Vollhardt, D.; Byczuk, K.; Kollar, M.
2011-01-01
The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combination of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the ...
Nuclear Dynamics with Effective Field Theories
Epelbaum, Evgeny
2013-01-01
These are the proceedings of the international workshop on "Nuclear Dynamics with Effective Field Theories" held at Ruhr-Universitaet Bochum, Germany from July 1 to 3, 2013. The workshop focused on effective field theories of low-energy QCD, chiral perturbation theory for nuclear forces as well as few- and many-body physics. Included are a short contribution per talk.
Dynamics and causality constraints in field theory
De Souza, M M
1997-01-01
We discuss the physical meaning and the geometric interpretation of causality implementation in classical field theories. Causality is normally implemented through kinematical constraints on fields but we show that in a zero-distance limit they also carry a dynamical information, which calls for a revision of our standard concepts of interacting fields. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the lightcone; a finite and consistent field theory requires a lightcone generator as the field support.
Dynamical symmetry breaking in quantum field theories
Miransky, Vladimir A
1993-01-01
The phenomenon of dynamical symmetry breaking (DSB) in quantum field theory is discussed in a detailed and comprehensive way. The deep connection between this phenomenon in condensed matter physics and particle physics is emphasized. The realizations of DSB in such realistic theories as quantum chromodynamics and electroweak theory are considered. Issues intimately connected with DSB such as critical phenomenona and effective lagrangian approach are also discussed.
Bosonic Dynamical Mean-Field Theory
Snoek, Michiel; Hofstetter, Walter
2013-02-01
We derive the bosonic dynamical mean-field equations for bosonic atoms in optical lattices with arbitrary lattice geometry. The equations are presented as a systematic expansion in 1/z, z being the number of lattice neighbours. Hence the theory is applicable in sufficiently high-dimensional lattices. We apply the method to a two-component mixture, for which a rich phase diagram with spin order is revealed.
Topological field theory of dynamical systems.
Ovchinnikov, Igor V
2012-09-01
Here, it is shown that the path-integral representation of any stochastic or deterministic continuous-time dynamical model is a cohomological or Witten-type topological field theory, i.e., a model with global topological supersymmetry (Q-symmetry). As many other supersymmetries, Q-symmetry must be perturbatively stable due to what is generically known as non-renormalization theorems. As a result, all (equilibrium) dynamical models are divided into three major categories: Markovian models with unbroken Q-symmetry, chaotic models with Q-symmetry spontaneously broken on the mean-field level by, e.g., fractal invariant sets (e.g., strange attractors), and intermittent or self-organized critical (SOC) models with Q-symmetry dynamically broken by the condensation of instanton-antiinstanton configurations (earthquakes, avalanches, etc.) SOC is a full-dimensional phase separating chaos and Markovian dynamics. In the deterministic limit, however, antiinstantons disappear and SOC collapses into the "edge of chaos." Goldstone theorem stands behind spatio-temporal self-similarity of Q-broken phases known under such names as algebraic statistics of avalanches, 1/f noise, sensitivity to initial conditions, etc. Other fundamental differences of Q-broken phases is that they can be effectively viewed as quantum dynamics and that they must also have time-reversal symmetry spontaneously broken. Q-symmetry breaking in non-equilibrium situations (quenches, Barkhausen effect, etc.) is also briefly discussed.
Nonequilibrium dynamical mean-field theory
Energy Technology Data Exchange (ETDEWEB)
Eckstein, Martin
2009-12-21
The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)
Nonequilibrium Dynamical Mean-Field Theory for Bosonic Lattice Models
2015-01-01
We develop the nonequilibrium extension of bosonic dynamical mean-field theory and a Nambu real-time strong-coupling perturbative impurity solver. In contrast to Gutzwiller mean-field theory and strong-coupling perturbative approaches, nonequilibrium bosonic dynamical mean-field theory captures not only dynamical transitions but also damping and thermalization effects at finite temperature. We apply the formalism to quenches in the Bose-Hubbard model, starting from both the normal and the Bos...
Gravitation Field Dynamics in Jeans Theory
Indian Academy of Sciences (India)
A. A. Stupka
2008-09-01
Closed system of time equations for nonrelativistic gravitation field and hydrodynamic medium was obtained by taking into account binary correlations of the field, which is the generalization of Jeans theory. Distribution function of the systemwas built on the basis of the Bogolyubov reduced description method. Calculations were carried out up to the first order of a perturbation theory in interaction. Adiabatic and enthropic types of perturbations were corrected and two new types of perturbations were found.
Gravitation Field Dynamics in Jeans Theory
Stupka, A A
2016-01-01
Closed system of time equations for nonrelativistic gravitation field and hydrodynamic medium was obtained by taking into account binary correlations of the field, which is the generalization of Jeans theory. Distribution function of the systemwas built on the basis of the Bogolyubov reduced description method. Calculations were carried out up to the first order of a perturbation theory in interaction. Adiabatic and enthropic types of perturbations were corrected and two new types of perturbations were found.
Nonequilibrium Dynamical Mean-Field Theory for Bosonic Lattice Models
Strand, Hugo U. R.; Eckstein, Martin; Werner, Philipp
2015-01-01
We develop the nonequilibrium extension of bosonic dynamical mean-field theory and a Nambu real-time strong-coupling perturbative impurity solver. In contrast to Gutzwiller mean-field theory and strong-coupling perturbative approaches, nonequilibrium bosonic dynamical mean-field theory captures not only dynamical transitions but also damping and thermalization effects at finite temperature. We apply the formalism to quenches in the Bose-Hubbard model, starting from both the normal and the Bose-condensed phases. Depending on the parameter regime, one observes qualitatively different dynamical properties, such as rapid thermalization, trapping in metastable superfluid or normal states, as well as long-lived or strongly damped amplitude oscillations. We summarize our results in nonequilibrium "phase diagrams" that map out the different dynamical regimes.
Mean field theory for U(n) dynamical groups
Energy Technology Data Exchange (ETDEWEB)
Rosensteel, G, E-mail: george.rosensteel@tulane.edu [Department of Physics, Tulane University, New Orleans, LA 70118 (United States)
2011-04-22
Algebraic mean field theory (AMFT) is a many-body physics modeling tool which firstly, is a generalization of Hartree-Fock mean field theory, and secondly, an application of the orbit method from Lie representation theory. The AMFT ansatz is that the physical system enjoys a dynamical group, which may be either a strong or a weak dynamical Lie group G. When G is a strong dynamical group, the quantum states are, by definition, vectors in one irreducible unitary representation (irrep) space, and AMFT is equivalent to the Kirillov orbit method for deducing properties of a representation from a direct geometrical analysis of the associated integral co-adjoint orbit. AMFT can be the only tractable method for analyzing some complex many-body systems when the dimension of the irrep space of the strong dynamical group is very large or infinite. When G is a weak dynamical group, the quantum states are not vectors in one irrep space, but AMFT applies if the densities of the states lie on one non-integral co-adjoint orbit. The computational simplicity of AMFT is the same for both strong and weak dynamical groups. This paper formulates AMFT explicitly for unitary Lie algebras, and applies the general method to the Lipkin-Meshkov-Glick su(2) model and the Elliott su(3) model. When the energy in the su(3) theory is a rotational scalar function, Marsden-Weinstein reduction simplifies AMFT dynamics to a two-dimensional phase space.
Dynamical mean-field theory from a quantum chemical perspective.
Zgid, Dominika; Chan, Garnet Kin-Lic
2011-03-07
We investigate the dynamical mean-field theory (DMFT) from a quantum chemical perspective. Dynamical mean-field theory offers a formalism to extend quantum chemical methods for finite systems to infinite periodic problems within a local correlation approximation. In addition, quantum chemical techniques can be used to construct new ab initio Hamiltonians and impurity solvers for DMFT. Here, we explore some ways in which these things may be achieved. First, we present an informal overview of dynamical mean-field theory to connect to quantum chemical language. Next, we describe an implementation of dynamical mean-field theory where we start from an ab initio Hartree-Fock Hamiltonian that avoids double counting issues present in many applications of DMFT. We then explore the use of the configuration interaction hierarchy in DMFT as an approximate solver for the impurity problem. We also investigate some numerical issues of convergence within DMFT. Our studies are carried out in the context of the cubic hydrogen model, a simple but challenging test for correlation methods. Finally, we finish with some conclusions for future directions.
Geometrical Field Theory of Hamilton Dynamic System In Rational Mechanics
Jianhua, Xiao
2011-01-01
When a set of particles are moving in a potential field, two aspects are concerned: 1) the relative motion of particle in spatial domain; 2) the particle velocity variations in time domain. The difficulty on treating the systems is originated from the fact that the motion in time domain and the motion in spatial domain are coupled together completely. Generally, for a Hamilton dynamic system established by a set of general velocity functions, several abstract theories have been well established, such as Lie algebra, Symplectic manifold, Poisson brackets, and others. However, mathematically, to find out a general Hamilton function is very difficult even for very simple problems. Inspired by these abstract mathematic researches, the Hamilton dynamic system is studied by geometrical field theory of deformation. Firstly, referring to the instant configuration, the deformation tensor in spatial domain and the velocity transformation tensor in time domain are established for a dynamic system defined by a set of gen...
Entanglement spectrum in cluster dynamical mean-field theory
Udagawa, Masafumi; Motome, Yukitoshi
2015-01-01
We study the entanglement spectrum of the Hubbard model at half filling on a kagome lattice. The entanglement spectrum is defined by the set of eigenvalues of a reduced thermal density matrix, which is naturally obtained in the framework of the dynamical mean-field theory. Adopting the cluster dynamical mean-field theory combined with continuous-time auxiliary-field Monte Carlo method, we calculate the entanglement spectrum for a three-site triangular cluster in the kagome Hubbard model. We find that the results at the three-particle sector well capture the qualitative nature of the system. In particular, the eigenvalue of the reduced density matrix, corresponding to the chiral degrees of freedom, exhibits a characteristic temperature scale Tchiral, below which a metallic state with large quasiparticle mass is stabilized. The entanglement spectra at different particle number sectors also exhibit characteristic changes around Tchiral, implying the development of inter-triangular ferromagnetic correlations in the correlated metallic regime.
Mean field theory for U(n) dynamical groups
Rosensteel, G.
2011-04-01
Algebraic mean field theory (AMFT) is a many-body physics modeling tool which firstly, is a generalization of Hartree-Fock mean field theory, and secondly, an application of the orbit method from Lie representation theory. The AMFT ansatz is that the physical system enjoys a dynamical group, which may be either a strong or a weak dynamical Lie group G. When G is a strong dynamical group, the quantum states are, by definition, vectors in one irreducible unitary representation (irrep) space, and AMFT is equivalent to the Kirillov orbit method for deducing properties of a representation from a direct geometrical analysis of the associated integral co-adjoint orbit. AMFT can be the only tractable method for analyzing some complex many-body systems when the dimension of the irrep space of the strong dynamical group is very large or infinite. When G is a weak dynamical group, the quantum states are not vectors in one irrep space, but AMFT applies if the densities of the states lie on one non-integral co-adjoint orbit. The computational simplicity of AMFT is the same for both strong and weak dynamical groups. This paper formulates AMFT explicitly for unitary Lie algebras, and applies the general method to the Lipkin-Meshkov-Glick {\\mathfrak s}{\\mathfrak u} (2) model and the Elliott {\\mathfrak s}{\\mathfrak u} (3) model. When the energy in the {\\mathfrak s}{\\mathfrak u} (3) theory is a rotational scalar function, Marsden-Weinstein reduction simplifies AMFT dynamics to a two-dimensional phase space.
Dynamical mean field theory of optical third harmonic generation
Jafari, S. A.; Tohyama, T.; Maekawa, S.
2006-01-01
We formulate the third harmonic generation (THG) within the dynamical mean field theory (DMFT) approximation of the Hubbard model. In the limit of large dimensions, where DMFT becomes exact, the vertex corrections to current vertices are identically zero, and hence the calculation of the THG spectrum reduces to a time-ordered convolution, followd by appropriate analytic continuuation. We present the typical THG spectrum of the Hubbard model obtained by this method. Within our DMFT calculation...
Dynamical mean-field theory for flat-band ferromagnetism
Nguyen, Hong-Son; Tran, Minh-Tien
2016-09-01
The magnetically ordered phase in the Hubbard model on the infinite-dimensional hyper-perovskite lattice is investigated within dynamical mean-field theory. It turns out for the infinite-dimensional hyper-perovskite lattice the self-consistent equations of dynamical mean-field theory are exactly solved, and this makes the Hubbard model exactly solvable. We find electron spins are aligned in the ferromagnetic or ferrimagnetic configuration at zero temperature and half filling of the edge-centered sites of the hyper-perovskite lattice. A ferromagnetic-ferrimagnetic phase transition driven by the energy level splitting is found and it occurs through a phase separation. The origin of ferromagnetism and ferrimagnetism arises from the band flatness and the virtual hybridization between macroscopically degenerate flat bands and dispersive ones. Based on the exact solution in the infinite-dimensional limit, a modified exact diagonalization as the impurity solver for dynamical mean-field theory on finite-dimensional perovskite lattices is also proposed and examined.
Fictive impurity approach to dynamical mean field theory
Energy Technology Data Exchange (ETDEWEB)
Fuhrmann, A.
2006-10-15
A new extension of the dynamical mean-field theory was investigated in the regime of large Coulomb repulsion. A number of physical quantities such as single-particle density of states, spin-spin correlation, internal energy and Neel temperature, were computed for a two-dimensional Hubbard model at half-filling. The numerical data were compared to our analytical results as well as to the results computed using the dynamical cluster approximation. In the second part of this work we consider a two-plane Hubbard model. The transport properties of the bilayer were investigated and the phase diagram was obtained. (orig.)
Effective Field Theory of Dark Energy: a Dynamical Analysis
Frusciante, Noemi; Silvestri, Alessandra
2013-01-01
The effective field theory (EFT) of dark energy relies on three functions of time to describe the background dynamics. The viability of these functions is investigated here by means of a thorough dynamical analysis. While the system is underdetermined, and one can always find a set of functions reproducing any expansion history, we are able to determine general compatibility conditions for these functions by requiring a viable background cosmology. In particular, we identify a set of variables that allows us to transform the non-autonomous system of equations into an infinite-dimensional one characterized by a significant recursive structure. We then analyze several autonomous sub-systems, obtained truncating the original one at increasingly higher dimension, that correspond to increasingly general models of dark energy and modified gravity. Furthermore, we exploit the recursive nature of the system to draw some general conclusions on the different cosmologies that can be recovered within the EFT formalism an...
Dynamic self-consistent field theory for unentangled homopolymer fluids
Mihajlovic, Maja; Lo, Tak Shing; Shnidman, Yitzhak
2005-10-01
We present a lattice formulation of a dynamic self-consistent field (DSCF) theory that is capable of resolving interfacial structure, dynamics, and rheology in inhomogeneous, compressible melts and blends of unentangled homopolymer chains. The joint probability distribution of all the Kuhn segments in the fluid, interacting with adjacent segments and walls, is approximated by a product of one-body probabilities for free segments interacting solely with an external potential field that is determined self-consistently. The effect of flow on ideal chain conformations is modeled with finitely extensible, nonlinearly elastic dumbbells in the Peterlin approximation, and related to stepping probabilities in a random walk. Free segment and stepping probabilities generate statistical weights for chain conformations in a self-consistent field, and determine local volume fractions of chain segments. Flux balance across unit lattice cells yields mean field transport equations for the evolution of free segment probabilities and of momentum densities on the Kuhn length scale. Diffusive and viscous contributions to the fluxes arise from segmental hops modeled as a Markov process, with transition rates reflecting changes in segmental interaction, kinetic energy, and entropic contributions to the free energy under flow. We apply the DSCF equations to study both transient and steady-state interfacial structure, flow, and rheology in a sheared planar channel containing either a one-component melt or a phase-separated, two-component blend.
Werbos, P J
2003-01-01
Quantum Field Theory (QFT) makes predictions by combining two sets of assumptions: (1) quantum dynamics, such as a Schrodinger or Liouville equation; (2) quantum measurement, such as stochastic collapse to an eigenfunction of a measurement operator. A previous paper defined a classical density matrix R encoding the statistical moments of an ensemble of states of classical second-order Hamiltonian field theory. It proved Tr(RQ)=E(Q), etc., for the usual field operators as defined by Weinberg, and it proved that those observables of the classical system obey the usual Heisenberg dynamic equation. However, R itself obeys dynamics different from the usual Liouville equation! This paper derives those dynamics, and calculates the discrepancy between CFT and normal form QFT in predicting general observables g(Q,P). There is some preliminary evidence for the conjecture that the discrepancies disappear in equilibrium states (bound states and scattering states) for finite bosonic field theories. Even if not, they appea...
Non-local correlations within dynamical mean field theory
Energy Technology Data Exchange (ETDEWEB)
Li, Gang
2009-03-15
The contributions from the non-local fluctuations to the dynamical mean field theory (DMFT) were studied using the recently proposed dual fermion approach. Straight forward cluster extensions of DMFT need the solution of a small cluster, where all the short-range correlations are fully taken into account. All the correlations beyond the cluster scope are treated in the mean-field level. In the dual fermion method, only a single impurity problem needs to be solved. Both the short and long-range correlations could be considered on equal footing in this method. The weak-coupling nature of the dual fermion ensures the validity of the finite order diagram expansion. The one and two particle Green's functions calculated from the dual fermion approach agree well with the Quantum Monte Carlo solutions, and the computation time is considerably less than with the latter method. The access of the long-range order allows us to investigate the collective behavior of the electron system, e.g. spin wave excitations. (orig.)
Real-space renormalized dynamical mean field theory
Kubota, Dai; Sakai, Shiro; Imada, Masatoshi
2016-05-01
We propose real-space renormalized dynamical mean field theory (rr-DMFT) to deal with large clusters in the framework of a cluster extension of the DMFT. In the rr-DMFT, large clusters are decomposed into multiple smaller clusters through a real-space renormalization. In this work, the renormalization effect is taken into account only at the lowest order with respect to the intercluster coupling, which nonetheless reproduces exactly both the noninteracting and atomic limits. Our method allows us large cluster-size calculations which are intractable with the conventional cluster extensions of the DMFT with impurity solvers, such as the continuous-time quantum Monte Carlo and exact diagonalization methods. We benchmark the rr-DMFT for the two-dimensional Hubbard model on a square lattice at and away from half filling, where the spatial correlations play important roles. Our results on the spin structure factor indicate that the growth of the antiferromagnetic spin correlation is taken into account beyond the decomposed cluster size. We also show that the self-energy obtained from the large-cluster solver is reproduced by our method better than the solution obtained directly for the smaller cluster. When applied to the Mott metal-insulator transition, the rr-DMFT is able to reproduce the reduced critical value for the Coulomb interaction comparable to the large cluster result.
Radiation-like scalar field and gauge fields in cosmology for a theory with dynamical time
Benisty, David; Guendelman, E. I.
2016-09-01
Cosmological solutions with a scalar field behaving as radiation are obtained, in the context of gravitational theory with dynamical time. The solution requires the spacial curvature of the universe k, to be zero, unlike the standard radiation solutions, which do not impose any constraint on the spatial curvature of the universe. This is because only such k = 0 radiation solutions pose a homothetic Killing vector. This kind of theory can be used to generalize electromagnetism and other gauge theories, in curved spacetime, and there are no deviations from standard gauge field equation (like Maxwell equations) in the case there exist a conformal Killing vector. But there could be departures from Maxwell and Yang-Mills equations, for more general spacetimes.
Decoherence and dynamical entropy generation in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Koksma, Jurjen F., E-mail: J.F.Koksma@uu.nl [Institute for Theoretical Physics (ITP) and Spinoza Institute, Utrecht University, Postbus 80195, 3508 TD Utrecht (Netherlands); Prokopec, Tomislav, E-mail: T.Prokopec@uu.nl [Institute for Theoretical Physics (ITP) and Spinoza Institute, Utrecht University, Postbus 80195, 3508 TD Utrecht (Netherlands); Schmidt, Michael G., E-mail: M.G.Schmidt@thphys.uni-heidelberg.de [Institut fuer Theoretische Physik, Heidelberg University, Philosophenweg 16, D-69120 Heidelberg (Germany)
2012-01-20
We formulate a novel approach to decoherence based on neglecting observationally inaccessible correlators. We apply our formalism to a renormalised interacting quantum field theoretical model. Using out-of-equilibrium field theory techniques we show that the Gaussian von Neumann entropy for a pure quantum state increases to the interacting thermal entropy. This quantifies decoherence and thus measures how classical our pure state has become. The decoherence rate is equal to the single particle decay rate in our model. We also compare our approach to existing approaches to decoherence in a simple quantum mechanical model. We show that the entropy following from the perturbative master equation suffers from physically unacceptable secular growth.
Dynamics in Nonlocal Cosmological Models Derived from String Field Theory
Joukovskaya, Liudmila
2007-01-01
A general class of nonlocal cosmological models is considered. A new method for solving nonlocal Friedmann equations is proposed, and solutions of the Friedmann equations with nonlocal operator are presented. The cosmological properties of these solutions are discussed. Especially indicated is $p$-adic cosmological model in which we have obtained nonsingular bouncing solution and string field theory tachyon model in which we have obtained full solution of nonlocal Friedmann equations with $w=...
Radiation Like Scalar Field and Gauge Fields in Cosmology for a theory with Dynamical Time
Benisty, David
2016-01-01
Cosmological solutions with a scalar field behaving as radiation are obtained, in the context of gravitational theory with dynamical time. The solution requires the spacial curvature of the universe k, to be zero, unlike the standard radiation solutions, which do not impose any constraint on the spacial curvature of the universe. This is because only such $ k=0 $ radiation solutions poses a homothetic Killimg vector. This kind of theory can be used to generalize electromagnetism and other gauge theories, in curved space time, and there are no deviations from standard gauge filed equation (like Maxwell equations) in the case there exist a conformal Killing vector. But there could be departures from Maxwell and Yang Mills equations, for more general space times.
Renormalized parameters and perturbation theory in dynamical mean-field theory for the Hubbard model
Hewson, A. C.
2016-11-01
We calculate the renormalized parameters for the quasiparticles and their interactions for the Hubbard model in the paramagnetic phase as deduced from the low-energy Fermi-liquid fixed point using the results of a numerical renormalization-group calculation (NRG) and dynamical mean-field theory (DMFT). Even in the low-density limit there is significant renormalization of the local quasiparticle interaction U ˜, in agreement with estimates based on the two-particle scattering theory of J. Kanamori [Prog. Theor. Phys. 30, 275 (1963), 10.1143/PTP.30.275]. On the approach to the Mott transition we find a finite ratio for U ˜/D ˜ , where 2 D ˜ is the renormalized bandwidth, which is independent of whether the transition is approached by increasing the on-site interaction U or on increasing the density to half filling. The leading ω2 term in the self-energy and the local dynamical spin and charge susceptibilities are calculated within the renormalized perturbation theory (RPT) and compared with the results calculated directly from the NRG-DMFT. We also suggest, more generally from the DMFT, how an approximate expression for the q ,ω spin susceptibility χ (q ,ω ) can be derived from repeated quasiparticle scattering with a local renormalized scattering vertex.
Dynamical mean-field theory for quantum chemistry.
Lin, Nan; Marianetti, C A; Millis, Andrew J; Reichman, David R
2011-03-04
The dynamical mean-field concept of approximating an unsolvable many-body problem in terms of the solution of an auxiliary quantum impurity problem, introduced to study bulk materials with a continuous energy spectrum, is here extended to molecules, i.e., finite systems with a discrete energy spectrum. The application to small clusters of hydrogen atoms yields ground state energies which are competitive with leading quantum chemical approaches at intermediate and large interatomic distances as well as good approximations to the excitation spectrum.
Roman, Steven
2006-01-01
Intended for graduate courses or for independent study, this book presents the basic theory of fields. The first part begins with a discussion of polynomials over a ring, the division algorithm, irreducibility, field extensions, and embeddings. The second part is devoted to Galois theory. The third part of the book treats the theory of binomials. The book concludes with a chapter on families of binomials - the Kummer theory. This new edition has been completely rewritten in order to improve the pedagogy and to make the text more accessible to graduate students. The exercises have also been im
Field theory of bicritical and tetracritical points. II. Relaxational dynamics.
Folk, R; Holovatch, Yu; Moser, G
2008-10-01
We calculate the relaxational dynamical critical behavior of systems of O(n_||)(plus sign in circle)O(n_perpendicular) symmetry by renormalization group method within the minimal subtraction scheme in two-loop order. The three different bicritical static universality classes previously found for such systems correspond to three different dynamical universality classes within the static borderlines. The Heisenberg and the biconical fixed point lead to strong dynamic scaling whereas in the region of stability of the decoupled fixed point weak dynamic scaling holds. Due to the neighborhood of the stability border between the strong and the weak scaling dynamic fixed point to the dynamical stable fixed point a very small dynamic transient exponent of omega(Beta)_(v) =0.0044 is present in the dynamics for the physically important case n_|| =1 and n_perpendicular =2 in d=3 .
Dynamical mean field theory-based electronic structure calculations for correlated materials.
Biermann, Silke
2014-01-01
We give an introduction to dynamical mean field approaches to correlated materials. Starting from the concept of electronic correlation, we explain why a theoretical description of correlations in spectroscopic properties needs to go beyond the single-particle picture of band theory.We discuss the main ideas of dynamical mean field theory and its use within realistic electronic structure calculations, illustrated by examples of transition metals, transition metal oxides, and rare-earth compounds. Finally, we summarise recent progress on the calculation of effective Hubbard interactions and the description of dynamical screening effects in solids.
Quantum field theory of classically unstable Hamiltonian dynamics
Energy Technology Data Exchange (ETDEWEB)
Strauss, Y., E-mail: ystrauss@cs.bgu.ac.il [Department of Mathematics, Ben-Gurion University of the Negev, Be’er Sheva 8410501 (Israel); Department of Physics, Ariel University, Ariel 4070000 (Israel); Horwitz, L. P. [Department of Physics, Ariel University, Ariel 4070000 (Israel); School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv university, Tel-Aviv 6997801 (Israel); Department of Physics, Bar-Ilan University, Ramat-Gan 5290002 (Israel); Levitan, J. [Department of Physics, Ariel University, Ariel 4070000 (Israel); Yahalom, A. [Department of Electrical and Electronic Engineering, Ariel 4070000 (Israel)
2015-07-15
We study a class of dynamical systems for which the motions can be described in terms of geodesics on a manifold (ordinary potential models can be cast into this form by means of a conformal map). It is rigorously proven that the geodesic deviation equation of Jacobi, constructed with a second covariant derivative, is unitarily equivalent to that of a parametric harmonic oscillator, and we study the second quantization of this oscillator. The excitations of the Fock space modes correspond to the emission and absorption of quanta into the dynamical medium, thus associating unstable behavior of the dynamical system with calculable fluctuations in an ensemble with possible thermodynamic consequences.
Dynamical Mean-Field Theory of Electronic Correlations in Models and Materials
Vollhardt, Dieter
2010-11-01
The concept of electronic correlations plays an important role in modern condensed matter physics. It refers to interaction effects which cannot be explained within a static mean-field picture as provided by Hartree-Fock theory. Electronic correlations can have a very strong influence on the properties of materials. For example, they may turn a metal into an insulator (Mott-Hubbard metal-insulator transition). In these lecture notes I (i) introduce basic notions of the physics of correlated electronic systems, (ii) discuss the construction of mean-field theories by taking the limit of high lattice dimensions, (iii) explain the simplifications of the many-body perturbation theory in this limit which provide the basis for the formulation of a comprehensive mean-field theory for correlated fermions, the dynamical mean-field theory (DMFT), (v) derive the DMFT self-consistency equations, and (vi) apply the DMFT to investigate electronic correlations in models and materials.
Dynamics of perturbations in Double Field Theory & non-relativistic string theory
Energy Technology Data Exchange (ETDEWEB)
Ko, Sung Moon [Department of Physics, Sogang University,Seoul 121-742 (Korea, Republic of); Melby-Thompson, Charles M. [Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo,Kashiwanoha, Kashiwa, 277-8583 (Japan); Department of Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Meyer, René [Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo,Kashiwanoha, Kashiwa, 277-8583 (Japan); Park, Jeong-Hyuck [Department of Physics, Sogang University,Seoul 121-742 (Korea, Republic of)
2015-12-22
Double Field Theory provides a geometric framework capable of describing string theory backgrounds that cannot be understood purely in terms of Riemannian geometry — not only globally (‘non-geometry’), but even locally (‘non-Riemannian’). In this work, we show that the non-relativistic closed string theory of Gomis and Ooguri http://dx.doi.org/10.1063/1.1372697 arises precisely as such a non-Riemannian string background, and that the Gomis-Ooguri sigma model is equivalent to the Double Field Theory sigma model of http://dx.doi.org/10.1016/j.nuclphysb.2014.01.003 on this background. We further show that the target-space formulation of Double Field Theory on this non-Riemannian background correctly reproduces the appropriate sector of the Gomis-Ooguri string spectrum. To do this, we develop a general semi-covariant formalism describing perturbations in Double Field Theory. We derive compact expressions for the linearized equations of motion around a generic on-shell background, and construct the corresponding fluctuation Lagrangian in terms of novel completely covariant second order differential operators. We also present a new non-Riemannian solution featuring Schrödinger conformal symmetry.
Dynamic field theory and equations of motion in cosmology
Energy Technology Data Exchange (ETDEWEB)
Kopeikin, Sergei M., E-mail: kopeikins@missouri.edu [Department of Physics and Astronomy, University of Missouri, 322 Physics Bldg., Columbia, MO 65211 (United States); Petrov, Alexander N., E-mail: alex.petrov55@gmail.com [Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskij Prospect 13, Moscow 119992 (Russian Federation)
2014-11-15
We discuss a field-theoretical approach based on general-relativistic variational principle to derive the covariant field equations and hydrodynamic equations of motion of baryonic matter governed by cosmological perturbations of dark matter and dark energy. The action depends on the gravitational and matter Lagrangian. The gravitational Lagrangian depends on the metric tensor and its first and second derivatives. The matter Lagrangian includes dark matter, dark energy and the ordinary baryonic matter which plays the role of a bare perturbation. The total Lagrangian is expanded in an asymptotic Taylor series around the background cosmological manifold defined as a solution of Einstein’s equations in the form of the Friedmann–Lemaître–Robertson–Walker (FLRW) metric tensor. The small parameter of the decomposition is the magnitude of the metric tensor perturbation. Each term of the series expansion is gauge-invariant and all of them together form a basis for the successive post-Friedmannian approximations around the background metric. The approximation scheme is covariant and the asymptotic nature of the Lagrangian decomposition does not require the post-Friedmannian perturbations to be small though computationally it works the most effectively when the perturbed metric is close enough to the background FLRW metric. The temporal evolution of the background metric is governed by dark matter and dark energy and we associate the large scale inhomogeneities in these two components as those generated by the primordial cosmological perturbations with an effective matter density contrast δρ/ρ≤1. The small scale inhomogeneities are generated by the condensations of baryonic matter considered as the bare perturbations of the background manifold that admits δρ/ρ≫1. Mathematically, the large scale perturbations are given by the homogeneous solution of the linearized field equations while the small scale perturbations are described by a particular solution of
Mott-Hubbard and Anderson transitions in dynamical mean-field theory
Energy Technology Data Exchange (ETDEWEB)
Byczuk, Krzysztof [Institute of Theoretical Physics, Warsaw University, ul. Hoza 69, PL-00-681 Warsaw (Poland)]. E-mail: byczuk@fuw.edu.pl; Hofstetter, Walter [Condensed Matter Theory Group, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Vollhardt, Dieter [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute for Physics, University of Augsburg, D-86135 Augsburg (Germany)
2005-04-30
The Anderson-Hubbard Hamiltonian at half-filling is investigated within dynamical mean-field theory at zero temperature. The local density of states is calculated by taking the geometric and arithmetic mean, respectively. The non-magnetic ground state phase diagrams obtained within the different averaging schemes are compared.
Energy Technology Data Exchange (ETDEWEB)
Backes, Steffen
2017-04-15
The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non
Transport in multilayered nanostructures the dynamical mean-field theory approach
Freericks, James K
2016-01-01
Over the last 25 years, dynamical mean-field theory (DMFT) has emerged as one of the most powerful new developments in many-body physics. Written by one of the key researchers in the field, this book presents the first comprehensive treatment of this ever-developing topic. Transport in Mutlilayered Nanostructures is varied and modern in its scope, and: A series of over 50 problems help develop the skills to allow readers to reach the level of being able to contribute to research. This book is suitable for an advanced graduate course in DMFT, and for individualized study by graduate students, postdoctoral fellows and advanced researchers wishing to enter the field.
Effective field theory calculation of conservative binary dynamics at third post-Newtonian order
Foffa, S
2011-01-01
We reproduce the two-body gravitational conservative dynamics at third post-Newtonian order for spin-less sources by using the effective field theory methods for the gravitationally bound two-body system, proposed by Goldberger and Rothstein. This result has been obtained by automatizing the computation of Feynman amplitudes within a Mathematica algorithm, paving the way for higher-order computations not yet performed by traditional methods.
An effective field theory approach to tidal dynamics of astrophysical systems
Endlich, Solomon
2015-01-01
We develop a description of tidal effects in astrophysical systems using effective field theory techniques. Our symmetry-based approach is systematic and equally capable to describe objects in the Newtonian regime (e.g. moons, rocky planets, main sequence stars, etc.) as well as relativistic objects (e.g. neutron stars and black holes). In the Newtonian limit, we recover the dynamical equations for the "weak friction model" with additional corrections due to tidal and rotational deformations.
Fractional dynamics and the TeV regime of field theory
Goldfain, Ervin
2007-04-01
The description of complex dynamics in the TeV regime of field theory warrants the transition from ordinary calculus on smooth manifolds to fractional differentiation and integration. Starting from the principle of local scale invariance, we explore the spectrum of phenomena that is likely to emerge beyond the energy range of the standard model. We find that, in the deep ultraviolet region of field theory, a) fractional dynamics in Minkowski space-time is equivalent to field theory in curved space-time. This result points out to a natural integration of classical gravity in the framework of TeV physics; b) the three gauge groups of the standard model are rooted in the topological concept of fractional dimension. This result suggests that gauge bosons and fermions are unified through a fundamentally different mechanism than the one advocated by supersymmetry; c) fractional dynamics is the underlying source of parity violation in weak interactions and of the breaking of time-reversal invariance in processes involving neutral kaons. Note: this work is available at doi:10.1016/j.cnsns.2006.06.001
The Mochi project: a field theory approach to plasma dynamics and self-organization
You, Setthivoine; von der Linden, Jens; Lavine, Eric Sander; Card, Alexander; Carroll, Evan
2016-10-01
The Mochi project is designed to study the interaction between plasma flows and magnetic fields from the point-of-view of canonical flux tubes. The Mochi Labjet experiment is being commissioned after achieving first plasma. Analytical and numerical tools are being developed to visualize canonical flux tubes. One analytical tool described here is a field theory approach to plasma dynamics and self-organization. A redefinition of the Lagrangian of a multi-particle system in fields reformulates the single-particle, kinetic, and fluid equations governing fluid and plasma dynamics as a single set of generalized Maxwell's equations and Ohm's law for canonical force-fields. The Lagrangian includes new terms representing the coupling between the motion of particle distributions, between distributions and electromagnetic fields, with relativistic contributions. The formulation shows that the concepts of self-organization and canonical helicity transport are applicable across single-particle, kinetic, and fluid regimes, at classical and relativistic scales. The theory gives the basis for comparing canonical helicity change to energy change in general systems. This work is supported by by US DOE Grant DE-SC0010340.
Continuum dynamics and the electromagnetic field in the scalar ether theory of gravitation
Directory of Open Access Journals (Sweden)
Arminjon Mayeul
2016-01-01
Full Text Available An alternative, scalar theory of gravitation has been proposed, based on a mechanism/interpretation of gravity as being a pressure force: Archimedes’ thrust. In it, the gravitational field affects the physical standards of space and time, but motion is governed by an extension of the relativistic form of Newton’s second law. This implies Einstein’s geodesic motion for free particles only in a constant gravitational field. In this work, equations governing the dynamics of a continuous medium subjected to gravitational and non-gravitational forces are derived. Then, the case where the non-gravitational force is the Lorentz force is investigated. The gravitational modification of Maxwell’s equations is obtained under the requirement that a charged continuous medium, subjected to the Lorentz force, obeys the equation derived for continuum dynamics under external forces. These Maxwell equations are shown to be consistent with the dynamics of a “free” photon, and thus with the geometrical optics of this theory. However, these equations do not imply local charge conservation, except for a constant gravitational field.
Continuum dynamics and the electromagnetic field in the scalar ether theory of gravitation
Arminjon, Mayeul
2016-01-01
An alternative, scalar theory of gravitation has been proposed, based on a mechanism/interpretation of gravity as being a pressure force: Archimedes' thrust. In it, the gravitational field affects the physical standards of space and time, but motion is governed by an extension of the relativistic form of Newton's second law. This implies Einstein's geodesic motion for free particles only in a constant gravitational field. In this work, equations governing the dynamics of a continuous medium subjected to gravitational and non-gravitational forces are derived. Then, the case where the non-gravitational force is the Lorentz force is investigated. The gravitational modification of Maxwell's equations is obtained under the requirement that a charged continuous medium, subjected to the Lorentz force, obeys the equation derived for continuum dynamics under external forces. These Maxwell equations are shown to be consistent with the dynamics of a "free" photon, and thus with the geometrical optics of this theory. However, these equations do not imply local charge conservation, except for a constant gravitational field.
Critical dynamics a field theory approach to equilibrium and non-equilibrium scaling behavior
Täuber, Uwe C
2014-01-01
Introducing a unified framework for describing and understanding complex interacting systems common in physics, chemistry, biology, ecology, and the social sciences, this comprehensive overview of dynamic critical phenomena covers the description of systems at thermal equilibrium, quantum systems, and non-equilibrium systems. Powerful mathematical techniques for dealing with complex dynamic systems are carefully introduced, including field-theoretic tools and the perturbative dynamical renormalization group approach, rapidly building up a mathematical toolbox of relevant skills. Heuristic and qualitative arguments outlining the essential theory behind each type of system are introduced at the start of each chapter, alongside real-world numerical and experimental data, firmly linking new mathematical techniques to their practical applications. Each chapter is supported by carefully tailored problems for solution, and comprehensive suggestions for further reading, making this an excellent introduction to critic...
Dynamical Mean-Field Theory and Its Applications to Real Materials
Vollhardt, D.; Held, K.; Keller, G.; Bulla, R.; Pruschke, Th.; Nekrasov, I. A.; Anisimov, V. I.
2005-01-01
Dynamical mean-field theory (DMFT) is a non-perturbative technique for the investigation of correlated electron systems. Its combination with the local density approximation (LDA) has recently led to a material-specific computational scheme for the ab initio investigation of correlated electron materials. The set-up of this approach and its application to materials such as (Sr,Ca)VO3, V2O3, and Cerium is discussed. The calculated spectra are compared with the spectroscopically measured electronic excitation spectra. The surprising similarity between the spectra of the single-impurity Anderson model and of correlated bulk materials is also addressed.
Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials.
Edison, J R; Monson, P A
2013-11-12
We present the extension of dynamic mean field theory (DMFT) for fluids in porous materials (Monson, P. A. J. Chem. Phys. 2008, 128, 084701) to the case of mixtures. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable equilibrium states for fluids in pores after a change in the bulk pressure or composition. It is especially useful for studying systems where there are capillary condensation or evaporation transitions. Nucleation processes associated with these transitions are emergent features of the theory and can be visualized via the time dependence of the density distribution and composition distribution in the system. For mixtures an important component of the dynamics is relaxation of the composition distribution in the system, especially in the neighborhood of vapor-liquid interfaces. We consider two different types of mixtures, modeling hydrocarbon adsorption in carbon-like slit pores. We first present results on bulk phase equilibria of the mixtures and then the equilibrium (stable/metastable) behavior of these mixtures in a finite slit pore and an inkbottle pore. We then use DMFT to describe the evolution of the density and composition in the pore in the approach to equilibrium after changing the state of the bulk fluid via composition or pressure changes.
Kundu, Arnab
2010-01-01
Using the gauge-gravity duality we study strongly coupled dynamics of fundamental flavours in large N_c gauge theories in a constant external field. We primarily focus on the effects of an external magnetic field. We use two holographic models realized in the Type IIB and Type IIA supergravity and present a comparative case study. In both these models, by studying the dynamics of probe branes, we explicitly demonstrate and discuss the magnetically induced chiral symmetry breaking effect ("magnetic catalysis") in the flavour sector. We also study the associated thermodynamics and the meson spectrum and realize e.g. Zeeman splitting, stability enhancement of the mesons in the presence of an external magnetic field etc. By studying the quasinormal modes of the probe brane fluctuation in the hydrodynamic limit we also obtain an analytic dispersion relation in the presence of a magnetic field in the Type IIA model. This dispersion relation consists of a propagating sound mode in the otherwise diffusive channel and...
Developing dynamic field theory architectures for embodied cognitive systems with cedar
Directory of Open Access Journals (Sweden)
Oliver Lomp
2016-11-01
Full Text Available Embodied artificial cognitive systems such as autonomous robots or intelligent observers connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT, a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar, which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real-time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs.
Large N Strong Coupling Dynamics in Non-Supersymmetric Orbifold Field Theories
Dijkgraaf, R; Vafa, C; Dijkgraaf, Robbert; Neitzke, Andrew; Vafa, Cumrun
2002-01-01
We give a recipe relating holomorphic quantities in supersymmetric field theory to their descendants in non-supersymmetric Z_2 orbifold field theories. This recipe, consistent with a recent proposal of Strassler, gives exact results for bifermion condensates, domain wall tensions and gauge coupling constants in the planar limit of the orbifold theories.
Water Bridging Dynamics of Polymerase Chain Reaction in the Gauge Theory Paradigm of Quantum Fields
Directory of Open Access Journals (Sweden)
L. Montagnier
2017-05-01
Full Text Available We discuss the role of water bridging the DNA-enzyme interaction by resorting to recent results showing that London dispersion forces between delocalized electrons of base pairs of DNA are responsible for the formation of dipole modes that can be recognized by Taq polymerase. We describe the dynamic origin of the high efficiency and precise targeting of Taq activity in PCR. The spatiotemporal distribution of interaction couplings, frequencies, amplitudes, and phase modulations comprise a pattern of fields which constitutes the electromagnetic image of DNA in the surrounding water, which is what the polymerase enzyme actually recognizes in the DNA water environment. The experimental realization of PCR amplification, achieved through replacement of the DNA template by the treatment of pure water with electromagnetic signals recorded from viral and bacterial DNA solutions, is found consistent with the gauge theory paradigm of quantum fields.
Tachyon field theory description of (thermo)dynamics in dS space
Li, Huiquan
2015-01-01
In this work, we present a few pieces of evidence in support of a possible connection of the gravitational theory in dS space to the worldvolume theory of unstable D-branes. We show that the action describing the geodesic motion of a massive particle (or point-like object) in static dS space turns out to be the same as that of the tachyon field theory for an unstable particle. The motion along the radial direction from the origin, a locally Minkowski spacetime, to the horizon, a locally Rindler space times a sphere, represents just the tachyon condensation process, therefore providing a geometric picture of tachyon condensation. We further study a scalar in global or flat dS and the tachyon fluctuations in a homogeneous tachyon background, representing either the full or half S-brane, on unstable D-branes and find that certain dynamics of the dS universe corresponds to that of the homogeneous full or half S-brane. The thermal temperature of tachyon radiation is found to agree with that felt by any timelike ob...
Nonequilibrium dynamical mean-field theory: an auxiliary quantum master equation approach.
Arrigoni, Enrico; Knap, Michael; von der Linden, Wolfgang
2013-02-22
We introduce a versatile method to compute electronic steady-state properties of strongly correlated extended quantum systems out of equilibrium. The approach is based on dynamical mean-field theory (DMFT), in which the original system is mapped onto an auxiliary nonequilibrium impurity problem imbedded in a Markovian environment. The steady-state Green's function of the auxiliary system is solved by full diagonalization of the corresponding Lindblad equation. The approach can be regarded as the nontrivial extension of the exact-diagonalization-based DMFT to the nonequilibrium case. As a first application, we consider an interacting Hubbard layer attached to two metallic leads and present results for the steady-state current and the nonequilibrium density of states.
Hamiltonian-based impurity solver for nonequilibrium dynamical mean-field theory
Gramsch, Christian; Balzer, Karsten; Eckstein, Martin; Kollar, Marcus
2013-12-01
We derive an exact mapping from the action of nonequilibrium dynamical mean-field theory (DMFT) to a single-impurity Anderson model (SIAM) with time-dependent parameters, which can be solved numerically by exact diagonalization. The representability of the nonequilibrium DMFT action by a SIAM is established as a rather general property of nonequilibrium Green functions. We also obtain the nonequilibrium DMFT equations using the cavity method alone. We show how to numerically obtain the SIAM parameters using Cholesky or eigenvector matrix decompositions. As an application, we use a Krylov-based time propagation method to investigate the Hubbard model in which the hopping is switched on, starting from the atomic limit. Possible future developments are discussed.
Static and dynamic analysis of a massless scalar field coupled with a class of gravity theories
Kiem, Y H; Kiem, Youngjai; Park, Dahl
1995-01-01
General static solutions for a massless scalar field coupled to a class of effectively 2-d gravity theories continuously connecting spherically symmetric d-dimensional Einstein gravity (d >3) and the CGHS model are analytically obtained. They include black holes and point scalar charge solutions with naked singularities, and are used to give an analytic proof of no-hair theorem. Exact scattering solutions in s-wave 4-d Einstein gravity are constructed as a generalization of corresponding static solutions. They show the existence of black hole formation threshold for square pulse type incoming stress-energy flux, above which trapped surfaces are dynamically formed. The relationship between this behavior and the numerically studied phase transition in this system \\cite{choptuik} is discussed.
Dynamical mean field theory of the repulsive BCS+U model
Energy Technology Data Exchange (ETDEWEB)
Park, Kwon [School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of)], E-mail: kpark@kias.re.kr
2009-07-15
The Gutzwiller-projected BCS Hamiltonian is a useful model for high-temperature superconductivity due to its equivalence to the Heisenberg model at half filling and a close connection to the t-J model at moderate doping. In this work, a dynamical mean field theory (DMFT) is developed for the BCS Hamiltonian with d-wave pairing subject to on-site repulsive interaction, U, which we call the BCS+U model. The large-U limit corresponds to the Gutzwiller-projected BCS Hamiltonian. It is shown that the equivalence between the Heisenberg and the Gutzwiller-projected BCS model is a manifestation of a broader duality in the BCS+U model: for any finite U, the local dynamics of the BCS+U model is dual at half filling with respect to the exchange between the hopping parameter, t, and the pairing amplitude, {delta}. It is explicitly demonstrated in our DMFT analysis that the real superconducting gap, determined from the sharp coherence peaks in the local density of states, shows strong renormalization from its bare value as a function of U.
Schwörer, Magnus; Breitenfeld, Benedikt; Tröster, Philipp; Bauer, Sebastian; Lorenzen, Konstantin; Tavan, Paul; Mathias, Gerald
2013-06-28
Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10(3)-10(5) molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM.
Kelly, Aaron; Brackbill, Nora; Markland, Thomas E
2015-03-07
In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.
Banks, Tom
2008-09-01
1. Introduction; 2. Quantum theory of free scalar fields; 3. Interacting field theory; 4. Particles of spin one, and gauge invariance; 5. Spin 1/2 particles and Fermi statistics; 6. Massive quantum electrodynamics; 7. Symmetries, Ward identities and Nambu Goldstone bosons; 8. Non-abelian gauge theory; 9. Renormalization and effective field theory; 10. Instantons and solitons; 11. Concluding remarks; Appendices; References; Index.
Renormalizable Tensor Field Theories
Geloun, Joseph Ben
2016-01-01
Extending tensor models at the field theoretical level, tensor field theories are nonlocal quantum field theories with Feynman graphs identified with simplicial complexes. They become relevant for addressing quantum topology and geometry in any dimension and therefore form an interesting class of models for studying quantum gravity. We review the class of perturbatively renormalizable tensor field theories and some of their features.
Folk, R; Holovatch, Yu; Moser, G
2009-03-01
We calculate the relaxational dynamical critical behavior of systems of O(n_{ parallel}) plus sign in circleO(n_{ perpendicular}) symmetry including conservation of magnetization by renormalization group theory within the minimal subtraction scheme in two-loop order. Within the stability region of the Heisenberg fixed point and the biconical fixed point, strong dynamical scaling holds, with the asymptotic dynamical critical exponent z=2varphinu-1 , where varphi is the crossover exponent and nu the exponent of the correlation length. The critical dynamics at n_{ parallel}=1 and n_{ perpendicular}=2 is governed by a small dynamical transient exponent leading to nonuniversal nonasymptotic dynamical behavior. This may be seen, e.g., in the temperature dependence of the magnetic transport coefficients.
Advanced classical field theory
Giachetta, Giovanni; Sardanashvily, Gennadi
2009-01-01
Contemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory and its BRST extension for the purpose of quantization. Based on the standard geometric formulation of theory of nonlinear differential operators, Lagrangian field theory is treated in a very general setting. Reducible degenerate Lagrangian theories of even and odd fields on an arbitrary smooth manifold are considered. The second Noether theorems generalized to these theories and formulated in the homology terms provide the strict mathematical formulation of BRST extended classical field theory
Mukherjee, Shantanu; Lee, Wei-Cheng
2015-12-01
The quasiparticle interferences (QPIs) of the featureless Mott insulators are investigated by a T -matrix formalism implemented with the dynamical mean field theory (T -DMFT). In the Mott insulating state, due to the singularity at zero frequency in the real part of the electron self-energy [Re Σ (ω )˜η /ω ] predicted by DMFT, where η can be considered as the "order parameter" for the Mott insulating state, QPIs are completely washed out at small bias voltages. However, a further analysis shows that Re Σ (ω ) serves as an energy-dependent chemical potential shift. As a result, the effective bias voltage seen by the system is e V'=e V -Re Σ (e V ) , which leads to a critical bias voltage e Vc˜√{η } satisfying e V'=0 if and only if η is nonzero. Consequently, the same QPI patterns produced by the noninteracting Fermi surfaces appear at this critical bias voltage e Vc in the Mott insulating state. We propose that this reentry of noninteracting QPI patterns at e Vc could serve as an experimental signature of the Mott insulating state, and the order parameter can be experimentally measured as η ˜(eVc) 2 .
Energy Technology Data Exchange (ETDEWEB)
Heilmann, D.B.
2007-02-15
The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)
Petocchi, Francesco; Capone, Massimo
2016-06-01
We study layered systems and heterostructures of s -wave superconductors by means of a suitable generalization of dynamical mean-field theory. In order to reduce the computational effort, we consider an embedding scheme in which a relatively small number of active layers is embedded in an effective potential accounting for the effect of the rest of the system. We introduce a feedback of the active layers on the embedding potential that improves on previous approaches and essentially eliminates the effects of the finiteness of the active slab allowing for cheap computation of very large systems. We extend the method to the superconducting state, and we benchmark the approach by means of simple paradigmatic examples showing some examples on how an interface affects the superconducting properties. As examples, we show that superconductivity can penetrate from an intermediate coupling superconductor into a weaker coupling one for around ten layers, and that the first two layers of a system with repulsive interaction can turn superconducting by proximity effects even when charge redistribution is inhibited.
Conservation in two-particle self-consistent extensions of dynamical mean-field theory
Krien, Friedrich; van Loon, Erik G. C. P.; Hafermann, Hartmut; Otsuki, Junya; Katsnelson, Mikhail I.; Lichtenstein, Alexander I.
2017-08-01
Extensions of dynamical mean-field theory (DMFT) make use of quantum impurity models as nonperturbative and exactly solvable reference systems which are essential to treat the strong electronic correlations. Through the introduction of retarded interactions on the impurity, these approximations can be made two-particle self-consistent. This is of interest for the Hubbard model because it allows to suppress the antiferromagnetic phase transition in two dimensions in accordance with the Mermin-Wagner theorem, and to include the effects of bosonic fluctuations. For a physically sound description of the latter, the approximation should be conserving. In this paper, we show that the mutual requirements of two-particle self-consistency and conservation lead to fundamental problems. For an approximation that is two-particle self-consistent in the charge and longitudinal spin channels, the double occupancy of the lattice and the impurity is no longer consistent when computed from single-particle properties. For the case of self-consistency in the charge and longitudinal as well as transversal spin channels, these requirements are even mutually exclusive so that no conserving approximation can exist. We illustrate these findings for a two-particle self-consistent and conserving DMFT approximation.
Huang, C; Zhou, B H
2016-01-01
This paper gives general intrinsic theory of general large $N_{c}$ QCD, SU(3) QCD, SU(2) hadron-dynamics and U(1) QED gauge field theories in general field theory and progress towards solving the nucleon spin crisis, i.e., presents general large $N_{c}$ QCD's inner structures, gauge invariant angular momenta and new corresponding Coulomb theorem in quark-gluon field interaction systems based on general field theory, and naturally deduces the gauge invariant spin and orbital angular momentum operators of quark and gauge fields with $SU(N_{c})$ gauge symmetry by Noether theorem in general field theory. In the general large $N_{c}$ QCD, we discover not only the general covariant transverse and parallel conditions ( namely, non-Abelian divergence and curl ), but also that this general system has good intrinsic symmetry characteristics. Specially, this paper's generally decomposing gauge potential theory presents a new technique, it should play a votal role in future physics research. Therefore, this paper breakth...
Aminov, G; Levin, A; Olshanetsky, M; Zotov, A
2013-01-01
We propose multidimensional versions of the Painleve VI equation and its degenerations. These field theories are related to the isomonodromy problems of flat holomorphic infinite rank bundles over elliptic curves and take the form of non-autonomous Hamiltonian equations. The modular parameter of curves plays the role of "time". Reduction of the field equations to the zero modes leads to SL(N,C) monodromy preserving equations. The latter coincide with the Painleve VI equation for N=2. We consider two types of the bundles. In the first one the group of automorphisms is the centrally and cocentrally extended loop group L(SL(N,C)) or some multiloop group. In the case of the Painleve VI field theory in D=1+1 four constants of the Painleve VI equation become dynamical fields. The second type of bundles are defined by the group of automorphisms of the noncommutative torus. They lead to the equations in dimension 2+1. In both cases we consider trigonometric, rational and scaling limits of the theories. Generically (e...
Dynamic self-consistent field theory of inhomogeneous complex fluids under shear
Mihajlovic, Maja Lazar
Understanding and predicting the interplay between morphology and rheology of sheared, inhomogeneous, complex fluids is of great importance. Yet the modeling of such phenomena is in its infancy. We have developed a novel dynamic self-consistent field (DSCF) theory that makes possible a detailed computational study of such phenomena. Our DSCF theory couples the time evolution of chain conformation statistics with probabilistic transport equations for volume fractions and momenta, based on local conservation laws formulated on a segmental scale. To generate chain conformation statistics, we are using a modification of the lattice random walk formalism of Scheutjens and Fleer. Their static SCF theory is limited to equilibrium systems, since probability distributions are obtained by free energy minimization, assuming isotropic Gaussian chain conformations. In contrast, our DSCF approach accounts for explicit time evolution of the segmental and (anisotropic) conditional stepping probabilities used for generating chain conformations. We have applied the DSCF model to a variety of isothermal inhomogenous fluids containing homopolymers, block copolymers and colloidal particles. In all the simulations, the system is equilibrated before the onset of a steady shear at the walls. Our results suggest that, on short time scales, the velocity evolution resembles shock wave propagation. In the course of time, the amplitude of the shock waves is viscously damped, giving rise to a Couette-like steady state velocity profile. This is also reflected in the temporal evolution of the tensor of the second moment of the end-to-end vector and the dissipative stress tensor. The two- and three-component polymer blends (with a diblock copolymer as the third component) exhibit the interfacial velocity and viscosity slip. The addition of a diblock copolymer suppresses the velocity, and therefore the viscosity slip. Colloidal particles suspended in a simple fluid exhibit layering near the walls
Energy Technology Data Exchange (ETDEWEB)
Sugama, H. [National Inst. for Fusion Science, Toki, Gifu (Japan)
1999-08-01
The Lagrangian formulation of the gyrokinetic theory is generalized in order to describe the particles' dynamics as well as the self-consistent behavior of the electromagnetic fields. The gyrokinetic equation for the particle distribution function and the gyrokinetic Maxwell's equations for the electromagnetic fields are both derived from the variational principle for the Lagrangian consisting of the parts of particles, fields, and their interaction. In this generalized Lagrangian formulation, the energy conservation property for the total nonlinear gyrokinetic system of equations is directly shown from the Noether's theorem. This formulation can be utilized in order to derive the nonlinear gyrokinetic system of equations and the rigorously conserved total energy for fluctuations with arbitrary frequency. (author)
Polymer Parametrised Field Theory
Laddha, Alok
2008-01-01
Free scalar field theory on 2 dimensional flat spacetime, cast in diffeomorphism invariant guise by treating the inertial coordinates of the spacetime as dynamical variables, is quantized using LQG type `polymer' representations for the matter field and the inertial variables. The quantum constraints are solved via group averaging techniques and, analogous to the case of spatial geometry in LQG, the smooth (flat) spacetime geometry is replaced by a discrete quantum structure. An overcomplete set of Dirac observables, consisting of (a) (exponentials of) the standard free scalar field creation- annihilation modes and (b) canonical transformations corresponding to conformal isometries, are represented as operators on the physical Hilbert space. None of these constructions suffer from any of the `triangulation' dependent choices which arise in treatments of LQG. In contrast to the standard Fock quantization, the non- Fock nature of the representation ensures that the algebra of conformal isometries as well as tha...
Balanced Topological Field Theories
Dijkgraaf, R.; Moore, G.
We describe a class of topological field theories called ``balanced topological field theories''. These theories are associated to moduli problems with vanishing virtual dimension and calculate the Euler character of various moduli spaces. We show that these theories are closely related to the geometry and equivariant cohomology of ``iterated superspaces'' that carry two differentials. We find the most general action for these theories, which turns out to define Morse theory on field space. We illustrate the constructions with numerous examples. Finally, we relate these theories to topological sigma-models twisted using an isometry of the target space.
Balanced Topological Field Theories
Dijkgraaf, R
1997-01-01
We describe a class of topological field theories called ``balanced topological field theories.'' These theories are associated to moduli problems with vanishing virtual dimension and calculate the Euler character of various moduli spaces. We show that these theories are closely related to the geometry and equivariant cohomology of ``iterated superspaces'' that carry two differentials. We find the most general action for these theories, which turns out to define Morse theory on field space. We illustrate the constructions with numerous examples. Finally, we relate these theories to topological sigma-models twisted using an isometry of the target space.
Franklin, Joel
2017-01-01
Classical field theory, which concerns the generation and interaction of fields, is a logical precursor to quantum field theory, and can be used to describe phenomena such as gravity and electromagnetism. Written for advanced undergraduates, and appropriate for graduate level classes, this book provides a comprehensive introduction to field theories, with a focus on their relativistic structural elements. Such structural notions enable a deeper understanding of Maxwell's equations, which lie at the heart of electromagnetism, and can also be applied to modern variants such as Chern–Simons and Born–Infeld. The structure of field theories and their physical predictions are illustrated with compelling examples, making this book perfect as a text in a dedicated field theory course, for self-study, or as a reference for those interested in classical field theory, advanced electromagnetism, or general relativity. Demonstrating a modern approach to model building, this text is also ideal for students of theoretic...
Edison, John R.; Monson, Peter A.
2013-06-01
This article addresses the accuracy of a dynamic mean field theory (DMFT) for fluids in porous materials [P. A. Monson, J. Chem. Phys. 128, 084701 (2008)], 10.1063/1.2837287. The theory is used to study the relaxation processes of fluids in pores driven by step changes made to a bulk reservoir in contact with the pore. We compare the results of the DMFT to those obtained by averaging over large numbers of dynamic Monte Carlo (DMC) simulation trajectories. The problem chosen for comparison is capillary condensation in slit pores, driven by step changes in the chemical potential in the bulk reservoir and involving a nucleation process via the formation of a liquid bridge. The principal difference between the DMFT results and DMC is the replacement of a distribution of nucleation times and location along the pore for the formation of liquid bridges by a single time and location. DMFT is seen to yield an otherwise qualitatively accurate description of the dynamic behavior.
Folk, R; Holovatch, Yu; Moser, G
2012-02-01
This article concludes a series of papers [Folk, Holovatch, and Moser, Phys. Rev. E 78, 041124 (2008); 78, 041125 (2008); 79, 031109 (2009)] where the tools of the field theoretical renormalization group were employed to explain and quantitatively describe different types of static and dynamic behavior in the vicinity of multicritical points. Here we give the complete two-loop calculation and analysis of the dynamic renormalization-group flow equations at the multicritical point in anisotropic antiferromagnets in an external magnetic field. We find that the time scales of the order parameters characterizing the parallel and perpendicular ordering with respect to the external field scale in the same way. This holds independent whether the Heisenberg fixed point or the biconical fixed point in statics is the stable one. The nonasymptotic analysis of the dynamic flow equations shows that due to cancellation effects the critical behavior is described, in distances from the critical point accessible to experiments, by the critical behavior qualitatively found in one-loop order. Although one may conclude from the effective dynamic exponents (taking almost their one-loop values) that weak scaling for the order parameter components is valid, the flow of the time-scale ratios is quite different, and they do not reach their asymptotic values.
Linking Dynamical Gluon Mass to Chiral Symmetry Breaking via a QCD Low Energy Effective Field Theory
Oliveira, O; Frederico, T
2011-01-01
A low energy effective field theory model for QCD with a scalar color octet field is discussed. The model relates the gluon mass, the constituent quark masses and the quark condensate. The gluon mass comes about $\\sqrt{N_c}\\, \\Lambda_{QCD}$ with the quark condensate being proportional to the gluon mass squared. The model suggests that the restoration of chiral symmetry and the deconfinement transition occur at the same temperature and that, near the transition, the critical exponent for the condensate is twice the gluon mass one. The model also favors the decoupling like solution for the gluon propagator.
Self-consistent field theory based molecular dynamics with linear system-size scaling.
Richters, Dorothee; Kühne, Thomas D
2014-04-01
We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.
Self-consistent field theory based molecular dynamics with linear system-size scaling
Energy Technology Data Exchange (ETDEWEB)
Richters, Dorothee [Institute of Mathematics and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 9, D-55128 Mainz (Germany); Kühne, Thomas D., E-mail: kuehne@uni-mainz.de [Institute of Physical Chemistry and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)
2014-04-07
We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.
Ketov, Sergei V
1995-01-01
Conformal field theory is an elegant and powerful theory in the field of high energy physics and statistics. In fact, it can be said to be one of the greatest achievements in the development of this field. Presented in two dimensions, this book is designed for students who already have a basic knowledge of quantum mechanics, field theory and general relativity. The main idea used throughout the book is that conformal symmetry causes both classical and quantum integrability. Instead of concentrating on the numerous applications of the theory, the author puts forward a discussion of the general
Dynamical Relativistic Systems and the Generalized Gauge Fields of Manifestly Covariant Theories
Horwitz, L P
1998-01-01
The problem of the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on phase space. The original work of Zaslovskii et al showed that the resulting evolution contains a stochastic flow in phase space to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistically charged particle in interaction with the electromagnetic field. We review the standard derivation of the covariant Lorentz force, and review the structure of the relativistic equations used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field. We show how this agreement is achieved, and criticize some of the fundamental assumptions underlying these derivations. We argue that a more complete theory, involving ``off-shell'' electromagnetic fields should be utilized. We then discuss the formulation of the off-shell electromagne...
Arani, A. Ghorbanpour; Jalaei, M. H.
2017-02-01
This research aims to investigate the influence of a longitudinal magnetic field on the dynamic response of single-layered graphene sheet (SLGS) resting on viscoelastic foundation based on the nonlocal sinusoidal shear deformation theory. The present model is capable of capturing both small scale effect and transverse shear deformation effects of nanoplate, and does not require shear correction factors. The material properties of graphene sheet are assumed orthotropic viscoelastic using Kelvin-Voigt model. Utilizing Hamilton's principle governing equations of motion are derived and solved analytically. The parametric study is conducted, focusing on the remarkable effects of the magnetic field, structural damping, stiffness and damping coefficient of the foundation, nonlocal parameter, aspect ratio and length to thickness ratio on the dynamic response of the SLGS. Results indicate that the longitudinal magnetic field exerted on the SLGS decreases the amplitude of dynamic response. In addition, it is observed that the magnetic field effect on the dynamic response is more distinguished as the nonlocal parameter increases while by increasing the foundation and structural damping coefficients, this effect diminishes. The results of this study can be used in design and manufacturing of nanomechanical devices in the presence of magnetic field as a parametric controller.
Energy Technology Data Exchange (ETDEWEB)
Arani, A. Ghorbanpour, E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience & Nanotechnology University of Kashan, Kashan (Iran, Islamic Republic of); Jalaei, M.H. [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)
2017-02-01
This research aims to investigate the influence of a longitudinal magnetic field on the dynamic response of single-layered graphene sheet (SLGS) resting on viscoelastic foundation based on the nonlocal sinusoidal shear deformation theory. The present model is capable of capturing both small scale effect and transverse shear deformation effects of nanoplate, and does not require shear correction factors. The material properties of graphene sheet are assumed orthotropic viscoelastic using Kelvin-Voigt model. Utilizing Hamilton's principle governing equations of motion are derived and solved analytically. The parametric study is conducted, focusing on the remarkable effects of the magnetic field, structural damping, stiffness and damping coefficient of the foundation, nonlocal parameter, aspect ratio and length to thickness ratio on the dynamic response of the SLGS. Results indicate that the longitudinal magnetic field exerted on the SLGS decreases the amplitude of dynamic response. In addition, it is observed that the magnetic field effect on the dynamic response is more distinguished as the nonlocal parameter increases while by increasing the foundation and structural damping coefficients, this effect diminishes. The results of this study can be used in design and manufacturing of nanomechanical devices in the presence of magnetic field as a parametric controller.
Ignat'ev, Yu G
2015-01-01
The article proposes generalizations of the macroscopic model of plasma of scalar charged particles to the cases of inter-particle interaction with multiple scalar fields and negative effective masses of these particles. The model is based on the microscopic dynamics of a particle at presence of scalar fields. The theory is managed to be generalized naturally having strictly reviewed a series of its key positions depending on the sign of particle masses. Thereby, it is possible to remove the artiicial restriction contradicting the more fundamental principle of action functional additivity.
Nonlocal continuum field theories
2002-01-01
Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...
Enßlin, Torsten
2013-01-01
Non-linear image reconstruction and signal analysis deal with complex inverse problems. To tackle such problems in a systematic way, I present information field theory (IFT) as a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms even for non-linear and non-Gaussian signal inference problems. IFT algorithms exploit spatial correlations of the signal fields and b...
Superspace conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-07-15
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Dynamical degrees of freedom of constrained quantum field theories (sigma-model)
Energy Technology Data Exchange (ETDEWEB)
Alonso, F.; Julve, J.; Tiemblo, A.; Tresguerres, R.
1985-09-01
A complete Path Integral Quantization scheme is outlined starting from the Hamiltonian of a theory of N-scalar fields with a constraint (phi/sup 2/-r/sup 2/)=0. The process generates secondary constraints which allow us to recover the traditional Lagrangian after some functional integrations. A prescription to impose 2nd class constraints which makes use of the Lagrange's multiplier method allows to obtain a class of finite Green's Functions. These Green's functions can be seen to involve only (N-1) independent sources.
Boundary Conformal Field Theory
Cardy, J L
2004-01-01
Boundary conformal field theory (BCFT) is simply the study of conformal field theory (CFT) in domains with a boundary. It gains its significance because, in some ways, it is mathematically simpler: the algebraic and geometric structures of CFT appear in a more straightforward manner; and because it has important applications: in string theory in the physics of open strings and D-branes, and in condensed matter physics in boundary critical behavior and quantum impurity models. In this article, however, I describe the basic ideas from the point of view of quantum field theory, without regard to particular applications nor to any deeper mathematical formulations.
Energy Technology Data Exchange (ETDEWEB)
Sadovskii, Michael V.
2013-06-01
This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The work illustrates the unity of modern theoretical physics by combining approaches and concepts of the quantum field theory and modern condensed matter theory. The inductive approach allows a deep understanding of ideas and methods used for solving problems in this field.
Bergshoeff, Eric A; Penas, Victor A; Riccioni, Fabio
2016-01-01
We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O(D,D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O(D,D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for "exotic" dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.
Baden Fuller, A J
2014-01-01
Engineering Field Theory focuses on the applications of field theory in gravitation, electrostatics, magnetism, electric current flow, conductive heat transfer, fluid flow, and seepage.The manuscript first ponders on electric flux, electrical materials, and flux function. Discussions focus on field intensity at the surface of a conductor, force on a charged surface, atomic properties, doublet and uniform field, flux tube and flux line, line charge and line sink, field of a surface charge, field intensity, flux density, permittivity, and Coulomb's law. The text then takes a look at gravitation
Wieser, R
2017-05-04
A self-consistent mean field theory is introduced and used to investigate the thermodynamics and spin dynamics of an S = 1 quantum spin system with a magnetic Skyrmion. The temperature dependence of the Skyrmion profile as well as the phase diagram are calculated. In addition, the spin dynamics of a magnetic Skyrmion is described by solving the time dependent Schrödinger equation with additional damping term. The Skyrmion annihilation process driven by an electric field is used to compare the trajectories of the quantum mechanical simulation with a semi-classical description for the spin expectation values using a differential equation similar to the classical Landau-Lifshitz-Gilbert equation.
An effective field theory during inflation II: stochastic dynamics and power spectrum suppression
Boyanovsky, D
2015-01-01
We obtain the non-equilibrium effective action of an inflaton like scalar field --the system-- by tracing over sub Hubble degrees of freedom of ``environmental'' light scalar fields. The effective action is stochastic leading to effective Langevin equations of motion for the fluctuations of the inflaton-like field, with self-energy corrections and stochastic noise correlators that obey a de Sitter space-time analog of a fluctuation dissipation relation. We solve the Langevin equation implementing a dynamical renormalization group resummation of the leading secular terms and obtain the corrections to the power spectrum of super Hubble fluctuations of the inflaton field, $\\mathcal{P}(k;\\eta) = \\mathcal{P}_0(k)\\,e^{-\\gamma(k;\\eta)}$ where $\\mathcal{P}_0(k)$ is the nearly scale invariant power spectrum in absence of coupling. $\\gamma(k;\\eta)>0$ describes the suppression of the power spectrum, it features Sudakov-type double logarithms and entails violations of scale invariance. We also obtain the effective action...
Khrennikov, Andrei
2011-03-01
The idea that quantum randomness can be reduced to randomness of classical fields (fluctuating at time and space scales which are essentially finer than scales approachable in modern quantum experiments) is rather old. Various models have been proposed, e.g., stochastic electrodynamics or the semiclassical model. Recently a new model, so called prequantum classical statistical field theory (PCSFT), was developed. By this model a "quantum system" is just a label for (so to say "prequantum") classical random field. Quantum averages can be represented as classical field averages. Correlations between observables on subsystems of a composite system can be as well represented as classical correlations. In particular, it can be done for entangled systems. Creation of such classical field representation demystifies quantum entanglement. In this paper we show that quantum dynamics (given by Schrödinger's equation) of entangled systems can be represented as the stochastic dynamics of classical random fields. The "effect of entanglement" is produced by classical correlations which were present at the initial moment of time, cf. views of Albert Einstein.
Covariantizing Classical Field Theories
López, Marco Castrillón
2010-01-01
We show how to enlarge the covariance group of any classical field theory in such a way that the resulting "covariantized" theory is 'essentially equivalent' to the original. In particular, our technique will render any classical field theory generally covariant, that is, the covariantized theory will be spacetime diffeomorphism-covariant and free of absolute objects. Our results thus generalize the well-known parametrization technique of Dirac and Kucha\\v{r}. Our constructions apply equally well to internal covariance groups, in which context they produce natural derivations of both the Utiyama minimal coupling and St\\"uckelberg tricks.
Mandl, Franz
2010-01-01
Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic
Dynamic gluon confinement in high energy processes within effective QCD field theory
Kinder-Geiger, Klaus
1994-01-01
An effective Lagrangian approach to describe the dynamics of confinement and symmetry breaking in the process of quark-gluon to hadron conversion is proposed. The deconfined quark and gluon degrees of freedom of the perturbative QCD vacuum are coupled to color neutral condensate fields representing the non-perturbative vacuum with broken scale and chiral symmetry. As a first application the evolution of gluons emitted by a fragmenting high energy q\\bar q pair from the perturbative to the non-perturbative regime with confinement is studied. For reasonable parameter choice the solution of the equations of motion leads to flux tube configurations with a string tension t \\simeq 1 GeV/fm.
Perturbative Topological Field Theory
Dijkgraaf, Robbert
We give a review of the application of perturbative techniques to topological quantum field theories, in particular three-dimensional Chern-Simons-Witten theory and its various generalizations. To this end we give an introduction to graph homology and homotopy algebras and the work of Vassiliev and Kontsevich on perturbative knot invariants.
de Wit, Bernard
1990-01-01
After a brief and practical introduction to field theory and the use of Feynman diagram, we discuss the main concept in gauge theories and their application in elementary particle physics. We present all the ingredients necessary for the construction of the standard model.
Covariant Hamiltonian field theory
Giachetta, G; Sardanashvily, G
1999-01-01
We study the relationship between the equations of first order Lagrangian field theory on fiber bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase space of covariant Hamiltonian field theory. The main peculiarity of these Hamilton equations lies in the fact that, for degenerate systems, they contain additional gauge fixing conditions. We develop the BRST extension of the covariant Hamiltonian formalism, characterized by a Lie superalgebra of BRST and anti-BRST symmetries.
Finite volume spectrum of 2D field theories from Hirota dynamics
Energy Technology Data Exchange (ETDEWEB)
Gromov, Nikolay [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[St. Petersburg INP, Gatchina (Russian Federation); Kazakov, Vladimir [Univ. Paris-IV, Paris (France). Ecole Normale Superieure, Lab. de Physique Theorique; Vieira, Pedro [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany)]|[Univ. do Porto (Portugal). Dept. de Fisica e Centro de Fisica do Porto Faculdade de Ciencias
2008-12-15
We propose, using the example of the O(4) sigma model, a general method for solving integrable two dimensional relativistic sigma models in a finite size periodic box. Our starting point is the so-called Y-system, which is equivalent to the thermodynamic Bethe ansatz equations of Yang and Yang. It is derived from the Zamolodchikov scattering theory in the cross channel, for virtual particles along the non-compact direction of the space-time cylinder. The method is based on the integrable Hirota dynamics that follows from the Y-system. The outcome is a nonlinear integral equation for a single complex function, valid for an arbitrary quantum state and accompanied by the finite size analogue of Bethe equations. It is close in spirit to the Destri-deVega (DdV) equation. We present the numerical data for the energy of various states as a function of the size, and derive the general Luescher-type formulas for the finite size corrections. We also re-derive by our method the DdV equation for the SU(2) chiral Gross-Neveu model. (orig.)
Edison, John R; Monson, Peter A
2014-07-14
Recently we have developed a dynamic mean field theory (DMFT) for lattice gas models of fluids in porous materials [P. A. Monson, J. Chem. Phys. 128(8), 084701 (2008)]. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable states for fluids in pores and is especially useful for studying system exhibiting adsorption/desorption hysteresis. In this paper we discuss the extension of the theory to higher order by means of the path probability method (PPM) of Kikuchi and co-workers. We show that this leads to a treatment of the dynamics that is consistent with thermodynamics coming from the Bethe-Peierls or Quasi-Chemical approximation for the equilibrium or metastable equilibrium states of the lattice model. We compare the results from the PPM with those from DMFT and from dynamic Monte Carlo simulations. We find that the predictions from PPM are qualitatively similar to those from DMFT but give somewhat improved quantitative accuracy, in part due to the superior treatment of the underlying thermodynamics. This comes at the cost of greater computational expense associated with the larger number of equations that must be solved.
Electronic structure of CeRu4Sn6: a density functional plus dynamical mean field theory study
Wissgott, Philipp; Held, Karsten
2016-01-01
The Kondo system CeRu4Sn6 shows a strong anisotropy in its electric, optic and magnetic properties. We employ density functional theory plus dynamical mean field theory and show that the predominant Ce-f state has total angular moment J = 5 / 2 and z-component mJ = ± 1 / 2 in agreement with recent X-ray absorption experiments. There is also an admixture of mJ = ± 3 / 2 which is reduced in favor of mJ = ± 1 / 2 with the onset of the Kondo effect. Even though CeRu4Sn6 has the direct gap of a Kondo insulator through most of the Brillouin zone it remains weakly metallic. This is because of (i) a band crossing in the z-direction and (ii) a negative indirect gap.
Gukelberger, Jan; Hafermann, Hartmut
2016-01-01
The dual-fermion approach provides a formally exact prescription for calculating properties of a correlated electron system in terms of a diagrammatic expansion around dynamical mean-field theory (DMFT). It can address the full range of interactions, the lowest order theory is asymptotically exact in both the weak- and strong-coupling limits, and the technique naturally incorporates long-range correlations beyond the reach of current cluster extensions to DMFT. Most practical implementations, however, neglect higher-order interaction vertices beyond two-particle scattering in the dual effective action and further truncate the diagrammatic expansion in the two-particle scattering vertex to a leading-order or ladder-type approximation. In this work we compute the dual-fermion expansion for the Hubbard model including all diagram topologies with two-particle interactions to high orders by means of a stochastic diagrammatic Monte Carlo algorithm. We use benchmarking against numerically exact Diagrammatic Determin...
Dynamic statistical information theory
Institute of Scientific and Technical Information of China (English)
XING; Xiusan
2006-01-01
In recent years we extended Shannon static statistical information theory to dynamic processes and established a Shannon dynamic statistical information theory, whose core is the evolution law of dynamic entropy and dynamic information. We also proposed a corresponding Boltzmman dynamic statistical information theory. Based on the fact that the state variable evolution equation of respective dynamic systems, i.e. Fokker-Planck equation and Liouville diffusion equation can be regarded as their information symbol evolution equation, we derived the nonlinear evolution equations of Shannon dynamic entropy density and dynamic information density and the nonlinear evolution equations of Boltzmann dynamic entropy density and dynamic information density, that describe respectively the evolution law of dynamic entropy and dynamic information. The evolution equations of these two kinds of dynamic entropies and dynamic informations show in unison that the time rate of change of dynamic entropy densities is caused by their drift, diffusion and production in state variable space inside the systems and coordinate space in the transmission processes; and that the time rate of change of dynamic information densities originates from their drift, diffusion and dissipation in state variable space inside the systems and coordinate space in the transmission processes. Entropy and information have been combined with the state and its law of motion of the systems. Furthermore we presented the formulas of two kinds of entropy production rates and information dissipation rates, the expressions of two kinds of drift information flows and diffusion information flows. We proved that two kinds of information dissipation rates (or the decrease rates of the total information) were equal to their corresponding entropy production rates (or the increase rates of the total entropy) in the same dynamic system. We obtained the formulas of two kinds of dynamic mutual informations and dynamic channel
Wentzel, Gregor
2003-01-01
A prominent figure in twentieth-century physics, Gregor Wentzel made major contributions to the development of quantum field theory, first in Europe and later at the University of Chicago. His Quantum Theory of Fields offers a knowledgeable view of the original literature of elementary quantum mechanics and helps make these works accessible to interested readers.An introductory volume rather than an all-inclusive account, the text opens with an examination of general principles, without specification of the field equations of the Lagrange function. The following chapters deal with particular
Scheel, Merry Elisabeth; Pedersen, Birthe D; Rosenkrands, Vibeke
2008-12-01
Nursing is often described from the point of view of either the natural or the human sciences. In contrast to this, the value foundation in Interactional nursing practice is understood from the point of view of the natural sciences as well as that of the human and social sciences. This article presents many-faceted practice-theory of nursing, which is situated in the dynamic field between these three sciences. The focus of the theory is on interaction and practice resulting in a caring practice. Here practice is based on Taylor's and MacIntyre's interpretation of this concept. Action in nursing is based on Habermas' three varied modes of action seen in the light of an understanding of the world as a system world and a life world. Nursing as an interactional practice-theory is presented with examples of interpretative nursing science, seen in the ethical action-oriented, socio-cultural framework of Taylor and Habermas. It is concluded that phenomenologic and socio-cultural research into caring practice as well as an in-depth, comprehensive interpretation of nursing practice are both highly suited to forming the fundamental theoretical framework in nursing, here seen as an interpretative nursing science. Finally, a comparison is drawn between Interactional nursing practice and Benner's theory of nursing practice.
Forest, M. Gregory; Sircar, Sarthok; Wang, Qi; Zhou, Ruhai
2006-10-01
We establish reciprocity relations of the Doi-Hess kinetic theory for rigid rod macromolecular suspensions governed by the strong coupling among an excluded volume potential, linear flow, and a magnetic field. The relation provides a reduction of the flow and field driven Smoluchowski equation: from five parameters for coplanar linear flows and magnetic field, to two field parameters. The reduced model distinguishes flows with a rotational component, which map to simple shear (with rate parameter) subject to a transverse magnetic field (with strength parameter), and irrotational flows, for which the reduced model consists of a triaxial extensional flow (with two extensional rate parameters). We solve the Smoluchowski equation of the reduced model to explore: (i) the effect of introducing a coplanar magnetic field on each sheared monodomain attractor of the Doi-Hess kinetic theory and (ii) the coupling of coplanar extensional flow and magnetic fields. For (i), we show each sheared attractor (steady and unsteady, with peak axis in and out of the shearing plane, periodic and chaotic orbits) undergoes its own transition sequence versus magnetic field strength. Nonetheless, robust predictions emerge: out-of-plane degrees of freedom are arrested with increasing field strength, and a unique flow-aligning or tumbling/wagging limit cycle emerges above a threshold magnetic field strength or modified geometry parameter value. For (ii), irrotational flows coupled with a coplanar magnetic field yield only steady states. We characterize all (generically biaxial) equilibria in terms of an explicit Boltzmann distribution, providing a natural generalization of analytical results on pure nematic equilibria [P. Constantin, I. Kevrekidis, and E. S. Titi, Arch. Rat. Mech. Anal. 174, 365 (2004); P. Constantin, I. Kevrekidis, and E. S. Titi, Discrete and Continuous Dynamical Systems 11, 101 (2004); P. Constantin and J. Vukadinovic, Nonlinearity 18, 441 (2005); H. Liu, H. Zhang, and P
Logarithmic conformal field theory
Gainutdinov, Azat; Ridout, David; Runkel, Ingo
2013-12-01
Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more
Theory of electromagnetic fields
Wolski, Andrzej
2011-01-01
We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.
Dynamical tunneling theory and experiment
Keshavamurthy, Srihari
2011-01-01
A prominent aspect of quantum theory, tunneling arises in a variety of contexts across several fields of study, including nuclear, atomic, molecular, and optical physics and has led to technologically relevant applications in mesoscopic science. Exploring mechanisms and consequences, Dynamical Tunneling: Theory and Experiment presents the work of international experts who discuss the considerable progress that has been achieved in this arena in the past two decades.Highlights in this volume include:A historical introduction and overview of dynamical tunneling, with case histories ranging from
Experimental quantum field theory
Bell, J S
1977-01-01
Presented here, is, in the opinion of the author, the essential minimum of quantum field theory that should be known to cultivated experimental particle physicists. The word experimental describes not only the audience aimed at but also the level of mathematical rigour aspired to. (0 refs).
Zeidler, Eberhard
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...
Eringen, A Cemal
1999-01-01
Microcontinuum field theories constitute an extension of classical field theories -- of elastic bodies, deformations, electromagnetism, and the like -- to microscopic spaces and short time scales. Material bodies are here viewed as collections of large numbers of deformable particles, much as each volume element of a fluid in statistical mechanics is viewed as consisting of a large number of small particles for which statistical laws are valid. Classical continuum theories are valid when the characteristic length associated with external forces or stimuli is much larger than any internal scale of the body under consideration. When the characteristic lengths are comparable, however, the response of the individual constituents becomes important, for example, in considering the fluid or elastic properties of blood, porous media, polymers, liquid crystals, slurries, and composite materials. This volume is concerned with the kinematics of microcontinua. It begins with a discussion of strain, stress tensors, balanc...
Gurau, R; Rivasseau, V
2008-01-01
We propose a new formalism for quantum field theory which is neither based on functional integrals, nor on Feynman graphs, but on marked trees. This formalism is constructive, i.e. it computes correlation functions through convergent rather than divergent expansions. It applies both to Fermionic and Bosonic theories. It is compatible with the renormalization group, and it allows to define non-perturbatively {\\it differential} renormalization group equations. It accommodates any general stable polynomial Lagrangian. It can equally well treat noncommutative models or matrix models such as the Grosse-Wulkenhaar model. Perhaps most importantly it removes the space-time background from its central place in QFT, paving the way for a nonperturbative definition of field theory in noninteger dimension.
Dynamical Landau theory of the glass crossover
Rizzo, Tommaso
2016-07-01
I introduce a dynamical field theory to describe the glassy behavior in supercooled liquids. The mean-field approximation of the theory predicts a dynamical arrest transition, as in the ideal mode-coupling theory and mean-field discontinuous spin-glass models. Instead, beyond the mean-field approximation, the theory predicts that the transition is avoided and transformed into a crossover, as observed in experiments and simulations. To go beyond mean-field, a standard perturbative loop expansion is performed at first. Approaching the ideal critical point this expansion is divergent at all orders and I show that the leading divergent term at any given order is the same as a dynamical stochastic equation, called stochastic-beta relaxation (SBR) in Europhys. Lett. 106, 56003 (2014), 10.1209/0295-5075/106/56003. At variance with the original theory, SBR can be studied beyond mean-field directly, without the need to resort to a perturbative expansion. Thus it provides a qualitative and quantitative description of the dynamical crossover. For consistency reasons, it is important to establish the connection between the dynamical field theory and SBR beyond perturbation theory. This can be done with the help of a stronger result: the dynamical field theory is exactly equivalent to a theory with quenched disorder. Qualitatively, the nonperturbative mechanism leading to the crossover is therefore the same as the mechanism of SBR. Quantitatively, SBR is equivalent to making the mean-field approximation once the quenched disorder has been generated.
Gao, Yi; Neuhauser, Daniel
2012-08-21
We develop an approach for dynamical (ω > 0) embedding of mixed quantum mechanical (QM)/classical (or more precisely QM/electrodynamics) systems with a quantum sub-region, described by time-dependent density functional theory (TDDFT), within a classical sub-region, modeled here by the recently proposed near-field (NF) method. Both sub-systems are propagated simultaneously and are coupled through a common Coulomb potential. As a first step we implement the method to study the plasmonic response of a metal film which is half jellium-like QM and half classical. The resulting response is in good agreement with both full-scale TDDFT and the purely classical NF method. The embedding method is able to describe the optical response of the whole system while capturing quantum mechanical effects, so it is a promising approach for studying electrodynamics in hybrid molecules-metals nanostructures.
Invariants from classical field theory
Diaz, Rafael
2007-01-01
We introduce a method that generates invariant functions from classical field theories depending on external parameters. We apply our method to several field theories such as abelian BF, Chern-Simons and 2-dimensional Yang-Mills theory.
Bakalov, Petar; Locquet, Jean-Pierre
Using an inhomogeneous dynamical mean-field theory (IDMFT) approach to the single-band Hubbard model we investigate the properties of thin-film superlattices made up of alternating strongly (U1) and weakly (U2 U2), superlattice parameters (L1 ,L2) and transverse electric field on the correlation driven Mott-Hubbard metal-to-insulator transition. We find that when the periodicity of the superlattice is such that the strongly correlated regions are below a certain thickness, the MIT is suppressed due to proximity effects. This work was partially funded by the Flemish Fund for Scientific Research (FWO - Vlaanderen) under FWO Grant G.0520.10 and by the SITOGA FP7 project. Most of the calculations were performed on KU Leuven's ThinKing HPC cluster.
Holographic effective field theories
Energy Technology Data Exchange (ETDEWEB)
Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)
2016-06-28
We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.
Mean Curvature, Threshold Dynamics, and Phase Field Theory on Finite Graphs
2013-06-28
BK91] Lia Bronsard and Robert V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics, J. Differential Equations 90 (1991...Proceedings of the IEEE 95 (2007), no. 1, 215–233. [Peg89] Robert L. Pego, Front migration in the nonlinear cahn-hilliard equation, Proceedings of the Royal...625. [SB10] Arthur Szlam and Xavier Bresson , Total variation and cheeger cuts, Proceedings of the 27th International Conference on Machine Learning
Mean-field theory of globally coupled integrate-and-fire neural oscillators with dynamic synapses
Bressloff, P. C.
1999-08-01
We analyze the effects of synaptic depression or facilitation on the existence and stability of the splay or asynchronous state in a population of all-to-all, pulse-coupled neural oscillators. We use mean-field techniques to derive conditions for the local stability of the splay state and determine how stability depends on the degree of synaptic depression or facilitation. We also consider the effects of noise. Extensions of the mean-field results to finite networks are developed in terms of the nonlinear firing time map.
CERN. Geneva; CERN. Geneva
2001-01-01
Starting from the notion of path integrals as developed by Feynman, we discuss field theory in zero spacetime dimensions. The concepts of perturbation expansions, connected amplitudes, Feynman diagrams, classical solutions, renormalization and the effective action are developed. The model is extended to four spacetime dimensions, and the full Feynman rules for relativisitc scalar theory derived. The S matrix and the concept of unitarity are discussed, leading to the amputation rules for S matrix elements from considerations of unitarity. The rules are extended to include particles with spin-1/2 and spin-1. The high-energy behaviour of the theory is discussed as a method to derive the gauge symmetry of the various models.
Frampton, Paul H
2008-01-01
This third edition on the classic Gauge Field Theories is an ideal reference for researchers starting work with the Large Hadron Collider and the future International Linear Collider. This latest title continues to offer an up to date reference containing revised chapters on electroweak interactions and model building including a completely new chapter on conformality. Within this essential reference logical organization of the material on gauge invariance, quantization, and renormalization is also discussed providing necessary reading for Cosmologists and Particle Astrophysicists
van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong
2016-06-01
We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.
G., Leonardo Quintanar
2015-01-01
We study the cosmological implications of the Nambu-Jona-Lasinio (NJL model) when the coupling constant is field dependent. The NJL model has a four-fermion interaction describing two different phases due to quantum interaction effects and determined by the strength of the coupling constant g. It describes massless fermions for weak coupling and a massive fermions and strong coupling, where a fermion condensate is formed. In the original NJL model the coupling constant g is indeed constant, and in this work we consider a modified version of the NJL model by introducing a dynamical field dependent coupling motivated by string theory. The effective potential as a function of the varying coupling (aimed to implement a natural phase transition) is seen to develop a negative divergence, i.e. becomes a "bottomless well" in certain limit region. Although we explain how an lower unbounded potential is not necessarily unacceptable in a cosmological context, the divergence can be removed if we consider a mass term for ...
A course in mathematical physics 1 and 2 classical dynamical systems and classical field theory
Thirring, Walter
1992-01-01
The last decade has seen a considerable renaissance in the realm of classical dynamical systems, and many things that may have appeared mathematically overly sophisticated at the time of the first appearance of this textbook have since become the everyday tools of working physicists. This new edition is intended to take this development into account. I have also tried to make the book more readable and to eradicate errors. Since the first edition already contained plenty of material for a one semester course, new material was added only when some of the original could be dropped or simplified. Even so, it was necessary to expand the chap ter with the proof of the K-A-M Theorem to make allowances for the cur rent trend in physics. This involved not only the use of more refined mathe matical tools, but also a reevaluation of the word "fundamental. " What was earlier dismissed as a grubby calculation is now seen as the consequence of a deep principle. Even Kepler's laws, which determine the radii of the ...
Geometries from field theories
Aoki, Sinya; Kikuchi, Kengo; Onogi, Tetsuya
2015-10-01
We propose a method to define a d+1-dimensional geometry from a d-dimensional quantum field theory in the 1/N expansion. We first construct a d+1-dimensional field theory from the d-dimensional one via the gradient-flow equation, whose flow time t represents the energy scale of the system such that trArr 0 corresponds to the ultraviolet and trArr infty to the infrared. We then define the induced metric from d+1-dimensional field operators. We show that the metric defined in this way becomes classical in the large-N limit, in the sense that quantum fluctuations of the metric are suppressed as 1/N due to the large-N factorization property. As a concrete example, we apply our method to the O(N) nonlinear σ model in two dimensions. We calculate the 3D induced metric, which is shown to describe an anti-de Sitter space in the massless limit. Finally, we discuss several open issues for future studies.
Higgs Effective Field Theories
2016-01-01
The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.
Vizgin, Vladimir P
2011-01-01
Despite the rapidly expanding ambit of physical research and the continual appearance of new branches of physics, the main thrust in its development has been the attempt at a theoretical synthesis of the entire body of physical knowledge. Vladimir Vizgin's work presents perhaps the first systematic historico-scientific study of the formation and development of the unified field theories in the general context of 20th century physics. Concentrating on the first three decades of the century and drawing extensively on Russian sources, the author analyses the first successes, failures and paths of
Karpilovsky, G
1989-01-01
This monograph gives a systematic account of certain important topics pertaining to field theory, including the central ideas, basic results and fundamental methods.Avoiding excessive technical detail, the book is intended for the student who has completed the equivalent of a standard first-year graduate algebra course. Thus it is assumed that the reader is familiar with basic ring-theoretic and group-theoretic concepts. A chapter on algebraic preliminaries is included, as well as a fairly large bibliography of works which are either directly relevant to the text or offer supplementary material of interest.
Lectures on Matrix Field Theory
Ydri, Badis
The subject of matrix field theory involves matrix models, noncommutative geometry, fuzzy physics and noncommutative field theory and their interplay. In these lectures, a lot of emphasis is placed on the matrix formulation of noncommutative and fuzzy spaces, and on the non-perturbative treatment of the corresponding field theories. In particular, the phase structure of noncommutative $\\phi^4$ theory is treated in great detail, and an introduction to noncommutative gauge theory is given.
DEFF Research Database (Denmark)
Shu, Chuan-Cun; Henriksen, Niels E.
2012-01-01
We implement phase-only shaped laser pulses within quantum optimal control theory for laser-molecule interaction. This approach is applied to the indirect photofragmentation dynamics of NaI in the weak-field limit. It is shown that optimized phase-modulated pulses with a fixed frequency...
Theory of interacting quantum fields
Rebenko, Alexei L
2012-01-01
This monograph is devoted to the systematic and encyclopedic presentation of the foundations of quantum field theory. It represents mathematical problems of the quantum field theory with regardto the new methods of the constructive and Euclidean field theory formed for the last thirty years of the 20th century on the basis of rigorous mathematical tools of the functional analysis, the theory of operators, and the theory of generalized functions. The book is useful for young scientists who desire to understand not only the formal structure of the quantum field theory but also its basic concepts and connection with classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of functional integration.
DEFF Research Database (Denmark)
Miyagi, Haruhide; Madsen, Lars Bojer
2013-01-01
We present the time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory as a framework for the time-dependent many-electron problem. The theory generalizes the multiconfigurational time-dependent Hartree-Fock (MCTDHF) theory by incorporating the restricted-active-space scheme...... well known in time-independent quantum chemistry. Optimization of the orbitals as well as the expansion coefficients at each time step makes it possible to construct the wave function accurately while using only a relatively small number of electronic configurations. In numerical calculations of high...
Khoury, Justin
2013-01-01
Chameleons are light scalar fields with remarkable properties. Through the interplay of self-interactions and coupling to matter, chameleon particles have a mass that depends on the ambient matter density. The manifestation of the fifth force mediated by chameleons therefore depends sensitively on their environment, which makes for a rich phenomenology. In this article, we review two recent results on chameleon phenomenology. The first result a pair of no-go theorems limiting the cosmological impact of chameleons and their generalizations: i) the range of the chameleon force at cosmological density today can be at most ~Mpc; ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time. These theorems imply that chameleons have negligible effect on the linear growth of structure, and cannot account for the observed cosmic acceleration except as some form of dark energy. The second result pertains to the quantum stability of chameleon theories. We ...
Double Field Theory Inspired Cosmology
Wu, Houwen
2014-01-01
Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We find two sets of solutions in double field theory cosmology, respecting or violating the strong (weak) constraint. Both sets of solutions naturally contain the pre- and post-big bang evolutions in one single line element. This novel feature opens a window for possible resolution of the cosmic amnesia. We also demonstrate that the scale factor duality in the standard string cosmology is nothing but the T-duality in double field theory. The scale dual dilatons in the standard string cosmology is simply the usual diffeomorphic scalar dilaton $\\phi$ and dual diffeomorphic scalar dilaton $\\tilde\\phi$ in double field theory. Furthermore, we identify the "sh...
Energy Technology Data Exchange (ETDEWEB)
Wu, Wei [Department of Physics and Astronomy and Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794 (United States); Wang, Jin, E-mail: jin.wang.1@stonybrook.edu [Department of Physics and Astronomy and Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794 (United States); State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China and College of Physics, Jilin University, 130021 Changchun (China)
2014-09-14
We have established a general non-equilibrium thermodynamic formalism consistently applicable to both spatially homogeneous and, more importantly, spatially inhomogeneous systems, governed by the Langevin and Fokker-Planck stochastic dynamics with multiple state transition mechanisms, using the potential-flux landscape framework as a bridge connecting stochastic dynamics with non-equilibrium thermodynamics. A set of non-equilibrium thermodynamic equations, quantifying the relations of the non-equilibrium entropy, entropy flow, entropy production, and other thermodynamic quantities, together with their specific expressions, is constructed from a set of dynamical decomposition equations associated with the potential-flux landscape framework. The flux velocity plays a pivotal role on both the dynamic and thermodynamic levels. On the dynamic level, it represents a dynamic force breaking detailed balance, entailing the dynamical decomposition equations. On the thermodynamic level, it represents a thermodynamic force generating entropy production, manifested in the non-equilibrium thermodynamic equations. The Ornstein-Uhlenbeck process and more specific examples, the spatial stochastic neuronal model, in particular, are studied to test and illustrate the general theory. This theoretical framework is particularly suitable to study the non-equilibrium (thermo)dynamics of spatially inhomogeneous systems abundant in nature. This paper is the second of a series.
Quantum field theory of fluids.
Gripaios, Ben; Sutherland, Dave
2015-02-20
The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.
Energy Technology Data Exchange (ETDEWEB)
McMahan, A K
2005-03-30
This paper reports calculations for compressed Ce (4f{sup 1}), Pr (4f{sup 2}), and Nd (4f{sup 3}) using a combination of the local-density approximation (LDA) and dynamical mean field theory (DMFT), or LDA+DMFT. The 4f moment, spectra, and the total energy among other properties are examined as functions of volume and atomic number for an assumed face-centered cubic (fcc) structure. These materials are seen to be strongly localized at ambient pressure and for compressions up through the experimentally observed fcc phases ({gamma} phase for Ce), in the sense of having fully formed Hund's rules moments and little 4f spectral weight at the Fermi level. Subsequent compression for all three lanthanides brings about significant deviation of the moments from their Hund's rules values, a growing Kondo resonance at the fermi level, an associated softening in the total energy, and quenching of the spin orbit since the Kondo resonance is of mixed spin-orbit character while the lower Hubbard band is predominantly j = 5/2. while the most dramatic changes for Ce occur within the two-phase region of the {gamma}-{alpha} volume collapse transition, as found in earlier work, those for Pr and Nd occur within the volume range of the experimentally observed distorted fcc (dfcc) phase, which is therefore seen here as transitional and not part of the localized trivalent lanthanide sequence. The experimentally observed collapse to the {alpha}-U structure in Pr occurs only on further compression, and no such collapse is found in Nd. These lanthanides start closer to the localized limit for increasing atomic number, and so the theoretical signatures noted above are also offset to smaller volume as well, which is possibly related to the measured systematics of the size of the volume collapse being 15%, 9%, and none for Ce, Pr, and Nd, respectively.
Ostrogradsky in Theories with Multiple Fields
de Rham, Claudia
2016-01-01
We review how the (absence of) Ostrogradsky instability manifests itself in theories with multiple fields. It has recently been appreciated that when multiple fields are present, the existence of higher derivatives may not automatically imply the existence of ghosts. We discuss the connection with gravitational theories like massive gravity and beyond Horndeski which manifest higher derivatives in some formulations and yet are free of Ostrogradsky ghost. We also examine an interesting new class of Extended Scalar--Tensor Theories of gravity which has been recently proposed. We show that for a subclass of these theories, the tensor modes are either not dynamical or are infinitely strongly coupled. Among the remaining theories for which the tensor modes are well-defined one counts one new model that is not field-redefinable to Horndeski via a conformal and disformal transformation but that does require the vacuum to break Lorentz invariance. We discuss the implications for the effective field theory of dark ene...
The conceptual framework of quantum field theory
Duncan, Anthony
2012-01-01
The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quan...
Field redefinition invariance in quantum field theory
Apfeldorf, K M; Apfeldorf, Karyn M; Ordonez, Carlos
1994-01-01
We investigate the consequences of field redefinition invariance in quantum field theory by carefully performing nonlinear transformations in the path integral. We first present a ``paradox'' whereby a 1+1 freemassless scalar theory on a Minkowskian cylinder is reduced to an effectively quantum mechanical theory. We perform field redefinitions both before and after reduction to suggest that one should not ignore operator ordering issues in quantum field theory. We next employ a discretized version of the path integral for a free massless scalar quantum field in d dimensions to show that beyond the usual jacobian term, an infinite series of divergent ``extra'' terms arises in the action whenever a nonlinear field redefinition is made. The explicit forms for the first couple of these terms are derived. We evaluate Feynman diagrams to illustrate the importance of retaining the extra terms, and conjecture that these extra terms are the exact counterterms necessary to render physical quantities invariant under fie...
Dynamics of Gauge Fields at High Temperature
Nauta, B.J.
2000-01-01
An effective description of dynamical Bose fields is provided by the classical (high-temperature) limit of thermal field theory. The main subject of this thesis is to improve the ensuing classical field theory, that is, to include the dominant quantum corrections and to add counter terms for the Ray
Dynamics of Gauge Fields at High Temperature
Nauta, B.J.
2000-01-01
An effective description of dynamical Bose fields is provided by the classical (high-temperature) limit of thermal field theory. The main subject of this thesis is to improve the ensuing classical field theory, that is, to include the dominant quantum corrections and to add counter terms for the Ray
Dynamics of ${\\cal N}=4$ supersymmetric field theories in 2+1 dimensions and their gravity dual
Cottrell, William; Hashimoto, Akikazu
2015-01-01
In this note we consider ${\\cal N}=4$ SYM theories in 2+1 dimensions with gauge group $U(N)\\times U(M)$ and $k$ hypermultiplets charged under the $U(N)$. When $k > 2(N-M)$, the theory flows to a superconformal fixed point in the IR. Theories with $k <2(N-M)$, on the other hand, flows to strong coupling. We explore these theories from the perspective of gravity dual. We find that the gravity duals of theories with $k < (N-M)$ contain enhancons even in situations where repulson singularities are absent. We argue that supergravity description is unreliable in the region near these enhancon points. Instead, we show how to construct reliable sugra duals to particular points on the Coulomb branch where the enhancon is screened. We explore how these singularities reappear as one moves around in Coulomb branch and comment on possible field theory interpretation of this phenomenon. In analyzing gauge/gravity duality for these models, we encountered one unexpected surprise, that the condition for the supergravity...
Contributions of Dynamic Systems Theory to Cognitive Development
Spencer, John P.; Austin, Andrew; Schutte, Anne R.
2012-01-01
We examine the contributions of dynamic systems theory to the field of cognitive development, focusing on modeling using dynamic neural fields. After introducing central concepts of dynamic field theory (DFT), we probe empirical predictions and findings around two examples--the DFT of infant perseverative reaching that explains Piaget's A-not-B…
Contributions of Dynamic Systems Theory to Cognitive Development
Spencer, John P.; Austin, Andrew; Schutte, Anne R.
2012-01-01
We examine the contributions of dynamic systems theory to the field of cognitive development, focusing on modeling using dynamic neural fields. After introducing central concepts of dynamic field theory (DFT), we probe empirical predictions and findings around two examples--the DFT of infant perseverative reaching that explains Piaget's A-not-B…
DEFF Research Database (Denmark)
Miyagi, Haruhide; Madsen, Lars Bojer
2013-01-01
We present the time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory as a framework for the time-dependent many-electron problem. The theory generalizes the multiconfigurational time-dependent Hartree-Fock (MCTDHF) theory by incorporating the restricted-active-space scheme...... well known in time-independent quantum chemistry. Optimization of the orbitals as well as the expansion coefficients at each time step makes it possible to construct the wave function accurately while using only a relatively small number of electronic configurations. In numerical calculations of high......-order harmonic generation spectra of a one-dimensional model of atomic beryllium interacting with a strong laser pulse, the TD-RASSCF method is reasonably accurate while largely reducing the computational complexity. The TD-RASSCF method has the potential to treat large atoms and molecules beyond the capability...
Shu, Chuan-Cun; Henriksen, Niels E
2012-01-28
We implement phase-only shaped laser pulses within quantum optimal control theory for laser-molecule interaction. This approach is applied to the indirect photofragmentation dynamics of NaI in the weak-field limit. It is shown that optimized phase-modulated pulses with a fixed frequency distribution can substantially modify transient dissociation probabilities as well as the momentum distribution associated with the relative motion of Na and I.
Field Theory of Fundamental Interactions
Wang, Shouhong; Ma, Tian
2017-01-01
First, we present two basic principles, the principle of interaction dynamics (PID) and the principle of representation invariance (PRI). Intuitively, PID takes the variation of the action under energy-momentum conservation constraint. We show that the PID is the requirement of the presence of dark matter and dark energy, the Higgs field and the quark confinement. PRI requires that the SU(N) gauge theory be independent of representations of SU(N). It is clear that PRI is the logic requirement of any gauge theory. With PRI, we demonstrate that the coupling constants for the strong and the weak interactions are the main sources of these two interactions, reminiscent of the electric charge. Second, we emphasize that symmetry principles-the principle of general relativity and the principle of Lorentz invariance and gauge invariance-together with the simplicity of laws of nature, dictate the actions for the four fundamental interactions. Finally, we show that the PID and the PRI, together with the symmetry principles give rise to a unified field model for the fundamental interactions, which is consistent with current experimental observations and offers some new physical predictions. The research is supported in part by the National Science Foundation (NSF) grant DMS-1515024, and by the Office of Naval Research (ONR) grant N00014-15-1-2662.
Kwak, Seung Ki
The existence of momentum and winding modes of closed string on a torus leads to a natural idea that the field theoretical approach of string theory should involve winding type coordinates as well as the usual space-time coordinates. Recently developed double field theory is motivated from this idea and it implements T-duality manifestly by doubling the coordinates. In this thesis we will mainly focus on the double field theory formulation of different string theories in its low energy limit: bosonic, heterotic, type II and its massive extensions, and N = 1 supergravity theory. In chapter 2 of the thesis we study the equivalence of different formulations of double field theory. There are three different formulations of double field theory: background field E formulation, generalized metric H formulation, and frame field EAM formulation. Starting from the frame field formalism and choosing an appropriate gauge, the equivalence of the three formulations of bosonic theory are explicitly verified. In chapter 3 we construct the double field theory formulation of heterotic strings. The global symmetry enlarges to O( D, D + n) for heterotic strings and the enlarged generalized metric features this symmetry. The structural form of bosonic theory can directly be applied to the heterotic theory with the enlarged generalized metric. In chapter 4 we develop a unified framework of double field theory for type II theories. The Ramond-Ramond potentials fit into spinor representations of the duality group O( D, D) and the theory displays Spin+( D, D) symmetry with its self-duality relation. For a specific form of RR 1-form the theory reduces to the massive deformation of type IIA theory due to Romans. In chapter 5 we formulate the N = 1 supersymmetric extension of double field theory including the coupling to n abelian vector multiplets. This theory features a local O(1, 9 + n) x O(1, 9) tangent space symmetry under which the fermions transform. (Copies available exclusively from
5d Field Theories and M Theory
Kol, Barak
1997-01-01
5-brane configurations describing 5d field theories are promoted to an M theory description a la Witten in terms of polynomials in two complex variables. The coefficients of the polynomials are the Coulomb branch. This picture resolves apparent singularities at vertices and reveals exponentially small corrections. These corrections ask to be compared to world line instanton corrections. From a different perspective this procedure may be used to define a diagrammatic representation of polynomi...
Properties of double field theory
Penas, Victor Alejandro
2016-01-01
In this thesis we study several aspects of Double Field Theory (DFT). In general, Double Field Theory is subject to the so-called strong constraint. By using the Flux Formulation of DFT, we explore to what extent one can deal with the gauge consistency constraints of DFT without imposing the strong
Lin, Nan; Gull, Emanuel; Millis, Andrew J
2012-09-07
A method is presented for the unbiased numerical computation of two-particle response functions of correlated electron materials via a solution of the dynamical mean-field equations in the presence of a perturbing field. The power of the method is demonstrated via a computation of the Raman B(1g) and B(2g) scattering intensities of the two-dimensional Hubbard model in parameter regimes believed to be relevant to high-temperature superconductivity. The theory reproduces the "two-magnon" peak characteristic of the Raman intensity of insulating parent compounds of high-T(c) copper oxide superconductors, and shows how it evolves to a quasiparticle response, as carriers are added. The method can be applied in any situation where a solution of equilibrium dynamical mean-field equations is feasible.
Resolving Witten's Superstring Field Theory
Erler, Theodore; Sachs, Ivo
2014-01-01
We regulate Witten's open superstring field theory by replacing the picture-changing insertion at the midpoint with a contour integral of picture changing insertions over the half-string overlaps of the cubic vertex. The resulting product between string fields is non-associative, but we provide a solution to the $A_\\infty$ relations defining all higher vertices. The result is an explicit covariant superstring field theory which by construction satisfies the classical BV master equation.
The Nonlinear Field Space Theory
Mielczarek, Jakub; Trześniewski, Tomasz
2016-08-01
In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the "Principle of finiteness" of physical theories, which once motivated the Born-Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.
The Nonlinear Field Space Theory
Energy Technology Data Exchange (ETDEWEB)
Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Trześniewski, Tomasz, E-mail: tbwbt@ift.uni.wroc.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Institute for Theoretical Physics, University of Wrocław, pl. Borna 9, 50-204 Wrocław (Poland)
2016-08-10
In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.
The Nonlinear Field Space Theory
Directory of Open Access Journals (Sweden)
Jakub Mielczarek
2016-08-01
Full Text Available In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity, as well as in condensed matter physics (e.g. continuous spin chains, and can shed new light on the issue of divergences in quantum field theories.
Lectures on quantum field theory
Das, Ashok
2008-01-01
This book consists of the lectures for a two-semester course on quantum field theory, and as such is presented in a quite informal and personal manner. The course starts with relativistic one-particle systems, and develops the basics of quantum field theory with an analysis of the representations of the Poincaré group. Canonical quantization is carried out for scalar, fermion, Abelian and non-Abelian gauge theories. Covariant quantization of gauge theories is also carried out with a detailed description of the BRST symmetry. The Higgs phenomenon and the standard model of electroweak interactio
Di Marco, I; Thunström, P; Katsnelson, M I; Sadowski, J; Karlsson, K; Lebègue, S; Kanski, J; Eriksson, O
2013-01-01
After two decades since the discovery of ferromagnetism in manganese-doped gallium arsenide, its origin is still debated, and many doubts are related to the electronic structure. Here we report an experimental and theoretical study of the valence electron spectrum of manganese-doped gallium arsenide. The experimental data are obtained through the differences between off- and on-resonance photo emission data. The theoretical spectrum is calculated by means of a combination of density-functional theory in the local density approximation and dynamical mean field theory, using exact diagonalization as impurity solver. Theory is found to accurately reproduce measured data and illustrates the importance of correlation effects. Our results demonstrate that the manganese states extend over a broad range of energy, including the top of the valence band, and that no impurity band splits-off from the valence band edge, whereas the induced holes seem located primarily around the manganese impurity.
Ostrogradsky in theories with multiple fields
Energy Technology Data Exchange (ETDEWEB)
Rham, Claudia de; Matas, Andrew [CERCA, Department of Physics, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH 44106 (United States)
2016-06-23
We review how the (absence of) Ostrogradsky instability manifests itself in theories with multiple fields. It has recently been appreciated that when multiple fields are present, the existence of higher derivatives may not automatically imply the existence of ghosts. We discuss the connection with gravitational theories like massive gravity and beyond Horndeski which manifest higher derivatives in some formulations and yet are free of Ostrogradsky ghost. We also examine an interesting new class of Extended Scalar-Tensor Theories of gravity which has been recently proposed. We show that for a subclass of these theories, the tensor modes are either not dynamical or are infinitely strongly coupled. Among the remaining theories for which the tensor modes are well-defined one counts one new model that is not field-redefinable to Horndeski via a conformal and disformal transformation but that does require the vacuum to break Lorentz invariance. We discuss the implications for the effective field theory of dark energy and the stability of the theory. In particular we find that if we restrict ourselves to the Extended Scalar-Tensor class of theories for which the tensors are well-behaved and the scalar is free from gradient or ghost instabilities on FLRW then we recover Horndeski up to field redefinitions.
Quantum Field Theory, Revised Edition
Mandl, F.; Shaw, G.
1994-01-01
Quantum Field Theory Revised Edition F. Mandl and G. Shaw, Department of Theoretical Physics, The Schuster Laboratory, The University, Manchester, UK When this book first appeared in 1984, only a handful of W± and Z° bosons had been observed and the experimental investigation of high energy electro-weak interactions was in its infancy. Nowadays, W± bosons and especially Z° bosons can be produced by the thousand and the study of their properties is a precise science. We have revised the text of the later chapters to incorporate these developments and discuss their implications. We have also taken this opportunity to update the references throughout and to make some improvements in the treatment of dimen-sional regularization. Finally, we have corrected some minor errors and are grateful to various people for pointing these out. This book is designed as a short and simple introduction to quantum field theory for students beginning research in theoretical and experimental physics. The three main objectives are to explain the basic physics and formalism of quantum field theory, to make the reader fully proficient in theory calculations using Feynman diagrams, and to introduce the reader to gauge theories, which play such a central role in elementary particle physics. The theory is applied to quantum electrodynamics (QED), where quantum field theory had its early triumphs, and to weak interactions where the standard electro-weak theory has had many impressive successes. The treatment is based on the canonical quantization method, because readers will be familiar with this, because it brings out lucidly the connection between invariance and conservation laws, and because it leads directly to the Feynman diagram techniques which are so important in many branches of physics. In order to help inexperienced research students grasp the meaning of the theory and learn to handle it confidently, the mathematical formalism is developed from first principles, its physical
Ergodic theory and dynamical systems
Coudène, Yves
2016-01-01
This textbook is a self-contained and easy-to-read introduction to ergodic theory and the theory of dynamical systems, with a particular emphasis on chaotic dynamics. This book contains a broad selection of topics and explores the fundamental ideas of the subject. Starting with basic notions such as ergodicity, mixing, and isomorphisms of dynamical systems, the book then focuses on several chaotic transformations with hyperbolic dynamics, before moving on to topics such as entropy, information theory, ergodic decomposition and measurable partitions. Detailed explanations are accompanied by numerous examples, including interval maps, Bernoulli shifts, toral endomorphisms, geodesic flow on negatively curved manifolds, Morse-Smale systems, rational maps on the Riemann sphere and strange attractors. Ergodic Theory and Dynamical Systems will appeal to graduate students as well as researchers looking for an introduction to the subject. While gentle on the beginning student, the book also contains a number of commen...
Lectures on matrix field theory
Ydri, Badis
2017-01-01
These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.
Quantum field theory competitive models
Tolksdorf, Jürgen; Zeidler, Eberhard
2009-01-01
For more than 70 years, quantum field theory (QFT) can be seen as a driving force in the development of theoretical physics. Equally fascinating is the fruitful impact which QFT had in rather remote areas of mathematics. The present book features some of the different approaches, different physically viewpoints and techniques used to make the notion of quantum field theory more precise. For example, the present book contains a discussion including general considerations, stochastic methods, deformation theory and the holographic AdS/CFT correspondence. It also contains a discussion of more recent developments like the use of category theory and topos theoretic methods to describe QFT. The present volume emerged from the 3rd 'Blaubeuren Workshop: Recent Developments in Quantum Field Theory', held in July 2007 at the Max Planck Institute of Mathematics in the Sciences in Leipzig/Germany. All of the contributions are committed to the idea of this workshop series: 'To bring together outstanding experts working in...
Maxfield, Travis; Sethi, Savdeep
2015-01-01
Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2,0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.
Energy Technology Data Exchange (ETDEWEB)
Maxfield, Travis [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States); Robbins, Daniel [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843-4242 (United States); Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)
2016-11-28
Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2,0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.
Maxfield, Travis; Robbins, Daniel; Sethi, Savdeep
2016-11-01
Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2, 0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.
Boyanovsky, D; Holman, R; Kumar, S P; Pisarski, R D; Salgado, J; Pisarski, Rob D.
1998-01-01
The real time evolution of field condensates is solved for small and large field amplitudes in scalar theories.For small amplitudes,the quantum equations of motion for the condensate can be linearized and solved by Laplace transform. The late time evolution turns to be determined by the singularities in the complex plane (one-particle poles, two- and multi- particle cuts, Landau cuts for non-zero initial temperature). In hot scalar electrodynamics, we solve the real time evolution of field condensates with soft length scales \\sim k^{-1}>(eT)^{-1}. Transverse gauge invariant condensates relax as 1/t^2 to amplitudes determined by the quasiparticle poles. We rederive the HTL action using the non-equilibrium field theory techniques.In the nonlinear regime (for large initial energy densities) we analyze the dynamics of dissipation and relaxation in scalar theory after linear unstabilities are shut-off by the quantum back-reaction. A new time scale emerges that separates the linear from the non-linear regimes. This...
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2001-01-01
Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...
Fluid Dynamics Theory, Computation, and Numerical Simulation
Pozrikidis, Constantine
2009-01-01
Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...
Dynamical systems theory for music dynamics
Boon, J P
1994-01-01
Abstract:We show that, when music pieces are cast in the form of time series of pitch variations, the concepts and tools of dynamical systems theory can be applied to the analysis of {\\it temporal dynamics} in music. (i) Phase space portraits are constructed from the time series wherefrom the dimensionality is evaluated as a measure of the {\\pit global} dynamics of each piece. (ii) Spectral analysis of the time series yields power spectra (\\sim f^{-\
The Theory of Quantized Fields. II
Schwinger, J.
1951-01-01
The arguments leading to the formulation of the Action Principle for a general field are presented. In association with the complete reduction of all numerical matrices into symmetrical and anti-symmetrical parts, the general field is decomposed into two sets, which are identified with Bose-Einstein and Fermi-Dirac fields. The spin restriction on the two kinds of fields is inferred from the time reflection invariance requirement. The consistency of the theory is verified in terms of a criterion involving the various generators of infinitesimal transformations. Following a discussion of charged fields, the electromagnetic field is introduced to satisfy the postulate of general gauge invariance. As an aspect of the latter, it is recognized that the electromagnetic field and charged fields are not kinematically independent. After a discussion of the field-strength commutation relations, the independent dynamical variable of the electromagnetic field are exhibited in terms of a special gauge.
The Theory of Conceptual Fields
Vergnaud, Gerard
2009-01-01
The theory of conceptual fields is a developmental theory. It has two aims: (1) to describe and analyse the progressive complexity, on a long- and medium-term basis, of the mathematical competences that students develop inside and outside school, and (2) to establish better connections between the operational form of knowledge, which consists in…
Entanglement entropy in warped conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Castro, Alejandra; Hofman, Diego M.; Iqbal, Nabil [Institute for Theoretical Physics, University of Amsterdam,Science Park 904, Postbus 94485, 1090 GL Amsterdam (Netherlands)
2016-02-04
We present a detailed discussion of entanglement entropy in (1+1)-dimensional Warped Conformal Field Theories (WCFTs). We implement the Rindler method to evaluate entanglement and Renyi entropies for a single interval and along the way we interpret our results in terms of twist field correlation functions. Holographically a WCFT can be described in terms of Lower Spin Gravity, a SL(2,ℝ)×U(1) Chern-Simons theory in three dimensions. We show how to obtain the universal field theory results for entanglement in a WCFT via holography. For the geometrical description of the theory we introduce the concept of geodesic and massive point particles in the warped geometry associated to Lower Spin Gravity. In the Chern-Simons description we evaluate the appropriate Wilson line that captures the dynamics of a massive particle.
Entanglement Entropy in Warped Conformal Field Theories
Castro, Alejandra; Iqbal, Nabil
2015-01-01
We present a detailed discussion of entanglement entropy in (1+1)-dimensional Warped Conformal Field Theories (WCFTs). We implement the Rindler method to evaluate entanglement and Renyi entropies for a single interval and along the way we interpret our results in terms of twist field correlation functions. Holographically a WCFT can be described in terms of Lower Spin Gravity, a SL(2,R)xU(1) Chern-Simons theory in three dimensions. We show how to obtain the universal field theory results for entanglement in a WCFT via holography. For the geometrical description of the theory we introduce the concept of geodesic and massive point particles in the warped geometry associated to Lower Spin Gravity. In the Chern-Simons description we evaluate the appropriate Wilson line that captures the dynamics of a massive particle.
Double field theory inspired cosmology
Wu, Houwen; Yang, Haitang
2014-07-01
Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We construct solutions for vanishing and non-vanishing symmetry preserving dilaton potentials. The solutions assemble the pre- and post-big bang evolutions in one single line element. Our results show a smooth evolution from an anisotropic early stage to an isotropic phase without any special initial conditions in contrast to previous models. In addition, we demonstrate that the contraction of the dual space automatically leads to both an inflation phase and a decelerated expansion of the ordinary space during different evolution stages.
Noncommutative quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Grosse, H. [Fakultaet fuer Physik, Universitaet Wien, Boltzmanngasse 5, 1090 Wien (Austria); Wulkenhaar, R. [Mathematisches Institut der Westfaelischen Wilhelms-Universitaet, Einsteinstrasse 62, 48149 Muenster (Germany)
2014-09-11
We summarize our recent construction of the φ{sup 4}-model on four-dimensional Moyal space. This is achieved by solving the quartic matrix model for a general external matrix in terms of the solution of a non-linear equation for the 2-point function and the eigenvalues of that matrix. The β-function vanishes identically. For the Moyal model, the theory of Carleman type singular integral equations reduces the construction to a fixed point problem. The resulting Schwinger functions in position space are symmetric and invariant under the full Euclidean group. The Schwinger 2-point function is reflection positive iff the diagonal matrix 2-point function is a Stieltjes function. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Neural fields theory and applications
Graben, Peter; Potthast, Roland; Wright, James
2014-01-01
With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...
Austerity and Geometric Structure of Field Theories
Kheyfets, Arkady
The relation between the austerity idea and the geometric structure of the three basic field theories- -electrodynamics, Yang-Mills theory, and general relativity --is studied. The idea of austerity was originally suggested by J. A. Wheeler in an attempt to formulate the laws of physics in such a way that they would come into being only within "the gates of time" extending from big bang to big crunch, rather than exist from everlasting to everlasting. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity (PAR-DIFF)(CCIRC)(PAR -DIFF) = 0 used twice, at the 1-2-3-dimensional level (providing the homgeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories--electrodynamics, Yang-Mills theory, and general relativity. This dissertation: (a) analyses the difficulties by means of algebraic topology, integration theory and modern differential geometry based on the concepts of principal bundles and Ehresmann connections; (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for all the three theories and compatible with the original austerity idea; (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories, including the soldering form as a dynamical variable rather than as a background structure.
Harris, Kameron Decker; Dodds, Peter Sheridan
2013-01-01
We study binary state dynamics on a network where each node acts in response to the average state of its neighborhood. Allowing varying amounts of stochasticity in both the network and node responses, we find different outcomes in random and deterministic versions of the model. In the limit of a large, dense network, however, we show that these dynamics coincide. We construct a general mean field theory for random networks and show this predicts that the dynamics on the network are a smoothed version of the average response function dynamics. Thus, the behavior of the system can range from steady state to chaotic depending on the response functions, network connectivity, and update synchronicity. As a specific example, we model the competing tendencies of imitation and non-conformity by incorporating an off-threshold into standard threshold models of social contagion. In this way we attempt to capture important aspects of fashions and societal trends. We compare our theory to extensive simulations of this "li...
Hansmann, P; Ayral, T; Vaugier, L; Werner, P; Biermann, S
2013-04-19
Systems of adatoms on semiconductor surfaces display competing ground states and exotic spectral properties typical of two-dimensional correlated electron materials which are dominated by a complex interplay of spin and charge degrees of freedom. We report a fully ab initio derivation of low-energy Hamiltonians for the adatom systems Si(111):X, with X=Sn, Si, C, Pb, that we solve within self-consistently combined GW and dynamical mean-field theory. Calculated photoemission spectra are in agreement with available experimental data. We rationalize experimentally observed trends from Mott physics toward charge ordering along the series as resulting from substantial long-range interactions.
Longair, Malcolm
2015-04-13
Maxwell's great paper of 1865 established his dynamical theory of the electromagnetic field. The origins of the paper lay in his earlier papers of 1856, in which he began the mathematical elaboration of Faraday's researches into electromagnetism, and of 1861-1862, in which the displacement current was introduced. These earlier works were based upon mechanical analogies. In the paper of 1865, the focus shifts to the role of the fields themselves as a description of electromagnetic phenomena. The somewhat artificial mechanical models by which he had arrived at his field equations a few years earlier were stripped away. Maxwell's introduction of the concept of fields to explain physical phenomena provided the essential link between the mechanical world of Newtonian physics and the theory of fields, as elaborated by Einstein and others, which lies at the heart of twentieth and twenty-first century physics. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Nonlocal and quasilocal field theories
Tomboulis, E. T.
2015-12-01
We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasilocal (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasilocal kernels all acausal effects are confined within the compact support regions. We briefly discuss the extension to other types of fields and prospects of such theories.
Lectures on Conformal Field Theory
Qualls, Joshua D
2015-01-01
These lectures notes are based on courses given at National Taiwan University, National Chiao-Tung University, and National Tsing Hua University in the spring term of 2015. Although the course was offered primarily for graduate students, these lecture notes have been prepared for a more general audience. They are intended as an introduction to conformal field theories in various dimensions, with applications related to topics of particular interest: topics include the conformal bootstrap program, boundary conformal field theory, and applications related to the AdS/CFT correspondence. We assume the reader to be familiar with quantum mechanics at the graduate level and to have some basic knowledge of quantum field theory. Familiarity with string theory is not a prerequisite for this lectures, although it can only help.
Craco, L.; Faria, J. L. B.; Leoni, S.
2017-03-01
We present a detailed study of correlation- and pressure-induced electronic reconstruction in hexagonal iron monosulfide, a system which is widely found in meteorites and one of the components of Earth’s core. Based on a perusal of experimental data, we stress the importance of multi-orbital electron-electron interactions in concert with first-principles band structure calculations for a consistent understanding of its intrinsic Mott–Hubbard insulating state. We explain the anomalous nature of pressure-induced insulator-metal-insulator transition seen in experiment, showing that it is driven by dynamical spectral weight transfer in response to changes in the crystal-field splittings under pressure. As a byproduct of this analysis, we confirm that the electronic transitions observed in pristine FeS at moderated pressures are triggered by changes in the spin state which causes orbital-selective Kondo quasiparticle electronic reconstruction at low energies.
Double Field Theory on Group Manifolds (Thesis)
Hassler, Falk
2015-01-01
This thesis deals with Double Field Theory (DFT), an effective field theory capturing the low energy dynamics of closed strings on a torus. It renders T-duality on a torus manifest by adding $D$ winding coordinates in addition to the $D$ space time coordinates. An essential consistency constraint of the theory, the strong constraint, only allows for field configurations which depend on half of the coordinates of the arising doubled space. I derive DFT${}_\\mathrm{WZW}$, a generalization of the current formalism. It captures the low energy dynamics of a closed bosonic string propagating on a compact group manifold. Its classical action and the corresponding gauge transformations arise from Closed String Field Theory up to cubic order in the massless fields. These results are rewritten in terms of a generalized metric and extended to all orders in the fields. There is an explicit distinction between background and fluctuations. For the gauge algebra to close, the latter have to fulfill a modified strong constrai...
Background Independent String Field Theory
Bars, Itzhak
2014-01-01
We develop a new background independent Moyal star formalism in bosonic open string field theory. The new star product is formulated in a half-phase-space, and because phase space is independent of any background fields, the interactions are background independent. In this basis there is a large amount of symmetry, including a supersymmetry OSp(d|2) that acts on matter and ghost degrees of freedom, and simplifies computations. The BRST operator that defines the quadratic kinetic term of string field theory may be regarded as the solution of the equation of motion A*A=0 of a purely cubic background independent string field theory. We find an infinite number of non-perturbative solutions to this equation, and are able to associate them to the BRST operator of conformal field theories on the worldsheet. Thus, the background emerges from a spontaneous-type breaking of a purely cubic highly symmetric theory. The form of the BRST field breaks the symmetry in a tractable way such that the symmetry continues to be us...
Dynamical systems V bifurcation theory and catastrophe theory
1994-01-01
Bifurcation theory and catastrophe theory are two of the best known areas within the field of dynamical systems. Both are studies of smooth systems, focusing on properties that seem to be manifestly non-smooth. Bifurcation theory is concerned with the sudden changes that occur in a system when one or more parameters are varied. Examples of such are familiar to students of differential equations, from phase portraits. Moreover, understanding the bifurcations of the differential equations that describe real physical systems provides important information about the behavior of the systems. Catastrophe theory became quite famous during the 1970's, mostly because of the sensation caused by the usually less than rigorous applications of its principal ideas to "hot topics", such as the characterization of personalities and the difference between a "genius" and a "maniac". Catastrophe theory is accurately described as singularity theory and its (genuine) applications. The authors of this book, the first printing of w...
The Mott transition in V 2O 3 and NiSe xS 2- x: insights from dynamical mean field theory
Kotliar, G.
1999-01-01
We discuss some aspects of the pressure (or interaction) driven Mott transition, in three-dimensional transition metal oxides by means of dynamical mean field theory. We isolate the universal properties of the transition from the aspects which depend more on the detailed chemistry of the compounds. In this light we can understand the main differences and the remarkable similarities between the NiSe xS 2- x and the V 2O 3 system. Both theory and experiment converge on the transfer of spectral weight from low energies to high energies as the universal mechanism underlying the Mott transition, and we comment on the possible relevance of these ideas to other metal to nonmetal transitions.
Dynamic random walks theory and applications
Guillotin-Plantard, Nadine
2006-01-01
The aim of this book is to report on the progress realized in probability theory in the field of dynamic random walks and to present applications in computer science, mathematical physics and finance. Each chapter contains didactical material as well as more advanced technical sections. Few appendices will help refreshing memories (if necessary!).· New probabilistic model, new results in probability theory· Original applications in computer science· Applications in mathematical physics· Applications in finance
The Supersymmetric Effective Field Theory of Inflation
Delacretaz, Luca V; Senatore, Leonardo
2016-01-01
We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable St\\"uckelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplif...
Electromagnetic field theories for engineering
Salam, Md Abdus
2014-01-01
A four year Electrical and Electronic engineering curriculum normally contains two modules of electromagnetic field theories during the first two years. However, some curricula do not have enough slots to accommodate the two modules. This book, Electromagnetic Field Theories, is designed for Electrical and Electronic engineering undergraduate students to provide fundamental knowledge of electromagnetic fields and waves in a structured manner. A comprehensive fundamental knowledge of electric and magnetic fields is required to understand the working principles of generators, motors and transformers. This knowledge is also necessary to analyze transmission lines, substations, insulator flashover mechanism, transient phenomena, etc. Recently, academics and researches are working for sending electrical power to a remote area by designing a suitable antenna. In this case, the knowledge of electromagnetic fields is considered as important tool.
Magnetic Catalysis in Graphene Effective Field Theory
DeTar, Carleton; Zafeiropoulos, Savvas
2016-01-01
We report on the first observation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly-interacting, massless, (2+1)-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry. This result implies a nonzero value for the dynamical mass of the Dirac quasiparticle. This in turn has been posited to account for the quantum-Hall plateaus that are observed at large magnetic fields.
Currents in supersymmetric field theories
Derendinger, Jean-Pierre
2016-01-01
A general formalism to construct and improve supercurrents and source or anomaly superfields in two-derivative N=1 supersymmetric theories is presented. It includes arbitrary gauge and chiral superfields and a linear superfield coupled to gauge fields. These families of supercurrent structures are characterized by their energy-momentum tensors and R currents and they display a specific relation to the dilatation current of the theory. The linear superfield is introduced in order to describe the gauge coupling as a background (or propagating) field. Supersymmetry does not constrain the dependence on this gauge coupling field of gauge kinetic terms and holomorphicity restrictions are absent. Applying these results to an effective (Wilson) description of super-Yang-Mills theory, matching or cancellation of anomalies leads to an algebraic derivation of the all-order NSVZ beta function.
Phenomenology of Noncommutative Field Theories
Carone, C D
2006-01-01
Experimental limits on the violation of four-dimensional Lorentz invariance imply that noncommutativity among ordinary spacetime dimensions must be small. In this talk, I review the most stringent bounds on noncommutative field theories and suggest a possible means of evading them: noncommutativity may be restricted to extra, compactified spatial dimensions. Such theories have a number of interesting features, including Abelian gauge fields whose Kaluza-Klein excitations have self couplings. We consider six-dimensional QED in a noncommutative bulk, and discuss the collider signatures of the model.
New covariant Lagrange formulation for field theories
Ootsuka, T
2012-01-01
A novel approach for Lagrange formulation for field theories is proposed in terms of Kawaguchi geometry (areal metric space). On the extended configuration space M for classical field theory composed of spacetime and field configuration space, one can define a geometrical structure called Kawaguchi areal metric K from the field Lagrangian and (M,K) can be regarded as Kawaguchi manifold. The geometrical action functional is given by K and the dynamics of field is determined by covariant Euler-Lagrange equation derived from the variational principle of the action. The solution to the equation becomes a minimal hypersurface on (M,K) which has the same dimension as spacetime. We propose that this hypersurface is what we should regard as our real spacetime manifold, while the usual way to understand spacetime is to consider it as the parameter spacetime (base manifold) of a fibre bundle. In this way, the dynamics of field and spacetime structure is unified by Kawaguchi geometry. The theory has the property of stro...
Bosonic colored group field theory
Energy Technology Data Exchange (ETDEWEB)
Ben Geloun, Joseph [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France); University of Abomey-Calavi, Cotonou (BJ). International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair); Universite Cheikh Anta Diop, Departement de Mathematiques et Informatique, Faculte des Sciences et Techniques, Dakar (Senegal); Magnen, Jacques [Ecole Polytechnique, Centre de Physique Theorique, Palaiseau Cedex (France); Rivasseau, Vincent [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)
2010-12-15
Bosonic colored group field theory is considered. Focusing first on dimension four, namely the colored Ooguri group field model, the main properties of Feynman graphs are studied. This leads to a theorem on optimal perturbative bounds of Feynman amplitudes in the ''ultraspin'' (large spin) limit. The results are generalized in any dimension. Finally, integrating out two colors we write a new representation, which could be useful for the constructive analysis of this type of models. (orig.)
Unitarity of superstring field theory
Sen, Ashoke
2016-12-01
We complete the proof of unitarity of (compactified) heterotic and type II string field theories by showing that in the cut diagrams only physical states appear in the sum over intermediate states. This analysis takes into account the effect of mass and wave-function renormalization, and the possibility that the true vacuum may be related to the perturbative vacuum by small shifts in the string fields.
Unitarity of Superstring Field Theory
Sen, Ashoke
2016-01-01
We complete the proof of unitarity of (compactified) heterotic and type II string field theories by showing that in the cut diagrams only physical states appear in the sum over intermediate states. This analysis takes into account the effect of mass and wave-function renormalization, and the possibility that the true vacuum may be related to the perturbative vacuum by small shifts in the string fields.
Thermo-Field Extension of Open String Field Theory
Cantcheff, M Botta
2015-01-01
We study the implementation of Thermo Field Dynamics (TFD) to the covariant formulation of Open String Field Theory (OSFT). In this paper, we extend the state space and fields according to the duplication rules of TFD and construct the corresponding classical action. The result is a theory whose fields would encode the statistical information of open strings and, noticeably, present degrees of freedom that could be identified as those of closed strings. The physical spectrum of the free theory is studied through the cohomology of the extended BRST charge, and, as a result, we get new fields in the spectrum. We also show, however, that their appearing in the action is directly related to the choice of the inner product in the extended algebra, so that many fields could be eliminated from the theory by choosing that product conveniently. Finally, we study the extension of the three-vertex interaction and provide a simple prescription for it whose results at tree-level amplitudes agree with those of the conventi...
Bohmian mechanics and quantum field theory.
Dürr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghì, Nino
2004-08-27
We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which, in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines for the particles can begin and end.
Generalized Quantum Theory and Mathematical Foundations of Quantum Field Theory
Maroun, Michael Anthony
This dissertation is divided into two main topics. The first is the generalization of quantum dynamics when the Schrodinger partial differential equation is not defined even in the weak mathematical sense because the potential function itself is a distribution in the spatial variable, the same variable that is used to define the kinetic energy operator, i.e. the Laplace operator. The procedure is an extension and broadening of the distributional calculus and offers spectral results as an alternative to the only other two known methods to date, namely a) the functional calculi; and b) non-standard analysis. Furthermore, the generalizations of quantum dynamics presented within give a resolution to the time asymmetry paradox created by multi-particle quantum mechanics due to the time evolution still being unitary. A consequence is the randomization of phases needed for the fundamental justification Pauli master equation. The second topic is foundations of the quantum theory of fields. The title is phrased as ``foundations'' to emphasize that there is no claim of uniqueness but rather a proposal is put forth, which is markedly different than that of constructive or axiomatic field theory. In particular, the space of fields is defined as a space of generalized functions with involutive symmetry maps (the CPT invariance) that affect the topology of the field space. The space of quantum fields is then endowed the Frechet property and interactions change the topology in such a way as to cause some field spaces to be incompatible with others. This is seen in the consequences of the Haag theorem. Various examples and discussions are given that elucidate a new view of the quantum theory of fields and its (lack of) mathematical structure.
Gravitational Goldstone fields from affine gauge theory
Tresguerres, R
2000-01-01
In order to facilitate the application of standard renormalization techniques, gravitation should be decribed, if possible, in pure connection formalism, as a Yang-Mills theory of a certain spacetime group, say the Poincare or the affine group. This embodies the translational as well as the linear connection. However, the coframe is not the standard Yang-Mills type gauge field of the translations, since it lacks the inhomogeneous gradient term in the gauge transformations. By explicitly restoring the "hidden" piece responsible for this behavior within the framework of nonlinear realizations, the usual geometrical interpretation of the dynamical theory becomes possible, and in addition one can avoid the metric or coframe degeneracy which would otherwise interfere with the integrations within the path integral. We claim that nonlinear realizations provide a general mathematical scheme clarifying the foundations of gauge theories of spacetime symmetries. When applied to construct the Yang-Mills theory of the aff...
Loops in exceptional field theory
Energy Technology Data Exchange (ETDEWEB)
Bossard, Guillaume [Centre de Physique Théorique, Ecole Polytechnique, CNRS, Université Paris-Saclay,91128 Palaiseau cedex (France); Kleinschmidt, Axel [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Am Mühlenberg 1, DE-14476 Potsdam (Germany); International Solvay Institutes,ULB-Campus Plaine CP231, BE-1050 Brussels (Belgium)
2016-01-27
We study certain four-graviton amplitudes in exceptional field theory in dimensions D≥4 up to two loops. As the formulation is manifestly invariant under the U-duality group E{sub 11−D}(ℤ), our resulting expressions can be expressed in terms of automorphic forms. In the low energy expansion, we find terms in the M-theory effective action of type R{sup 4}, ∇{sup 4}R{sup 4} and ∇{sup 6}R{sup 4} with automorphic coefficient functions in agreement with independent derivations from string theory. This provides in particular an explicit integral formula for the exact string theory ∇{sup 6}R{sup 4} threshold function. We exhibit moreover that the usual supergravity logarithmic divergences cancel out in the full exceptional field theory amplitude, within an appropriately defined dimensional regularisation scheme. We also comment on terms of higher derivative order and the role of the section constraint for possible counterterms.
Baal, Pierre Van
2014-01-01
""… a pleasant novelty that manages the impossible: a full course in field theory from a derivation of the Dirac equation to the standard electroweak theory in less than 200 pages. Moreover, the final chapter consists of a careful selection of assorted problems, which are original and either anticipate or detail some of the topics discussed in the bulk of the chapters. Instead of building a treatise out of a collection of lecture notes, the author took the complementary approach and constructed a course out of a number of well-known and classic treatises. The result is fresh and useful. … the
Field Analysis and Potential Theory
1985-06-01
T T T 430 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.5.7 But V2f [ dT - Z j V2 Jxdr T T hence V c2at 7- dT _- J2 (J2 dT T TT whence dalf [13 dT " 0 (5.7...8) at exterior points or dal pot [2] - O (5.7-8(a)) Similarly, dalf r dS - 0 (5.7-9) dal [y] ds - 0 (5.7-10) r Sec.5.7] RETARDED POTENTIAL THEORY 431
Introduction to quantum field theory
Chang, Shau-Jin
1990-01-01
This book presents in a short volume the basics of quantum field theory and many body physics. The first part introduces the perturbative techniques without sophisticated apparatus and applies them to numerous problems including quantum electrodynamics (renormalization), Fermi and Bose gases, the Brueckner theory of nuclear system, liquid Helium and classical systems with noise. The material is clear, illustrative and the important points are stressed to help the reader get the understanding of what is crucial without overwhelming him with unnecessary detours or comments. The material in the s
Einstein's theory of unified fields
Tonnelat, Marie Antoinette
2014-01-01
First published in1966, here is presented a comprehensive overview of one of the most elusive scientific speculations by the pre-eminent genius of the 20th century. The theory is viewed by some scientists with deep suspicion, by others with optimism, but all agree that it represents an extreme challenge. As the author herself affirms, this work is not intended to be a complete treatise or 'didactic exposition' of the theory of unified fields, but rather a tool for further study, both by students and professional physicists. Dealing with all the major areas of research whic
Nonequilibrium molecular dynamics theory, algorithms and applications
Todd, Billy D
2017-01-01
Written by two specialists with over twenty-five years of experience in the field, this valuable text presents a wide range of topics within the growing field of nonequilibrium molecular dynamics (NEMD). It introduces theories which are fundamental to the field - namely, nonequilibrium statistical mechanics and nonequilibrium thermodynamics - and provides state-of-the-art algorithms and advice for designing reliable NEMD code, as well as examining applications for both atomic and molecular fluids. It discusses homogenous and inhomogenous flows and pays considerable attention to highly confined fluids, such as nanofluidics. In addition to statistical mechanics and thermodynamics, the book covers the themes of temperature and thermodynamic fluxes and their computation, the theory and algorithms for homogenous shear and elongational flows, response theory and its applications, heat and mass transport algorithms, applications in molecular rheology, highly confined fluids (nanofluidics), the phenomenon of slip and...
Solar system constraints on multifield theories of modified dynamics
Sanders, R. H.
2006-01-01
Any viable theory of modified Newtonian dynamics (MOND) as modified gravity is likely to require fields in addition to the usual tensor field of General Relativity. For these theories, the MOND phenomenology emerges as an effective fifth force probably associated with a scalar field. Here, I
Dynamical String Tension in String Theory with Spacetime Weyl Invariance
Bars, Itzhak; Turok, Neil
2014-01-01
The fundamental string length, which is an essential part of string theory, explicitly breaks scale invariance. However, in field theory we demonstrated recently that the gravitational constant, which is directly related to the string length, can be promoted to a dynamical field if the standard model coupled to gravity (SM+GR) is lifted to a locally scale (Weyl) invariant theory. The higher gauge symmetry reveals previously unknown field patches whose inclusion turn the classically conformally invariant SM+GR into a geodesically complete theory with new cosmological and possibly further physical consequences. In this paper this concept is extended to string theory by showing how it can be Weyl lifted with a local scale symmetry acting on target space background fields. In this process the string tension (fundamental string length) is promoted to a dynamical field, in agreement with the parallel developments in field theory. We then propose a string theory in a geodesically complete cosmological stringy backgr...
Qin, Tao; Hofstetter, Walter
2017-08-01
We present a systematic study of the spectral functions of a time-periodically driven Falicov-Kimball Hamiltonian. In the high-frequency limit, this system can be effectively described as a Harper-Hofstadter-Falicov-Kimball model. Using real-space Floquet dynamical mean-field theory (DMFT), we take into account the interaction effects and contributions from higher Floquet bands in a nonperturbative way. Our calculations show a high degree of similarity between the interacting driven system and its effective static counterpart with respect to spectral properties. However, as also illustrated by our results, one should bear in mind that Floquet DMFT describes a nonequilibrium steady state, while an effective static Hamiltonian describes an equilibrium state. We further demonstrate the possibility of using real-space Floquet DMFT to study edge states on a cylinder geometry.
Yoshida, Tsuneya; Kawakami, Norio
2017-01-01
One of the remarkable interaction effects on topological insulators is the reduction of topological classification in free-fermion systems. We address this issue in a bilayer honeycomb lattice model by taking into account temperature effects on the reduction. Our analysis, based on the real-space dynamical mean-field theory, elucidates the following results. (i) Even when the reduction occurs, the winding number defined by the Green's function can take a nontrivial value at zero temperature. (ii) The winding number taking the nontrivial value becomes consistent with the absence of gapless edge modes due to Mott behaviors emerging only at the edges. (iii) Temperature effects can restore the gapless edge modes, provided that the energy scale of interactions is smaller than the bulk gap. In addition, we observe the topological edge Mott behavior only in some finite-temperature region.
Stadler, K M; Yin, Z P; von Delft, J; Kotliar, G; Weichselbaum, A
2015-09-25
We show that the numerical renormalization group is a viable multi-band impurity solver for dynamical mean-field theory (DMFT), offering unprecedented real-frequency spectral resolution at arbitrarily low energies and temperatures. We use it to obtain a numerically exact DMFT solution to the Hund metal problem for a three-band model on a Bethe lattice at 1/3 filling. The ground state is a Fermi liquid. The one-particle spectral function undergoes a coherence-incoherence crossover with increasing temperature, with spectral weight being transferred from low to high energies. Further, it exhibits a strong particle-hole asymmetry. In the incoherent regime, the self-energy displays approximate power-law behavior for positive frequencies only. The spin and orbital spectral functions show "spin-orbital separation": spin screening occurs at much lower energies than orbital screening. The renormalization group flows clearly reveal the relevant physics at all energy scales.
Zheng, Bo-Xiao; Kretchmer, Joshua S.; Shi, Hao; Zhang, Shiwei; Chan, Garnet Kin-Lic
2017-01-01
We investigate the cluster size convergence of the energy and observables using two forms of density matrix embedding theory (DMET): the original cluster form (CDMET) and a new formulation motivated by the dynamical cluster approximation (DCA-DMET). Both methods are applied to the half-filled one- and two-dimensional Hubbard models using a sign-problem free auxiliary-field quantum Monte Carlo impurity solver, which allows for the treatment of large impurity clusters of up to 100 sites. While CDMET is more accurate at smaller impurity cluster sizes, DCA-DMET exhibits faster asymptotic convergence towards the thermodynamic limit. We use our two formulations to produce new accurate estimates for the energy and local moment of the two-dimensional Hubbard model for U /t =2 ,4 ,6 . These results compare favorably with the best data available in the literature, and help resolve earlier uncertainties in the moment for U /t =2 .
Field reparametrization in effective field theories
Passarino, Giampiero
2016-01-01
Debate topic for Effective Field Theory (EFT) is the choice of a "basis" for $\\mrdim = 6$ operators Clearly all bases are equivalent as long as they are a "basis", containing a minimal set of operators after the use of equations of motion and respecting gauge invariance. From a more formal point of view a basis is characterized by its closure with respect to renormalization. Equivalence of bases should always be understood as a statement for the S-matrix and not for the Lagrangian, as dictated by the equivalence theorem. Any phenomenological approach that misses one of these ingredients is still acceptable for a preliminar analysis, as long as it does not pretend to be an EFT. Here we revisit the equivalence theorem and its consequences for EFT when two sets of higher dimensional operators are connected by a set of non-linear, noninvariant, field reparametrizations.
Variational methods for field theories
Energy Technology Data Exchange (ETDEWEB)
Ben-Menahem, S.
1986-09-01
Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.
Field theory description of neutrino oscillations
Dvornikov, Maxim
2010-01-01
We review various field theory approaches to the description of neutrino oscillations in vacuum and external fields. First we discuss a relativistic quantum mechanics based approach which involves the temporal evolution of massive neutrinos. To describe the dynamics of the neutrinos system we use exact solutions of wave equations in presence of an external field. It allows one to exactly take into account both the characteristics of neutrinos and the properties of an external field. In particular, we examine flavor oscillations an vacuum and in background matter as well as spin flavor oscillations in matter under the influence of an external electromagnetic field. Moreover we consider the situation of hypothetical nonstandard neutrino interactions with background fermions. In the case of ultrarelativistic particles we reproduce an effective Hamiltonian which is used in the standard quantum mechanical approach for the description of neutrino oscillations. The corrections to the quantum mechanical Hamiltonian a...
Karkheck, John; Stell, George
1981-08-01
A kinetic mean-field theory for the evolution of the one-particle distribution function is derived from maximizing the entropy. For a potential with a hard-sphere core plus tail, the resulting theory treats the hard-core part as in the revised Enskog theory. The tail, weighted by the hard-sphere pair distribution function, appears linearly in a mean-field term. The kinetic equation is accompanied by an entropy functional for which an H theorem was proven earlier. The revised Enskog theory is obtained by setting the potential tail to zero, the Vlasov equation is obtained by setting the hard-sphere diameter to zero, and an equation of the Enskog-Vlasov type is obtained by effecting the Kac limit on the potential tail. At equilibrium, the theory yields a radial distribution function that is given by the hard-sphere reference system and thus furnishes through the internal energy a thermodynamic description which is exact to first order in inverse temperature. A second natural route to thermodynamics (from the momentum flux which yields an approximate equation of state) gives somewhat different results; both routes coincide and become exact in the Kac limit. Our theory furnishes a conceptual basis for the association in the heuristically based modified Enskog theory (MET) of the contact value of the radial distribution function with the ''thermal pressure'' since this association follows from our theory (using either route to thermodynamics) and moreover becomes exact in the Kac limit. Our transport theory is readily extended to the general case of a soft repulsive core, e.g., as exhibited by the Lennard-Jones potential, via by-now-standard statistical-mechanical methods involving an effective hard-core potential, thus providing a self-contained statistical-mechanical basis for application to such potentials that is lacking in the standard versions of the MET. We obtain very good agreement with experiment for the thermal conductivity and shear viscosity of several
Stress theory for classical fields
Kupferman, Raz; Olami, Elihu; Segev, Reuven
2017-01-01
Classical field theories together with the Lagrangian and Eulerian approaches to continuum mechanics are embraced under a geometric setting of a fiber bundle. The base manifold can be either the body manifold of continuum mechanics, space manifold, or space-time. Differentiable sections of the fiber bundle represent configurations of the system and the configuration space containing them is given the structure of an infinite dimensional manifold. Elements of the cotangent bundle of the config...
Symmetries in Lagrangian Field Theory
Búa, Lucia; Bucataru, Ioan; León, Manuel de; Salgado, Modesto; Vilariño, Silvia
2015-06-01
By generalising the cosymplectic setting for time-dependent Lagrangian mechanics, we propose a geometric framework for the Lagrangian formulation of classical field theories with a Lagrangian depending on the independent variables. For that purpose we consider the first-order jet bundles J1π of a fiber bundle π : E → ℝk where ℝk is the space of independent variables. Generalized symmetries of the Lagrangian are introduced and the corresponding Noether theorem is proved.
Dynamical Breaking of Generalized Yang-Mills Theory
Institute of Scientific and Technical Information of China (English)
WANGDian-Fu; SONGHe-Shan
2004-01-01
The dynamical breaking of a generalized Yang-Mills theory is discussed. It is shown, in terms of the Nambu Jona-Lasinio mechanism, that the gauge symmetry breaking can be realized dynamically in the generalized Yang-Mills theory. The combination of the generalized Yang-Mills theory and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.
Dynamical Breaking of Generalized Yang-Mills Theory
Institute of Scientific and Technical Information of China (English)
WANG Dian-Fu; SONG He-Shah
2004-01-01
The dynamical breaking of a generalized Yang-Mills theory is discussed. It is shown, in terms of the Nambu-Jona-Lasinio mechanism, that the gauge symmetry breaking can be realized dynamically in the generalized Yang-Mills theory. The combination of the generalized Yang-Mills theory and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.
The quantum field theory interpretation of quantum mechanics
de la Torre, Alberto C.
2015-01-01
It is shown that adopting the \\emph{Quantum Field} ---extended entity in space-time build by dynamic appearance propagation and annihilation of virtual particles--- as the primary ontology the astonishing features of quantum mechanics can be rendered intuitive. This interpretation of quantum mechanics follows from the formalism of the most successful theory in physics: quantum field theory.
Effective field theory of dissipative fluids
Crossley, Michael; Liu, Hong
2015-01-01
We develop an effective field theory for dissipative fluids which governs the dynamics of gapless modes associated to conserved quantities. The system is put in a curved spacetime and coupled to external sources for charged currents. The invariance of the hydrodynamical action under gauge symmetries and diffeomorphisms suggests a natural set of dynamical variables which provide a mapping between an emergent "fluid spacetime" and the physical spacetime. An essential aspect of our formulation is to identify the appropriate symmetries in the fluid spacetime. Our theory applies to nonlinear disturbances around a general density matrix. For a thermal density matrix, we require an additional Z_2 symmetry, to which we refer as the local KMS condition. This leads to the standard constraints of hydrodynamics, as well as a nonlinear generalization of the Onsager relations. It also leads to an emergent supersymmetry in the classical statistical regime, with a higher derivative version required for the full quantum regim...
Nuclear effective field theory on the lattice
Krebs, H; Epelbaum, E; Lee, D; ner, Ulf-G Mei\\ss
2008-01-01
In the low-energy region far below the chiral symmetry breaking scale (which is of the order of 1 GeV) chiral perturbation theory provides a model-independent approach for quantitative description of nuclear processes. In the two- and more-nucleon sector perturbation theory is applicable only at the level of an effective potential which serves as input in the corresponding dynamical equation. To deal with the resulting many-body problem we put chiral effective field theory (EFT) on the lattice. Here we present the results of our lattice EFT study up to next-to-next-to-leading order in the chiral expansion. Accurate description of two-nucleon phase-shifts and ground state energy ratio of dilute neutron matter up to corrections of higher orders shows that lattice EFT is a promising tool for a quantitative description of low-energy few- and many-body systems.
Moon, Chang-Youn; Kang, Hanhim; Jang, Bo Gyu; Shim, Ji Hoon
2015-12-01
We investigate the evolution of the electronic structure of NiS2 -xSex alloys with varying temperature and composition x by using the combined approach of density-functional theory and dynamical mean-field theory. Adopting realistic alloy structures containing S and Se dimers, we map their electronic correlation strength on the phase diagram and observe the metal-insulator transition (MIT) at the composition x =0.5 , which is consistent with the experimental measurements. The temperature dependence of the local magnetic susceptibility is found to show a typical Curie-Weiss-like behavior in the insulating phase while it shows a constant Pauli-like behavior in the metallic phase. A comparison of the electronic structures for NiS2 and NiSe2 in different lattice structures suggests that the MIT in this alloy system can be classified as of bandwidth-control type, where the change in the hybridization strength between Ni d and chalcogen p orbitals is the most important parameter.
Effective Field Theory for Rydberg Polaritons
Gullans, M. J.; Thompson, J. D.; Wang, Y.; Liang, Q.-Y.; Vuletić, V.; Lukin, M. D.; Gorshkov, A. V.
2016-01-01
We develop an effective field theory (EFT) to describe the few- and many-body propagation of one dimensional Rydberg polaritons. We show that the photonic transmission through the Rydberg medium can be found by mapping the propagation problem to a non-equilibrium quench, where the role of time and space are reversed. We include effective range corrections in the EFT and show that they dominate the dynamics near scattering resonances in the presence of deep bound states. Finally, we show how the long-range nature of the Rydberg-Rydberg interactions induces strong effective N-body interactions between Rydberg polaritons. These results pave the way towards studying non-perturbative effects in quantum field theories using Rydberg polaritons. PMID:27661685
The Global Approach to Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Folacci, Antoine; Jensen, Bruce [Faculte des Sciences, Universite de Corse (France); Department of Mathematics, University of Southampton (United Kingdom)
2003-12-12
Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi{sup i} defined on a given spacetime M, the set of all varphi{sup i}(x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the
Zitterbewegung in quantum field theory
Institute of Scientific and Technical Information of China (English)
Wang Zhi-Yong; Xiong Cai-Dong
2008-01-01
Traditionally,the zitterbewegung (ZB) of the Dirac electron has just been studied at the level of quantum mechanics.Seeing the fact that an old interest in ZB has recently been rekindled by the investigations on spintronic,graphene,and superconducting systems,etc.,this paper presents a quantum-field-theory investigation on ZB and obtains the con clusion that,the ZB of an electron arises from the influence of virtual electron-positron pairs (or vacuum fluctuations)on the electron.
Dynamical theory of spin relaxation
Field, Timothy R.; Bain, Alex D.
2013-02-01
The dynamics of a spin system is usually calculated using the density matrix. However, the usual formulation in terms of the density matrix predicts that the signal will decay to zero, and does not address the issue of individual spin dynamics. Using stochastic calculus, we develop a dynamical theory of spin relaxation, the origins of which lie in the component spin fluctuations. This entails consideration of random pure states for individual protons, and how these pure states are correctly combined when the density matrix is formulated. Both the lattice and the spins are treated quantum mechanically. Such treatment incorporates both the processes of spin-spin and (finite temperature) spin-lattice relaxation. Our results reveal the intimate connections between spin noise and conventional spin relaxation.
A 1+1 field theory spectrum from M theory
Rodríguez, M J; Rodriguez, Maria Jose; Talavera, Pere
2005-01-01
The spectrum of a 1+1 dimensional field theory with dynamical quarks is constructed. We focus in testing the possible brane embeddings that can support fundamental matter. The requirement on the wave function normalisation and the dependence on the quark mass of the quark condensate allow to discard most of the embeddings. We pay attention to some more general considerations comparing the behaviour of the non-compact theory at different dimensions. In particular we explored the possibility that the AdS/CFT duality ``formalism'' introduce a scale breaking parameter at (1+1)d allowing the existence of classical glueballs and its possible relation with point-like string configurations. The screening effects and the appearance of a possible phase transition is also discussed.
Number theory arising from finite fields analytic and probabilistic theory
Knopfmacher, John
2001-01-01
""Number Theory Arising from Finite Fields: Analytic and Probabilistic Theory"" offers a discussion of the advances and developments in the field of number theory arising from finite fields. It emphasizes mean-value theorems of multiplicative functions, the theory of additive formulations, and the normal distribution of values from additive functions. The work explores calculations from classical stages to emerging discoveries in alternative abstract prime number theorems.
Modern Quantum Field Theory II - Proceeeings of the International Colloquium
Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.
1995-08-01
The Table of Contents for the book is as follows: * Foreword * 1. Black Holes and Quantum Gravity * Quantum Black Holes and the Problem of Time * Black Hole Entropy and the Semiclassical Approximation * Entropy and Information Loss in Two Dimensions * Strings on a Cone and Black Hole Entropy (Abstract) * Boundary Dynamics, Black Holes and Spacetime Fluctuations in Dilation Gravity (Abstract) * Pair Creation of Black Holes (Abstract) * A Brief View of 2-Dim. String Theory and Black Holes (Abstract) * 2. String Theory * Non-Abelian Duality in WZW Models * Operators and Correlation Functions in c ≤ 1 String Theory * New Symmetries in String Theory * A Look at the Discretized Superstring Using Random Matrices * The Nested BRST Structure of Wn-Symmetries * Landau-Ginzburg Model for a Critical Topological String (Abstract) * On the Geometry of Wn Gravity (Abstract) * O(d, d) Tranformations, Marginal Deformations and the Coset Construction in WZNW Models (Abstract) * Nonperturbative Effects and Multicritical Behaviour of c = 1 Matrix Model (Abstract) * Singular Limits and String Solutions (Abstract) * BV Algebra on the Moduli Spaces of Riemann Surfaces and String Field Theory (Abstract) * 3. Condensed Matter and Statistical Mechanics * Stochastic Dynamics in a Deposition-Evaporation Model on a Line * Models with Inverse-Square Interactions: Conjectured Dynamical Correlation Functions of the Calogero-Sutherland Model at Rational Couplings * Turbulence and Generic Scale Invariance * Singular Perturbation Approach to Phase Ordering Dynamics * Kinetics of Diffusion-Controlled and Ballistically-Controlled Reactions * Field Theory of a Frustrated Heisenberg Spin Chain * FQHE Physics in Relativistic Field Theories * Importance of Initial Conditions in Determining the Dynamical Class of Cellular Automata (Abstract) * Do Hard-Core Bosons Exhibit Quantum Hall Effect? (Abstract) * Hysteresis in Ferromagnets * 4. Fundamental Aspects of Quantum Mechanics and Quantum Field Theory
From theory to field experiments
de Vos, Bram
2016-04-01
Peter Raats' achievements in Haren (NL) 1986-1997 were based on a solid theoretical insight in hydrology and transport process in soil. However, Peter was also the driving force behind many experimental studies and applied research. This will be illustrated by a broad range of examples ranging from the dynamics of composting processes of organic material; modelling and monitoring nutrient leaching at field-scale; wind erosion; water and nutrient dynamics in horticultural production systems; oxygen diffusion in soils; and processes of water and nutrient uptake by plant roots. Peter's leadership led to may new approaches and the introduction of innovative measurement techniques in Dutch research; ranging from TDR to nutrient concentration measurements in closed fertigation systems. This presentation will give a brief overview how Peter's theoretical and mathematical insights accelerated this applied research.
A Naturally Renormalized Quantum Field Theory
2006-01-01
It was shown that quantum metric fluctuations smear out the singularities of Green's functions on the light cone [1], but it does not remove other ultraviolet divergences of quantum field theory. We have proved that the quantum field theory in Krein space, {\\it i.e.} indefinite metric quantization, removes all divergences of quantum field theory with exception of the light cone singularity [2,3]. In this paper, it is discussed that the combination of quantum field theory in Krein space togeth...
Vázquez-Quesada, A.; Franke, T.; Ellero, M.
2017-03-01
In this work, an analytical model for the behavior of superparamagnetic chains under the effect of a rotating magnetic field is presented. It is postulated that the relevant mechanisms for describing the shape and breakup of the chains into smaller fragments are the induced dipole-dipole magnetic force on the external beads, their translational and rotational drag forces, and the tangential lubrication between particles. Under this assumption, the characteristic S-shape of the chain can be qualitatively understood. Furthermore, based on a straight chain approximation, a novel analytical expression for the critical frequency for the chain breakup is obtained. In order to validate the model, the analytical expressions are compared with full three-dimensional smoothed particle hydrodynamics simulations of magnetic beads showing excellent agreement. Comparison with previous theoretical results and experimental data is also reported.
A continuum theory for modeling the dynamics of crystalline materials.
Xiong, Liming; Chen, Youping; Lee, James D
2009-02-01
This paper introduces a multiscale field theory for modeling and simulation of the dynamics of crystalline materials. The atomistic formulation of a multiscale field theory is briefly introduced. Its applicability is discussed. A few application examples, including phonon dispersion relations of ferroelectric materials BiScO3 and MgO nano dot under compression are presented.
Inflation from string field theory
Koshelev, Alexey S; Moniz, Paulo Vargas
2016-01-01
In the framework of string field theory (SFT) a setting where the closed string dilaton is coupled to the open string tachyon at the final stage of an unstable brane or brane-anti-brane pair decay is considered. We show that this configuration can lead to viable inflation by means of the dilaton becoming a non-local (infinite-derivative) inflaton. The structure of non-locality leads to interesting inflationary scenarios. We obtain (i) a class of single field inflation with universal attractor predictions at $n_{s}\\sim0.967$ with any value of $r<0.1$, where the tensor to scalar ratio $r$ can be solely regulated by parameters of the SFT; (ii) a new class of two field conformally invariant models with a peculiar quadratic cross-product of scalar fields. We analyze a specific case where a spontaneously broken conformal invariance leads to Starobinsky like inflation plus creating an uplifted potential minimum which accounts to vacuum energy after inflation.
Effective Field Theories and Inflation
Burgess, C P; Holman, R
2003-01-01
We investigate the possible influence of very-high-energy physics on inflationary predictions focussing on whether effective field theories can allow effects which are parametrically larger than order H^2/M^2, where M is the scale of heavy physics and H is the Hubble scale at horizon exit. By investigating supersymmetric hybrid inflation models, we show that decoupling does not preclude heavy-physics having effects for the CMB with observable size even if H^2/M^2 << O(1%), although their presence can only be inferred from observations given some a priori assumptions about the inflationary mechanism. Our analysis differs from the results of hep-th/0210233, in which other kinds of heavy-physics effects were found which could alter inflationary predictions for CMB fluctuations, inasmuch as the heavy-physics can be integrated out here to produce an effective field theory description of low-energy physics. We argue, as in hep-th/0210233, that the potential presence of heavy-physics effects in the CMB does no...
Quantum Field Theory in (0 + 1) Dimensions
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
Noncommutative Dipole Field Theories And Unitarity
Chiou, D W; Chiou, Dah-Wei; Ganor, Ori J.
2004-01-01
We extend the argument of Gomis and Mehen for violation of unitarity in field theories with space-time noncommutativity to dipole field theories. In dipole field theories with a timelike dipole vector, we present 1-loop amplitudes that violate the optical theorem. A quantum mechanical system with nonlocal potential of finite extent in time also shows violation of unitarity.
New motives in modern field theory
Isaev, A P
2001-01-01
A review of the basic tendencies in the modern development of field theory is given. Main approaches to the investigation of the nonperturbative quantum field theories are discussed. The ideas of duality conception, superstring and p-brane models, AdS/CFT correspondence, noncommutative field theories, etc. are briefly outlined
Larsen, L.; Watts, D.; Khurana, A.; Anderson, J. L.; Xu, C.; Merritts, D. J.
2015-12-01
The classic signal of self-organization in nature is pattern formation. However, the interactions and feedbacks that organize depositional landscapes do not always result in regular or fractal patterns. How might we detect their existence and effects in these "irregular" landscapes? Emergent landscapes such as newly forming deltaic marshes or some restoration sites provide opportunities to study the autogenic processes that organize landscapes and their physical signatures. Here we describe a quest to understand autogenic vs. allogenic controls on landscape evolution in Big Spring Run, PA, a landscape undergoing restoration from bare-soil conditions to a target wet meadow landscape. The contemporary motivation for asking questions about autogenic vs. allogenic controls is to evaluate how important initial conditions or environmental controls may be for the attainment of management objectives. However, these questions can also inform interpretation of the sedimentary record by enabling researchers to separate signals that may have arisen through self-organization processes from those resulting from environmental perturbations. Over three years at Big Spring Run, we mapped the dynamic evolution of floodplain vegetation communities and distributions of abiotic variables and topography. We used principal component analysis and transition probability analysis to detect associative interactions between vegetation and geomorphic variables and convergent cross-mapping on lidar data to detect causal interactions between biomass and topography. Exploratory statistics revealed that plant communities with distinct morphologies exerted control on landscape evolution through stress divergence (i.e., channel initiation) and promoting the accumulation of fine sediment in channels. Together, these communities participated in a negative feedback that maintains low energy and multiple channels. Because of the spatially explicit nature of this feedback, causal interactions could not
Conformal field theory, boundary conditions and applications to string theory
Schweigert, C.; Fuchs, J.; Walcher, J.
2000-01-01
This is an introduction to two-dimensional conformal field theory and its applications in string theory. Modern concepts of conformal field theory are explained, and it is outlined how they are used in recent studies of D-branes in the strong curvature regime by means of CFT on surfaces with boundary.
Neutrix Calculus and Finite Quantum Field Theory
Ng, Y J
2004-01-01
In general, quantum field theories require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like QED are not convergent series, but are asymptotic series in their interaction couplings. We propose to apply neutrix calculus, developed by van der Corput and Hadamard in connection with asymptotic series, to tackle divergent integrals, yielding finite renormalizations for the parameters in quantum field theories. We observe that quantum gravity theories are rendered more manageable, and that both renormalizable field theories and effective field theories can be accommodated in the framework of neutrix calculus.
StudiesonSecondLanguageAcquisitionfromthePerspectiveof DynamicSystemTheory
Institute of Scientific and Technical Information of China (English)
赵哲
2014-01-01
As is known there are large numbers of studies on Second Language Acquisition. However, Dynamic System Theory is the new trend in Applied Linguistics. It is necessary to probe into this field and see if it has relationship with SLA.
Sierra Structural Dynamics Theory Manual
Energy Technology Data Exchange (ETDEWEB)
Reese, Garth M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-10-19
Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD , we refer the reader to Sierra/SD, User's Notes . Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature. This page intentionally left blank.
Encoding field theories into gravities
Aoki, Sinya; Onogi, Tetsuya
2016-01-01
We propose a method to give a $d+1$ geometry from a $d$ dimensional quantum field theory in the large N expansion. We first construct a $d+1$ dimensional field from the $d$ dimensional one using the gradient flow equation, whose flow time $t$ represents the energy scale of the system such that $t\\rightarrow 0$ corresponds to the ultra-violet (UV) while $t\\rightarrow\\infty$ to the infra-red (IR). We define the induced metric using $d+1$ dimensional field operators. We show that the metric defined in this way becomes classical in the large N limit: quantum fluctuations of the metric are suppressed as 1/N due to the large $N$ factorization property. As a concrete example, we apply our method to the O(N) non-linear $\\sigma$ model in two dimensions. We calculate the three dimensional induced metric, which describes an AdS space in the massless limit. We finally discuss several open issues for future investigations.
Quantum Field Theory A Modern Perspective
Parameswaran Nair, V
2005-01-01
Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...
Quantum Mechanics and Quantum Field Theory
Dimock, Jonathan
2011-02-01
Introduction; Part I. Non-relativistic: 1. Mathematical prelude; 2. Classical mechanics; 3. Quantum mechanics; 4. Single particle; 5. Many particles; 6. Statistical mechanics; Part II. Relativistic: 7. Relativity; 8. Scalar particles and fields; 9. Electrons and photons; 10. Field theory on a manifold; Part III. Probabilistic Methods: 11. Path integrals; 12. Fields as random variables; 13. A nonlinear field theory; Appendices; References; Index.
Instantons in Lifshitz field theories
Energy Technology Data Exchange (ETDEWEB)
Fujimori, Toshiaki; Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan)
2015-10-05
BPS instantons are discussed in Lifshitz-type anisotropic field theories. We consider generalizations of the sigma model/Yang-Mills instantons in renormalizable higher dimensional models with the classical Lifshitz scaling invariance. In each model, BPS instanton equation takes the form of the gradient flow equations for “the superpotential” defining “the detailed balance condition”. The anisotropic Weyl rescaling and the coset space dimensional reduction are used to map rotationally symmetric instantons to vortices in two-dimensional anisotropic systems on the hyperbolic plane. As examples, we study anisotropic BPS baby Skyrmion 1+1 dimensions and BPS Skyrmion in 2+1 dimensions, for which we take Kähler 1-form and the Wess-Zumiono-Witten term as the superpotentials, respectively, and an anisotropic generalized Yang-Mills instanton in 4+1 dimensions, for which we take the Chern-Simons term as the superpotential.
Families and degenerations of conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Roggenkamp, D.
2004-09-01
In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)
Stability in higher-derivative matter fields theories
Tretyakov, Petr V.
2016-09-01
We discuss possible instabilities in higher-derivative matter field theories. These theories have two free parameters β _1 and β _4. By using a dynamical system approach we explicitly demonstrate that for the stability of Minkowski space in an expanding universe we need the condition β _4-1/3β _4, which is needed to avoid a tachyon-like instability.
Stability in higher-derivative matter fields theories
Tretyakov, Petr V
2016-01-01
We discuss possible instabilities in higher-derivative matter fields theories. These theories has two free parameters $\\beta_1$ and $\\beta_4$. By using dynamical system approach we explicitly demonstrate that for stability of Minkowski space in expanding Universe it is need condition $\\beta_4-\\frac{1}{3}\\beta_4$ which is need to avoid tachyon-like instability.
Localisation in Quantum Field Theory
Balachandran, A P
2016-01-01
In nonrelativistic quantum mechanics , Born's principle of localisation is as follows: For a single particle, if a wave function $\\psi_K$ vanishes outside a spatial region $K$, it is said to be localised in $K$. In particular if a spatial region $K'$ is disjoint from $K$, a wave function $\\psi_{K'}$ localised in $K'$ is orthogonal to $\\psi_K$. Such a principle of localisation does not exist compatibly with relativity and causality in quantum field theory (Newton and Wigner) or interacting point particles (Currie,Jordan and Sudarshan).It is replaced by symplectic localisation of observables as shown by Brunetti, Guido and Longo, Schroer and others. This localisation gives a simple derivation of the spin-statistics theorem and the Unruh effect, and shows how to construct quantum fields for anyons and for massless particles with `continuous' spin. This review outlines the basic principles underlying symplectic localisation and shows or mentions its deep implications. In particular, it has the potential to affect...
Unusual signs in quantum field theory
O'Connell, Donal
Quantum field theory is by now a mature field. Nevertheless, certain physical phenomena remain difficult to understand. This occurs in some cases because well-established quantum field theories are strongly coupled and therefore difficult to solve; in other cases, our current understanding of quantum field theory seems to be inadequate. In this thesis, we will discuss various modifications of quantum field theory which can help to alleviate certain of these problems, either in their own right or as a component of a greater computational scheme. The modified theories we will consider all include unusual signs in some aspect of the theory. We will also discuss limitations on what we might expect to see in experiments, imposed by sign constraints in the customary formulation of quantum field theory.
Hamiltonian dynamics of the parametrized electromagnetic field
G., J Fernando Barbero; Villaseñor, Eduardo J S
2015-01-01
We study the Hamiltonian formulation for a parametrized electromagnetic field with the purpose of clarifying the interplay between parametrization and gauge symmetries. We use a geometric approach which is tailor-made for theories where embeddings are part of the dynamical variables. Our point of view is global and coordinate free. The most important result of the paper is the identification of sectors in the primary constraint submanifold in the phase space of the model where the number of independent components of the Hamiltonian vector fields that define the dynamics changes. This explains the non-trivial behavior of the system and some of its pathologies.
Hamiltonian dynamics of the parametrized electromagnetic field
Barbero G, J. Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S.
2016-06-01
We study the Hamiltonian formulation for a parametrized electromagnetic field with the purpose of clarifying the interplay between parametrization and gauge symmetries. We use a geometric approach which is tailor-made for theories where embeddings are part of the dynamical variables. Our point of view is global and coordinate free. The most important result of the paper is the identification of sectors in the primary constraint submanifold in the phase space of the model where the number of independent components of the Hamiltonian vector fields that define the dynamics changes. This explains the non-trivial behavior of the system and some of its pathologies.
Propagation in Polymer Parameterised Field Theory
Varadarajan, Madhavan
2016-01-01
The Hamiltonian constraint operator in Loop Quantum Gravity acts ultralocally. Smolin has argued that this ultralocality seems incompatible with the existence of a quantum dynamics which propagates perturbations between macroscopically seperated regions of quantum geometry. We present evidence to the contrary within an LQG type `polymer' quantization of two dimensional Parameterised Field Theory (PFT). PFT is a generally covariant reformulation of free field propagation on flat spacetime. We show explicitly that while, as in LQG, the Hamiltonian constraint operator in PFT acts ultralocally, states in the joint kernel of the Hamiltonian and diffeomorphism constraints of PFT necessarily describe propagation effects. The particular structure of the finite triangulation Hamiltonian constraint operator plays a crucial role, as does the necessity of imposing (the continuum limit of) its kinematic adjoint as a constraint. Propagation is seen as a property encoded by physical states in the kernel of the constraints r...
On magnetohydrodynamic gauge field theory
Webb, G. M.; Anco, S. C.
2017-06-01
Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963 Can. J. Phys. 41 2241-51). It is shown how the polarization vector {P} in Calkin’s approach naturally arises from the Lagrange multiplier constraint equation for Faraday’s equation for the magnetic induction {B} , or alternatively from the magnetic vector potential form of Faraday’s equation. Gauss’s equation, (divergence of {B} is zero) is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether’s theorem coupled with the gauge symmetries is used to derive the conservation laws for (a) magnetic helicity, (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations which applies to Faraday’s equation and Gauss’s equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for the general case of a non-barotropic gas in which the gas pressure and internal energy density depend on both the entropy S and the gas density ρ. The cross helicity and fluid helicity conservation laws in the non-barotropic case are nonlocal conservation laws that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982 Phys. Rev. A 26 480-3) satisfy the Casimir determining equations.
Dynamic information theory and information description of dynamic systems
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper, we develop dynamic statistical information theory established by the author. Starting from the ideas that the state variable evolution equations of stochastic dynamic systems, classical and quantum nonequilibrium statistical physical systems and special electromagnetic field systems can be regarded as their information symbol evolution equations and the definitions of dynamic information and dynamic entropy, we derive the evolution equations of dynamic information and dynamic entropy that describe the evolution laws of dynamic information. These four kinds of evolution equations are of the same mathematical type. They show in unison when information transmits in coordinate space outside the systems that the time rate of change of dynamic information densities originates from their drift, diffusion and dissipation in state variable space inside the systems and coordinate space in the transmission processes, and that the time rate of change of dynamic entropy densities is caused by their drift, diffusion and production in state variable space inside the systems and coordinate space in the transmission processes. When space noise can be neglected, an information wave will appear. If we only consider the information change inside the systems, dynamic information evolution equations reduce to information equations corresponding to the dynamic equations which describe evolution laws of the above dynamic systems. This reveals that the evolution laws of respective dynamic systems can be described by information equations in a unified fashion. Hence, the evolution processes of these dynamic systems can be abstracted as the evolution processes of information. Furthermore, we present the formulas for information flow, information dissipation rate, and entropy production rate. We prove that the information production probably emerges in a dynamic system with internal attractive interaction between the elements, and derive a formula for this information
Introductory Lectures on Quantum Field Theory
Alvarez-Gaumé, Luís
2014-01-01
In these lectures we present a few topics in Quantum Field Theory in detail. Some of them are conceptual and some more practical. They have been selected because they appear frequently in current applications to Particle Physics and String Theory.
Toward a gauge field theory of gravity.
Yilmaz, H.
Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.
Magnetic Backgrounds and Noncommutative Field Theory
Szabo, Richard J.
2004-01-01
This paper is a rudimentary introduction, geared at non-specialists, to how noncommutative field theories arise in physics and their applications to string theory, particle physics and condensed matter systems.
Towards weakly constrained double field theory
Directory of Open Access Journals (Sweden)
Kanghoon Lee
2016-08-01
Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.
Towards weakly constrained double field theory
Lee, Kanghoon
2016-08-01
We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon) transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.
Towards Weakly Constrained Double Field Theory
Lee, Kanghoon
2015-01-01
We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon) transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X- ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.
Perturbative algebraic quantum field theory at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Lindner, Falk
2013-08-15
We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.
Gauge field theories: various mathematical approaches
Jordan, François; Thierry, Masson
2014-01-01
This paper presents relevant modern mathematical formulations for (classical) gauge field theories, namely, ordinary differential geometry, noncommutative geometry, and transitive Lie algebroids. They provide rigorous frameworks to describe Yang-Mills-Higgs theories or gravitation theories, and each of them improves the paradigm of gauge field theories. A brief comparison between them is carried out, essentially due to the various notions of connection. However they reveal a compelling common mathematical pattern on which the paper concludes.
The Global Approach to Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Fulling, S A [Texas A and M University (United States)
2006-05-21
Parts I and II develop the basic classical and quantum kinematics of fields and other dynamical systems. The presentation is conducted in the utmost generality, allowing for dynamical quantities that may be anticommuting (supernumbers) and theories subject to the most general possible gauge symmetry. The basic ingredients are action functionals and the Peierls bracket, a manifestly covariant replacement for the Poisson bracket and equal-time commutation relations. For DeWitt the logical progression is Peierls bracket {yields} Schwinger action principle {yields} Feynman functional integral although he points out that the historical development was in the opposite order. It must be pointed out that the Peierls-Schwinger-DeWitt approach, despite some advantages over initial-value formulations, has some troubles of its own. In particular, it has never completely escaped from the arena of scattering theory, the paradigm of conventional particle physics. One is naturally led to study matrix elements between an 'in-vacuum' and an 'out-vacuum' though such concepts are murky in situations, such as big bangs and black holes, where the ambient geometry is not asymptotically static in the far past and future. The newest material in the treatise appears in two chapters in part II devoted to the interpretation of quantum theory, incorporating some unpublished work of David Deutsch on the meaning of probability in physics. Parts III through V apply the formalism in depth to successively more difficult classes of systems: quantum mechanics, linear (free) fields, and interacting fields. DeWitt's characteristic tools of effective actions, heat kernels, and ghost fields are developed. Chapters 26 and 31 outline new approaches developed in collaboration with DeWitt's recent students C Molina-Paris and C Y Wang, respectively. The most of parts VI and VII consist of special topics, such as anomalies, particle creation by external fields, Unruh acceleration
Constrained field theories on spherically symmetric spacetimes with horizons
Fernandes, Karan; Lahiri, Amitabha; Ghosh, Suman
2017-02-01
We apply the Dirac-Bergmann algorithm for the analysis of constraints to gauge theories defined on spherically symmetric black hole backgrounds. We find that the constraints for a given theory are modified on such spacetimes through the presence of additional contributions from the horizon. As a concrete example, we consider the Maxwell field on a black hole background, and determine the role of the horizon contributions on the dynamics of the theory.
Nonequilibrium fermion production in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Pruschke, Jens
2010-06-16
The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio
Conformal field theory on the plane
Ribault, Sylvain
2014-01-01
We provide an introduction to conformal field theory on the plane in the conformal bootstrap approach. We introduce the main ideas of the bootstrap approach to quantum field theory, and how they apply to two-dimensional theories with local conformal symmetry. We describe the mathematical structures which appear in such theories, from the Virasoro algebra and its representations, to the BPZ equations and their solutions. As examples, we study a number of models: Liouville theory, (generalized) minimal models, free bosonic theories, the $H_3^+$ model, and the $SU_2$ and $\\widetilde{SL}_2(\\mathbb{R})$ WZW models.
Parameterized quantum field theory without Haag's theorem
Seidewitz, Ed
2015-01-01
Under the normal assumptions of quantum field theory, Haag's theorem states that any field unitarily equivalent to a free field must itself be a free field. Unfortunately, the derivation of the Dyson series perturbation expansion relies on the use of the interaction picture, in which the interacting field is unitarily equivalent to the free field but must still account for interactions. Thus, the traditional perturbative derivation of the scattering matrix in quantum field theory is mathematically ill defined. Nevertheless, perturbative quantum field theory is currently the only practical approach for addressing scattering for realistic interactions, and it has been spectacularly successful in making empirical predictions. This paper explains this success by showing that quantum field theory can be formulated, using an invariant, fifth path parameter in addition to the usual four position parameters, in such a way that Haag's theorem no longer applies, but such that the Dyson perturbation expansion for the sc...
Dynamics of generalized tachyon field
Energy Technology Data Exchange (ETDEWEB)
Yang, Rongjia [Hebei University, College of Physical Science and Technology, Baoding (China); Tsinghua University, Department of Physics, Beijing (China); Qi, Jingzhao [Hebei University, College of Physical Science and Technology, Baoding (China)
2012-08-15
We investigate the dynamics of generalized tachyon field in FRW spacetime. We obtain the autonomous dynamical system for the general case. Because the general autonomous dynamical system cannot be solved analytically, we discuss two cases in detail: {beta}=1 and {beta}=2. We find the critical points and study their stability. At these critical points, we also consider the stability of the generalized tachyon field, which is as important as the stability of critical points. The possible final states of the universe are discussed. (orig.)
Multivector Fields and Jet Fields Setting Evolution Equations in Field Theories
Echeverría-Enríquez, A; Román-Roy, N
1997-01-01
The integrability of multivector fields in a differentiable manifold is studied. Then, given a jet bundle $J^1E\\to E\\to M$, it is shown that integrable multivector fields in $E$ are equivalent to integrable jet fields in $J^1E$ (connections in $E$). This result is applied to the particular case of multivector fields in the manifold $J^1E$ and jet fields in the repeated jet bundle $J^1J^1E$, in order to characterize integrable multivector fields and jet fields whose integral manifolds are canonical liftings of sections. These results allow us to set the lagrangian evolution equations for first-order classical field theories in three equivalent geometrical ways (in a form similar to that in which the lagrangian dynamical equations of non-autonomous mechanical systems are usually given).
Modeling emotional dynamics : currency versus field.
Energy Technology Data Exchange (ETDEWEB)
Sallach, D .L.; Decision and Information Sciences; Univ. of Chicago
2008-08-01
Randall Collins has introduced a simplified model of emotional dynamics in which emotional energy, heightened and focused by interaction rituals, serves as a common denominator for social exchange: a generic form of currency, except that it is active in a far broader range of social transactions. While the scope of this theory is attractive, the specifics of the model remain unconvincing. After a critical assessment of the currency theory of emotion, a field model of emotion is introduced that adds expressiveness by locating emotional valence within its cognitive context, thereby creating an integrated orientation field. The result is a model which claims less in the way of motivational specificity, but is more satisfactory in modeling the dynamic interaction between cognitive and emotional orientations at both individual and social levels.
Killing Vector Fields and Superharmonic Field Theories
Groeger, Josua
2013-01-01
The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, referred to as superharmonic action, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of the superharmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.
The Superspinorial Field Theory in Riemannian Coordinates
Derbenev, Yaroslav
2016-01-01
The Superspinorial Dual-covariant Field Theory (SSFT) developed in papers [1, 2] is treated in terms of Riemannian coordinates (RC) [7, 8] in space of the N dimensions unified manifold (UM). Metric tensor of UM (grand metric, GM) is built on the split metric matrices (SM) [1] which are a proportion of the Cartan's affinors (an extended analog of Dirac's matrices) of his Theory of Spinors [3] as explicated in [2]. Transition to RC based on consideration of geodesics is described. A principal property of an orthogonal RC frame (ORC) utilized in the present paper is constancy of the rotation matrix A of the Riemannian space of UM, while transformation matrix B of the dual superspinorial state vector field (DSV) varies together with Cartan's affinors according to the dynamical law of SSFT derived in [2]. The spinorial genesis of notion of the orthogonality as aspect of irreducible SSFT is pointed out in the present paper. The main outcome of resorting to an orthogonal RC frame (ORC) is explication of the conforma...
Duality Covariant Solutions in Extended Field Theories
Rudolph, Felix J
2016-01-01
Double field theory and exceptional field theory are formulations of supergravity that make certain dualities manifest symmetries of the action. To achieve this, the geometry is extended by including dual coordinates corresponding to winding modes of the fundamental objects. This geometrically unifies the spacetime metric and the gauge fields (and their local symmetries) in a generalized geometry. Solutions to these extended field theories take the simple form of waves and monopoles in the extended space. From a supergravity point of view they appear as 1/2 BPS objects such as the string, the membrane and the fivebrane in ordinary spacetime. In this thesis double field theory and exceptional field theory are introduced, solutions to their equations of motion are constructed and their properties are analyzed. Further it is established how isometries in the extended space give rise to duality relations between the supergravity solutions. Extensions to these core ideas include studying Goldstone modes, probing s...
Mathematical aspects of quantum field theories
Strobl, Thomas
2015-01-01
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...
Mean field methods for cortical network dynamics
DEFF Research Database (Denmark)
Hertz, J.; Lerchner, Alexander; Ahmadi, M.
2004-01-01
We review the use of mean field theory for describing the dynamics of dense, randomly connected cortical circuits. For a simple network of excitatory and inhibitory leaky integrate- and-fire neurons, we can show how the firing irregularity, as measured by the Fano factor, increases with the stren...... cortex. Finally, an extension of the model to describe an orientation hypercolumn provides understanding of how cortical interactions sharpen orientation tuning, in a way that is consistent with observed firing statistics...
Light-like tachyon condensation in Open String Field Theory
Hellerman, Simeon
2008-01-01
We use open string field theory to study the dynamics of unstable branes in the bosonic string theory, in the background of a generic linear dilaton. We find a simple exact solution describing a dynamical interpolation between the perturbative vacuum and the recently discovered nonperturbative tachyon vacuum. In our solution, the open string tachyon increases exponentially along a null direction, after which nonlinearities set in and cause the solution to asymptote to a static state. In particular, the wild oscillations of the open string fields which plague the time-like rolling tachyon solution are entirely absent. Our model thus represents the first example proving that the true tachyon vacuum of open string field theory can be realized as the endpoint of a dynamical transition from the perturbative vacuum.
Correlation theory of crystal field and anisotropic exchange effects
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1985-01-01
A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds. The the......A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds....... The theory gives explicitly a temperature dependent renormalization of both the crystal field and the interactions, and a damping of the excitations and in addition a central park component. The general theory is illustrated by a discussion of the singlet-doublet system. The correlation effects...... on the susceptibility, the first and second moment frequencies and the line shape are calculated self-consistently....
Unambiguous formalism for higher order Lagrangian field theories
Energy Technology Data Exchange (ETDEWEB)
Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn [Instituto de Ciencias Matematicas, CSIC-UAM-UC3M-UCM, Serrano 123, 28006 Madrid (Spain); Vankerschaver, Joris [Control and Dynamical Systems, California Institute of Technology, CA (United States)], E-mail: cedricmc@imaff.cfmac.csic.es, E-mail: mdeleon@imaff.cfmac.csic.es, E-mail: d.martin@imaff.cfmac.csic.es, E-mail: jv@caltech.edu
2009-11-27
The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.
Matrix product states for gauge field theories.
Buyens, Boye; Haegeman, Jutho; Van Acoleyen, Karel; Verschelde, Henri; Verstraete, Frank
2014-08-29
The matrix product state formalism is used to simulate Hamiltonian lattice gauge theories. To this end, we define matrix product state manifolds which are manifestly gauge invariant. As an application, we study (1+1)-dimensional one flavor quantum electrodynamics, also known as the massive Schwinger model, and are able to determine very accurately the ground-state properties and elementary one-particle excitations in the continuum limit. In particular, a novel particle excitation in the form of a heavy vector boson is uncovered, compatible with the strong coupling expansion in the continuum. We also study full quantum nonequilibrium dynamics by simulating the real-time evolution of the system induced by a quench in the form of a uniform background electric field.
Haag's theorem in renormalised quantum field theories
Klaczynski, Lutz
2016-01-01
We review a package of no-go results in axiomatic quantum field theory with Haag's theorem at its centre. Since the concept of operator-valued distributions in this framework comes very close to what we believe canonical quantum fields are about, these results are of consequence to quantum field theory: they suggest the seeming absurdity that this highly victorious theory is incapable of describing interactions. We single out unitarity of the interaction picture's intertwiner as the most salient provision of Haag's theorem and critique canonical perturbation theory to argue that renormalisation bypasses Haag's theorem by violating this very assumption.
Wavelet-Based Quantum Field Theory
Directory of Open Access Journals (Sweden)
Mikhail V. Altaisky
2007-11-01
Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.
Worked examples in engineering field theory
Fuller, A J Baden
1976-01-01
Worked Examples in Engineering Field Theory is a product of a lecture course given by the author to first-year students in the Department of Engineering in the University of Leicester. The book presents a summary of field theory together with a large number of worked examples and solutions to all problems given in the author's other book, Engineering Field Theory. The 14 chapters of this book are organized into two parts. Part I focuses on the concept of flux including electric flux. This part also tackles the application of the theory in gravitation, ideal fluid flow, and magnetism. Part II d
Lattice methods and effective field theory
Nicholson, Amy N
2016-01-01
Lattice field theory is a non-perturbative tool for studying properties of strongly interacting field theories, which is particularly amenable to numerical calculations and has quantifiable systematic errors. In these lectures we apply these techniques to nuclear Effective Field Theory (EFT), a non-relativistic theory for nuclei involving the nucleons as the basic degrees of freedom. The lattice formulation of [1,2] for so-called pionless EFT is discussed in detail, with portions of code included to aid the reader in code development. Systematic and statistical uncertainties of these methods are discussed at length, and extensions beyond pionless EFT are introduced in the final Section.
Backgrounds in Boundary String Field Theory
Baumgartl, M
2009-01-01
We study the role of closed string backgrounds in boundary string field theory. Background independence requires the introduction of dual boundary fields, which are reminiscent of the doubled field formalism. We find a correspondence between closed string backgrounds and collective excitations of open strings described by vertex operators involving dual fields. Renormalization group flow, solutions and stability are discussed in an example.
Noncommutative field theory and Lorentz violation.
Carroll, S M; Harvey, J A; Kostelecký, V A; Lane, C D; Okamoto, T
2001-10-01
The role of Lorentz symmetry in noncommutative field theory is considered. Any realistic noncommutative theory is found to be physically equivalent to a subset of a general Lorentz-violating standard-model extension involving ordinary fields. Some theoretical consequences are discussed. Existing experiments bound the scale of the noncommutativity parameter to (10 TeV)(-2).
Quantum field theory for the gifted amateur
Lancaster, Tom
2014-01-01
Quantum field theory is arguably the most far-reaching and beautiful physical theory ever constructed, with aspects more stringently tested and verified to greater precision than any other theory in physics. Unfortunately, the subject has gained a notorious reputation for difficulty, with forbidding looking mathematics and a peculiar diagrammatic language described in an array of unforgiving, weighty textbooks aimed firmly at aspiring professionals. However, quantum field theory is too important, too beautiful, and too engaging to be restricted to the professionals. This book on quantum field theory is designed to be different. It is written by experimental physicists and aims to provide the interested amateur with a bridge from undergraduate physics to quantum field theory. The imagined reader is a gifted amateur, possessing a curious and adaptable mind, looking to be told an entertaining and intellectually stimulating story, but who will not feel patronised if a few mathematical niceties are spelled out in ...
Nonlinear dynamic theory for photorefractive phase hologram formation
Kim, D. M.; Shah, R. R.; Rabson, T. A.; Tittle, F. K.
1976-01-01
A nonlinear dynamic theory is developed for the formation of photorefractive volume phase holograms. A feedback mechanism existing between the photogenerated field and free-electron density, treated explicitly, yields the growth and saturation of the space-charge field in a time scale characterized by the coupling strength between them. The expression for the field reduces in the short-time limit to previous theories and approaches in the long-time limit the internal or photovoltaic field. Additionally, the phase of the space charge field is shown to be time-dependent.
Quantum Field Theory in a Semiotic Perspective
Günter Dosch, Hans; Sieroka, Norman
2005-01-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincaré, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly ac...
Pilot-wave theory and quantum fields
Struyve, Ward
2010-10-01
Pilot-wave theories provide possible solutions to the measurement problem. In such theories, quantum systems are not only described by the state vector but also by some additional variables. These additional variables, also called beables, can be particle positions, field configurations, strings, etc. In this paper we focus our attention on pilot-wave theories in which the additional variables are field configurations. The first such theory was proposed by Bohm for the free electromagnetic field. Since Bohm, similar pilot-wave theories have been proposed for other quantum fields. The purpose of this paper is to present an overview and further development of these proposals. We discuss various bosonic quantum field theories such as the Schrödinger field, the free electromagnetic field, scalar quantum electrodynamics and the Abelian Higgs model. In particular, we compare the pilot-wave theories proposed by Bohm and by Valentini for the electromagnetic field, finding that they are equivalent. We further discuss the proposals for fermionic fields by Holland and Valentini. In the case of Holland's model we indicate that further work is required in order to show that the model is capable of reproducing the standard quantum predictions. We also consider a similar model, which does not seem to reproduce the standard quantum predictions. In the case of Valentini's model we point out a problem that seems hard to overcome.
Strings, Conformal Field Theory And Noncommutative Geometry
Matsubara, K
2004-01-01
This thesis describes some aspects of noncommutative geometry and conformal field theory. The motivation for the investigations made comes to a large extent from string theory. This theory is today considered to be the most promising way to find a solution to the problem of unifying the four fundamental interactions in one single theory. The thesis gives a short background presentation of string theory and points out how noncommutative geometry and conformal field theory are of relevance within the string theoretical framework. There is also given some further information on noncommutative geometry and conformal field theory. The results from the three papers on which the thesis is based are presented in the text. It is shown in Paper 1 that, for a gauge theory in a flat noncommutative background only the gauge groups U(N) can be used in a straightforward way. These theories can arise as low energy limits of string theory. Paper 2 concerns boundary conformal field theory, which can be used to describe open s...
Noncommutative Field Theory on Homogeneous Gravitational Waves
Halliday, S; Halliday, Sam; Szabo, Richard J.
2006-01-01
We describe an algebraic approach to the time-dependent noncommutative geometry of a six-dimensional Cahen-Wallach pp-wave string background supported by a constant Neveu-Schwarz flux, and develop a general formalism to construct and analyse quantum field theories defined thereon. Various star-products are derived in closed explicit form and the Hopf algebra of twisted isometries of the plane wave is constructed. Scalar field theories are defined using explicit forms of derivative operators, traces and noncommutative frame fields for the geometry, and various physical features are described. Noncommutative worldvolume field theories of D-branes in the pp-wave background are also constructed.
Conformal Field Theory Correlators from Classical Scalar Field Theory on $AdS_{d+1}$
Mück, W; Mueck, Wolfgang
1998-01-01
We use the correspondence between scalar field theory on $AdS_{d+1}$ and a conformal field theory on $R^d$ to calculate the 3- and 4-point functions of the latter. The classical scalar field theory action is evaluated at tree level.
Matrix string theory, contact terms, and superstring field theory
Dijkgraaf, R; Dijkgraaf, Robbert; Motl, Lubos
2003-01-01
In this note, we first explain the equivalence between the interaction Hamiltonian of Green-Schwarz light-cone gauge superstring field theory and the twist field formalism known from matrix string theory. We analyze the role of the large N limit in matrix string theory, in particular in relation with conformal perturbation theory around the orbifold SCFT that reproduces light-cone string perturbation theory. We show how the scaling with N is directly related to measures on the moduli space of Riemann surfaces. The scaling dimension 3 of the Mandelstam vertex as reproduced by the twist field interaction is in this way related to the dimension 3(h-1) of the moduli space. We analyze the structure and scaling of the higher order twist fields that represent the contact terms. We find one relevant twist field at each order. More generally, the structure of string field theory seems more transparent in the twist field formalism. Finally we also investigate the modifications necessary to describe the pp-wave backgrou...
Stability in higher-derivative matter fields theories
Energy Technology Data Exchange (ETDEWEB)
Tretyakov, Petr V. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Kazan Federal University, Department of General Relativity and Gravitation, Institute of Physics, Kazan (Russian Federation)
2016-09-15
We discuss possible instabilities in higher-derivative matter field theories. These theories have two free parameters β{sub 1} and β{sub 4}. By using a dynamical system approach we explicitly demonstrate that for the stability of Minkowski space in an expanding universe we need the condition β{sub 4} < 0. By using the quantum field theory approach we also find an additional restriction for the parameters, β{sub 1} > -(1)/(3)β{sub 4}, which is needed to avoid a tachyon-like instability. (orig.)
Vehicle dynamics theory and application
Jazar, Reza N
2017-01-01
This intermediate textbook is appropriate for students in vehicle dynamics courses, in their last year of undergraduate study or their first year of graduate study. It is also appropriate for mechanical engineers, automotive engineers, and researchers in the area of vehicle dynamics for continuing education or as a reference. It addresses fundamental and advanced topics, and a basic knowledge of kinematics and dynamics, as well as numerical methods, is expected. The contents are kept at a theoretical-practical level, with a strong emphasis on application. This third edition has been reduced by 25%, to allow for coverage over one semester, as opposed to the previous edition that needed two semesters for coverage. The textbook is composed of four parts: Vehicle Motion: covers tire dynamics, forward vehicle dynamics, and driveline dynamics Vehicle Kinematics: covers applied kinematics, applied mechanisms, steering dynamics, and suspension mechanisms Vehicle Dynamics: covers applied dynamics, vehicle planar dynam...
Conceptual Developments of 20th Century Field Theories
Cao, Tian Yu
1998-06-01
This volume provides a broad synthesis of conceptual developments of twentieth century field theories, from the general theory of relativity to quantum field theory and gauge theory. The book traces the foundations and evolution of these theories within a historio-critical context. Theoretical physicists and students of theoretical physics will find this a valuable account of the foundational problems of their discipline that will help them understand the internal logic and dynamics of theoretical physics. It will also provide professional historians and philosophers of science, particularly philosophers of physics, with a conceptual basis for further historical, cultural and sociological analysis of the theories discussed. Finally, the scientifically qualified general reader will find in this book a deeper analysis of contemporary conceptions of the physical world than can be found in popular accounts of the subject.
Resolving Witten’s superstring field theory
Energy Technology Data Exchange (ETDEWEB)
Erler, Theodore; Konopka, Sebastian; Sachs, Ivo [Arnold Sommerfeld Center, Ludwig-Maximilians University, Theresienstrasse 37, D-80333, Munich (Germany)
2014-04-24
We regulate Witten’s open superstring field theory by replacing the picture-changing insertion at the midpoint with a contour integral of picture changing insertions over the half-string overlaps of the cubic vertex. The resulting product between string fields is non-associative, but we provide a solution to the A{sub ∞} relations defining all higher vertices. The result is an explicit covariant superstring field theory which by construction satisfies the classical BV master equation.
Supergeometry in locally covariant quantum field theory
Hack, Thomas-Paul; Schenkel, Alexander
2015-01-01
In this paper we analyze supergeometric locally covariant quantum field theories. We develop suitable categories SLoc of super-Cartan supermanifolds, which generalize Lorentz manifolds in ordinary quantum field theory, and show that, starting from a few representation theoretic and geometric data, one can construct a functor A : SLoc --> S*Alg to the category of super-*-algebras which can be interpreted as a non-interacting super-quantum field theory. This construction turns out to disregard supersymmetry transformations as the morphism sets in the above categories are too small. We then solve this problem by using techniques from enriched category theory, which allows us to replace the morphism sets by suitable morphism supersets that contain supersymmetry transformations as their higher superpoints. We construct super-quantum field theories in terms of enriched functors eA : eSLoc --> eS*Alg between the enriched categories and show that supersymmetry transformations are appropriately described within the en...
A Field Theory with Curvature and Anticurvature
Directory of Open Access Journals (Sweden)
M. I. Wanas
2014-01-01
Full Text Available The present work is an attempt to construct a unified field theory in a space with curvature and anticurvature, the PAP-space. The theory is derived from an action principle and a Lagrangian density using a symmetric linear parameterized connection. Three different methods are used to explore physical contents of the theory obtained. Poisson’s equations for both material and charge distributions are obtained, as special cases, from the field equations of the theory. The theory is a pure geometric one in the sense that material distribution, charge distribution, gravitational and electromagnetic potentials, and other physical quantities are defined in terms of pure geometric objects of the structure used. In the case of pure gravity in free space, the spherical symmetric solution of the field equations gives the Schwarzschild exterior field. The weak equivalence principle is respected only in the case of pure gravity in free space; otherwise it is violated.
Light-Front quantization of field theory
Srivastava, P P
1996-01-01
Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincarè algebra and the LF Spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons.
The $\\hbar$ Expansion in Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; Hoyer, Paul; /Southern Denmark U., CP3-Origins /Helsinki U. /Helsinki Inst. of Phys.
2010-10-27
We show how expansions in powers of Planck's constant {h_bar} = h = 2{pi} can give new insights into perturbative and nonperturbative properties of quantum field theories. Since {h_bar} is a fundamental parameter, exact Lorentz invariance and gauge invariance are maintained at each order of the expansion. The physics of the {h_bar} expansion depends on the scheme; i.e., different expansions are obtained depending on which quantities (momenta, couplings and masses) are assumed to be independent of {h_bar}. We show that if the coupling and mass parameters appearing in the Lagrangian density are taken to be independent of {h_bar}, then each loop in perturbation theory brings a factor of {h_bar}. In the case of quantum electrodynamics, this scheme implies that the classical charge e, as well as the fine structure constant are linear in {h_bar}. The connection between the number of loops and factors of {h_bar} is more subtle for bound states since the binding energies and bound-state momenta themselves scale with {h_bar}. The {h_bar} expansion allows one to identify equal-time relativistic bound states in QED and QCD which are of lowest order in {h_bar} and transform dynamically under Lorentz boosts. The possibility to use retarded propagators at the Born level gives valence-like wave-functions which implicitly describe the sea constituents of the bound states normally present in its Fock state representation.
Playing with QCD I: effective field theories
Energy Technology Data Exchange (ETDEWEB)
Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica
2009-07-01
The building blocks of hadrons are quarks and gluons, although color is confined into singlet states. QCD is believed to be the fundamental theory of strong interactions. Its asymptotically free nature puts the vacuum out of reach for perturbation theory. The Lagrangian of QCD and the Feynman rules associated were built by using the Gauge Principle, starting from the quark matter fields and obtaining gluons as connections. A simpler, and sometimes necessary or complementary, approach is provided by effective field theories or effective models, especially when one has to deal with the nonperturbative sector of the theory. (author)
Thermodynamics of perfect fluids from scalar field theory
Ballesteros, Guillermo; Pilo, Luigi
2016-01-01
The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stuckelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stuckelberg fields. We show that thermodynamic stability plus the null energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.
Chaotic instantons in scalar field theory
Addazi, Andrea
2016-01-01
We consider a new class of instantons in context of quantum field theory of a scalar field coupled with a chaotic background source field. We show how the instanton associated to the quantum tunneling from a metastable false to the true vacuum will be corrected by an exponential enhancement factor. Possible implications are discussed.
N=2 gauge theories and degenerate fields of Toda theory
Kanno, Shoichi; Shiba, Shotaro; Tachikawa, Yuji
2009-01-01
We discuss the correspondence between degenerate fields of the W_N algebra and punctures of Gaiotto's description of the Seiberg-Witten curve of N=2 superconformal gauge theories. Namely, we find that the type of degenerate fields of the W_N algebra, with null states at level one, is classified by Young diagrams with N boxes, and that the singular behavior of the Seiberg-Witten curve near the puncture agrees with that of W_N generators. We also find how to translate mass parameters of the gauge theory to the momenta of the Toda theory.
On 2-dimensional topological field theories
Dumitrescu, Florin
2010-01-01
In this paper we give a characterization of 2-dimensional topological field theories over a space $X$ as Frobenius bundles with connections over $LX$, the free loop space of $X$. This is a generalization of the folk theorem stating that 2-dimensional topological field theories (over a point) are described by finite-dimensional commutative Frobenius algebras. In another direction, this result extends the description of 1-dimensional topological field theories over a space $X$ as vector bundles with connections over $X$, cf. \\cite{DST}.
Problem Book in Quantum Field Theory
Radovanovič, Voja
2008-01-01
The Problem Book in Quantum Field Theory contains about 200 problems with solutions or hints that help students to improve their understanding and develop skills necessary for pursuing the subject. It deals with the Klein-Gordon and Dirac equations, classical field theory, canonical quantization of scalar, Dirac and electromagnetic fields, the processes in the lowest order of perturbation theory, renormalization and regularization. The solutions are presented in a systematic and complete manner. The material covered and the level of exposition make the book appropriate for graduate and undergraduate students in physics, as well as for teachers and researchers. The new edition is a corrected paperback edition for students.
Quantum Field Theory on Noncommutative Spaces
Szabó, R J
2003-01-01
A pedagogical and self-contained introduction to noncommutative quantum field theory is presented, with emphasis on those properties that are intimately tied to string theory and gravity. Topics covered include the Weyl-Wigner correspondence, noncommutative Feynman diagrams, UV/IR mixing, noncommutative Yang-Mills theory on infinite space and on the torus, Morita equivalences of noncommutative gauge theories, twisted reduced models, and an in-depth study of the gauge group of noncommutative Yang-Mills theory. Some of the more mathematical ideas and techniques of noncommutative geometry are also briefly explained.
Constrained field theories on spherically symmetric spacetimes with horizons
Fernandes, Karan; Lahiri, Amitabha
2016-01-01
We apply the Dirac-Bergmann algorithm for the analysis of constraints to gauge theories defined on spherically symmetric black hole backgrounds. As a concrete example, we consider the Maxwell field on a black hole background, and determine the role of the horizon contributions on the dynamics of the theory. We find that the constraints are modified on such spacetimes through the presence of additional contributions from the horizon.
Quantum cellular automata and free quantum field theory
D'Ariano, Giacomo Mauro; Perinotti, Paolo
2017-02-01
In a series of recent papers [1-4] it has been shown how free quantum field theory can be derived without using mechanical primitives (including space-time, special relativity, quantization rules, etc.), but only considering the easiest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the simple principles of unitarity, homogeneity, locality, and isotropy. This has opened the route to extending the axiomatic information-theoretic derivation of the quantum theory of abstract systems [5, 6] to include quantum field theory. The inherent discrete nature of the informational axiomatization leads to an extension of quantum field theory to a quantum cellular automata theory, where the usual field theory is recovered in a regime where the discrete structure of the automata cannot be probed. A simple heuristic argument sets the scale of discreteness to the Planck scale, and the customary physical regime where discreteness is not visible is the relativistic one of small wavevectors. In this paper we provide a thorough derivation from principles that in the most general case the graph of the quantum cellular automaton is the Cayley graph of a finitely presented group, and showing how for the case corresponding to Euclidean emergent space (where the group resorts to an Abelian one) the automata leads to Weyl, Dirac and Maxwell field dynamics in the relativistic limit. We conclude with some perspectives towards the more general scenario of non-linear automata for interacting quantum field theory.
Bi-local Fields in Noncommutative Field Theory
Iso, S; Kitazawa, Y; Iso, Satoshi; Kawai, Hikaru; Kitazawa, Yoshihisa
2000-01-01
We propose a bi-local representation in noncommutative field theory. It provides a simple description for high momentum degrees of freedom. It also shows that the low momentum modes can be well approximated by ordinary local fields. Long range interactions are generated in the effective action for the lower momentum modes after integrating out the high momentum bi-local fields. The low momentum modes can be represented by diagonal blocks in the matrix model picture and the high momentum bi-local fields correspond to off-diagonal blocks. This block-block interaction picture simply reproduces the infrared singular behaviors of nonplanar diagrams in noncommutative field theory.
Dynamic pulsed-field-gradient NMR
Sørland, Geir Humborstad
2014-01-01
Dealing with the basics, theory and applications of dynamic pulsed-field-gradient NMR NMR (PFG NMR), this book describes the essential theory behind diffusion in heterogeneous media that can be combined with NMR measurements to extract important information of the system being investigated. This information could be the surface to volume ratio, droplet size distribution in emulsions, brine profiles, fat content in food stuff, permeability/connectivity in porous materials and medical applications currently being developed. Besides theory and applications it will provide the readers with background knowledge on the experimental set-ups, and most important, deal with the pitfalls that are numerously present in work with PFG-NMR. How to analyze the NMR data and some important basic knowledge on the hardware will be explained, too.
Propagation in polymer parameterised field theory
Varadarajan, Madhavan
2017-01-01
The Hamiltonian constraint operator in loop quantum gravity acts ultralocally. Smolin has argued that this ultralocality seems incompatible with the existence of a quantum dynamics which propagates perturbations between macroscopically seperated regions of quantum geometry. We present evidence to the contrary within an LQG type ‘polymer’ quantization of two dimensional parameterised field theory (PFT). PFT is a generally covariant reformulation of free field propagation on flat spacetime. We show explicitly that while, as in LQG, the Hamiltonian constraint operator in PFT acts ultralocally, states in the joint kernel of the Hamiltonian and diffeomorphism constraints of PFT necessarily describe propagation effects. The particular structure of the finite triangulation Hamiltonian constraint operator plays a crucial role, as does the necessity of imposing (the continuum limit of) its kinematic adjoint as a constraint. Propagation is seen as a property encoded by physical states in the kernel of the constraints rather than that of repeated actions of the finite triangulation Hamiltonian constraint on kinematic states. The analysis yields robust structural lessons for putative constructions of the Hamiltonian constraint in LQG for which ultralocal action co-exists with a description of propagation effects by physical states.
Effective field theory in time-dependent settings
Collins, Hael; Ross, Andreas
2012-01-01
We use the in-in or Schwinger-Keldysh formalism to explore the construction and interpretation of effective field theories for time-dependent systems evolving out of equilibrium. Starting with a simple model consisting of a heavy and a light scalar field taken to be in their free vacuum states at a finite initial time, we study the effects from the heavy field on the dynamics of the light field by analyzing the equation of motion for the expectation value of the light background field. New terms appear which cannot arise from a local action of an effective field theory in terms of the light field, though they disappear in the adiabatic limit. We discuss the origins of these terms as well as their possible implications for time dependent situations such as inflation.
Cutkosky Rules for Superstring Field Theory
Pius, Roji
2016-01-01
Superstring field theory expresses the perturbative S-matrix of superstring theory as a sum of Feynman diagrams each of which is manifestly free from ultraviolet divergences. The interaction vertices fall off exponentially for large space-like external momenta making the ultraviolet finiteness property manifest, but blow up exponentially for large time-like external momenta making it impossible to take the integration contours for loop energies to lie along the real axis. This forces us to carry out the integrals over the loop energies by choosing appropriate contours in the complex plane whose ends go to infinity along the imaginary axis but which take complicated form in the interior navigating around the various poles of the propagators. We consider the general class of quantum field theories with this property and prove Cutkosky rules for the amplitudes to all orders in perturbation theory. Besides having applications to string field theory, these results also give an alternative derivation of Cutkosky ru...
Factorization algebras in quantum field theory
Costello, Kevin
2017-01-01
Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.
Magnetic fields, special relativity and potential theory elementary electromagnetic theory
Chirgwin, B H; Kilmister, C W
1972-01-01
Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec
A New Theory of the Electromagnetic Field
Kriske, Richard
2017-01-01
This author has previously introduced a new theory of the Electromagnetic Field and its interaction with matter. There was from the start a problem with Einstein's formulation of Invariants and its use in describing The EM field. The photon produced by first varying a stationary Electric field in one observer's reference frame is not the same as a photon produced from varying the a stationary Magnetic Field. The Magnetic field photon is thought of as being ``off the mass shell''. The Quantum information seems to carry with it an ordering of these events. You see this ordering in Wick's theory and in Feynman diagrams. This author is proposing that other fields can vary first in another Observers reference frame, not just the ``Scalar Field'' or the ``Fermion Field'', but many other forms of Energy. If the ``Nuclear Field'' varies first, it results in Quantum information that produces a photon that has the Nuclear Field in it and also the Magnetic Field, this is the strange effect seen in Nuclear Magnetic Resonance. This author proposed that there is a large number of photons with different properties, because of this ordering of events that occurs in Quantum Information. One of these photons is the Neutrino which appears to be a three field photon. This is Kriske's Field Theory.
Electromagnetic Field Theory A Collection of Problems
Mrozynski, Gerd
2013-01-01
After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems. Content Maxwell’s Equations - Electrostatic Fields - Stationary Current Distributions – Magnetic Field of Stationary Currents – Quasi Stationary Fields: Eddy Currents - Electromagnetic Waves Target Groups Advanced Graduate Students in Electrical Engineering, Physics, and related Courses Engineers and Physicists Authors Professor Dr.-Ing. Gerd Mrozynski...
From exceptional field theory to heterotic double field theory via K3
Malek, Emanuel
2017-03-01
In this paper we show how to obtain heterotic double field theory from exceptional field theory by breaking half of the supersymmetry. We focus on the SL(5) exceptional field theory and show that when the extended space contains a generalised SU(2)-structure manifold one can define a reduction to obtain the heterotic SO(3 , n) double field theory. In this picture, the reduction on the SU(2)-structure breaks half of the supersymmetry of the exceptional field theory and the gauge group of the heterotic double field theory is given by the embedding tensor of the reduction used. Finally, we study the example of a consistent truncation of M-theory on K3 and recover the duality with the heterotic string on T 3. This suggests that the extended space can be made sense of even in the case of non-toroidal compactifications.
Nonequilibrium Dynamics Of Emergent Field Configurations
Howell, R C
2003-01-01
The processes by which nonlinear physical systems approach thermal equilibrium is of great importance in many areas of science. Central to this is the mechanism by which energy is transferred between the many degrees of freedom comprising these systems. With this in mind, in this research the nonequilibrium dynamics of nonperturbative fluctuations within Ginzburg-Landau models are investigated. In particular, two questions are addressed. In both cases the system is initially prepared in one of two minima of a double-well potential. First, within the context of a (2 + 1) dimensional field theory, we investigate whether emergent spatio-temporal coherent structures play a dynamcal role in the equilibration of the field. We find that the answer is sensitive to the initial temperature of the system. At low initial temperatures, the dynamics are well approximated with a time-dependent mean-field theory. For higher temperatures, the strong nonlinear coupling between the modes in the field does give rise to the synch...
Butterfly Tachyons in Vacuum String Field Theory
Matlock, P
2003-01-01
We use geometrical conformal field theory methods to investigate tachyon fluctuations about the butterfly projector state in Vacuum String Field Theory. We find that the on-shell condition for the tachyon field is equivalent to the requirement that the quadratic term in the string-field action vanish on shell. This further motivates the interpretation of the butterfly state as a D-brane. We begin a calculation of the tension of the butterfly, and conjecture that this will match the case of the sliver and further strengthen this interpretation.
Field theory for trapped atomic gases
Stoof, H.T.C.
2001-01-01
In this course we give a selfcontained introduction to the quantum field theory for trapped atomic gases, using functional methods throughout. We consider both equilibrium and nonequilibrium phenomena. In the equilibrium case, we first derive the appropriate Hartree—Fock theory for the properties of
N = 8 supersingleton quantum field theory
Bergshoeff, Eric; Salam, Abdus; Sezgin, Ergin; Tanii, Yoshiaki
1988-01-01
We quantize the N = 8 supersymmetric singleton field theory which is formulated on the boundary of the four-dimensional anti-de Sitter spacetime (ADS4). The theory has rigid OSp(8, 4) symmetry which acts as a superconformal group on the boundary of AdS4. We show that the generators of this symmetry
Computer animations of quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Cohen, E. (Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique)
1992-07-01
A visualization mehtod for quantum field theories based on the transfer matrix formalism is presented. It generates computer animations simulating the time evolution of complex physical systems subject to local Hamiltonians. The method may be used as a means of gaining insight to theories such as QCD, and as an educational tool in explaining high-energy physics. (orig.).
Klein Topological Field Theories from Group Representations
Directory of Open Access Journals (Sweden)
Sergey A. Loktev
2011-07-01
Full Text Available We show that any complex (respectively real representation of finite group naturally generates a open-closed (respectively Klein topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the representation. We relate any complex simple Klein TFT to a real division ring.
Field theory for trapped atomic gases
Stoof, H.T.C.
2001-01-01
In this course we give a selfcontained introduction to the quantum field theory for trapped atomic gases, using functional methods throughout. We consider both equilibrium and nonequilibrium phenomena. In the equilibrium case, we first derive the appropriate Hartree-Fock theory for the properties of
The conceptual basis of Quantum Field Theory
Hooft, G. 't
2007-01-01
Relativistic Quantum Field Theory is a mathematical scheme to describe the sub-atomic particles and forces. The basic starting point is that the axioms of Special Relativity on the one hand and those of Quantum Mechanics on the other, should be combined into one theory. The fundamental ingredients f
Medley in finite temperature field theory
Pisarski, R D
1993-01-01
I discuss three subjects in thermal field theory: why in \\sun gauge theories the \\zn symmetry is broken at high (instead of low) temperature, the possible singularity structure of gauge variant propagators, and the problem of how to compute the viscosity from the Kubo formula.
Renormalizability of effective scalar field theory
Ball, R D
1994-01-01
We present a comprehensive discussion of the consistency of the effective quantum field theory of a single $Z_2$ symmetric scalar field. The theory is constructed from a bare Euclidean action which at a scale much greater than the particle's mass is constrained only by the most basic requirements; stability, finiteness, analyticity, naturalness, and global symmetry. We prove to all orders in perturbation theory the boundedness, convergence, and universality of the theory at low energy scales, and thus that the theory is perturbatively renormalizable in the sense that to a certain precision over a range of such scales it depends only on a finite number of parameters. We then demonstrate that the effective theory has a well defined unitary and causal analytic S--matrix at all energy scales. We also show that redundant terms in the Lagrangian may be systematically eliminated by field redefinitions without changing the S--matrix, and discuss the extent to which effective field theory and analytic S--matrix theory...
Path integral quantization of parametrised field theory
Varadarajan, M
2004-01-01
Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrised field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrised field theory in order to analyse issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is non-trivial and is the analog of the Fradkin- Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrised field theory using key ideas of Schleich and show that our constructions imply the existence of non-standard `Wick rotations' of the standard free scalar field 2 point function. We develop a framework to study the problem of time through computations of scalar field 2 point functions. We illustra...
de Sitter entropy from conformal field theory
Kabat, D; Kabat, Daniel; Lifschytz, Gilad
2002-01-01
We propose that the entropy of de Sitter space can be identified with the mutual entropy of a dual conformal field theory. We argue that unitary time evolution in de Sitter space restricts the total number of excited degrees of freedom to be bounded by the de Sitter entropy, and we give a CFT interpretation of this restriction. We also clarify issues arising from the fact that both de Sitter and anti de Sitter have dual descriptions in terms of conformal field theory.
Classical theory of electric and magnetic fields
Good, Roland H
1971-01-01
Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma
Continuous point symmetries in Group Field Theories
Kegeles, Alexander
2016-01-01
We discuss the notion of symmetries in non-local field theories characterized by integro-differential equation of motion, from a geometric perspective. We then focus on Group Field Theory (GFT) models of quantum gravity. We provide a general analysis of their continuous point symmetry transformations, including the generalized conservation laws following from them, and apply it to several GFT models of interest to current research.
Covariant Hamilton equations for field theory
Energy Technology Data Exchange (ETDEWEB)
Giachetta, Giovanni [Department of Mathematics and Physics, University of Camerino, Camerino (Italy); Mangiarotti, Luigi [Department of Mathematics and Physics, University of Camerino, Camerino (Italy)]. E-mail: mangiaro@camserv.unicam.it; Sardanashvily, Gennadi [Department of Theoretical Physics, Physics Faculty, Moscow State University, Moscow (Russian Federation)]. E-mail: sard@grav.phys.msu.su
1999-09-24
We study the relations between the equations of first-order Lagrangian field theory on fibre bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase space of covariant Hamiltonian field theory. If a Lagrangian is hyperregular, these equations are equivalent. A degenerate Lagrangian requires a set of associated Hamiltonian forms in order to exhaust all solutions of the Euler-Lagrange equations. The case of quadratic degenerate Lagrangians is studied in detail. (author)
Lattice Field Theory Study of Magnetic Catalysis in Graphene
DeTar, Carleton; Zafeiropoulos, Savvas
2016-01-01
We discuss the simulation of the low-energy effective field theory (EFT) for graphene in the presence of an external magnetic field. Our fully nonperturbative calculation uses methods of lattice gauge theory to study the theory using a hybrid Monte Carlo approach. We investigate the phenomenon of magnetic catalysis in the context of graphene by studying the chiral condensate which is the order parameter characterizing the spontaneous breaking of chiral symmetry. In the EFT, the symmetry breaking pattern is given by $U(4) \\to U(2) \\times U(2)$. We also comment on the difficulty, in this lattice formalism, of studying the time-reversal-odd condensate characterizing the ground state in the presence of a magnetic field. Finally, we study the mass spectrum of the theory, in particular the Nambu-Goldstone (NG) mode as well as the Dirac quasiparticle, which is predicted to obtain a dynamical mass.
Emergent geometry from field theory: Wilson's renormalization group revisited
Kim, Ki-Seok; Park, Chanyong
2016-06-01
We find a geometrical description from a field theoretical setup based on Wilson's renormalization group in real space. We show that renormalization group equations of coupling parameters encode the metric structure of an emergent curved space, regarded to be an Einstein equation for the emergent gravity. Self-consistent equations of local order-parameter fields with an emergent metric turn out to describe low-energy dynamics of a strongly coupled field theory, analogous to the Maxwell equation of the Einstein-Maxwell theory in the AdSd +2 /CFTd +1 duality conjecture. We claim that the AdS3 /CFT2 duality may be interpreted as Landau-Ginzburg theory combined with Wilson's renormalization group, which introduces vertex corrections into the Landau-Ginzburg theory in the large-Ns limit, where Ns is the number of fermion flavors.
Higgs effective field theories. Systematics and applications
Energy Technology Data Exchange (ETDEWEB)
Krause, Claudius G.
2016-07-28
Researchers of the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) announced on July 4th, 2012, the observation of a new particle. The properties of the particle agree, within the relatively large experimental uncertainties, with the properties of the long-sought Higgs boson. Particle physicists around the globe are now wondering, ''Is it the Standard Model Higgs that we observe; or is it another particle with similar properties?'' We employ effective field theories (EFTs) for a general, model-independent description of the particle. We use a few, minimal assumptions - Standard Model (SM) particle content and a separation of scales to the new physics - which are supported by current experimental results. By construction, effective field theories describe a physical system only at a certain energy scale, in our case at the electroweak-scale v. Effects of new physics from a higher energy-scale, Λ, are described by modified interactions of the light particles. In this thesis, ''Higgs Effective Field Theories - Systematics and Applications'', we discuss effective field theories for the Higgs particle, which is not necessarily the Higgs of the Standard Model. In particular, we focus on a systematic and consistent expansion of the EFT. The systematics depends on the dynamics of the new physics. We distinguish two different consistent expansions. EFTs that describe decoupling new-physics effects and EFTs that describe non-decoupling new-physics effects. We briefly discuss the first case, the SM-EFT. The focus of this thesis, however, is on the non-decoupling EFTs. We argue that the loop expansion is the consistent expansion in the second case. We introduce the concept of chiral dimensions, equivalent to the loop expansion. Using the chiral dimensions, we expand the electroweak chiral Lagrangian up to next-to-leading order, O(f{sup 2}/Λ{sup 2})=O(1/16π{sup 2}). Further, we discuss how different
N=3 four dimensional field theories
García-Etxebarria, Iñaki
2015-01-01
We introduce a class of four dimensional field theories constructed by quotienting ordinary $\\mathcal{N}=4$ $U(N)$ SYM by particular combinations of R-symmetry and $SL(2,\\mathbb{Z})$ automorphisms. These theories appear naturally on the worldvolume of D3 branes probing terminal singularities in F-theory, where they can be thought of as non-perturbative generalizations of the O3 plane. We focus on cases preserving only 12 supercharges, where the quotient gives rise to theories with coupling fixed at a value of order one. These constructions posses an unconventional large $N$ limit described by a non-trivial F-theory fibration with base $AdS_5\\times (S^5/\\mathbb{Z}_k)$. Upon reduction on a circle the $\\mathcal{N}=3$ theories flow to well-known $\\mathcal{N}=6$ ABJM theories.
Effective Field Theories and Lattice QCD
Bernard, C
2015-01-01
I describe some of the many connections between lattice QCD and effective field theories, focusing in particular on chiral effective theory, and, to a lesser extent, Symanzik effective theory. I first discuss the ways in which effective theories have enabled and supported lattice QCD calculations. Particular attention is paid to the inclusion of discretization errors, for a variety of lattice QCD actions, into chiral effective theory. Several other examples of the usefulness of chiral perturbation theory, including the encoding of partial quenching and of twisted boundary conditions, are also described. In the second part of the talk, I turn to results from lattice QCD for the low energy constants of the two- and three-flavor chiral theories. I concentrate here on mesonic quantities, but the dependence of the nucleon mass on the pion mass is also discussed. Finally I describe some recent preliminary lattice QCD calculations by the MILC Collaboration relating to the three-flavor chiral limit.
Quantum field theory in a semiotic perspective
Energy Technology Data Exchange (ETDEWEB)
Dosch, H.G. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Mueller, V.F. [Technische Univ. Kaiserslautern (Germany). Fachbereich Physik; Sieroka, N. [Zurich Univ. (Switzerland)
2005-07-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)
Dynamics of gauge field inflation
Energy Technology Data Exchange (ETDEWEB)
Alexander, Stephon; Jyoti, Dhrubo [Center for Cosmic Origins and Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755 (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (Pitt-PACC), 420 Allen Hall, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Marcianò, Antonino [Center for Field Theory and Particle Physics & Department of Physics, Fudan University, 220 Handan Road, Shanghai (China)
2015-05-05
We analyze the existence and stability of dynamical attractor solutions for cosmological inflation driven by the coupling between fermions and a gauge field. Assuming a spatially homogeneous and isotropic gauge field and fermion current, the interacting fermion equation of motion reduces to that of a free fermion up to a phase shift. Consistency of the model is ensured via the Stückelberg mechanism. We prove the existence of exactly one stable solution, and demonstrate the stability numerically. Inflation arises without fine tuning, and does not require postulating any effective potential or non-standard coupling.
Space-Time Noncommutative Field Theories And Unitarity
Gomis, Jaume; Mehen, Thomas
2000-01-01
We study the perturbative unitarity of noncommutative scalar field theories. Field theories with space-time noncommutativity do not have a unitary S-matrix. Field theories with only space noncommutativity are perturbatively unitary. This can be understood from string theory, since space noncommutative field theories describe a low energy limit of string theory in a background magnetic field. On the other hand, there is no regime in which space-time noncommutative field theory is an appropriat...
Discrete Scalar Quantum Field Theory
Gudder, Stan
2016-01-01
We begin with a description of spacetime by a 4-dimensional cubic lattice $\\sscript$. It follows from this framework that the the speed of light is the only nonzero instantaneous speed for a particle. The dual space $\\sscripthat$ corresponds to a cubic lattice of energy-momentum. This description implies that there is a discrete set of possible particle masses. We then define discrete scalar quantum fields on $\\sscript$. These fields are employed to define interaction Hamiltonians and scattering operators. Although the scattering operator $S$ cannot be computed exactly, approximations are possible. Whether $S$ is unitary is an unsolved problem. Besides the definitions of these operators, our main assumption is conservation of energy-momentum for a scattering process. This article concludes with various examples of perturbation approximations. These include simplified versions of electron-electron and electron-proton scattering as well as simple decay processes. We also define scattering cross-sections, decay ...
Quantum algorithms for quantum field theories.
Jordan, Stephen P; Lee, Keith S M; Preskill, John
2012-06-01
Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.
Nilpotent weights in conformal field theory
Directory of Open Access Journals (Sweden)
S. Rouhani
2001-12-01
Full Text Available Logarithmic conformal field theory can be obtained using nilpotent weights. Using such scale transformations various properties of the theory were derived. The derivation of four point function needs a knowledge of singular vectors which is derived by including nilpotent variables into the Kac determinant. This leads to inhomogeneous hypergeometric functions. Finally we consider the theory near a boundary and also introduce the concept of superfields where a multiplet of conformal fields are dealt with together. This leads to the OPE of superfields and a logarithmic partner for the energy momentum tensor.
Noncommutative Time in Quantum Field Theory
Salminen, Tapio
2011-01-01
We analyze, starting from first principles, the quantization of field theories, in order to find out to which problems a noncommutative time would possibly lead. We examine the problem in the interaction picture (Tomonaga-Schwinger equation), the Heisenberg picture (Yang-Feldman-K\\"all\\'{e}n equation) and the path integral approach. They all indicate inconsistency when time is taken as a noncommutative coordinate. The causality issue appears as the key aspect, while the unitarity problem is subsidiary. These results are consistent with string theory, which does not admit a time-space noncommutative quantum field theory as its low-energy limit, with the exception of light-like noncommutativity.
On level crossing in conformal field theories
Korchemsky, G P
2015-01-01
We study the properties of operators in a unitary conformal field theory whose scaling dimensions approach each other for some values of the parameters and satisfy von Neumann-Wigner non-crossing rule. We argue that the scaling dimensions of such operators and their OPE coefficients have a universal scaling behavior in the vicinity of the crossing point. We demonstrate that the obtained relations are in a good agreement with the known examples of the level-crossing phenomenon in maximally supersymmetric $\\mathcal N=4$ Yang-Mills theory, three-dimensional conformal field theories and QCD.
Higher-Spin Triplet Fields and String Theory
Directory of Open Access Journals (Sweden)
D. Sorokin
2010-01-01
Full Text Available We review basic properties of reducible higher-spin multiplets, called triplets, and demonstrate how they naturally appear as part of the spectrum of String Field Theory in the tensionless limit. We show how in the frame-like formulation the triplet fields are endowed with the geometrical meaning of being components of higher-spin vielbeins and connections and present actions describing their free dynamics.
Intersection Theory, Integrable Hierarchies and Topological Field Theory
Dijkgraaf, Robbert
1992-01-01
In these lecture notes we review the various relations between intersection theory on the moduli space of Riemann surfaces, integrable hierarchies of KdV type, matrix models, and topological quantum field theories. We explain in particular why matrix integrals of the type considered by Kontsevich naturally appear as tau-functions associated to minimal models. Our starting point is the extremely simple form of the string equation for the topological (p,1) models, where the so-called Baker-Akhi...
The Dynamical Theory of X Ray Diffraction
Balchin, A. A.; Whitehouse, C. R.
1974-01-01
Summarizes the Darwin theory of x-ray diffraction in thin crystals or crystals with a mosaic texture and its modified application to crystals with three-dimensional electrostatic dipoles. Indicates that the dynamical theory is brought into its present relevance by the improvement of single crystal growth techniques. (CC)
"Quantum Field Theory and QCD"
Energy Technology Data Exchange (ETDEWEB)
Jaffe, Arthur M.
2006-02-25
This grant partially funded a meeting, "QFT & QCD: Past, Present and Future" held at Harvard University, Cambridge, MA on March 18-19, 2005. The participants ranged from senior scientists (including at least 9 Nobel Prize winners, and 1 Fields medalist) to graduate students and undergraduates. There were several hundred persons in attendance at each lecture. The lectures ranged from superlative reviews of past progress, lists of important, unsolved questions, to provocative hypotheses for future discovery. The project generated a great deal of interest on the internet, raising awareness and interest in the open questions of theoretical physics.
Equilibration properties of classical integrable field theories
De Luca, Andrea; Mussardo, Giuseppe
2016-06-01
We study the equilibration properties of classical integrable field theories at a finite energy density, with a time evolution that starts from initial conditions far from equilibrium. These classical field theories may be regarded as quantum field theories in the regime of high occupation numbers. This observation permits to recover the classical quantities from the quantum ones by taking a proper \\hslash \\to 0 limit. In particular, the time averages of the classical theories can be expressed in terms of a suitable version of the LeClair-Mussardo formula relative to the generalized Gibbs ensemble. For the purposes of handling time averages, our approach provides a solution of the problem of the infinite gap solutions of the inverse scattering method.
Quantum field theory in a nutshell
Zee, A
2010-01-01
Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading
Towards the mathematics of quantum field theory
Paugam, Frédéric
2014-01-01
The aim of this book is to introduce mathematicians (and, in particular, graduate students) to the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in play. This should in turn promote interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, even if the mathematical one is the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second...
Entanglement Entropy in Warped Conformal Field Theories
Castro, A.; Hofman, D.M.; Iqbal, N.
We present a detailed discussion of entanglement entropy in (1+1)-dimensional Warped Conformal Field Theories (WCFTs). We implement the Rindler method to evaluate entanglement and Renyi entropies for a single interval and along the way we interpret our results in terms of twist field correlation
Maverick Examples of Coset Conformal Field Theories
Dunbar, David C.; Joshi, Keith G.
We present coset conformal field theories whose spectrum is not determined by the identification current method. In these "Maverick" cosets there is a larger symmetry identifying primary fields than under the identification current. We find an A-D-E classification of these Mavericks.
Chiral effective field theory and nuclear forces
Machleidt, R
2011-01-01
We review how nuclear forces emerge from low-energy QCD via chiral effective field theory. The presentation is accessible to the non-specialist. At the same time, we also provide considerable detailed information (mostly in appendices) for the benefit of researchers who wish to start working in this field.
Tephra: field, theory and application
Pouget, Solene
In this work we briefly introduced the current state of the art for plume dynamics and plume modelling (chapters 1 and 2). From these, it was found that several questions remained unanswered. One of them what about adding some quantitative methodology to tephra identification when using geochemistry. Using discontinuous two tephra layers discovered at Burney Spring Mountain, northern California, this aspect was explored. Stratigraphic relationships suggest that they are two distinct tephras. Binary plots and standard similarity coefficients of electron probe microanalysis data have been supplemented with principal component analysis in log-ratio transformed data to correlate the two tephra layers to known regional tephras. Using principal component analysis, we are furthermore able to bound our uncertainty in the correlation of the two tephra layers (chapter 3). After removal of outliers, within the 95% prediction interval, we can say that one tephra layer is likely the Rockland tephra, aged 565-610 ka, and the second layer is likely from Mt Mazama, the Trego Hot Springs tephra, aged ~29 ka. Using cluster analysis on several vectors of chemical elements another quantitative methodology was explored (chapter 4). It was found that in most cases, geochemical analysis of a tephra layer will be assign to a single cluster, however in some cases the analysis are spread over several clusters. This spreading is a direct result of mixing and reworking happening in the tephra layer. The dynamics of volcanic plumes were also investigated. We introduce a new method to estimate mass eruption rate (MER) and mass loading from the growth of a volcanic umbrella cloud or downwind plume using satellite images, or photographs where ground-based observations are available with a gravity current model (chapter 5). The results show a more fully characterised MER as a function of time than do the results given by pre-existing methods, and allow a faster, remote assessment of the mass
Mean field methods for cortical network dynamics
DEFF Research Database (Denmark)
Hertz, J.; Lerchner, Alexander; Ahmadi, M.
2004-01-01
We review the use of mean field theory for describing the dynamics of dense, randomly connected cortical circuits. For a simple network of excitatory and inhibitory leaky integrate- and-fire neurons, we can show how the firing irregularity, as measured by the Fano factor, increases...... with the strength of the synapses in the network and with the value to which the membrane potential is reset after a spike. Generalizing the model to include conductance-based synapses gives insight into the connection between the firing statistics and the high- conductance state observed experimentally in visual...
Group field theories generating polyhedral complexes
Thürigen, Johannes
2015-01-01
Group field theories are a generalization of matrix models which provide both a second quantized reformulation of loop quantum gravity as well as generating functions for spin foam models. While states in canonical loop quantum gravity, in the traditional continuum setting, are based on graphs with vertices of arbitrary valence, group field theories have been defined so far in a simplicial setting such that states have support only on graphs of fixed valency. This has led to the question whether group field theory can indeed cover the whole state space of loop quantum gravity. In this contribution based on [1] I present two new classes of group field theories which satisfy this objective: i) a straightforward, but rather formal generalization to multiple fields, one for each valency and ii) a simplicial group field theory which effectively covers the larger state space through a dual weighting, a technique common in matrix and tensor models. To this end I will further discuss in some detail the combinatorial ...
Quantum Stability of Chameleon Field Theories
Upadhye, Amol; Khoury, Justin
2012-01-01
Chameleon scalar fields are dark energy candidates which suppress fifth forces in high density regions of the universe by becoming massive. We consider chameleon models as effective field theories and estimate quantum corrections to their potentials. Requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound $m 0.0042$\\,eV. An improvement of less than a factor of two in the range of fifth force experiments could test all classical chameleon field theories whose quantum corrections are well-controlled and couple to matter with nearly gravitational strength regardless of the specific form of the chameleon potential.
Mean-field magnetohydrodynamics and dynamo theory
Krause, F
2013-01-01
Mean-Field Magnetohydrodynamics and Dynamo Theory provides a systematic introduction to mean-field magnetohydrodynamics and the dynamo theory, along with the results achieved. Topics covered include turbulence and large-scale structures; general properties of the turbulent electromotive force; homogeneity, isotropy, and mirror symmetry of turbulent fields; and turbulent electromotive force in the case of non-vanishing mean flow. The turbulent electromotive force in the case of rotational mean motion is also considered. This book is comprised of 17 chapters and opens with an overview of the gen
Relating Berkovits and $A_\\infty$ Superstring Field Theories; Large Hilbert Space Perspective
Erler, Theodore
2015-01-01
We lift the dynamical field of the $A_\\infty$ superstring field theory to the large Hilbert space by introducing a trivial gauge invariance associated with the eta zero mode. We then provide a field redefinition which relates to the lifted field to the dynamical field of Berkovits' superstring field theory in the large Hilbert space. This generalizes the field redefinition in the small Hilbert space described in earlier works, and is useful for understanding the relation between the gauge symmetries of the theories.
Extended Riemannian Geometry I: Local Double Field Theory
Deser, Andreas
2016-01-01
We present an extended version of Riemannian geometry suitable for the description of current formulations of double field theory (DFT). This framework is based on graded manifolds and it yields extended notions of symmetries, dynamical data and constraints. In special cases, we recover general relativity with and without 1-, 2- and 3-form gauge potentials as well as DFT. We believe that our extended Riemannian geometry helps to clarify the role of various constructions in DFT. For example, it leads to a covariant form of the strong section condition. Furthermore, it should provide a useful step towards global and coordinate invariant descriptions of T- and U-duality invariant field theories.
Casimir Effects in Renormalizable Quantum Field Theories
Graham, N; Weigel, H; Graham, Noah; Jaffe, Robert L.; Weigel, Herbert
2002-01-01
We review the framework we and our collaborators have developed for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.
Casimir Effects in Renormalizable Quantum Field Theories
Graham, Noah; Jaffe, Robert L.; Weigel, Herbert
We present a framework for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.
Theory and application of quantum molecular dynamics
Zeng Hui Zhang, John
1999-01-01
This book provides a detailed presentation of modern quantum theories for treating the reaction dynamics of small molecular systems. Its main focus is on the recent development of successful quantum dynamics theories and computational methods for studying the molecular reactive scattering process, with specific applications given in detail for a number of benchmark chemical reaction systems in the gas phase and the gas surface. In contrast to traditional books on collision in physics focusing on abstract theory for nonreactive scattering, this book deals with both the development and the appli
Particle conservation in dynamical density functional theory.
de Las Heras, Daniel; Brader, Joseph M; Fortini, Andrea; Schmidt, Matthias
2016-06-22
We present the exact adiabatic theory for the dynamics of the inhomogeneous density distribution of a classical fluid. Erroneous particle number fluctuations of dynamical density functional theory are absent, both for canonical and grand canonical initial conditions. We obtain the canonical free energy functional, which yields the adiabatic interparticle forces of overdamped Brownian motion. Using an exact and one of the most advanced approximate hard core free energy functionals, we obtain excellent agreement with simulations. The theory applies to finite systems in and out of equilibrium.
String field theory solution corresponding to constant background magnetic field
Ishibashi, Nobuyuki; Takahashi, Tomohiko
2016-01-01
Following the method recently proposed by Erler and Maccaferri, we construct solutions to the equation of motion of Witten's cubic string field theory, which describe constant magnetic field background. We study the boundary condition changing operators relevant to such background and calculate the operator product expansions of them. We obtain solutions whose classical action coincide with the Born-Infeld action.
A first course in chaotic dynamical systems theory and experiment
Devaney, Robert L
1992-01-01
This is the first book to introduce modern topics in dynamical systems at the undergraduate level. Accessible to readers with only a background in calculus, the book integrates both theory and computer experiments into its coverage of contemporary ideas in dynamics. It is designed as a gradual introduction to the basic mathematical ideas behind such topics as chaos, fractals, Newton's method, symbolic dynamics, the Julia set, and the Mandelbrot set, and includes biographies of some of the leading researchers in the field of dynamical systems. Mathematical and computer experiments are integrate
Transition-state theory and dynamical corrections
DEFF Research Database (Denmark)
Henriksen, Niels Engholm; Hansen, Flemming Yssing
2002-01-01
. The correction factor due to non-adiabatic dynamics is considered in relation to the non-activated dissociative sticking of N-2 on Fe(111). For this process, conventional transition-state theory gives a sticking probability which is about 10 times too large (at T = 300 K). We estimate that the sticking......We consider conventional transition-state theory, and show how quantum dynamical correction factors can be incorporated in a simple fashion, as a natural extension of the fundamental formulation. Corrections due to tunneling and non-adiabatic dynamics are discussed, with emphasis on the latter...
Ergodic Theory, Open Dynamics, and Coherent Structures
Bose, Christopher; Froyland, Gary
2014-01-01
This book is comprised of selected research articles developed from a workshop on Ergodic Theory, Probabilistic Methods and Applications, held in April 2012 at the Banff International Research Station. It contains contributions from world leading experts in ergodic theory, dynamical systems, numerical analysis, fluid dynamics, and networks. The volume will serve as a valuable reference for mathematicians, physicists, engineers, physical oceanographers, atmospheric scientists, biologists, and climate scientists, who currently use, or wish to learn how to use, probabilistic techniques to cope with dynamical models that display open, coherent, or non-equilibrium behavior.
Free Quantum Field Theory from Quantum Cellular Automata
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro
2015-10-01
After leading to a new axiomatic derivation of quantum theory (see D'Ariano et al. in Found Phys, 2015), the new informational paradigm is entering the domain of quantum field theory, suggesting a quantum automata framework that can be regarded as an extension of quantum field theory to including an hypothetical Planck scale, and with the usual quantum field theory recovered in the relativistic limit of small wave-vectors. Being derived from simple principles (linearity, unitarity, locality, homogeneity, isotropy, and minimality of dimension), the automata theory is quantum ab-initio, and does not assume Lorentz covariance and mechanical notions. Being discrete it can describe localized states and measurements (unmanageable by quantum field theory), solving all the issues plaguing field theory originated from the continuum. These features make the theory an ideal framework for quantum gravity, with relativistic covariance and space-time emergent solely from the interactions, and not assumed a priori. The paper presents a synthetic derivation of the automata theory, showing how the principles lead to a description in terms of a quantum automaton over a Cayley graph of a group. Restricting to Abelian groups we show how the automata recover the Weyl, Dirac and Maxwell dynamics in the relativistic limit. We conclude with some new routes about the more general scenario of non-Abelian Cayley graphs. The phenomenology arising from the automata theory in the ultra-relativistic domain and the analysis of corresponding distorted Lorentz covariance is reviewed in Bisio et al. (Found Phys 2015, in this same issue).
Quantum gravity, effective fields and string theory
Bjerrum-Bohr, N E J
2004-01-01
We look at the various aspects of treating general relativity as a quantum theory. It is briefly studied how to consistently quantize general relativity as an effective field theory. A key achievement here is the long-range low-energy leading quantum corrections to both the Schwarzschild and Kerr metrics. The leading quantum corrections to the pure gravitational potential between two sources are also calculated, both in the mixed theory of scalar QED and quantum gravity and in the pure gravitational theory. The (Kawai-Lewellen-Tye) string theory gauge/gravity relations is next dealt with. We investigate if the KLT-operator mapping extends to the case of higher derivative effective operators. The KLT-relations are generalized, taking the effective field theory viewpoint, and remarkable tree-level amplitude relations between the field theory operators are derived. Quantum gravity is finally looked at from the the perspective of taking the limit of infinitely many spatial dimensions. It is verified that only a c...
Cutkosky rules for superstring field theory
Pius, Roji; Sen, Ashoke
2016-10-01
Superstring field theory expresses the perturbative S-matrix of superstring theory as a sum of Feynman diagrams each of which is manifestly free from ultraviolet divergences. The interaction vertices fall off exponentially for large space-like external momenta making the ultraviolet finiteness property manifest, but blow up exponentially for large time-like external momenta making it impossible to take the integration contours for loop energies to lie along the real axis. This forces us to carry out the integrals over the loop energies by choosing appropriate contours in the complex plane whose ends go to infinity along the imaginary axis but which take complicated form in the interior navigating around the various poles of the propagators. We consider the general class of quantum field theories with this property and prove Cutkosky rules for the amplitudes to all orders in perturbation theory. Besides having applications to string field theory, these results also give an alternative derivation of Cutkosky rules in ordinary quantum field theories.
Theory and application of nonlinear river dynamics
Institute of Scientific and Technical Information of China (English)
Yu-chuan BAI; Zhao-yin WANG
2014-01-01
A theoretical model for river evolution including riverbed formation and meandering pattern formation is presented in this paper. Based on nonlinear mathematic theory, the nonlinear river dynamic theory is set up for river dynamic process. Its core content includes the stability and tropism characteristics of flow motion in river and river selves’ evolution. The stability of river dynamic process depends on the response of river selves to the external disturbance, if the disturbance and the resulting response will eventually attenuate, and the river dynamics process can be restored to new equilibrium state, the river dynamic process is known as stable;otherwise, the river dynamic process is unstable. The river dynamic process tropism refers to that the evolution tendency of river morphology after the disturbance. As an application of this theory, the dynamical stability of the constant curvature river bend is calculated for its coherent vortex disturbance and response. In addition, this paper discusses the nonlinear evolution of the river peristaltic process under a large-scale disturbance, showing the nonlinear tendency of river dynamic processes, such as river filtering and butterfly effect.
Lectures on Hamiltonian Dynamics : Theory and Applications
Benettin, Giancarlo; Kuksin, Sergei
2005-01-01
This volume collects three series of lectures on applications of the theory of Hamiltonian systems, contributed by some of the specialists in the field. The aim is to describe the state of the art for some interesting problems, such as the Hamiltonian theory for infinite-dimensional Hamiltonian systems, including KAM theory, the recent extensions of the theory of adiabatic invariants and the phenomena related to stability over exponentially long times of Nekhoroshev's theory. The books may serve as an excellent basis for young researchers, who will find here a complete and accurate exposition of recent original results and many hints for further investigation.
Topological theory of dynamical systems recent advances
Aoki, N
1994-01-01
This monograph aims to provide an advanced account of some aspects of dynamical systems in the framework of general topology, and is intended for use by interested graduate students and working mathematicians. Although some of the topics discussed are relatively new, others are not: this book is not a collection of research papers, but a textbook to present recent developments of the theory that could be the foundations for future developments. This book contains a new theory developed by the authors to deal with problems occurring in diffentiable dynamics that are within the scope of general topology. To follow it, the book provides an adequate foundation for topological theory of dynamical systems, and contains tools which are sufficiently powerful throughout the book. Graduate students (and some undergraduates) with sufficient knowledge of basic general topology, basic topological dynamics, and basic algebraic topology will find little difficulty in reading this book.
Cosmology from group field theory formalism for quantum gravity.
Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo
2013-07-19
We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry.
Field theories without a holographic dual
McInnes, Brett
2016-12-01
In applying the gauge-gravity duality to the quark-gluon plasma, one models the plasma using a particular kind of field theory with specified values of the temperature, magnetic field, and so forth. One then assumes that the bulk, an asymptotically AdS black hole spacetime with properties chosen to match those of the boundary field theory, can be embedded in string theory. But this is not always the case: there are field theories with no bulk dual. The question is whether these theories might include those used to study the actual plasmas produced at such facilities as the RHIC experiment or the relevant experiments at the LHC. We argue that, provided that due care is taken to include the effects of the angular momentum associated with the magnetic fields experienced by the plasmas produced by peripheral collisions, the existence of the dual can be established for the RHIC plasmas. In the case of the LHC plasmas, the situation is much more doubtful.
Weak gravity conjecture and effective field theory
Saraswat, Prashant
2017-01-01
The weak gravity conjecture (WGC) is a proposed constraint on theories with gauge fields and gravity, requiring the existence of light charged particles and/or imposing an upper bound on the field theory cutoff Λ . If taken as a consistency requirement for effective field theories (EFTs), it rules out possibilities for model building including some models of inflation. I demonstrate simple models which satisfy all forms of the WGC, but which through Higgsing of the original gauge fields produce low-energy EFTs with gauge forces that badly violate the WGC. These models illustrate specific loopholes in arguments that motivate the WGC from a bottom-up perspective; for example the arguments based on magnetic monopoles are evaded when the magnetic confinement that occurs in a Higgs phase is accounted for. This indicates that the WGC should not be taken as a veto on EFTs, even if it turns out to be a robust property of UV quantum gravity theories. However, if the latter is true, then parametric violation of the WGC at low energy comes at the cost of nonminimal field content in the UV. I propose that only a very weak constraint is applicable to EFTs, Λ ≲(log 1/g )-1 /2Mpl , where g is the gauge coupling, motivated by entropy bounds. Remarkably, EFTs produced by Higgsing a theory that satisfies the WGC can saturate but not violate this bound.
Field Theories Without a Holographic Dual
McInnes, Brett
2016-01-01
In applying the gauge-gravity duality to the quark-gluon plasma, one models the plasma using a particular kind of field theory with specified values of the temperature, magnetic field, and so forth. One then assumes that the bulk, an asymptotically AdS black hole spacetime with properties chosen to match those of the boundary field theory, can be embedded in string theory. But this is not always the case: there are field theories with no bulk dual. The question is whether these theories might include those used to study the actual plasmas produced at such facilities as the RHIC experiment or the relevant experiments at the LHC. We argue that, \\emph{provided} that due care is taken to include the effects of the angular momentum associated with the magnetic fields experienced by the plasmas produced by peripheral collisions, the existence of the dual can be established for the RHIC plasmas. In the case of the LHC plasmas, the situation is much more doubtful.
On space of integrable quantum field theories
Smirnov, F. A.; Zamolodchikov, A. B.
2017-02-01
We study deformations of 2D Integrable Quantum Field Theories (IQFT) which preserve integrability (the existence of infinitely many local integrals of motion). The IQFT are understood as "effective field theories", with finite ultraviolet cutoff. We show that for any such IQFT there are infinitely many integrable deformations generated by scalar local fields Xs, which are in one-to-one correspondence with the local integrals of motion; moreover, the scalars Xs are built from the components of the associated conserved currents in a universal way. The first of these scalars, X1, coincides with the composite field (T T bar) built from the components of the energy-momentum tensor. The deformations of quantum field theories generated by X1 are "solvable" in a certain sense, even if the original theory is not integrable. In a massive IQFT the deformations Xs are identified with the deformations of the corresponding factorizable S-matrix via the CDD factor. The situation is illustrated by explicit construction of the form factors of the operators Xs in sine-Gordon theory. We also make some remarks on the problem of UV completeness of such integrable deformations.
Wilson lines in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Cherednikov, Igor Olegovich [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.; Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Mertens, Tom; Veken, Frederik F. van der [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.
2014-07-01
Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.
Theory of controlled quantum dynamics
De Martino, S; Illuminati, F; Martino, Salvatore De; Siena, Silvio De; Illuminati, Fabrizio
1997-01-01
We introduce a general formalism, based on the stochastic formulation of quantum mechanics, to obtain localized quasi-classical wave packets as dynamically controlled systems, for arbitrary anharmonic potentials. The control is in general linear, and it amounts to introduce additional quadratic and linear time-dependent terms to the given potential. In this way one can construct for general systems either coherent packets moving with constant dispersion, or dynamically squeezed packets whose spreading remains bounded for all times. In the standard operatorial framework our scheme corresponds to a suitable generalization of the displacement and scaling operators that generate the coherent and squeezed states of the harmonic oscillator.
Hamiltonian truncation approach to quenches in the Ising field theory
Rakovszky, Tibor; Collura, Mario; Kormos, Márton; Takács, Gábor
2016-01-01
In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the 1+1 dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while...
Quantum field theory the why, what and how
Padmanabhan, Thanu
2016-01-01
This book describes, in clear terms, the Why, What and the How of Quantum Field Theory. The raison d'etre of QFT is explained by starting from the dynamics of a relativistic particle and demonstrating how it leads to the notion of quantum fields. Non-perturbative aspects and the Wilsonian interpretation of field theory are emphasized right from the start. Several interesting topics such as the Schwinger effect, Davies-Unruh effect, Casimir effect and spontaneous symmetry breaking introduce the reader to the elegance and breadth of applicability of field theoretical concepts. Complementing the conceptual aspects, the book also develops all the relevant mathematical techniques in detail, leading e.g., to the computation of anomalous magnetic moment of the electron and the two-loop renormalisation of the self-interacting scalar field. It contains nearly a hundred problems, of varying degrees of difficulty, making it suitable for both self-study and classroom use.
Statistical mechanics of vortices from field theory
Kajantie, Keijo; Neuhaus, T; Rajantie, A; Rummukainen, K
1999-01-01
We study with lattice Monte Carlo simulations the interactions and macroscopic behaviour of a large number of vortices in the 3-dimensional U(1) gauge+Higgs field theory, in an external magnetic field. We determine non-perturbatively the (attractive or repelling) interaction energy between two or more vortices, as well as the critical field strength H_c, the thermodynamical discontinuities, and the surface tension related to the boundary between the Meissner phase and the Coulomb phase in the type I region. We also investigate the emergence of vortex lattice and vortex liquid phases in the type II region. For the type I region the results obtained are in qualitative agreement with mean field theory, except for small values of H_c, while in the type II region there are significant discrepancies. These findings are relevant for superconductors and some models of cosmic strings, as well as for the electroweak phase transition in a magnetic field.
Simple Recursion Relations for General Field Theories
Cheung, Clifford; Trnka, Jaroslav
2015-01-01
On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensional analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-...
Constructal theory of social dynamics
Bejan, Adrian
2007-01-01
Combines for the first time theories of general physics and applies them to social sciencesOffers a new way to look at social phenomena as part of natural phenomenaA new domain of application of engineering such as thermodynamic optimization, thermoeconomics and "design as science"Discusses how the "flow architectures" of natural sciences are also found in social situationsBoth classes are covered by the same principle (the constructal law)First work to show that the concept of "efficiency" of engineering has a home in physics and social sciencesThe constructal law theory puts a scientific principle behind the major challenges of today and the future: sustainable development, energy sufficiency, equilibria between human settlements and environmental ecosystems, optimal allocation, optimal distribution of finite resources, etc.
Folding defect affine Toda field theories
Robertson, C
2013-01-01
A folding process is applied to fused a^(1)_r defects to construct defects for the non-simply laced affi?ne Toda ?field theories of c^(1)_n, d^(2)_n and a^(2)_n at the classical level. Support for the hypothesis that these defects are integrable in the folded theories is provided by the observation that transmitted solitons retain their form. Further support is given by the demonstration that energy and momentum are conserved.
An Introduction to Quantum Field Theory
Peskin, Michael E
1995-01-01
An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the sta
Directory of Open Access Journals (Sweden)
R. Dhote
2016-01-01
Full Text Available The behavior of shape memory alloy (SMA nanostructures is influenced by strain rate and temperature evolution during dynamic loading. The coupling between temperature, strain, and strain rate is essential to capture inherent thermomechanical behavior in SMAs. In this paper, we propose a new 3D phase-field model that accounts for two-way coupling between mechanical and thermal physics. We use the strain-based Ginzburg-Landau potential for cubic-to-tetragonal phase transformations. The variational formulation of the developed model is implemented in the isogeometric analysis framework to overcome numerical challenges. We have observed a complete disappearance of the out-of-plane martensitic variant in a very high aspect ratio SMA domain as well as the presence of three variants in equal portions in a low aspect ratio SMA domain. The dependence of different boundary conditions on the microstructure morphology has been examined energetically. The tensile tests on rectangular prism nanowires, using the displacement based loading, demonstrate the shape memory effect and pseudoelastic behavior. We have also observed that higher strain rates, as well as the lower aspect ratio domains, resulting in high yield stress and phase transformations occur at higher stress during dynamic axial loading.
Effective field theory for magnetic compactifications
Buchmuller, Wilfried; Dudas, Emilian; Schweizer, Julian
2016-01-01
Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of a symmetry of the six-dimensional theory by the background gauge field, with the Wilson line as Goldstone boson.
Quantum Finite Elements for Lattice Field Theory
Brower, Richard C; Gasbarro, Andrew; Raben, Timothy; Tan, Chung-I; Weinberg, Evan
2016-01-01
Viable non-perturbative methods for lattice quantum field theories on curved manifolds are difficult. By adapting features from the traditional finite element methods (FEM) and Regge Calculus, a new simplicial lattice Quantum Finite Element (QFE) Lagrangian is constructed for fields on a smooth Riemann manifold. To reach the continuum limit additional counter terms must be constructed to cancel the ultraviolet distortions. This is tested by the comparison of phi 4-th theory at the Wilson-Fisher fixed point with the exact Ising (c =1/2) CFT on a 2D Riemann sphere. The Dirac equation is also constructed on a simplicial lattice approximation to a Riemann manifold by introducing a lattice vierbein and spin connection on each link. Convergence of the QFE Dirac equation is tested against the exact solution for the 2D Riemann sphere. Future directions and applications to Conformal Field Theories are suggested.
On the derivation of effective field theories
Uzunov, D I
2004-01-01
A general self-consistency approach allows a thorough treatment of the corrections to the standard mean-field approximation (MFA). The natural extension of standard MFA with the help of a cumulant expansion leads to a new point of view on the effective field theories. The proposed approach can be used for a systematic treatment of fluctuation effects of various length scales and, perhaps, for the development of a new coarse graining procedure. We outline and justify our method by some preliminary calculations. Concrete results are given for the critical temperature and the Landau parameters of the $\\phi^4_d$-theory - the field counterpart of the Ising model. An important unresolved problem of the modern theory of phase transitions - the problem for the calculation of the true critical temperature, is considered within the framework of the present approach. A comprehensive description of the ground state properties of many-body systems is also demonstrated.
Multisymplectic effective General Boundary Field Theory
Arjang, Mona
2013-01-01
The transfer matrix in lattice field theory connects the covariant and the initial data frameworks; in spin foam models, it can be written as a composition of elementary cellular amplitudes/propagators. We present a framework for discrete spacetime classical field theory in which solutions to the field equations over elementary spacetime cells may be amalgamated if they satisfy simple gluing conditions matching the composition rules of cellular amplitudes in spin foam models. Furthermore, the formalism is endowed with a multisymplectic structure responsible for local conservation laws. Some models within our framework are effective theories modeling a system at a given scale. Our framework allows us to study coarse graining and the continuum limit.
Confinement in Einstein's unified field theory
Antoci, S; Mihich, L
2006-01-01
After recalling the mathematical structure of Einstein's Hermitian extension of the gravitational theory of 1915, the problem, whether its field equations should admit of phenomenological sources at their right-hand sides, and how this addition should be done, is expounded by relying on a thread of essential insights and achievements by Schr\\"odinger, Kursunoglu, Lichnerowicz, H\\'ely and Borchsenius. When sources are appended to all the field equations, from the latter and from the contracted Bianchi identities a sort of gravoelectrodynamics appears, that totally departs from the so called Einstein-Maxwell theory, since its constitutive equation, that rules the link between inductions and fields, is a very complicated differential relation that allows for a much wider, still practically unexplored range of possible occurrences. In this sort of theory one can allow for both an electric and a magnetic four-current, which are not a physically wrong replica of each other, like it would occur if both these current...
Conformal field theory with gauge symmetry
Ueno, Kenji
2008-01-01
This book presents a systematic approach to conformal field theory with gauge symmetry from the point of view of complex algebraic geometry. After presenting the basic facts of the theory of compact Riemann surfaces and the representation theory of affine Lie algebras in Chapters 1 and 2, conformal blocks for pointed Riemann surfaces with coordinates are constructed in Chapter 3. In Chapter 4 the sheaf of conformal blocks associated to a family of pointed Riemann surfaces with coordinates is constructed, and in Chapter 5 it is shown that this sheaf supports a projective flat connection-one of
Completely local interpretation of quantum field theory
Sverdlov, Roman
2010-01-01
The purpose of this paper is to come up with a framework that "converts" existing concepts from configuration space to ordinary one. This is done by modeling our universe as a big "computer" that simulates configuration space. If that "computer" exists in ordinary space and is ran by "classical" laws, our theory becomes "classical" by default. We have first applied this concept to a version of quantum field theory in which elementary particles have size (that is, a theory that does not yet exists). After that, we have also done the same with Pilot Wave model of discrete jumps, due to D\\"urr et el.
Dynamic games theory and applications
Haurie, Alain
2005-01-01
Dynamic games continue to attract strong interest from researchers interested in modeling competitive and conflict situations to study the behavior of players (decision-makers) and to predict the outcome of such situations in many areas including engineering, economics, management science, military, biology, and political science. This collection of articles by established researchers is an excellent reference covering a wide range of emerging and revisited problems in both cooperative and non-cooperative games.
A geometric formulation of exceptional field theory
Bosque, Pascal du; Lust, Dieter; Malek, Emanuel
2016-01-01
We formulate the full bosonic SL(5) exceptional field theory in a coordinate-invariant manner. Thereby we interpret the 10-dimensional extended space as a manifold with $\\mathrm{SL}(5)\\times\\mathbb{R}^+$-structure. We show that the algebra of generalised diffeomorphisms closes subject to a set of closure constraints which are reminiscent of the quadratic and linear constraints of maximal seven-dimensional gauged supergravities, as well as the section condition. We construct an action for the full bosonic SL(5) exceptional field theory, even when the $\\mathrm{SL}(5)\\times\\mathbb{R}^+$-structure is not locally flat.
Effective field theory for deformed atomic nuclei
Papenbrock, T.; Weidenmüller, H. A.
2016-05-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Field theory a path integral approach
Das, Ashok
2006-01-01
This unique book describes quantum field theory completely within the context of path integrals. With its utility in a variety of fields in physics, the subject matter is primarily developed within the context of quantum mechanics before going into specialized areas.Adding new material keenly requested by readers, this second edition is an important expansion of the popular first edition. Two extra chapters cover path integral quantization of gauge theories and anomalies, and a new section extends the supersymmetry chapter, where singular potentials in supersymmetric systems are described.
Effective field theory for deformed atomic nuclei
Papenbrock, T
2015-01-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband $E2$ transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Global Anomalies and Effective Field Theory
Golkar, Siavash
2015-01-01
We show that matching anomalies under large gauge transformations and large diffeomorphisms can explain the appearance and non-renormalization of couplings in effective field theory. We focus on %thermal partition functions and thermal effective field theory where we argue that the appearance of certain unusual Chern-Simons couplings is a consequence of global anomalies. As an example, we show that a mixed global anomaly in four dimensions fixes the chiral vortical effect coefficient. This is an experimentally measurable prediction from a global anomaly. For certain situations, we propose a simpler method for calculating global anomalies which uses correlation functions rather than eta invariants.
Field theory approaches to new media practices
DEFF Research Database (Denmark)
Hartley, Jannie Møller; Willig, Ida; Waltorp, Karen
2015-01-01
to develop field theory in this context. Secondly, we present the four thematic articles in this issue and the articles outside the theme, which includes two translations of classic texts within communication and media research. This introduction article concludes by encouraging media scholars to embark...... on more studies within a field theory framework, as the ability of the comprehensive theoretical work and the ideas of a reflexive sociology is able to trigger the good questions, more than it claims to offer a complete and self-sufficient sociology of media and inherent here also new media....
A geometric formulation of exceptional field theory
du Bosque, Pascal; Hassler, Falk; Lüst, Dieter; Malek, Emanuel
2017-03-01
We formulate the full bosonic SL(5) exceptional field theory in a coordinateinvariant manner. Thereby we interpret the 10-dimensional extended space as a manifold with SL(5) × ℝ +-structure. We show that the algebra of generalised diffeomorphisms closes subject to a set of closure constraints which are reminiscent of the quadratic and linear constraints of maximal seven-dimensional gauged supergravities, as well as the section condition. We construct an action for the full bosonic SL(5) exceptional field theory, even when the SL(5) × ℝ +-structure is not locally flat.
Effective field theory approaches for tensor potentials
Energy Technology Data Exchange (ETDEWEB)
Jansen, Maximilian
2016-11-14
Effective field theories are a widely used tool to study physical systems at low energies. We apply them to systematically analyze two and three particles interacting via tensor potentials. Two examples are addressed: pion interactions for anti D{sup 0}D{sup *0} scattering to dynamically generate the X(3872) and dipole interactions for two and three bosons at low energies. For the former, the one-pion exchange and for the latter, the long-range dipole force induce a tensor-like structure of the potential. We apply perturbative as well as non-perturbative methods to determine low-energy observables. The X(3872) is of major interest in modern high-energy physics. Its exotic characteristics require approaches outside the range of the quark model for baryons and mesons. Effective field theories represent such methods and provide access to its peculiar nature. We interpret the X(3872) as a hadronic molecule consisting of neutral D and D{sup *} mesons. It is possible to apply an effective field theory with perturbative pions. Within this framework, we address chiral as well as finite volume extrapolations for low-energy observables, such as the binding energy and the scattering length. We show that the two-point correlation function for the D{sup *0} meson has to be resummed to cure infrared divergences. Moreover, next-to-leading order coupling constants, which were introduced by power counting arguments, appear to be essential to renormalize the scattering amplitude. The binding energy as well as the scattering length display a moderate dependence on the light quark masses. The X(3872) is most likely deeper bound for large light quark masses. In a finite volume on the other hand, the binding energy significantly increases. The dependence on the light quark masses and the volume size can be simultaneously obtained. For bosonic dipoles we apply a non-perturbative, numerical approach. We solve the Lippmann-Schwinger equation for the two-dipole system and the Faddeev
Hamiltonian truncation approach to quenches in the Ising field theory
Directory of Open Access Journals (Sweden)
T. Rakovszky
2016-10-01
Full Text Available In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the 1+1 dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations not only for small, but even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while in the paramagnetic phase the single magnon excitation governs the dynamics, allowing us to capture the time evolution of the magnetisation using a combination of known results from perturbation theory and form factor based methods. We point out that the dominance of low lying excitations allows for the numerical or experimental determination of the mass spectra through the study of the quench dynamics.
Hamiltonian truncation approach to quenches in the Ising field theory
Rakovszky, T.; Mestyán, M.; Collura, M.; Kormos, M.; Takács, G.
2016-10-01
In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the 1 + 1 dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations not only for small, but even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while in the paramagnetic phase the single magnon excitation governs the dynamics, allowing us to capture the time evolution of the magnetisation using a combination of known results from perturbation theory and form factor based methods. We point out that the dominance of low lying excitations allows for the numerical or experimental determination of the mass spectra through the study of the quench dynamics.
Noncommutative Geometry in M-Theory and Conformal Field Theory
Energy Technology Data Exchange (ETDEWEB)
Morariu, Bogdan [Univ. of California, Berkeley, CA (United States)
1999-05-01
In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of U_{q}(SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Fun_{q} (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models.
Near-field optical thin microcavity theory
Wu, Jiu Hui; Hou, Jiejie
2016-01-01
The thin microcavity theory for near-field optics is proposed in this study. By applying the power flow theorem and the variable theorem,the bi-harmonic differential governing equation for electromagnetic field of a three-dimensional thin microcavity is derived for the first time. Then by using the Hankel transform, this governing equation is solved exactly and all the electromagnetic components inside and outside the microcavity can be obtained accurately. According to the above theory, the near-field optical diffraction from a subwavelength aperture embedded in a thin conducting film is investigated, and numerical computations are performed to illustrate the edge effect by an enhancement factor of 1.8 and the depolarization phenomenon of the near-field transmission in terms of the distance from the film surface. This thin microcavity theory is verified by the good agreement between our results and those in the previous literatures. The thin microcavity theory presented in the study should be useful in the possible applications of the thin microcavities in near-field optics and thin-film optics.
On space of integrable quantum field theories
Smirnov, F A
2016-01-01
We study deformations of 2D Integrable Quantum Field Theories (IQFT) which preserve integrability (the existence of infinitely many local integrals of motion). The IQFT are understood as "effective field theories", with finite ultraviolet cutoff. We show that for any such IQFT there are infinitely many integrable deformations generated by scalar local fields $X_s$, which are in one-to-one correspondence with the local integrals of motion; moreover, the scalars $X_s$ are built from the components of the associated conserved currents in a universal way. The first of these scalars, $X_1$, coincides with the composite field $(T{\\bar T})$ built from the components of the energy-momentum tensor. The deformations of quantum field theories generated by $X_1$ are "solvable" in a certain sense, even if the original theory is not integrable. In a massive IQFT the deformations $X_s$ are identified with the deformations of the corresponding factorizable S-matrix via the CDD factor. The situation is illustrated by explicit...
On space of integrable quantum field theories
Directory of Open Access Journals (Sweden)
F.A. Smirnov
2017-02-01
Full Text Available We study deformations of 2D Integrable Quantum Field Theories (IQFT which preserve integrability (the existence of infinitely many local integrals of motion. The IQFT are understood as “effective field theories”, with finite ultraviolet cutoff. We show that for any such IQFT there are infinitely many integrable deformations generated by scalar local fields Xs, which are in one-to-one correspondence with the local integrals of motion; moreover, the scalars Xs are built from the components of the associated conserved currents in a universal way. The first of these scalars, X1, coincides with the composite field (TT¯ built from the components of the energy–momentum tensor. The deformations of quantum field theories generated by X1 are “solvable” in a certain sense, even if the original theory is not integrable. In a massive IQFT the deformations Xs are identified with the deformations of the corresponding factorizable S-matrix via the CDD factor. The situation is illustrated by explicit construction of the form factors of the operators Xs in sine-Gordon theory. We also make some remarks on the problem of UV completeness of such integrable deformations.
The classical theory of fields electromagnetism
Helrich, Carl S
2012-01-01
The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dis...
On the History of Unified Field Theories
Directory of Open Access Journals (Sweden)
Goenner Hubert F.M.
2004-01-01
Full Text Available This article is intended to give a review of the history of the classical aspects of unified field theories in the 20th century. It includes brief technical descriptions of the theories suggested, short biographical notes concerning the scientists involved, and an extensive bibliography. The present first installment covers the time span between 1914 and 1933, i.e., when Einstein was living and working in Berlin - with occasional digressions into other periods. Thus, the main theme is the unification of the electromagnetic and gravitational fields augmented by short-lived attempts to include the matter field described by Schrödinger's or Dirac's equations. While my focus lies on the conceptual development of the field, by also paying attention to the interaction of various schools of mathematicians with the research done by physicists, some prosopocraphical remarks are included.
Nonrelativistic effective field theory for axions
Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong
2016-10-01
Axions can be described by a relativistic field theory with a real scalar field ϕ whose self-interaction potential is a periodic function of ϕ . Low-energy axions, such as those produced in the early Universe by the vacuum misalignment mechanism, can be described more simply by a nonrelativistic effective field theory with a complex scalar field ψ whose effective potential is a function of ψ*ψ . We determine the coefficients in the expansion of the effective potential to fifth order in ψ*ψ by matching low-energy axion scattering amplitudes. In order to describe a Bose-Einstein condensate of axions that is too dense to truncate the expansion of the effective potential in powers of ψ*ψ , we develop a sequence of systematically improvable approximations to the effective potential that resum terms of all orders in ψ*ψ .
Astrophysical data analysis with information field theory
Energy Technology Data Exchange (ETDEWEB)
Enßlin, Torsten, E-mail: ensslin@mpa-garching.mpg.de [Max Planck Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching, Germany and Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 München (Germany)
2014-12-05
Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.
Nonrelativistic Effective Field Theory for Axions
Braaten, Eric; Zhang, Hong
2016-01-01
Axions can be described by a relativistic field theory with a real scalar field $\\phi$ whose self-interaction potential is a periodic function of $\\phi$. Low-energy axions, such as those produced in the early universe by the vacuum misalignment mechanism, can be described more simply by a nonrelativistic effective field theory with a complex scalar field $\\psi$ whose effective potential is a function of $\\psi^*\\psi$. We determine the coefficients in the expansion of the effective potential to fifth order in $\\psi^*\\psi$ by matching low-energy axion scattering amplitudes. In order to describe a Bose-Einstein condensate of axions that is too dense to expand the effective potential in powers of $\\psi^*\\psi$, we develop a sequence of systematically improvable approximations to the effective potential that include terms of all orders in $\\psi^*\\psi$.
Astrophysical data analysis with information field theory
Enßlin, Torsten
2014-01-01
Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.
Natural discretization in noncommutative field theory
Energy Technology Data Exchange (ETDEWEB)
Acatrinei, Ciprian Sorin, E-mail: acatrine@theory.nipne.ro [Department of Theoretical Physics, Horia Hulubei National Institute for Nuclear Physics, Bucharest (Romania)
2015-12-07
A discretization scheme for field theory is developed, in which the space time coordinates are assumed to be operators forming a noncommutative algebra. Generic waves without rotational symmetry are studied in (2+1) - dimensional scalar field theory with Heisenberg-type noncommutativity. In the representation chosen, the radial coordinate is naturally rendered discrete. Nonlocality along this coordinate, induced by noncommutativity, accounts for the angular dependence of the fields. A complete solution and the interpretation of its nonlocal features are given. The exact form of standing and propagating waves on such a discrete space is found in terms of finite series. A precise correspondence is established between the degree of nonlocality and the angular momentum of a field configuration. At small distance no classical singularities appear, even at the location of the sources. At large radius one recovers the usual commutative/continuum behaviour.
Natural discretization in noncommutative field theory
Acatrinei, Ciprian Sorin
2015-12-01
A discretization scheme for field theory is developed, in which the space time coordinates are assumed to be operators forming a noncommutative algebra. Generic waves without rotational symmetry are studied in (2+1) - dimensional scalar field theory with Heisenberg-type noncommutativity. In the representation chosen, the radial coordinate is naturally rendered discrete. Nonlocality along this coordinate, induced by noncommutativity, accounts for the angular dependence of the fields. A complete solution and the interpretation of its nonlocal features are given. The exact form of standing and propagating waves on such a discrete space is found in terms of finite series. A precise correspondence is established between the degree of nonlocality and the angular momentum of a field configuration. At small distance no classical singularities appear, even at the location of the sources. At large radius one recovers the usual commutative/continuum behaviour.
Scalar Quantum Field Theory on Fractals
Kar, Arnab
2011-01-01
We construct a family of measures for random fields based on the iterated subdivision of simple geometric shapes (triangles, squares, tetrahedrons) into a finite number of similar shapes. The intent is to construct continuum limits of scale invariant scalar field theories, by imitating Wiener's construction of the measure on the space of functions of one variable. These are Gaussian measures, except for one example of a non-Gaussian fixed point for the Ising model on a fractal. In the continuum limits what we construct have correlation functions that vary as a power of distance. In most cases this is a positive power (as for the Wiener measure) but we also find a few examples with negative exponent. In all cases the exponent is an irrational number, which depends on the particular subdivision scheme used. This suggests that the continuum limits corresponds to quantum field theories (random fields) on spaces of fractional dimension.
Theory of controlled quantum dynamics
Energy Technology Data Exchange (ETDEWEB)
De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio [Dipartimento di Fisica, Universita di Salerno, and INFN, Sezione di Napoli, Gruppo collegato di Salerno, Baronissi (Italy)
1997-06-07
We introduce a general formalism to obtain localized quantum wavepackets as dynamically controlled systems, in the framework of Nelson stochastic quantization. We show that in general the control is linear, and it amounts to introducing additional time-dependent terms in the potential. In this way one can construct for general systems either coherent packets following classical motion with constant dispersion, or coherent packets following classical motion whose time-dependent dispersion remains bounded for all times. We show that in the operatorial language our scheme amounts to introducing a suitable generalization to arbitrary potentials of the displacement and scaling operators that generate the coherent and squeezed states of the harmonic oscillator. (author)
Intersection Theory, Integrable Hierarchies and Topological Field Theory
Dijkgraaf, R
1992-01-01
In these lecture notes we review the various relations between intersection theory on the moduli space of Riemann surfaces, integrable hierarchies of KdV type, matrix models, and topological quantum field theories. We explain in particular why matrix integrals of the type considered by Kontsevich naturally appear as tau-functions associated to minimal models. Our starting point is the extremely simple form of the string equation for the topological (p,1) models, where the so-called Baker-Akhiezer function is given by a (generalized) Airy function.
Chiral deformations of conformal field theories
Dijkgraaf, Robbert
1997-02-01
We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the W1+∞ algebra, that is treated in detail.
Chiral Deformations of Conformal Field Theories
Dijkgraaf, R
1996-01-01
We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the $W_{1+\\infty}$ algebra, that is treated in detail.
Chiral deformations of conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, R. [Amsterdam Univ. (Netherlands). Dept. of Math.
1997-06-02
We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the W{sub 1+{infinity}} algebra, that is treated in detail. (orig.).
Chiral Deformations of Conformal Field Theories
Dijkgraaf, R.
1996-01-01
We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the $W_{1+\\infty}$ algebra, that is treat...
Symmetry analysis for anisotropic field theories
Energy Technology Data Exchange (ETDEWEB)
Parra, Lorena; Vergara, J. David [Instituto de Ciencias Nucleares, UNAM, Circuito Exterior s/n, Ciudad Universitaria. Delg. Coyoacan. C.P. 04510 Mexico DF (Mexico)
2012-08-24
The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.
Quantum Field Theory from First Principles
Esposito, Giampiero
2000-01-01
When quantum fields are studied on manifolds with boundary, the corresponding one-loop quantum theory for bosonic gauge fields with linear covariant gauges needs the assignment of suitable boundary conditions for elliptic differential operators of Laplace type. There are however deep reasons to modify such a scheme and allow for pseudo-differential boundary-value problems. When the boundary operator is allowed to be pseudo-differential while remaining a projector, the conditions on its kernel...
Quantum statistical correlations in thermal field theories: boundary effective theory
Bessa, A; de Carvalho, C A A; Fraga, E S
2010-01-01
We show that the one-loop effective action at finite temperature for a scalar field with quartic interaction has the same renormalized expression as at zero temperature if written in terms of a certain classical field $\\phi_c$, and if we trade free propagators at zero temperature for their finite-temperature counterparts. The result follows if we write the partition function as an integral over field eigenstates (boundary fields) of the density matrix element in the functional Schr\\"{o}dinger field-representation, and perform a semiclassical expansion in two steps: first, we integrate around the saddle-point for fixed boundary fields, which is the classical field $\\phi_c$, a functional of the boundary fields; then, we perform a saddle-point integration over the boundary fields, whose correlations characterize the thermal properties of the system. This procedure provides a dimensionally-reduced effective theory for the thermal system. We calculate the two-point correlation as an example.
Dynamical Volume Element in Scale-Invariant and Supergravity Theories
Guendelman, Eduardo; Pacheva, Svetlana; Vasihoun, Mahary
2013-01-01
The use in the action integral of a volume element of the form $\\Phi d^{D}x$, where $\\Phi$ is a metric-independent measure density, can yield new interesting results in all types of known generally coordinate-invariant theories: (1) 4-D theories of gravity plus matter fields; (2) reparametrization invariant theories of extended objects (strings and branes); (3) supergravity theories. In case (1) we obtain interesting insights concerning the cosmological constant problem, inflation and quintessence without the fifth force problem. In case (2) the above formalism leads to dynamically induced tension and to string models of non-abelian confinement. In case (3), we show that the modified-measure supergravity generates an arbitrary dynamically induced cosmological constant.
Euclidean quantum field theory: Curved spacetimes and gauge fields
Ritter, William Gordon
This thesis presents a new formulation of quantum field theory (QFT) on curved spacetimes, with definite advantages over previous formulations, and an introduction to the millennium prize problem on four-dimensional gauge theory. Our constructions are completely rigorous, making QFT on curved spacetimes into a subfield of mathematics, and we achieve the first analytic control over nonperturbative aspects of interacting theories on curved spacetimes. The success of Euclidean path integrals to capture nonperturbative aspects of QFT has been striking. The Euclidean path integral is the most accurate method of calculating strong-coupling effects in gauge theory (such as glueball masses). Euclidean methods are also useful in the study of black holes, as evidenced by the Hartle-Hawking calculation of black-hole radiance. From a mathematical point of view, on flat spacetimes the Euclidean functional integral provides the most elegant method of constructing examples of interacting relativistic field theories. Yet until now, the incredibly-useful Euclidean path integral had never been given a definitive mathematical treatment on curved backgrounds. It is our aim to rectify this situation. Along the way, we discover that the Dirac operator on an arbitrary Clifford bundle has a resolvent kernel which is the Laplace transform of a positive measure. In studying spacetime symmetries, we discover a new way of constructing unitary representations of noncompact Lie groups. We also define and explore an interesting notion of convergence for Laplacians. The same mathematical framework applies to scalar fields, fermions, and gauge fields. The later chapters are devoted to gauge theory. We present a rigorous, self-contained introduction to the subject, aimed at mathematicians and using the language of modern mathematics, with a view towards nonperturbative renormalization in four dimensions. The latter ideas are unfinished. A completion of the final chapter would imply the construction
Dynamical Systems Theory: Application to Pedagogy
Abraham, Jane L.
Theories of learning affect how cognition is viewed, and this subsequently leads to the style of pedagogical practice that is used in education. Traditionally, educators have relied on a variety of theories on which to base pedagogy. Behavioral learning theories influenced the teaching/learning process for over 50 years. In the 1960s, the information processing approach brought the mind back into the learning process. The current emphasis on constructivism integrates the views of Piaget, Vygotsky, and cognitive psychology. Additionally, recent scientific advances have allowed researchers to shift attention to biological processes in cognition. The problem is that these theories do not provide an integrated approach to understanding principles responsible for differences among students in cognitive development and learning ability. Dynamical systems theory offers a unifying theoretical framework to explain the wider context in which learning takes place and the processes involved in individual learning. This paper describes how principles of Dynamic Systems Theory can be applied to cognitive processes of students, the classroom community, motivation to learn, and the teaching/learning dynamic giving educational psychologists a framework for research and pedagogy.
Vehicle dynamics theory and application
Jazar, Reza N
2014-01-01
This textbook is appropriate for senior undergraduate and first year graduate students in mechanical and automotive engineering. The contents in this book are presented at a theoretical-practical level. It explains vehicle dynamics concepts in detail, concentrating on their practical use. Related theorems and formal proofs are provided, as are real-life applications. Students, researchers and practicing engineers alike will appreciate the user-friendly presentation of a wealth of topics, most notably steering, handling, ride, and related components. This book also: Illustrates all key concepts with examples Includes exercises for each chapter Covers front, rear, and four wheel steering systems, as well as the advantages and disadvantages of different steering schemes Includes an emphasis on design throughout the text, which provides a practical, hands-on approach
Effective field theory description of halo nuclei
Hammer, H.-W.; Ji, C.; Phillips, D. R.
2017-10-01
Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.
Dirac-Kahler Theory and Massless Fields
Pletyukhov, V A
2010-01-01
Three massless limits of the Dirac-Kahler theory are considered. It is shown that the Dirac-Kahler equation for massive particles can be represented as a result of the gauge-invariant mixture (topological interaction) of the above massless fields.
Monopole in the dilatonic gauge field theory
Karczewska, D
2000-01-01
A numerical study of coupled to the dilaton field, static, spherically symmetric monopole solutions inspired by the Kaluza-Klein theory with large extra dimensions are presented. The generalized Prasad-Sommerfield solution is obtained. We show that monopole may have also the dilaton cloud configurations.
Modular bootstrap in Liouville field theory
Energy Technology Data Exchange (ETDEWEB)
Hadasz, Leszek, E-mail: hadasz@th.if.uj.edu.p [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Jaskolski, Zbigniew, E-mail: jask@ift.uni.wroc.p [Institute of Theoretical Physics, University of Wroclaw, pl. M. Borna, 50-204 Wroclaw (Poland); Suchanek, Paulina, E-mail: paulina@ift.uni.wroc.p [Institute of Theoretical Physics, University of Wroclaw, pl. M. Borna, 50-204 Wroclaw (Poland)
2010-02-22
The modular matrix for the generic 1-point conformal blocks on the torus is expressed in terms of the fusion matrix for the 4-point blocks on the sphere. The modular invariance of the toric 1-point functions in the Liouville field theory with DOZZ structure constants is proved.
Modular bootstrap in Liouville field theory
Hadasz, Leszek; Suchanek, Paulina
2009-01-01
The modular matrix for the generic 1-point conformal blocks on the torus is expressed in terms of the fusion matrix for the 4-point blocks on the sphere. The modular invariance of the toric 1-point functions in the Liouville field theory with DOZZ structure constants is proved.
Wilson lines in quantum field theory
Cherednikov, Igor O; Veken, Frederik F van der
2014-01-01
The objective of this book is to get the reader acquainted with theoretical and mathematical foundations of the concept of Wilson loops in the context of modern quantum field theory. It teaches how to perform independently with some elementary calculations on Wilson lines, and shows the recent development of the subject in different important areas of research.
Scalar Field Theory on Fuzzy S^4
Medina, J; Medina, Julieta; Connor, Denjoe O'
2003-01-01
Scalar fields are studied on fuzzy $S^4$ and a solution is found for the elimination of the unwanted degrees of freedom that occur in the model. The resulting theory can be interpreted as a Kaluza-Klein reduction of CP^3 to S^4 in the fuzzy context.
Perturbative quantum gravity in double field theory
Boels, Rutger H.; Horst, Christoph
2016-04-01
We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.
Perturbative quantum gravity in double field theory
Boels, Rutger H
2015-01-01
We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.
An Introduction to Effective Field Theory
Burgess, C. P.
2007-11-01
This review summarizes effective field theory techniques, which are the modern theoretical tools for exploiting the existence of hierarchies of scale in a physical problem. The general theoretical framework is described and evaluated explicitly for a simple model. Power-counting results are illustrated for a few cases of practical interest, and several applications to quantum electrodynamics are described.
Nonlocal and quasi-local field theories
Tomboulis, E T
2015-01-01
We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasi-local (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasi-local kernels all acausal effects are confined within the compact support regi...
Observable currents in lattice field theories
Zapata, José A
2016-01-01
Observable currents are spacetime local objects that induce physical observables when integrated on an auxiliary codimension one surface. Since the resulting observables are independent of local deformations of the integration surface, the currents themselves carry most of the information about the induced physical observables. I study observable currents in a multisymplectic framework for Lagrangian field theory over discrete spacetime. A weak version of observable currents preserves many of their properties, while inducing a family of observables capable of separating points in the space of physically distinct solutions. A Poisson bracket gives the space of observable currents the structure of a Lie algebra. Peierls bracket for bulk observables gives an algebra homomorphism mapping equivalence classes of bulk observables to weak observable currents. The study covers scalar fields, nonlinear sigma models and gauge theories (including gauge theory formulations of general relativity) on the lattice. Even when ...
Effective Field Theory of Cosmological Perturbations
Piazza, Federico
2013-01-01
The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu-Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry---that allows to write down the most general Lagrangian---and of the Stueckelberg "trick"---that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed ana...
Investigations In Higher Derivative Field Theories
Paul, Biswajit
2015-01-01
Canonical analysis leading to formal quantisation of the higher derivative theories are considered. The first order formalism is adopted where all the configuration space variables along with their higher time derivatives are considered to be independent fields. A systematic algorithm of abstracting the independent gauge symmetries is developed which is an extension of the method developed by Banerjee et al. for the usual first order theories. For the massive relativistic particle model with curvature, we solve the mismatch in the no of independent gauge parameters and no of independent primary fist class constarints. In addition, we show a direct connection between the gauge symmetry and the $W_3$-algebra for the rigid relativistic particle. Also, BRST symmetries for both the massive and massless particle models have been considered and its connection to $W_3$-algebras is demonstrated. The exact mapping of this gauge symmetry is shown with the reparametrisation invariance. Different models from field theory,...
Field theories of condensed matter physics
Fradkin, Eduardo
2013-01-01
Presenting the physics of the most challenging problems in condensed matter using the conceptual framework of quantum field theory, this book is of great interest to physicists in condensed matter and high energy and string theorists, as well as mathematicians. Revised and updated, this second edition features new chapters on the renormalization group, the Luttinger liquid, gauge theory, topological fluids, topological insulators and quantum entanglement. The book begins with the basic concepts and tools, developing them gradually to bring readers to the issues currently faced at the frontiers of research, such as topological phases of matter, quantum and classical critical phenomena, quantum Hall effects and superconductors. Other topics covered include one-dimensional strongly correlated systems, quantum ordered and disordered phases, topological structures in condensed matter and in field theory and fractional statistics.
Causality Constraints in Conformal Field Theory
CERN. Geneva
2015-01-01
Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d-dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂φ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinni...
Causality Constraints in Conformal Field Theory
Hartman, Thomas; Kundu, Sandipan
2015-01-01
Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d-dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the $(\\partial\\phi)^4$ coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning o...
String amplitudes: from field theories to number theory
CERN. Geneva
2017-01-01
In a variety of recent developments, scattering amplitudes hint at new symmetries of and unexpected connections between physical theories which are otherwise invisible in their conventional description via Feynman diagrams or Lagrangians. Yet, many of these hidden structures are conveniently accessible to string theory where gauge interactions and gravity arise as the low-energy excitations of open and closed strings. In this talk, I will give an intuitive picture of gravity as a double copy of gauge interactions and extend the web of relations to scalar field theories including chiral Lagrangians for Goldstone bosons. The string corrections to gauge and gravity amplitudes beyond their point-particle limit exhibit elegant mathematical structures and offer a convenient laboratory to explore modern number-theoretic concepts in a simple context. As a common theme with Feynman integrals, string amplitudes introduce a variety of periods and special functions including multiple zeta values and polylogarithms, orga...
Geometry, topology and quantum field theory (fundamental theories of physics)
Bandyopadhyay, P.
2013-01-01
This monograph deals with the geometrical and topological aspects related to quantum field theory with special reference to the electroweak theory and skyrmions. This book is unique in its emphasis on the topological aspects of a fermion manifested through chiral anomaly which is responsible for the generation of mass. This has its relevance in electroweak theory where it is observed that weak interaction gauge bosons attain mass topologically. These geometrical and topological features help us to consider a massive fermion as a skyrmion and for a composite state we can realise the internal symmetry of hadrons from reflection group. Also, an overview of noncommutative geometry has been presented and it is observed that the manifold M 4 x Z2 has its relevance in the description of a massive fermion as skyrmion when the discrete space is considered as the internal space and the symmetry breaking gives rise to chiral anomaly leading to topological features.
Flavour-mixing gauge field theory of massive Majorana neutrinos
Marsch, Eckart
2012-01-01
A gauge-field theory for massive neutral particles is developed on the basis of the real four-component Majorana equation. By use of its spin operator, a purely imaginary representation of the SU(2) algebra can be defined, which gives a covariant derivative that is real. Such a coupling to the gauge field preserves the real nature of the Majorana equation even when including interactions. As the associated isospin is four-dimensional, this procedure introduces four intrinsic degrees of freedom to the Majorana field, which may be related to four flavours. The main aim is to describe here the mathematical possibility for coupling Majorana particles with a gauge field which resembles that of the weak interaction. By adding a fourth member to the family, flavour could become a dynamic trait of the neutral Majorana particles, and thus lead to a dynamic understanding of mixing.
Mean-field theory of echo state networks
Massar, Marc; Massar, Serge
2013-04-01
Dynamical systems driven by strong external signals are ubiquitous in nature and engineering. Here we study “echo state networks,” networks of a large number of randomly connected nodes, which represent a simple model of a neural network, and have important applications in machine learning. We develop a mean-field theory of echo state networks. The dynamics of the network is captured by the evolution law, similar to a logistic map, for a single collective variable. When the network is driven by many independent external signals, this collective variable reaches a steady state. But when the network is driven by a single external signal, the collective variable is non stationary but can be characterized by its time averaged distribution. The predictions of the mean-field theory, including the value of the largest Lyapunov exponent, are compared with the numerical integration of the equations of motion.
Relating field theories via stochastic quantization
Dijkgraaf, Robbert; Orlando, Domenico; Reffert, Susanne
2010-01-01
This note aims to subsume several apparently unrelated models under a common framework. Several examples of well-known quantum field theories are listed which are connected via stochastic quantization. We highlight the fact that the quantization method used to obtain the quantum crystal is a discrete analog of stochastic quantization. This model is of interest for string theory, since the (classical) melting crystal corner is related to the topological A-model. We outline several ideas for interpreting the quantum crystal on the string theory side of the correspondence, exploring interpretations in the Wheeler-De Witt framework and in terms of a non-Lorentz invariant limit of topological M-theory.
Relating field theories via stochastic quantization
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, Robbert [KdV Institute for Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam (Netherlands); Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Orlando, Domenico [Institute for the Mathematics and Physics of the Universe, University of Tokyo, Kashiwa-no-Ha 5-1-5, Kashiwa-shi, 277-8568 Chiba (Japan); Reffert, Susanne, E-mail: susanne.reffert@impu.j [Institute for the Mathematics and Physics of the Universe, University of Tokyo, Kashiwa-no-Ha 5-1-5, Kashiwa-shi, 277-8568 Chiba (Japan)
2010-01-11
This note aims to subsume several apparently unrelated models under a common framework. Several examples of well-known quantum field theories are listed which are connected via stochastic quantization. We highlight the fact that the quantization method used to obtain the quantum crystal is a discrete analog of stochastic quantization. This model is of interest for string theory, since the (classical) melting crystal corner is related to the topological A-model. We outline several ideas for interpreting the quantum crystal on the string theory side of the correspondence, exploring interpretations in the Wheeler-De Witt framework and in terms of a non-Lorentz invariant limit of topological M-theory.
Relating Field Theories via Stochastic Quantization
Dijkgraaf, Robbert; Reffert, Susanne
2009-01-01
This note aims to subsume several apparently unrelated models under a common framework. Several examples of well-known quantum field theories are listed which are connected via stochastic quantization. We highlight the fact that the quantization method used to obtain the quantum crystal is a discrete analog of stochastic quantization. This model is of interest for string theory, since the (classical) melting crystal corner is related to the topological A-model. We outline several ideas for interpreting the quantum crystal on the string theory side of the correspondence, exploring interpretations in the Wheeler-De Witt framework and in terms of a non-Lorentz invariant limit of topological M-theory.
Energy flow theory of nonlinear dynamical systems with applications
Xing, Jing Tang
2015-01-01
This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...
Superconformal quantum field theories in string. Gauge theory dualities
Energy Technology Data Exchange (ETDEWEB)
Wiegandt, Konstantin
2012-08-14
In this thesis aspects of superconformal field theories that are of interest in the so-called AdS/CFT correspondence are investigated. The AdS/CFT correspondence states a duality between string theories living on Anti-de Sitter space and superconformal quantum field theories in Minkowski space. In the context of the AdS/CFT correspondence the so-called Wilson loop/amplitude duality was discovered, stating the equality of the finite parts of n-gluon MHV amplitudes and n-sided lightlike polygonal Wilson loops in N=4 supersymmetric Yang-Mills (SYM) theory. It is the subject of the first part of this thesis to investigate the Wilson loop side of a possible similar duality in N=6 superconformal Chern-Simons matter (ABJM) theory. The main result is, that the expectation value of n-sided lightlike polygonal Wilson loops vanishes at one-loop order and at two-loop order is identical in its functional form to the Wilson loop in N=4 SYM theory at one-loop order. Furthermore, an anomalous conformal Ward identity for Wilson loops in Chern-Simons theory is derived. Related developments and symmetries of amplitudes and correlators in ABJM theory are discussed as well. In the second part of this thesis we calculate three-point functions of two protected operators and one twist-two operator with arbitrary even spin j in N=4 SYM theory. In order to carry out the calculations, the indices of the spin j operator are projected to the light-cone and the correlator is evaluated in a soft-limit where the momentum coming in at the spin j operator becomes zero. This limit largely simplifies the perturbative calculation, since all three-point diagrams effectively reduce to two-point diagrams and the dependence on the one-loop mixing matrix drops out completely. The result is in agreement with the analysis of the operator product expansion of four-point functions of half-BPS operators by Dolan and Osborn in 2004.
Oscillation theory for second order dynamic equations
Agarwal, Ravi P; O''Regan, Donal
2003-01-01
The qualitative theory of dynamic equations is a rapidly developing area of research. In the last 50 years, the Oscillation Theory of ordinary, functional, neutral, partial and impulsive differential equations, and their discrete versions, has inspired many scholars. Hundreds of research papers have been published in every major mathematical journal. Many books deal exclusively with the oscillation of solutions of differential equations, but most of these books appeal only to researchers who already know the subject. In an effort to bring Oscillation Theory to a new and broader audience, the authors present a compact, but thorough, understanding of Oscillation Theory for second order differential equations. They include several examples throughout the text not only to illustrate the theory, but also to provide new direction.
A periodic table of effective field theories
Cheung, Clifford; Kampf, Karol; Novotny, Jiri; Shen, Chia-Hsien; Trnka, Jaroslav
2017-02-01
We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTs with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d < 6 and verify that they correspond to known theories in the literature. Our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.
Gaussian Markov random fields theory and applications
Rue, Havard
2005-01-01
Gaussian Markov Random Field (GMRF) models are most widely used in spatial statistics - a very active area of research in which few up-to-date reference works are available. This is the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects. This book includes extensive case-studies and, online, a c-library for fast and exact simulation. With chapters contributed by leading researchers in the field, this volume is essential reading for statisticians working in spatial theory and its applications, as well as quantitative researchers in a wide range of science fields where spatial data analysis is important.
Motivating quantum field theory: the boosted particle in a box
Vutha, Amar C
2013-01-01
It is a maxim often stated, yet rarely illustrated, that the combination of special relativity and quantum mechanics necessarily leads to quantum field theory. An elementary illustration is provided, using the familiar particle in a box, boosted to relativistic speeds. It is shown that quantum fluctuations of momentum lead to energy fluctuations, that are inexplicable without a framework that endows the vacuum with dynamical degrees of freedom and allows particle creation/annihilation.
Group field cosmology: a cosmological field theory of quantum geometry
Calcagni, Gianluca; Oriti, Daniele
2012-01-01
Following the idea of a field quantization of gravity as realized in group field theory, we construct a minisuperspace model where the wavefunction of canonical quantum cosmology (either Wheeler-DeWitt or loop quantum cosmology) is promoted to a field, the coordinates are minisuperspace variables, the kinetic operator is the Hamiltonian constraint operator, and the action features a nonlinear and possibly nonlocal interaction term. We discuss free-field classical solutions, the quantum propagator, and a mean-field approximation linearizing the equation of motion and augmenting the Hamiltonian constraint by an effective term mixing gravitational and matter variables. Depending on the choice of interaction, this can reproduce, for example, a cosmological constant, a scalar-field potential, or a curvature contribution.
Effective field theory approach to quasi-single field inflation
Noumi, Toshifumi; Yokoyama, Daisuke
2012-01-01
We apply the effective field theory approach to quasi-single field inflation, which contains an additional scalar field with Hubble scale mass other than inflaton. Based on the time-dependent spatial diffeomorphism, which is not broken by the time-dependent background evolution, the most generic action of quasi-single field inflation is constructed up to third order fluctuations. Using the obtained action, the effects of the additional massive scalar field on the primordial curvature perturbations are discussed. In particular, we calculate the power spectrum and discuss the momentum-dependence of three point functions in the squeezed limit for general settings of quasi-single field inflation. Our framework can be also applied to inflation models with heavy particles. We make a qualitative discussion on the effects of heavy particles during inflation and that of sharp turning trajectory in our framework.
Thermal Renormalons in Scalar Field Theory
Loewe, M
2000-01-01
In the frame of the scalar theory $\\lambda \\phi ^{4}$, we explore the occurrence of thermal renormalons, i. e. temperature dependent singularities in the Borel plane. Using Thermofield Dynamics, we found in fact a series of singularities of this kind, which are located to the right of the well known zero temperature pole, being therefore of a subleading character in the ambiguity of the Borel sum.
Spectral functions for composite fields and viscosity in hot scalar field theory
Wang, E; Heinz, Ulrich W; Wang, Enke; Zhang, Xiaofei; Heinz, Ulrich
1995-01-01
We derive a spectral representation for the two-point Green function for arbitrary composite field operators in Thermo Field Dynamics (TFD). A simple way for calculating the spectral density within TFD is pointed out and compared with known results from the imaginary time formalism. The method is applied to hot \\phi^4 theory. We give a compact derivation of the one-loop contribution to the shear viscosity and show that it is dominated by low-momentum plasmons.
A computational theory of visual receptive fields.
Lindeberg, Tony
2013-12-01
A receptive field constitutes a region in the visual field where a visual cell or a visual operator responds to visual stimuli. This paper presents a theory for what types of receptive field profiles can be regarded as natural for an idealized vision system, given a set of structural requirements on the first stages of visual processing that reflect symmetry properties of the surrounding world. These symmetry properties include (i) covariance properties under scale changes, affine image deformations, and Galilean transformations of space-time as occur for real-world image data as well as specific requirements of (ii) temporal causality implying that the future cannot be accessed and (iii) a time-recursive updating mechanism of a limited temporal buffer of the past as is necessary for a genuine real-time system. Fundamental structural requirements are also imposed to ensure (iv) mutual consistency and a proper handling of internal representations at different spatial and temporal scales. It is shown how a set of families of idealized receptive field profiles can be derived by necessity regarding spatial, spatio-chromatic, and spatio-temporal receptive fields in terms of Gaussian kernels, Gaussian derivatives, or closely related operators. Such image filters have been successfully used as a basis for expressing a large number of visual operations in computer vision, regarding feature detection, feature classification, motion estimation, object recognition, spatio-temporal recognition, and shape estimation. Hence, the associated so-called scale-space theory constitutes a both theoretically well-founded and general framework for expressing visual operations. There are very close similarities between receptive field profiles predicted from this scale-space theory and receptive field profiles found by cell recordings in biological vision. Among the family of receptive field profiles derived by necessity from the assumptions, idealized models with very good qualitative
General principles of quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Bogolubov, N.N.; Logunov, A.A. (AN SSSR, Moscow (USSR) Moskovskij Gosudarstvennyj Univ., Moscow (USSR)); Oksak, A.I. (Institute for High Energy Physics, Moscow (USSR)); Todorov, I.T. (Bylgarska Akademiya na Naukite, Sofia (Bulgaria) Bulgarian Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria))
1990-01-01
This major volume provides a account of general quantum field theory, with an emphasis on model-independent methods. The important aspects of the development of the subject are described in detail and are shown to have promising links with many branches of modern mathematics and theoretical physics, such as random fields (probability), statistical physics, and elemantary particles. The material is presented in a thorough, systematic way and the mathematical methods of quantum field theory are also given. The text is self-contained and contains numerous exercises. Topics of independent interest are given in appendices. The book also contains a large bibliography. (author). 1181 refs. Includes index of notation and subject index; includes 1181 refs.
Phase-space quantization of field theory.
Energy Technology Data Exchange (ETDEWEB)
Curtright, T.; Zachos, C.
1999-04-20
In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999.
Effective Field Theory for Jet Processes.
Becher, Thomas; Neubert, Matthias; Rothen, Lorena; Shao, Ding Yu
2016-05-13
Processes involving narrow jets receive perturbative corrections enhanced by logarithms of the jet opening angle and the ratio of the energies inside and outside the jets. Analyzing cone-jet processes in effective field theory, we find that in addition to soft and collinear fields their description requires degrees of freedom that are simultaneously soft and collinear to the jets. These collinear-soft particles can resolve individual collinear partons, leading to a complicated multi-Wilson-line structure of the associated operators at higher orders. Our effective field theory provides, for the first time, a factorization formula for a cone-jet process, which fully separates the physics at different energy scales. Its renormalization-group equations control all logarithmically enhanced higher-order terms, in particular also the nonglobal logarithms.
Gauge Field Theories, 2nd Edition
Frampton, Paul H.
2000-08-01
The first edition of Gauge Field Theories, published in 1985, quickly became widely used in universities and other institutions of higher learning around the world. Written by well-known physicist Paul Frampton, the new edition continues to offer a first-rate mathematical treatment of gauge field theories, while thoroughly updating all chapters to keep pace with developments in the field. Frampton emphasizes formalism rather than experiments and provides sufficient detail for readers wishing to do their own calculations or pursue theoretical physics research. Special features of the Second Edition include: * Improved, logical organization of the material on gauge invariance, quantization, and renormalization * Major revision of the chapter on electroweak interactions, incorporating the latest precision data and discovery of the top quark * Discussions of renormalization group and quantum chromodynamics * A completely new chapter on model building
Nonlocal scalar quantum field theory from causal sets
Belenchia, Alessio; Benincasa, Dionigi M. T.; Liberati, Stefano
2015-03-01
We study a non-local scalar quantum field theory in flat spacetime derived from the dynamics of a scalar field on a causal set. We show that this non-local QFT contains a continuum of massive modes in any dimension. In 2 dimensions the Hamiltonian is positive definite and therefore the quantum theory is well-defined. In 4-dimensions, we show that the unstable modes of the non-local d'Alembertian are propagated via the so called Wheeler propagator and hence do not appear in the asymptotic states. In the free case studied here the continuum of massive mode are shown to not propagate in the asymptotic states. However the Hamiltonian is not positive definite, therefore potential issues with the quantum theory remain. Finally, we conclude with hints toward what kind of phenomenology one might expect from such non-local QFTs.
Nonlocal Scalar Quantum Field Theory from Causal Sets
Belenchia, Alessio; Liberati, Stefano
2014-01-01
We study a non-local scalar quantum field theory in flat spacetime derived from the dynamics of a scalar field on a causal set. We show that this non-local QFT contains a continuum of massive modes in any dimension. In 2 dimensions the Hamiltonian is positive definite and therefore the quantum theory is well-defined. In 4-dimensions, we show that the unstable modes of the non-local d'Alembertian are propagated via the so called Wheeler propagator and hence do not appear in the asymptotic states. In the free case studied here the continuum of massive mode are shown to not propagate in the asymptotic states. However the Hamiltonian is not positive definite, therefore potential issues with the quantum theory remain. Finally, we conclude with hints toward what kind of phenomenology one might expect from such non-local QFTs.
Nonrelativistic Fermions in Magnetic Fields a Quantum Field Theory Approach
Espinosa, Olivier R; Lepe, S; Méndez, F
2001-01-01
The statistical mechanics of nonrelativistic fermions in a constant magnetic field is considered from the quantum field theory point of view. The fermionic determinant is computed using a general procedure that contains all possible regularizations. The nonrelativistic grand-potential can be expressed in terms polylogarithm functions, whereas the partition function in 2+1 dimensions and vanishing chemical potential can be compactly written in terms of the Dedekind eta function. The strong and weak magnetic fields limits are easily studied in the latter case by using the duality properties of the Dedekind function.
Future dynamics in f(R) theories
Müller, D; Maia, C; Reboucas, M J; Teixeira, A F F
2014-01-01
The $f(R)$ gravity theories provide an alternative way to explain the current cosmic acceleration without invoking dark energy matter component. However, the freedom in the choice of the functional forms of $f(R)$ gives rise to the problem of how to constrain and break the degeneracy among these gravity theories on theoretical and/or observational grounds. In this paper to proceed further with the investigation on the potentialities, difficulties and limitations of $f(R)$ gravity, we examine the question as to whether the future dynamics can be used to break the degeneracy between $f(R)$ gravity theories by investigating the future dynamics of spatially homogeneous and isotropic dust flat models in two $f(R)$ gravity theories, namely the well known $f(R) = R + \\alpha R^{n}$ gravity and another by A. Aviles et al., whose motivation comes from the cosmographic approach to $f(R)$ gravity. To this end we perform a detailed numerical study of the future dynamic of these flat model in these theories taking into acc...
Unified Gauge Field Theory and Topological Transitions
Patwardhan, A
2004-01-01
The search for a Unified description of all interactions has created many developments of mathematics and physics. The role of geometric effects in the Quantum Theory of particles and fields and spacetime has been an active topic of research. This paper attempts to obtain the conditions for a Unified Gauge Field Theory, including gravity. In the Yang Mills type of theories with compactifications from a 10 or 11 dimensional space to a spacetime of 4 dimensions, the Kaluza Klein and the Holonomy approach has been used. In the compactifications of Calabi Yau spaces and sub manifolds, the Euler number Topological Index is used to label the allowed states and the transitions. With a SU(2) or SL(2,C) connection for gravity and the U(1)*SU(2)*SU(3) or SU(5) gauge connection for the other interactions, a Unified gauge field theory is expressed in the 10 or 11 dimension space. Partition functions for the sum over all possible configurations of sub spaces labeled by the Euler number index and the Action for gauge and m...
Matrix field theory: Applications to superconductivity
Zhou, Lubo
In this thesis a systematic, functional matrix field theory is developed to describe both clean and disordered s-wave and d-wave superconductors and the quantum phase transitions associated with them. The thesis can be divided into three parts. The first part includes chapters 1 to 3. In chapter one a general physical introduction is given. In chapters two and three the theory is developed and used to compute the equation of state as well as the number-density susceptibility, spin-density susceptibility, the sound attenuation coefficient, and the electrical conductivity in both clean and disordered s-wave superconductors. The second part includes chapter four. In this chapter we use the theory to describe the disorder-induced metal - superconductor quantum phase transition. The key physical idea here is that in addition to the superconducting order-parameter fluctuations, there are also additional soft fermionic fluctuations that are important at the transition. We develop a local field theory for the coupled fields describing superconducting and soft fermionic fluctuations. Using simple renormalization group and scaling ideas, we exactly determine the critical behavior at this quantum phase transition. Our theory justifies previous approaches. The third part includes chapter five. In this chapter we study the analogous quantum phase transition in disordered d-wave superconductors. This theory should be related to high Tc superconductors. Surprisingly, we show that in both the underdoped and overdoped regions, the coupling of superconducting fluctuations to the soft disordered fermionic fluctuations is much weaker than that in the s-wave case. The net result is that the disordered quantum phase transition in this case is a strong coupling, or described by an infinite disordered fixed point, transition and cannot be described by the perturbative RG description that works so well in the s-wave case. The transition appears to be related to the one that occurs in
[Investigations in dynamics of gauge theories in theoretical particle physics
Energy Technology Data Exchange (ETDEWEB)
1993-02-01
The major theme of the theoretical physics research conducted under DOE support over the past several years has been within the rubric of the standard model, and concerned the interplay between symmetries and dynamics. The research was thus carried out mostly in the context of gauge field theories, and usually in the presence of chiral fermions. Dynamical symmetry breaking was examined both from the point of view of perturbation theory, as well as from non-perturbative techniques associated with certain characteristic features of specific theories. Among the topics of research were: the implications of abelian and non-abelian anomalies on the spectrum and possible dynamical symmetry breaking in any theory, topological and conformal properties of quantum fields in two and higher dimensions, the breaking of global chiral symmetries by vector-like gauge theories such as QCD, the phenomenological implications of a strongly interacting Higgs sector in the standard model, and the application of soliton ideas to the physics to be explored at the SSC.
Random Matrix Theory in molecular dynamics analysis.
Palese, Luigi Leonardo
2015-01-01
It is well known that, in some situations, principal component analysis (PCA) carried out on molecular dynamics data results in the appearance of cosine-shaped low index projections. Because this is reminiscent of the results obtained by performing PCA on a multidimensional Brownian dynamics, it has been suggested that short-time protein dynamics is essentially nothing more than a noisy signal. Here we use Random Matrix Theory to analyze a series of short-time molecular dynamics experiments which are specifically designed to be simulations with high cosine content. We use as a model system the protein apoCox17, a mitochondrial copper chaperone. Spectral analysis on correlation matrices allows to easily differentiate random correlations, simply deriving from the finite length of the process, from non-random signals reflecting the intrinsic system properties. Our results clearly show that protein dynamics is not really Brownian also in presence of the cosine-shaped low index projections on principal axes.
Recursion equations in gauge field theories
Migdal, A. A.
An approximate recursion equation is formulated, describing the scale transformation of the effective action of a gauge field. In two-dimensional space-time the equation becomes exact. In four-dimensional theories it reproduces asymptotic freedom to an accuracy of 30% in the coefficients of the β-function. In the strong-coupling region the β-function remains negative and this results in an asymptotic prison in the infrared region. Possible generalizations and applications to the quark-gluon gauge theory are discussed.
Tachyon Vacuum in Cubic Superstring Field Theory
Erler, Theodore
2008-01-01
In this paper we give an exact analytic solution for tachyon condensation in the modified (picture 0) cubic superstring field theory. We prove the absence of cohomology and, crucially, reproduce the correct value for the D-brane tension. The solution is surprising for two reasons: First, the existence of a tachyon vacuum in this theory has not been definitively established in the level expansion. Second, the solution {\\it vanishes} in the GSO$(-)$ sector, implying a ``tachyon vacuum'' solution exists even for a {\\it BPS} D-brane.