-rotating the inner tube with a periodic velocity enhances the heat transfer. → The heat-transfer enhancement under such conditions is due to chaotic advection. → For a given axial flow rate there is a frequency that maximizes the heat transfer. → There is also an optimum value of the eccentricity ratio.
Investigations on post-dryout heat transfer in bilaterally heated annular channels
International Nuclear Information System (INIS)
Tian, W.X.; Qiu, S.Z.; Jia, D.N.
2006-01-01
Post-dryout heat transfer in bilaterally heated vertical narrow annular channels with 1.0, 1.5 and 2.0 mm gap size has been experimentally investigated with deionized water under the condition of pressure ranging from 1.38 to 5.9 MPa and low mass flow rate from 42.9 to 150.2 kg/m 2 s. The experimental data was compared with well known empirical correlations including Groeneveld, Mattson, etc., and none of them gave an ideal prediction. Theoretical investigations were also carried out on post-dryout heat transfer in annular channels. Based on analysis of heat exchange processes arising among the droplets, the vapor and two tube walls of annular channel, a non-equilibrium mechanistic heat transfer model was developed. Comparison indicated that the present model prediction showed a good agreement with our experimental data. Theoretical calculation result showed that the forced convective heat transfer between the heated wall and vapor dominate the overall heat transfer. The heat transfer caused by the droplets direct contact to the wall and the interfacial convection/evaporation of droplets in superheated vapors also had an indispensable contribution. The radiation heat transfer would be neglected because of its small contribution (less than 0.11%) to the total heat transfer
International Nuclear Information System (INIS)
Cleveland, J.C.
1977-01-01
CORTAP (Core Transient Analysis Program) was developed to predict the dynamic behavior of the High Temperature Gas Cooled Reactor (HTGR) core under normal operational transients and postulated accident conditions. CORTAP is used both as a stand-alone component simulation and as part of the HTGR nuclear steam supply (NSS) system simulation code ORTAP. The core thermal neutronic response is determined by solving the heat transfer equations for the fuel, moderator and coolant in an average powered region of the reactor core. The space independent neutron kinetics equations are coupled to the heat transfer equations through a rapidly converging iterative technique. The code has the capability to determine conservative fuel, moderator, and coolant temperatures in the ''hot'' fuel region. For transients involving a reactor trip, the core heat generation rate is determined from an expression for decay heat following a scram. Nonlinear effects introduced by temperature dependent fuel, moderator, and coolant properties are included in the model. CORTAP predictions will be compared with dynamic test results obtained from the Fort St. Vrain reactor owned by Public Service of Colorado, and, based on these comparisons, appropriate improvements will be made in CORTAP
Heat transfer coefficients for particles in liquid in axially rotating cans
Hassan, B. H.
A theoretical analysis was carried out to determine the nondimensional parameters and corresponding correlations for the overall heat transfer coefficient (between the external steam and internal rotating liquid) and the liquid-particle film heat transfer coefficient for spherical particles in liquid in axially rotating 303 x 406 cans undergoing steam heating. The correlations were obtained from dimensional analysis of the equations of continuity, motion and energy, together with the thermal energy balances and the particle-fluid dynamics of the system. The theoretical solutions for the temperature distribution in spherical particles with a time varying boundary condition were presented.
A literature survey on numerical heat transfer
Shih, T. M.
1982-12-01
Technical papers in the area of numerical heat transfer published from 1977 through 1981 are reviewed. The journals surveyed include: (1) ASME Journal of Heat Transfer, (2) International Journal of Heat and Mass Transfer, (3) AIAA Journal, (4) Numerical Heat Transfer, (5) Computers and Fluids, (6) International Journal for Numerical Methods in Engineering, (7) SIAM Journal of Numerical Analysis, and (8) Journal of Computational Physics. This survey excludes experimental work in heat transfer and numerical schemes that are not applied to equations governing heat transfer phenomena. The research work is categorized into the following areas: (A) conduction, (B) boundary-layer flows, (C) momentum and heat transfer in cavities, (D) turbulent flows, (E) convection around cylinders and spheres or within annuli, (F) numerical convective instability, (G) radiation, (H) combustion, (I) plumes, jets, and wakes, (J) heat transfer in porous media, (K) boiling, condensation, and two-phase flows, (L) developing and fully developed channel flows, (M) combined heat and mass transfer, (N) applications, (O) comparison and properties of numerical schemes, and (P) body-fitted coordinates and nonuniform grids.
Heat transfer bibliography: russian works
Energy Technology Data Exchange (ETDEWEB)
Luikov, A V
1965-02-01
This bibliography of recent Russian publications in heat transfer is divided into the following categories: (1) books; (2) general; (3) experimental methods; (4) analytical calculation methods; (5) thermodynamics; (6) transfer processes involving phase conversions; ((7) transfer processes involving chemical conversions; (8) transfer processes involving very high velocities; (9) drying processes; (10) thermal properties of various materials, heat transfer agents and their determination methods; (11) high temperature physics and magneto- hydrodynamics; and (12) transfer processes in technological apparatuses. (357 refs.)
Hartnett, James P; Cho, Young I; Greene, George A
2001-01-01
Heat transfer is the exchange of heat energy between a system and its surrounding environment, which results from a temperature difference and takes place by means of a process of thermal conduction, mechanical convection, or electromagnetic radiation. Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than is allowable in either journals or texts.
Heat transfer, condensation and fog formation in crossflow plastic heat exchangers
Brouwers, H.J.H.
1996-01-01
In this paper heat transfer of air-water-vapour mixtures in plastic crossflow heat exchangers is studied theoretically and experimentally. First, a model for heat transfer without condensation is derived, resulting in a set of classical differential equations. Subsequently, heat transfer with wall
Macro- to microscale heat transfer the lagging behavior
Tzou, D Y
2014-01-01
Physical processes taking place in micro/nanoscale strongly depend on the material types and can be very complicated. Known approaches include kinetic theory and quantum mechanics, non-equilibrium and irreversible thermodynamics, molecular dynamics, and/or fractal theory and fraction model. Due to innately different physical bases employed, different approaches may involve different physical properties in describing micro/nanoscale heat transport. In addition, the parameters involved in different approaches, may not be mutually inclusive. Macro- to Microscale Heat Transfer: The Lagging Behav
Stochastic modelling of conjugate heat transfer in near-wall turbulence
International Nuclear Information System (INIS)
Pozorski, Jacek; Minier, Jean-Pierre
2006-01-01
The paper addresses the conjugate heat transfer in turbulent flows with temperature assumed to be a passive scalar. The Lagrangian approach is applied and the heat transfer is modelled with the use of stochastic particles. The intensity of thermal fluctuations in near-wall turbulence is determined from the scalar probability density function (PDF) with externally provided dynamical statistics. A stochastic model for the temperature field in the wall material is proposed and boundary conditions for stochastic particles at the solid-fluid interface are formulated. The heated channel flow with finite-thickness walls is considered as a validation case. Computation results for the mean temperature profiles and the variance of thermal fluctuations are presented and compared with available DNS data
Stochastic modelling of conjugate heat transfer in near-wall turbulence
Energy Technology Data Exchange (ETDEWEB)
Pozorski, Jacek [Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80952 Gdansk (Poland)]. E-mail: jp@imp.gda.pl; Minier, Jean-Pierre [Research and Development Division, Electricite de France, 6 quai Watier, 78400 Chatou (France)
2006-10-15
The paper addresses the conjugate heat transfer in turbulent flows with temperature assumed to be a passive scalar. The Lagrangian approach is applied and the heat transfer is modelled with the use of stochastic particles. The intensity of thermal fluctuations in near-wall turbulence is determined from the scalar probability density function (PDF) with externally provided dynamical statistics. A stochastic model for the temperature field in the wall material is proposed and boundary conditions for stochastic particles at the solid-fluid interface are formulated. The heated channel flow with finite-thickness walls is considered as a validation case. Computation results for the mean temperature profiles and the variance of thermal fluctuations are presented and compared with available DNS data.
Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants
Yoshida, Suguru; Fujita, Yasunobu
The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.
Heat exchanger network retrofit optimization involving heat transfer enhancement
International Nuclear Information System (INIS)
Wang Yufei; Smith, Robin; Kim, Jin-Kuk
2012-01-01
Heat exchanger network retrofit plays an important role in energy saving in process industry. Many design methods for the retrofit of heat exchanger networks have been proposed during the last three decades. Conventional retrofit methods rely heavily on topology modifications which often result in a long retrofit duration and high initial costs. Moreover, the addition of extra surface area to the heat exchanger can prove difficult due to topology, safety and downtime constraints. Both of these problems can be avoided through the use of heat transfer enhancement in heat exchanger network retrofit. This paper presents a novel design approach to solve heat exchanger network retrofit problems based on heat transfer enhancement. An optimisation method based on simulated annealing has been developed to find the appropriate heat exchangers to be enhanced and to calculate the level of enhancement required. The physical insight of enhanced exchangers is also analysed. The new methodology allows several possible retrofit strategies using different retrofit methods be determined. Comparison of these retrofit strategies demonstrates that retrofit modification duration and payback time are reduced when heat transfer enhancement is utilised. Heat transfer enhancement can be also used as a substitute for increased heat exchanger network surface area to reduce retrofit investment costs.
Heat transfer enhancement on nucleate boiling
International Nuclear Information System (INIS)
Zhuang, M.; Guibai, L.
1990-01-01
This paper reports on enhancement of nucleate boiling heat transfer with additives that was investigated experimentally. More than fifteen kinds of additives were chosen and tested. Eight kinds of effective additives which can enhance nucleate boiling heat transfer were selected. Experimental results showed that boiling heat transfer coefficient of water was increased by 1 to 5 times and that of R-113 was increased by 1 to 4 times when trace amount additives were put in the two boiling liquids. There exist optimum concentrations for the additives, respectively, which can enhance nucleate boiling heat transfer rate best. In order to analyze the mechanism of the enhancement of boiling heat transfer with additives, the surface tension and the bubble departure diameter were measured. The nucleation sites were investigated by use of high-speed photograph. Experimental results showed that nucleation sites increase with additive amount increasing and get maximum. Increasing nucleation sites is one of the most important reason why nucleate boiling heat transfer can be enhanced with additives
Heat transfer phenomena during thermal processing of liquid particulate mixtures-A review.
Singh, Anubhav Pratap; Singh, Anika; Ramaswamy, Hosahalli S
2017-05-03
During the past few decades, food industry has explored various novel thermal and non-thermal processing technologies to minimize the associated high-quality loss involved in conventional thermal processing. Among these are the novel agitation systems that permit forced convention in canned particulate fluids to improve heat transfer, reduce process time, and minimize heat damage to processed products. These include traditional rotary agitation systems involving end-over-end, axial, or biaxial rotation of cans and the more recent reciprocating (lateral) agitation. The invention of thermal processing systems with induced container agitation has made heat transfer studies more difficult due to problems in tracking the particle temperatures due to their dynamic motion during processing and complexities resulting from the effects of forced convection currents within the container. This has prompted active research on modeling and characterization of heat transfer phenomena in such systems. This review brings to perspective, the current status on thermal processing of particulate foods, within the constraints of lethality requirements from safety view point, and discusses available techniques of data collection, heat transfer coefficient evaluation, and the critical processing parameters that affect these heat transfer coefficients, especially under agitation processing conditions.
Heat transfer from the evaporator outlet to the charge of thermostatic expansion valves
DEFF Research Database (Denmark)
Langmaack, Lasse Nicolai; Knudsen, Hans-Jørgen Høgaard
2006-01-01
outlet with a special mounting strap. The heat transfer is quite complex because it takes place both directly through the contact points between bulb and pipe and indirectly through the mounting strap The TXV has to react to temperature changes at the evaporator outlet. Therefore, the dynamic behavior...... of the valve (and thereby the whole refrigeration system) depends greatly on the heat transfer between the evaporator outlet tube and the charge in the bulb. In this paper a model for the overall heat transfer between the pipe and the charge is presented. Geometrical data and material properties have been kept...... been found to predict the time constant for the temperature development in the bulb within 1-10 %. Furthermore it has been found that app. 20% of the heat transfer takes place trough the mounting strap....
MODELING OF THE HEAT PUMP STATION ADJUSTABLE LOOP OF AN INTERMEDIATE HEAT-TRANSFER AGENT (Part I
Directory of Open Access Journals (Sweden)
Sit B.
2009-08-01
Full Text Available There are examined equations of dynamics and statics of an adjustable intermediate loop of heat pump carbon dioxide station in this paper. Heat pump station is a part of the combined heat supply system. Control of transferred thermal capacity from the source of low potential heat source is realized by means of changing the speed of circulation of a liquid in the loop and changing the area of a heat-transmitting surface, both in the evaporator, and in the intermediate heat exchanger depending on the operating parameter, for example, external air temperature and wind speed.
Heat transfer correlations in mantle tanks
DEFF Research Database (Denmark)
Furbo, Simon; Knudsen, Søren
2005-01-01
on calculations with a CFD-model, which has earlier been validated by means of experiments. The CFD-model is used to determine the heat transfer between the solar collector fluid in the mantle and the walls surrounding the mantle in all levels of the mantle as well as the heat transfer between the wall...... transfer correlations are suitable as input for a detailed simulation model for mantle tanks. The heat transfer correlations determined in this study are somewhat different from previous reported heat transfer correlations. The reason is that this study includes more mantle tank designs and operation......Small solar domestic hot water systems are best designed as low flow systems based on vertical mantle tanks. Theoretical investigations of the heat transfer in differently designed vertical mantle tanks during different operation conditions have been carried out. The investigations are based...
International Nuclear Information System (INIS)
Munro, Troy R.; Koeln, Justin P.; Fassmann, Andrew W.; Barnett, Robert J.; Ban, Heng
2014-01-01
Highlights: • Subcooled water boiled in microgravity on twists of thin wires. • Wire twisting creates heat transfer enhancements because of high local temperatures. • A preliminary version of a new bubble dynamics method is discussed. • A critical distance that fluid must be superheated for boiling onset is presented. - Abstract: Phase change is an effective method of transferring heat, yet its application in microgravity thermal management systems requires greater understanding of bubble behavior. To further this knowledge base, a microgravity boiling experiment was performed (floating) onboard an aircraft flying in a parabolic trajectory to study the effect of surface geometry and heat flux on phase change heat transfer in a pool of subcooled water. A special emphasis was the investigation of heat transfer enhancement caused by modifying the surface geometry through the use of a twist of three wires and a twist of four wires. A new method for bubble behavior analysis was developed to quantify bubble growth characteristics, which allows a quantitative comparison of bubble dynamics between different data sets. It was found that the surface geometry of the three-wire twist enhanced heat transfer by reducing the heat flux needed for bubble incipience and the average wire temperature in microgravity. Simulation results indicated that increased local superheating in wire crevices may be responsible for the change of bubble behavior seen as the wire geometry configuration was varied. The convective heat transfer rate, in comparison to ground experiments, was lower for microgravity at low heating rates, and higher at high heating rates. This study provides insights into the role of surface geometry on superheating behavior and presents an initial version of a new bubble behavior analysis method. Further research on these topics could lead to new designs of heater surface geometries using phase change heat transfer in microgravity applications
REA, The Editors of
1988-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Heat Transfer II reviews correlations for forced convection, free convection, heat exchangers, radiation heat transfer, and boiling and condensation.
Transfer of heat to fluidized-solids beds
Energy Technology Data Exchange (ETDEWEB)
1952-10-16
The improvement in the method described and claimed in patent application 14,363/47 (136,186) for supplying heat to a dense turbulent mass of solid fluidized by a gas flowing upwardly therethrough and subjected to a high temperature in a treating zone, by heat transfer through heat-transfer surfaces of heat-transfer elements in contact with the said turbulent mass of finely divided solid and heated by means of a fluid heating medium, including burning fuels comprising contacting the said heat-transfer surfaces with a fuel and a combustion supporting gas under such conditions that the combustion of the fuel is localized in the heat-transfer element near the point of entry of the fuel and combustion-supporting gas and a substantial temperature gradient is maintained along the path of said fuel combustion-supporting gas and combustion products through the said heat-transfer element.
Numerical study of the conjugate heat transfer in a horizontal pipe heated by Joulean effect
Directory of Open Access Journals (Sweden)
Touahri Sofiane
2012-01-01
Full Text Available The three dimensional mixed convection heat transfer in a electrically heated horizontal pipe conjugated to a thermal conduction through the entire solid thickness is investigated by taking into account the thermal dependence of the physical properties of the fluid and the outer heat losses. The model equations of continuity, momentum and energy are numerically solved by the finite volume method. The pipe thickness, the Prandtl and the Reynolds numbers are fixed while the Grashof number is varied from 104to107. The results obtained show that the dynamic and thermal fields for mixed convection are qualitatively and quantitatively different from those of forced convection, and the local Nusselt number at the interface solid-fluid is not uniform: it has considerable axial and azimuthally variations. The effect of physical variables of the fluid depending on temperature is significant, which justifies its inclusion. The heat transfer is quantified by the local and average Nusselt numbers. We found that the average Nusselt number of solid-fluid interface of the duct increases with the increase of Grashof number. We have equally found out that the heat transfer is improved thanks to the consideration of the thermo dependence of the physical properties. We have tried modelling the average Nusselt number as a function of Richardson number. With the parameters used, the heat transfer is quantified by the correlation: NuA=12.0753 Ri0.156
Tunable heat transfer with smart nanofluids.
Bernardin, Michele; Comitani, Federico; Vailati, Alberto
2012-06-01
Strongly thermophilic nanofluids are able to transfer either small or large quantities of heat when subjected to a stable temperature difference. We investigate the bistability diagram of the heat transferred by this class of nanofluids. We show that bistability can be exploited to obtain a controlled switching between a conductive and a convective regime of heat transfer, so as to achieve a controlled modulation of the heat flux.
International Nuclear Information System (INIS)
Boyer, B.D.; Parlatan, Y.; Slovik, G.C.; Rohatgi, U.S.
1995-01-01
RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba's Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations al these conditions were compared with the GIRAFFE data. The effects of PCCS cell nodings on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to ±5% of the data with a three-node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer in the presence of noncondensable gases with only a coarse mesh. The cell length term in the condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes
Postaccident heat removal. II. Heat transfer from an internally heated liquid to a melting solid
International Nuclear Information System (INIS)
Faw, R.E.; Baker, L. Jr.
1976-01-01
Microwave heating has been used in studies of heat transfer from a horizontal layer of internally heated liquid to a melting solid. Experiments were designed to simulate heat transfer and meltthrough processes of importance in the analysis of postaccident heat removal capabilities of nuclear reactors. Glycerin, heated by 2.45-GHz microwave radiation, was used to simulate molten fuel. Paraffin wax was used to simulate a melting barrier confining the fuel. Experimentally measured heat fluxes and melting rates were consistent with a model based on downward heat transfer by conduction through a stagnant liquid layer and upward heat transfer augmented by natural convection. Melting and displacement of the barrier material occurred by upward-moving droplets randomly distributed across the melting surface. Results indicated that the melting and displacement process had no effect on the heat transfer process
International Nuclear Information System (INIS)
Das, Sudev; Kumar, D.S.; Bhaumik, Swapan
2016-01-01
Highlights: • EBPVD approach was employed for fabrication of well-ordered nanoparticle coated micro/nanostructure on metal surface. • Nucleate boiling heat transfer performance on nanoparticle coated micro/nanostructure surface was experimentally studied. • Stability of nanoparticle coated surface under boiling environment was systematically studied. • 58% enhancement of boiling heat transfer coefficient was found. • Present experimental results are validated with well known boiling correlations. - Abstract: Electron beam physical vapor deposition (EBPVD) coating approach was employed for fabrication of well-ordered of nanoparticle coated micronanostructures on metal surfaces. This paper reports the experimental study of augmentation of pool boiling heat transfer performance and stabilities of silicon oxide nanoparticle coated surfaces with water at atmospheric pressure. The surfaces were characterized with respect to dynamic contact angle, surface roughness, topography, and morphology. The results were found that there is a reduction of about 36% in the incipience superheat and 58% enhancement in heat transfer coefficient for silicon oxide coated surface over the untreated surface. This enhancement might be the reason of enhanced wettability, enhanced surface roughness and increased number of a small artificial cavity on a heating surface. The performance and stability of nanoparticle coated micro/nanostructure surfaces were examined and found that after three runs of experiment the heat transfer coefficient with heat flux almost remain constant.
Axial flow heat exchanger devices and methods for heat transfer using axial flow devices
Koplow, Jeffrey P.
2016-02-16
Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.
Boiling heat transfer on horizontal tube bundles
International Nuclear Information System (INIS)
Anon.
1987-01-01
Nucleate boiling heat transfer characteristics for a tube in a bundle differ from that for a single tube in a pool and this difference is known as 'tube bundle effect.' There exist two bundle effects, positive and negative. The positive bundle effect enhances heat transfer due to convective flow induced by rising bubbles generated from the lower tubes, while the negative bundle effect deteriorates heat transfer due to vapor blanketing caused by accumulation of bubbles. Staggered tube bundles tested and found that the upper tubes in bundles have higher heat transfer coefficients than the lower tubes. The effects of various parameters such as pressure, tube geometry and oil contamination on heat transfer have been examined. Some workers attempted to clarify the mechanism of occurrence of 'bundle effect' by testing tube arrangements of small scale. All reported only enhancement in heat transfer but results showed the symptom of heat transfer deterioration at higher heat fluxes. As mentioned above, it has not been clarified so far even whether the 'tube bundle effect' should serve as enhancement or deterioration of heat transfer in nucleate boiling. In this study, experiments are performed in detail by using bundles of small scale, and effects of heat flux distribution, pressure and tube location are clarified. Furthermore, some consideration on the mechanisms of occurrence of 'tube bundle effect' is made and a method for prediction of heat transfer rate is proposed
Hal E. Anderson
1969-01-01
Experimental testing of a mathematical model showed that radiant heat transfer accounted for no more than 40% of total heat flux required to maintain rate of spread. A reasonable prediction of spread was possible by assuming a horizontal convective heat transfer coefficient when certain fuel and flame characteristics were known. Fuel particle size had a linear relation...
Heat transfer in heterogeneous propellant combustion systems
International Nuclear Information System (INIS)
Brewster, M.Q.
1992-01-01
This paper reports that heat transfer plays an important role in several critical areas of heterogeneous, solid-propellant combustion systems. These areas include heat feedback to the propellant surface, heat transfer between burning aluminum droplets and their surroundings, heat transfer to internal insulation systems, and heat transfer to aft-end equipment. Gas conduction dominates heat feedback to the propellant surface in conventional ammonium perchlorate (AP) composite propellants, although particle radiative feedback also plays a significant role in combustion of metalized propellants. Particle radiation plays a dominant role in heat transfer to internal insulation, compared with that of convection. However, conduction by impingement of burning aluminum particles, which has not been extensively studied, may also be significant. Radiative heat loss plays an important role in determining the burning rate of molten aluminum particles due to a highly luminous, oxide particle-laden, detached flame envelope. Radiation by aluminum oxide smoke particles also plays a dominant role in heat transfer from the exhaust plume to aft-end equipment. Uncertainties in aluminum oxide particle-size distribution and optical properties still make it difficult to predict radiative plume heat transfer accurately from first principles
Condensation heat transfer in plate heat exchangers
International Nuclear Information System (INIS)
Panchal, C.B.
1985-01-01
An Alfa-Laval plate heat exchanger, previously tested as an evaporator, was retested as a condenser. Two series of tests with different chevron-angle plates were carried out using ammonia as a working fluid. The overall heat-transfer coefficient and pressure drop were measured, and the effects of operating parameters were determined. The experimental data were compared with theoretical predictions. In the analysis, a gravity-controlled condensation process was modeled theoretically, and the overall performance was calculated. The analysis shows that the overall heat-transfer coefficient can be predicted with an average uncertainty of about 10%. It is, however, important to consider the interfacial shear stress, because the effective friction factor is high for flow in plate heat exchangers
Directory of Open Access Journals (Sweden)
W. M. Okita
2013-12-01
Full Text Available Heat transfer during the freezing of guava pulp conditioned in large containers such as in stacked boxes (34 L and buckets (20 L and unstacked drums (200 L is discussed. The air velocities across the cross-section of the tunnel were measured, and the values in the outlet of the evaporator were used as the initial conditions in computational fluid dynamics (CFD simulations. The model tested was turbulent standard k-ε. The CFD-generated convective heat transfer coefficients were mapped on the surfaces for each configuration and used in procedures for the calculation of freezing-time estimates. These estimates were compared with the experimental results for validation. The results showed that CFD determined representative coefficients and produced good correlations between the predicted and experimental values when applied to the freezing-time estimates for the box and drum configurations. The errors depended on the configuration and the adopted mesh (3-D grid construction.
Computer aided heat transfer analysis in a laboratory scaled heat exchanger unit
International Nuclear Information System (INIS)
Gunes, M.
1998-01-01
In this study. an explanation of a laboratory scaled heat exchanger unit and a software which is developed to analyze heat transfer. especially to use it in heat transfer courses, are represented. Analyses carried out in the software through sample values measured in the heat exchanger are: (l) Determination of heat transfer rate, logarithmic mean temperature difference and overall heat transfer coefficient; (2)Determination of convection heat transfer coefficient inside and outside the tube and the effect of fluid velocity on these; (3)Investigation of the relationship between Nusselt Number. Reynolds Number and Prandtl Number by using multiple non-linear regression analysis. Results are displayed on the screen graphically
Heat transfer coefficient as parameter describing ability of insulating liquid to heat transfer
Nadolny, Zbigniew; Gościński, Przemysław; Bródka, Bolesław
2017-10-01
The paper presents the results of the measurements of heat transfer coefficient of insulating liquids used in transformers. The coefficient describes an ability of the liquid to heat transport. On the basis of the coefficient, effectiveness of cooling system of electric power devices can be estimated. Following liquids were used for the measurements: mineral oil, synthetic ester and natural ester. It was assumed that surface heat load is about 2500 W·m-2, which is equal the load of transformer windings. A height of heat element was 1.6 m, because it makes possible steady distribution of temperature on its surface. The measurements of heat transfer coefficient was made as a function of various position of heat element (vertical, horizontal). In frame of horizontal position of heat element, three suppositions were analysed: top, bottom, and side.
Heat transfer coefficient as parameter describing ability of insulating liquid to heat transfer
Directory of Open Access Journals (Sweden)
Nadolny Zbigniew
2017-01-01
Full Text Available The paper presents the results of the measurements of heat transfer coefficient of insulating liquids used in transformers. The coefficient describes an ability of the liquid to heat transport. On the basis of the coefficient, effectiveness of cooling system of electric power devices can be estimated. Following liquids were used for the measurements: mineral oil, synthetic ester and natural ester. It was assumed that surface heat load is about 2500 W·m-2, which is equal the load of transformer windings. A height of heat element was 1.6 m, because it makes possible steady distribution of temperature on its surface. The measurements of heat transfer coefficient was made as a function of various position of heat element (vertical, horizontal. In frame of horizontal position of heat element, three suppositions were analysed: top, bottom, and side.
Effect of longitudinal pitch on the convection heat transfer from the tube banks in crossflow
International Nuclear Information System (INIS)
Kim, Tae-Wan; Hwang, Dae-Hyun; Lee, Chung-Chan; Kim, Keung-Ku
2006-01-01
When the tube banks in the heat exchanger are compactly designed, it is known that the average heat transfer coefficient is reduced compared with that of widely-designed tube banks. Thus, the heat transfer rate calculated by the usual heat transfer correlation will be over-estimated more than the actual one and the heat exchanger with such a design will have insufficient heat transfer capacity. Therefore, it is necessary to evaluate the effect of longitudinal and transverse pitches on the heat transfer, quantitatively. Zukauskas correlated various experimental data for aligned and staggered arrangements of tube banks as a function of Reynolds number and Prandtl number. In addition, Grimison suggested the heat transfer correlation for tube banks whose coefficients are determined by geometrical characteristics. However, Zukauskas correlation does not consider the effect of longitudinal and transverse pitches in the case of the aligned arrangement and Grimison correlation can only be used for specific geometrical arrangement such as 1.25X1.25, 1.50X1.50, and so on. Therefore, additional correlation for a heat transfer coefficient which covers a wide range of a pitch is required to predict the heat transfer rate appropriately. In this study, as a first step, the effect of a longitudinal pitch on the heat transfer is investigated for aligned tube banks by using CFD (Computational Fluid Dynamics) code
Heat transfer pipe shielding device for heat exchanger
International Nuclear Information System (INIS)
Hanawa, Jun.
1991-01-01
The front face and the rear face of a frame that surrounds the circumference of the water chamber body of a multi-tube heat exchanger are covered by a rotational shielding plate. A slit is radially formed to the shielding plate for the insertion of a probe or cleaner to the heat transfer pipe and a deflector is disposed on the side opposite to the slit. The end of the heat transfer pipe to be inspected is exposed to the outer side by way of the slit by the rotation of the shielding plate, and the probe or cleaner is inserted in the heat transfer pipe to conduct an eddy current injury monitoring test or cleaning. The inside of the water chamber and the heat transfer pipe is exhausted by a ventilation nozzle disposed to the frame. Accordingly, a shielding effect upon inspection and cleaning can be obtained and, in addition, inspection and exhaustion at the cleaning position can be conducted easily. Since the operation for attachment and detachment is easy, the effect of reducing radiation dose per unit can be obtained by the shortening of the operation time. (N.H.)
Heat transfer in two-phase flow of helium
International Nuclear Information System (INIS)
Subbotin, V.I.; Deev, V.I.; Solodovnikov, V.V.; Arkhipov, V.V.
1986-01-01
The results of experimental study of heat transfer in two-phase helium flow are presented. The effect of operating parameters (pressure, mass velocity, heat flux and quality) on boiling heat transfer intensity was investigated. A significant influence of boiling process prehistory on heat transfer coefficients was demonstrated. On the basis of experimental data obtained three typical regimes of flow boiling heat transfer were found. Analogy of heat transfer in flow boiling and pool boiling of helium and noncryogenic liquids was established. Correlations were developed which are in close agreement with available heat transfer data
Heat transfer from internally-heated molten UO2 pools
International Nuclear Information System (INIS)
Stein, R.P.; Baker, L. Jr.; Gunther, W.H.; Cook, C.
1978-01-01
Experimental measurements of heat transfer from internally heated pools of molten UO 2 have been obtained for two cell sizes: 10 cm x 10 cm and 20 cm x 20 cm. The experiments with the large cell have supported a previous conclusion from early small data that the measured downward heat fluxes are higher than would be expected on the basis of considerations of thermal convection. A convective model underpredicts the downward heat fluxes by a factor of 2.5 to 4.5 for all but one early experiment. Arbitrary assumptions of increased thermal conductivity do not account for the discrepancy. A single model based on internal thermal radiation heat transfer is able to account for the high values. The model uses the optically thick Rosseland approximation. Because of this, it is tentatively concluded that thermal radiation plays a dominant role in controlling the heat transfer from internally heated molted fuel
New external convective heat transfer coefficient correlations for isolated low-rise buildings
Energy Technology Data Exchange (ETDEWEB)
Emmel, M. G.; Mendes, N. [Pontifical Catholic University of Parana, PUCPR/CCET, Thermal Systems Laboratory, LST, Curitiba (Brazil); Abadie, M. O. [Pontifical Catholic University of Parana, PUCPR/CCET, Thermal Systems Laboratory, LST, Curitiba (Brazil); Laboratoire d' Etude des Phenomenes de Transfert Appliques au batiment (LEPTAB), University of La Rochelle, La Rochelle (France)
2007-07-01
Building energy analyses are very sensitive to external convective heat transfer coefficients so that some researchers have conducted sensitivity calculations and proved that depending on the choice of those coefficients, energy demands estimation values can vary from 20% to 40%. In this context, computational fluid dynamics calculations have been performed to predict convective heat transfer coefficients at the external surfaces of a simple shape low-rise building. Effects of wind velocity and orientation have been analyzed considering four surface-to-air temperature differences. Results show that the convective heat transfer coefficient value strongly depends on the wind velocity, that the wind direction has a notable effect for vertical walls and for roofs and that the surface-to-air temperature difference has a negligible effect for wind velocity higher than 2 m/s. External convective heat transfer coefficient correlations are provided as a function of the wind free stream velocity and wind-to-surface angle. (author)
Theory of Periodic Conjugate Heat Transfer
Zudin, Yuri B
2012-01-01
This book presents the theory of periodic conjugate heat transfer in a detailed way. The effects of thermophysical properties and geometry of a solid body on the commonly used and experimentally determined heat transfer coefficient are analytically presented from a general point of view. The main objective of the book is a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body. At the body surface, the true heat transfer coefficient is composed of two parts: the true mean value resulting from the solution of the steady state heat transfer problem and a periodically variable part, the periodic time and length to describe the oscillatory hydrodynamic effects. The second edition is extended by (i) the analysis of stability boundaries in helium flow at supercritical conditions in a heated channel with respect to the interaction between a solid body and a fluid; (ii) a periodic model and a method of heat transfer sim...
Modeling of heat transfer into a heat pipe for a localized heat input zone
International Nuclear Information System (INIS)
Rosenfeld, J.H.
1987-01-01
A general model is presented for heat transfer into a heat pipe using a localized heat input. Conduction in the wall of the heat pipe and boiling in the interior structure are treated simultaneously. The model is derived from circumferential heat transfer in a cylindrical heat pipe evaporator and for radial heat transfer in a circular disk with boiling from the interior surface. A comparison is made with data for a localized heat input zone. Agreement between the theory and the model is good. This model can be used for design purposes if a boiling correlation is available. The model can be extended to provide improved predictions of heat pipe performance
Heat exchanger device and method for heat removal or transfer
Koplow, Jeffrey P
2013-12-10
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Visualisation of heat transfer in laminar flows
Speetjens, M.F.M.; Steenhoven, van A.A.
2009-01-01
Heat transfer in fluid flows traditionally is examined in terms of temperature field and heat-transfer coefficients at non-adiabatic walls. However, heat transfer may alternatively be considered as the transport of thermal energy by the total convective-conductive heat flux in a way analogous to the
Lienhard, John H
2011-01-01
This introduction to heat transfer offers advanced undergraduate and graduate engineering students a solid foundation in the subjects of conduction, convection, radiation, and phase-change, in addition to the related topic of mass transfer. A staple of engineering courses around the world for more than three decades, it has been revised and updated regularly by the authors, a pair of recognized experts in the field. The text addresses the implications, limitations, and meanings of many aspects of heat transfer, connecting the subject to its real-world applications and developing students' ins
Elementary heat transfer analysis
Whitaker, Stephen; Hartnett, James P
1976-01-01
Elementary Heat Transfer Analysis provides information pertinent to the fundamental aspects of the nature of transient heat conduction. This book presents a thorough understanding of the thermal energy equation and its application to boundary layer flows and confined and unconfined turbulent flows. Organized into nine chapters, this book begins with an overview of the use of heat transfer coefficients in formulating the flux condition at phase interface. This text then explains the specification as well as application of flux boundary conditions. Other chapters consider a derivation of the tra
Numerical study of heat transfer characteristics in BOG heat exchanger
Yan, Yan; Pfotenhauer, John M.; Miller, Franklin; Ni, Zhonghua; Zhi, Xiaoqin
2016-12-01
In this study, a numerical study of turbulent flow and the heat transfer process in a boil-off liquefied natural gas (BOG) heat exchanger was performed. Finite volume computational fluid dynamics and the k - ω based shear stress transport model were applied to simulate thermal flow of BOG and ethylene glycol in a full-sized 3D tubular heat exchanger. The simulation model has been validated and compared with the engineering specification data from its supplier. In order to investigate thermal characteristics of the heat exchanger, velocity, temperature, heat flux and thermal response were studied under different mass flowrates in the shell-side. The shell-side flow pattern is mostly determined by viscous forces, which lead to a small velocity and low temperature buffer area in the bottom-right corner of the heat exchanger. Changing the shell-side mass flowrate could result in different distributions of the shell-side flow. However, the distribution in the BOG will remain in a relatively stable pattern. Heat flux increases along with the shell-side mass flowrate, but the increase is not linear. The ratio of increased heat flux to the mass flow interval is superior at lower mass flow conditions, and the threshold mass flow for stable working conditions is defined as greater than 0.41 kg/s.
Karwa, Rajendra
2017-01-01
This textbook presents the classical treatment of the problems of heat transfer in an exhaustive manner with due emphasis on understanding of the physics of the problems. This emphasis is especially visible in the chapters on convective heat transfer. Emphasis is laid on the solution of steady and unsteady two-dimensional heat conduction problems. Another special feature of the book is a chapter on introduction to design of heat exchangers and their illustrative design problems. A simple and understandable treatment of gaseous radiation has been presented. A special chapter on flat plate solar air heater has been incorporated that covers thermo-hydraulic modeling and simulation. The chapter on mass transfer has been written looking specifically at the needs of the students of mechanical engineering. The book includes a large number and variety of solved problems with supporting line diagrams. The author has avoided duplicating similar problems, while incorporating more application-based examples. All the end-...
Heat Transfer Basics and Practice
Böckh, Peter
2012-01-01
The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author’s experience indicates that students, after 40 lectures and exercises ...
Energy Technology Data Exchange (ETDEWEB)
Colorado-Garrido, D.; Santoyo-Castelazo, E. [Posgrado en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001. Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos (Mexico); Hernandez, J.A.; Siqueiros, J.; Juarez-Romero, D. [Centro de Investigacion en Ingenieria y Ciencia Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001. Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos (Mexico); Garcia-Valladares, O. [Centro de Investigacion en Energia (CIE), Universidad Nacional Autonoma de Mexico(UNAM), Privada Xochicalco S/N, Temixco, 62580 Morelos (Mexico)
2009-07-15
A predictive model is developed to describe heat transfer and fluid dynamic behavior of a helical double-pipe vertical evaporator used in an absorption heat transformer integrated to a water purification process. The evaporator uses water as working fluid connected in countercurrent. Heat transfer by conduction in the internal tube wall is considered; in addition the change of phase is carried out into the internal tube. The dynamic model considers equations of continuity, momentum and energy in each flow. The discretized governing equations are coupled using an implicit step by step method. The results of this model are compared with the experimental data in steady state, obtaining good agreement in the evaporation process. The model is also evaluated of form dynamic to determine the principal operation variables that affect the evaporator with the main objective to optimize and control the system. (author)
International Nuclear Information System (INIS)
Jung, B. R.; Park, H. S.; Chung, D. M.; Baik, S. J.
1999-01-01
The computer program SAFE has been used to size and analyze the performance of a steam generator which has two types of heat transfer regions in Korean Standard Nuclear Power Plants (KSNP) and Korean Next Generation Reactor (KNGR) design. The SAFE code calculates the analytical boiling heat transfer area using the modified form of the saturated nucleate pool boiling correlation suggested by Rohsenow. The predicted heat transfer area in the boiling region is multiplied by a constant to obtain a final analytical heat transfer area. The inclusion of the multiplier in the analytical calculation has some disadvantage of loss of complete correlation by the governing heat transfer equation. Several comparative analyses have been performed quantitatively to evaluate the possibility of removing the multiplier in the analytical calculation in the SAFE code. The evaluation shows that the boiling correlation and multiplier used in predicting the boiling region heat transfer area can be replaced with other correlations predicting nearly the same heat transfer area. The removal of multiplier included in the analytical calculation will facilitate a direct use of a set of concerned analytical sizing values that can be exactly correlated by the governing heat transfer equation. In addition this will provide more reasonable basis for the steam generator thermal sizing calculation and enhance the code usability without loss of any validity of the current sizing procedure. (author)
International Nuclear Information System (INIS)
Stafford, Jason; Walsh, Ed; Egan, Vanessa
2009-01-01
Convective heat transfer, due to axial flow fans impinging air onto a heated flat plate, is investigated with infrared thermography to assess the heated-thin-foil technique commonly used to quantify two-dimensional heat transfer performance. Flow conditions generating complex thermal profiles have been considered in the analysis to account for dominant sources of error in the technique. Uncertainties were obtained in the measured variables and the influences on the resultant heat transfer data are outlined. Correction methods to accurately account for secondary heat transfer mechanisms were developed and results show that as convective heat transfer coefficients and length scales decrease, the importance of accounting for errors increases. Combined with flow patterns that produce large temperature gradients, the influence of heat flow within the foil on the resultant heat transfer becomes significant. Substantial errors in the heat transfer coefficient are apparent by neglecting corrections to the measured data for the cases examined. Methods to account for these errors are presented here, and demonstrated to result in an accurate measurement of the local heat transfer map on the surface
International Nuclear Information System (INIS)
Boyer, B.D.; Parlatan, Y.; Slovik, G.C.
1995-01-01
RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba's Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to ±5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes
Energy Technology Data Exchange (ETDEWEB)
Boyer, B.D.; Parlatan, Y.; Slovik, G.C. [and others
1995-09-01
RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to {plus_minus}5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes.
Heat transfer characteristics of a helical heat exchanger
International Nuclear Information System (INIS)
San, Jung-Yang; Hsu, Chih-Hsiang; Chen, Shih-Hao
2012-01-01
Heat transfer performance of a helical heat exchanger was investigated. The heat exchanger is composed of a helical tube with rectangular cross section and two cover plates. The ε–Ntu relation of the heat exchanger was obtained using a numerical method. In the analysis, the flow in the tube (helical flow) was considered to be mixed and the flow outside the tube (radial flow) was unmixed. In the experiment, the Darcy friction factor (f) and convective heat transfer coefficient (h) of the radial flow were measured. The radial flow was air and the helical flow was water. Four different channel spacing (0.5, 0.8, 1.2 and 1.6 mm) were individually considered. The Reynolds numbers were in the range 307–2547. Two correlations, one for the Darcy friction factor and the other for the Nusselt number, were proposed. - Highlights: ► We analyze the heat transfer characteristics of a helical heat exchanger and examine the effectiveness–Ntu relation. ► Increasing number of turns of the heat exchanger would slightly increase the effectiveness. ► There is an optimum Ntu value corresponding to a maximum effectiveness. ► We measure the Darcy friction factor and Nusselt number of the radial flow and examine the correlations.
Heat Transfer and Fluid Dynamics Measurements in the Expansion Space of a Stirling Cycle Engine
Jiang, Nan; Simon, Terrence W.
2006-01-01
The heater (or acceptor) of a Stirling engine, where most of the thermal energy is accepted into the engine by heat transfer, is the hottest part of the engine. Almost as hot is the adjacent expansion space of the engine. In the expansion space, the flow is oscillatory, impinging on a two-dimensional concavely-curved surface. Knowing the heat transfer on the inside surface of the engine head is critical to the engine design for efficiency and reliability. However, the flow in this region is not well understood and support is required to develop the CFD codes needed to design modern Stirling engines of high efficiency and power output. The present project is to experimentally investigate the flow and heat transfer in the heater head region. Flow fields and heat transfer coefficients are measured to characterize the oscillatory flow as well as to supply experimental validation for the CFD Stirling engine design codes. Presented also is a discussion of how these results might be used for heater head and acceptor region design calculations.
Energy Technology Data Exchange (ETDEWEB)
Foellinger, T.
1989-01-01
Periodic asorption heat pumps with water as working fluid and two types of zeolites as adsorption agents were studied theoretically by a dynamic simulation analysis in order to find out whether they are suited as high-temperature heat pumps for heat recovery. Variants with one and two pairs of containers were investigated. Internal heat transfer is possible between the containers of each pair, and shifting temperature and load profiles (zoned sorption) are generated inside the containers in order to raise the heat ratio (efficience). The heat ratios are clearly higher than in ammonia/water heat pumps of the same size. The external heat transfer is kept constant by means of control elements and buffer systems, so that the periodic heat pump can be integrated in a continuous process. A pilot plant was developed on the basis of the results, with particular interest taken in the design of the liquid/solid heat transfer media. (orig.) With 47 figs., 3 tabs.
Heat Transfer in a Thermoacoustic Process
Beke, Tamas
2012-01-01
Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…
"Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"
Energy Technology Data Exchange (ETDEWEB)
Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann
2008-06-12
ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers
International Nuclear Information System (INIS)
Cheng, XueTao; Liang, XinGang
2013-01-01
The entropy generation minimization method is often used to analyze heat transfer processes from the thermodynamic viewpoint. In this paper, we analyze common heat transfer processes with the concept of entropy generation, and propose the concept of heat transfer entropy resistance. It is found that smaller heat transfer entropy resistance leads to smaller equivalent thermodynamic force difference with prescribed heat transfer rate and larger heat transfer rate with prescribed equivalent thermodynamic force difference. With the concept of heat transfer entropy resistance, the performance of two-stream heat exchangers (THEs) and two-stream heat exchanger networks (THENs) is analyzed. For the cases discussed in this paper, it is found that smaller heat transfer entropy resistance always leads to better heat transfer performance for THEs and THENs, while smaller values of the entropy generation, entropy generation numbers and revised entropy generation number do not always. -- Highlights: • The concept of entropy resistance is defined. • The minimum entropy resistance principle is developed. • Smaller entropy resistance leads to better heat transfer
Multiregional coupled conduction--convection model for heat transfer in an HTGR core
International Nuclear Information System (INIS)
Giles, G.E. Jr.; Childs, K.W.; Sanders, J.P.
1978-01-01
HEXEREI is a three-dimensional, coupled conduction-convection heat transfer and multichannel fluid dynamic analysis computer code with both steady-state and transient capabilities. The program was developed to provide thermal-fluid dynamic analysis of a core following the general design for high-temperature gas-cooled reactors (HTGRs); its purpose was to provide licensing evaluations for the U.S. Nuclear Regulatory Commission. In order to efficiently model the HTGR core, the nodal geometry of HEXEREI was chosen as a regular hexagonal array perpendicular to the axis of and bounded by a right circular cylinder. The cylindrical nodal geometry surrounds the hexagonal center portion of the mesh; these two different types of nodal geometries must be connected by interface nodes to complete the accurate modeling of the HTGR core. HEXEREI will automatically generate a nodal geometry that will accurately model a complex assembly of hexagonal and irregular prisms. The accuracy of the model was proven by a comparison of computed values with analytical results for steady-state and transient heat transfer problems. HEXEREI incorporates convective heat transfer to the coolant in many parallel axial flow channels. Forced and natural convection (which permits different flow directions in parallel channels) is included in the heat transfer and fluid dynamic models. HEXEREI incorporates a variety of steady-state and transient solution techniques that can be matched with a particular problem to minimize the computational time. HEXEREI was compared with a code of similar capabilities that was based on a Cartesian mesh. This code modeled only one specific core design, and the mesh spacing was closer than that generated by HEXEREI. Good agreement was obtained with the detail provided by the representations
Heat transfer coeffcient for boiling carbon dioxide
DEFF Research Database (Denmark)
Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik
1997-01-01
Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...... the whole surface and with measured temperature difference between the inner surface and the evaporation temperature a mean heat transfer coefficient is calculated. The calculated heat transfer coefficient has been compared with the Chart Correlation of Shah. The Chart Correlation predicts too low heat...... transfer coefficient but the ratio between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has...
Di Marco, P.; Saccone, G.
2017-11-01
On earth, gravity barely influences the dynamics of interfaces. For what concerns bubbles, buoyancy governs the dynamics of boiling mechanism and thus affects boiling heat transfer capacity. While, for droplets, the coupled effects of wettability and gravity affects interface exchanges. In space, in the lack of gravity, rules are changed and new phenomena come into play. The present work is aimed to study the effects of electric field on the shape and behaviour of bubbles and droplets in order to understand how to handle microgravity applications; in particular, the replacement of gravity with electric field and their coupled effects are evaluated. The experiments spread over different setups, gravity conditions, working fluids, interface conditions. Droplets and bubbles have been analysed with and without electric field, with and without (adiabatic) heat and mass transfer across the interface. Furthermore, the results of the 4 ESA Parabolic Flight Campaigns (PFC 58, 60, 64 & 66), for adiabatic bubbles, adiabatic droplets and evaporating droplets, will be summarized, discussed, and compared with the ground tests.
Energy Technology Data Exchange (ETDEWEB)
Galindo, J.; Lujan, J.M.; Serrano, J.R.; Dolz, V. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia (Spain); Guilain, S. [Renault s.a.s., Lardy (France)
2006-01-15
This paper describes a heat transfer model to be implemented in a global engine 1-D gas-dynamic code to calculate reciprocating internal combustion engine performance in steady and transient operations. A trade off between simplicity and accuracy has been looked for, in order to fit with the stated objective. To validate the model, the temperature of the exhaust manifold wall in a high-speed direct injection (HSDI) turbocharged diesel engine has been measured during a full load transient. In addition, an indirect assessment of the exhaust gas temperature during this transient process has been carried out. The results show good agreement between the measured and modelled data with good accuracy to predict the engine performance. A dual-walled air gap exhaust manifold has been tested in order to quantify the potential of exhaust gas thermal energy saving on engine transient performance. The experimental results together with the heat transfer model have been used to analyse the influence of thermal energy saving on dynamic performance during the load transient of an HSDI turbocharged diesel engine. (author)
Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow
International Nuclear Information System (INIS)
Boscary, J.
1995-10-01
The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs
Modelling the heat dynamics of buildings using stochastic
DEFF Research Database (Denmark)
Andersen, Klaus Kaae; Madsen, Henrik
2000-01-01
This paper describes the continuous time modelling of the heat dynamics of a building. The considered building is a residential like test house divided into two test rooms with a water based central heating. Each test room is divided into thermal zones in order to describe both short and long term...... variations. Besides modelling the heat transfer between thermal zones, attention is put on modelling the heat input from radiators and solar radiation. The applied modelling procedure is based on collected building performance data and statistical methods. The statistical methods are used in parameter...
Supercritical heat transfer in an annular channel with external heating
International Nuclear Information System (INIS)
Remizov, O.V.; Gal'chenko, Eh.F.; Shurkin, N.G.; Sergeev, V.V.
1980-01-01
Results are presented of experimental studies of the burnout heat transfer in a 32x28x3000 mm annular channel with a uniform distribution of a heat flow at pressures of 6.9-19.6 MPa and mass rates of 350-1000 kg/m 2 xs. The heating is electrical, external, one-sided. It is shown that dependencies of the heat-transfer coefficient on rated parameters in the annular channel and tube are similar. An empirical equation has been obtained for the calculation of the burnout heat transfer in the annual channels with external heating in the following range: pressure, 6.9 -13.7 MPa; mass rate 350-700 kg/m 2 xs, and steam content ranging from Xsub(crit) to 1
Heat and mass transfer in particulate suspensions
Michaelides, Efstathios E (Stathis)
2013-01-01
Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...
Thermal radiation heat transfer
Howell, John R; Mengüç, M Pinar
2011-01-01
Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...
Directory of Open Access Journals (Sweden)
Zhiping Zhang
2014-11-01
Full Text Available Temperature is one of the most important parameters in biohydrogen production by way of photo-fermentation. Enzymatic hydrolysate of corncob powder was utilized as a substrate. Computational fluid dynamics (CFD modeling was conducted to simulate the temperature distribution in an up-flow baffle photo-bioreactor (UBPB. Commercial software, GAMBIT, was utilized to mesh the photobioreactor geometry, while the software FLUENT was adopted to simulate the heat transfer in the photo-fermentation process. The inlet velocity had a marked impact on heat transfer; the most optimum velocity value was 0.0036 m•s-1 because it had the smallest temperature fluctuation and the most uniform temperature distribution. When the velocity decreased from 0.0036 m•s-1 to 0.0009 m•s-1, more heat was accumulated. The results obtained from the established model were consistent to the actual situation by comparing the simulation values and experimental values. The hydrogen production simulation verified that the novel UBPB was suitable for biohydrogen production by photosynthetic bacteria because of its uniform temperature and lighting distribution, with the serpentine flow pattern also providing mixing without additional energy input, thus enhancing the mass transfer and biohydrogen yield.
Effect of surface etching on condensing heat transfer
Energy Technology Data Exchange (ETDEWEB)
Seok, Sung Chul; Park, Jae Won; Jung, Jiyeon; Choi, Chonggun; Choi, Gyu Hong; Hwang, Seung Sik; Chung, Tae Yong; Shin, Donghoon [Kookmin University, Seoul (Korea, Republic of); Kim, Jin Jun [Hoseo University, Asan (Korea, Republic of)
2016-02-15
This study conducted experiments on humid air condensation during heat transfer in an air preheating exchanger attached to a home condensing boiler to improve thermal efficiency. An etchant composed of sulfuric acid and sodium nitrate was used to create roughness on the heat exchanger surface made from STS430J1L. A counter flow heat exchanger was fabricated to test the performance of heat transfer. Results showed that the overall heat transfer coefficients of all specimens treated with etchant improved with respect to the original specimens (not treated with etchant), and the overall heat transfer coefficient of the 60 s etching specimen increased by up to 15%. However, the increasing rate of the heat transfer coefficient was disproportional to the etching time. When the etching time specifically increased above 60 s, the heat transfer coefficient decreased. This effect was assumed to be caused by surface characteristics such as contact angle. Furthermore, a smaller contact angle or higher hydrophilicity leads to higher heat transfer coefficient.
Suppression of the sonic heat transfer limit in high-temperature heat pipes
Dobran, Flavio
1989-08-01
The design of high-performance heat pipes requires optimization of heat transfer surfaces and liquid and vapor flow channels to suppress the heat transfer operating limits. In the paper an analytical model of the vapor flow in high-temperature heat pipes is presented, showing that the axial heat transport capacity limited by the sonic heat transfer limit depends on the working fluid, vapor flow area, manner of liquid evaporation into the vapor core of the evaporator, and lengths of the evaporator and adiabatic regions. Limited comparisons of the model predictions with data of the sonic heat transfer limits are shown to be very reasonable, giving credibility to the proposed analytical approach to determine the effect of various parameters on the axial heat transport capacity. Large axial heat transfer rates can be achieved with large vapor flow cross-sectional areas, small lengths of evaporator and adiabatic regions or a vapor flow area increase in these regions, and liquid evaporation in the evaporator normal to the main flow.
FlowGo: An Educational Kit for Fluid Dynamics and Heat Transfer
Guri, Dominic; Portsmore, Merredith; Kemmerling, Erica
2015-11-01
The authors have designed and prototyped an educational toolkit that will help middle-school-aged students learn fundamental fluid mechanics and heat transfer concepts in a hands-on play environment. The kit allows kids to build arbitrary flow rigs to solve fluid mechanics and heat transfer challenge problems. Similar kits for other engineering fields, such as structural and electrical engineering, have resulted in pedagogical improvements, particularly in early engineering education, where visual demonstrations have a significant impact. Using the FlowGo kit, students will be able to conduct experiments and develop new design ideas to solve challenge problems such as building plant watering systems or modeling water and sewage reticulation. The toolkit consists of components such as tubes, junctions, and reservoirs that easily snap together via a modular, universal connector. Designed with the Massachusetts K-12 science standards in mind, this kit is intended to be affordable and suitable for classroom use. Results and user feedback from students conducting preliminary tests of the kit will be presented.
CFD analysis on heat transfer in low Prandtl number fluid flows
Energy Technology Data Exchange (ETDEWEB)
Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.; Sinha, R.K., E-mail: bananta@barc.gov.in [Bhabha Atomic Research Centre, Reactor Engineering Div., Trombay, Mumbai (India)
2011-07-01
Use of Computational Fluid Dynamics (CFD) code is helpful for designing liquid metal cooled nuclear reactor systems. Before using any CFD code proper evaluation of the code is essential for simulation of heat transfer in liquid metal flow. In this paper, a review of the literature on the correlations for liquid metal heat transfer is carried out and a comparison with experimental results is performed. CFD analysis is carried out using PHOENICS-3.6 code on heat transfer in molten Lead Bismuth Eutectic (LBE) flowing through tube. Turbulent flow analyses are carried out for the evaluation of the CFD code. The CFD results are compared with the available correlations. Assessment of various turbulence models and correlations for turbulent Prandtl number in the tube geometry are carried out. From the analysis it is found that, the CFD prediction can be improved with modified turbulent Prandtl number in the turbulence models. (author)
Heat transfer enhancement using 2MHz ultrasound.
Bulliard-Sauret, Odin; Ferrouillat, Sebastien; Vignal, Laure; Memponteil, Alain; Gondrexon, Nicolas
2017-11-01
The present work focuses on possible heat transfer enhancement from a heating plate towards tap water in forced convection by means of 2MHz ultrasound. The thermal approach allows to observe the increase of local convective heat transfer coefficients in the presence of ultrasound and to deduce a correlation between ultrasound power and Nusselt number. Heat transfer coefficient under ultrasound remains constant while heat transfer coefficient under silent conditions increases with Reynolds number from 900 up to 5000. Therefore, heat transfer enhancement factor ranges from 25% up to 90% for the same energy conditions (supplied ultrasonic power=110W and supplied thermal power=450W). In the same time cavitational activity due to 2MHz ultrasound emission was characterized from mechanical and chemical viewpoints without significant results. At least, Particle Image Velocimetry (PIV) measurements have been performed in order to investigate hydrodynamic modifications due to the presence of 2MHz ultrasound. It was therefore possible to propose a better understanding of heat transfer enhancement mechanism with high frequency ultrasound. Copyright © 2017 Elsevier B.V. All rights reserved.
Amézquita, A; Weller, C L; Wang, L; Thippareddi, H; Burson, D E
2005-05-25
Numerous small meat processors in the United States have difficulties complying with the stabilization performance standards for preventing growth of Clostridium perfringens by 1 log10 cycle during cooling of ready-to-eat (RTE) products. These standards were established by the Food Safety and Inspection Service (FSIS) of the US Department of Agriculture in 1999. In recent years, several attempts have been made to develop predictive models for growth of C. perfringens within the range of cooling temperatures included in the FSIS standards. Those studies mainly focused on microbiological aspects, using hypothesized cooling rates. Conversely, studies dealing with heat transfer models to predict cooling rates in meat products do not address microbial growth. Integration of heat transfer relationships with C. perfringens growth relationships during cooling of meat products has been very limited. Therefore, a computer simulation scheme was developed to analyze heat transfer phenomena and temperature-dependent C. perfringens growth during cooling of cooked boneless cured ham. The temperature history of ham was predicted using a finite element heat diffusion model. Validation of heat transfer predictions used experimental data collected in commercial meat-processing facilities. For C. perfringens growth, a dynamic model was developed using Baranyi's nonautonomous differential equation. The bacterium's growth model was integrated into the computer program using predicted temperature histories as input values. For cooling cooked hams from 66.6 degrees C to 4.4 degrees C using forced air, the maximum deviation between predicted and experimental core temperature data was 2.54 degrees C. Predicted C. perfringens growth curves obtained from dynamic modeling showed good agreement with validated results for three different cooling scenarios. Mean absolute values of relative errors were below 6%, and deviations between predicted and experimental cell counts were within 0.37 log10
Babu, C. Rajesh; Kumar, P.; Rajamohan, G.
2017-07-01
Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.
International Nuclear Information System (INIS)
Welty, J.R.
1974-01-01
The basic concepts of heat transfer are covered with special emphasis on up-to-date techniques for formulating and solving problems in the field. The discussion progresses logically from phenomenology to problem solving, and treats numerical, integral, and graphical methods as well as traditional analytical ones. The book is unique in its thorough coverage of the fundamentals of numerical analysis appropriate to solving heat transfer problems. This coverage includes several complete and readable examples of numerical solutions, with discussions and interpretations of results. The book also contains an appendix that provides students with physical data for often-encountered materials. An index is included. (U.S.)
Research progress on microgravity boiling heat transfer
International Nuclear Information System (INIS)
Xiao Zejun; Chen Bingde
2003-01-01
Microgravity boiling heat transfer is one of the most basic research topics in aerospace technology, which is important for both scientific research and engineering application. Research progress on microgravity boiling heat transfer is presented, including terrestrial simulation technique, terrestrial simulation experiment, microgravity experiment, and flow boiling heat transfer
Experimental investigation of heat transfer performance for a novel microchannel heat sink
International Nuclear Information System (INIS)
Wang, Y; Ding, G-F
2008-01-01
We demonstrated a novel microchannel heat sink with a high local heat transfer efficiency contributed by a complicated microchannel system, which comprises parallel longitudinal microchannels etched in a silicon substrate and transverse microchannels electroplated on a copper heat spreader. The thermal boundary layer develops in transverse microchannels. Meanwhile, the heat transfer area is increased compared with the conventional microchannel heat sink only having parallel longitudinal microchannels. Both benefits yield high local heat transfer efficiency and enhance the overall heat transfer, which is attractive for the cooling of high heat flux electronic devices. Infrared tests show the temperature distribution in the test objects. The effects of flow rate and heat flux levels on heat transfer characteristics are presented. A uniform temperature distribution is obtained through the heating area. The reference temperatures decrease with the increasing flow rate from 0.64 ml min −1 to 6.79 ml min −1 for a constant heat flux of 10.4 W cm −2 . A heat flux of 18.9 W cm −2 is attained at a flow rate of 6.79 ml min −1 for assuring the maximum temperature of the microchannel heat sink less than the maximum working temperature of electronic devices
Heat transfer capability analysis of heat pipe for space reactor
International Nuclear Information System (INIS)
Li Huaqi; Jiang Xinbiao; Chen Lixin; Yang Ning; Hu Pan; Ma Tengyue; Zhang Liang
2015-01-01
To insure the safety of space reactor power system with no single point failures, the reactor heat pipes must work below its heat transfer limits, thus when some pipes fail, the reactor could still be adequately cooled by neighbor heat pipes. Methods to analyze the reactor heat pipe's heat transfer limits were presented, and that for the prevailing capillary limit analysis was improved. The calculation was made on the lithium heat pipe in core of heat pipes segmented thermoelectric module converter (HP-STMC) space reactor power system (SRPS), potassium heat pipe as radiator of HP-STMC SRPS, and sodium heat pipe in core of scalable AMTEC integrated reactor space power system (SAIRS). It is shown that the prevailing capillary limits of the reactor lithium heat pipe and sodium heat pipe is 25.21 kW and 14.69 kW, providing a design margin >19.4% and >23.6%, respectively. The sonic limit of the reactor radiator potassium heat pipe is 7.88 kW, providing a design margin >43.2%. As the result of calculation, it is concluded that the main heat transfer limit of HP-STMC SRPS lithium heat pipe and SARIS sodium heat pipe is prevailing capillary limit, but the sonic limit for HP-STMC SRPS radiator potassium heat pipe. (authors)
Transient heat transfer in liquid helium
International Nuclear Information System (INIS)
Shiotsu, Masahiro
1991-01-01
Detailed knowledge on the steady-state and transient heat transfer from solid surfaces in He I and He II is important as a database for the analysis of the influence of local thermal disturbances on the stability of He I or He II cooled large superconducting magnets. In this paper, an overview of the transient heat transfer characteristics on solid surfaces in He I and He II caused by various large stepwise heat inputs, such as the quasi-steady nucleate boiling with a certain lifetime in He I and the quasi-steady Kapitza conductance heat flux with a certain lifetime in He II, are presented in comparison with their steady-state heat transfer characteristics. (author)
Conjugate heat and mass transfer in heat mass exchanger ducts
Zhang, Li-Zhi
2013-01-01
Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi
Experimental and analytical study of natural-convection heat transfer of internally heated liquids
International Nuclear Information System (INIS)
Green, G.A.
1982-08-01
Boundary heat transfer from a liquid pool with a uniform internal heat source to a vertical or inclined boundary was investigated. The experiments were performed in an open rectangular liquid pool in which the internal heat source was generated by electrical heating. The local heat flux was measured to a boron nitride test wall which was able to be continuously inclined from vertical. Gold plated microthermocouples of 0.01 inch outside diameter were developed to measure the local surface temperature, both front and back, of the boron nitride. The local heat flux and, thus, the local heat transfer coefficient was measured at nineteen locations along the vertical axis of the test plate. A theoretical analysis of the coupled nonlinear boundary layer equations was performed. The parametric effect of the Prandtl number and the dimensionless wall temperature on the boundary heat transfer were investigated When the analytical model was used to calculate the boundary heat transfer data, agreement was achieved with the experimental data within 3% for the local heat transfer and within 2% for the average heat transfer
Analysis of the heat transfer in double and triple concentric tube heat exchangers
Rădulescu, S.; Negoiţă, L. I.; Onuţu, I.
2016-08-01
The tubular heat exchangers (shell and tube heat exchangers and concentric tube heat exchangers) represent an important category of equipment in the petroleum refineries and are used for heating, pre-heating, cooling, condensation and evaporation purposes. The paper presents results of analysis of the heat transfer to cool a petroleum product in two types of concentric tube heat exchangers: double and triple concentric tube heat exchangers. The cooling agent is water. The triple concentric tube heat exchanger is a modified constructive version of double concentric tube heat exchanger by adding an intermediate tube. This intermediate tube improves the heat transfer by increasing the heat area per unit length. The analysis of the heat transfer is made using experimental data obtained during the tests in a double and triple concentric tube heat exchanger. The flow rates of fluids, inlet and outlet temperatures of water and petroleum product are used in determining the performance of both heat exchangers. Principally, for both apparatus are calculated the overall heat transfer coefficients and the heat exchange surfaces. The presented results shows that triple concentric tube heat exchangers provide better heat transfer efficiencies compared to the double concentric tube heat exchangers.
Effect of diameter of metal nanowires on pool boiling heat transfer with FC-72
Kumar G., Udaya; S., Suresh; M. R., Thansekhar; Babu P., Dinesh
2017-11-01
Effect of varying diameter of metal nanowires on pool boiling heat transfer performance is presented in this study. Copper nanowires (CuNWs) of four different diameters (∼35 nm, ∼70 nm, ∼130 nm and ∼200 nm) were grown directly on copper specimen using template-based electrodeposition technique. Both critical heat flux (CHF) and boiling heat transfer coefficient (h) were found to be improved in surfaces with nanowires as compared to the bare copper surface. Moreover, both the parameters were found to increase with increasing diameter of the nanowires. The percentage increases observed in CHF for the samples with nanowires were 38.37%, 40.16%, 48.48% and 45.57% whereas the percentage increase in the heat transfer coefficient were 86.36%, 95.45%, 184.1% and 131.82% respectively as compared to the bare copper surface. Important reasons believed for this enhancement were improvement in micron scale cavity density and cavity size which arises as a result of the coagulation and grouping of nanowires during the drying process. In addition to this, superhydrophilic nature, capillary effect, and enhanced bubble dynamics parameters (bubble frequency, bubble departure diameter, and nucleation site density) were found to be the concurring mechanisms responsible for this enhancement in heat transfer performance. Qualitative bubble dynamics analysis was done for the surfaces involved and the visual observations are provided to support the results presented and discussed.
Heat Transfer in Metal Foam Heat Exchangers at High Temperature
Hafeez, Pakeeza
Heat transfer though open-cell metal foam is experimentally studied for heat exchanger and heat shield applications at high temperatures (˜750°C). Nickel foam sheets with pore densities of 10 and 40 pores per linear inch (PPI), have been used to make the heat exchangers and heat shields by using thermal spray coating to deposit an Inconel skin on a foam core. Heat transfer measurements were performed on a test rig capable of generating hot gas up to 1000°C. The heat exchangers were tested by exposing their outer surface to combustion gases at a temperature of 550°C and 750°C while being cooled by air flowing through them at room temperature at velocities up to 5 m/s. The temperature rise of the air, the surface temperature of the heat exchangers and the air temperature inside the heat exchanger were measured. The volumetric heat transfer coefficient and Nusselt number were calculated for different velocities. The heat transfer performance of the 40PPI sample brazed with the foil is found to be the most efficient. Pressure drop measurements were also performed for 10 and 40PPI metal foam. Thermographic measurements were done on 40PPI foam heat exchangers using a high temperature infrared camera. A high power electric heater was used to produce hot air at 300°C that passed over the foam heat exchanger while the cooling air was blown through it. Heat shields were made by depositing porous skins on metal foam and it was observed that a small amount of coolant leaking through the pores notably reduces the heat transfer from the hot gases. An analytical model was developed based assuming local thermal non-equilibrium that accounts for the temperature difference between solid and fluid phase. The experimental results are found to be in good agreement with the predicted values of the model.
A numerical study of momentum and forced convection heat transfer ...
African Journals Online (AJOL)
shaped baffles, vertical or inclined baffles, solid .... heat transfer characteristics for various baffle ... inlet; (iv) a constant temperature of 102°C ... j j x. T x x. T uρ. (3). Where ρ is the fluid density (constant); P is the pressure; μ is the dynamic ...
On the heat transfer correlation for membrane distillation
International Nuclear Information System (INIS)
Wang, Chi-Chuan
2011-01-01
Research highlights: → Heat transfer coefficients applicable for membrane distillation. → Data reduction for heat transfer coefficient for membrane distillation method. → Uncertainty of permeate side due to large magnitude of membrane resistance. → Increase accuracy of heat transfer coefficient by modified Wilson plot technique. -- Abstract: The present study examines the heat transfer coefficients applicable for membrane distillation. In the available literatures, researchers often adopt some existing correlations and claim the suitability of these correlations to their test data or models. Unfortunately this approach is quite limited and questionable. This is subject to the influences of boundary conditions, geometrical configurations, entry flow conditions, as well as some influences from spacer or support. The simple way is to obtain the heat transfer coefficients from experimentation. However there is no direct experimental data for heat transfer coefficients being reported directly from the measurements. The main reasons are from the uncertainty of permeate side and of the comparatively large magnitude of membrane resistance. Additional minor influence is the effect of mass transfer on the heat transfer performance. In practice, the mass transfer effect is negligible provided the feed side temperature is low. To increase the accuracy of the measured feed side heat transfer coefficient, it is proposed in this study to exploit a modified Wilson plot technique. Through this approach, one can eliminate the uncertainty from permeate side and reduce the uncertainty in membrane to obtain a more reliable heat transfer coefficients at feed side from the experimentation.
Finite element simulation of heat transfer
Bergheau, Jean-Michel
2010-01-01
This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re
International Nuclear Information System (INIS)
French, R.T.
1975-08-01
Selected experimental data pertinent to piping heat transfer, transient fluid flow regimes, and steam generator heat transfer obtained during the Semiscale Mod-1 isothermal blowdown test series (Test Series 1) are analyzed. The tests in this first test series were designed to provide counterparts to the LOFT nonnuclear experiments. The data from the Semiscale Mod-1 intact and broken loop piping are evaluated to determine the surface heat flux and average heat transfer coefficients effective during the blowdown transient and compared with well known heat transfer correlations used in the RELAP4 computer program. Flow regimes in horizontal pipe sections are calculated and compared with data obtained from horizontal and vertical densitometers and with an existing steady state flow map. Effects of steam generator heat transfer are evaluated quantitatively and qualitatively. The Semiscale Mod-1 data and the analysis presented in this report are valuable for evaluating the adequacy and improving the predictive capability of analytical models developed to predict system response to piping heat transfer, piping flow regimes, and steam generator heat transfer during a postulated loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). 16 references. (auth)
A continuum-atomistic simulation of heat transfer in micro- and nano-flows
International Nuclear Information System (INIS)
Liu Jin; Chen Shiyi; Nie Xiaobo; Robbins, Mark O.
2007-01-01
We develop a hybrid atomistic-continuum scheme for simulating micro- and nano-flows with heat transfer. The approach is based on spatial 'domain decomposition' in which molecular dynamics (MD) is used in regions where atomistic details are important, while classical continuum fluid dynamics is used in the remaining regions. The two descriptions are matched in a coupling region where we ensure continuity of mass, momentum, energy and their fluxes. The scheme for including the energy equation is implemented in 1-D and 2-D, and used to study steady and unsteady heat transfer in channel flows with and without nano roughness. Good agreement between hybrid results and analytical or pure MD results is found, demonstrating the accuracy of this multiscale method and its potential applications in thermal engineering
Subcooled boiling heat transfer on a finned surface
International Nuclear Information System (INIS)
Kowalski, J.E.; Tran, V.T.; Mills, P.J.
1992-01-01
Experimental and numerical studies have been performed to determine the heat transfer coefficients from a finned cylindrical surface to subcooled boiling water. The heat transfer rates were measured in an annular test section consisting of an electrically heated fuel element simulator (FES) with eight longitudinal, rectangular fins enclosed in a glass tube. A two-dimensional finite-element heat transfer model using the Galerkin method was employed to determine the heat transfer coefficients along the periphery of the FES surface. An empirical correlation was developed to predict the heat transfer coefficients during subcooled boiling. The correlation agrees well with the measured data. (6 figures) (Author)
Engineering calculations in radiative heat transfer
Gray, W A; Hopkins, D W
1974-01-01
Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.
Industrial furnace with improved heat transfer
Energy Technology Data Exchange (ETDEWEB)
Hoetzl, M.; Lingle, T.M.
1992-07-07
This patent describes an industrial furnace for heating work which emits volatiles during heating. It comprises a generally cylindrical, closed end furnace section defining a sealable heat transfer chamber for heating work disposed therein; fan means for directing furnace atmosphere as a swirling wind mass about the interior of the furnace section over a portion thereof; heat means for heating the wind mass within the fan chamber; and an incineration track formed as a circumferentially extending groove about the exterior of the furnace section and in heat transfer relationship with and situated at least to extend about a portion of the fan chamber.
Liquid metal heat transfer in heat exchangers under low flow rate conditions
International Nuclear Information System (INIS)
Mochizuki, Hiroyasu
2015-01-01
The present paper describes the liquid metal heat transfer in heat exchangers under low flow rate conditions. Measured data from some experiments indicate that heat transfer coefficients of liquid metals at very low Péclet number are much lower than what are predicted by the well-known empirical relations. The cause of this phenomenon was not fully understood for many years. In the present study, one countercurrent-type heat exchanger is analyzed using three, separated countercurrent heat exchanger models: one is a heat exchanger model in the tube bank region, while the upper and lower plena are modeled as two heat exchangers with a single heat transfer tube. In all three heat exchangers, the same empirical correlation is used in the heat transfer calculation on the tube and the shell sides. The Nusselt number, as a function of the Péclet number, calculated from measured temperature and flow rate data in a 50 MW experimental facility was correctly reproduced by the calculation result, when the calculated result is processed in the same way as the experiment. Finally, it is clarified that the deviation is a superficial phenomenon which is caused by the heat transfer in the plena of the heat exchanger. (author)
Fundamental principles of heat transfer
Whitaker, Stephen
1977-01-01
Fundamental Principles of Heat Transfer introduces the fundamental concepts of heat transfer: conduction, convection, and radiation. It presents theoretical developments and example and design problems and illustrates the practical applications of fundamental principles. The chapters in this book cover various topics such as one-dimensional and transient heat conduction, energy and turbulent transport, forced convection, thermal radiation, and radiant energy exchange. There are example problems and solutions at the end of every chapter dealing with design problems. This book is a valuable int
Fluid dynamics and heat transfer methods for the TRAC code
International Nuclear Information System (INIS)
Reed, W.H.; Kirchner, W.L.
1977-01-01
A computer code called TRAC is being developed for analysis of loss-of-coolant accidents and other transients in light water reactors. This code involves a detailed, multidimensional description of two-phase flow coupled implicitly through appropriate heat transfer coefficients with a simulation of the temperature field in fuel and structural material. Because TRAC utilizes about 1000 fluid mesh cells to describe an LWR system, whereas existing lumped parameter codes typically involve fewer than 100 fluid cells, new highly implicit difference techniques are developed that yield acceptable computing times on modern computers. Several test problems for which experimental data are available, including blowdown of single pipe and loop configurations with and without heated walls, have been computed with TRAC. Excellent agreement with experimental results has been obtained
DEFF Research Database (Denmark)
Hærvig, Jakob; Condra, Thomas Joseph; Sørensen, Kim
Even though the corrugated tube is a widely used technique to enhance transfer heat, the exact heat transfer enhancing mechanism remains relatively un-documented. Most studies attribute the favourable heat transfer characteristics to a swirling flow being present at higher corrugation....... In this study, a systematic approach relying on Computational Fluid Dynamics (CFD) is used to study and compare the heat transfer characteristics with the detailed flow field in the spirally corrugated tubes. By comparing the flow in 12 different spirally corrugated tubes at a fixed Reynolds number of 5000......, this study compares the flow field with the surface averaged Nusselt number to gain valuable insight into which flow phenomena causes favourable heat transfer characteristics. While the flow at low corrugations approximates the non-corrugated tube, higher corrugations of h/D creates a significant tangential...
Visualisation of heat transfer in unsteady laminar flows
Speetjens, M.F.M.; Steenhoven, van A.A.
2011-01-01
Heat transfer in fluid flows traditionally is examined in terms of temperature fields and heat-transfer coefficients. However, heat transfer may alternatively be considered as the transport of thermal energy by the total convective-conductive heat flux in a way analogous to the transport of fluid by
Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study
Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.
2018-04-01
1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.
CFD evaluation of turbulence model on heat transfer in 5 × 5 rod bundles
International Nuclear Information System (INIS)
Chao Yanmeng; Yang Lixin; Zhang Yuxiang; Pang Zhengzheng
2014-01-01
Different turbulence models may lead to different results when analyzing fuel assemblies using computational fluid dynamics (CFD) method. In this paper, a 5 × 5 rod bundle model was built to analyze the relationship between flow and heat transfer. The pressure drop and Nu were calculated using ANSYS CFX. Three factors evaluating swirling flow and cross-flow were used to analyze the inner relationship between flow field and heat transfer. The performances of various turbulence models, including eddy viscosity model and Reynold stress model, were evaluated. The comparison between numerical and similar experimental results indicates that Reynold stress model is more appropriate for modeling flow features and heat transfer in spacer grids discussed in this paper. (authors)
Heat transfer analysis of parabolic trough solar receiver
International Nuclear Information System (INIS)
Padilla, Ricardo Vasquez; Demirkaya, Gokmen; Goswami, D. Yogi; Stefanakos, Elias; Rahman, Muhammad M.
2011-01-01
Highlights: → In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. → The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. → Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented. → The proposed heat transfer model was validated with experimental data obtained from Sandia National Laboratory. → Our results showed a better agreement with experimental data compared to other models. -- Abstract: Solar Parabolic Trough Collectors (PTCs) are currently used for the production of electricity and applications with relatively higher temperatures. A heat transfer fluid circulates through a metal tube (receiver) with an external selective surface that absorbs solar radiation reflected from the mirror surfaces of the PTC. In order to reduce the heat losses, the receiver is covered by an envelope and the enclosure is usually kept under vacuum pressure. The heat transfer and optical analysis of the PTC is essential to optimize and understand its performance under different operating conditions. In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented as well. The partial differential equations were discretized and the nonlinear algebraic equations were solved simultaneously. Finally, to validate the numerical results, the model was compared with experimental data obtained from Sandia National Laboratory (SNL) and other one dimensional heat transfer models. Our results showed a better agreement with experimental data compared to other models.
Wells, A.; Langton, T.; Rees Jones, D. W.; Moon, W.; Kim, J. H.; Wilkinson, J.
2016-12-01
Melt ponds have key impacts on the evolution of Arctic sea ice and summer ice melt. Small changes to the energy budget can have significant consequences, with a net heat-flux perturbation of only a few Watts per square metre sufficient to explain the thinning of sea ice over recent decades. Whilst parameterisations of melt-pond thermodynamics often assume that pond temperatures remain close to the freezing point, recent in-situ observations show more complex thermal structure with significant diurnal and synoptic variability. We here consider the energy budget of melt ponds and explore the role of internal convective heat transfer in determining the thermal structure within the pond in relatively calm conditions with low winds. We quantify the energy fluxes and temperature variability using two-dimensional direct numerical simulations of convective turbulence within a melt pond, driven by internal radiative heating and surface fluxes. Our results show that the convective flow dynamics are modulated by changes to the incoming radiative flux and sensible heat flux at the pond surface. The evolving pond surface temperature controls the outgoing longwave emissions from the pond. Hence the convective flow modifies the net energy balance of a melt pond, modulating the relative fractions of the incoming heat flux that is re-emitted to the atmosphere or transferred downward into the sea ice to drive melt.
Heat transfer coefficient for boiling carbon dioxide
DEFF Research Database (Denmark)
Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik
1998-01-01
Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...... between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has not been compared with correlation's....
Heat transfer coefficient of cryotop during freezing.
Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J
2013-01-01
Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).
Dynamics of CO 2 Adsorption on Amine Adsorbents. 1. Impact of Heat Effects
Bollini, Praveen
2012-11-21
The packed bed heat and mass transfer dynamics of CO2 adsorption onto a 3-aminopropylsilyl-functionalized SBA-15 silica material are reported. Concentration measurements at the outlet of the packed bed and temperature profiles inside the bed are measured simultaneously. Heat and mass transfer models in conjunction with the linear driving force rate model are used to simulate the concentration and temperature profiles in the bed. The heat and mass transfer processes in the amine adsorbent packed bed are successfully captured by the model, and comparison of isothermal and nonisothermal models reveals that isothermal models provide an accurate description of the dynamic mass transport behavior in the adsorption column under the experimental conditions used in this study. The results help establish that under certain experimental conditions, heat effects in amine adsorbent packed beds have a negligible effect on CO2 breakthrough, and simple isothermal models can be used to accurately assess adsorption kinetics. © 2012 American Chemical Society.
The experimental study of heat transfer around molds inside a model autoclave
Ghamlouch, Taleb; Roux, Stéphane; Lefèvre, Nicolas; Bailleul, Jean-Luc; Sobotka, Vincent
2018-05-01
The temperature distribution within composite parts manufactured inside autoclaves plays a key role in determining the parts quality at the end of the curing cycle. Indeed, heat transfer between the parts and the surroundings inside an autoclave is strongly coupled with the flow field around the molds and can be modeled through the convective heat transfer coefficient (HTC). The aerodynamically unsuitable geometry of the molds generates complex turbulent non-uniform flows around them accompanied with the presence of dead zones. This heterogeneity can imply non-uniform convective heat transfers leading to temperature gradients inside parts that can be prejudicial. Given this fact, the purpose of this study is to perform experimental measurements in order to describe the flow field and the convective heat transfer behavior around representative industrial molds installed inside a home-made model. A key point of our model autoclave is the ease of use of non-intrusive measuring instruments: the Particle Image Velocimetry (PIV) technique and infrared imaging camera for the study of the flow field and the heat transfer coefficient distribution around the molds respectively. The experimental measurements are then compared to computational fluid dynamics (CFD) calculations performed on the computer code ANSYS Fluent 16.0®. This investigation has revealed, as expected, a non-uniform distribution of the convective heat transfer coefficient around the molds and therefore the presence of thermal gradients which can reduce the composite parts quality during an autoclave process. A good agreement has been achieved between the experimental and the numerical results leading then to the validation of the performed numerical simulations.
International Nuclear Information System (INIS)
Lee, Youho; Lee, Jeong Ik; Cheon, Hee
2015-01-01
Accurate modeling of thermal shock induced stresses has become ever most important to emerging accident-tolerant ceramic cladding concepts, such as silicon carbide (SiC) and SiC coated zircaloy. Since fractures of ceramic (entirely ceramic or coated) occur by excessive tensile stresses with linear elasticity, modeling transient stress distribution in the material provides a direct indication of the structural integrity. Indeed, even for the current zircaloy cladding material, the oxide layer formed on the surface - where cracks starts to develop upon water quenching - essentially behaves as a brittle ceramic. Hence, enhanced understanding of thermal shock fracture of a brittle material would fundamentally contribute to safety of nuclear reactors for both the current fuel design and that of the coming future. Understanding thermal shock fracture of a brittle material requires heat transfer rate between the solid and the fluid for transient temperature fields of the solid, and structural response of the solid under the obtained transient temperature fields. In water quenching, a solid experiences dynamic time-varying heat transfer rates with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates during the water quenching transience has been overlooked in assessments of mechanisms, predictability, and uncertainties for thermal shock fracture. Rather, a time-constant heat transfer coefficient, named 'effective heat transfer coefficient' has become a conventional input to thermal shock fracture analysis. No single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic heat transfer coefficient changes with fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials and complete the picture of stress evolution in the quenched solid. The presented result
International Nuclear Information System (INIS)
Xu, Weiguo; Ren, Depeng; Ye, Qing; Liu, Guodong; Lu, Huilin; Wang, Shuai
2016-01-01
Graphical abstract: Predicted laminar Nusselt number using regression correlation of Therminol-55 heat transfer fluid is in agreement with experiments in the rifled tube. - Highlights: • Heat transfer coefficient and friction factor are measured and predicted in the rifled tube. • Correlations for Nusselt number and friction factor are proposed. • The roughness height of 0.425 mm in transition SST model is suggested as an input parameter. • k–kl–ω transition and transition SST models are recommended for laminar–turbulent transition. • Thermal enhancement factor and synergy angle are predicted in the rifled tube. - Abstract: Simulations and experiments of flow and heat transfer behavior of Therminol-55 heat transfer fluid have been conducted in a horizontal rifled tube with outer diameter and inner diameter 25.0 and 20.0 mm, pitch and rib height of 12.0 and 1.0 mm, respectively. Numerical simulations of three-dimensional flow behavior of Therminol-55 heat transfer fluid are carried out using FLUENT code in the rifled tube. Experimental results show that the heat transfer and thermal performance of Therminol-55 heat transfer fluid in the rifled tube are considerably improved compared to those of the smooth tube. The Nusselt number increases with the increase of Reynolds number, and is from 3.5 to 5.1 times over the smooth tube. Also, the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.2 and 4.2 times over the smooth tube. Predictive Nusselt number and friction factor correlations have been presented. The numerical results show that the laminar flow model is valid only at lower Reynolds number in the developed laminar flow of rifled tube. The k–kl–ω transition model and transition SST model with roughness of 0.425 mm are recommended for the predictions of transition process from laminar to turbulent flow in the rifled tube.
Modeling microscale heat transfer using Calore.
Energy Technology Data Exchange (ETDEWEB)
Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley
2005-09-01
Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.
Flow and heat transfer in a curved channel
Brinich, P. F.; Graham, R. W.
1977-01-01
Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.
Non-Uniform Heat Transfer in Thermal Regenerators
DEFF Research Database (Denmark)
Jensen, Jesper Buch
, a numerical model, which simulates a single-blow operation in a parallel-plate regenerator, was developed and used to model the heat transfer under various conditions. In addition to the modeling of the heat transfer, a series of experiments on passive regenerators with non-uniform, but precisely controlled....... Additionally, the experiments gave real comparative results, whereas the model to a certain degree more served to provide insight to the heat transfer processes taking place inside the regenera- tors, something that would be - if not impossible - then highly impractical to do experimentally. It has been found......This thesis presents investigations on the heat transfer in complex heat ex- changers in general and in regenerative heat exchangers (regenerators) in par- ticular. The motivation for this work is a result of inconsistencies obeserved in the results from a series of experiments on active magnetic...
Cooperative heat transfer and ground coupled storage system
Metz, P.D.
A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.
Heat transfer enhancement with nanofluids
Bianco, Vincenzo; Nardini, Sergio; Vafai, Kambiz
2015-01-01
Properties of NanofluidSamuel Paolucci and Gianluca PolitiExact Solutions and Their Implications in Anomalous Heat TransferWenhao Li, Chen Yang and Akira NakayamaMechanisms and Models of Thermal Conductivity in NanofluidsSeung-Hyun Lee and Seok Pil JangExperimental Methods for the Characterization of Thermophysical Properties of NanofluidsSergio Bobbo and Laura FedeleNanofluid Forced ConvectionGilles RoyExperimental Study of Convective Heat Transfer in NanofluidsEhsan B. Haghighi, Adi T. Utomo, Andrzej W. Pacek and Björn E. PalmPerformance of Heat Exchangers Using NanofluidsBengt Sundén and Za
Energy Technology Data Exchange (ETDEWEB)
Dyrboel, Susanne
1998-05-01
Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For large thickness dimensions the resulting heat transfer through the
Heat transfer unit and method for prefabricated vessel
Tamburello, David A.; Kesterson, Matthew R; Hardy, Bruce J.
2017-11-07
Vessel assemblies, heat transfer units for prefabricated vessels, and methods for heat transfer prefabricated vessel are provided. A heat transfer unit includes a central rod, and a plurality of peripheral rods surrounding the central rod and connected to the central rod. The plurality of peripheral rods are movable between a first collapsed position and a second bowed position, wherein in the second bowed position a midpoint of each of the plurality of peripheral rods is spaced from the central rod relative to in the first position. The heat transfer unit further includes a heat transfer element connected to one of the plurality of peripheral rods.
Computational fluid mechanics and heat transfer
Pletcher, Richard H; Anderson, Dale
2012-01-01
""I have always considered this book the best gift from one generation to the next in computational fluid dynamics. I earnestly recommend this book to graduate students and practicing engineers for the pleasure of learning and a handy reference. The description of the basic concepts and fundamentals is thorough and is crystal clear for understanding. And since 1984, two newer editions have kept abreast to the new, relevant, and fully verified advancements in CFD.""-Joseph J.S. Shang, Wright State University""Computational Fluid Mechanics and Heat Transfer is very well written to be used as a t
Numerical simulation of heat transfer in metal foams
Gangapatnam, Priyatham; Kurian, Renju; Venkateshan, S. P.
2018-02-01
This paper reports a numerical study of forced convection heat transfer in high porosity aluminum foams. Numerical modeling is done considering both local thermal equilibrium and non local thermal equilibrium conditions in ANSYS-Fluent. The results of the numerical model were validated with experimental results, where air was forced through aluminum foams in a vertical duct at different heat fluxes and velocities. It is observed that while the LTE model highly under predicts the heat transfer in these foams, LTNE model predicts the Nusselt number accurately. The novelty of this study is that once hydrodynamic experiments are conducted the permeability and porosity values obtained experimentally can be used to numerically simulate heat transfer in metal foams. The simulation of heat transfer in foams is further extended to find the effect of foam thickness on heat transfer in metal foams. The numerical results indicate that though larger foam thicknesses resulted in higher heat transfer coefficient, this effect weakens with thickness and is negligible in thick foams.
Study on enhancement of heat transfer of RVACS
International Nuclear Information System (INIS)
Nishi, Yoshihisa; Kinoshita, Izumi
1989-01-01
As for the enhancement of heat transfer on Reactor Vessel Auxiliary Cooling System (RVACS), utilization of high porosity porous bodies have been proposed by the last report. This report describe the experimental results to evaluate heat transfer performance of the porous bodies and to estimate the extrapolation to long heat transfer surface such as reactor scale. Following are typical results. (1) Usually the Heat Transfer coefficient at the lower reaches is smoller than that of the upper reaches. But Using with the high porosity porous bodies, the Heat Transfer coefficient at the lower reaches remains a constant value against distance from entrance point or a increase slightly compared to that of the upper reaches because of the effect of thermal radiation. (2) From the results of Heat Transfer coefficients against distance from the entrance point, the increasing ratio of enhancement of heat removal in the case of reactor scale is about 1.3. (author)
Supercritical heat transfer phenomena in nuclear system
International Nuclear Information System (INIS)
Seo, Kyoung Woo; Kim, Moo Hwan; Anderson, Mark H.; Corradini, Michael L.
2005-01-01
A supercritical water (SCW) power cycle has been considered as one of the viable candidates for advanced fission reactor designs. However, the dramatic variation of thermo-physical properties with a modest change of temperature near the pseudo-critical point make existing heat transfer correlations such as the Dittus-Boelter correlation not suitably accurate to calculate the heat transfer in supercritical fluid. Several other correlations have also been suggested but none of them are able to predict the heat transfer over a parameter range, needed for reactor thermal-hydraulics simulation and design. This has prompted additional research to understand the characteristic of supercritical fluid heat transfer
Fluid dynamics and heat transfer methods for the TRAC code
International Nuclear Information System (INIS)
Reed, W.H.; Kirchner, W.L.
1977-01-01
A computer code called TRAC is being developed for analysis of loss-of-coolant accidents and other transients in light water reactors. This code involves a detailed, multidimensional description of two-phase flow coupled implicitly through appropriate heat transfer coefficients with a simulation of the temperature field in fuel and structural material. Because TRAC utilizes about 1000 fluid mesh cells to describe an LWR system, whereas existing lumped parameter codes typically involve fewer than 100 fluid cells, we have developed new highly implicit difference techniques that yield acceptable computing times on modern computers. Several test problems for which experimental data are available, including blowdown of single pipe and loop configurations with and without heated walls, have been computed with TRAC. Excellent agreement with experimental results has been obtained. (author)
34th UIT Heat Transfer Conference 2016
International Nuclear Information System (INIS)
2017-01-01
The annual UIT Heat Transfer Conference of the “Unione Italiana di Termofluidodinamica” aims at promoting cooperation in the field of heat transfer and thermal sciences, by bringing together scientists and engineers working in related areas. Several issues of interest are addressed, namely natural, forced and mixed convection, conduction, radiation, multi-phase fluid dynamics and interface phenomena, computational fluid dynamics, micro- and nano-scales, efficiency in energy systems, environmental technologies and buildings, heat transfer in fire engineering. The 34th UIT Conference was held in Ferrara (FE), Italy, 4–6 July, 2015 in the spaces of the Scientific and Technological Center of The University of Ferrara. The response has been enthusiastic: 61 abstracts, 36 oral and 18 poster presentations, 48 papers published on the Proceedings To encourage the debate, the Conference Program has scheduled ample poster sessions and invited lectures from the best experts in the field along with a few of the most talented researchers. Keynote Lectures were given by Professor Giovanni S. Barozzi (University of Modena), Professor Paolo Di Marco (University of Pisa) and Professor Nicola Bianco (University of Napoli Federico II). This special volume collects a selection of the scientific contributions discussed during this conference; these works give a good overview of the state-of-the art Italian research in the field of Heat Transfer related topics. I would like to thank sincerely the authors for presenting their works at the conference and in this special issue. I would also like to extend my thanks to the Scientific Committee and the authors for their accurate review process of each paper for this special issue. Special thanks go to the organizing committee. Professor Stefano Piva (president of The Organizing Committee) About UIT (Unione Italiana Termofluidodinamica) The Italian Union of Thermal-Fluid Dynamics (UIT) was founded in Bologna on December 19, 1984
Heat transfer enhancement in heat exchangers by longitudinal vortex generators
International Nuclear Information System (INIS)
Guntermann, T.; Fiebig, M.; Mitra, N.K.
1990-01-01
In this paper heat transfer enhancement and flow losses are computed for the interaction of a laminar channel flow with a pair of counterrotating longitudinal vortices generated by a pair of delta-winglets punched out of the channel wall. The geometry simulates an element of a fin-plate or fin-tube heat exchanger. The structure of the vortex flow and temperature distribution, the local heat transfer coefficients and the local flow losses are discussed for a sample case. For a Reynolds number of Re d = 1000 and a vortex generator angle of attack of β = 25 degrees heat transfer is enhanced locally by more than 300% and in the mean by 50%. These values increase further with Re and β
Heat Transfer Phenomena of Supercritical Fluids
Energy Technology Data Exchange (ETDEWEB)
Krau, Carmen Isabella; Kuhn, Dietmar; Schulenberg, Thomas [Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies, 76021 Karlsruhe (Germany)
2008-07-01
In concepts for supercritical water cooled reactors, the reactor core is cooled and moderated by water at supercritical pressures. The significant temperature dependence of the fluid properties of water requires an exact knowledge of the heat transfer mechanism to avoid fuel pin damages. Near the pseudo-critical point a deterioration of heat transfer might happen. Processes, that take place in this case, are not fully understood and are due to be examined systematically. In this paper a general overview on the properties of supercritical water is given, experimental observations of different authors will be reviewed in order to identify heat transfer phenomena and onset of occurrence. The conceptional design of a test rig to investigate heat transfer in the boundary layer will be discussed. Both, water and carbon dioxide, may serve as operating fluids. The loop, including instrumentation and safety devices, is shown and suitable measuring methods are described. (authors)
A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers
de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries
2014-01-01
A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic
Enhancement of heat and mass transfer by cavitation
International Nuclear Information System (INIS)
Zhang, Y N; Du, X Z; Xian, H Z; Zhang, Y N
2015-01-01
In this paper, a brief summary of effects of cavitation on the heat and mass transfer are given. The fundamental studies of cavitation bubbles, including its nonlinearity, rectified heat and mass diffusion, are initially introduced. Then selected topics of cavitation enhanced heat and mass transfer were discussed in details including whales stranding caused by active sonar activity, pool boiling heat transfer, oscillating heat pipe and high intensity focused ultrasound treatment
International Nuclear Information System (INIS)
Meng Xianke; Sun Zhongning; Xu Guangzhan
2012-01-01
Graphical abstract: The core of the water-cooled pebble bed reactor is the porous channels which stacked with spherical fuel elements. The gaps between the adjacent fuel elements are complex because they are stochastic and often shift. We adopt electromagnetic induction heating method to overall heat the pebble bed. By comparing and analyzing the experimental data, we get the rule of power distribution and the rule of heat transfer coefficient with particle diameter, heat flux density, inlet temperature and working fluid's Re number. Highlights: ► We adopt electromagnetic induction heating method to overall heat the pebble bed to be the internal heat source. ► The ball diameter is smaller, the effect of the heat transfer is better. ► With Re number increasing, heat transfer coefficient is also increasing and eventually tends to stabilize. ► The changing of heat power makes little effect on the heat transfer coefficient of pebble bed channels. - Abstract: The reactor core of a water-cooled pebble bed reactor includes porous channels that are formed by spherical fuel elements. This structure has notably improved heat transfer. Due to the variability and randomness of the interstices in pebble bed channels, heat transfer is complex, and there are few studies regarding this topic. To study the heat transfer characters of pebble bed channels with internal heat sources, oxidized stainless steel spheres with diameters of 3 and 8 mm and carbon steel spheres with 8 mm diameters are used in a stacked pebble bed. Distilled water is used as a refrigerant for the experiments, and the electromagnetic induction heating method is used to heat the pebble bed. By comparing and analyzing the experimental results, we obtain the governing rules for the power distribution and the heat transfer coefficient with respect to particle diameter, heat flux density, inlet temperature and working fluid Re number. From fitting of the experimental data, we obtain the dimensionless average
Energy Technology Data Exchange (ETDEWEB)
Di Piazza, Ivan, E-mail: ivandipiazza@yahoo.i [Dipartimento di Ingegneria Nucleare, Universita degli studi di Palermo, Viale delle Scienze, Edificio 6, CAP 90128, Palermo (Italy)
2009-12-15
An analytical model of fluid flow and heat transfer of a Nuclear Thermal Rocket (NTR) engine concept is presented. The engine is based on the direct conversion of the kinetic energy of the fission fragments (FFs) into the propellant enthalpy. The FFs can escape from an extremely thin layer of fissionable material: a sufficiently large surface coated with few micrometers of Americium 242m, confined by a neutron moderator-reflector, may become a critical reactor. Three dimensional coupled CFD-Monte Carlo simulations have already been presented in . In this paper, an analytical integral 1-D model of fluid dynamics and heat transfer is built in order to foresee the performances on the basis of simple, physically founded correlations. The Peclet number has been identified as the main governing parameter of the system, and theoretically based correlations have been found for the thermodynamic efficiency of the engine and for the specific impulse. The correlations show a good agreement with numerical results presented in from fully coupled 3D CFD-Monte Carlo calculations.
Experimental study on local heat transfer characteristics of porous media with internal heat source
International Nuclear Information System (INIS)
Zan Yuanfeng; Wang Taotao; Xiao Zejun; Wang Fei; Huang Yanping
2008-01-01
Model of porous media with internal heat source is established. The model uses water as flowing media, and the stainless steel test section is packed with steel spheres in manner of regular triangle, respectively. The armoured resistance wire is inserted inside the steel sphere. On the basis of the experimental model, many parameters of the local heat transfer characteristics including current velocity and wall temperature of steel sphere are measured. The experimental results show that the coefficient of heat transfer scarcely changes with pressure. The coefficient of heat transfer increases with the surface heat flux of steel sphere. When raising the inlet temperature of the cooling water, the coefficient of heat transfer presents the descending trend. In addition, the influence of entrance effect on heat transfer is discovered in the experiment, which is much less than the liquid flow in the light tube. After experiment data are analyzed and processed, the relation model of heat transfer on local heat transfer characteristic of porous media with internal heat source was described with a power-law-equation. The deviations between calculation and experimental values are within ±10%. (authors)
Impact of coupled heat and moisture transfer effects on buildings energy consuption
Directory of Open Access Journals (Sweden)
Ferroukhi Mohammed Yacine
2017-01-01
Full Text Available Coupled heat, air, and moisture transfers through building envelope have an important effect on prediction of building energy requirements. Several works were conducted in order to integrate hygrothermal transfers in dynamic buildings simulations codes. However, the incorporation of multidirectional hygrothermal transfer analysis in the envelope into building simulation tools is rarely considered. In this work, coupled heat, air, and moisture (HAM transfer model in multilayer walls was established. Thereafter, the HAM model is coupled dynamically to a building behavior code (BES.The coupling concerns a co-simulation between COMSOL Multiphysics and TRNSYS software. Afterward, the HAM-BES co-simulation accuracy was verified. Then, HAM-BES co-simulation platform was applied to a case study with various types of climates (temperate, hot and humid, cold and humid. Three simulations cases were carried out. The first simulation case consists of the TRNSYS model without HAM transfer model. The second simulation case, 1-D HAM model for the envelope was integrated in TRNSYS code. For the third one, 1-D HAM model for the wall and 2-D HAM model for thermal bridges were coupled to the thermal building model of TRNSYS. Analysis of the results confirms the significant impact of 2-D envelope hygrothermal transfers on the indoor thermal and moisture behavior of building as well as on the energy building assessment. These conclusions are shown for different studied climates.
Forced convection heat transfer in He II
International Nuclear Information System (INIS)
Kashani, A.
1986-01-01
An investigation of forced convection heat transfer in He II is conducted. The study includes both experimental and theoretical treatments of the problem. The experiment consists of a hydraulic pump and a copper flow tube, 3 mm in ID and 2m long. The system allows measurements of one-dimensional heat and mass transfer in He II. The heat transfer experiments are performed by applying heat at the midpoint along the length of the flow tube. Two modes of heat input are employed, i.e., step function heat input and square pulse heat input. The heat transfer results are discussed in terms of temperature distribution in the tube. The experimental temperature profiles are compared with numerical solutions of an analytical model developed from the He II energy equation. The bath temperature is set at three different values of 1.65, 1.80, and 1.95 K. The He II flow velocity is varied up to 90 cm/s. Pressure is monitored at each end of the flow tube, and the He II pressure drop is obtained for different flow velocities. Results indicate that He II heat transfer by forced convention is considerably higher than that by internal convection. The theoretical model is in close agreement with the experiment. He II pressure drop and friction factor are very similar to those of an ordinary fluid
Estimation of heat transfer and heat source in a molten pool
Energy Technology Data Exchange (ETDEWEB)
Yun, J.I.; Suh, K.Y.; Kang, C.S. [Seoul National Univ., Dept. of Nuclear Engineering (Korea, Republic of)
2001-07-01
Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the pool. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool was estimated by product of the mass concentration and energy conversion factor of each fission product. For the calculation of heat generation rate in the pool, twenty-nine (29) elements were chosen and classified by their chemical properties. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis was performed for the TMI-2 accident. The pool is assumed to be a partially filled hemispherical geometry, 1.45 m in radius and 32,700 kg in mass. The change of pool geometry during the numerical calculation was neglected. The peak temperature sizably decreased by about 60 K as the fission products were released from the pool. (author)
Estimation of heat transfer and heat source in a molten pool
International Nuclear Information System (INIS)
Yun, J.I.; Suh, K.Y.; Kang, C.S.
2001-01-01
Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the pool. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool was estimated by product of the mass concentration and energy conversion factor of each fission product. For the calculation of heat generation rate in the pool, twenty-nine (29) elements were chosen and classified by their chemical properties. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis was performed for the TMI-2 accident. The pool is assumed to be a partially filled hemispherical geometry, 1.45 m in radius and 32,700 kg in mass. The change of pool geometry during the numerical calculation was neglected. The peak temperature sizably decreased by about 60 K as the fission products were released from the pool. (author)
International Nuclear Information System (INIS)
Muraglia, M.; Reynard-Carette, C.; Brun, J.; Carette, M.; Lyoussi, A.
2013-06-01
Improvement of measurements in reactor is still a challenge. Thus, this work focuses on numerical studies of one sensor dedicated to nuclear heating measurements: a radiometric complex calorimeter. More precisely, using a simplified conduction heat model, this work presents the first full 3D simulations of a simplified calorimeter reduced to the complex calorimeter head showing that the key parameter for the sensitivity control is the convective heat transfers between the calorimeter and its external surrounding. The effect of external flow velocity on the calorimeter head response is determined for different flow regimes (natural convection, forced convection) and numerical results are found to be in agreement with experimental results under non-irradiated conditions obtained for the complex calorimeter. Moreover, in order to understand and describe fully the mechanisms leading at the different calorimeter heat transfer, the flow velocity dynamics should be added in the model. In a first approach, due to low influence of the flow velocity for tested power range, a static cooling fluid around the calorimeter head is added in the model. Then, in order to get the full flow dynamics, using Boussinesq approximation, a new 2D fluid model, including both temperature field and flow velocity dynamics, is derived taking into account the nuclear heating effect on the flow. (authors)
Application of intensified heat transfer for the retrofit of heat exchanger network
International Nuclear Information System (INIS)
Wang, Yufei; Pan, Ming; Bulatov, Igor; Smith, Robin; Kim, Jin-Kuk
2012-01-01
Highlights: → Novel design approach for the retrofit of HEN based on intensified heat transfer. → Development of a mathematical model to evaluate shell-and-tube heat exchanger performances. → Identification of the most appropriate heat exchangers requiring heat transfer enhancements in the heat exchanger network. -- Abstract: A number of design methods have been proposed for the retrofit of heat exchanger networks (HEN) during the last three decades. Although considerable potential for energy savings can be identified from conventional retrofit approaches, the proposed solutions have rarely been adopted in practice, due to significant topology modifications required and resulting engineering complexities during implementation. The intensification of heat transfer for conventional shell-and-tube heat exchangers can eliminate the difficulties of implementing retrofit in HEN which are commonly restricted by topology, safety and maintenance constraints, and includes high capital costs for replacing equipment and pipelines. This paper presents a novel design approach to solve HEN retrofit problems based on heat transfer enhancement. A mathematical model has been developed to evaluate shell-and-tube heat exchanger performances, with which heat-transfer coefficients and pressure drops for both fluids in tube and shell sides are obtained. The developed models have been compared with the Bell-Delaware, simplified Tinker and Wills-Johnston methods and tested with the HTRI (registered) and HEXTRAN (registered) software packages. This demonstrates that the new model is much simpler but can give reliable results in most cases. For the debottlenecking of HEN, four heuristic rules are proposed to identify the most appropriate heat exchangers requiring heat transfer enhancements in the HEN. The application of this new design approach allows a significant improvement in energy recovery without fundamental structural modifications to the network.
Effect of radiant heat transfer on the performance of high temperature heat exchanger
International Nuclear Information System (INIS)
Mori, Yasuo; Hijikata, Kunio; Yamada, Yukio
1975-01-01
The development of high temperature gas-cooled reactors is motivated by the consideration of the application of nuclear heat for industrial uses or direct steelmaking and chemical processes. For these purposes, reliable and efficient heat exchangers should be developed. This report analyzes the effect of radiant heat transfer on the performance of high temperature heat exchangers. The heat transfer model is as follows: the channel composed with two parallel adiabatic walls is divided with one parallel plate between the walls. Non-radiative fluid flows in the two separated channels in opposite direction. Heat transfer equations for this system were obtained, and these equations were solved by some approximate method and numerical analysis. The effect of radiation on heat transfer became larger as the radiant heat transfer between two walls was larger. In the heat exchangers of counter flow type, the thermal efficiency is controlled with three parameters, namely radiation-convection parameter, Stanton number and temperature difference. The thermal efficiency was larger with the increase of these parameters. (Iwase, T.)
Han, Je-Chin
2012-01-01
… it will complete my library … [and] complement the existing literature on heat transfer. It will be of value for both graduate students and faculty members.-Bengt Sunden, Lund University, Sweden
Boiling heat transfer modern developments and advances
Lahey, Jr, RT
2013-01-01
This volume covers the modern developments in boiling heat transfer and two-phase flow, and is intended to provide industrial, government and academic researchers with state-of-the-art research findings in the area of multiphase flow and heat transfer technology. Special attention is given to technology transfer, indicating how recent significant results may be used for practical applications. The chapters give detailed technical material that will be useful to engineers and scientists who work in the field of multiphase flow and heat transfer. The authors of all chapters are members of the
Directory of Open Access Journals (Sweden)
Luanfang Duan
2018-03-01
Full Text Available In the present work, the contact heat transfer between the granular materials and heating plates inside plate rotary heat exchanger (PRHE was investigated. The heat transfer coefficient is dominated by the contact heat transfer coefficient at hot wall surface of the heating plates and the heat penetration inside the solid bed. A plot scale PRHE with a diameter of Do = 273 mm and a length of L = 1000 mm has been established. Quartz sand with dp = 2 mm was employed as the experimental material. The operational parameters were in the range of ω = 1 – 8 rpm, and F = 15, 20, 25, 30%, and the effect of these parameters on the time-average contact heat transfer coefficient was analyzed. The time-average contact heat transfer coefficient increases with the increase of rotary speed, but decreases with the increase of the filling degree. The measured data of time-average heat transfer coefficients were compared with theoretical calculations from Schlünder’s model, a good agreement between the measurements and the model could be achieved, especially at a lower rotary speed and filling degree level. The maximum deviation between the calculated data and the experimental data is approximate 10%. Keywords: Rotary heat exchanger, Contact heat transfer, Granular material, Heating plate, Overloaded
A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.
de Jong, J A; Wijnant, Y H; de Boer, A
2014-03-01
A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.
Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube
International Nuclear Information System (INIS)
Boscary, J.; Association Euratom-CEA, Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance
1997-03-01
The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author)
Numerical investigation of heat transfer in parallel channels with water at supercritical pressure.
Shitsi, Edward; Kofi Debrah, Seth; Yao Agbodemegbe, Vincent; Ampomah-Amoako, Emmanuel
2017-11-01
Thermal phenomena such as heat transfer enhancement, heat transfer deterioration, and flow instability observed at supercritical pressures as a result of fluid property variations have the potential to affect the safety of design and operation of Supercritical Water-cooled Reactor SCWR, and also challenge the capabilities of both heat transfer correlations and Computational Fluid Dynamics CFD physical models. These phenomena observed at supercritical pressures need to be thoroughly investigated. An experimental study was carried out by Xi to investigate flow instability in parallel channels at supercritical pressures under different mass flow rates, pressures, and axial power shapes. Experimental data on flow instability at inlet of the heated channels were obtained but no heat transfer data along the axial length was obtained. This numerical study used 3D numerical tool STAR-CCM+ to investigate heat transfer at supercritical pressures along the axial lengths of the parallel channels with water ahead of experimental data. Homogeneous axial power shape HAPS was adopted and the heating powers adopted in this work were below the experimental threshold heating powers obtained for HAPS by Xi. The results show that the Fluid Centre-line Temperature FCLT increased linearly below and above the PCT region, but flattened at the PCT region for all the system parameters considered. The inlet temperature, heating power, pressure, gravity and mass flow rate have effects on WT (wall temperature) values in the NHT (normal heat transfer), EHT (enhanced heat transfer), DHT (deteriorated heat transfer) and recovery from DHT regions. While variation of all other system parameters in the EHT and PCT regions showed no significant difference in the WT and FCLT values respectively, the WT and FCLT values respectively increased with pressure in these regions. For most of the system parameters considered, the FCLT and WT values obtained in the two channels were nearly the same. The
Numerical investigation of heat transfer in parallel channels with water at supercritical pressure
Directory of Open Access Journals (Sweden)
Edward Shitsi
2017-11-01
Full Text Available Thermal phenomena such as heat transfer enhancement, heat transfer deterioration, and flow instability observed at supercritical pressures as a result of fluid property variations have the potential to affect the safety of design and operation of Supercritical Water-cooled Reactor SCWR, and also challenge the capabilities of both heat transfer correlations and Computational Fluid Dynamics CFD physical models. These phenomena observed at supercritical pressures need to be thoroughly investigated.An experimental study was carried out by Xi to investigate flow instability in parallel channels at supercritical pressures under different mass flow rates, pressures, and axial power shapes. Experimental data on flow instability at inlet of the heated channels were obtained but no heat transfer data along the axial length was obtained. This numerical study used 3D numerical tool STAR-CCM+ to investigate heat transfer at supercritical pressures along the axial lengths of the parallel channels with water ahead of experimental data. Homogeneous axial power shape HAPS was adopted and the heating powers adopted in this work were below the experimental threshold heating powers obtained for HAPS by Xi. The results show that the Fluid Centre-line Temperature FCLT increased linearly below and above the PCT region, but flattened at the PCT region for all the system parameters considered. The inlet temperature, heating power, pressure, gravity and mass flow rate have effects on WT (wall temperature values in the NHT (normal heat transfer, EHT (enhanced heat transfer, DHT (deteriorated heat transfer and recovery from DHT regions. While variation of all other system parameters in the EHT and PCT regions showed no significant difference in the WT and FCLT values respectively, the WT and FCLT values respectively increased with pressure in these regions. For most of the system parameters considered, the FCLT and WT values obtained in the two channels were nearly the
The log mean heat transfer rate method of heat exchanger considering the influence of heat radiation
International Nuclear Information System (INIS)
Wong, K.-L.; Ke, M.-T.; Ku, S.-S.
2009-01-01
The log mean temperature difference (LMTD) method is conventionally used to calculate the total heat transfer rate of heat exchangers. Because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations, thus LMTD method neglects the influence of heat radiation. From the recent investigation of a circular duct in some practical situations, it is found that even in the situation of the temperature difference between outer duct surface and surrounding is low to 1 deg. C, the heat radiation effect can not be ignored in the situations of lower ambient convective heat coefficient and greater surface emissivities. In this investigation, the log mean heat transfer rate (LMHTR) method which considering the influence of heat radiation, is developed to calculate the total heat transfer rate of heat exchangers.
Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids
International Nuclear Information System (INIS)
Huminic, Gabriela; Huminic, Angel
2013-01-01
Highlights: • Numerical study of nanofluid heat transfer in thermosyphon heat pipes is performed. • Effect of nanoparticle concentration and operating temperature are studied. • Fe 2 O 3 –water nanofluid with 5.3% volume concentration shows the best performance. • Results show the improvement the thermal performances of thermosyphon heat pipe with nanofluids. - Abstract: In this work, a three-dimensional analysis is used to investigate the heat transfer of thermosyphon heat pipe using water and nanofluids as the working fluid. The study focused mainly on the effects of volume concentrations of nanoparticles and the operating temperature on the heat transfer performance of the thermosyphon heat pipe using the nanofluids. The analysis was performed for water and γ-Fe 2 O 3 nanoparticles, three volume concentrations of nanoparticles (0 vol.%, 2 vol.% and 5.3 vol.%) and four operating temperatures (60, 70, 80 and 90 °C). The numerical results show that the volume concentration of nanoparticles had a significant effect in reducing the temperature difference between the evaporator and condenser. Experimental and numerical results show qualitatively that the thermosyphon heat pipe using the nanofluid has better heat transfer characteristics than the thermosyphon heat pipe using water
Taha, T.J.; Lefferts, Leonardus; van der Meer, Theodorus H.
2013-01-01
In this work, an experimental heat transfer investigation was carried out to investigate the combined influence of both amorphous carbon (a-C) layer thickness and carbon nanofibers (CNFs) on the convective heat transfer behavior. Synthesis of these carbon nano structures was achieved using catalytic
Gambill, W.R.; Greene, N.D.
1960-08-30
A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.
Heat transport and surface heat transfer with helium in rotating channels
International Nuclear Information System (INIS)
Schnapper, C.
1978-06-01
Heat transport and surface heat transfer with helium in rotating radially arranged channels were experimentally studied with regard to cooling of large turbogenerators with superconducting windings. Measurements with thermosiphon and thermosiphon loops of different channel diameters were performed, and results are presented. The thermodynamic state of the helium in a rotating thermosiphon and the mass flow rate in a thermosiphon loop is characterized by formulas. Heat transport by directed convection in thermosiphon loops is found to be more efficient 12 cm internal convection in thermosiphons. Steady state is reached sooner in thermosiphon loops than in thermosiphons, when heat load suddenly changes. In a very large centrifugal field single-phase heat transfer with natural and forced convection is described by similar formulas which are also applicable 10 thermosiphons in gravitation field or to heat transfer to non-rotating helium. (orig.) [de
Capillary-Driven Heat Transfer Experiment: Keeping It Cool in Space
Lekan, Jack F.; Allen, Jeffrey S.
1998-01-01
Capillary-pumped loops (CPL's) are devices that are used to transport heat from one location to another--specifically to transfer heat away from something. In low-gravity applications, such as satellites (and possibly the International Space Station), CPL's are used to transfer heat from electrical devices to space radiators. This is accomplished by evaporating one liquid surface on the hot side of the CPL and condensing the vapor produced onto another liquid surface on the cold side. Capillary action, the phenomenon that causes paper towels to absorb spilled liquids, is used to "pump" the liquid back to the evaporating liquid surface (hot side) to complete the "loop." CPL's require no power to operate and can transfer heat over distances as large as 30 ft or more. Their reliance upon evaporation and condensation to transfer heat makes them much more economical in terms of weight than conventional heat transfer systems. Unfortunately, they have proven to be unreliable in space operations, and the explanation for this unreliability has been elusive. The Capillary-Driven Heat Transfer (CHT) experiment is investigating the fundamental fluid physics phenomena thought to be responsible for the failure of CPL's in low-gravity operations. If the failure mechanism can be identified, then appropriate design modifications can be developed to make capillary phase-change heat-transport devices a more viable option in space applications. CHT was conducted onboard the Space Shuttle Columbia during the first Microgravity Science Laboratory (MSL-1) mission, STS-94, which flew from July 1 to 17, 1997. The CHT glovebox investigation, which was conceived by Dr. Kevin Hallinan and Jeffrey Allen of the University of Dayton, focused on studying the dynamics associated with the heating and cooling at the evaporating meniscus within a capillary phase-change device in a low-gravity environment. The CHT experimental hardware was designed by a small team of engineers from Aerospace Design
Evaluation of empirical heat transfer models using TFG heat flux sensors
International Nuclear Information System (INIS)
De Cuyper, T.; Broekaert, S.; Chana, K.; De Paepe, M.; Verhelst, S.
2017-01-01
Thermodynamic engine cycle models are used to support the development of the internal combustion engine (ICE) in a cost and time effective manner. The sub model which describes the in-cylinder heat transfer from the working gases to the combustion chamber walls plays an important role in the accuracy of these simulation tools. The heat transfer affects the power output, engine efficiency and emissions of the engine. The most common heat transfer models in engine research are the models of Annand and Woschni. These models provide an instantaneous spatial averaged heat flux. In this research, prototype thin film gauge (TFG) heat flux sensors are used to capture the transient in-cylinder heat flux behavior within a production spark ignition (SI) engine as they are small, robust and able to capture the highly transient temperature swings. An inlet valve and two different zones of the cylinder head are instrumented with multiple TFG sensors. The heat flux traces are used to calculate the convection coefficient which includes all information of the convective heat transfer phenomena inside the combustion chamber. The implementation of TFG sensors inside the combustion chamber and the signal processing technique are discussed. The heat transfer measurements are used to analyze the spatial variation in heat flux under motored and fired operation. Spatial variation in peak heat flux was observed even under motored operation. Under fired operation the observed spatial variation is mainly driven by the flame propagation. Next, the paper evaluates the models of Annand and Woschni. These models fail to predict the total heat loss even with calibration of the models coefficients using a reference motored operating condition. The effect of engine speed and inlet pressure is analyzed under motored operation after calibration of the models. The models are able to predict the trend in peak heat flux value for a varying engine speed and inlet pressure. Next, the accuracy of the
Evaluation of heat transfer enhancement in air-heating collectors
Energy Technology Data Exchange (ETDEWEB)
Mattox, D. L.
1979-06-01
The present research effort was initiated for the purpose of increasing the thermal efficiency of air heating solar collectors through identification and development of optimum design and operation criteria for solar absorber-to-air heat exchangers. Initially this effort took the form of a solar collector systems analysis to evaluate the impact of various techniques for enhancing the heat transfer between the absorber and air stream on overall thermal performance of the entire solar collector. This systems analysis resulted in the selection of solar collector designs providing ducted cooling air on the absorber shaded side as a base line. A transient heat transfer analysis of a complete solar air heating collector was used to demonstrate that an optimum absorber-to-air heat exchanger design could be provided with several interrupted fin configurations. Additional analyses were performed to establish that the maximum solar collector thermal performance to required pumping power was realized for a Reynolds number range of 1000 to 2000. This Reynolds number range was used to establish a theoretical design limit curve for maximum thermal performance versus required pumping power for all interrupted fin designs as published in the open literature. Heat and momentum transfer empirical relationships were defined for scaling the state-of-the-art high conductance fin designs identified from a compact configuration to the less compact designs needed for solar collectors.
Heat transfer from humans wearing clothing
Lotens, W.A.
1993-01-01
In this monograph the effects of clothing on human heat transfer are described. The description is based on the physics of heat and mass transfer, depending on the design of the clothing, the climate, and the activity of the wearer. The resulting model has been stepwise implemented in computer
An introduction to heat transfer principles and calculations
Ede, A J; Ower, E
1967-01-01
An Introduction to Heat Transfer Principles and Calculations is an introductory text to the principles and calculations of heat transfer. The theory underlying heat transfer is described, and the principal results and formulae are presented. Available techniques for obtaining rapid, approximate solutions to complicated problems are also considered. This book is comprised of 12 chapters and begins with a brief account of some of the concepts, methods, nomenclature, and other relevant information about heat transfer. The reader is then introduced to radiation, conduction, convection, and boiling
Enhanced heat transfer in partially open square cavities with thin fin by using electric field
International Nuclear Information System (INIS)
Kasayapanand, N.; Kiatsiriroat, T.
2009-01-01
Numerical modeling of the electric field effect on the natural convection in the partially open square cavities with thin fin attached is investigated. The interactions among electric, flow, and temperature fields are analyzed by using a computational fluid dynamics technique. It is found that the flow and heat transfer enhancements are a decreasing function of the Rayleigh number. Moreover, the volume flow rate and heat transfer coefficient are substantially improved by electrohydrodynamic especially at low aperture size, high aperture position, and high inclined angle. Surprisingly, the maximum convective heat transfer is obtained at the minimum electrical energy consumption by placing electrodes at a suitable position. The optimum electrode arrangements for both single fin and multiple fins are also achieved
ANL ITER high-heat-flux blanket-module heat transfer experiments
International Nuclear Information System (INIS)
Kasza, K.E.
1992-02-01
An Argonne National Laboratory facility for conducting tests on multilayered slab models of fusion blanket designs is being developed; some of its features are described. This facility will allow testing under prototypic high heat fluxes, high temperatures, thermal gradients, and variable mechanical loadings in a helium gas environment. Steady and transient heat flux tests are possible. Electrical heating by a two-sided, thin stainless steel (SS) plate electrical resistance heater and SS water-cooled cold panels placed symmetrically on both sides of the heater allow achievement of global one-dimensional heat transfer across blanket specimen layers sandwiched between the hot and cold plates. The heat transfer characteristics at interfaces, as well as macroscale and microscale thermomechanical interactions between layers, can be studied in support of the ITER engineering design effort. The engineering design of the test apparatus has shown that it is important to use multidimensional thermomechanical analysis of sandwich-type composites to adequately analyze heat transfer. This fact will also be true for the engineering design of ITER
Energy Technology Data Exchange (ETDEWEB)
Lee, Youho; Lee, Jeong Ik; Cheon, Hee [KAIST, Daejeon (Korea, Republic of)
2015-05-15
Accurate modeling of thermal shock induced stresses has become ever most important to emerging accident-tolerant ceramic cladding concepts, such as silicon carbide (SiC) and SiC coated zircaloy. Since fractures of ceramic (entirely ceramic or coated) occur by excessive tensile stresses with linear elasticity, modeling transient stress distribution in the material provides a direct indication of the structural integrity. Indeed, even for the current zircaloy cladding material, the oxide layer formed on the surface - where cracks starts to develop upon water quenching - essentially behaves as a brittle ceramic. Hence, enhanced understanding of thermal shock fracture of a brittle material would fundamentally contribute to safety of nuclear reactors for both the current fuel design and that of the coming future. Understanding thermal shock fracture of a brittle material requires heat transfer rate between the solid and the fluid for transient temperature fields of the solid, and structural response of the solid under the obtained transient temperature fields. In water quenching, a solid experiences dynamic time-varying heat transfer rates with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates during the water quenching transience has been overlooked in assessments of mechanisms, predictability, and uncertainties for thermal shock fracture. Rather, a time-constant heat transfer coefficient, named 'effective heat transfer coefficient' has become a conventional input to thermal shock fracture analysis. No single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic heat transfer coefficient changes with fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials and complete the picture of stress evolution in the quenched solid. The presented result
Heat transfer performance of heat pipe for passive cooling of spent fuel pool
International Nuclear Information System (INIS)
Wang Minglu; Xiong Zhengqin; Gu Hanyang; Ye Cheng; Cheng Xu
2014-01-01
A large-scale loop heat pipe has no electricity driven component and high efficiency of heat transfer. It can be used for the passive cooling of the SFP after SBO to improve the safety performance of nuclear power plants. In this paper, such a large-scale loop heat pipe is studied experimentally. The heat transfer rate, evaporator average heat transfer coefficient operating temperature, operating pressure and ammonia flow rate have been obtained with the water flow ranging from 0.007 m/s to 0.02 m/s outside the evaporator section, heating water temperature in the range of 50 to 90℃, air velocity outside the condensation section ranging from 0.5 to 2.5 m/s. It is found that the heat transfer rate reaches as high as 20.1 kW. Parametric analysis indicates that, the heat transfer rate and ammonia flow rate are influenced significantly by hot water inlet temperature and velocity, while beyond 1.5 m/s, the effect of air velocity outside the condensation section is minor. (authors)
Modelling heat transfer during flow through a random packed bed of spheres
Burström, Per E. C.; Frishfelds, Vilnis; Ljung, Anna-Lena; Lundström, T. Staffan; Marjavaara, B. Daniel
2018-04-01
Heat transfer in a random packed bed of monosized iron ore pellets is modelled with both a discrete three-dimensional system of spheres and a continuous Computational Fluid Dynamics (CFD) model. Results show a good agreement between the two models for average values over a cross section of the bed for an even temperature profiles at the inlet. The advantage with the discrete model is that it captures local effects such as decreased heat transfer in sections with low speed. The disadvantage is that it is computationally heavy for larger systems of pellets. If averaged values are sufficient, the CFD model is an attractive alternative that is easy to couple to the physics up- and downstream the packed bed. The good agreement between the discrete and continuous model furthermore indicates that the discrete model may be used also on non-Stokian flow in the transitional region between laminar and turbulent flow, as turbulent effects show little influence of the overall heat transfer rates in the continuous model.
Transient heat transfer characteristics of liquid helium
International Nuclear Information System (INIS)
Tsukamoto, Osami
1976-01-01
The transient heat transfer characteristics of liquid helium are investigated. The critical burnout heat fluxes for pulsive heating are measured, and empirical relations between the critical burnout heat flux and the length of the heat pulse are given. The burnout is detected by observing the super-to-normal transition of the temperature sensor which is a thin lead film prepared on the heated surface by vacuum evaporation. The mechanism of boiling heat transfer for pulsive heating is discussed, and theoretical relations between the critical burnout heat flux and the length of the heat pulse are derived. The empirical data satisfy the theoretical relations fairly well. (auth.)
International Nuclear Information System (INIS)
Sarkar, J.; Bhattacharyya, Souvik
2007-01-01
In the present study, the overall conductance and the overall heat transfer area per unit capacity of refrigeration and heat pump systems have been minimized analytically considering both internal and external irreversibilities with variable temperature (finite capacity) heat reservoirs. Hot and cold side refrigerant temperatures, conductance and heat transfer area ratios have been optimized to attain this goal. The results have been verified with the more elaborate numerical optimization results obtained for ammonia based vapour compression refrigeration and heat pump systems working with variable temperature reservoirs. It is observed that the analytical results for optimum refrigerant temperatures, minimum overall conductance and heat transfer area deviate marginally from the numerically optimized results (within 1%), if one assumes a constant heat rejection temperature. The deviation of minimum overall conductance and heat transfer area is more (about 20%), if one considers both the desuperheating and condensation regions separately. However, in the absence of complex and elaborate numerical models, the simple analytical results obtained here can be used as reasonably accurate preliminary guidelines for optimization of refrigeration and heat pump systems
Loop heat pipes - highly efficient heat-transfer devices for systems of sun heat supply
Energy Technology Data Exchange (ETDEWEB)
Maydanik, Yu. [Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Thermophysics
2004-07-01
Loop heat pipes (LHPs) are hermetic heat-transfer devices operating on a closed evaporation-condensation cycle with the use of capillary pressure for pumping the working fluid [1]. In accordance with this, they possess all the main advantages of conventional heat pipes, but, as distinct from the latter, have a considerably higher heat-transfer capacity, especially when operating in the ''antigravity'' regime, when heat is transferred from above downwards. Besides, LHPs possess a higher functional versatility, are adaptable to different operating conditions and provide great scope for various design embodiments. This is achieved at the expense of both the original design of the device and the properties of the wick - a special capillary structure used for the creation of capillary pressure. The LHP schematic diagram is given in Fig. 1. The device contains an evaporator and a condenser - heat exchanger connected by means of smooth-walled pipe-lines with a relatively small diameter intended for separate motion of vapor and liquid. At present loop heat pipes are most extensively employed in thermoregulation systems of spacecrafts. Miniature LHPs are used for cooling electronics and computers. At the same time there exists a considerable potential of using these devices for the recovery of low-grade (waste) heat from different sources, and also in systems of sun heat supply. In the latter case LHPs may serve as an efficient heat-transfer link between a sun collector and a heat accumulator, which has a low thermal resistance and does not consume any additional energy for pumping the working fluid between them. (orig.)
Heat transfer enhancement in cross-flow heat exchanger using vortex generator
International Nuclear Information System (INIS)
Yoo, S. Y.; Kwon, H. K.; Kim, B. C.; Park, D. S.; Lee, S. S.
2003-01-01
Fouling is very serious problem in heat exchanger because it rapidly deteriorates the performance of heat exchanger. Cross-flow heat exchanger with vortex generators is developed, which enhance heat transfer and reduce fouling. In the present heat exchanger, shell and baffle are removed from the conventional shell-and-tube heat exchanger. The naphthalene sublimation technique is employed to measure the local heat transfer coefficients. The experiments are performed for single circular tube, staggered array tube bank and in-line array tube bank with and without vortex generators. Local and average Nusselt numbers of single tube and tube bank with vortex generator are investigated and compared to those of without vortex generator
Influence of short heat pulses on the helium boiling heat transfer rate
International Nuclear Information System (INIS)
Andreev, V.K.; Deev, V.I.; Savin, A.N.; Kutsenko, K.V.
1987-01-01
Investigation results on heat transfer in the process of helium boiling on a heated wall under conditions of pulsed heat effect are described. Results of the given study point to one of possible ways of heat exchange intensification in boiling helium by supplying short heat pulse to the heater. Even short-time noncontrolled or incidental increase in the heater capacity during experiment with boiling helium can result in a considerable disagreement of experimental data on heat transfer
Han, Le; Chang, Haiping; Zhang, Jingyang; Xu, Tiejun
2015-04-01
In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition, the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters is crucial. In this paper, subcooled boiling heat transfer in a water-cooled W/Cu divertor was numerically investigated based on computational fluid dynamic (CFD). The boiling heat transfer was simulated based on the Euler homogeneous phase model, and local differences of liquid physical properties were considered under one-sided high heating conditions. The calculated wall temperature was in good agreement with experimental results, with the maximum error of 5% only. On this basis, the void fraction distribution, flow field and heat transfer coefficient (HTC) distribution were obtained. The effects of heat flux, inlet velocity and inlet temperature on temperature distribution and pressure drop of a water-cooled W/Cu divertor were also investigated. These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2010GB104005), Funding of Jiangsu Innovation Program for Graduate Education (CXLX12_0170), the Fundamental Research Funds for the Central Universities of China
Heat transfer model for quenching by submerging
International Nuclear Information System (INIS)
Passarella, D N; Varas, F; MartIn, E B
2011-01-01
In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.
Heat transfer model for quenching by submerging
Energy Technology Data Exchange (ETDEWEB)
Passarella, D N; Varas, F [Departamento de Matematica Aplicada II, E.T.S. de Ing. de Telecomunicacion, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain); MartIn, E B, E-mail: diego@dma.uvigo.es, E-mail: fvaras@uvigo.es, E-mail: emortega@uvigo.es [Area de Mecanica de Fluidos, E.T.S. de Ing. Industriales, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain)
2011-05-01
In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.
Natural convection heat transfer of fluid with temperature-dependent specific heat
International Nuclear Information System (INIS)
Tanaka, Amane; Kubo, Shinji; Akino, Norio
1998-01-01
The present study investigates natural convection from a heated vertical plate of fluid with temperature-dependent specific heat, which is introduced as a model of microencapsulated phase change material slurries (MCPCM slurries). The temperature dependence of specific heat is represented by Gauss function with three physical parameters (peak temperature, width of phase change temperature and latent heat). Boundary layer equations are solved numerically, and the velocity and temperature fields of the flow are obtained. The relation between the heat transfer coefficients and the physical parameters of specific heat is discussed. The results show that the velocities and temperatures are smaller, and the heat transfer coefficients are larger comparing with those of the fluid with constant specific heat. (author)
International Nuclear Information System (INIS)
2015-01-01
The conference covered various aspects of heat and mass transfer like Aero-thermodynamics, Atmospheric flows, Biological heat and mass transfer, Combustion and reactive flows, Cryogenics, Electronic and photonic cooling, Energy engineering, Environmental engineering, Experimental techniques, Heat transfer enhancement, Heat transfer equipment's, Heat transfer in nuclear applications, Mass transfer, Materials processing and manufacturing, Microscale and nanoscale transport, Multiphase transport and phase change, Multi mode heat transfer, Numerical methods, Refrigeration and air conditioning, Space heat transfer, Transport phenomena in porous media, and Turbulent transport. Papers relevant to INIS are indexed separately
International Nuclear Information System (INIS)
Weisman, J.
1983-01-01
Heat may be defined as that form of energy which spontaneously flows between two bodies, or two regions of a body, by virtue of a temperature difference. The second law of thermodynamics tells us that we cannot have heat flow from a low temperature to high temperature without doing work. Heat flows spontaneously from a high temperature to a low temperature region. Thermodynamics, which is concerned with equilibrium states, cannot tell us anything about the rate of heat flow in the presence of a finite temperature difference. It is to the discipline of heat transfer to which we must turn for this answer
Heat Transfer and Entropy Generation Analysis of an Intermediate Heat Exchanger in ADS
Wang, Yongwei; Huai, Xiulan
2018-04-01
The intermediate heat exchanger for enhancement heat transfer is the important equipment in the usage of nuclear energy. In the present work, heat transfer and entropy generation of an intermediate heat exchanger (IHX) in the accelerator driven subcritical system (ADS) are investigated experimentally. The variation of entropy generation number with performance parameters of the IHX is analyzed, and effects of inlet conditions of the IHX on entropy generation number and heat transfer are discussed. Compared with the results at two working conditions of the constant mass flow rates of liquid lead-bismuth eutectic (LBE) and helium gas, the total pumping power all tends to reduce with the decreasing entropy generation number, but the variations of the effectiveness, number of transfer units and thermal capacity rate ratio are inconsistent, and need to analyze respectively. With the increasing inlet mass flow rate or LBE inlet temperature, the entropy generation number increases and the heat transfer is enhanced, while the opposite trend occurs with the increasing helium gas inlet temperature. The further study is necessary for obtaining the optimized operation parameters of the IHX to minimize entropy generation and enhance heat transfer.
Directory of Open Access Journals (Sweden)
Jang-Won Seo
2015-05-01
Full Text Available Performance tests were carried out for a microchannel printed circuit heat exchanger (PCHE, which was fabricated with micro photo-etching and diffusion bonding technologies. The microchannel PCHE was tested for Reynolds numbers in the range of 100‒850 varying the hot-side inlet temperature between 40 °C–50 °C while keeping the cold-side temperature fixed at 20 °C. It was found that the average heat transfer rate and heat transfer performance of the countercurrrent configuration were 6.8% and 10%‒15% higher, respectively, than those of the parallel flow. The average heat transfer rate, heat transfer performance and pressure drop increased with increasing Reynolds number in all experiments. Increasing inlet temperature did not affect the heat transfer performance while it slightly decreased the pressure drop in the experimental range considered. Empirical correlations have been developed for the heat transfer coefficient and pressure drop factor as functions of the Reynolds number.
Parametric Study on the Dynamic Heat Storage Capacity of Building Elements
DEFF Research Database (Denmark)
Artmann, Nikolai; Manz, H.; Heiselberg, Per
2007-01-01
as their interrelation. The potential of increasing thermal mass by using phase change materials (PCM) was estimated assuming increased thermal capacity. The results show a significant impact of the heat transfer coefficient on heat storage capacity, especially for thick, thermally heavy elements. The storage capacity...... of onedimensional heat conduction in a slab with convective boundary condition was applied to quantify the dynamic heat storage capacity of a particular building element. The impact of different parameters, such as slab thickness, material properties and the heat transfer coefficient was investigated, as well......In modern, extensively glazed office buildings, due to high solar and internal loads and increased comfort expectations, air conditioning systems are often used even in moderate and cold climates. Particularly in this case, passive cooling by night-time ventilation seems to offer considerable...
Heat and mass transfer in buildings
International Nuclear Information System (INIS)
Kristoffersen, Astrid Rusaas
2005-01-01
This thesis has presented four journal papers about ventilation and heat transfer in buildings. Ventilation and heat transfer in buildings are elements that decide our indoor air quality, thermal comfort and energy use in buildings. Models and experiments are tools to understand the complex physics of heat and air transfer in buildings. As computers are, getting cheaper and more powerful, there is a need to develop reliable models that can predict heat and air transfer in buildings. The first paper in this thesis addressed the widely used multizone model. This model is mainly used to find the airflows between zones in a building. A multizone model is often coupled to an energy analysis program, and affects therefore the calculated energy use in a building. The first paper in this thesis, titled ''Effect of room air recirculation delay on the decay rate of tracer gas concentration'' discussed the impact of a recirculating ventilation system on the decay of the tracer gas concentration in the room. The delay of the tracer gas through the ventilation system affects the concentration in the room, and must be accounted for when calculating the amount of fresh air that the ventilation system supplies. The second paper titled ''CFD Investigation of Room Ventilation for Improved Operation of a Downdraft Table: Novel Concepts'' investigated the performance of a downdraft table by changing the ventilation configuration in the room by use of Computational Fluid Dynamics (CFD). CFD can provide a microscopic description of the airflow and the behavior of pollutants and temperature distribution in a room. This paper calculated the airflow pattern in the room without influence of thermal effects, and demonstrated the usage of CFD. It was found that the total airflow could be reduced compared to an existing configuration (and hence reduce energy costs), and at the same time increasing the performance of the downdraft table (increasing the indoor air quality). A room with a
Enhancing heat transfer in microchannel heat sinks using converging flow passages
International Nuclear Information System (INIS)
Dehghan, Maziar; Daneshipour, Mahdi; Valipour, Mohammad Sadegh; Rafee, Roohollah; Saedodin, Seyfolah
2015-01-01
Highlights: • The fluid flow and conjugate heat transfer in microchannel heat sinks are studied. • The Poiseuille and Nusselt numbers are presented for width-tapered MCHS. • Converging walls are found to enhance the thermal performance of MCHS. • The optimum performance of MCHS for fixed inlet and outlet pressures is discussed. • For the optimum configuration, the pumping power is reduced up to 75%. - Abstract: Constrained fluid flow and conjugate heat transfer in microchannel heat sinks (MCHS) with converging channels are investigated using the finite volume method (FVM) in the laminar regime. The maximum pressure of the MCHS loop is assumed to be limited due to constructional or operational conditions. Results show that the Poiseuille number increases with increased tapering, while the required pumping power decreases. Meanwhile, the Nusselt number increases with tapering as well as the convection heat transfer coefficient. The MCHS having the optimum heat transfer performance is found to have a width-tapered ratio equal to 0.5. For this tapering configuration and at the maximum pressure constraint of 3000 Pa, the pumping power reduces by a factor of 4 while the overall heat removal rate is kept fixed in comparison with a straight channel
International Nuclear Information System (INIS)
Aly, Wael I.A.
2014-01-01
Highlights: • The performance of helically coiled tube heat exchanger using nanofluid is modeled. • The 3D turbulent flow and conjugate heat transfer of CTITHE are solved using FVM. • The effects of nanoparticle concentration and curvature ratio are investigated. • The Gnielinski correlation for Nu for turbulent flow in helical tubes can be used for water-based Al 2 O 3 nanofluid. - Abstract: A computational fluid dynamics (CFD) study has been carried out to study the heat transfer and pressure drop characteristics of water-based Al 2 O 3 nanofluid flowing inside coiled tube-in-tube heat exchangers. The 3D realizable k–ε turbulent model with enhanced wall treatment was used. Temperature dependent thermophysical properties of nanofluid and water were used and heat exchangers were analyzed considering conjugate heat transfer from hot fluid in the inner-coiled tube to cold fluid in the annulus region. The overall performance of the tested heat exchangers was assessed based on the thermo-hydrodynamic performance index. Design parameters were in the range of; nanoparticles volume concentrations 0.5%, 1.0% and 2.0%, coil diameters 0.18, 0.24 and 0.30 m, inner tube and annulus sides flow rates from 2 to 5 LPM and 10 to 25 LPM, respectively. Nanofluid flows inside inner tube side or annular side. The results obtained showed a different behavior depending on the parameter selected for the comparison with the base fluid. Moreover, when compared at the same Re or Dn, the heat transfer coefficient increases by increasing the coil diameter and nanoparticles volume concentration. Also, the friction factor increases with the increase in curvature ratio and pressure drop penalty is negligible with increasing the nanoparticles volume concentration. Conventional correlations for predicting average heat transfer and friction factor in turbulent flow regime such as Gnielinski correlation and Mishra and Gupta correlation, respectively, for helical tubes are also valid for
Numerical simulation of shell-side heat transfer and flow of natural circulation heat exchanger
International Nuclear Information System (INIS)
Xue Ruojun; Deng Chengcheng; Li Chaojun; Wang Mingyuan
2012-01-01
In order to analyze the influence on the heat transfer and flow characteristics of the heat exchanger model of different solving models and structures, a variety of transformation to the model equivalent for the heat exchanger was studied. In this paper, Fluent software was used to simulate the temperature-field and flow-field of the equivalent model, and investigate its heat-transferring and flow characteristics. Through comparative analysis of the distribution of temperature-field and flow-field for different models, the heat-transferring process and natural convection situation of heat exchanger were deeply understood. The results show that the temperature difference between the inside and outside of the natural circulation heat exchanger tubes is larger and the flow is more complex, so the turbulence model is the more reasonable choice. Asymmetry of tubes position makes the flow and heat transfer of the fluid on both sides to be dissymmetrical and makes the fluid interaction, and increases the role of natural convection. The complex structure of heat exchanger makes the flow and heat transfer of the fluid on both sides to be irregular to some extent when straight tubes into C-bent are transformed, and all these make the turbulence intensity increase and improve the effect of heat transfer. (authors)
Heat transfer from rotating finned heat exchangers with different orientation angles
Energy Technology Data Exchange (ETDEWEB)
Tawfik, Adel Abdalla [Suez Canal University, Marine Engineering and Naval Architecture Department, Faculty of Engineering, Port Said (Egypt)
2010-03-15
The local and average heat transfer characteristics of spoke like fins that extend outward from a rotating shaft have been determined experimentally. The experiments encompassed a number of geometrical parameters, including the length and chord of the fins, the number of fins deployed around the circumference of the shaft and the orientation angles of the fin. The experiments cover a wider range of rotational speeds, which varies from 25 up to 2,000 rpm. Three wire heat flux sensors have been used in conjunction with a slip ring apparatus to evaluate the local and average heat transfer coefficients. The output results indicated that, the heat transfer transition on rotating fins occurs at Reynolds number lower than encountered on the stationary rectangular fins in crossflow. In general, with non zero incidence angle, the rotating system acts as a fan and creates axial air motion, which enhance the heat transfer rate. However, the effect of orientation angle reduces with increasing the rotational speed. The Nusselt number data are independent of the number of fins in the circumferential array at high rotational speed and are weakly dependent at low Reynolds numbers. To facilitate the use of the results for design, correlations were developed which represent the fin heat transfer coefficient as a continuous function of the investigated independent parameters. (orig.)
Turbomachinery Heat Transfer and Loss Modeling for 3D Navier-Stokes Codes
DeWitt, Kenneth; Ameri, Ali
2005-01-01
This report's contents focus on making use of NASA Glenn on-site computational facilities,to develop, validate, and apply models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes to enhance the capability to compute heat transfer and losses in turbomachiney.
Mixed convection heat transfer experiments using analogy concept
International Nuclear Information System (INIS)
Ko, Bong Jin; Chung, Bum Jin; Lee, Won Jea
2009-01-01
A Series of the turbulent mixed convective heat transfer experiments in a vertical cylinder was carried out. In order to achieve high Gr and/or Ra with small scale test rigs, the analogy concept was adopted. Using the concept, heat transfer systems were simulated by mass transfer systems, and large Grashof numbers could be achieved with reasonable facility heights. The tests were performed with buoyancy-aided flow and opposed flow for Reynolds numbers from 4,000 to 10,000 with a constant Grashof number, Gr H of 6.2 x 10 9 and Prandtl number of about 2,000. The test results reproduced the typical of the mixed convection heat transfer phenomena in a turbulent situation and agree well with the experimental study performed by Y. Palratan et al. The analogy experimental method simulated the mixed convection heat transfer phenomena successfully and seems to be a useful tool for heat transfer studies for VHTR as well as the systems with high buoyancy condition and high Prandtl number
Evaluation of Interfacial Heat Transfer Models for Flashing Flow with Two-Fluid CFD
Directory of Open Access Journals (Sweden)
Yixiang Liao
2018-06-01
Full Text Available The complexity of flashing flows is increased vastly by the interphase heat transfer as well as its coupling with mass and momentum transfers. A reliable heat transfer coefficient is the key in the modelling of such kinds of flows with the two-fluid model. An extensive literature survey on computational modelling of flashing flows has been given in previous work. The present work is aimed at giving a brief review on available theories and correlations for the estimation of interphase heat transfer coefficient, and evaluating them quantitatively based on computational fluid dynamics simulations of bubble growth in superheated liquid. The comparison of predictions for bubble growth rate obtained by using different correlations with the experimental as well as direct numerical simulation data reveals that the performance of the correlations is dependent on the Jakob number and Reynolds number. No generally applicable correlations are available. Both conduction and convection are important in cases of bubble rising and translating in stagnant liquid at high Jakob numbers. The correlations combining the analytical solution for heat diffusion and the theoretical relation for potential flow give the best agreement.
Analysis of heat transfer in plain carbon steels
International Nuclear Information System (INIS)
Han, Heung Nam; Lee, Kyung Jong
1999-01-01
During cooling of steels, the heat transfer was controlled by radiation, convection, conduction and heat evolution from phase transformation. To analyze the heat transfer during cooling precisely, the material constants such as density, heat capacity and the heat evolved during transformation were obtained as functions of temperature and chemical composition for each phase observed in plain carbon steel using a thermodynamic analysis based on the sublattice model of Fe-C-Mn system. The results were applied to 0.049 wt% and 0.155 wt% carbon steels with an austenitic stainless steel as reference by developing a proper heat transfer governing equation. The equation was solved using the lumped system method. In addition, using a transformation dilatometer with adequate experimental conditions to clarify the individual heat transfer effect, the transformation heat evolved during cooling and the transformation behavior as well as the temperature change were observed. The predicted temperature profiles during cooling were well agreed with the measured ones
Numerical simulation of heat transfer process in automotive brakes
Gonzalo Voltas, David
2013-01-01
This master thesis concerns the theoretical investigations of the heat transfer process in automotive brakes. The process of heat generation and heat transfer to ambient air in automotive brake was presented. The two–dimensional, axi-symmetrical model of transient heat conduction for the brake was applied. The relevant boundary conditions, that describe the heat generated in the brake and the heat transferred to ambient air, were used. The unsteady heat conduction problem was solved by the...
Endwall convective heat transfer for bluff bodies
DEFF Research Database (Denmark)
Wang, Lei; Salewski, Mirko; Sundén, Bengt
2012-01-01
The endwall heat transfer characteristics of forced flow past bluff bodies have been investigated using liquid crystal thermography (LCT). The bluff body is placed in a rectangular channel with both its ends attached to the endwalls. The Reynolds number varies from 50,000 to 100,000. In this study......, a single bluff body and two bluff bodies arranged in tandem are considered. Due to the formation of horseshoe vortices, the heat transfer is enhanced appreciably for both cases. However, for the case of two bluff bodies in tandem, it is found that the presence of the second bluff body decreases the heat...... transfer as compared to the case of a single bluff body. In addition, the results show that the heat transfer exhibits Reynolds number similarity. For a single bluff body, the Nusselt number profiles collapse well when the data are scaled by Re0.55; for two bluff bodies arranged in tandem, the heat...
Heat transfer in a thermoacoustic process
International Nuclear Information System (INIS)
Beke, Tamas
2012-01-01
Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis aimed at determining the stability–instability border of the thermoacoustic system. In this paper, we present a project type of physical examination and modelling task. We employed an electrically heated Rijke tube in our thermoacoustic project work. The aim of our project is to help our students enlarge their knowledge about thermodynamics, mainly about thermoacoustics, and develop their applied information technology and mathematical skills. (paper)
Comparison of heat transfer models for reciprocating compressor
International Nuclear Information System (INIS)
Tuhovcak, J.; Hejcik, J.; Jicha, M.
2016-01-01
Highlights: • Comparison of integral heat transfer models. • Influence of heat transfer model on volumetric and isentropic efficiency. • Various gases used as working fluid. - Abstract: One of the main factors affecting the efficiency of reciprocating compressor is heat transfer inside the cylinder. An analysis of heat transfer could be done using numerical models or integral correlations developed mainly from approaches used in combustion engines; however their accuracy is not completely verified due to the complicated experimental set up. The goal of this paper is to analyse the effect of heat transfer on compressor efficiency. Various integral correlations were compared for different compressor settings and fluids. CoolProp library was used in the code to obtain the properties of common coolants and gases. A comparison was done using the in-house code developed in Matlab, based on 1st Law of Thermodynamics.
Heat transfer enhancement in a convective field by applying ionic wind
International Nuclear Information System (INIS)
Tada, Y.; Takimoto, A.; Hayashi, Y.
1991-01-01
This paper reports that this study has been conducted to pursue the heat transfer enhancement in a convective field by applying electric field. Firstly, aimed at thinning boundary layer, swirl motions were caused by utilizing the ionic wind in a channel flow with parallel wire-electrode arrangement. Secondly, ionic wind was induced at right angle to the primary flow at regular intervals by using cross wire-electrode arrangement. Thirdly, to utilize the dynamical effect of adding particles under the Coulomb force, electric field was applied to gas-solid suspensions flow field. On the basis of these results, fundamental characteristics of the combined flow structure and the heat transfer in the EHD field were clarified, and the possibility of the practical application will be insighted
Directory of Open Access Journals (Sweden)
John White
2016-02-01
Full Text Available The chief objective of this study is the proposal design and CFD simulation of a new compacted copper wire woven fin heat exchanger and silica gel adsorbent bed used as part of an adsorption refrigeration system. This type of heat exchanger design has a large surface area because of the wire woven fin design. It is estimated that this will help improve the coefficient of performance (COP of the adsorption phase and increase the heat transfer in this system arrangement. To study the heat transfer between the fins and porous adsorbent reactor bed, two experiments were carried out and matched to computational fluid dynamics (CFD results.
Single-phase convective heat transfer in rod bundles
International Nuclear Information System (INIS)
Holloway, Mary V.; Beasley, Donald E.; Conner, Michael E.
2008-01-01
The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids
Single-phase convective heat transfer in rod bundles
Energy Technology Data Exchange (ETDEWEB)
Holloway, Mary V. [Mechanical Engineering Department, United States Naval Academy, 590 Holloway Rd., Annapolis, MD 21402 (United States)], E-mail: holloway@usna.edu; Beasley, Donald E. [Mechanical Engineering Department, Clemson University, Clemson, SC 29634 (United States); Conner, Michael E. [Westinghouse Nuclear Fuel, 5801 Bluff Road, Columbia, SC 29250 (United States)
2008-04-15
The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids.
Interfacial stability with mass and heat transfer
International Nuclear Information System (INIS)
Hsieh, D.Y.
1977-07-01
A simplified formulation is presented to deal with interfacial stability problems with mass and heat transfer. For Rayleigh-Taylor stability problems of a liquid-vapor system, it was found that the effect of mass and heat transfer tends to enhance the stability of the system when the vapor is hotter than the liquid, although the classical stability criterion is still valid. For Kelvin-Holmholtz stability problems, however, the classical stability criterion was found to be modified substantially due to the effect of mass and heat transfer
Heat Transfer Phenomena in Supercritical Water Nuclear Reactors
International Nuclear Information System (INIS)
Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht
2007-01-01
A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in a circular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mass velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel
Heat Transfer Phenomena in Supercritical Water Nuclear Reactors
Energy Technology Data Exchange (ETDEWEB)
Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht
2007-10-03
A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.
Heat Transfer by Thermo-Capillary Convection. Sounding Rocket COMPERE Experiment SOURCE
Fuhrmann, Eckart; Dreyer, Michael
2009-08-01
This paper describes the results of a sounding rocket experiment which was partly dedicated to study the heat transfer from a hot wall to a cold liquid with a free surface. Natural or buoyancy-driven convection does not occur in the compensated gravity environment of a ballistic phase. Thermo-capillary convection driven by a temperature gradient along the free surface always occurs if a non-condensable gas is present. This convection increases the heat transfer compared to a pure conductive case. Heat transfer correlations are needed to predict temperature distributions in the tanks of cryogenic upper stages. Future upper stages of the European Ariane V rocket have mission scenarios with multiple ballistic phases. The aims of this paper and of the COMPERE group (French-German research group on propellant behavior in rocket tanks) in general are to provide basic knowledge, correlations and computer models to predict the thermo-fluid behavior of cryogenic propellants for future mission scenarios. Temperature and surface location data from the flight have been compared with numerical calculations to get the heat flux from the wall to the liquid. Since the heat flux measurements along the walls of the transparent test cell were not possible, the analysis of the heat transfer coefficient relies therefore on the numerical modeling which was validated with the flight data. The coincidence between experiment and simulation is fairly good and allows presenting the data in form of a Nusselt number which depends on a characteristic Reynolds number and the Prandtl number. The results are useful for further benchmarking of Computational Fluid Dynamics (CFD) codes such as FLOW-3D and FLUENT, and for the design of future upper stage propellant tanks.
An examination of flame shape related to convection heat transfer in deep-fuel beds
Kara M. Yedinak; Jack D. Cohen; Jason M. Forthofer; Mark A. Finney
2010-01-01
Fire spread through a fuel bed produces an observable curved combustion interface. This shape has been schematically represented largely without consideration for fire spread processes. The shape and dynamics of the flame profile within the fuel bed likely reflect the mechanisms of heat transfer necessary for the pre-heating and ignition of the fuel during fire spread....
The magnetic fluid for heat transfer applications
International Nuclear Information System (INIS)
Nakatsuka, K.; Jeyadevan, B.; Neveu, S.; Koganezawa, H.
2002-01-01
Real-time visual observation of boiling water-based and ionic magnetic fluids (MFs) and heat transfer characteristics in heat pipe using ionic MF stabilized by citrate ions (JC-1) as working liquid are reported. Irrespective of the presence or absence of magnetic field water-based MF degraded during boiling. However, the degradation of JC-1 was avoided by heating the fluid in magnetic field. Furthermore, the heat transfer capacity of JC-1 heat pipe under applied magnetic field was enhanced over the no field case
Directory of Open Access Journals (Sweden)
Cieśliński Janusz T.
2016-09-01
Full Text Available This study is focused on experimental investigation of selected type of brazed plate heat exchanger (PHEx. The Wilson plot approach was applied in order to estimate heat transfer coefficients for the PHEx passages. The main aim of the paper was to experimentally check ability of several correlations published in the literature to predict heat transfer coefficients by comparison experimentally obtained data with appropriate predictions. The results obtained revealed that Hausen and Dittus-Boelter correlations underestimated heat transfer coefficient for the tested PHEx by an order of magnitude. The Aspen Plate code overestimated heat transfer coefficient by about 50%, while Muley-Manglik correlation overestimated it from 1% to 25%, dependent on the value of Reynolds number and hot or cold liquid side.
Xueping Du; Dongtai Han; Qiangmin Zhu
2018-01-01
To investigate the effect of wind deflectors on air flow and heat transfer performance of an air-cooling tower under crosswind conditions, an experimental system based on a surface condenser aluminum exchanger-type indirect air-cooling tower is established at a 1:100 proportional reduction. A 3-D computational fluid dynamics simulation model is built to study the air flow and temperature fields. The air flow rate into the cooling tower and the heat transfer rate of the radiators are used to e...
Super-Planckian far-field radiative heat transfer
Fernández-Hurtado, V.; Fernández-Domínguez, A. I.; Feist, J.; García-Vidal, F. J.; Cuevas, J. C.
2018-01-01
We present here a theoretical analysis that demonstrates that the far-field radiative heat transfer between objects with dimensions smaller than the thermal wavelength can overcome the Planckian limit by orders of magnitude. To guide the search for super-Planckian far-field radiative heat transfer, we make use of the theory of fluctuational electrodynamics and derive a relation between the far-field radiative heat transfer and the directional absorption efficiency of the objects involved. Guided by this relation, and making use of state-of-the-art numerical simulations, we show that the far-field radiative heat transfer between highly anisotropic objects can largely overcome the black-body limit when some of their dimensions are smaller than the thermal wavelength. In particular, we illustrate this phenomenon in the case of suspended pads made of polar dielectrics like SiN or SiO2. These structures are widely used to measure the thermal transport through nanowires and low-dimensional systems and can be employed to test our predictions. Our work illustrates the dramatic failure of the classical theory to predict the far-field radiative heat transfer between micro- and nanodevices.
Natural convection heat transfer in SIGMA experiment
International Nuclear Information System (INIS)
Lee, Seung Dong; Lee, Gang Hee; Suh, Kune Yull
2004-01-01
A loss-of-coolant accident (LOCA) results in core melt formation and relocation at various locations within the reactor core over a considerable period of time. If there is no effective cooling mechanism, the core debris may heat up and commence natural circulation. The high temperature pool of molten core material will threaten the structural integrity of the reactor vessel. The extent and urgency of this threat depend primarily upon the intensity of the internal heat sources and upon the consequent distribution of the heat fluxes on the vessel walls in contact with the molten core material pools. In such a steady molten pool convection state, the thermal loads against the vessel would be determined by the in-vessel heat transfer distribution involving convective and conductive heat transfer from the decay-heated core material pool to the lower head wall in contact with the core material. In this study, upward and downward heat transfer fraction ratio is focused on
Kruis, Nathanael J. F.
Heat transfer from building foundations varies significantly in all three spatial dimensions and has important dynamic effects at all timescales, from one hour to several years. With the additional consideration of moisture transport, ground freezing, evapotranspiration, and other physical phenomena, the estimation of foundation heat transfer becomes increasingly sophisticated and computationally intensive to the point where accuracy must be compromised for reasonable computation time. The tools currently available to calculate foundation heat transfer are often either too limited in their capabilities to draw meaningful conclusions or too sophisticated to use in common practices. This work presents Kiva, a new foundation heat transfer computational framework. Kiva provides a flexible environment for testing different numerical schemes, initialization methods, spatial and temporal discretizations, and geometric approximations. Comparisons within this framework provide insight into the balance of computation speed and accuracy relative to highly detailed reference solutions. The accuracy and computational performance of six finite difference numerical schemes are verified against established IEA BESTEST test cases for slab-on-grade heat conduction. Of the schemes tested, the Alternating Direction Implicit (ADI) scheme demonstrates the best balance between accuracy, performance, and numerical stability. Kiva features four approaches of initializing soil temperatures for an annual simulation. A new accelerated initialization approach is shown to significantly reduce the required years of presimulation. Methods of approximating three-dimensional heat transfer within a representative two-dimensional context further improve computational performance. A new approximation called the boundary layer adjustment method is shown to improve accuracy over other established methods with a negligible increase in computation time. This method accounts for the reduced heat transfer
Essentials of radiation heat transfer
Balaji
2014-01-01
Essentials of Radiation Heat Transfer is a textbook presenting the essential, fundamental information required to gain an understanding of radiation heat transfer and equips the reader with enough knowledge to be able to tackle more challenging problems. All concepts are reinforced by carefully chosen and fully worked examples, and exercise problems are provided at the end of every chapter. In a significant departure from other books on this subject, this book completely dispenses with the network method to solve problems of radiation heat transfer in surfaces. It instead presents the powerful radiosity-irradiation method and shows how this technique can be used to solve problems of radiation in enclosures made of one to any number of surfaces. The network method is not easily scalable. Secondly, the book introduces atmospheric radiation, which is now being considered as a potentially important area, in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, b...
Heat transfer from rough surfaces
International Nuclear Information System (INIS)
Dalle Donne, M.
1977-01-01
Artificial roughness is often used in nuclear reactors to improve the thermal performance of the fuel elements. Although these are made up of clusters of rods, the experiments to measure the heat transfer and friction coefficients of roughness are performed with single rods contained in smooth tubes. This work illustrated a new transformation method to obtain data applicable to reactor fuel elements from these annulus experiments. New experimental friction data are presented for ten rods, each with a different artificial roughness made up of two-dimensional rectangular ribs. For each rod four tests have been performed, each in a different outer smooth tube. For two of these rods, each for two different outer tubes, heat transfer data are also given. The friction and heat transfer data, transformed with the present method, are correlated by simple equations. In the paper, these equations are applied to a case typical for a Gas Cooled Fast Reactor fuel element. (orig.) [de
Heat transfer along the route to chaos of a swaying thermal plume
International Nuclear Information System (INIS)
Angeli, D; Corticelli, M A; Fichera, A; Pagano, A
2015-01-01
Detailed analyses have been recently reported on the low order dynamics of a thermal plume arising from a horizontal cylindrical heat source concentric to an air-filled isothermally cooled square enclosure, together with those of the related flow structures, in the limit of the 2D approximation. In particular, within the range of 0 < Ra < 3Ra cr , with Ra cr corresponding to the loss of stability of the stationary buoyant plume, the entire evolution from a periodic limit cycle (P 1 ) to the birth of chaos through a period-doubling cascade has been fully explored. With this respect, special attention has been given to the window of quasiperiodic dynamics onto a T 2 -torus that is observed to separate the monoperiodic dynamics from the biperiodic dynamics onto a P 1 and a P 2 -limit cycle, respectively. The results of these analyses hint at the bimodal nature of the overall dynamics, in general, and of the subharmonic cascade, in particular, which are still under investigation. Although relevant on a dynamical perspective, a with a main reflection on the laminar-turbulent transition, the observed oscillations appear to be characterised by comparable amplitudes and to be determined by similar evolutions of the flow pattern evolutions, so that their role on the overall heat transfer rate is expected to be marginal. Within this frame, the present study aims at reporting the influence played by the observed dynamics of the thermal plume and of the flow structures on the global heat transfer rate. In particular, the aim is the assessment of the correlation between the Rayleigh number and the average Nusselt number on the cylinder surface, as well as the effect on the latter of the observed series of bifurcations. (paper)
Non-stationary heat transfer in gels applied to biotehnology
Directory of Open Access Journals (Sweden)
Pokusaev Boris
2017-01-01
Full Text Available Unsteady heat transfer in agarose gels of various concentrations was studied in order to make a breakthrough in the technology of 3-D additive bioprinting. Data on the kinetics of the phase transformation was obtained using spectroscopy as a function of temperature during the formation of agarose hydrogel. The dynamics of aging was investigated for gels of different densities. The time dependence of the structural changes was obtained. Particular attention was paid to the changes in the structure of the gel due to the processes of evaporation of the liquid during the gel formation and during long-term storage. Experiments were performed to determine the dynamics of the temperature fields simultaneously with heat flux measurements during the formation of agarose gels from different initial concentrations. A technique based on experimental data for the computations of the thermophysical coefficients of agarose gels was developed.
Heat and mass transfer in building services design
Moss, Keith
1998-01-01
Building design is increasingly geared towards low energy consumption. Understanding the fundamentals of heat transfer and the behaviour of air and water movements is more important than ever before. Heat and Mass Transfer in Building Services Design provides an essential underpinning knowledge for the technology subjects of space heating, water services, ventilation and air conditioning. This new text: *provides core understanding of heat transfer and fluid flow from a building services perspective *complements a range of courses in building services engineering *
Combination study of operation characteristics and heat transfer mechanism for pulsating heat pipe
International Nuclear Information System (INIS)
Cui, Xiaoyu; Zhu, Yue; Li, Zhihua; Shun, Shende
2014-01-01
Pulsating heat pipe (PHP) is becoming a promising heat transfer device for the application like electronics cooling. However, due to its complicated operation mechanism, the heat transfer properties of the PHP still have not been fully understood. This study experimentally investigated on a closed-loop PHP charged with four types of working fluids, deionized water, methanol, ethanol and acetone. Combined with the visualization experimental results from the open literature, the operation characteristics and the corresponding heat transfer mechanisms for different heat inputs (5 W up to 100 W) and different filling ratios (20% up to 95%) have been presented and elaborated. The results show that heat-transfer mechanism changed with the transition of operation patterns; before valid oscillation started, the thermal resistance was not like that described in the open literature where it decreased almost linearly, but would rather slowdown descending or even change into rise first before further decreasing (i.e. an inflection point existed); when the heat input further increased to certain level, e.g. 65 W or above, there presented a limit of heat-transfer performance which was independent of the types of working fluids and the filling ratios, but may be related to the structure, the material, the size and the inclination of the PHP. - Highlights: •The thermal mechanisms altered accordingly with the operation features in the PHP. •Unlike conventional heat pipes, continuous temperature soaring would not happen in the PHP. •Before the oscillation start-up, there existed a heat-transfer limit for the relatively stagnated flow in the PHP. •A limit of thermal performance existed in the PHP at relatively high heat inputs
Heat transfer with freezing and thawing
Lunardini, VJ
1991-01-01
This volume provides a comprehensive overview on the vast amount of literature on solidification heat transfer. Chapter one develops important basic equations and discusses the validity of considering only conductive heat transfer, while ignoring convection, in the large class of materials which make up the porous media. Chapters 2 to 4 deal with problems that can be expressed in plane (Cartesian) coordinates. These problems are further divided into boundary conditions of temperature, prescribed heat flux, and surface convection. Chapter 5 examines some plane geometries involving three-dime
Unravelling convective heat transfer in the Rotated Arc Mixer
Speetjens, M.F.M.; Baskan, O.; Metcalfe, G.; Clercx, H.J.H.
2014-01-01
Thermal homogenization is essentially a transient problem and convective heat transfer by (chaotic) advection is known to accelerate this process. Convective heat transfer traditionally is examined in terms of heat-transfer coefficients at domain walls and characterised by Nusselt relations.
International Nuclear Information System (INIS)
Pavlidis, D.; Lathouwers, D.
2011-01-01
A computational fluid dynamics model with anisotropic mesh adaptivity is used to investigate coolant flow and heat transfer in pebble bed reactors. A novel method for implicitly incorporating solid boundaries based on multi-fluid flow modelling is adopted. The resulting model is able to resolve and simulate flow and heat transfer in randomly packed beds, regardless of the actual geometry, starting off with arbitrarily coarse meshes. The model is initially evaluated using an orderly stacked square channel of channel-height-to-particle diameter ratio of unity for a range of Reynolds numbers. The model is then applied to the face-centred cubical geometry. Coolant flow and heat transfer patterns are investigated. (author)
Heat transfer coefficient in pool boiling for an electrically heated tube at various inclinations
International Nuclear Information System (INIS)
Fahmy, A.S.A.; Mariy, A.H.; Mahmoud, S.I.; Ibrahim, N.A.
1987-01-01
An experimental investigation is carried out study the behaviour of heat transfer in pool boiling from a vertical and inclined heated tube at atmospheric pressure. An imperial correlation joining the different parameters affecting the heat transfer coefficient in pool boiling for an electrically heated tube at various inclinations is developed. Two test sections (zircaloy-4 and stainless steel) of 16 n n outer diameter and 120 nm length are investigated. Four levels of heat flux are used for heating the two lest sections (e.g. 381, 518, 721 and 929 k.watt/n 2). The maximum surface temperature achieved is 146.5 degree c for both materials, and the maximum bulk temperature is 95 degree C. It is found that the average heat transfer coefficient is inversely proportional with heated length l, where it reaches a constant value in the horizontal position. The heat transfer coefficient curves at various inclinations with respect to the heated tube length pass around one point which is defined as limit length
46 CFR 153.430 - Heat transfer systems; general.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...
CFD study of the heat transfer between a dilute gas particle suspension flow and an obstruction
International Nuclear Information System (INIS)
Nguyen, A.V.; Fletcher, C.A.J.
1999-01-01
The effect on heat transfer of solid particles suspended in a gas flow is of considerable importance in a number of industrial applications, ranging from coal combustion equipment and heat exchangers to catalytic reaction or cooling of nuclear reactors using gas graphite dust suspensions. Here, the heat transfer process between a dilute gas-particle suspension flow and an obstruction has been numerically investigated employing a novel Eulerian formulation for dilute gas particle suspension flows, which allows interaction of the key mechanisms to be quantified for the first time. As the particle reflection occurs around the obstruction, the heat transfer process has been modeled taking into account the incident and reflected particles explicitly. In the energy equations these particle families are treated separately. Only the effect on the gas convective heat transfer is expected to be of primary significance and investigated. The numerical computation is performed using the commercial computational fluid dynamics code, FLUENT, with the User Defined Subroutines. The authors study the heat transfer process between a dilute gas particle flow and an obstruction with simple geometries such as a 45 degree ramp and a cylindrical tube. The theoretical results for the latter case are compared with the available experimental data. The numerical simulation shows that both the particle size and the particle concentration (in the thermal boundary layer) affect the heat transfer process. Since both the particle incidence and reflection depend on the particle size and strongly influence the particle concentration distribution, they have to be physically correctly treated in the modeling of the heat transfer, as is demonstrated in the novel formulation. There is an optimum particle size for a maximum enhancement of the heat transfer. The particle concentration increases the efficiency of the heat transfer process expressed in terms of the local Nusselt numbers
Visualisation of heat transfer in 3D unsteady flows
Speetjens, M.F.M.; Steenhoven, van A.A.
2010-01-01
Heat transfer in fluid flows traditionally is examined in terms oftemperature field and heat-transfer coefficients at non-adiabaticwalls. However, heat transfer may alternatively be considered asthe transport of thermal energy by the total convective-conductiveheat flux in a way analogous to the
Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe
International Nuclear Information System (INIS)
Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol
2015-01-01
Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B 4 C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B 4 C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer coefficient of
International Nuclear Information System (INIS)
Tzanos, C.P.; Dionne, B.
2011-01-01
To support the analyses related to the conversion of the BR2 core from highly-enriched (HEU) to low-enriched (LEU) fuel, the thermal-hydraulics codes PLTEMP and RELAP-3D are used to evaluate the safety margins during steady-state operation (PLTEMP), as well as after a loss-of-flow, loss-of-pressure, or a loss of coolant event (RELAP). In the 1-D PLTEMP and RELAP simulations, conduction in the azimuthal and axial directions is not accounted. The very good thermal conductivity of the cladding and the fuel meat and significant temperature gradients in the lateral directions (axial and azimuthal directions) could lead to a heat flux distribution that is significantly different than the power distribution. To evaluate the significance of the lateral heat conduction, 3-D computational fluid dynamics (CFD) simulations, using the CFD code STAR-CD, were performed. Safety margin calculations are typically performed for a hot stripe, i.e., an azimuthal region of the fuel plates/coolant channel containing the power peak. In a RELAP model, for example, a channel between two plates could be divided into a number of RELAP channels (stripes) in the azimuthal direction. In a PLTEMP model, the effect of azimuthal power peaking could be taken into account by using engineering factors. However, if the thermal mixing in the azimuthal direction of a coolant channel is significant, a stripping approach could be overly conservative by not taking into account this mixing. STAR-CD simulations were also performed to study the thermal mixing in the coolant. Section II of this document presents the results of the analyses of the lateral heat conduction and azimuthal thermal mixing in a coolant channel. Finally, PLTEMP and RELAP simulations rely on the use of correlations to determine heat transfer coefficients. Previous analyses showed that the Dittus-Boelter correlation gives significantly more conservative (lower) predictions than the correlations of Sieder-Tate and Petukhov. STAR-CD 3-D
RELAP4/MOD6 reflood heat transfer and data comparison
International Nuclear Information System (INIS)
Nelson, R.A.; Sullivan, L.H.
1981-01-01
This discussion of RELAP4/MOD6 will be limited to the reflood heat transfer models and evaluation of these models by comparison of calculation with results from three reflood experiments. The discussion of the model includes the heat transfer surface concept, the heat transfer correlations, the superheat model and the entrainment model which presents both the two-phase heat transfer and hydraulic models. In the discussion of the reflood heat transfer, the mathematical concept of a multidimensional surface is used to represent the heat flux of a given heat transfer correlation or correlations dependent upon such variables as quality, wall superheat and flux. This concept has been used to investigate the characteristics of the correlations, which are discusssed in detail, and the way they are applied to the two-phase mixture. Of primary importance in the reflood core heat transfer is the consideration of thermal nonequilibrium between the phases and the liquid entrainment, and its distribution up the core. Results obtained to date show the heat transfer and hydraulics to be closely coupled. Comparison of the RELAP4/MOD6 reflood calculations with the data from the forced feed FLECHT and gravity feed FLECHT-SET and Semiscale reflood experiments indicates that the heat transfer and hydraulic models are operational and yield good results
Radiative heat transfer in the extreme near field.
Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod
2015-12-17
Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.
Directory of Open Access Journals (Sweden)
Hong Xiao
2016-12-01
Full Text Available Knowledge concerning the complicated changes of mass and heat transfer is desired to improve the performance and durability of unitized regenerative fuel cells (URFCs. In this study, a transient, non-isothermal, single-phase, and multi-physics mathematical model for a URFC based on the proton exchange membrane is generated to investigate transient responses in the process of operation mode switching from fuel cell (FC to electrolysis cell (EC. Various heat generation mechanisms, including Joule heat, reaction heat, and the heat attributed to activation polarizations, have been considered in the transient model coupled with electrochemical reaction and mass transfer in porous electrodes. The polarization curves of the steady-state models are validated by experimental data in the literatures. Numerical results reveal that current density, gas mass fractions, and temperature suddenly change with the sudden change of operating voltage in the mode switching process. The response time of temperature is longer than that of current density and gas mass fractions. In both FC and EC modes, the cell temperature and gradient of gas mass fraction in the oxygen side are larger than that in the hydrogen side. The temperature difference of the entire cell is less than 1.5 K. The highest temperature appears at oxygen-side catalyst layer under the FC mode and at membrane under a more stable EC mode. The cell is exothermic all the time. These dynamic responses and phenomena have important implications for heat analysis and provide proven guidelines for the improvement of URFCs mode switching.
Anghaie, S.; Chen, G.
1996-01-01
A computational model based on the axisymmetric, thin-layer Navier-Stokes equations is developed to predict the convective, radiation and conductive heat transfer in high temperature space nuclear reactors. An implicit-explicit, finite volume, MacCormack method in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the thermal and fluid governing equations. Simulation of coolant and propellant flows in these reactors involves the subsonic and supersonic flows of hydrogen, helium and uranium tetrafluoride under variable boundary conditions. An enthalpy-rebalancing scheme is developed and implemented to enhance and accelerate the rate of convergence when a wall heat flux boundary condition is used. The model also incorporated the Baldwin and Lomax two-layer algebraic turbulence scheme for the calculation of the turbulent kinetic energy and eddy diffusivity of energy. The Rosseland diffusion approximation is used to simulate the radiative energy transfer in the optically thick environment of gas core reactors. The computational model is benchmarked with experimental data on flow separation angle and drag force acting on a suspended sphere in a cylindrical tube. The heat transfer is validated by comparing the computed results with the standard heat transfer correlations predictions. The model is used to simulate flow and heat transfer under a variety of design conditions. The effect of internal heat generation on the heat transfer in the gas core reactors is examined for a variety of power densities, 100 W/cc, 500 W/cc and 1000 W/cc. The maximum temperature, corresponding with the heat generation rates, are 2150 K, 2750 K and 3550 K, respectively. This analysis shows that the maximum temperature is strongly dependent on the value of heat generation rate. It also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperature at about 3500 K, which is typical design temperature required to achieve high
Nucleate boiling heat transfer
Energy Technology Data Exchange (ETDEWEB)
Saiz Jabardo, J.M. [Universidade da Coruna (Spain). Escola Politecnica Superior], e-mail: mjabardo@cdf.udc.es
2009-07-01
Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 {mu}m and 10.5 {mu}m ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 {mu}m). (author)
Nucleate boiling heat transfer
International Nuclear Information System (INIS)
Saiz Jabardo, J.M.
2009-01-01
Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 μm and 10.5 μm ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 μm). (author)
Influence of radiation heat transfer during a severe accident
Energy Technology Data Exchange (ETDEWEB)
Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Polo L, M. A., E-mail: ricardo-cazares@hotmail.com [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)
2016-09-15
The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)
Influence of radiation heat transfer during a severe accident
International Nuclear Information System (INIS)
Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A.; Polo L, M. A.
2016-09-01
The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)
Post-dryout heat transfer analysis model with droplet Lagrangian simulation
International Nuclear Information System (INIS)
Keizo Matsuura; Isao Kataoka; Kaichiro Mishima
2005-01-01
Post-dryout heat transfer analysis was carried out considering droplet behavior by using the Lagrangian simulation method. Post-dryout heat transfer is an important heat transfer mechanism in many industrial appliances. Especially in recent Japanese BWR licensing, the standard for assessing the integrity of fuel that has experienced boiling transition is being examined. Although post-dryout heat transfer analysis is important when predicting wall temperature, it is difficult to accurately predict the heat transfer coefficient in the post-dryout regime because of the many heat transfer paths and non-equilibrium status between droplet and vapor. Recently, an analysis model that deals with many heat transfer paths including droplet direct contact heat transfer was developed and its results showed good agreement with experimental results. The model also showed that heat transfer by droplet could not be neglected in the low mass flux condition. However, the model deals with droplet deposition behavior by experimental droplet deposition correlation, so it cannot estimate the effect of droplet flow on turbulent flow field and heat transfer. Therefore, in this study we deal with many droplets separately by using the Lagrangian simulation method and hence estimate the effect of droplet flow on the turbulent flow field. We analyzed post-dryout experimental results and found that they correlated well with the analysis results. (authors)
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
Heat transfer studies in pool fire environment
International Nuclear Information System (INIS)
Nitsche, F.
1993-01-01
A Type B package has to withstand severe thermal accident conditions. To calculate the temperature behaviour of such a package in a real fire environment, heat transfer parameters simulating the effect of the fire are needed. For studying such heat transfer parameters, a systematic programme of experimental and theoretical investigations was performed which was part of the IAEA Coordinated Research Programme (Nitsche and Weib 1990). The studies were done by means of small, unfinned and finned, steel model containers of simplified design in hydrocarbon fuel open fire tests. By using various methods, flame and container temperatures were measured and also container surface absorptivity before and after the test to study the effect of sooting and surface painting on heat transfer. Based on all these experimental data and comparative calculations, simplified, effective heat transfer parameters could be derived, simulating the effect of the real fire on the model containers. (J.P.N.)
Local heat transfer where heated rods touch in axially flowing water
International Nuclear Information System (INIS)
Kast, S.J.
1983-05-01
An anlaytic model is developed to predict the azimuthal width of a stablesteam blanket region near the line of contact between two heated rods cooled by axially flowing water at high pressure. The model is intended to aid analysis of reduced surface heat transfer capability for the abnormal configuration of nuclear fuel rods bowed into contact in the core of a pressurized water nuclear reactor. The analytic model predicts the azimuthal width of the steam blanket zone having reduced surface heat transfer as a function of rod average heat flux, subchannel coolant conditions and rod dimensions. The analytic model is developed from a heat balance between the heat generated in the wall of a heated empty tube and the heat transported away by transverse mixing and axial convection in the coolant subchannel. The model is developed for seveal geometries including heated rods in line contact, a heated rod touching a short insulating plane and a heated rod touching the inside of a metal guide tube
Heat transfer between immiscible liquids enhanced by gas bubbling
International Nuclear Information System (INIS)
Greene, G.A.; Schwarz, C.E.; Klages, J.; Klein, J.
1982-08-01
The phenomena of core-concrete interactions impact upon containment integrity of light water reactors (LWR) following postulated complete meltdown of the core by containment pressurization, production of combustible gases, and basemat penetration. Experiments have been performed with non-reactor materials to investigate one aspect of this problem, heat transfer between overlying immiscible liquids whose interface is disturbed by a transverse non-condensable gas flux emanating from below. Hydrodynamic studies have been performed to test a criterion for onset of entrainment due to bubbling through the interface and subsequent heat transfer studies were performed to assess the effect of bubbling on interfacial heat transfer rates, both with and without bubble induced entrainment. Non-entraining interfacial heat transfer data with mercury-water/oil fluid pairs were observed to be bounded from below within a factor of two to three by the Szekeley surface renewal heat transfer model. However heat transfer data for fluid pairs which are found to entrain (water-oil), believed to be characteristic of molten reactor core-concrete conditions, were measured to be up to two orders of magnitude greater than surface renewal predictions and are calculated by a simple entrainment heat transfer model
Industrial furnace with improved heat transfer
Energy Technology Data Exchange (ETDEWEB)
Hoetzl, M.; Lingle, T.M.
1993-07-20
A method is described for effecting improved heat transfer with in an industrial furnace having a cylindrical furnace section, a door at one end of the furnace section, an end plate at the opposite end of the section a circular fan plate concentrically positioned within the furnace section to define a cylindrical fan chamber between the plate and the end section with a fan there between and a heat treat chamber between the plate and the door, the fan plate defining a non-orificing annular space extending between the interior of the cylindrical furnace section and the outer edge of the plate, the plate having a centrally located under-pressure opening extending there through and a plurality of circumferentially spaced tubular heating elements extending through the annular space into the heat treating chamber, the method comprising the steps of: (a) heating the heating elements to a temperature which is hotter that the temperature of the work within the heat treating chamber; (b) rotating the fan at a speed sufficient to form a portion of the furnace atmosphere as a wind mass swirling about the fan chamber; (c) propagating the wind mass through the annular space into the heat treating chamber as a swirling wind mass in the form of an annulus, the wind mass impinging the heating elements to establish heat transfer contact therewith while the mass retains its annulus shape until contacting the door and without any significant movement of the wind mass into the center of the heat treating chamber; (d) drawing the wind mass through the under-pressure zone after the wind mass comes into heat transfer contact with the work in the heat treating chamber; and (e) thereafter heating the work by radiation from the beating elements at high furnace temperatures in excess of about 1,600 F.
Heat transfer assembly for a fluorescent lamp and fixture
Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.
1992-12-29
In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.
An analytical model for annular flow boiling heat transfer in microchannel heat sinks
International Nuclear Information System (INIS)
Megahed, A.; Hassan, I.
2009-01-01
An analytical model has been developed to predict flow boiling heat transfer coefficient in microchannel heat sinks. The new analytical model is proposed to predict the two-phase heat transfer coefficient during annular flow regime based on the separated model. Opposing to the majority of annular flow heat transfer models, the model is based on fundamental conservation principles. The model considers the characteristics of microchannel heat sink during annular flow and eliminates using any empirical closure relations. Comparison with limited experimental data was found to validate the usefulness of this analytical model. The model predicts the experimental data with a mean absolute error 8%. (author)
Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns.
Kumar C S, Sujith; Chang, Yao Wen; Chen, Ping-Hei
2017-04-10
In this study, pool-boiling heat-transfer experiments were performed to investigate the effect of the number of interlines and the orientation of the hybrid wettable pattern. Hybrid wettable patterns were produced by coating superhydrophilic SiO2 on a masked, hydrophobic, cylindrical copper surface. Using de-ionized (DI) water as the working fluid, pool-boiling heat-transfer studies were conducted on the different surface-treated copper cylinders of a 25-mm diameter and a 40-mm length. The experimental results showed that the number of interlines and the orientation of the hybrid wettable pattern influenced the wall superheat and the HTC. By increasing the number of interlines, the HTC was enhanced when compared to the plain surface. Images obtained from the charge-coupled device (CCD) camera indicated that more bubbles formed on the interlines as compared to other parts. The hybrid wettable pattern with the lowermost section being hydrophobic gave the best heat-transfer coefficient (HTC). The experimental results indicated that the bubble dynamics of the surface is an important factor that determines the nucleate boiling.
Transient heat transfer to laminar flow from a flat plate with heat capacity
International Nuclear Information System (INIS)
Hanawa, Juichi
1975-01-01
As the most basic problem in transient heat transfer, a plate with heat capacity was studied, which is placed in uniform laminar flow in parallel with it, is initially at the same temperature as that of the fluid, and then abruptly is given a specific heating value. The equation of transient heat transfer in this case was solved by numerical calculation. The following matters were revealed. (1) The equation was able to be solved by the application of Laplace transformation and numerical inverse transformation. (2) Wall temperature when the heat capacity of a plate was zero initially agreed well with heat conduction solution. With increase of the heat capacity, the delay in wall temperature rise was increased. (3) Heat transfer rate in case of the heat capacity of zero initially agreed well with the heat-conduction solution. With increase of the heat capacity, the Nusselt number increased. (4) Temperature distribution in case of the heat capacity of zero initially agreed well with the heat-conduction solution. (Mori, K.)
Heat Transfer in Directional Water Transport Fabrics
Directory of Open Access Journals (Sweden)
Chao Zeng
2016-10-01
Full Text Available Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications.
A Review of Wettability Effect on Boiling Heat Transfer Enhancement
International Nuclear Information System (INIS)
Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong
2012-01-01
Critical heat flux (CHF) and nucleate boiling heat transfer coefficient (NBHTC) are the key parameters characterizing pool boiling heat transfer. These variables are complicatedly related to thermal-hydraulic parameters of surface wettability, nucleation site density, bubble departure diameter and frequency, to mention a few. In essence, wettability effect on pool boiling heat transfer has been a major fuel to enhance the CHF. Often, however, the improved wettability effect hinders the nucleate boiling. Thus a comprehensive review of such wettability effect may enlighten a further study in this boiling heat transfer area. Phan et al. described surface wettability effects on boiling heat transfer
Non-newtonian heat transfer on a plate heat exchanger with generalized configurations
Energy Technology Data Exchange (ETDEWEB)
Carezzato, A.; Tadini, C.C.; Gut, J.A.W. [Department of Chemical Engineering, Escola Politecnica, University of Sao Paulo, Sao Paulo (Brazil); Alcantara, M.R. [Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo (Brazil); Telis-Romero, J. [Department of Food Engineering and Technology, Universidade Estadual Paulista, Sao Jose do Rio Preto (Brazil)
2007-01-15
For the configuration optimization of plate heat exchangers (PHEs), the mathematical models for heat transfer and pressure drop must be valid for a wide range of operational conditions of all configurations of the exchanger or the design results may be compromised. In this investigation, the thermal model of a PHE is adjusted to fit experimental data obtained from non-Newtonian heat transfer for eight different configurations, using carboxymethylcellulose solutions (CMC) as test fluid. Although it is possible to successfully adjust the model parameters, Newtonian and non-Newtonian heat transfer cannot be represented by a single generalized correlation. In addition, the specific heat, thermal conductivity and power-law rheological parameters of CMC solutions were correlated with temperature, over a range compatible with a continuous pasteurization process. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
Non intrusive measurement of the convective heat transfer coefficient
Energy Technology Data Exchange (ETDEWEB)
Rebay, M.; Mebarki, G.; Padet, J. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Arfaoui, A. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM; Maad, B.R. [Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM
2010-07-01
The efficiency of cooling methods in thermal systems such as radiators and heat exchangers must be improved in order to enhance performance. The evaluation of the heat transfer coefficients between a solid and a fluid is necessary for the control and the dimensioning of thermal systems. In this study, the pulsed photothermal method was used to measure the convective heat transfer coefficient on a solid-fluid interface, notably between an air flow and a heated slab mounted on a PVC flat plate. This configuration simulated the electronic air-cooling inside enclosures and racks. The influence of the deflector's inclination angle on the enhancement of heat transfer was investigated using 2 newly developed identification models. The first model was based on a constant heat transfer coefficient during the pulsed experiment, while the second, improved model was based on a variable heat transfer coefficient. The heat transfer coefficient was deduced from the evolution of the transient temperature induced by a sudden deposit of a luminous energy on the front face of the slab. Temperature evolutions were derived by infrared thermography, a camera for cartography and a detector for precise measurement in specific locations. The results show the improvement of measurement accuracies when using a model that considers the temporal evolution of the convective heat transfer coefficient. The deflection of air flow on the upper surface of the heated slab demonstrated better cooling of the slab by the deflection of air flow. 11 refs., 1 tab., 8 figs.
Numerical modeling of heat transfer and pasteurizing value during thermal processing of intact egg.
Abbasnezhad, Behzad; Hamdami, Nasser; Monteau, Jean-Yves; Vatankhah, Hamed
2016-01-01
Thermal Pasteurization of Eggs, as a widely used nutritive food, has been simulated. A three-dimensional numerical model, computational fluid dynamics codes of heat transfer equations using heat natural convection, and conduction mechanisms, based on finite element method, was developed to study the effect of air cell size and eggshell thickness. The model, confirmed by comparing experimental and numerical results, was able to predict the temperature profiles, the slowest heating zone, and the required heating time during pasteurization of intact eggs. The results showed that the air cell acted as a heat insulator. Increasing the air cell volume resulted in decreasing of the heat transfer rate, and the increasing the required time of pasteurization (up to 14%). The findings show that the effect on thermal pasteurization of the eggshell thickness was not considerable in comparison to the air cell volume.
Heat Transfer in Glass, Aluminum, and Plastic Beverage Bottles
Clark, William M.; Shevlin, Ryan C.; Soffen, Tanya S.
2010-01-01
This paper addresses a controversy regarding the effect of bottle material on the thermal performance of beverage bottles. Experiments and calculations that verify or refute advertising claims and represent an interesting way to teach heat transfer fundamentals are described. Heat transfer coefficients and the resistance to heat transfer offered…
Heat transfer in a counterflow heat exchanger at low flow rates
International Nuclear Information System (INIS)
Hashimoto, A.; Hattori, N.; Naruke, K.
1995-01-01
A study was made of heat transfer in a double-tube heat exchanger at low flow rates of water. The temperatures of fluid and tube walls in the axial direction of tube were measured precisely at flow rate ratios of annulus to inner tube (or flow rate ratios of inner tube to annulus W i /W a , Re i approx. = 80 - 4000), W a /W i =0.1 - 1.1. In parallel with experiment, numerical calculation for forced-convection heat transfer was also carried out for laminar flows in the same tube configuration as experiment. Average over-all coefficients of heat transfer, obtained by experiments, indicate the same characteristics as numerical calculation in the examined range of flow rate ratio. Their experimental values, however, are somewhat larger than those of calculation at small values of flow rate ratio. (author)
Lunar ash flow with heat transfer.
Pai, S. I.; Hsieh, T.; O'Keefe, J. A.
1972-01-01
The most important heat-transfer process in the ash flow under consideration is heat convection. Besides the four important nondimensional parameters of isothermal ash flow (Pai et al., 1972), we have three additional important nondimensional parameters: the ratio of the specific heat of the gas, the ratio of the specific heat of the solid particles to that of gas, and the Prandtl number. We reexamine the one dimensional steady ash flow discussed by Pai et al. (1972) by including the effects of heat transfer. Numerical results for the pressure, temperature, density of the gas, velocities of gas and solid particles, and volume fraction of solid particles as function of altitude for various values of the Jeffreys number, initial velocity ratio, and two different gas species (steam and hydrogen) are presented.
Investigation of heat transfer inside a PCM-air heat exchanger: a numerical parametric study
Herbinger, Florent; Bhouri, Maha; Groulx, Dominic
2017-07-01
In this paper, the use of PCMs for thermal storage of energy in HVAC applications was investigated by studying numerically the thermal performance of a PCM-air heat exchanger. The PCM used in this study was dodecanoic acid. A symmetric 3D model, incorporating conductive and convective heat transfer (air only) as well as laminar flow, was created in COMSOL Multiphysics 5.0. Simulations examined the dependence of the heat transfer rate on the temperature and velocity of the incoming air as well as the size of the channels in the heat exchanger. Results indicated that small channels size lead to a higher heat transfer rates. A similar trend was also obtained for high incoming air temperature, whereas the heat transfer rate was less sensitive to the incoming air velocity.
International Nuclear Information System (INIS)
Yoo, Seong Yeon; Han, Kyu Hyun; Kim, Jin Hyuck
2010-01-01
In closed wet cooling towers, the heat transfer between the air and external tube surfaces can be composed of the sensible heat transfer and the latent heat transfer. The heat transfer coefficient can be obtained from the equation for external heat transfer of tube banks. According to experimental data, the mass transfer coefficient was affected by the air velocity and spray water flow rate. This study provides the correlation equation for mass transfer coefficient based on the analogy of the heat and mass transfer and the experimental data. The results from this correlation equation showed fairly good agreement with experimental data. The cooling capacity and thermal efficiency of the closed wet cooling tower were calculated from the correlation equation to analyze the performance of heat exchanger for the tower
Heat transfer between a fluidized bed and an immersed horizontal tube
International Nuclear Information System (INIS)
Beasley, D.E.; Figliola, R.S.
1986-01-01
Reliable predictions will require a better understanding of the heat transfer mechanisms and bed hydrodynamics in the neighborhood of the submerged surface. In this investigation measurements of the instantaneous heat transfer between a submerged surface and a gas fluidized bed operating in the bubbling regime are presented. The experimental results are compared to existing predictive models for the particle convective and the overall heat transfer coefficients. For the range of particle size and flow velocity studied, the particle convective component of heat transfer dominates the overall heat transfer between the bed and the submerged surface. Experimental studies into particle size distribution effects on heat transfer suggest that mixtures augment the bed to surface heat transfer. Documentation of bed particle size distribution is necessary if heat transfer data are to be compared or predicted
International Nuclear Information System (INIS)
Liu, Qiusheng; Fukuda, Katsuya
2003-01-01
The transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured under wide experimental conditions. The platinum cylinder with a diameter of 1.0 mm was used as test heater and heated by electric current with an exponentially increasing heat input of Q 0 exp(t/τ). The gas flow velocities ranged from 5 to 35 m/s, the gas temperatures ranged from 25 to 80degC, and the periods of heat generation rate, τ, ranged from 40 ms to 20 s. The surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The transient heat transfer shows less dependence on the gas flowing velocity when the period becomes very shorter. The gas temperature in this study shows little influence on the heat transfer coefficient. Semi-empirical correlation for quasi-steady-state heat transfer was obtained based on the experimental data. The ratios of transient Nusselt number Nu tr to quasi-steady-state Nusselt number Nu st at various periods, flow velocities, and gas temperatures were obtained. The heat transfer shifts to the quasi-steady-state heat transfer for longer periods and shifts to the transient heat transfer for shorter periods at the same flow velocity. It also approaches the quasi-steady-state one for higher flow velocity at the same period. Empirical correlation for transient heat transfer was also obtained based on the experimental data. (author)
Experimental study on convective heat transfer with thin porous bodies
International Nuclear Information System (INIS)
Nishi, Yoshihisa; Kinoshita, Izumi; Furuya, Masahiro
2001-01-01
Experimental studies are made on the convective heat transfer of three types of thin porous bodies. Heat transfer performances, flow patterns and temperature profiles near the porous bodies are compared with each other. The heat transfer performance of porous bodies with the largest pore diameter is large. It became clear that the high heat transfer performance depends on an excellent heat transportation ability inside the pore and near the surface of the porous bodies. (author)
Energy Technology Data Exchange (ETDEWEB)
Dinh, T.N.; Bui, V.A.; Nourgaliev, R.R. [Royal Institute of Technology, Stockholm (Sweden)] [and others
1995-09-01
The objective of the paper is to study heat and mass transfer processes related to core melt discharge from a reactor vessel is a severe light water reactor accident. The phenomenology of the issue includes (1) melt convection in and heat transfer from the melt pool in contact with the vessel lower head wall; (2) fluid dynamics and heat transfer of the melt flow in the growing discharge hole; and (3) multi-dimensional heat conduction in the ablating lower head wall. A program of model development, validation and application is underway (i) to analyse the dominant physical mechanisms determining characteristics of the lower head ablation process; (ii) to develop and validate efficient analytic/computational methods for estimating heat and mass transfer under phase-change conditions in irregular moving-boundary domains; and (iii) to investigate numerically the melt discharge phenomena in a reactor-scale situation, and, in particular, the sensitivity of the melt discharge transient to structural differences and various in-vessel melt progression scenarios. The paper presents recent results of the analysis and model development work supporting the simulant melt-structure interaction experiments.
Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators
Energy Technology Data Exchange (ETDEWEB)
Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering
1996-12-31
Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)
Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators
Energy Technology Data Exchange (ETDEWEB)
Yanagihara, J I; Rodriques, R Jr [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering
1997-12-31
Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)
Nucleate boiling heat transfer on horizontal tubes in bundles
International Nuclear Information System (INIS)
Fujital, Y.; Ohta, H.; Hidaka, S.; Nishikawa, K.
1986-01-01
In order to clarify the heat transfer mechanisms of the flooded type horizontal tube bundle evaporator, heat transfer characteristics of tube bundles of experimental scale which consist both of smooth and enhanced tubes were investigated in detail. The experiments of saturated nucleate boiling were performed by using Freon 113 under pressures 0.1 to 1 MPa, and the effects of various parameters, for example, bundle arrangement, heat flux, pressure on the characteristics of an individual tube are clarified. Experimental data is reproduced well by a proposed heat transfer model in which convective heat transfer coefficients due to rising bubbles are estimated as a function of their volumetric flow rate
Computational study of the heat transfer of an avian egg in a tray.
Eren Ozcan, S; Andriessens, S; Berckmans, D
2010-04-01
The development of an embryo in an avian egg depends largely on its temperature. The embryo temperature is affected by its environment and the heat produced by the egg. In this paper, eggshell temperature and the heat transfer characteristics from one egg in a tray toward its environment are studied by means of computational fluid dynamics (CFD). Computational fluid dynamics simulations have the advantage of providing extensive 3-dimensional information on velocity and eggshell temperature distribution around an egg that otherwise is not possible to obtain by experiments. However, CFD results need to be validated against experimental data. The objectives were (1) to find out whether CFD can successfully simulate eggshell temperature from one egg in a tray by comparing to previously conducted experiments, (2) to visualize air flow and air temperature distribution around the egg in a detailed way, and (3) to perform sensitivity analysis on several variables affecting heat transfer. To this end, a CFD model was validated using 2 sets of temperature measurements yielding an effective model. From these simulations, it can be concluded that CFD can effectively be used to analyze heat transfer characteristics and eggshell temperature distribution around an egg. In addition, air flow and temperature distribution around the egg are visualized. It has been observed that temperature differences up to 2.6 degrees C are possible at high heat production (285 mW) and horizontal low flow rates (0.5 m/s). Sensitivity analysis indicates that average eggshell temperature is mainly affected by the inlet air velocity and temperature, flow direction, and the metabolic heat of the embryo and less by the thermal conductivity and emissivity of the egg and thermal emissivity of the tray.
Directory of Open Access Journals (Sweden)
Jan Skočilas
2015-08-01
Full Text Available This paper deals with a computational fluid dynamics (CFD simulation of the heat transfer process during turbulent hot water flow between two chevron plates in a plate heat exchanger. A three-dimensional model with the simplified geometry of two cross-corrugated channels provided by chevron plates, taking into account the inlet and outlet ports, has been designed for the numerical study. The numerical model was based on the shear-stress transport (SST k-! model. The basic characteristics of the heat exchanger, as values of heat transfer coefficient and pressure drop, have been investigated. A comparative analysis of analytical calculation results, based on experimental data obtained from literature, and of the results obtained by numerical simulation, has been carried out. The coefficients and the exponents in the design equations for the considered plates have been arranged by using simulation results. The influence on the main flow parameters of the corrugation inclination angle relative to the flow direction has been taken into account. An analysis of the temperature distribution across the plates has been carried out, and it has shown the presence of zones with higher heat losses and low fluid flow intensity.
Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor
Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.
2013-01-01
This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.
DEFF Research Database (Denmark)
Cui, Xiaoti; Kær, Søren Knudsen
2018-01-01
Monolithic catalysts have received increasing attention for application in the small-scale steam methane reforming process. The radial heat transfer behaviors of monolith reformers were analyzed by two-dimensional computational fluid dynamic (CFD) modeling. A parameter study was conducted...... by a large number of simulations focusing on the thermal conductivity of the monolith substrate, washcoat layer, wall gap, radiation heat transfer and the geometric parameters (cell density, porosity and diameter of monolith). The effective radial thermal conductivity of the monolith structure, kr......,eff, showed good agreement with predictions made by the pseudo-continuous symmetric model. This influence of the radiation heat transfer is low for highly conductive monoliths. A simplified model has been developed to evaluate the importance of radiation for monolithic reformers under different conditions...
Forced convection heat transfer correlation for finned plates in a duct
International Nuclear Information System (INIS)
Chae, Myeong-Seon; Moon, Je-Young; Chung, Bum-Jin
2014-01-01
Forced convection heat transfer experiments were conducted for plate-fin in a duct using various fin spacing, fin height, duct width, Reynolds number for Prandtl numbers 2,014. Based upon analogy concept, mass transfer rate were measured instead of heat transfer rates. The heat transfer rates were enhanced with the increase of fin height and decrease of fin spacing as they increase the heat transfer area. Meanwhile, heat transfer rates were impaired with the increase of the duct width as the bypass flows increased to tip clearance region. Forced convection heat transfer correlations were developed for laminar and turbulent flow conditions and for narrow and wide ducts. The work draws attention to the tip clearance on the heat transfer of the finned plate in a duct. (author)
Effect of different heat transfer models on HCCI engine simulation
International Nuclear Information System (INIS)
Neshat, Elaheh; Saray, Rahim Khoshbakhti
2014-01-01
Highlights: • A new multi zone model is developed for HCCI combustion modeling. • New heat transfer model is used for prediction of heat transfer in HCCI engines. • Model can predict engine combustion, performance and emission characteristics well. • Appropriate mass and heat transfer models cause to accurate prediction of CO, UHC and NOx. - Abstract: Heat transfer from engine walls has an important role on engine combustion, performance and emission characteristics. The main focus of this study is offering a new relation for calculation of convective heat transfer from in-cylinder charge to combustion chamber walls of HCCI engines and providing the ability of new model in comparison with the previous models. Therefore, a multi zone model is developed for homogeneous charge compression ignition engine simulation. Model consists of four different types of zones including core zone, boundary layer zone, outer zones, which are between core and boundary layer, and crevice zone. Conductive heat transfer and mass transfer are considered between neighboring zones. For accurate calculation of initial conditions at inlet valve closing, multi zone model is coupled with a single zone model, which simulates gas exchange process. Various correlations are used as convective heat transfer correlations. Woschni, modified Woschni, Hohenberg and Annand correlations are used as convective heat transfer models. The new convection model, developed by authors, is used, too. Comparative analyses are done to recognize the accurate correlation for prediction of engine combustion, performance and emission characteristics in a wide range of operating conditions. The results indicate that utilization of various heat transfer models, except for new convective heat transfer model, leads to significant differences in prediction of in-cylinder pressure and exhaust emissions. Using Woschni, Chang and new model, convective heat transfer coefficient increases near top dead center, sharply
Fluid flow and heat transfer investigation of pebble bed reactors using mesh-adaptive LES
International Nuclear Information System (INIS)
Pavlidis, Dimitrios; Lathouwers, Danny
2013-01-01
The very high temperature reactor is one of the designs currently being considered for nuclear power generation. One its variants is the pebble bed reactor in which the coolant passes through complex geometries (pores) at high Reynolds numbers. A computational fluid dynamics model with anisotropic mesh adaptivity is used to investigate coolant flow and heat transfer in such reactors. A novel method for implicitly incorporating solid boundaries based on multi-fluid flow modelling is adopted. The resulting model is able to resolve and simulate flow and heat transfer in randomly packed beds, regardless of the actual geometry, starting off with arbitrarily coarse meshes. The model is initially evaluated using an orderly stacked square channel of channel-height-to-particle diameter ratio of unity for a range of Reynolds numbers. The model is then applied to the face-centred cubical geometry. coolant flow and heat transfer patterns are investigated
Experimental study on external condensation heat transfer characteristics of bellows
International Nuclear Information System (INIS)
Feng Dianyi; Hu Jiansheng
2008-01-01
Flow model and heat transfer of condensation flow outside of bellows have been theoretically and experimentally studied. The formula for calculation of condensation heat transfer coefficient was deduced, and corrected through experiment. The calculation results are accordant with the experimental ones, and the errors is less than 10%. The effect of bellows structure parameters and pipe diameter on the enhancement heat transfer has been investigated. It is found that in the steady flow region, the average condensation heat transfer coefficient in a bellows is 3 ∼ 5 times than that in a straight tube under the same conditions, and when considering the increasing in heat transfer area, the effectiveness of enhancement heat transfer is 5 ∼ 7 times than that in a straight tube. To facilitate the engineering design and application of bellows, the formula for the calculation of the average heat transfer coefficient of a fluid in a bellows was also given. (authors)
Handbook of heat and mass transfer. Volume 2
International Nuclear Information System (INIS)
Cheremisinoff, N.P.
1986-01-01
This two-volume series, the work of more than 100 contributors, presents advanced topics in industrial heat and mass transfer operations and reactor design technology. Volume 2 emphasizes mass transfer and reactor design. Some of the contents discussed are: MASS TRANSFER PRINCIPLES - Effect of turbulence promoters on mass transfer. Mass transfer principles with homogeneous and heterogeneous reactions. Convective diffusion with reactions in a tube. Transient mass transfer onto small particles and drops. Modeling heat and mass transport in falling liquid films. Heat and mass transfer in film absorption. Multicomponent mass transfer: theory and applications. Diffusion limitation for reaction in porous catalysts. Kinetics and mechanisms of catalytic deactivation. DISTILLATION AND EXTRACTION - Generalized equations of state for process design. Mixture boiling. Estimating vapor pressure from normal boiling points of hydrocarbons. Estimating liquid and vapor molar fractions in distillation columns. Principles of multicomponent distillation. Generalized design methods for multicomponent distillation. Interfacial films in inorganic substances extraction. Liquid-liquid extraction in suspended slugs. MULTIPHASE REACTOR SYSTEMS - Reaction and mass transport in two-phase reactors. Mass transfer and kinetics in three-phase reactors. Estimating liquid film mass transfer coefficients in randomly packed columns. Designing packed tower wet scrubbers - emphasis on nitrogen oxides. Gas absorption in aerated mixers. Axial dispersion and heat transfer in gas-liquid bubble columns. Operation and design of trickle-bed reactors
Free convection flow and heat transfer in pipe exposed to cooling
Energy Technology Data Exchange (ETDEWEB)
Mme, Uduak Akpan
2010-10-15
One of the challenges with thermal insulation design in subsea equipment is to minimize the heat loss through cold spots during production shut down. Cold spots are system components where insulation is difficult to implement, resulting in an insulation discontinuity which creates by nature a thermal bridge. It is difficult to avoid cold spots or thermal bridges in items like sensors, valves, connectors and supporting structures. These areas of reduced or no insulation are referred to as cold spots. Heat is drained faster through these spots, resulting in an increased local fluid density resulting in an internal fluid flow due to gravity and accelerated cool- down. This natural convection flow is important for both heat loss and internal distribution of the temperature. This thesis is presenting both experimental work and modelling work. A series of cool down tests and Computational Fluid Dynamics (CFD) simulations of these tests are presented. These tests and simulations were carried out in order to understand the flow physics involved in heat exchange processes caused by free convection flow in pipe exposed to cooling. Inclination of the pipe relative to the direction of gravity and temperature difference between cooling water and internal pipe water are the two main parameters investigated in this study. The experimental heat removal and temperature field is discussed and further interpreted by means of computational fluid dynamics. For prediction of the evolvement of the local temperature and heat flow, selection of an appropriate turbulence model is critical. Hence, different models and wall functions are investigated. The predicted temperature profiles and heat extraction rates are compered to the experiments for the selected turbulence models. Our main conclusions, supported by our experimental and CFD results, include: (i) Heat transfer from a localized cold spot in an inclined pipe is most efficient when the pipe orientation is close to horizontal. As the
Enhancing Convective Heat Transfer over a Surrogate Photovoltaic Panel
Fouladi, Fama
This research is particularly focused on studying heat transfer enhancement of a photovoltaic (PV) panel by putting an obstacle at the panel's windward edge. The heat transfer enhancement is performed by disturbing the airflow over the surface and increasing the heat and momentum transfer. Different objects such as triangular, square, rectangular, and discrete rectangular ribs and partial grids were applied at the leading edge of a surrogate PV panel and flow and the heat transfer of the panel are investigated experimentally. This approach was selected to expand understanding of effect of these different objects on the flow and turbulence structures over a flat surface by analyzing the flow comprehensively. It is observed that, a transverse object at the plate's leading edge would cause some flow blockage in the streamwise direction, but at the same time creates some velocity in the normal and cross stream directions. In addition to that, the obstacle generates some turbulence over the surface which persists for a long downstream distance. Also, among all studied objects, discrete rectangular ribs demonstrate the highest heat transfer rate enhancement (maximum Nu/Nu0 of 1.5). However, ribs with larger gap ratios are observed to be more effective at enhancing the heat transfer augmentation at closer distances to the rib, while at larger downstream distances from the rib, discrete ribs with smaller gap ratios are more effective. Furthermore, this work attempted to recognize the most influential flow parameters on the heat transfer enhancement of the surface. It is seen that the flow structure over a surface downstream of an object (flow separation-reattachment behaviour) has a significant effect on the heat transfer enhancement trend. Also, turbulence intensities are the most dominant parameters in enhancing the heat transfer rate from the surface; however, flow velocity (mostly normal velocity) is also an important factor.
Two-Dimensional Variable Property Conjugate Heat Transfer Simulation of Nanofluids in Microchannels
International Nuclear Information System (INIS)
Ramiar, A.; Ranjbar, A.A.
2013-01-01
Laminar two-dimensional forced convective heat transfer of CuO-water and Al 2 O 3 -water nanofluids in a horizontal microchannel has been studied numerically, considering axial conduction effects in both solid and liquid regions and variable thermal conductivity and dynamic viscosity. The results show that using nanoparticles with higher thermal conductivities will intensify enhancement of heat transfer characteristics and slightly increases shear stress on the wall. The obtained results show more steep changes in Nusselt number for lower diameters and also higher values of Nusselt number by decreasing the diameter of nanoparticles. Also, by utilizing conduction number as the criterion, it was concluded from the results that adding nanoparticles will intensify the axial conduction effect in the geometry considered.
FILM-30: A Heat Transfer Properties Code for Water Coolant
International Nuclear Information System (INIS)
MARSHALL, THERON D.
2001-01-01
A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function of temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating
Refrigeration. Heat Transfer. Part I: Evaporators and Condensers
DEFF Research Database (Denmark)
Knudsen, Hans-Jørgen Høgaard
2002-01-01
The note gives an introduction to heat transfer with phase shift. Pool Boiling, Flow Boiling, Condensation.......The note gives an introduction to heat transfer with phase shift. Pool Boiling, Flow Boiling, Condensation....
Calculation of Post-Closure Natural Convection Heat and Mass Transfer in Yucca Mountain Drifts
International Nuclear Information System (INIS)
Webb, S.; Itamura, M.
2004-01-01
Natural convection heat and mass transfer under post-closure conditions has been calculated for Yucca Mountain drifts using the computational fluid dynamics (CFD) code FLUENT. Calculations have been performed for 300, 1000, 3000, and 10,000 years after repository closure. Effective dispersion coefficients that can be used to calculate mass transfer in the drift have been evaluated as a function of time and boundary temperature tilt
Heat transfer analysis of short helical borehole heat exchangers
International Nuclear Information System (INIS)
Zarrella, Angelo; De Carli, Michele
2013-01-01
Highlights: ► Vertical ground heat exchanger with a helical shaped pipe is analyzed. ► The model considers the interaction between the ground and the environment. ► The results of the model are in good agreement with the experimental values. ► The weather conditions considerably affect the fluid heat carrier temperature. ► The pitch between the turns does not affect the behaviour of the heat exchanger. -- Abstract: In this paper a numerical model to analyze the thermal behaviour of vertical ground heat exchangers with a helical shaped pipe is presented. This type of configuration can be a suitable alternative to conventional ground heat exchangers, especially when the heating and cooling loads of the building are very low. The model describes the heat transfer problem by means of a network of interconnected thermal resistances and capacitances. Moreover, as the investigated ground heat exchanger is usually installed in shallow depth, the model takes into account the interaction between the ground and the ambient environment which affects the fluid heat carrier temperature into the heat exchanger and, as a consequence, the energy efficiency of the heat pump. After a sensitivity analysis on the mesh parameters, the presented model is compared with experimental data and the simulation results show good agreement with the measurements. Finally, analyses to investigate the influence of the weather conditions, of the axial heat transfer and of the pitch between the turns of the helical pipe for two types of ground are carried out.
Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation
Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.
2012-01-01
Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.
International Nuclear Information System (INIS)
Luo, Yongqiang; Zhang, Ling; Liu, Zhongbing; Wang, Yingzi; Wu, Jing; Wang, Xiliang
2016-01-01
Highlights: • Dynamic model of thermoelectric radiant panel system is established. • The internal parameters of thermoelectric module are dynamically calculated in simulation. • Both artificial neural networks model and system model are verified through experiment data. • Optimized system structure is obtained through parametric study. - Abstract: Radiant panel system can optimize indoor thermal comfort with lower energy consumption. The thermoelectric radiant panel (TERP) system is a new and effective prototype of radiant system using thermoelectric module (TEM) instead of conventional water pipes, as heat source. The TERP can realize more stable and easier system control as well as lower initial and operative cost. In this study, an improved system dynamic model was established by combining analytical system model and artificial neural networks (ANN) as well as the dynamic calculation functions of internal parameters of TEM. The double integral was used for the calculation of surface average temperature of TERP. The ANN model and system model were in good agreement with experiment data in both cooling and heating mode. In order to optimize the system design structure, parametric study was conducted in terms of the thickness of aluminum panel and insulation, as well as the arrangement of TEMs on the surface of radiant panel. It was found through simulation results that the optimum thickness of aluminum panel and insulation are respectively around 1–2 mm and 40–50 mm. In addition, TEMs should be uniformly installed on the surface of radiant panel and each TEM should stand at the central position of a square-shaped typical region with length around 0.387–0.548 m.
Research on Marine Boiler's Pressurized Combustion and Heat Transfer
Institute of Scientific and Technical Information of China (English)
Pingjian MING; Renqiu JIANG; Yanjun LI; Baozhi SUN
2005-01-01
The effect of pressure on combustion and heat transfer is analyzed. The research is based on the basic combustion and heat transfer theorem. A correction for the heat calculation method for pressurized furnace is made on the basis of the normal pressure case. The correction takes the effect of pressurizing into account. The results show that the correction is reasonable and the method is applicable to combustion and heat transfer of the marine supercharged boiler.
Energy Technology Data Exchange (ETDEWEB)
Sarker, M. R. I., E-mail: islamrabiul@yahoo.com; Saha, Manabendra, E-mail: manabendra.saha@adelaide.edu.au, E-mail: manab04me@gmail.com; Beg, R. A. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi-6204 (Bangladesh)
2016-07-12
A recirculating flow solar particle cavity absorber (receiver) is modeled to investigate the flow behavior and heat transfer characteristics of a novel developing concept. It features a continuous recirculating flow of non-reacting metallic particles (black silicon carbide) with air which are used as a thermal enhancement medium. The aim of the present study is to numerically investigate the thermal behavior and flow characteristics of the proposed concept. The proposed solar particle receiver is modeled using two phase discrete particle model (DPM), RNG k-flow model and discrete ordinate (DO) radiation model. Numerical analysis is carried out considering a solar receiver with only air and the mixture of non-reacting particles and air as a heat transfer as well as heat carrying medium. The parametric investigation is conducted considering the incident solar flux on the receiver aperture and changing air flow rate and recirculation rate inside the receiver. A stand-alone feature of the recirculating flow solar particle receiver concept is that the particles are directly exposed to concentrated solar radiation monotonously through recirculating flow inside the receiver and results in efficient irradiation absorption and convective heat transfer to air that help to achieve high temperature air and consequently increase in thermal efficiency. This paper presents, results from the developed concept and highlights its flow behavior and potential to enhance the heat transfer from metallic particles to air by maximizing heat carrying capacity of the heat transfer medium. The imposed milestones for the present system will be helpful to understand the radiation absorption mechanism of the particles in a recirculating flow based receiver, the thermal transport between the particles, the air and the cavity, and the fluid dynamics of the air and particle in the cavity.
Heat transfer characteristics of the two-phase closed thermosyphon (wickless heat pipe)
International Nuclear Information System (INIS)
Andros, F.E.; Florschuetz, L.W.
1982-01-01
Steady-state heat transfer characteristics and heat transfer limits (dry-out) for a vertical stainless steel tubular two-phase closed thermosyphon with Freon-113 working fluid are reported as a function of certain geometric parameters and liquid fill quantity. Condenser section heat transfer characteristics agreed reasonably well with existing laminar film condensation correlations and were found to be independent of the evaporator section, except for larger liquid fills. Evaporator characteristics were quite complex and appeared, under some conditions, to be coupled to condenser characteristics through effects of system pressure and/or surface wave as present on the descending condensate film. A laminar thin film evaporation model was found to give reasonable agreement with local evaporator temperature measurements in those regions of the evaporator where a continuous film apparently persisted. The measured heat transfer characteristics are interpreted relative to an earlier investigation by the authors in which flow characteristics in a similar device were visually and photographically observed. 10 references
Taha, T.J.; Thakur, D.B.; van der Meer, Theodorus H.
2012-01-01
In this work, heat transfer surface modification and heat transfer measurement technique is developed. Heat transfer investigation was aimed to study the effect of carbon nano fibers (extremely high thermal conductive material) on the enhancement level in heat transfer. Synthesis of these carbon
Validation of heat transfer models for gap cooling
International Nuclear Information System (INIS)
Okano, Yukimitsu; Nagae, Takashi; Murase, Michio
2004-01-01
For severe accident assessment of a light water reactor, models of heat transfer in a narrow annular gap between overheated core debris and a reactor pressure vessel are important for evaluating vessel integrity and accident management. The authors developed and improved the models of heat transfer. However, validation was not sufficient for applicability of the gap heat flux correlation to the debris cooling in the vessel lower head and applicability of the local boiling heat flux correlations to the high-pressure conditions. Therefore, in this paper, we evaluated the validity of the heat transfer models and correlations by analyses for ALPHA and LAVA experiments where molten aluminum oxide (Al 2 O 3 ) at about 2700 K was poured into the high pressure water pool in a small-scale simulated vessel lower head. In the heating process of the vessel wall, the calculated heating rate and peak temperature agreed well with the measured values, and the validity of the heat transfer models and gap heat flux correlation was confirmed. In the cooling process of the vessel wall, the calculated cooling rate was compared with the measured value, and the validity of the nucleate boiling heat flux correlation was confirmed. The peak temperatures of the vessel wall in ALPHA and LAVA experiments were lower than the temperature at the minimum heat flux point between film boiling and transition boiling, so the minimum heat flux correlation could not be validated. (author)
Low-Flow Film Boiling Heat Transfer on Vertical Surfaces
DEFF Research Database (Denmark)
Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.
1976-01-01
The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....
Chen, Ting; Bae, Kyung Jin; Kwon, Oh Kyung
2018-02-01
In this paper, heat transfer characteristics of fin-tube heat exchanger and primary surface heat exchanger (PSHE) used in waste heat recovery were investigated experimentally. The flow in the fin-tube heat exchanger is cross flow and in PSHE counter flow. The variations of friction factor and Colburn j factor with air mass flow rate, and Nu number with Re number are presented. Various comparison methods are used to evaluate heat transfer performance, and the results show that the heat transfer rate of the PSHE is on average 17.3% larger than that of fin-tube heat exchanger when air mass flow rate is ranging from 1.24 to 3.45 kg/min. However, the PSHE causes higher pressure drop, and the fin-tube heat exchanger has a wider application range which leads to a 31.7% higher value of maximum heat transfer rate compared to that of the PSHE. Besides, under the same fan power per unit frontal surface, a higher heat transfer rate value is given in the fin-tube heat exchanger.
Molten corium concrete interaction: investigation of heat transfer in two-phase flow
International Nuclear Information System (INIS)
Amizic, Milan
2014-01-01
In the context of severe accident research for the second and the third generation of nuclear power plants, there are still open issues concerning some aspects of the concrete cavity ablation during the molten corium - concrete interaction (MCCI). The determination of heat transfer along the interfacial region between the molten corium pool and the ablating basemat concrete is crucial for the assessment of concrete ablation progression and eventually the basemat melt through. For the purpose of experimental investigation of thermal hydraulics inside a liquid pool agitated by gas bubbles, the CLARA project has been launched. The CLARA experiments are performed using simulant materials and they reveal the influence of superficial gas velocity, liquid viscosity and pool geometry on the heat transfer coefficient between the internally heated liquid pool and vertical and horizontal pool walls maintained at uniform temperature. The first test campaign has been conducted with the small pool configuration (50 cm * 25 cm * 25 cm). The tests have been performed with liquids covering a wide range of dynamic viscosity from approximately 1 mPa s to 10000 mPa s and the superficial gas velocity is varied up to 8 cm/s. This thesis comprises a brief description of MCCI phenomenology, literature reviews on the existing heat transfer correlations for two phase flow and the void fraction, a description of CLARA setup, experimental results and their interpretation. The experimental results are compared with existing models and some new models for the assessment of heat transfer coefficient in two-phase flow. (author) [fr
Heat transfer in high-level waste management
International Nuclear Information System (INIS)
Dickey, B.R.; Hogg, G.W.
1979-01-01
Heat transfer in the storage of high-level liquid wastes, calcining of radioactive wastes, and storage of solidified wastes are discussed. Processing and storage experience at the Idaho Chemical Processing Plant are summarized for defense high-level wastes; heat transfer in power reactor high-level waste processing and storage is also discussed
Experimental investigate of heat transfer for graphene/water nanofluid in micro heat exchanger
Abd Elhafez, S. E.; Abo-Zahhad, E. M.; El-Shazly, A. H.; El-Kady, M. F.
2017-02-01
In this investigation, the heat transfer characteristics of graphene nano platelets (GNPs)/water nanofluid were studied in a micro heat exchanger (MHE). The micro heat exchanger performance was also examined. The test setup was worked out in the laminar regime with Reynold numbers varying between 100 and 400GNPs/water nanofluid was prepared three different concentrations (0.025 wt. %, 0.05 wt. % and 0.1 wt. %) using ultrasonic wave. The influence of mass flow rate, inlet temperatures and weight fraction on the overall heat transfer coefficient (U) and logarithmic mean temperature (LMTD) were examined. The results showed considerable enhancement on the overall heat transfer coefficient of graphene/water nanofluid and the MHE effectiveness. A maximum enhancement on overall heat transfer coefficient was reached to 150% at Re=100 by 0.1wt% nanofluid. The effectiveness of micro heat exchanger was enhanced by increase weight fraction of graphene nanoparticle. Moreover, the experimental results showed that 0.1 wt. % GNPs/water nanofluid, flowing through MHE, has had high pressure drop, and pumping power, when it has been compared with 0.5 wt. % and 0.025 wt.%.
Directory of Open Access Journals (Sweden)
Zonghao Yang
2017-12-01
Full Text Available In the passive residual heat removal system of a molten salt reactor, one of the residual heat removal methods is to use the thimble-type heat transfer elements of the drain salt tank to remove the residual heat of fuel salts. An experimental loop is designed and built with a single heat transfer element to analyze the heat transfer and flow characteristics. In this research, the influence of the size of a three-layer thimble-type heat transfer element on the heat transfer rate is analyzed. Two methods are used to obtain the heat transfer rate, and a difference of results between methods is approximately 5%. The gas gap width between the thimble and the bayonet has a large effect on the heat transfer rate. As the gas gap width increases from 1.0 mm to 11.0 mm, the heat transfer rate decreases from 5.2 kW to 1.6 kW. In addition, a natural circulation startup process is described in this paper. Finally, flashing natural circulation instability has been observed in this thimble-type heat transfer element.
Numerical Modeling of Conjugate Heat Transfer in Fluid Network
Majumdar, Alok
2004-01-01
Fluid network modeling with conjugate heat transfer has many applications in Aerospace engineering. In modeling unsteady flow with heat transfer, it is important to know the variation of wall temperature in time and space to calculate heat transfer between solid to fluid. Since wall temperature is a function of flow, a coupled analysis of temperature of solid and fluid is necessary. In cryogenic applications, modeling of conjugate heat transfer is of great importance to correctly predict boil-off rate in propellant tanks and chill down of transfer lines. In TFAWS 2003, the present author delivered a paper to describe a general-purpose computer program, GFSSP (Generalized Fluid System Simulation Program). GFSSP calculates flow distribution in complex flow circuit for compressible/incompressible, with or without heat transfer or phase change in all real fluids or mixtures. The flow circuit constitutes of fluid nodes and branches. The mass, energy and specie conservation equations are solved at the nodes where as momentum conservation equations are solved at the branches. The proposed paper describes the extension of GFSSP to model conjugate heat transfer. The network also includes solid nodes and conductors in addition to fluid nodes and branches. The energy conservation equations for solid nodes solves to determine the temperatures of the solid nodes simultaneously with all conservation equations governing fluid flow. The numerical scheme accounts for conduction, convection and radiation heat transfer. The paper will also describe the applications of the code to predict chill down of cryogenic transfer line and boil-off rate of cryogenic propellant storage tank.
Natural convection heat transfer in a rectangular pool with volumetric heat sources
International Nuclear Information System (INIS)
Lee, Seung Dong; Lee, Kang Hee; Suh, Kune Y.
2003-01-01
Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. The heat transfer within the molten core material can be characterized by buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of the molten pool depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, natural convection involving internal heat generation is delineated in terms of the modified Rayleigh number, Ra', which quantifies the internal heat source and hence the strength of buoyancy. The test section is of rectangular cavity whose length, width, and height are 500 mm, 80 mm, and 250 mm, respectively. A total of twenty-four T-type thermocouples were installed in the test loop to measure temperature distribution. Four T-type thermocouples were utilized to measure temperatures on the boundary. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Rayleigh number, Ra, between 4.87x10 7 and 2.32x10 14 and Prandtl number, Pr, between 0.7 and 3.98. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained at a uniform temperature of 10degC. (author)
Heat or mass transfer from an open cavity
Kuiken, H.K.
1978-01-01
This paper presents a mathematical model for heat or mass transfer from an open cavity. It is assumed that the Péclet number, based on conditions at the cavity, and the Prandtl number are both large. The model assumes heat- or mass-transfer boundary layers at the rim of the cavity vortex flow. Heat
The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa
Energy Technology Data Exchange (ETDEWEB)
Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Espoo (Finland)
1996-12-01
The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and heat transfer of the fluidized bed in the boundary layer near the wall. The total and radiative heat transfer as well as the particle concentration will be measured. Based on the data a correlation will be created. Two different measurement systems are used. The particle concentration is measured by a image-analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The system has been used in previous research projects at our laboratory. In earlier projects all measurements have been carried out in cold environments. In this project the system will be modified for hot environments. The radiative heat transfer is measured by a radiative heat transfer probe connected to a PC via an A/D converter. The probe consists of a heat flow detector which is isolated from the bed by a sapphire window so that only the radiative part of the heat transfer is detected. The probe will be calibrated in a black body oven so that the effect of the conduction and the sapphire window can be separated. (author)
Overview PWR-Blowdown Heat Transfer Separate-Effects Program
International Nuclear Information System (INIS)
White, J.D.
1978-01-01
The ORNL Pressurized Water Reactor Blowdown Heat Transfer Program (PWR-BDHT) is a separate-effects experimental study of thermal-hydraulic phenomena occurring during the first 20 sec of a hypothetical LOCA. Specific objectives include the determination, for a wide range of parameters, of time to CHF and the following variables for both pre- and post-CHF: heat fluxes, ΔT (temperature difference between pin surface and fluid), heat transfer coefficients, and local fluid properties. A summary of the most interesting results from the program obtained during the past year is presented. These results are in the area of: (1) RELAP verification, (2) electric pin calibration, (3) time to critical heat flux (CHF), (4) heat transfer coefficient comparisons, and (5) nuclear fuel pin simulation
International Nuclear Information System (INIS)
Meng Xianke; Sun Zhongning; Zhou Ping; Xu Guangzhan
2012-01-01
The water-cooled pebble bed reactor core is the porous channels stacked with spherical fuel elements, having evident effect on enhancing heat transfer. Owing to the variability and randomness characteristics of it's interstice, pebble bed channels have a very complex heat transfer situation and have little correlative research. In order to research the heat transfer characters of pebble bed channels with internal heat source, electromagnetic induction heating method was adopted for overall heating the pebble bed which was composed of 8 mm diameter steel balls, and the internal heat transfer characteristics were researched. By comparing and analyzing the experimental data, the rule of power distribution and heat transfer coefficient with heat flux density, inlet temperature and working fluid's Re were got. According to the experimental data fitting, the dimensionless average heat transfer coefficient correlation criteria was got. The fitting results are good agreement with the experimental results within 12% difference. (authors)
Optimization of heat transfer utilizing graph based evolutionary algorithms
International Nuclear Information System (INIS)
Bryden, Kenneth M.; Ashlock, Daniel A.; McCorkle, Douglas S.; Urban, Gregory L.
2003-01-01
This paper examines the use of graph based evolutionary algorithms (GBEAs) for optimization of heat transfer in a complex system. The specific case examined in this paper is the optimization of heat transfer in a biomass cookstove utilizing three-dimensional computational fluid dynamics to generate the fitness function. In this stove hot combustion gases are used to heat a cooking surface. The goal is to provide an even spatial temperature distribution on the cooking surface by redirecting the flow of combustion gases with baffles. The variables in the optimization are the position and size of the baffles, which are described by integer values. GBEAs are a novel type of EA in which a topology or geography is imposed on an evolving population of solutions. The choice of graph controls the rate at which solutions can spread within the population, impacting the diversity of solutions and convergence rate of the EAs. In this study, the choice of graph in the GBEAs changes the number of mating events required for convergence by a factor of approximately 2.25 and the diversity of the population by a factor of 2. These results confirm that by tuning the graph and parameters in GBEAs, computational time can be significantly reduced
International Nuclear Information System (INIS)
Sircilli Neto, F.; Passaro, A.; Borges, E.M.
1991-01-01
The cooling systems of nuclear reactors for spacial applications include direct current electromagnetic pumps, which are used to circulate the coolant fluid thru the reactor core. In this work, the transfer of the heat generated by the electrical current in a magnet C excitation coils, which is used in a prototype pump, was evaluated. Considering the processes of heat transfer by conduction, natural convection and radiation, the results of simulation with the codes HEATING5 and AUTHEATS indicate the utilization of the 180 sup(0)C thermal class conductor for a working Joule power of 4 10 sup(4) W/m sup(3) in each magnet coil. (author)
International Nuclear Information System (INIS)
1992-01-01
This volume contains the 4 key-note lectures and 83 of the 148 papers presented at the 3rd UK National Conference on Heat Transfer. The papers are grouped under the following broad headings: boiling and condensation; heat exchangers; refrigeration and air-conditioning; natural convection; process safety and nuclear reactors; two-phase flow; post dry-out; combustion, radiation and chemical reaction. Separate abstracts have been prepared for 13 papers of relevance to nuclear reactors. (UK)
Measurement of heat transfer coefficient using termoanemometry methods
Dančová, P.; Sitek, P.; Vít, T.
2014-03-01
This work deals with a measurement of heat transfer from a heated flat plate on which a synthetic jet impacts perpendicularly. Measurement of a heat transfer coefficient (HTC) is carried out using the hot wire anemometry method with glue film probe Dantec 55M47. The paper brings also results of velocity profiles measurements and turbulence intensity calculations.
46 CFR 153.434 - Heat transfer coils within a tank.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...
Flame stability and heat transfer analysis of methane-air mixtures in catalytic micro-combustors
International Nuclear Information System (INIS)
Chen, Junjie; Song, Wenya; Xu, Deguang
2017-01-01
Highlights: • The mechanisms of heat and mass transfer for loss of stability were elucidated. • Stability diagrams were constructed and design recommendations were made. • Flame characteristics were examined to determine extinction and blowout limits. • Heat loss greatly affects extinction whereas wall materials greatly affect blowout. • Radiation causes the flame to shift downstream. - Abstract: The flame stability and heat transfer characteristics of methane-air mixtures in catalytic micro-combustors were studied, using a two-dimensional computational fluid dynamics (CFD) model with detailed chemistry and transport. The effects of wall thermal conductivity, surface emissivity, fuel, flow velocity, and equivalence ratio were explored to provide guidelines for optimal design. Furthermore, the underlying mechanisms of heat and mass transfer for loss of flame stability were elucidated. Finally, stability diagrams were constructed and design recommendations were made. It was found that the heat loss strongly affects extinction, whereas the wall thermal conductivity greatly affects blowout. The presence of homogeneous chemistry extends blowout limits, especially for inlet velocities higher than 6 m/s. Increasing transverse heat transfer rate reduces stability, whereas increasing transverse mass transfer rate improves stability. Surface radiation behaves similarly to the heat conduction within the walls, but opposite trends are observed. High emissivity causes the flame to shift downstream. Methane exhibits much broader blowout limits. For a combustor with gap size of 0.8 mm, a residence time higher than 3 ms is required to prevent breakthrough, and inlet velocities lower than 0.8 m/s are the most desirable operation regime. Further increase of the wall thermal conductivity beyond 80 W/(m·K) could not yield an additional increase in stability.
Advances in heat transfer enhancement
Saha, Sujoy Kumar; Sundén, Bengt; Wu, Zan
2016-01-01
This Brief addresses the phenomena of heat transfer enhancement. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to three other monographs including “Critical Heat Flux in Flow Boiling in Microchannels,” this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.
International Nuclear Information System (INIS)
Siddiqui, Faisal A.; Dasgupta, Engr Sarbadaman; Fartaj, Amir
2012-01-01
Highlights: ► Air side heat transfer and flow characteristics of mesochannel cross-flow heat exchanger are studied experimentally. ► Hot ethylene glycol–water mixture (50:50) at constant mass flow rate is used against varying air flow. ► Air side heat transfer and fluid flow key parameters such as Nusselt number, Colburn factor, friction factor are obtained. ► General correlations are proposed for air side heat transfer and fluid flow parameters. - Abstract: Air side force convective heat transfer and flow characteristics of cross-flow mesochannel heat exchanger are investigated experimentally. A series of experiments representing 36 different operating conditions have been conducted on a finned mesochannel heat exchanger through the fully automated dynamic single-phase experimental facility which is capable of handling a wide variety of working fluids in air-to-liquid cross-flow orientation. The mesochannel heat exchanger is made of 15 aluminum slabs with arrays of wavy fins between slabs; 68 one millimeter circular diameter port located at each slab, and the air side frontal area of 304-mm × 304-mm. The ethylene glycol–water mixture as the working fluid in the liquid side was forced to flow through mesochannels maintaining constant inlet temperature and flow rate at 74 °C and 0.0345 kg/s respectively whereas the inlet flowing air into the arrays of wavy fins was changed at four different temperature levels from 28 °C to 43 °C. Frontal air velocity was altered in nine steps from 3 m/s to 11 m/s at each temperature level corresponding range of Reynolds number 752 a a ) and Colburn factor (j a ) were found higher in comparison with other studies.
Heat transfer for plasma facing components
International Nuclear Information System (INIS)
Boyd, R.D.; Meng, X.; Maughan, H.
1995-01-01
Although the high heat flux requirements for plasma-facing components have been reduced drastically from 40.0 MW/m 2 to near 10.0 MW/m 2 , there are still some refinements needed. This paper highlights: (1) recent accomplishments and pinpoints new thermal solutions and problem areas of immediate concern to the development of plasma-facing components, and (2) next generation thermal hydraulic problems which must be addressed to insure safety and reliability in component operation. More specifically the near-term thermal hydraulic problems entail: (1) generating an appropriate data base to insure the development of single-side heat flux correlations; and (2) adapting the existing vast uniform heat flux literature to the case of non-uniform heat flux distributions found in plasma facing components in fusion reactors. Results are presented for the latter task which includes: (a) an accurate subcooled flow boiling curve correlation for the partial nucleate boiling regime which can be adapted using previously proposed correlations relating single-side boundary heat flux to heat transfer, in uniformly heated channels, (b) the evaluation of the possibility of using the existing literature directly with redefined parameters, and (c) an estimation of circumferential variations in the heat transfer coefficient
Heat transfer characteristics of supercritical pressure waster in vertical upward annular channels
International Nuclear Information System (INIS)
Wang Han; Bi Qincheng; Yang Zhendong; Wu Gang
2013-01-01
Within the range of pressure from 23 to 28 MPa, mass flux from 350 to 1000 kg/(m 2 · s), and outside wall heat flux from 200 to 1000 kW/m 2 , experimental investigation was conducted on the heat transfer characteristics of supercritical pressure water in vertical upward annular channels. The effects of heat flux, pressure, mass flux and spiral spacer on heat transfer were analyzed, and two types of heat transfer deterioration occurred in the experiments were compared. The experimental results show that the heat transfer of water can be enhanced by increasing the mass flux or decreasing the wall heat flux. The effect of pressure on heat transfer is not uniform and depends on heat transfer form. It was found that the spiral spacer not only enhances the heat transfer of water, but also delays the heat transfer deterioration which occurs in high heat flux and low mass flux conditions. (authors)
Heat Transfer Modelling of Glass Media within TPV Systems
Bauer, Thomas; Forbes, Ian; Penlington, Roger; Pearsall, Nicola
2004-11-01
Understanding and optimisation of heat transfer, and in particular radiative heat transfer in terms of spectral, angular and spatial radiation distributions is important to achieve high system efficiencies and high electrical power densities for thermophtovoltaics (TPV). This work reviews heat transfer models and uses the Discrete Ordinates method. Firstly one-dimensional heat transfer in fused silica (quartz glass) shields was examined for the common arrangement, radiator-air-glass-air-PV cell. It has been concluded that an alternative arrangement radiator-glass-air-PV cell with increased thickness of fused silica should have advantages in terms of improved transmission of convertible radiation and enhanced suppression of non-convertible radiation.
Comparison of correlations for heat transfer in sphere-pac beds
International Nuclear Information System (INIS)
Fundamenski, W.R.; Gierszewski, P.J.
1991-08-01
The design of a tritium breeding blanket for a fusion reactor requires the knowledge of heat transfer within the blanket. In this paper three models for effective bed heat transfer are compared against the experimental database in order to choose a reference correlation to be used in blanket design. Two parameters are used to describe heat transfer in a packed bed: effective thermal conductivity of the bed, and a heat transfer coefficient at the bed-solid interface
Microscale surface modifications for heat transfer enhancement.
Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C
2013-10-09
In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.
Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures
Wang, Wenqing; Cui, Xiaoyu; Zhu, Yue
2017-06-01
Pulsating heat pipes (PHPs) are used as high efficiency heat exchangers, and the selection of working fluids in PHPs has a great impact on the heat transfer performance. This study investigates the thermal resistance characteristics of the PHP charged with acetone-based binary mixtures, where deionized water, methanol and ethanol were added to and mixed with acetone, respectively. The volume mixing ratios were 2:1, 4:1 and 7:1, and the heating power ranged from 10 to 100 W with filling ratios of 45, 55, 62 and 70%. At a low filling ratio (45%), the zeotropic characteristics of the binary mixtures have an influence on the heat transfer performance of the PHP. Adding water, which has a substantially different boiling point compared with that of acetone, can significantly improve the anti-dry-out ability inside the PHP. At a medium filling ratio (55%), the heat transfer performance of the PHP is affected by both phase transition characteristics and physical properties of working fluids. At high heating power, the thermal resistance of the PHP with acetone-water mixture is between that with pure acetone and pure water, whereas the thermal resistance of the PHP with acetone-methanol and acetone-ethanol mixtures at mixing ratios of 2:1 and 4:1 is less than that with the corresponding pure fluids. At high filling ratios (62 and 70%), the heat transfer performance of the PHP is mainly determined by the properties of working fluids that affects the flow resistance. Thus, the PHP with acetone-methanol and acetone-ethanol mixtures that have a lower flow resistance shows better heat transfer performance than that with acetone-water mixture.
FFT analysis of sensible-heat solar-dynamic receivers
Lund, Kurt O.
The use of solar dynamic receivers with sensible energy storage in single-phase materials is considered. The feasibility of single-phase designs with weight and thermal performance comparable to existing two-phase designs is addressed. Linearized heat transfer equations are formulated for the receiver heat storage, representing the periodic input solar flux as the sum of steady and oscillating distributions. The steady component is solved analytically to produce the desired receiver steady outlet gas temperature, and the FFT algorithm is applied to the oscillating components to obtain the amplitudes and mode shapes of the oscillating solid and gas temperatures. The results indicate that sensible-heat receiver designs with performance comparable to state-of-the-art two-phase receivers are available.
International Nuclear Information System (INIS)
Li, Si-Ning; Zhang, Hong-Na; Li, Xiao-Bin; Li, Qian; Li, Feng-Chen; Qian, Shizhi; Joo, Sang Woo
2017-01-01
Highlights: • Heat transfer performance of non-Newtonian fluid flow in a MHS is studied. • Pseudo-plastic fluid flow can clearly promote the heat transfer efficiency in MMC. • Heat transfer enhancement is attributed to the emergence of secondary flow. • The heat transfer uniformity can also be improved by pseudo-plastic fluid flow. - Abstract: As the miniaturization and integration become the leading trend of the micro-electro-mechanical systems, it is of great significance to improve the microscaled heat transfer performance. This paper presents a three-dimensional (3D) numerical simulation on the flow characteristics and heat transfer performance of non-Newtonian fluid flow in a manifold microchannel (MMC) heat sink and traditional microchannel (TMC) heat sink. The non-Newtonian fluid was described by the power-law model. The analyses concentrated on the non-Newtonian fluid effect on the heat transfer performance, including the heat transfer efficiency and uniformity of temperature distribution, as well as the influence of inlet/outlet configurations on fluid flow and heat transfer. Comparing with Newtonian fluid flow, pseudo-plastic fluid could reduce the drag resistance in both MMC and TMC, while the dilatant fluid brought in quite larger drag resistance. For the heat transfer performance, the introduction of pseudo-plastic fluid flow greatly improved the heat transfer efficiency owing to the generation of secondary flow due to the shear-thinning property. Besides, the temperature distribution in MMC was more uniform by using pseudo-plastic fluid. Moreover, the inlet/outlet configuration was also important for the design and arrangement of microchannel heat sinks, since the present work showed that the maximum temperature was prone to locating in the corners near the inlet and outlet. This work provides guidance for optimal design of small-scale heat transfer devices in many cooling applications, such as biomedical chips, electronic systems, and
An introduction to heat transfer. 2. rev. ed.
International Nuclear Information System (INIS)
Hell, F.
1979-01-01
This book represents a fundamental introduction to heat transfer. Practical problems and tables make the book useful for engeneers and students. The chapters include detailed informations together with exercises of convection, radiat heat transfer, thermal conduction and condensation. (CDS)
Numerical investigation on the convective heat transfer in a spiral coil with radiant heating
Directory of Open Access Journals (Sweden)
Đorđević Milan Lj.
2016-01-01
Full Text Available The objective of this study was to numerically investigate the heat transfer in spiral coil tube in the laminar, transitional, and turbulent flow regimes. The Archimedean spiral coil was exposed to radiant heating and should represent heat absorber of parabolic dish solar concentrator. Specific boundary conditions represent the uniqueness of this study, since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but also in the axial direction. The curvature ratio of spiral coil varies from 0.029 at the flow inlet to 0.234 at the flow outlet, while the heat transfer fluid is water. The 3-D steady-state transport equations were solved using the Reynolds stress turbulence model. Results showed that secondary flows strongly affect the flow and that the heat transfer is strongly asymmetric, with higher values near the outer wall of spiral. Although overall turbulence levels were lower than in a straight pipe, heat transfer rates were larger due to the curvature-induced modifications of the mean flow and temperature fields. [Projekat Ministarstva nauke Republike Srbije, br. 42006
Measurement of heat transfer coefficient using termoanemometry methods
Directory of Open Access Journals (Sweden)
Dančová P.
2014-03-01
Full Text Available This work deals with a measurement of heat transfer from a heated flat plate on which a synthetic jet impacts perpendicularly. Measurement of a heat transfer coefficient (HTC is carried out using the hot wire anemometry method with glue film probe Dantec 55M47. The paper brings also results of velocity profiles measurements and turbulence intensity calculations.
Heat transfer enhancement with condensation by surface rotation
Energy Technology Data Exchange (ETDEWEB)
Vasiliev, L L; Khrolenok, V V [A.V. Luikov Heat and Mass Transfer Inst., Minsk (Belarus)
1993-11-01
Process intensification relies on many unit operations on enhanced heat transfer. One technique for the enhancement of condensation heat transfer is the use of surface rotation. This is particularly effective in reducing the condensate film thickness. The formulae and relationships given in this paper are concerned with rotating discs and tubes, and can be used for developing advanced heat exchanger concepts. (Author)
Conjugate Heat Transfer Study in Hypersonic Flows
Sahoo, Niranjan; Kulkarni, Vinayak; Peetala, Ravi Kumar
2018-04-01
Coupled and decoupled conjugate heat transfer (CHT) studies are carried out to imitate experimental studies for heat transfer measurement in hypersonic flow regime. The finite volume based solvers are used for analyzing the heat interaction between fluid and solid domains. Temperature and surface heat flux signals are predicted by both coupled and decoupled CHT analysis techniques for hypersonic Mach numbers. These two methodologies are also used to study the effect of different wall materials on surface parameters. Effectiveness of these CHT solvers has been verified for the inverse problem of wall heat flux recovery using various techniques reported in the literature. Both coupled and decoupled CHT techniques are seen to be equally useful for prediction of local temperature and heat flux signals prior to the experiments in hypersonic flows.
Heat transfer and flow structure evaluation of a synthetic jet emanating from a planar heat sink
International Nuclear Information System (INIS)
Manning, Paul; Persoons, Tim; Murray, Darina
2014-01-01
Direct impinging synthetic jets are a proven method for heat transfer enhancement, and have been subject to extensive research. However, despite the vast amount of research into direct synthetic jet impingement, there has been little research investigating the effects of a synthetic jet emanating from a heated surface, this forms the basis of the current research investigation. Both single and multiple orifices are integrated into a planar heat sink forming a synthetic jet, thus allowing the heat transfer enhancement and flow structures to be assessed. The heat transfer analysis highlighted that the multiple orifice synthetic jet resulted in the greatest heat transfer enhancements. The flow structures responsible for these enhancements were identified using a combination of flow visualisation, thermal imaging and thermal boundary layer analysis. The flow structure analysis identified that the synthetic jets decreased the thermal boundary layer thickness resulting in a more effective convective heat transfer process. Flow visualisation revealed entrainment of local air adjacent to the heated surface; this occurred from vortex roll-up at the surface of the heat sink and from the highly sheared jet flow. Furthermore, a secondary entrainment was identified which created a surface impingement effect. It is proposed that all three flow features enhance the heat transfer characteristics of the system.
A comprehensive examination of heat transfer correlations suitable for reactor safety analysis
International Nuclear Information System (INIS)
Groeneveld, D.C.; Snoek, C.W.
1986-01-01
Due to the inadequate understanding of heat transfer mechanisms, an empirical approach is often necessary. This approach requires the derivation of empirical heat transfer correlations for each heat transfer configuration, resulting in numerous correlations for each heat transfer mode. A simplification that is frequently used is to combine these heat transfer correlations using some suitably defined local parameters to characterize the heat transfer process. These local condition correlations, usually encountered in reactor safety codes are discussed in this paper
Heat transfer in tube bundles of heat exchangers with flow baffles induced forced mixing
International Nuclear Information System (INIS)
AbuRomia, M.M.; Chu, A.W.; Cho, S.M.
1976-01-01
Thermal analysis of shell-and-tube heat exchangers is being investigated through geometric modeling of the unit configuration in addition to considering the heat transfer processes taking place within the tube bundle. The governing equations that characterize the heat transfer from the shell side fluid to the tube side fluid across the heat transfer tubewalls are indicated. The equations account for the heat transfer due to molecular conduction, turbulent thermal diffusion, and forced fluid mixing among various shell side fluid channels. The analysis, though general in principle, is being applied to the Clinch River Breeder Reactor Plant-Intermediate Heat Exchanger, which utilizes flow baffles appropriately designed for induced forced fluid mixing in the tube bundle. The results of the analysis are presented in terms of the fluid and tube wall temperature distributions of a non-baffled and baffled tube bundle geometry. The former case yields axial flow in the main bundle region while the latter is associated with axial/cross flow in the bundle. The radial components of the axial/cross flow yield the necessary fluid mixing that results in reducing the thermal unbalance among the heat transfer to the allowable limits. The effect of flow maldistribution, present on the tube or shell sides of the heat exchangers, in altering the temperature field of tube bundles is also noted
Enhanced two phase flow in heat transfer systems
Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D
2013-12-03
A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.
Heat Transfer Analysis of Localized Heat-Treatment for Grade 91 Steel
Walker, Jacob D.
Many of the projects utilizing Grade 91 steel are large in scale, therefore it is necessary to assemble on site. The assembly of the major pieces requires welding in the assembly; this drastically changes the superior mechanical properties of Grade 91 steel that it was specifically developed for. Therefore, because of the adverse effects of welding on the mechanical properties of Grade 91, it is necessary to do a localized post weld heat treatment. As with most metallic materials grade 91 steel requires a very specific heat treatment process. This process includes a specific temperature and duration at that temperature to achieve the heat treatment desired. Extensive research has been done to determine the proper temperatures and duration to provide the proper microstructure for the superior mechanical properties that are inherent to Grade 91 steel. The welded sections are typically large structures that require local heat treatments and cannot be placed in an oven. The locations of these structures vary from indoors in a controlled environment to outdoors with unpredictable environments. These environments can be controlled somewhat, however in large part the surrounding conditions are unchangeable. Therefore, there is a need to develop methods to accurately apply the surrounding conditions and geometries to a theoretical model in order to provide the proper requirements for the local heat treatment procedure. Within this requirement is the requirement to define unknowns used in the heat transfer equations so that accurate models can be produced and accurate results predicted. This study investigates experimentally and numerically the heat transfer and temperature fields of Grade 91 piping in a local heat treatment. The objective of this thesis research is to determine all of the needed heat transfer coefficients. The appropriate heat transfer coefficients are determined through the inverse heat conduction method utilizing a ceramic heat blanket. This will be done
Natural convection heat transfer in the molten metal pool
International Nuclear Information System (INIS)
Park, R.J.; Kim, S.B.; Kim, H.D.; Choi, S.M.
1997-01-01
Analytical studies using the FLOW-3D computer program have been performed on natural convection heat transfer of a high density molten metal pool, in order to evaluate the coolability of the corium pool. The FLOW-3D results on the temperature distribution and the heat transfer rate in the molten metal pool region have been compared and evaluated with the experimental data. The FLOW-3D results have shown that the developed natural convection flow contributes to the solidified crust formation of the high density molten metal pool. The present FLOW-3D results, on the relationship between the Nusselt number and the Rayleigh number in the molten metal pool region, are more similar to the calculated results of Globe and Dropkin's correlation than any others. The natural convection heat transfer in the low aspect ratio case is more substantial than that in the high aspect ratio case. The FLOW-3D results, on the temperature profile and on the heat transfer rate in the molten metal pool region, are very similar to the experimental data. The heat transfer rate of the internal heat generation case is higher than that of the bottom heating case at the same heat supply condition. (author)
CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
Simplified 3d CFD flow simulation of a turbojet disc cavity with conjugate heat transfer
CSIR Research Space (South Africa)
Snedden, Glen C
2003-09-01
Full Text Available A comprehensive computational fluid dynamics (CFD) model of an actual disc cavity, complete with rotation and conjugate heat transfer, is presented. The model uses a commercially available code with geometrical accuracy including a labyrinth seal...
The consideration of dynamics and control in the design of heat exchanger networks
International Nuclear Information System (INIS)
Reimann, K.A.
1986-03-01
The heat exchanger network method is a way of abstracting the enthalpy and heat flows from the blueprints of a planned or existing processing plant. It enables a systematic design of a plant-wide heat recovery system which is optimal with regard to energy costs, capital costs and operational requirements. A heat exchanger network is a representation of all heat transfer relations between hot process streams and cold process streams within a plant. During the past ten years, the optimal design of heat exchanger networks (i.e. the optimal arrangement of heat transfer relations within a plant) has developed into a field of research of its own. Both, static methods ('interaction analysis') and dynamic methods ('process reaction curve analysis') from control theory have been used to explore the new field of heat exchanger network dynamics. As a major tool, an interactive, portable computer program for network simulation and controllability assessment has been developed (it is available as a design tool within the frame of the International Energy Agency). Based on the well-understood global parameters: effectiveness and NTU, which follow from the network design, some straightforward methods covering the following topics are presented: - 'paths' for control and disturbance signal transfer across the network, - locations of control bypasses around heat exchangers, and their capacity of emitting control signals or absorbing disturbances, - influence of the equipment besides the heat exchangers (which can be regarded as 'surrounding' the network, thus forming an 'associated' network). It has been found that networks which are designed according to the 'pinch-based' method have a potential for good controllability. It is shown how, using the freedoms given in the 'pinch-based' design and the above-mentioned methods, that potential is put into effect. (author)
Heat Transfer Enhancement in Separated and Vortex Flows
Energy Technology Data Exchange (ETDEWEB)
Richard J. Goldstein
2004-05-27
This document summarizes the research performance done at the Heat Transfer Laboratory of the University of Minnesota on heat transfer and energy separation in separated and vortex flow supported by DOE in the period September 1, 1998--August 31, 2003. Unsteady and complicated flow structures in separated or vortex flows are the main reason for a poor understanding of heat transfer under such conditions. The research from the University of Minnesota focused on the following important aspects of understanding such flows: (1) Heat/mass transfer from a circular cylinder; (2) study of energy separation and heat transfer in free jet flows and shear layers; and (3) study of energy separation on the surface and in the wake of a cylinder in crossflow. The current study used three different experimental setups to accomplish these goals. A wind tunnel and a liquid tunnel using water and mixtures of ethylene glycol and water, is used for the study of prandtl number effect with uniform heat flux from the circular cylinder. A high velocity air jet is used to study energy separation in free jets. A high speed wind tunnel, same as used for the first part, is utilized for energy separation effects on the surface and in the wake of the circular cylinder. The final outcome of this study is a substantial advancement in this research area.
Steyn, Gideon; Vermeulen, Christiaan
2018-05-01
An experiment was designed to study the effect of the jet direction on convective heat-transfer coefficients in single-jet gas cooling of a small heated surface, such as typically induced by an accelerated ion beam on a thin foil or specimen. The hot spot was provided using a small electrically heated plate. Heat-transfer calculations were performed using simple empirical methods based on dimensional analysis as well as by means of an advanced computational fluid dynamics (CFD) code. The results provide an explanation for the observed turbulent cooling of a double-foil, Havar beam window with fast-flowing helium, located on a target station for radionuclide production with a 66 MeV proton beam at a cyclotron facility.
Experimental study of heat transfer performance in a flattened AGHP
International Nuclear Information System (INIS)
Tao Hanzhong; Zhang Hong; Zhuang Jun; Jerry Bowman, W.
2008-01-01
Round mini-axial grooved heat pipes (AGHP) with a diameter of 6 mm and a length of 210 mm were pressed into flattened heat pipes with a thickness of 3.5 mm, 3 mm, 2.5 mm and 2 mm, respectively. The article measured the heat transfer limit, thermal resistance and evaporation heat transfer coefficient of the said AGHPs and analyzed and studied the result. The result indicates: the heat transfer limit decreased with the increase of flattening degree. The heat transfer limit of the 2 mm thick flattened AGHP was only 1/4 of that of the φ 6 mm round AGHP. The thermal resistance of the 3.5-2.5 mm thick AGHPs basically maintained stable at around 0.08 deg. C/W, while the thermal resistance of the 2 mm thick flattened AGHP increased obviously. The variation of the heat transfer coefficient in evaporator section with the change of flattening degree follows a similar rule to the variation of thermal resistance. This article serves as a reference to understanding the heat transfer performance of mini AGHP and to electronic cooling design of AGHP
Forced Convection Heat Transfer of a sphere in Packed Bed Arrangement
International Nuclear Information System (INIS)
Lee, Dong-Young; Chung, Bum-Jin
2016-01-01
This paper analysis and discuss the forced convective heat transfer from heated single sphere, which is buried in unheated packed bed, depending on Re d with porosity. The present work determines the test matrix for the packed bed experiment. And this study discuss difference of heat transfer according to the location of heated sphere and compared heated bed with heated sphere in packed bed and compared FCC (Face Centered Cubic), HCP (Hexagonal Closed Packed) structured packed bed with random packed. This paper is to discuss and make the plan to experiment the heat transfer for depending on location of heated single sphere in unheated packed bed, to compare single sphere in packed bed with heated packed bed and to compare the structured packed bed with random packed bed. The Nu d increase as heated single sphere is close to the wall and bottom because of increasing porosity and enhancing eddy motion respectively. The existing experiment of heated sphere in packed bed do not consider the preheating effect which decrease heat transfer on downstream. The heat transfer rate of structured packed bed is different from random packed bed because of unsteady flow in random packed bed. In this study, mass transfer experiments will replace heat transfer experiments based on analogy concept. An electroplating system is adopted using limiting current technique
Forced Convection Heat Transfer of a sphere in Packed Bed Arrangement
Energy Technology Data Exchange (ETDEWEB)
Lee, Dong-Young; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)
2016-10-15
This paper analysis and discuss the forced convective heat transfer from heated single sphere, which is buried in unheated packed bed, depending on Re{sub d} with porosity. The present work determines the test matrix for the packed bed experiment. And this study discuss difference of heat transfer according to the location of heated sphere and compared heated bed with heated sphere in packed bed and compared FCC (Face Centered Cubic), HCP (Hexagonal Closed Packed) structured packed bed with random packed. This paper is to discuss and make the plan to experiment the heat transfer for depending on location of heated single sphere in unheated packed bed, to compare single sphere in packed bed with heated packed bed and to compare the structured packed bed with random packed bed. The Nu{sub d} increase as heated single sphere is close to the wall and bottom because of increasing porosity and enhancing eddy motion respectively. The existing experiment of heated sphere in packed bed do not consider the preheating effect which decrease heat transfer on downstream. The heat transfer rate of structured packed bed is different from random packed bed because of unsteady flow in random packed bed. In this study, mass transfer experiments will replace heat transfer experiments based on analogy concept. An electroplating system is adopted using limiting current technique.
First international workshop on fundamental aspects of post-dryout heat transfer: proceedings
International Nuclear Information System (INIS)
Lee, R.
1984-12-01
The purpose of the First International Workshop on Fundamental Aspects of Post-Dryout Heat Transfer was to review recent developments and the state of art in the field of post-dryout heat transfer. The workshop centered on interchanging ideas, reviewing current research results, and defining future research needs. The following five sessions dealing with the fundamental aspects of post-dryout heat transfer were held. A Computer Code Modeling and Flow Phenomena session was held dealing with flow rgimes, drop size, drop formation and behavior, interfacial area, interfacial drag, and computer modeling. A Quenching Phenomena session was held dealing with nature of rewetting, maximum wetting temperature, Leidenfrost phenomenon and heat transfer in the vicinity of quench front. A Low-Void Heat Transfer session was held dealing with inverted annular-flow heat transfer, inverted slug-flow heat transfer thermal non-equilibrium and computer modeling. A Dispersed-Flow Heat Transfer session was held dealing with drop interfacial heat transfer, vapor convection, thermal non-equilibrium and correlations and models
CFD modelling of convective heat transfer from a window with adjacent venetian blinds
Energy Technology Data Exchange (ETDEWEB)
Marjanovic, L. [Belgrade Univ., Belgrade (Yugoslavia). Faculty of Mechanical Engineering]|[DeMontfort Univ. (United Kingdom). Inst. of Energy and Sustainable Development; Cook, M; Hanby, V.; Rees, S. [DeMontfort Univ. (United Kingdom). Inst. of Energy and Sustainable Development
2005-07-01
There is a limited amount of 3-dimensional modeling information on the performance of glazing systems with blinds. Two-dimensional flow modeling has indicated that 1-dimensional heat transfer can lead to invalid results where 2- and 3-dimensional effects are present. In this study, a 3-dimensional numerical solution was obtained on the effect of a venetian blind on the conjugate heat transfer from an indoor window glazing system. The solution was obtained for the coupled laminar free convection and radiation heat transfer problem, including conduction along the blind slats. Continuity, momentum and energy equations for buoyant flow were solved using Computational Fluid Dynamics (CFD) software. Grey diffuse radiation exchange between the window, blind and air were considered using the Monte Carlo method. All thermophysical properties of air were assumed to be constant with the exception of density, which was modeled using the Bousinesq approximation. Both winter and summer conditions were considered. In the computational domain, the window represented an isothermal type boundary condition with no slip. The height of the domain was extended beyond the blinds to allow for inflow and outflow regions. Fluid was allowed to entrain into the domain at an ambient temperature in a direction perpendicular to the window. The results indicated that heat transfer between window and indoor air is influenced both quantitatively and qualitatively by the presence of an aluminium venetian blind, and that the cellular flow between the blind slats can have a significant effect on the convective heat transfer from the window surface that is more fully recognized and analyzed in 3 dimensions. refs., 2 tabs., 13 figs.
Enhanced Condensation Heat Transfer
Rose, John Winston
The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.
Review of PCMS and heat transfer enhancement methods applied ...
African Journals Online (AJOL)
Most available PCMs have low thermal conductivity making heat transfer enhancement necessary for power applications. The various methods of heat transfer enhancement in latent heat storage systems were also reviewed systematically. The review showed that three commercially - available PCMs are suitable in the ...
Analysis of natural convection heat transfer and flows in internally heated stratified liquid pools
International Nuclear Information System (INIS)
Gubaidullin, A.A. Jr.; Dinh, T.N.; Sehgal, B.R.
1999-01-01
In this paper, natural convection flows and heat transfer in a liquid pool, with two superposed immiscible fluid layers, are analyzed. The objective of the study is to examine the effect of interfacial hydrodynamics and to develop a method which enables energy splitting to be evaluated in a stratified liquid pool. The thermal convection, with and without an internal heat source, in a rectangular cavity with different pairs of fluids was numerically simulated by a CFD code FLOW-3D. It was found that the code performs very well for prediction of heat transfer coefficients for different conditions. The hydrodynamic coupling between immiscible layers was found to have minor, if any, impact on the natural convection heat transfer for the conditions examined. Calculated results were used to develop, and validate, a new correlation for energy splitting and for heat transfer in stratified liquid pools
Fernández-Arévalo, T; Lizarralde, I; Grau, P; Ayesa, E
2014-09-01
This paper presents a new modelling methodology for dynamically predicting the heat produced or consumed in the transformations of any biological reactor using Hess's law. Starting from a complete description of model components stoichiometry and formation enthalpies, the proposed modelling methodology has integrated successfully the simultaneous calculation of both the conventional mass balances and the enthalpy change of reaction in an expandable multi-phase matrix structure, which facilitates a detailed prediction of the main heat fluxes in the biochemical reactors. The methodology has been implemented in a plant-wide modelling methodology in order to facilitate the dynamic description of mass and heat throughout the plant. After validation with literature data, as illustrative examples of the capability of the methodology, two case studies have been described. In the first one, a predenitrification-nitrification dynamic process has been analysed, with the aim of demonstrating the easy integration of the methodology in any system. In the second case study, the simulation of a thermal model for an ATAD has shown the potential of the proposed methodology for analysing the effect of ventilation and influent characterization. Copyright © 2014 Elsevier Ltd. All rights reserved.
Blowdown heat transfer surface in RELAP4/MOD6
International Nuclear Information System (INIS)
Nelson, R.A.; Sullivan, L.H.
1978-01-01
New heat transfer correlations for both PWR and BWR blowdowns have been implemented in the RELAP4/MOD6 program. The concept of a multidimensional surface is introduced with the heat flux from a given heat transfer correlation or correlations depicted as a mathematical surface that is dependent upon quality, wall superheat, mass flow and pressure. The heat transfer logic has been modularized to facilitate replacing boiling curves for future correlation data comparisons and investigations. To determine the validity of the blowdown surface, comparison has been performed using data from the Semiscale experimental facility. (author)
Pumped two-phase heat transfer loop
Edelstein, Fred
1988-01-01
A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.
International Nuclear Information System (INIS)
Kurnia, Jundika C.; Sasmito, Agus P.; Shamim, Tariq; Mujumdar, Arun S.
2016-01-01
Highlights: • Heat transfers of helical coiled tube with several cross section profiles are evaluated. • Helical tubes offer higher heat transfer and lower entropy generation. • Square cross-section generates the highest entropy, followed by ellipse and circular. • Study could serve as a guideline in designing an efficient helical tube heat exchanger. - Abstract: This study evaluates heat transfer performance and entropy generation of laminar flow in coiled tubes with various cross-sections geometries i.e. circular, ellipse and square, relatives to the straight tubes of similar cross-sections. A computational fluid dynamics model is developed and validated against empirical correlations. Good agreement is obtained within range of Reynolds and Dean numbers considered. Effect of geometry, wall temperature, Reynolds number and heating/cooling mode were examined. To evaluate the heat transfer performance of the coiled tube configurations, a parameter referred as Figure of Merit (FoM) is defined as the ratio heat transfer rate to the required pumping power. In addition, exergy analysis is carried out to examine the inefficiency of the coiled tube configurations. The results indicate that coiled tubes provide higher heat transfer rate. In addition, it was found to be more efficient as reflected by lower entropy generation as compared to straight tubes. Among the studied cross-section, square cross-section generates the highest entropy, followed by ellipse and circular counterpart. Entropy production from heat transfer contribution is two order-of-magnitude higher than that of entropy contribution from viscous dissipation. Cooling case produces slightly higher entropy than heating counterpart. Finally, this study can provide practical guideline to design more efficient coiled heat exchanger.
International Nuclear Information System (INIS)
Banerjee, S.; Hassan, Y.A.
1995-01-01
Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology's (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values
Energy Technology Data Exchange (ETDEWEB)
Banerjee, S.; Hassan, Y.A. [Texas A& M Univ., College Station, TX (United States)
1995-09-01
Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology`s (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values.
Zipf, Verena; Willert, Daniel; Neuhäuser, Anton
2016-05-01
An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.
Analysis of the characteristics of heat transfer enhancement in steam condensers
International Nuclear Information System (INIS)
Yan Changqi; Sun Zhongning
2001-01-01
The influence of main factors on overall heat transfer was analyzed, and the effects of fouling factors on heat transfer characteristics in steam condenser were clarified. It was proposed that the tube outside enhancement is the most important attribute, when outside heat transfer coefficient increased there will be a big increase in condenser efficiency. The characteristics of heat transfer enhancement by spirally indented tube were investigated. It was proposed that condenser heat transfer efficiency will be raised when the low fin tube or the spirally indented tube with special treated surface were used
Study on boiling heat transfer of high temperature liquid sodium
International Nuclear Information System (INIS)
Sakurai, Akira
1978-01-01
In the Intitute of Atomic Energy, Kyoto University, fundamental studies on steady state and non-steady state heat flow are underway in connection with reactor design and the safety in a critical accident in a sodium-cooled fast breeder reactor. First, the experimental apparatus for sodium heat transfer and the testing system are described in detail. The apparatus is composed of sodium-purifying section including the plugging meter for measuring purity and cold trap, the pool boiling test section for experimenting natural convection boiling heat transfer, the forced convection boiling test section for experimenting forced convection boiling heat transfer, and gas system. Next, the experimental results by the author and the data obtained so far are compared regarding heat transfer in sodium natural convection and stable nucleating boiling and critical heat flux. The effect of liquid head on a heater on boiling heat transfer coefficient and critical heat flux under the condition of low system pressure in most fundamental pool boiling was elucidated quantitatively, which has been overlooked in previous studies. It was clarified that this is the essentially important problem that can not be overlooked. From this point of view, expressions on heat transfer were also re-investigated. (Wakatsuki, Y.)
Enhancement of combined heat and mass transfer in a vertical-tube heat and mass exchanger
International Nuclear Information System (INIS)
Webb, R.L.; Perez-Blanco, H.
1986-01-01
This paper studies enhancement of heat and mass transfer between a countercurrent, gravity-drained water film and air flowing in a vertical tube. The enhancement technique employed is spaced, transverse wires placed in the air boundary layer, near the air--water interface. Heat transfer correlations for turbulent, single-phase heat transfer in pipes having wall-attached spaced ribs are used to select the preferred wire diameter, and to predict the gas phase heat and mass transfer coefficients. Tests were run with two different radial placements of the rib roughness: (1) at the free surface of the liquid film, and (2) the base of the roughness displaced 0.51 mm into the air flow. The authors hypothesize that the best heat/mass transfer and friction performance will be obtained with the roughness at the surface of the water film. Experiments conducted with both roughness placements show that the authors' hypothesis is correct. The measured heat/mass transfer enhancement agreed very closely with the predicted values. A unique feature of the enhancement concept is that it does not require surface wetting of the enhancement device to provide enhancement
Heat transfer in window frames with internal cavities
Energy Technology Data Exchange (ETDEWEB)
Gustavsen, Arild
2001-07-01
Heat transfer in window frames with internal air cavities is studied in this thesis. Investigations focus on two- and three-dimensional natural convection effects inside air cavities, the dependence of the emissivity on the thermal transmittance, and the emissivity of anodized and untreated aluminium profiles. The investigations are mostly conducted on window frames which are the same size as real frames found in residential buildings. Numerical and experimental investigations were performed to study the effectiveness of one commercial Computational Fluid Dynamics (CFD) program for simulating combined natural convection and heat transfer in simple three-dimensional window frames with internal air cavities. The accuracy of the conjugate CFD simulations was evaluated by comparing results for surface temperature on the warm side of the specimens to results from experiments that use infrared (IR) thermography to map surface temperatures during steady-state thermal tests. In general, there was good agreement between the simulations and experiments. Two-dimensional computational fluid dynamic and conduction simulations are performed to study the difference between treating air cavities as a fluid and as a solid when calculating the thermal transmittance of window frames. The simulations show that traditional software codes, simulating only conduction and using equivalent conductivities for the air cavities, give Uvalues that compare well with results from fluid flow simulations. The difference between the two models are mostly limited to the temperature distribution inside air cavities. It is also found that cavities with an interconnection less than about 7 mm can be treated as separate cavities. Three-dimensional natural convection effects in simple and custom-made PVC and thermally broken aluminum window frames with one open internal cavity were studied, with the use of CFD simulations and thermography experiments. Focus was put on corner effects and heat transfer
Heat transfer performance test of PDHRS heat exchangers of PGSFR using STELLA-1 facility
Energy Technology Data Exchange (ETDEWEB)
Hong, Jonggan, E-mail: hong@kaeri.re.kr; Yeom, Sujin; Eoh, Jae-Hyuk; Lee, Tae-Ho; Jeong, Ji-Young
2017-03-15
Highlights: • Heat transfer performance test of heat exchangers of PGSFR PDHRS is conducted using STELLA-1 facility. • Steady-state test results of DHX and AHX show good agreement with theoretical results of design codes. • Design codes for DHX and AHX are validated by STELLA-1 experimental results. • Heat transport capability of DHX and AHX is turned out to be satisfactory for reliable plant operation. - Abstract: The STELLA-1 facility was designed and constructed to carry out separate effect tests of the decay heat exchanger (DHX) and natural draft sodium-to-air heat exchanger (AHX), which are key components of the safety-grade decay heat removal system in PGSFR. The DHX is a sodium-to-sodium heat exchanger with a straight tube arrangement, and the AHX is a sodium-to-air heat exchanger with a helically coiled tube arrangement. The model heat exchangers in STELLA-1 have been designed to meet their own similitude conditions from the prototype ones, of which scale ratios were set to be unity in height (or length) and 1/2.5 in heat transfer rate. Consequently, the overall heat transfer coefficients and log-mean temperature differences of the prototypes have been preserved as well. The steady-state test results for each model heat exchanger obtained from STELLA-1 showed good agreement with the theoretical results of the computer design codes for thermal-sizing and a performance analysis of the DHX and AHX. In the DHX result comparison, the discrepancies in the heat transfer rate ranged from −4.4% to 2.0%, and in the AHX result comparison, they ranged from −11.1% to 12.6%. Therefore, the first step in thermal design codes validation for sodium heat exchangers, e.g., DHX and AHX, has been successfully completed with the experimental database obtained from STELLA-1. In addition, the heat transfer performance of the DHX and AHX was found to be satisfactory enough to secure a reliable decay heat removal performance.
CFD Study of Deteriorated Turbulent Heat Transfer in Upward Flow
International Nuclear Information System (INIS)
Nietiadi, Yohanes Setiawan; Lee, Jeong Ik; Addad, Yacine
2014-01-01
DTHT regime can be induced by two effects: buoyancy and acceleration. Apart from these two deteriorating effects, another unique behavior of fluid in the DTHT regime is that the convective heat transfer rate will continue to deteriorate until it reaches certain point. The downstream of this point, is known as the recovery region, where the convective heat transfer rate returns back to the high values by recovering turbulence. We called this phenomena as re-turbulization.. The map of the DTHT regime can be seen from fig. 2, where the x-axis is the buoyancy parameter and y-axis is the acceleration parameter which is the agreed governing non-dimensional numbers among the researchers to illustrate the phenomena. The Buoyancy parameter is defind in Eq. (1) and the acceleration parameter is defined in Eq. (2), respectively. The threshold value for both effects to move from the forced turbulent heat transfer to the DTHT regime are found to be Bo* ≥ 2x10 -6 and Kv ≥ 2.5x10 -6 in the previous works. Bo * =Gr q /Re 3 '. 425 Pr 0 '. 8 (1). K v =4q + /Re (2). Many experiments and simulation have been done to investigate this phenomenon and the boundary of the regime. However, very limited number of experiment was conducted in the regime where buoyancy effect and acceleration effect are in the same order of magnitude and high enough to cause DTHT (mixed DTHT). Some important experimental researches that have been done in the gas DTHT regime is Lee et al. who investigated the heat transfer of gas flow in the range of buoyancy parameter from 3x10 -9 to 10 -5 and acceleration parameter span from 6x10 -8 to 5x10 -6 and presented the behavior of Nusselt number ratio from the experiment as fig. 3 and fig. 4. This paper will discuss a Computational Fluid Dynamics analysis on DTHT by assuming hypothetical boundary conditions especially on the mixed DTHT regime. It has been found that a gas cooled fast reactor has a tendency to operate in the Deteriorated Turbulent Heat
Directory of Open Access Journals (Sweden)
Kalaiselvam Sivakumar
2016-01-01
Full Text Available Free cooling is the process of storing the cool energy available in the night ambient air and using it during the day. The heat exchanger used in this work is a modular type which is similar to the shell and tube heat exchanger. The shell side is filled with Phase Change Materials (PCM and air flow is through the tubes in the module. The modules of the heat exchanger are arranged one over other with air spacers in between each module. The air space provided in between the module in-creases the retention time of the air for better heat transfer. Transient Computational Fluid Dynamics modeling is carried out for single air passage in a modular heat exchanger. It shows that the PCM phase transition time in the module in which different shape of fins is adopted. The module with rectangular fins has 17.2 % reduction in solidification compared with the plain module. Then steady state numerical analysis is accomplished to the whole module having the fin of high heat transfer, so that pressure drop, flow and thermal characteristics across the module and the air spacers are deter-mined for various air inlet velocities of 0.4 to 1.6 m/s. To validate the computational results, experiments are carried out and the agreement was found to be good.
Theory of periodic conjugate heat transfer
Zudin, Yuri B
2016-01-01
This book presents the theory of periodic conjugate heat transfer in detail. It offers a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body.
Heat Transfer and Cooling Techniques at Low Temperature
Baudouy, B
2014-07-17
The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.
Enhancement of heat transfer using nanofluids - An overview
Energy Technology Data Exchange (ETDEWEB)
Godson, Lazarus; Mohan Lal, D. [Refrigeration and Air-Conditioning Division, Department of Mechanical Engineering., College of Engineering, Anna University, Chennai 600 025, Tamil Nadu (India); Raja, B. [Indian Institute of Information Technology, Design and Manufacturing-Kancheepuram Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu (India); Wongwises, S. [Fluid Mechanics, Thermal Engineering and Multiphase Flow (FUTURE), Dept. of Mechanical Engineering, King Mongkut' s University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)
2010-02-15
A colloidal mixture of nano-sized particles in a base fluid, called nanofluids, tremendously enhances the heat transfer characteristics of the original fluid, and is ideally suited for practical applications due to its marvelous characteristics. This article addresses the unique features of nanofluids, such as enhancement of heat transfer, improvement in thermal conductivity, increase in surface volume ratio, Brownian motion, thermophoresis, etc. In addition, the article summarizes the recent research in experimental and theoretical studies on forced and free convective heat transfer in nanofluids, their thermo-physical properties and their applications, and identifies the challenges and opportunities for future research. (author)
Heat Transfer and Cooling Techniques at Low Temperature
Energy Technology Data Exchange (ETDEWEB)
Baudouy, B [Saclay (France)
2014-07-01
The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.
Heat transfer augmentation for high heat flux removal in rib-roughened narrow channels
International Nuclear Information System (INIS)
Islam, M.S.; Hino, Ryutaro; Haga, Katsuhiro; Sudo, Yukio; Monde, Masanori.
1997-03-01
Heat transfer augmentation in narrow rectangular channels in a target system is a very important method to remove high heat flux up to 12 MW/m 2 generated at target plates of a high-intensity proton accelerator of 1.5 GeV and 1 mA with a proton beam power of 1.5 MW. In this report, heat transfer coefficients and friction factors in narrow rectangular channels with one-sided rib-roughened surface were evaluated for fully developed flows in the range of the Reynolds number from 6,000 to 1,00,000; the rib pitch-to-height ratios (p/k) were 10,20 and 30; the rib height-to-equivalent diameter ratios (k/De) were 0.025, 0.03 and 0.1 by means of previous existing experimental correlations. The rib-roughened surface augmented heat transfer coefficients approximately 4 times higher than the smooth surface at Re=10,000, p/k=10 and k/De=0.1; friction factors increase around 22 times higher. In this case, higher heat flux up to 12 MW/m 2 could be removed from the rib-roughened surface without flow boiling which induces flow instability; but pressure drop reaches about 1.8 MPa. Correlations obtained by air-flow experiments have showed lower heat transfer performance with the water-flow conditions. The experimental apparatus was proposed for further investigation on heat transfer augmentation in very narrow channels under water-flow conditions. This report presents the evaluation results and an outline of the test apparatus. (author)
Indirect evaporative coolers with enhanced heat transfer
Kozubal, Eric; Woods, Jason; Judkoff, Ron
2015-09-22
A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.
Radiative heat transfer in low-dimensional systems -- microscopic mode
Woods, Lilia; Phan, Anh; Drosdoff, David
2013-03-01
Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.
Rod Bundle Heat Transfer: Steady-State Steam Cooling Experiments
International Nuclear Information System (INIS)
Spring, J.P.; McLaughlin, D.M.
2006-01-01
Through the joint efforts of the Pennsylvania State University and the United States Nuclear Regulatory Commission, an experimental rod bundle heat transfer (RBHT) facility was designed and built. The rod bundle consists of a 7 x 7 square pitch array with spacer grids and geometry similar to that found in a modern pressurized water reactor. From this facility, a series of steady-state steam cooling experiments were performed. The bundle inlet Reynolds number was varied from 1 400 to 30 000 over a pressure range from 1.36 to 4 bars (20 to 60 psia). The bundle inlet steam temperature was controlled to be at saturation for the specified pressure and the fluid exit temperature exceeded 550 deg. C in the highest power tests. One important quantity of interest is the local convective heat transfer coefficient defined in terms of the local bulk mean temperature of the flow, local wall temperature, and heat flux. Steam temperatures were measured at the center of selected subchannels along the length of the bundle by traversing miniaturized thermocouples. Using an analogy between momentum and energy transport, a method was developed for relating the local subchannel centerline temperature measurement to the local bulk mean temperature. Wall temperatures were measured using internal thermocouples strategically placed along the length of each rod and the local wall heat flux was obtained from an inverse conduction program. The local heat transfer coefficient was calculated from the data at each rod thermocouple location. The local heat transfer coefficients calculated for locations where the flow was fully developed were compared against several published correlations. The Weisman and El-Genk correlations were found to agree best with the RBHT steam cooling data, especially over the range of turbulent Reynolds numbers. The effect of spacer grids on the heat transfer enhancement was also determined from instrumentation placed downstream of the spacer grid locations. The local
Near-field heat transfer between graphene/hBN multilayers
Zhao, Bo; Guizal, Brahim; Zhang, Zhuomin M.; Fan, Shanhui; Antezza, Mauro
2017-06-01
We study the radiative heat transfer between multilayer structures made by a periodic repetition of a graphene sheet and a hexagonal boron nitride (hBN) slab. Surface plasmons in a monolayer graphene can couple with hyperbolic phonon polaritons in a single hBN film to form hybrid polaritons that can assist photon tunneling. For periodic multilayer graphene/hBN structures, the stacked metallic/dielectric array can give rise to a further effective hyperbolic behavior, in addition to the intrinsic natural hyperbolic behavior of hBN. The effective hyperbolicity can enable more hyperbolic polaritons that enhance the photon tunneling and hence the near-field heat transfer. However, the hybrid polaritons on the surface, i.e., surface plasmon-phonon polaritons, dominate the near-field heat transfer between multilayer structures when the topmost layer is graphene. The effective hyperbolic regions can be well predicted by the effective medium theory (EMT), thought EMT fails to capture the hybrid surface polaritons and results in a heat transfer rate much lower compared to the exact calculation. The chemical potential of the graphene sheets can be tuned through electrical gating and results in an additional modulation of the heat transfer. We found that the near-field heat transfer between multilayer structures does not increase monotonously with the number of layers in the stack, which provides a way to control the heat transfer rate by the number of graphene layers in the multilayer structure. The results may benefit the applications of near-field energy harvesting and radiative cooling based on hybrid polaritons in two-dimensional materials.
International Nuclear Information System (INIS)
Singh, Vinay; Gupta, Munish
2016-01-01
Highlights: • Reviews heat transfer augmentation of nanofluids in a tube with constant heat flux. • Recent advances in hybrid nanofluids are reviewed. • Identifies and compares significant results. • Scope of future research in this area is discussed. - Abstract: In the last few decades, research on nanofluids has increased rapidly. Traditional heat transfer fluids with order of nanometer sized particles (1–100 nm) suspended in them are termed as nanofluids. Nanofluids have been proved as better heat transfer fluids despite of various contradictions in results by different research groups. The aim of this article is to review and summarize the recent experimental and theoretical studies on convective heat transfer in heat exchangers using constant heat flux boundary condition. The use of different types of nanoparticles with different base fluids by different research groups has been presented and compared. Further an overview of experimental results about heat transfer abilities of hybrid nanofluids from available literature sources is also presented. Finally, the challenges and future directions in which research can be further progress are discussed.
INTENSIFICATION OF HEAT- AND MASS TRANSFER IN EVAPORATION - CONDENSATION DEVICES
Directory of Open Access Journals (Sweden)
A. G. Kulakov
2005-01-01
Full Text Available Results of investigation of capillary structure properties used in evaporation – condensation devices are presented.Constructive solutions for intensification of heat transfer in evaporation and condensation heat exchangers are offered. The obtained heat transfer experimental data at film-type vapor conden-sation are generalized in criterion form.Description of general rule of heat and mass transfer processes in miniature heat pipes with three various capillary structures at wide range of operating parameters is given in the paper.
Problems of heat transfer and hydraulics of two-phase media
Kutateladze, S S
1969-01-01
Problems of Heat Transfer and Hydraulics of Two-Phase Media presents the theory of heat transfer and hydrodynamics. This book discusses the various aspects of heat transfer and the flow of two-phase systems. Organized into two parts encompassing 22 chapters, this book starts with an overview of the laws of similarity for heat transfer to or from a flowing liquid with various physical properties and allowed for variation in viscosity and thermal conductivity. This book then explores the general functional relationship that exists between viscosity and thermal conductivity for thermodynamically
Kalman Filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry.
Zhang, Yuxin; Chen, Shuo; Deng, Kexin; Chen, Bingyao; Wei, Xing; Yang, Jiafei; Wang, Shi; Ying, Kui
2017-01-01
To develop a self-adaptive and fast thermometry method by combining the original hybrid magnetic resonance thermometry method and the bio heat transfer equation (BHTE) model. The proposed Kalman filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry, abbreviated as KalBHT hybrid method, introduced the BHTE model to synthesize a window on the regularization term of the hybrid algorithm, which leads to a self-adaptive regularization both spatially and temporally with change of temperature. Further, to decrease the sensitivity to accuracy of the BHTE model, Kalman filter is utilized to update the window at each iteration time. To investigate the effect of the proposed model, computer heating simulation, phantom microwave heating experiment and dynamic in-vivo model validation of liver and thoracic tumor were conducted in this study. The heating simulation indicates that the KalBHT hybrid algorithm achieves more accurate results without adjusting λ to a proper value in comparison to the hybrid algorithm. The results of the phantom heating experiment illustrate that the proposed model is able to follow temperature changes in the presence of motion and the temperature estimated also shows less noise in the background and surrounding the hot spot. The dynamic in-vivo model validation with heating simulation demonstrates that the proposed model has a higher convergence rate, more robustness to susceptibility problem surrounding the hot spot and more accuracy of temperature estimation. In the healthy liver experiment with heating simulation, the RMSE of the hot spot of the proposed model is reduced to about 50% compared to the RMSE of the original hybrid model and the convergence time becomes only about one fifth of the hybrid model. The proposed model is able to improve the accuracy of the original hybrid algorithm and accelerate the convergence rate of MR temperature estimation.
Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses
International Nuclear Information System (INIS)
Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.
1986-12-01
This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions
A way to visualise heat transfer in 3D unsteady flows
Speetjens, M.F.M.
2009-01-01
Heat transfer in fluid flows traditionally is examined in terms of temperature field and heat-transfer coefficients. However, heat transfer may alternatively be considered as the transport of thermal energy by the total convective-conductive heat flux in a way analogous to the transport of fluid by
Boiling and quenching heat transfer advancement by nanoscale surface modification.
Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N
2017-07-21
All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.
Ratto, Luca; Satta, Francesca; Tanda, Giovanni
2018-06-01
This paper presents an experimental and numerical investigation of heat transfer in the endwall region of a large scale turbine cascade. The steady-state liquid crystal technique has been used to obtain the map of the heat transfer coefficient for a constant heat flux boundary condition. In the presence of two- and three-dimensional flows with significant spatial variations of the heat transfer coefficient, tangential heat conduction could lead to error in the heat transfer coefficient determination, since local heat fluxes at the wall-to-fluid interface tend to differ from point to point and surface temperatures to be smoothed out, thus making the uniform-heat-flux boundary condition difficult to be perfectly achieved. For this reason, numerical simulations of flow and heat transfer in the cascade including the effect of tangential heat conduction inside the endwall have been performed. The major objective of numerical simulations was to investigate the influence of wall heat conduction on the convective heat transfer coefficient determined during a nominal iso-flux heat transfer experiment and to interpret possible differences between numerical and experimental heat transfer results. Results were presented and discussed in terms of local Nusselt number and a convenient wall heat flux function for two values of the Reynolds number (270,000 and 960,000).
Assessment of interfacial heat transfer models under subcooled flow boiling
Energy Technology Data Exchange (ETDEWEB)
Ribeiro, Guilherme B.; Braz Filho, Francisco A., E-mail: gbribeiro@ieav.cta.br, E-mail: fbraz@ieav.cta.br [Instituto de Estudos Avançados (DCTA/IEAv), São José dos Campos, SP (Brazil). Div. de Energia Nuclear
2017-07-01
The present study concerns a detailed analysis of subcooled flow boiling characteristics under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. An uniform heat flux of 570 kW/m2 and saturation pressure of 4.5 MPa were applied to the channel wall, whereas water mass flux of 900 kg/m2s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of CFD technique for the estimation of wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Different sub-models of interfacial heat transfer coefficient were applied and compared, allowing a better prediction of void fraction along the heated channel. (author)
Film boiling heat transfer and vapour film collapse for various geometries
International Nuclear Information System (INIS)
Jouhara, H.I.; Axcell, B.P.
2005-01-01
Full text of publication follows: Film boiling heat transfer has application to the safe operation of water-cooled nuclear reactors under fault conditions and it has been studied using nickel-plated copper specimens in transient and steady state experiments. In the transient tests the specimens were held in a water flow; in the steady state investigation a specimen was mounted in an essentially quiescent pool of water. The transient investigation was conducted on two spheres with different diameters, two cylindrical specimens of different lengths in parallel flow, a short cylinder in cross flow and two flat plates with different lengths. The heat transfer coefficient, vapour film thickness (which was estimated from the heat transfer coefficient) and heat flux followed a similar behaviour with changing experimental conditions for all specimens studied. The heat transfer coefficient increased and the vapour film thickness and heat flux decreased as the specimen temperature decreased. As the water subcooling increased the heat transfer coefficient and the heat flux increased while the vapour film thickness decreased. The water velocity was found to have little influence on the film boiling heat transfer results except for the short cylinder in cross flow. The sphere diameter was found to affect the heat transfer results; the heat transfer coefficient and the heat flux were larger, for the larger sphere. No significant effect of the cylinder length on the heat transfer data was observed. However, the heat transfer coefficient was higher (and the average vapour film thinner) for the longer plate than for the shorter plate. Three vapour/liquid interface types were observed namely: 'smooth', 'rippled' and 'turbulent' depending largely on specimen and water temperatures. For all specimens, the maximum heat transfer coefficient, minimum heat flux and minimum film boiling temperature, occurring just before vapour film collapse, were found to increase as the water subcooling
International Nuclear Information System (INIS)
Deng, Jing; Li, Yaojian; Xu, Yongxiang; Sheng, Hongzhi
2010-01-01
In this work, Magnetic Fluid dynamics (MHD) model is used to stimulate the electromagnetic field, heat transfer and fluid flow in a DC non-transferred arc plasma torch. Through the coupled iterative computation about the electromagnetic equations described by magnetic vector potential format and the modified fluid dynamics equations, the electric potential, temperature and velocity distributions in the torch are obtained. The fluid-solid coupled computation method is applied to treat the electric current and heat transfer at the interface between the electrodes and fluid. The location of arc root attachment at the inside surface of anode and the arc voltage of the torch that we have predicted are very consistent with the corresponding experimental results. The calculated results of the torch are applied to the numerical simulation of the plasma jets under the laminar and turbulent condition. (author)
Open Channel Natural Convection Heat Transfer on a Vertical Finned Plate
International Nuclear Information System (INIS)
Park, Joo Hyun; Heo, Jeong Hwan; Chung, Bum Jin
2013-01-01
The natural convection heat transfer of vertical plate fin was investigated experimentally. Heat transfer systems were replaced by mass-transfer systems, based on the analogy concept. The experimental results lie within the predictions of the existing heat transfer correlations of plate-fin for the natural convections. An overlapped thermal boundary layers caused increasing heat transfer, and an overlapped momentum boundary layers caused decreasing heat transfer. As the fin height increases, heat transfer was enhanced due to increased inflow from the open side of the fin spacing. When fin spacing and fin height are large, heat transfer was unaffected by the fin spacing and fin height. Passive cooling by natural convection becomes more and more important for the nuclear systems as the station black out really happened at the Fukushima NPPs. In the RCCS (Reactor Cavity Cooling System) of a VHTR (Very High Temperature Reactor), natural convection cooling through duct system is adopted. In response to the stack failure event, extra cooling capacity adopting the fin array has to be investigated. The finned plate increases the surface area and the heat transfer increases. However, the plate of fin arrays may increase the pressure drop and the heat transfer decreases. Therefore, in order to enhance the passive cooling with fin arrays, the parameters for the fin arrays should be optimized. According to Welling and Wooldridge, a natural convection on vertical plate fin is function of Gr, Pr, L, t, S, and H. The present work investigated the natural convection heat transfer of a vertical finned plate with varying the fin height and the fin spacing. In order achieve high Rayleigh numbers, an electroplating system was employed and the mass transfer rates were measured using a copper sulfate electroplating system based on the analogy concept
A simple heat transfer model for a heat flux plate under transient conditions
International Nuclear Information System (INIS)
Ryan, L.; Dale, J.D.
1985-01-01
Heat flux plates are used for measuring rates of heat transfer through surfaces under steady state and transient conditions. Their usual construction is to have a resistive layer bounded by thermopiles and an exterior layer for protection. If properly designed and constructed a linear relationship between the thermopile generated voltage and heat flux results and calibration under steady state conditions is straight forward. Under transient conditions however the voltage output from a heat flux plate cannot instantaneously follow the heat flux because of the thermal capacitance of the plate and the resulting time lag. In order to properly interpret the output of a heat flux plate used under transient conditions a simple heat transfer model was constructed and tested. (author)
Heat transfer during forced convection condensation inside horizontal tube
Energy Technology Data Exchange (ETDEWEB)
Tandon, T.N. [M.M.M. Engineering College, Gorakhpur, Uttar Pradesh (India). Dept. of Mechanical Engineering; Varma, H.K.; Gupta, C.P. [Roorkee Univ., Uttar Pradesh (India). Dept. of Mechanical and Industrial Engineering
1995-03-01
This paper presents the results of an experimental investigation on heat transfer behaviour during forced convection condensation inside a horizontal tube for wavy, semi-annular and annular flows. A qualitative study was made of the effect of various parameters - refrigerant mass flux, vapour quality, condensate film temperature drop and average vapour mass velocity - on average condensing-heat transfer coefficient. Akers-Rosson correlations have been found to predict the heat transfer coefficients within {+-} 25% for the entire range of data. A closer examination of the data revealed that the nature of the relation for the heat transfer coefficient changes from annular and semi-annular flow to wavy flow. Akers-Rosson correlations with changed constant and power have been recommended for the two flow regimes. (author)