WorldWideScience

Sample records for dynamic failure properties

  1. Dynamic compressive properties and failure mechanism of glass fiber reinforced silica hydrogel

    International Nuclear Information System (INIS)

    Yang Jie; Li Shukui; Yan Lili; Huo Dongmei; Wang Fuchi

    2010-01-01

    The dynamic compressive properties of glass fiber reinforced silica (GFRS) hydrogel were investigated using a spilt Hopkinson pressure bar. Failure mechanism of GFRS hydrogel was studied by scanning electron microscopy (SEM). Result showed that dynamic compressive stresses were much higher than the quasi-static compressive stresses at the same strain. The dynamic compressive strength was directly proportional to the strain rate with same sample dimensions. The dynamic compressive strength was directly proportional to the sample basal area at same strain rate. Dynamic compressive failure strain was small. At high strain rates, glass fibers broke down and separated from the matrix, pores shrank rapidly. Failure resulted from the increase of lateral tensile stress in hydrogel under dynamic compression.

  2. Impact failure and fragmentation properties of metals

    Energy Technology Data Exchange (ETDEWEB)

    Grady, D.E. [Applied Research Associates, Albuquerque, NM (United States); Kipp, M.E. [Sandia National Labs., Albuquerque, NM (United States)

    1998-03-01

    In the present study we describe the development of an experimental fracture material property test method specific to dynamic fragmentation. Spherical test samples of the metals of interest are subjected to controlled impulsive stress loads by acceleration to high velocities with a light-gas launcher facility and subsequent normal impact on thin plates. Motion, deformation and fragmentation of the test samples are diagnosed with multiple flash radiography methods. The impact plate materials are selected to be transparent to the x-ray method so that only test metal material is imaged. Through a systematic series of such tests both strain-to-failure and fragmentation resistance properties are determined through this experimental method. Fragmentation property data for several steels, copper, aluminum, tantalum and titanium have been obtained to date. Aspects of the dynamic data have been analyzed with computational methods to achieve a better understanding of the processes leading to failure and fragmentation, and to test an existing computational fragmentation model.

  3. Prediction of dynamic expected time to system failure

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Deog Yeon; Lee, Chong Chul [Korea Nuclear Fuel Co., Ltd., Taejon (Korea, Republic of)

    1998-12-31

    The mean time to failure (MTTF) expressing the mean value of the system life is a measure of system effectiveness. To estimate the remaining life of component and/or system, the dynamic mean time to failure concept is suggested. It is the time-dependent property depending on the status of components. The Kalman filter is used to estimate the reliability of components using the on-line information (directly measured sensor output or device-specific diagnostics in the intelligent sensor) in form of the numerical value (state factor). This factor considers the persistency of the fault condition and confidence level in measurement. If there is a complex system with many components, each calculated reliability`s of components are combined, which results in the dynamic MTTF of system. The illustrative examples are discussed. The results show that the dynamic MTTF can well express the component and system failure behaviour whether any kinds of failure are occurred or not. 9 refs., 6 figs. (Author)

  4. Prediction of dynamic expected time to system failure

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Deog Yeon; Lee, Chong Chul [Korea Nuclear Fuel Co., Ltd., Taejon (Korea, Republic of)

    1997-12-31

    The mean time to failure (MTTF) expressing the mean value of the system life is a measure of system effectiveness. To estimate the remaining life of component and/or system, the dynamic mean time to failure concept is suggested. It is the time-dependent property depending on the status of components. The Kalman filter is used to estimate the reliability of components using the on-line information (directly measured sensor output or device-specific diagnostics in the intelligent sensor) in form of the numerical value (state factor). This factor considers the persistency of the fault condition and confidence level in measurement. If there is a complex system with many components, each calculated reliability`s of components are combined, which results in the dynamic MTTF of system. The illustrative examples are discussed. The results show that the dynamic MTTF can well express the component and system failure behaviour whether any kinds of failure are occurred or not. 9 refs., 6 figs. (Author)

  5. Experimental research on dynamic mechanical properties of PZT ceramic under hydrostatic pressure

    International Nuclear Information System (INIS)

    Wang, S.; Liu, K.X.

    2011-01-01

    Highlights: → We developed an experimental device to examine dynamic mechanical properties of PZT. → Ductile behavior of PZT was seen when hydrostatic pressure was involved. → Compressive strength was shown sensitive to hydrostatic pressure and strain-rate. → A failure criterion was suggested to explain the failure behavior of PZT. - Abstract: An experimental technique for initially applied hydrostatic pressure in specimens subjected to axial impact has been developed to study the dynamic mechanical properties of materials. The technique was employed for the purpose of examining the dynamic mechanical properties of lead zirconate titanate (PZT) at zero to 15 MPa hydrostatic pressures. Experimental results unambiguously exhibit the ductile behavior of PZT when hydrostatic pressure is involved. The compressive strength is demonstrated sensitive to the initial hydrostatic pressure and the strain-rate. The fracture modes are analyzed by means of scanning electron microscopy (SEM). Moreover, a failure criterion based on Mohr-Coulomb failure theory is suggested to explain the brittle and ductile failure of PZT.

  6. Dynamic Failure Properties of the Porcine Medial Collateral Ligament-Bone Complex for Predicting Injury in Automotive Collisions

    Science.gov (United States)

    Peck, Louis; Billiar, Kristen; Ray, Malcolm

    2010-01-01

    The goal of this study was to model the dynamic failure properties of ligaments and their attachment sites to facilitate the development of more realistic dynamic finite element models of the human lower extremities for use in automotive collision simulations. Porcine medial collateral ligaments were chosen as a test model due to their similarities in size and geometry with human ligaments. Each porcine medial collateral ligament-bone complex (n = 12) was held in a custom test fixture placed in a drop tower to apply an axial impulsive impact load, applying strain rates ranging from 0.005 s-1 to 145 s-1. The data from the impact tests were analyzed using nonlinear regression to construct model equations for predicting the failure load of ligament-bone complexes subjected to specific strain rates as calculated from finite element knee, thigh, and hip impact simulations. The majority of the ligaments tested failed by tibial avulsion (75%) while the remaining ligaments failed via mid-substance tearing. The failure load ranged from 384 N to 1184 N and was found to increase with the applied strain rate and the product of ligament length and cross-sectional area. The findings of this study indicate the force required to rupture the porcine MCL increases with the applied bone-to-bone strain rate in the range expected from high speed frontal automotive collisions. PMID:20461229

  7. Dynamic properties of ceramic materials

    International Nuclear Information System (INIS)

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process

  8. The failure of earthquake failure models

    Science.gov (United States)

    Gomberg, J.

    2001-01-01

    In this study I show that simple heuristic models and numerical calculations suggest that an entire class of commonly invoked models of earthquake failure processes cannot explain triggering of seismicity by transient or "dynamic" stress changes, such as stress changes associated with passing seismic waves. The models of this class have the common feature that the physical property characterizing failure increases at an accelerating rate when a fault is loaded (stressed) at a constant rate. Examples include models that invoke rate state friction or subcritical crack growth, in which the properties characterizing failure are slip or crack length, respectively. Failure occurs when the rate at which these grow accelerates to values exceeding some critical threshold. These accelerating failure models do not predict the finite durations of dynamically triggered earthquake sequences (e.g., at aftershock or remote distances). Some of the failure models belonging to this class have been used to explain static stress triggering of aftershocks. This may imply that the physical processes underlying dynamic triggering differs or that currently applied models of static triggering require modification. If the former is the case, we might appeal to physical mechanisms relying on oscillatory deformations such as compaction of saturated fault gouge leading to pore pressure increase, or cyclic fatigue. However, if dynamic and static triggering mechanisms differ, one still needs to ask why static triggering models that neglect these dynamic mechanisms appear to explain many observations. If the static and dynamic triggering mechanisms are the same, perhaps assumptions about accelerating failure and/or that triggering advances the failure times of a population of inevitable earthquakes are incorrect.

  9. Agent autonomy approach to probabilistic physics-of-failure modeling of complex dynamic systems with interacting failure mechanisms

    Science.gov (United States)

    Gromek, Katherine Emily

    A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.

  10. Mechanical properties and failure behaviour of graphene/silicene/graphene heterostructures

    International Nuclear Information System (INIS)

    Chung, Jing-Yang; Sorkin, Viacheslav; Pei, Qing-Xiang; Zhang, Yong-Wei; Chiu, Cheng-Hsin

    2017-01-01

    Van der Waals heterostructures based on graphene and other 2D materials have attracted great attention recently. In this study, the mechanical properties and failure behaviour of a graphene/silicene/graphene heterostructure are investigated using molecular dynamics simulations. We find that by sandwiching silicene in-between two graphene layers, both ultimate tensile strength and Young’s modulus of the heterostructure increase approximately by a factor of 10 compared with those of stand-alone silicene. By examining the fracture process of the heterostructure, we find that graphene and silicene exhibit quite different fracture behaviour. While graphene undergoes cleavage through its zigzag edge only, silicene can cleave through both its zigzag and armchair edges. In addition, we study the effects of temperature and strain rate on the mechanical properties of the heterostructure and find that an increase in temperature results in a decrease in its mechanical strength and stiffness, while an increase in strain rate leads to an increase in its mechanical strength without significant changes in its stiffness. We further explore the failure mechanism and show that the temperature and strain-rate dependent fracture stress can be accurately described by the kinetic theory of fracture. Our findings provide a deep insight into the mechanical properties and failure mechanism of graphene/silicene heterostructures. (paper)

  11. Dynamic Failure and Fragmentation of a Hot-Pressed Boron Carbide

    Science.gov (United States)

    Sano, Tomoko; Vargas-Gonzalez, Lionel; LaSalvia, Jerry; Hogan, James David

    2017-12-01

    This study investigates the failure and fragmentation of a hot-pressed boron carbide during high rate impact experiments. Four impact experiments are performed using a composite-backed target configuration at similar velocities, where two of the impact experiments resulted in complete target penetration and two resulted in partial penetration. This paper seeks to evaluate and understand the dynamic behavior of the ceramic that led to either the complete or partial penetration cases, focusing on: (1) surface and internal failure features of fragments using optical, scanning electron, and transmission electron microscopy, and (2) fragment size analysis using state-of-the-art particle-sizing technology that informs about the consequences of failure. Detailed characterization of the mechanical properties and the microstructure is also performed. Results indicate that transgranular fracture was the primary mode of failure in this boron carbide material, and no stress-induced amorphization features were observed. Analysis of the fragment sizes for the partial and completely penetrated experiments revealed a possible correlation between larger fragment sizes and impact performance. The results will add insight into designing improved advanced ceramics for impact protection applications.

  12. Supersonic Localized Excitations Mediate Microscopic Dynamic Failure

    Science.gov (United States)

    Ghaffari, H. O.; Griffith, W. A.; Pec, M.

    2017-12-01

    A moving rupture front activates a fault patch by increasing stress above a threshold strength level. Subsequent failure yields fast slip which releases stored energy in the rock. A fraction of the released energy is radiated as seismic waves carrying information about the earthquake source. While this simplified model is widely accepted, the detailed evolution from the onset of dynamic failure to eventual re-equilibration is still poorly understood. To study dynamic failure of brittle solids we indented thin sheets of single mineral crystals and recorded the emitted ultrasound signals (high frequency analogues to seismic waves) using an array of 8 to 16 ultrasound probes. The simple geometry of the experiments allows us to unravel details of dynamic stress history of the laboratory earthquake sources. A universal pattern of failure is observed. First, stress increases over a short time period (1 - 2 µs), followed by rapid weakening (≈ 15 µs). Rapid weakening is followed by two distinct relaxation phases: a temporary quasi-steady state phase (10 µs) followed by a long-term relaxation phase (> 50 µs). We demonstrate that the dynamic stress history during failure is governed by formation and interaction of local non-dispersive excitations, or solitons. The formation and annihilation of solitons mediates the microscopic fast weakening phase, during which extreme acceleration and collision of solitons lead to non-Newtonian behavior and Lorentz contraction, i.e. shortening of solitons' characteristic length. Interestingly, a soliton can propagate as fast as 37 km/s, much faster than the p-wave velocity, implying that a fraction of the energy transmits through soliton excitations. The quasi-steady state phase delays the long-term ageing of the damaged crystal, implying a potentially weaker material. Our results open new horizons for understanding the complexity of earthquake sources, and, more generally, non-equilibrium relaxation of many body systems.

  13. Discrete meso-element simulation of the failure behavior of short-fiber composites under dynamic loading

    International Nuclear Information System (INIS)

    Liu Wenyan; Tang, Z.P.; Liu Yunxin

    2000-01-01

    In recent years, more attention has been paid to a better understanding of the failure behavior and mechanism of heterogeneous materials at the meso-scale level. In this paper, the crack initiation and development in epoxy composites reinforced with short steel fibers under dynamic loading were simulated and analyzed with the 2D Discrete Meso-Element Dynamic Method. Results show that the damage process depends greatly on the binding property between matrix and fibers

  14. Static and dynamic biomechanical properties of the regenerating rabbit Achilles tendon.

    Science.gov (United States)

    Nagasawa, Koji; Noguchi, Masahiko; Ikoma, Kazuya; Kubo, Toshikazu

    2008-07-01

    Since tendons show viscoelastic behavior, dynamic viscoelastic properties should be assessed in addition to static biomechanical properties. We evaluated differences between static and dynamic biomechanical properties of the regenerating rabbit Achilles tendon following tenotomy. At 3, 6, or 12 weeks after right Achilles tenotomy, the right (regenerating) and left (control) tendons were collected with the calcaneus from 49 rabbits. A unidirectional failure test and a dynamic viscoelastic test were conducted. Tensile strength and Young's modulus (static biomechanical properties) in the regenerating group at Week 6 were significantly greater than at Week 3, while at Week 12, these were significantly greater than at Week 6. However, even at Week 12, both parameters were less than in the control group. The value of tan delta represents dynamic viscoelasticity, a smaller tan delta indicates greater elasticity. tan delta for the regenerating group was significantly greater than for the control group at Week 3, but regenerating and control groups did not significantly differ at Week 6. No marked change was seen from Weeks 6 to 12 in the regenerating group, and no significant difference in tan delta was evident between the regenerating and control groups at Week 12. Dynamic biomechanical properties of regenerating rabbit Achilles tendons may improve more rapidly than static biomechanical properties. Ability to tolerate dynamic movement in the healing Achilles tendon may improve more rapidly than ability to withstand static stresses.

  15. The self-adaptation to dynamic failures for efficient virtual organization formations in grid computing context

    International Nuclear Information System (INIS)

    Han Liangxiu

    2009-01-01

    Grid computing aims to enable 'resource sharing and coordinated problem solving in dynamic, multi-institutional virtual organizations (VOs)'. However, due to the nature of heterogeneous and dynamic resources, dynamic failures in the distributed grid environment usually occur more than in traditional computation platforms, which cause failed VO formations. In this paper, we develop a novel self-adaptive mechanism to dynamic failures during VO formations. Such a self-adaptive scheme allows an individual and member of VOs to automatically find other available or replaceable one once a failure happens and therefore makes systems automatically recover from dynamic failures. We define dynamic failure situations of a system by using two standard indicators: mean time between failures (MTBF) and mean time to recover (MTTR). We model both MTBF and MTTR as Poisson distributions. We investigate and analyze the efficiency of the proposed self-adaptation mechanism to dynamic failures by comparing the success probability of VO formations before and after adopting it in three different cases: (1) different failure situations; (2) different organizational structures and scales; (3) different task complexities. The experimental results show that the proposed scheme can automatically adapt to dynamic failures and effectively improve the dynamic VO formation performance in the event of node failures, which provide a valuable addition to the field.

  16. Physical Properties of Granulates Used in Analogue Experiments of Caprock Failure and Sediment Remobilisation

    Science.gov (United States)

    Kukowski, N.; Warsitzka, M.; May, F.

    2014-12-01

    Geological systems consisting of a porous reservoir and a low-permeable caprock are prone to hydraulic fracturing, if pore pressure rises to the effective stress. Under certain conditions, hydraulic fracturing is associated with sediment remobilisation, e.g. sand injections or pipes, leading to reduced seal capacity of the caprock. In dynamically scaled analogue experiments using granular materials and air pressure, we intent to investigate strain patterns and deformation mechanisms during caprock failure and fluidisation of shallow over-pressured reservoirs. The aim of this study is to improve the understanding of leakage potential of a sealing formation and the fluidisation potential of a reservoir formation depending on rock properties and effective stress. For reliable interpretation of analogue experiments, physical properties of analogue materials, e.g. frictional strength, cohesion, density, permeability etc., have to be correctly scaled according to those of their natural equivalents. The simulation of caprock requires that the analogue material possess a low permeability and is capable to shear failure and tensional failure. In contrast, materials representing the reservoir have to possess high porosity and low shear strength. In order to find suitable analogue materials, we measured the stress-strain behaviour and the permeability of over 25 different types of natural and artificial granular materials, e.g. glass powder, siliceous microspheres, diatomite powder, loess, or plastic granulate. Here, we present data of frictional parameters, compressibility and permeability of these granular materials characterized as a function of sphericity, grain size, and density. The repertoire of different types of granulates facilitates the adjustment of accurate mechanical properties in the analogue experiments. Furthermore, conditions during seal failure and fluidisation can be examined depending on the wide range of varying physical properties.

  17. A Modified SPH Method for Dynamic Failure Simulation of Heterogeneous Material

    Directory of Open Access Journals (Sweden)

    G. W. Ma

    2014-01-01

    Full Text Available A modified smoothed particle hydrodynamics (SPH method is applied to simulate the failure process of heterogeneous materials. An elastoplastic damage model based on an extension form of the unified twin shear strength (UTSS criterion is adopted. Polycrystalline modeling is introduced to generate the artificial microstructure of specimen for the dynamic simulation of Brazilian splitting test and uniaxial compression test. The strain rate effect on the predicted dynamic tensile and compressive strength is discussed. The final failure patterns and the dynamic strength increments demonstrate good agreements with experimental results. It is illustrated that the polycrystalline modeling approach combined with the SPH method is promising to simulate more complex failure process of heterogeneous materials.

  18. Quasi-static and dynamic experimental studies on the tensile strength and failure pattern of concrete and mortar discs.

    Science.gov (United States)

    Jin, Xiaochao; Hou, Cheng; Fan, Xueling; Lu, Chunsheng; Yang, Huawei; Shu, Xuefeng; Wang, Zhihua

    2017-11-10

    As concrete and mortar materials widely used in structural engineering may suffer dynamic loadings, studies on their mechanical properties under different strain rates are of great importance. In this paper, based on splitting tests of Brazilian discs, the tensile strength and failure pattern of concrete and mortar were investigated under quasi-static and dynamic loadings with a strain rate of 1-200 s -1 . It is shown that the quasi-static tensile strength of mortar is higher than that of concrete since coarse aggregates weaken the interface bonding strength of the latter. Numerical results confirmed that the plane stress hypothesis lead to a lower value tensile strength for the cylindrical specimens. With the increase of strain rates, dynamic tensile strengths of concrete and mortar significantly increase, and their failure patterns change form a single crack to multiple cracks and even fragment. Furthermore, a relationship between the dynamic increase factor and strain rate was established by using a linear fitting algorithm, which can be conveniently used to calculate the dynamic increase factor of concrete-like materials in engineering applications.

  19. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    Science.gov (United States)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  20. Dynamic loads during failure risk assessment of bridge crane structures

    Science.gov (United States)

    Gorynin, A. D.; Antsev, V. Yu; Shaforost, A. N.

    2018-03-01

    The paper presents the method of failure risk assessment associated with a bridge crane metal structure at the design stage. It also justifies the necessity of taking into account dynamic loads with regard to the operational cycle of a bridge crane during failure risk assessment of its metal structure.

  1. Dynamic stresses, coulomb failure, and remote triggering: corrected

    Science.gov (United States)

    Hill, David P.

    2012-01-01

    Dynamic stresses associated with crustal surface waves with 15–30 s periods and peak amplitudes Coulomb failure models based on a frictional strength threshold offer one explanation for instances of rapid‐onset triggered seismicity that develop during the surface‐wave peak dynamic stressing. Evaluation of the triggering potential of surface‐wave dynamic stresses acting on critically stressed faults using a Mohr’s circle representation together with the Coulomb failure criteria indicates that Love waves should have a higher triggering potential than Rayleigh waves for most fault orientations and wave incidence angles. That (1) the onset of triggered seismicity often appears to begin during the Rayleigh wave rather than the earlier arriving Love wave, and (2) Love‐wave amplitudes typically exceed those for Rayleigh waves suggests that the explanation for rapid‐onset dynamic triggering may not reside solely with a simple static‐threshold friction mode. The results also indicate that normal faults should be more susceptible to dynamic triggering by 20‐s Rayleigh‐wave stresses than thrust faults in the shallow seismogenic crust (<10  km) while the advantage tips in favor of reverse faults greater depths. This transition depth scales with wavelength and coincides roughly with the transition from retrograde‐to‐prograde particle motion. Locally elevated pore pressures may have a role in the observed prevalence of dynamic triggering in extensional regimes and geothermal/volcanic systems. The result is consistent with the apparent elevated susceptibility of extensional or transtensional tectonic regimes to remote triggering by Rayleigh‐wave dynamic stresses than compressional or transpressional regimes.

  2. Quantized Passive Dynamic Output Feedback Control with Actuator Failure

    Directory of Open Access Journals (Sweden)

    Zu-Xin Li

    2016-01-01

    Full Text Available This paper investigates the problem of passive dynamic output feedback control for fuzzy discrete nonlinear systems with quantization and actuator failures, where the measurement output of the system is quantized by a logarithmic quantizer before being transferred to the fuzzy controller. By employing the fuzzy-basis-dependent Lyapunov function, sufficient condition is established to guarantee the closed-loop system to be mean-square stable and the prescribed passive performance. Based on the sufficient condition, the fuzzy dynamic output feedback controller is proposed for maintaining acceptable performance levels in the case of actuator failures and quantization effects. Finally, a numerical example is given to show the usefulness of the proposed method.

  3. Mechanisms of dynamic deformation and dynamic failure in aluminum nitride

    International Nuclear Information System (INIS)

    Hu Guangli; Chen, C.Q.; Ramesh, K.T.; McCauley, J.W.

    2012-01-01

    Uniaxial quasi-static, uniaxial dynamic and confined dynamic compression experiments have been performed to characterize the failure and deformation mechanisms of a sintered polycrystalline aluminum nitride using a servohydraulic machine and a modified Kolsky bar. Scanning electron microscopy and transmission electron microscopy (TEM) are used to identify the fracture and deformation mechanisms under high rate and high pressure loading conditions. These results show that the fracture mechanisms are strong functions of confining stress and strain rate, with transgranular fracture becoming more common at high strain rates. Dynamic fracture mechanics and micromechanical models are used to analyze the observed fracture mechanisms. TEM characterization of fragments from the confined dynamic experiments shows that at higher pressures dislocation motion becomes a common dominant deformation mechanism in AlN. Prismatic slip is dominant, and pronounced microcrack–dislocation interactions are observed, suggesting that the dislocation plasticity affects the macroscopic fracture behavior in this material under high confining stresses.

  4. Reliability analysis for dynamic configurations of systems with three failure modes

    International Nuclear Information System (INIS)

    Pham, Hoang

    1999-01-01

    Analytical models for computing the reliability of dynamic configurations of systems, such as majority and k-out-of-n, assuming that units and systems are subject to three types of failures: stuck-at-0, stuck-at-1, and stuck-at-x are presented in this paper. Formulas for determining the optimal design policies that maximize the reliability of dynamic k-out-of-n configurations subject to three types of failures are defined. The comparisons of the reliability modeling functions are also obtained. The optimum system size and threshold value k that minimize the expected cost of dynamic k-out-of-n configurations are also determined

  5. Deformation and failure response of 304L stainless steel SMAW joint under dynamic shear loading

    International Nuclear Information System (INIS)

    Lee, Woei-Shyan; Cheng, J.-I.; Lin, C.-F.

    2004-01-01

    The dynamic shear deformation behavior and fracture characteristics of 304L stainless steel shielded metal arc welding (SMAW) joint are studied experimentally with regard to the relations between mechanical properties and strain rate. Thin-wall tubular specimens are deformed at room temperature under strain rates in the range of 8 x 10 2 to 2.8 x 10 3 s -1 using a torsional split-Hopkinson bar. The results indicate that the strain rate has a significant influence on the mechanical properties and fracture response of the tested SMAW joints. It is found that the flow stress, total shear strain to failure, work hardening rate and strain rate sensitivity all increase with increasing strain rate, but that the activation volume decreases. The observed dynamic shear deformation behavior is modeled using the Kobayashi-Dodd constitutive law, and it is shown that the predicted results are in good agreement with the experimental data. Fractographic analysis using scanning electron microscopy reveals that the tested specimens all fracture within their fusion zones, and that the primary failure mechanism is one of the extensive localized shearing. The fracture surfaces are characterized by the presence of many dimples. A higher strain rate tends to reduce the size of the dimples and to increase their density. The observed fracture features are closely related to the preceding flow behavior

  6. Failure mode and dynamic behavior of nanophase iron under compression

    Energy Technology Data Exchange (ETDEWEB)

    Jia, D.; Ramesh, K.T.; Ma, E.

    1999-12-17

    Materials with ultra-fine grains down to the nanophase range (<100 nm) have been attracting considerable interest because of their unique properties compared with conventional materials. In general, the understanding of the deformation behavior of ultrafine- and nano-grained metals and alloys is still in the rudimentary stage. In this paper, the authors report on the compressive deformation behavior and failure mode of near full-density (99.2% of theoretical density) elemental Fe with an average grain size of 80 nm. Even less is known about the behavior of ultrafine- or nano-grained alloys under dynamic loading of high strain rates. Such response is relevant to possible applications of these alloys under impact conditions, such as for kinetic energy penetrators currently under investigation. The authors will present the results of high-strain-rate (Kolsky bar) tests for nano-Fe and compare them with those obtained in quasi-static compression tests of the same material. The authors demonstrate that little strain rate sensitivity is observable in the rate of 10{sup {minus}4} to 3 x 10{sup +3} s{sup {minus}1}, in sharp contrast to the strong rate sensitivity known for conventional coarse-grained bcc Fe. The weak rate dependence is correlated with shear banding as the dominant deformation and failure mechanism. This strain rate hardening behavior, together with the high strength, absence of strain hardening, and failure mechanism observed, are discussed in the context of potential applications for penetrator materials.

  7. The failure rate dynamics in heterogeneous populations

    International Nuclear Information System (INIS)

    Cha, Ji Hwan; Finkelstein, Maxim

    2013-01-01

    Most populations encountered in real world are heterogeneous. In reliability applications, the mixture (observed) failure rate, obviously, can be considered as a measure of ‘average’ quality in these populations. However, in addition to this average measure, some variability characteristics for failure rates can be very helpful in describing the time-dependent changes in quality of heterogeneous populations. In this paper, we discuss variance and the coefficient of variation of the corresponding random failure rate as variability measures for items in heterogeneous populations. Furthermore, there is often a risk that items of poor quality are selected for important missions. Therefore, along with the ‘average quality’ of a population, more ‘conservative’ quality measures should be also defined and studied. For this purpose, we propose the percentile and the tail-mixture of the failure rates as the corresponding conservative measures. Some illustrative examples are given. -- Highlights: ► This paper provides the insight on the variability measures in heterogeneous populations. ► The conservative quality measures in heterogeneous populations are defined. ► The utility of these measures is illustrated by meaningful examples. ► This paper provides a better understanding of the dynamics in heterogeneous populations

  8. Exact combinatorial reliability analysis of dynamic systems with sequence-dependent failures

    International Nuclear Information System (INIS)

    Xing Liudong; Shrestha, Akhilesh; Dai Yuanshun

    2011-01-01

    Many real-life fault-tolerant systems are subjected to sequence-dependent failure behavior, in which the order in which the fault events occur is important to the system reliability. Such systems can be modeled by dynamic fault trees (DFT) with priority-AND (pAND) gates. Existing approaches for the reliability analysis of systems subjected to sequence-dependent failures are typically state-space-based, simulation-based or inclusion-exclusion-based methods. Those methods either suffer from the state-space explosion problem or require long computation time especially when results with high degree of accuracy are desired. In this paper, an analytical method based on sequential binary decision diagrams is proposed. The proposed approach can analyze the exact reliability of non-repairable dynamic systems subjected to the sequence-dependent failure behavior. Also, the proposed approach is combinatorial and is applicable for analyzing systems with any arbitrary component time-to-failure distributions. The application and advantages of the proposed approach are illustrated through analysis of several examples. - Highlights: → We analyze the sequence-dependent failure behavior using combinatorial models. → The method has no limitation on the type of time-to-failure distributions. → The method is analytical and based on sequential binary decision diagrams (SBDD). → The method is computationally more efficient than existing methods.

  9. Property Values Associated with the Failure of Individual Links in a System with Multiple Weak and Strong Links.

    Energy Technology Data Exchange (ETDEWEB)

    Helton, Jon C. [Arizona State Univ., Tempe, AZ (United States); Brooks, Dusty Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sallaberry, Cedric Jean-Marie. [Engineering Mechanics Corp. of Columbus, OH (United States)

    2018-02-01

    Representations are developed and illustrated for the distribution of link property values at the time of link failure in the presence of aleatory uncertainty in link properties. The following topics are considered: (i) defining properties for weak links and strong links, (ii) cumulative distribution functions (CDFs) for link failure time, (iii) integral-based derivation of CDFs for link property at time of link failure, (iv) sampling-based approximation of CDFs for link property at time of link failure, (v) verification of integral-based and sampling-based determinations of CDFs for link property at time of link failure, (vi) distributions of link properties conditional on time of link failure, and (vii) equivalence of two different integral-based derivations of CDFs for link property at time of link failure.

  10. Failure criterion for graphene in biaxial loading—a molecular dynamics study

    International Nuclear Information System (INIS)

    Yazdani, Hessam; Hatami, Kianoosh

    2015-01-01

    Molecular dynamics simulations are carried out in order to develop a failure criterion for infinite/bulk graphene in biaxial tension. Stresses along the principal edge configurations of graphene (i.e. armchair and zigzag directions) are normalized to the corresponding uniaxial ultimate strength values. The combinations of normalized stresses resulting in the failure of graphene are used to define failure envelopes (limiting stress ratio surfaces). Results indicate that a bilinear failure envelope can be used to represent the tensile strength of graphene in biaxial loading at different temperatures with reasonable accuracy. A circular failure envelope is also introduced for practical applications. Both failure envelopes define temperature-independent upper limits for the feasible combinations of normalized stresses for a graphene sheet in biaxial loading. Predicted failure modes of graphene under biaxial loading are also shown and discussed. (paper)

  11. Dynamic stability and failure modes of slopes in discontinuous rock mass

    International Nuclear Information System (INIS)

    Shimizu, Yasuhiro; Aydan, O.; Ichikawa, Yasuaki; Kawamoto, Toshikazu.

    1988-01-01

    The stability of rock slopes during earthquakes are of great concern in rock engineering works such as highway, dam, and nuclear power station constructions. As rock mass in nature is usually discontinuous, the stability of rock slopes will be geverned by the spatial distribution of discontinuities in relation with the geometry of slope and their mechanical properties rather than the rock element. The authors have carried out some model tests on discontinuous rock slopes using three different model tests techniques in order to investigate the dynamic behaviour and failure modes of the slopes in discontinuous rock mass. This paper describes the findings and observations made on model rock slopes with various discontinuity patterns and slope geometry. In addition some stability criterions are developed and the calculated results are compared with those of experiments. (author)

  12. Dynamics of functional failures and recovery in complex road networks

    Science.gov (United States)

    Zhan, Xianyuan; Ukkusuri, Satish V.; Rao, P. Suresh C.

    2017-11-01

    We propose a new framework for modeling the evolution of functional failures and recoveries in complex networks, with traffic congestion on road networks as the case study. Differently from conventional approaches, we transform the evolution of functional states into an equivalent dynamic structural process: dual-vertex splitting and coalescing embedded within the original network structure. The proposed model successfully explains traffic congestion and recovery patterns at the city scale based on high-resolution data from two megacities. Numerical analysis shows that certain network structural attributes can amplify or suppress cascading functional failures. Our approach represents a new general framework to model functional failures and recoveries in flow-based networks and allows understanding of the interplay between structure and function for flow-induced failure propagation and recovery.

  13. Size-dependent impact of CNTs on dynamic properties of calmodulin.

    Science.gov (United States)

    Gao, Jian; Wang, Liming; Kang, Seung-gu; Zhao, Lina; Ji, Mingjuan; Chen, Chunying; Zhao, Yuliang; Zhou, Ruhong; Li, Jingyuan

    2014-11-07

    There are growing concerns about the biosafety of nanomaterials such as carbon nanotubes (CNTs) as their applications become more widespread. We report here a theoretical and experimental study of the binding of various sizes of CNTs [CNT (4,4), (5,5), (6,6) and (7,7)] to calmodulin (CaM) protein and, in particular, their impact on the Ca(2+)-dependent dynamic properties of CaM. Our simulations show that all the CNTs can plug into the hydrophobic binding pocket of Ca(2+)-bound CaM with binding affinities comparable with the native substrate M13 peptide. Even though CNT (4,4) shows a similar behavior to the M13 peptide in its dissociation from Ca(2+)-free CaM, wider CNTs still bind firmly to CaM, indicating a potential failure of Ca(2+) regulation. Such a size-dependent impact of CNTs on the dynamic properties of CaM is a result of the excessively strong hydrophobic interactions between the wider CNTs and CaM. These simulation results were confirmed by circular dichroism spectroscopy, which showed that the secondary structures of CaM become insensitive to Ca(2+) concentrations after the addition of CNTs. Our findings indicate that the cytotoxicity of nanoparticles to proteins arises not only from the inhibition of static protein structures (binding pockets), but also from impacts on their dynamic properties.

  14. Dynamic failure of dry and fully saturated limestone samples based on incubation time concept

    Directory of Open Access Journals (Sweden)

    Yuri V. Petrov

    2017-02-01

    Full Text Available This paper outlines the results of experimental study of the dynamic rock failure based on the comparison of dry and saturated limestone samples obtained during the dynamic compression and split tests. The tests were performed using the Kolsky method and its modifications for dynamic splitting. The mechanical data (e.g. strength, time and energy characteristics of this material at high strain rates are obtained. It is shown that these characteristics are sensitive to the strain rate. A unified interpretation of these rate effects, based on the structural–temporal approach, is hereby presented. It is demonstrated that the temporal dependence of the dynamic compressive and split tensile strengths of dry and saturated limestone samples can be predicted by the incubation time criterion. Previously discovered possibilities to optimize (minimize the energy input for the failure process is discussed in connection with industrial rock failure processes. It is shown that the optimal energy input value associated with critical load, which is required to initialize failure in the rock media, strongly depends on the incubation time and the impact duration. The optimal load shapes, which minimize the momentum for a single failure impact, are demonstrated. Through this investigation, a possible approach to reduce the specific energy required for rock cutting by means of high-frequency vibrations is also discussed.

  15. Dynamic decision making for dam-break emergency management - Part 2: Application to Tangjiashan landslide dam failure

    Science.gov (United States)

    Peng, M.; Zhang, L. M.

    2013-02-01

    Tangjiashan landslide dam, which was triggered by the Ms = 8.0 Wenchuan earthquake in 2008 in China, threatened 1.2 million people downstream of the dam. All people in Beichuan Town 3.5 km downstream of the dam and 197 thousand people in Mianyang City 85 km downstream of the dam were evacuated 10 days before the breaching of the dam. Making such an important decision under uncertainty was difficult. This paper applied a dynamic decision-making framework for dam-break emergency management (DYDEM) to help rational decision in the emergency management of the Tangjiashan landslide dam. Three stages are identified with different levels of hydrological, geological and social-economic information along the timeline of the landslide dam failure event. The probability of dam failure is taken as a time series. The dam breaching parameters are predicted with a set of empirical models in stage 1 when no soil property information is known, and a physical model in stages 2 and 3 when knowledge of soil properties has been obtained. The flood routing downstream of the dam in these three stages is analyzed to evaluate the population at risk (PAR). The flood consequences, including evacuation costs, flood damage and monetized loss of life, are evaluated as functions of warning time using a human risk analysis model based on Bayesian networks. Finally, dynamic decision analysis is conducted to find the optimal time to evacuate the population at risk with minimum total loss in each of these three stages.

  16. Cardiac myofibrillar contractile properties during the progression from hypertension to decompensated heart failure.

    Science.gov (United States)

    Hanft, Laurin M; Emter, Craig A; McDonald, Kerry S

    2017-07-01

    Heart failure arises, in part, from a constellation of changes in cardiac myocytes including remodeling, energetics, Ca 2+ handling, and myofibrillar function. However, little is known about the changes in myofibrillar contractile properties during the progression from hypertension to decompensated heart failure. The aim of the present study was to provide a comprehensive assessment of myofibrillar functional properties from health to heart disease. A rodent model of uncontrolled hypertension was used to test the hypothesis that myocytes in compensated hearts exhibit increased force, higher rates of force development, faster loaded shortening, and greater power output; however, with progression to overt heart failure, we predicted marked depression in these contractile properties. We assessed contractile properties in skinned cardiac myocyte preparations from left ventricles of Wistar-Kyoto control rats and spontaneous hypertensive heart failure (SHHF) rats at ~3, ~12, and >20 mo of age to evaluate the time course of myofilament properties associated with normal aging processes compared with myofilaments from rats with a predisposition to heart failure. In control rats, the myofilament contractile properties were virtually unchanged throughout the aging process. Conversely, in SHHF rats, the rate of force development, loaded shortening velocity, and power all increased at ~12 mo and then significantly fell at the >20-mo time point, which coincided with a decrease in left ventricular fractional shortening. Furthermore, these changes occurred independent of changes in β-myosin heavy chain but were associated with depressed phosphorylation of myofibrillar proteins, and the fall in loaded shortening and peak power output corresponded with the onset of clinical signs of heart failure. NEW & NOTEWORTHY This novel study systematically examined the power-generating capacity of cardiac myofilaments during the progression from hypertension to heart disease. Previously

  17. Optimization of Mechanical, Dynamical and Thermal Properties of a High Performance Tread Compound for Radial Tires

    Directory of Open Access Journals (Sweden)

    Mir Hamid Reza Ghoreishy

    2013-06-01

    Full Text Available A high performance passenger tire tread compound was optimized for its mechanical, dynamical and thermal properties. A reference compound was based on a blend of SBR and BR, sulfur and other ingredients without accelerator, carbon black and aromatic oil. The effects of CBS/TMTD and TBBS/TMTD as accelerator systems were studied with different quantities and the best accelerator system was chosen. Then, the blends of N330 and N550 carbon blacks were added in different quantities and the properties of these samples were studied to determine the best carbon black blend. Finally, the effect of different quantities of aromatic oil was investigated and the optimized quantity of aromatic oil and the final properties of tire tread compound were defined. The mechanical and dynamical tests were carried out on appropriate samples to determine tensile strength, elongation-at-break, fatigue-to-failure, abrasion resistance, hardness, resilience, dynamical-mechanical properties and temperature rise due to the heat build-up. The results showed that the compound containing 0.8 phr CBS, 0.7 phr TMTD, 40 phr N330,20 phr N550 and 15 phr aromatic oils demonstrated the best properties.

  18. Quantifying dynamic mechanical properties of human placenta tissue using optimization techniques with specimen-specific finite-element models.

    Science.gov (United States)

    Hu, Jingwen; Klinich, Kathleen D; Miller, Carl S; Nazmi, Giseli; Pearlman, Mark D; Schneider, Lawrence W; Rupp, Jonathan D

    2009-11-13

    Motor-vehicle crashes are the leading cause of fetal deaths resulting from maternal trauma in the United States, and placental abruption is the most common cause of these deaths. To minimize this injury, new assessment tools, such as crash-test dummies and computational models of pregnant women, are needed to evaluate vehicle restraint systems with respect to reducing the risk of placental abruption. Developing these models requires accurate material properties for tissues in the pregnant abdomen under dynamic loading conditions that can occur in crashes. A method has been developed for determining dynamic material properties of human soft tissues that combines results from uniaxial tensile tests, specimen-specific finite-element models based on laser scans that accurately capture non-uniform tissue-specimen geometry, and optimization techniques. The current study applies this method to characterizing material properties of placental tissue. For 21 placenta specimens tested at a strain rate of 12/s, the mean failure strain is 0.472+/-0.097 and the mean failure stress is 34.80+/-12.62 kPa. A first-order Ogden material model with ground-state shear modulus (mu) of 23.97+/-5.52 kPa and exponent (alpha(1)) of 3.66+/-1.90 best fits the test results. The new method provides a nearly 40% error reduction (p<0.001) compared to traditional curve-fitting methods by considering detailed specimen geometry, loading conditions, and dynamic effects from high-speed loading. The proposed method can be applied to determine mechanical properties of other soft biological tissues.

  19. An overview of the crash dynamics failure behavior of metal and composite aircraft structures

    Science.gov (United States)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.

    1991-01-01

    An overview of failure behavior results is presented from some of the crash dynamics research conducted with concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. Experimental and analytical data are presented that indicate some general trends in the failure behavior of a class of composite structures that includes fuselage panels, individual fuselage sections, fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame stringer structure. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  20. Modeling of Electrical Cable Failure in a Dynamic Assessment of Fire Risk

    Science.gov (United States)

    Bucknor, Matthew D.

    Fires at a nuclear power plant are a safety concern because of their potential to defeat the redundant safety features that provide a high level of assurance of the ability to safely shutdown the plant. One of the added complexities of providing protection against fires is the need to determine the likelihood of electrical cable failure which can lead to the loss of the ability to control or spurious actuation of equipment that is required for safe shutdown. A number of plants are now transitioning from their deterministic fire protection programs to a risk-informed, performance based fire protection program according to the requirements of National Fire Protection Association (NFPA) 805. Within a risk-informed framework, credit can be taken for the analysis of fire progression within a fire zone that was not permissible within the deterministic framework of a 10 CFR 50.48 Appendix R safe shutdown analysis. To perform the analyses required for the transition, plants need to be able to demonstrate with some level of assurance that cables related to safe shutdown equipment will not be compromised during postulated fire scenarios. This research contains the development of new cable failure models that have the potential to more accurately predict electrical cable failure in common cable bundle configurations. Methods to determine the thermal properties of the new models from empirical data are presented along with comparisons between the new models and existing techniques used in the nuclear industry today. A Dynamic Event Tree (DET) methodology is also presented which allows for the proper treatment of uncertainties associated with fire brigade intervention and its effects on cable failure analysis. Finally a shielding analysis is performed to determine the effects on the temperature response of a cable bundle that is shielded from a fire source by an intervening object such as another cable tray. The results from the analyses demonstrate that models of similar

  1. Low-rise shear wall failure modes

    International Nuclear Information System (INIS)

    Farrar, C.R.; Hashimoto, P.S.; Reed, J.W.

    1991-01-01

    A summary of the data that are available concerning the structural response of low-rise shear walls is presented. This data will be used to address two failure modes associated with the shear wall structures. First, data concerning the seismic capacity of the shear walls with emphasis on excessive deformations that can cause equipment failure are examined. Second, data concerning the dynamic properties of shear walls (stiffness and damping) that are necessary to compute the seismic inputs to attached equipment are summarized. This case addresses the failure of equipment when the structure remains functional. 23 refs

  2. Large Deformation Dynamic Bending of Composite Beams

    Science.gov (United States)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  3. Failure modes of low-rise shear walls

    International Nuclear Information System (INIS)

    Farrar, C.R.; Reed, J.W.; Salmon, M.W.

    1993-01-01

    A summary of available data concerning the structural response of low-rise shear walls is presented. These data will be used to address two failure modes associated with shear wall structures. First, the data concerning the seismic capacity of the shear walls are examined, with emphasis on excessive deformations that can cause equipment failure. Second, the data concerning the dynamic properties of shear walls (stiffness and damping) that are necessary for computing the seismic inputs to attached equipment are summarized. This case addresses the failure of equipment when the structure remains functional

  4. Dynamic mechanical properties of buffer material

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Taniguchi, Wataru

    1999-11-01

    The buffer material is expected to maintain its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above. Among the kinds of natural clay, bentonite when compacted is superior because (i) it has exceptionally low water permeability and properties to control the movement of water in buffer, (ii) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (iii) it has the ability to exchange cations and to adsorb cationic radioelements. In order to confirm these functions for the purpose of safety assessment, it is necessary to evaluate buffer properties through laboratory tests and engineering-scale tests, and to make assessments based on the ranges in the data obtained. This report describes the procedures, test conditions, results and examinations on the buffer material of dynamic triaxial tests, measurement of elastic wave velocity and liquefaction tests that aim at getting hold of dynamic mechanical properties. We can get hold of dependency on the shearing strain of the shearing modulus and hysteresis damping constant, the application for the mechanical model etc. by dynamic triaxial tests, the acceptability of maximum shearing modulus obtained from dynamic triaxial tests etc. by measurement of elastic wave velocity and dynamic strength caused by cyclic stress etc. by liquefaction tests. (author)

  5. Instrument failure monitoring in nuclear power systems

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1982-01-01

    Methods of monitoring dynamic systems for instrument failures were developed and evaluated. In particular, application of these methods to nuclear power plant components is addressed. For a linear system, statistical tests on the innovations sequence of a Kalman filter driven by all system measurements provides a failure detection decision and identifies any failed sensor. This sequence (in an unfailed system) is zero-mean with calculable covariance; hence, any major deviation from these properties is assumed to be due to an instrument failure. Once a failure is identified, the failed instrument is replaced with an optimal estimate of the measured parameter. This failure accommodation is accomplished using optimally combined data from a bank of accommodation Kalman filters (one for each sensor), each driven by a single measurement. Using such a sensor replacement allows continued system operation under failed conditions and provides a system operator with information otherwise unavailable. To demonstrate monitor performance, a liner failure monitor was developed for the pressurizer in the Loss-of-Fluid Test (LOFT) reactor plant. LOFT is a small-scale pressurized water reactor (PWR) research facility located at the Idaho National Engineering Laboratory. A linear, third-order model of the pressurizer dynamics was developed from first principles and validated. Using data from the LOFT L6 test series, numerous actual and simulated water level, pressure, and temperature sensor failures were employed to illustrate monitor capabilities. Failure monitor design was applied to nonlinear dynamic systems by replacing all monitor linear Kalman filters with extended Kalman filters. A nonlinear failure monitor was derived for LOFT reactor instrumentation. A sixth-order reactor model, including descriptions of reactor kinetics, fuel rod heat transfer, and core coolant dynamics, was obtained and verified with test data

  6. Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue.

    Science.gov (United States)

    O'Leary, Siobhan A; Mulvihill, John J; Barrett, Hilary E; Kavanagh, Eamon G; Walsh, Michael T; McGloughlin, Tim M; Doyle, Barry J

    2015-02-01

    Varying degrees of calcification are present in most abdominal aortic aneurysms (AAAs). However, their impact on AAA failure properties and AAA rupture risk is unclear. The aim of this work is evaluate and compare the failure properties of partially calcified and predominantly fibrous AAA tissue and investigate the potential reasons for failure. Uniaxial mechanical testing was performed on AAA samples harvested from 31 patients undergoing open surgical repair. Individual tensile samples were divided into two groups: fibrous (n=31) and partially calcified (n=38). The presence of calcification was confirmed by fourier transform infrared spectroscopy (FTIR). A total of 69 mechanical tests were performed and the failure stretch (λf), failure stress (σf) and failure tension (Tf) were recorded for each test. Following mechanical testing, the failure sites of a subset of both tissue types were examined using scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDS) to investigate the potential reasons for failure. It has been shown that the failure properties of partially calcified tissue are significantly reduced compared to fibrous tissue and SEM and EDS results suggest that the junction between a calcification deposit and the fibrous matrix is highly susceptible to failure. This study implicates the presence of calcification as a key player in AAA rupture risk and provides further motivation for the development of non-invasive methods of measuring calcification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Mechanisms of dynamic wetting failure in the presence of soluble surfactants

    Science.gov (United States)

    Kumar, Satish; Liu, Chen-Yu; Carvalho, Marcio S.

    2017-11-01

    A hydrodynamic model and flow visualization experiments are used to understand the mechanisms through which soluble surfactants can influence the onset of dynamic wetting failure. In the model, a Newtonian liquid displaces air in a rectangular channel in the absence of inertia. A Navier-slip boundary condition and constant contact angle are used to describe the dynamic contact line, and surfactants are allowed to adsorb to the interface and moving channel wall (substrate). The Galerkin finite element method is used to calculate steady states and identify the critical capillary number Cacrit at which wetting failure occurs. It is found that surfactant solubility weakens the influence of Marangoni stresses, which tend to promote the onset of wetting failure. The experiments indicate that Cacrit increases with surfactant concentration. For the more viscous solutions used, this behaviour can largely be explained by accounting for changes to the mean surface tension and static contact angle produced by surfactants. For the lowest-viscosity solution used, comparison between the model predictions and experimental observations suggests that other surfactant-induced phenomena such as Marangoni stresses may play a more important role.

  8. Prediction of line failure fault based on weighted fuzzy dynamic clustering and improved relational analysis

    Science.gov (United States)

    Meng, Xiaocheng; Che, Renfei; Gao, Shi; He, Juntao

    2018-04-01

    With the advent of large data age, power system research has entered a new stage. At present, the main application of large data in the power system is the early warning analysis of the power equipment, that is, by collecting the relevant historical fault data information, the system security is improved by predicting the early warning and failure rate of different kinds of equipment under certain relational factors. In this paper, a method of line failure rate warning is proposed. Firstly, fuzzy dynamic clustering is carried out based on the collected historical information. Considering the imbalance between the attributes, the coefficient of variation is given to the corresponding weights. And then use the weighted fuzzy clustering to deal with the data more effectively. Then, by analyzing the basic idea and basic properties of the relational analysis model theory, the gray relational model is improved by combining the slope and the Deng model. And the incremental composition and composition of the two sequences are also considered to the gray relational model to obtain the gray relational degree between the various samples. The failure rate is predicted according to the principle of weighting. Finally, the concrete process is expounded by an example, and the validity and superiority of the proposed method are verified.

  9. Dynamic Analysis of Cable-Stayed Bridges Affected by Accidental Failure Mechanisms under Moving Loads

    Directory of Open Access Journals (Sweden)

    Fabrizio Greco

    2013-01-01

    Full Text Available The dynamic behavior of cable-stayed bridges subjected to moving loads and affected by an accidental failure in the cable suspension system is investigated. The main aim of the paper is to quantify, numerically, the dynamic amplification factors of typical kinematic and stress design variables, by means of a parametric study developed in terms of the structural characteristics of the bridge components. The bridge formulation is developed by using a geometric nonlinear formulation, in which the effects of local vibrations of the stays and of large displacements in the girder and the pylons are taken into account. Explicit time dependent damage laws, reproducing the failure mechanism in the cable system, are considered to investigate the influence of the failure mode characteristics on the dynamic bridge behavior. The analysis focuses attention on the influence of the inertial characteristics of the moving loads, by accounting coupling effects arising from the interaction between girder and moving system. Sensitivity analyses of typical design bridge variables are proposed. In particular, the effects produced by the moving system characteristics, the tower typologies, and the failure mode characteristics involved in the cable system are investigated by means of comparisons between damaged and undamaged bridge configurations.

  10. Dynamics of superconductor bearings in a cryogenic failure

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Amit [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)]. E-mail: Amit.Rastogi@avizatechnology.com; Campbell, A.M. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom); Coombs, T.A. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2006-08-01

    The dynamics of superconductor bearings in a cryogenic failure scenario have been analyzed. As the superconductor warms up, the rotor goes through multiple resonance frequencies, begins to slow down and finally touches down when the superconductor goes through its transition temperature. The bearing can be modelled as a system of springs with axial, radial and cross stiffness. These springs go through various resonant modes as the temperature of the superconductor begins to rise. We have presented possible explanations for such behaviour.

  11. Safety assessment for electricity generation failure accident of gas cooled nuclear power plant using system dynamics (SD) method

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering

    2013-04-15

    The power production failure happens in the loss of coolant of the nuclear power plants (NPPs). The air ingress is a serious accident in gas cooled NPPs. The quantification of the study performed by the system dynamics (SD) method which is processed by the feedback algorithms. The Vensim software package is used for the simulation, which is performed by the Monte-Carlo method. Two kinds of considerations as the economic and safety properties are important in NPPs. The result shows the stability of the operation when the power can be decided. The maximum value of risk is the 11.77 in 43rd and the minimum value is 0.0 in several years. So, the success of the circulation of coolant is simulated by the dynamical values. (orig.)

  12. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review

    Directory of Open Access Journals (Sweden)

    Xibing Li

    2017-08-01

    Full Text Available Rock failure phenomena, such as rockburst, slabbing (or spalling and zonal disintegration, related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining. Currently, the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward. In this study, new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced. Two types of coupled loading modes, i.e. “critical static stress + slight disturbance” and “elastic static stress + impact disturbance”, are proposed, and associated test devices are developed. Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory, and the rockburst mechanism and related criteria are demonstrated. The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold, and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion. Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density. In addition, we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass, which can efficiently and accurately locate the rock failure in hard rock mines. Also, a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.

  13. Demand dynamic bio-girdling in heart failure: improved efficacy of dynamic cardiomyoplasty by LD contraction during aortic out-flow.

    Science.gov (United States)

    Carraro, U; Rigatelli, G; Rossini, K; Barbiero, M; Rigatelli, G

    2003-03-01

    degenerative atrophy. In dynamic cardiomyoplasty the demand light stimulation maintains LD contraction properties over time, produces effective systolic assistance, and improves clinical results. Demand dynamic bio-girdling is a safe and effective treatment for end-stage heart failure in selected patients.

  14. Source properties of dynamic rupture pulses with off-fault plasticity

    KAUST Repository

    Gabriel, A.-A.

    2013-08-01

    Large dynamic stresses near earthquake rupture fronts may induce an inelastic response of the surrounding materials, leading to increased energy absorption that may affect dynamic rupture. We systematically investigate the effects of off-fault plastic energy dissipation in 2-D in-plane dynamic rupture simulations under velocity-and-state-dependent friction with severe weakening at high slip velocity. We find that plasticity does not alter the nature of the transitions between different rupture styles (decaying versus growing, pulse-like versus crack-like, and subshear versus supershear ruptures) but increases their required background stress and nucleation size. We systematically quantify the effect of amplitude and orientation of background shear stresses on the asymptotic properties of self-similar pulse-like ruptures: peak slip rate, rupture speed, healing front speed, slip gradient, and the relative contribution of plastic strain to seismic moment. Peak slip velocity and rupture speed remain bounded. From fracture mechanics arguments, we derive a nonlinear relation between their limiting values, appropriate also for crack-like and supershear ruptures. At low background stress, plasticity turns self-similar pulses into steady state pulses, for which plastic strain contributes significantly to the seismic moment. We find that the closeness to failure of the background stress state is an adequate predictor of rupture speed for relatively slow events. Our proposed relations between state of stress and earthquake source properties in the presence of off-fault plasticity may contribute to the improved interpretation of earthquake observations and to pseudodynamic source modeling for ground motion prediction.

  15. Differentiation of reversible ischemia from end-stage renal failure in nephrotic children with 131I-hippurate dynamic scintigraphy

    International Nuclear Information System (INIS)

    Hattner, R.S.; Maltz, H.E.; Holliday, M.A.

    1977-01-01

    In renal failure associated with the nephrotic syndrome, therapeutic strategy is highly dependent upon the cause of the renal failure. Dynamic hippurate scintigraphy was studied in five pediatric patients. Four had nephrotic syndrome, and of these, three had acute renal failure. The fifth patient had end-stage renal failure. Specific alteration in renal hippurate kinetics offers a noninvasive assessment of renal failure in this clinical setting

  16. Dynamic deformation and failure characteristic of rock foundation by means of effect of cyclic shear loading

    International Nuclear Information System (INIS)

    Fujiwara, Yoshikazu; Hibino, Satoshi; Kanagawa, Tadashi; Komada, Hiroya; Nakagawa, Kameichiro

    1984-01-01

    The main structures of nuclear power plants are built on hard and soft rocks. The rock-dynamic properties used for investigating the stability of the structures have been determined so far by laboratory tests for soft rocks. In hard rocks, however, joints and cracks exist, and the test including these effects is not able to be performed in laboratories at present. Therefore, a dynamic repeating shearing test equipment to be used under the condition including the joints and cracks of actual ground has been made for a base rock of tuff breccia. In this paper, the test results are reported as follows. The geological features of the testing site and the arrangement of tested rocks, the preparation for tests, test equipment, loading method, measuring method, analysis, and the result and the examination. The results of dynamic deformation and failure characteristics were as follows: (1) the dynamic shear-elasticity-modulus Gd of the base rock showed greater values as the normal stress increased, while Gd decreased and showed the strain dependence as the dynamic shear strain amplitude γ increased; (2) the relationship between Gd and γ was well represented with the equation proposed by Hardin-Drnevich; (3) damping ratio increased as γ increased, and decreased as normal stress increased; (4) When a specimen was about to break, γ suddenly increased, and the dynamic shear strain amplitude at yield point was in the range of approximately (3.4 to 4.1) x 10 -3 . (Wakatsuki, Y.)

  17. Failure analysis of real-time systems

    International Nuclear Information System (INIS)

    Jalashgar, A.; Stoelen, K.

    1998-01-01

    This paper highlights essential aspects of real-time software systems that are strongly related to the failures and their course of propagation. The significant influence of means-oriented and goal-oriented system views in the description, understanding and analysing of those aspects is elaborated. The importance of performing failure analysis prior to reliability analysis of real-time systems is equally addressed. Problems of software reliability growth models taking the properties of such systems into account are discussed. Finally, the paper presents a preliminary study of a goal-oriented approach to model the static and dynamic characteristics of real-time systems, so that the corresponding analysis can be based on a more descriptive and informative picture of failures, their effects and the possibility of their occurrence. (author)

  18. Numerical investigations of rib fracture failure models in different dynamic loading conditions.

    Science.gov (United States)

    Wang, Fang; Yang, Jikuang; Miller, Karol; Li, Guibing; Joldes, Grand R; Doyle, Barry; Wittek, Adam

    2016-01-01

    Rib fracture is one of the most common thoracic injuries in vehicle traffic accidents that can result in fatalities associated with seriously injured internal organs. A failure model is critical when modelling rib fracture to predict such injuries. Different rib failure models have been proposed in prediction of thorax injuries. However, the biofidelity of the fracture failure models when varying the loading conditions and the effects of a rib fracture failure model on prediction of thoracic injuries have been studied only to a limited extent. Therefore, this study aimed to investigate the effects of three rib failure models on prediction of thoracic injuries using a previously validated finite element model of the human thorax. The performance and biofidelity of each rib failure model were first evaluated by modelling rib responses to different loading conditions in two experimental configurations: (1) the three-point bending on the specimen taken from rib and (2) the anterior-posterior dynamic loading to an entire bony part of the rib. Furthermore, the simulation of the rib failure behaviour in the frontal impact to an entire thorax was conducted at varying velocities and the effects of the failure models were analysed with respect to the severity of rib cage damages. Simulation results demonstrated that the responses of the thorax model are similar to the general trends of the rib fracture responses reported in the experimental literature. However, they also indicated that the accuracy of the rib fracture prediction using a given failure model varies for different loading conditions.

  19. Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys.

    Science.gov (United States)

    Ran, Chun; Chen, Pengwan

    2018-01-05

    To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear) is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively.

  20. Dynamic computed tomography (CT) in the rat kidney and application to acute renal failure models

    International Nuclear Information System (INIS)

    Ishikawa, Isao; Saito, Tadashi; Ishii, Hirofumi; Bansho, Junichi; Koyama, Yukinori; Tobita, Akira

    1995-01-01

    Renal dynamic CT scanning is suitable for determining the excretion of contrast medium in the cortex and medulla of the kidney, which is valuable for understanding the pathogenesis of disease processes in various conditions. This form of scanning would be convenient for use, if a method of application to the rat kidney were available. Therefore, we developed a method of applying renal dynamic CT to rats and evaluated the cortical and medullary curves, e.g., the corticomedullary junction time which is correlated to creatinine clearance, in various rat models of acute renal failure. The rat was placed in a 10deg oblique position and a bilateral hilar slice was obtained before and 5, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120, 140, 160 and 180 sec after administering 0.5 ml of contrast medium using Somatom DR. The width of the slice was 4 mm and the scan time was 3 sec. The corticomedullary junction time in normal rats was 23.0±10.5 sec, the peak value of the cortical curve was 286.3±76.7 Hounsfield Unit (HU) and the peak value of the medullary curve was 390.1±66.2 HU. Corticomedullary junction time after exposure of the kidney was prolonged compared to that of the unexposed kidney. In rats with acute renal failure, the excretion pattern of contrast medium was similar in both the glycerol- and HgCl2-induced acute renal failure models. The peak values of the cortical curve were maintained three hours after a clamp was placed at the hilar region of the kidney for one hour, and the peak values of the medullary curve were maintained during the administration of 10μg/kg/min of angiotensin II. Dynamic CT curves in the acute renal failure models examined were slightly different from those in human acute renal failure. These results suggest that rats do not provide an ideal model for human acute renal failure. However, the application of dynamic CT to the rat kidney models was valuable for estimating the pathogenesis of various human kidney diseases. (author)

  1. Assessment of the causes of failures of roto-dynamic equipment in Cirus

    International Nuclear Information System (INIS)

    Rao, K.N.; Singh, S.; Ganeshan, P.

    1994-01-01

    As a part of Cirus reactor life extension program study, a service life evaluation of critical roto-dynamic equipment in Cirus such as primary coolant pumps, and their concrete foundation structures, pressurised water loop pumps, main air compressors and supply and exhaust fans, was performed. An assessment of the causes of failures of roto-dynamic equipment in Cirus was done. Based on assessment of the degradation mitigating features and comparison to similar roto-dynamic equipment and their concrete foundation structures, it was concluded that life extension of these roto-dynamic equipment and their structures is feasible. To support this conclusion a program involving: a) non-destructive testing, b) surveillance and monitoring and, c) preventive maintenance is recommended. (author). 4 refs

  2. Fold catastrophe model of dynamic pillar failure in asymmetric mining

    Energy Technology Data Exchange (ETDEWEB)

    Yue Pan; Ai-wu Li; Yun-song Qi [Qingdao Technological University, Qingdao (China). College of Civil Engineering

    2009-01-15

    A rock burst disaster not only destroys the pit facilities and results in economic loss but it also threatens the life of the miners. Pillar rock burst has a higher frequency of occurrence in the pit compared to other kinds of rock burst. Understanding the cause, magnitude and prevention of pillar rock burst is a significant undertaking. Equations describing the bending moment and displacement of the rock beam in asymmetric mining have been deduced for simplified asymmetric beam-pillar systems. Using the symbolic operation software MAPLE 9.5 a catastrophe model of the dynamic failure of an asymmetric rock-beam pillar system has been established. The differential form of the total potential function deduced from the law of conservation of energy was used for this deduction. The critical conditions and the initial and final positions of the pillar during failure have been given in analytical form. The amount of elastic energy released by the rock beam at the instant of failure is determined as well. A diagrammatic form showing the pillar failure was plotted using MATLAB software. This graph contains a wealth of information and is important for understanding the behavior during each deformation phase of the rock-beam pillar system. The graphic also aids in distinguishing the equivalent stiffness of the rock beam in different directions. 11 refs., 8 figs.

  3. Experimental research on HEL and failure properties of alumina under impact loading

    Directory of Open Access Journals (Sweden)

    Xiao-wei Feng

    2016-06-01

    Full Text Available A series of plate impact experiments on alumina was conducted using a light gas gun in order to further investigate Hugoniot elastic limit (HEL and failure properties of alumina under shock compression. The velocity interferometer system for any reflector (VISAR was used to record the rear-free surface velocity histories of the alumina samples. According to the experimental results, the HELs of tested alumina samples with different thicknesses were measured, and the decay phenomenon of elastic wave in shocked alumina was studied. A phenomenological expression between HEL and thickness of sample was presented, and the causes of the decay phenomenon were discussed. The propagation of failure wave in shocked alumina was probed. The velocity and delayed time of failure wave propagation were obtained. The physical mechanism of the generation and propagation of failure was further discussed.

  4. A dynamic failure evaluation of a simplified digital control system of a nuclear power plant pressurizer

    International Nuclear Information System (INIS)

    Pinto, J.M.O.; Melo, P.F. Frutuoso e; Saldanha, P.L.C.

    2010-01-01

    Given the increasing use of digital systems in nuclear power plants, a specific approach to reliability and risk analysis has been required. The digital system reflects many interactions between hardware, software, process variables, and human actions. At the same time, the software, does not have a reliability approach as well-defined as the one existing for the other physical components of the system. Then, its reliability analysis is still under development due to difficulties arising from the complexity, flexibility and interactions present in such systems.The traditional approach of using fault trees is static and does not approach the dynamic interactions in such systems, such as delays in capture and processing information, memory, logic loops, system states, etc. It is necessary to find a reliability methodology that takes into account these issues without violating the existing requirements concerning safety analysis, such as: ability to distinguish between common-cause failures, availability of relevant information to users, like minimal cut sets, and failure probabilities as long as the possibility of incorporating the results into existing probabilistic safety assessments (PSA).One approach is to trace all the possible errors of the digital system through dynamic methodologies. The DFM (Dynamic Flow-graph Methodology) is one of the methodologies that better meets the requirements for modeling dynamic systems. It discretizes the most relevant variables of the analyzed system in states that reflect their behavior, sets the logic that connects them through decision tables and finally performs a system analysis, aiming, for example, the root causes (prime implicants) of a given top event of failure. Three aspects have been addressed, the modeling of the system itself, the incorporation of results to probabilistic safety analyses and identification of software failures.To illustrate the DFM, a simplified digital control system of a typical PWR pressurizer

  5. Effects of national culture on human failures in container shipping: the moderating role of Confucian dynamism.

    Science.gov (United States)

    Lu, Chin-Shan; Lai, Kee-hung; Lun, Y H Venus; Cheng, T C E

    2012-11-01

    Recent reports on work safety in container shipping operations highlight high frequencies of human failures. In this study, we empirically examine the effects of seafarers' perceptions of national culture on the occurrence of human failures affecting work safety in shipping operations. We develop a model adopting Hofstede's national culture construct, which comprises five dimensions, namely power distance, collectivism/individualism, uncertainty avoidance, masculinity/femininity, and Confucian dynamism. We then formulate research hypotheses from theory and test the hypotheses using survey data collected from 608 seafarers who work on global container carriers. Using a point scale for evaluating seafarers' perception of the five national culture dimensions, we find that Filipino seafarers score highest on collectivism, whereas Chinese and Taiwanese seafarers score highest on Confucian dynamism, followed by collectivism, masculinity, power distance, and uncertainty avoidance. The results also indicate that Taiwanese seafarers have a propensity for uncertainty avoidance and masculinity, whereas Filipino seafarers lean more towards power distance, masculinity, and collectivism, which are consistent with the findings of Hofstede and Bond (1988). The results suggest that there will be fewer human failures in container shipping operations when power distance is low, and collectivism and uncertainty avoidance are high. Specifically, this study finds that Confucian dynamism plays an important moderating role as it affects the strength of associations between some national culture dimensions and human failures. Finally, we discuss our findings' contribution to the development of national culture theory and their managerial implications for reducing the occurrence of human failures in shipping operations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Slope failure at Bukit Antarabangsa, Ampang, Selangor and its relationship to physical soil properties

    International Nuclear Information System (INIS)

    Muhammad Barzani Gasim; Sahibin Abd Rahim; Mohd Ekhwan Toriman; Diyana Ishnin

    2011-01-01

    Slope failure which occurred on 6 December 2008 at Bukit Antarabangsa, Ampang Selangor has caused mortalities and loss of properties whereas more than 20 houses were flattened. Prior to slope failure, it was heavily down poured for a few hours that increased the soil saturation and plasticity properties. A total of 10 soil samples were randomly taken from stable and unstable slopes to determine physical soil properties, infiltration rate and their relationship to rainfall pattern. Soils were analyzed in terms of their physical properties; five years (2005-2009) of daily rainfalls were analyzed to determine their relationship to infiltration rate at each sampling station. Infiltration rate is determined by using infiltrometer double ring. Analysis of physical soils properties shows that soil texture was dominated by sandy soil with relatively high percentage of sand. Values of clay dispersion coefficient were relatively stable to very stable from 0.013 % to 11.85 % and organic content from 1.38 % to 2.74 %. Range of porosity was from 50.12 % to 62.31 %, while the average levels of hydraulic conductivity was from level 2 to 5 or relatively slow to fast. Percentage of soil aggregate stability was from 5.12 % to 48.42 % and this value indicates that relative strength of soil mechanical pressure is inversely proportional to the percentage of water content. Soil plasticity value was high to very high but characterized by inactive colloids. Distribution of monthly rainfall was from 38 mm to 427 mm. The infiltration rate during sampling time was from 3.0 cm/ hr to 7.0 cm/ hr; but it was expected from 10.94 cm/ hr to 915.05 cm/ hr during slope failures. Overall, it was interpreted that physical soil properties was closely interrelated with slope stability, structure of sandy soil will enhanced soil porosity stage and enhance the infiltration process during heavy rainfall, and finally triggering of slope failure. (author)

  7. Anisotropic damage and dynamic behavior of reinforced concrete structures until failure

    International Nuclear Information System (INIS)

    Chambart, M.

    2009-09-01

    Dynamic loadings such as impact on reinforced concrete structures lead to degradations and structural failures significantly different to the ones observed for quasi-static loadings. Local effects (spalling, compaction...) and global mechanisms (bending, shear, perforation...) are experimentally observed. Wave propagation due to dynamics loadings can lead to failure in tension in a part of a structure or a component previously in compression. Induced damage anisotropy in concrete is partly responsible for the dissymmetry of behavior between tension and compression. Concrete anisotropy can be modelled by means of a second order damage tensor. In the damage model considered, damage growth is governed by the positive extensions. The model, written in the thermodynamics framework, is robust and is able to compute efficiently Reinforced Concrete (RC) structures. The initial anisotropic model is here extended to dynamics by introducing a viscosity law to govern dynamic damage evolution. The strain rate effect observed experimentally in tension (strength increases with strain rate) is reproduced. In compression no strain rate is introduced since inertial forces seem sufficient to reproduce the strength enhancement in dynamics. One also focuses on regularization issues. For high strain rates the solution is regularized since the characteristic time introduced indirectly defines an internal length and since the damage rate is bounded by a maximum damage rate parameter (visco/delay damage law). This visco/delay regularization is efficient at large strain rates, otherwise, the delay in damage evolution is too small to let damage grow in a wide enough zone. For quasi-static or low speed dynamic cases, the regularization is gained by means of classical non-local damage. For intermediary loading rates where both the strain rate effect and the non-local regularization are needed, a non-local delay-damage model is written (and used in 3D computations). The example of a dynamic

  8. Structural and dynamical properties of Yukawa balls

    International Nuclear Information System (INIS)

    Block, D; Kroll, M; Arp, O; Piel, A; Kaeding, S; Ivanov, Y; Melzer, A; Henning, C; Baumgartner, H; Ludwig, P; Bonitz, M

    2007-01-01

    To study the structural and dynamical properties of finite 3D dust clouds (Yukawa balls) new diagnostic tools have been developed. This contribution describes the progress towards 3D diagnostics for measuring the particle positions. It is shown that these diagnostics are capable of investigating the structural and dynamical properties of Yukawa balls and gaining insight into their basic construction principles

  9. Atomistic explanation of brittle failure of thermoelectric skutterudite CoSb3

    International Nuclear Information System (INIS)

    Li, Guodong; An, Qi; Goddard, William A.; Hanus, Riley; Zhai, Pengcheng; Zhang, Qingjie; Snyder, G. Jeffrey

    2016-01-01

    CoSb 3 based skutterudite thermoelectric material has superior thermoelectric properties, but the low fracture toughness prevents its widespread commercial application. To determine the origin of its brittle failure, we examined the response of shear deformation in CoSb 3 along the most plausible slip system (010)/<100>, using large-scale molecular dynamics simulations. We find that the brittle failure of CoSb 3 arises from the formation of shear bands due to the destruction of Sb4-rings and the slippage of Co-octahedraes. This leads to the breakage of Co-octahedraes and cavitation, resulting in the crack opening and mechanical failure.

  10. A statistical model for prediction of fuel element failure using the Markov process and entropy minimax principles

    International Nuclear Information System (INIS)

    Choi, K.Y.; Yoon, Y.K.; Chang, S.H.

    1991-01-01

    This paper reports on a new statistical fuel failure model developed to take into account the effects of damaging environmental conditions and the overall operating history of the fuel elements. The degradation of material properties and damage resistance of the fuel cladding is mainly caused by the combined effects of accumulated dynamic stresses, neutron irradiation, and chemical and stress corrosion at operating temperature. Since the degradation of material properties due to these effects can be considered as a stochastic process, a dynamic reliability function is derived based on the Markov process. Four damage parameters, namely, dynamic stresses, magnitude of power increase from the preceding power level and with ramp rate, and fatigue cycles, are used to build this model. The dynamic reliability function and damage parameters are used to obtain effective damage parameters. The entropy maximization principle is used to generate a probability density function of the effective damage parameters. The entropy minimization principle is applied to determine weighting factors for amalgamation of the failure probabilities due to the respective failure modes. In this way, the effects of operating history, damaging environmental conditions, and damage sequence are taken into account

  11. Impact of defects on the electrical transport, optical properties and failure mechanisms of GaN nanowires.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur; Siegal, Michael P.; Li, Qiming; Jones, Reese E.; Westover, Tyler; Wang, George T.; Zhou, Xiao Wang; Talin, Albert Alec; Bogart, Katherine Huderle Andersen; Harris, C. Thomas; Huang, Jian Yu

    2010-09-01

    We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such as ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in

  12. Real-time sensor failure detection by dynamic modelling of a PWR plant

    International Nuclear Information System (INIS)

    Turkcan, E.; Ciftcioglu, O.

    1992-06-01

    Signal validation and sensor failure detection is an important problem in real-time nuclear power plant (NPP) surveillance. Although conventional sensor redundancy, in a way, is a solution, identification of faulty sensor is necessary for further preventive actions to be taken. A comprehensive solution for the system so that any sensory reading is verified by its model based estimated counterpart, in real-time. Such a realization is accomplished by means of dynamic system's states estimation methodology using Kalman filter modelling technique. The method is investigated by means of real-time data of the steam generator of Borssele nuclear power plant and the method has proved to be satisfactory for real-time sensor failure detection as well as model validation verification. (author). 5 refs.; 6 figs.; 1 tab

  13. Effect of Static-Dynamic Coupling Loading on Fracture Toughness and Failure Characteristics in Marble

    Directory of Open Access Journals (Sweden)

    Z. Q. Yin

    2014-03-01

    Full Text Available Fracture experiments in a notched semi-circular bend configuration were conducted to test the dynamic fracture toughness of a marble under static-dynamic coupling load using a modified split Hopkinson pressure bar. The fracture process of the specimen was monitored using a high speed (HS camera. Based on digital image correlation (DIC and strain gauges, the full-field strain fields and time-to-fracture of the marble were measured under static-dynamic coupling load. Experimental results show that dynamic fracture toughness was well determined, and the HS-DIC technique provides reliable full-field strain fields in the specimens under static-dynamic coupling loads. The failure characteristics of the marble under external impact were affected obviously by pre-compression stress. Increase of axial pre-compression stress was helpful to improve the crack propagation velocity, and dynamic crack initiation toughness was decreased.

  14. Robust handling of dynamics and multiple failures in a diagnostic event analyzer

    International Nuclear Information System (INIS)

    Finch, F.E.; Kramer, M.A.

    1991-01-01

    MIDAS diagnoses malfunctions in continuous chemical and refinery processes using a plant-independent strategy based on qualitative and quantitative process models. MIDAS specifically addresses problems not treated in past systems, including: process dynamics with control system responses, multiple faults and induced failures, and out-of-order and false alarms. This paper discusses both the structure of the process models and the diagnostic reasoning strategies employed by MIDAS

  15. The impact of BWR MK I primary containment failure dynamics on secondary containment integrity

    International Nuclear Information System (INIS)

    Greene, S.R.

    1987-01-01

    During the past four years, the ORNL BWRSAT Program has developed a series of increasingly sophisticated BWR secondary containment models. These models have been applied in a variety of studies to evaluate the severe accident mitigation capability of BWR secondary containments. This paper describes the results of a recent ORNL study of the impact of BWR MK I primary containment failure dynamics on secondary containment integrity. A 26-cell MELCOR Browns Ferry secondary containment model is described and the predicted thermodynamic response of the secondary containment to a variety of postulated primary containment failure modes is presented. The effects of primary containment failure location, timing, and ultimate hole size on secondary containment response is investigated, and the potential impact of hydrogen deflagrations on secondary containment integrity is explored

  16. On the sensitivity of transtensional versus transpressional tectonic regimes to remote dynamic triggering by Coulomb failure

    Science.gov (United States)

    Hill, David P.

    2015-01-01

     Accumulating evidence, although still strongly spatially aliased, indicates that although remote dynamic triggering of small-to-moderate (MwCoulomb failure supports this apparent difference for rapid-onset triggering susceptibility.

  17. Elastoplastic Stability and Failure Analysis of FGM Plate with Temperature Dependent Material Properties under Thermomechanical Loading

    Directory of Open Access Journals (Sweden)

    Kanishk Sharma

    Full Text Available Abstract The present paper explores the stability and failure response of elastoplastic Ni/Al2O3 functionally graded plate under thermomechanical load using non-linear finite element formulation based on first-order shear deformation theory and von-Karman’s nonlinear kinematics. The temperature dependent thermoelastic material properties of FGM plate are varied in the thickness direction by controlling the volume fraction of the constituent materials (i.e., ceramic and metal with a power law, and Mori-Tanaka homogenization scheme is applied to evaluate the properties at a particular thickness coordinate of FGM plate. The elastoplastic behavior of FGM plate is assumed to follow J2-plasticity with isotropic hardening, wherein the ceramic phase is considered to be elastic whereas the metal is assumed to be elastic-plastic in accordance with the Tamura-Tomota-Ozawa model. Numerical studies are conducted to examine the effects of material and geometrical parameters, viz. material in-homogeneity, slenderness and aspect ratios on the elastoplastic bucking and postbuckling behavior and the failure response of FGM plate. It is revealed that material gradation affects the stability and failure behavior of FGM plate considerably. Furthermore, it is also concluded that FGM plate with elastic material properties exhibits only stable equilibrium path, whereas the elastoplastic FGM plate shows destabilizing response after the ultimate failure point.

  18. Modelling Dynamic Behaviour and Spall Failure of Aluminium Alloy AA7010

    Science.gov (United States)

    Ma'at, N.; Nor, M. K. Mohd; Ismail, A. E.; Kamarudin, K. A.; Jamian, S.; Ibrahim, M. N.; Awang, M. K.

    2017-10-01

    A finite strain constitutive model to predict the dynamic deformation behaviour of Aluminium Alloy 7010 including shockwaves and spall failure is developed in this work. The important feature of this newly hyperelastic-plastic constitutive formulation is a new Mandel stress tensor formulated using new generalized orthotropic pressure. This tensor is combined with a shock equation of state (EOS) and Grady spall failure. The Hill’s yield criterion is adopted to characterize plastic orthotropy by means of the evolving structural tensors that is defined in the isoclinic configuration. This material model was developed and integration into elastic and plastic parts. The elastic anisotropy is taken into account through the newly stress tensor decomposition of a generalized orthotropic pressure. Plastic anisotropy is considered through yield surface and an isotropic hardening defined in a unique alignment of deviatoric plane within the stress space. To test its ability to describe shockwave propagation and spall failure, the new material model was implemented into the LLNL-DYNA3D code of UTHM’s. The capability of this newly constitutive model were compared against published experimental data of Plate Impact Test at 234m/s, 450m/s and 895m/s impact velocities. A good agreement is obtained between experimental and simulation in each test.

  19. Compound speckles and their statistical and dynamical properties

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Jakobsen, Michael Linde; Skov Hansen, Rene

    2008-01-01

    Two issues will be treated in this presentation, both focusing on gaining a deeper understanding of dynamic speckles, aiming at the use for probing dynamical properties of scattering structures. The first issue to be addressed is the dynamics of speckles arising from illuminating a solid surface...

  20. Investigation on dynamic performance of concrete column crumb rubber steel and fiber concrete

    Science.gov (United States)

    Siti Nurul Nureda, M. Z.; Mariyana, A. K.; Khiyon, M. Iqbal; Rahman, M. S. Abdul; Nurizaty, Z.

    2017-11-01

    In general the Normal Concrete (NC) are by quasi-brittle failure, where, the nearly complete loss of loading capacity, once failure is initiated especially under dynamic loadings. The significance of this study is to improve the damping properties of concrete structure by utilization of the recycled materials from waste tires to be used in concrete as structural materials that improve seismic performance. In this study, the concrete containing 10% of fine crumb rubber and 1 % volume fraction of steel fiber from waste tires is use to investigate the dynamic performance (natural frequency and damping ratio).A small scale column were fabricated from Treated Crumb Rubber and Steel Fiber Concrete (TCRSFC) and NC were cast and cured for 28 days to investigate the dynamic performance. Based on analysis, dynamic modulus, damping ratio and natural frequency of TCRSFC has improved considerably by 5.18%, 109% and 10.94% when compared with NC. The TCRSFC producing concrete with the desired properties as well as to introduce the huge potential as dynamic resistance structure from severe damage especially prevention on catastrophic failure.

  1. Orthogonal series generalized likelihood ratio test for failure detection and isolation. [for aircraft control

    Science.gov (United States)

    Hall, Steven R.; Walker, Bruce K.

    1990-01-01

    A new failure detection and isolation algorithm for linear dynamic systems is presented. This algorithm, the Orthogonal Series Generalized Likelihood Ratio (OSGLR) test, is based on the assumption that the failure modes of interest can be represented by truncated series expansions. This assumption leads to a failure detection algorithm with several desirable properties. Computer simulation results are presented for the detection of the failures of actuators and sensors of a C-130 aircraft. The results show that the OSGLR test generally performs as well as the GLR test in terms of time to detect a failure and is more robust to failure mode uncertainty. However, the OSGLR test is also somewhat more sensitive to modeling errors than the GLR test.

  2. Identification of Nonlinear Dynamic Behavior and Failure for Riveted Joint Assemblies

    Directory of Open Access Journals (Sweden)

    B. Langrand

    2000-01-01

    Full Text Available Many different types of rivets need to be modeled to analyze the crashworthiness of aircraft structures. A numerical procedure based on FE modeling and characterization of material failure constitutive models is proposed herein with the aim of limiting the costs of experimental procedures otherwise necessary to obtain these data. Quasi-static and dynamic experiments were carried out on elementary tension (punched and shear (riveted specimens. No strain rate sensitivity was detected in the failure behavior of the riveted joint assemblies. Experimental data were used to identify the Gurson damage parameters of each material (2024-T351 and 7050 aluminum alloys for the sheet metal plate and the rivet respectively by an inverse method. Characterization gave rise to satisfactory correlation between FE models and experiments. Optimized parameters were validated for each material by means of a uniaxial tension test for the sheet metal plate and an ARCAN type specimen in pure tension for the rivet.

  3. Systemic risk in dynamical networks with stochastic failure criterion

    Science.gov (United States)

    Podobnik, B.; Horvatic, D.; Bertella, M. A.; Feng, L.; Huang, X.; Li, B.

    2014-06-01

    Complex non-linear interactions between banks and assets we model by two time-dependent Erdős-Renyi network models where each node, representing a bank, can invest either to a single asset (model I) or multiple assets (model II). We use a dynamical network approach to evaluate the collective financial failure —systemic risk— quantified by the fraction of active nodes. The systemic risk can be calculated over any future time period, divided into sub-periods, where within each sub-period banks may contiguously fail due to links to either i) assets or ii) other banks, controlled by two parameters, probability of internal failure p and threshold Th (“solvency” parameter). The systemic risk decreases with the average network degree faster when all assets are equally distributed across banks than if assets are randomly distributed. The more inactive banks each bank can sustain (smaller Th), the smaller the systemic risk —for some Th values in I we report a discontinuity in systemic risk. When contiguous spreading becomes stochastic ii) controlled by probability p2 —a condition for the bank to be solvent (active) is stochastic— the systemic risk decreases with decreasing p2. We analyse the asset allocation for the U.S. banks.

  4. Unavailability Analysis of Dynamic Systems of which the Configuration Changes with Time

    International Nuclear Information System (INIS)

    Shin, Seung Ki; Seong, Poong Hyun

    2011-01-01

    A dynamic system has a state at any given time which can be represented by a point in an appropriate state space and it is much more difficult to estimate the reliability or availability than a static system. As the classic fault tree cannot be used to model the time requirements, dynamic fault tree methods have been developed for the analysis of dynamic systems. They are time-dependent fault trees, so they can capture the dynamic behaviors of the system failure mechanisms. There exist two types of dynamic fault trees to analyze various dynamic properties of the system failure mechanisms. One dynamic fault tree handles failure mechanisms composed of sequence-dependent events using dynamic gates and the other one handles failure mechanisms of which the system configuration changes with time using house event matrix. In this paper, the second dynamic failure mechanism is assessed using a reliability graph with general gates (RGGG) which is an extended reliability graph model and allows more intuitive modeling of target systems compared to the fault tree. In order for the RGGG method to analyze such dynamic failure mechanism, a novel concept of reliability matrix for the RGGG is introduced and Bayesian Networks are used to quantify the modeled RGGG. The proposed method provides much easier way to model dynamic systems and understand the actual structure of the system compared to the dynamic fault tree with house events

  5. Thermodynamical and dynamical properties of charged BTZ black holes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zi-Yu; Wang, Bin [Shanghai Jiao Tong University, Department of Physics and Astronomy, Center for Astronomy and Astrophysics, Shanghai (China); Zhang, Cheng-Yong [Peking University, Center for High-Energy Physics, Beijing (China); Kord Zangeneh, Mahdi [Shanghai Jiao Tong University, Department of Physics and Astronomy, Center for Astronomy and Astrophysics, Shanghai (China); Shahid Chamran University of Ahvaz, Physics Department, Faculty of Science, Ahvaz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)-Maragha, P. O. Box: 55134-441, Maragha (Iran, Islamic Republic of); Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Saavedra, Joel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile)

    2017-06-15

    We investigate the spacetime properties of BTZ black holes in the presence of the Maxwell field and Born-Infeld field and find rich properties in the spacetime structures when the model parameters are varied. Employing Landau-Lifshitz theory, we examine the thermodynamical phase transition in the charged BTZ black holes. We further study the dynamical perturbation in the background of the charged BTZ black holes and find different properties in the dynamics when the thermodynamical phase transition occurs. (orig.)

  6. Dynamic behavior and identification of failure modes of cooling towers

    International Nuclear Information System (INIS)

    Serhan, S.J.

    1994-01-01

    The major thrust of this paper is to provide an engineering assessment of two hyperboloidal 540-foot high reinforced concrete cooling towers at a nuclear power plant relative to the proposed construction of a new safety-related facility in the shadow of these cooling towers. A three-dimensional full 360-degree finite-element model that is capable of realistically representing the response of the two cooling towers subjected to the plant design-basis safe shutdown earthquake, 90 mph wind, and 300 mph tornado is used to create a data pool which supports the proposed construction of the new facility. Dynamic time history analyses are performed to represent the complex interplay of the dynamic characteristics of the cooling towers and the input wind-pressure excitation in terms of gust factors. This study resulted in the confirmation and enhancement of many of the important aspects in the design/analysis methodologies for cooling towers reported in literature. In summary, this study provides a high confidence that no significant damage will be caused to the two cooling towers when subjected to the plant design-basis safe shutdown earthquake and the 90 mph basic wind velocity. However, the two cooling towers are expected to collapse if subjected in a direct hit to a 300 mph tornado. The nonlinear finite element analyses including base uplift performed for this study and the literature research on past failures of cooling towers due to severe wind storms confirm that the mode of failure will not be the overturning cantilever tree-type and the towers will collapse inwardly with the exception of few isolated debris

  7. Dynamical properties of magnetized two-dimensional one-component plasma

    Science.gov (United States)

    Dubey, Girija S.; Gumbs, Godfrey; Fessatidis, Vassilios

    2018-05-01

    Molecular dynamics simulation are used to examine the effect of a uniform perpendicular magnetic field on a two-dimensional interacting electron system. In this simulation we include the effect of the magnetic field classically through the Lorentz force. Both the Coulomb and the magnetic forces are included directly in the electron dynamics to study their combined effect on the dynamical properties of the 2D system. Results are presented for the velocity autocorrelation function and the diffusion constants in the presence and absence of an external magnetic field. Our simulation results clearly show that the external magnetic field has an effect on the dynamical properties of the system.

  8. Modification of meander migration by bank failures

    Science.gov (United States)

    Motta, D.; Langendoen, E. J.; Abad, J. D.; García, M. H.

    2014-05-01

    Meander migration and planform evolution depend on the resistance to erosion of the floodplain materials. To date, research to quantify meandering river adjustment has largely focused on resistance to erosion properties that vary horizontally. This paper evaluates the combined effect of horizontal and vertical floodplain material heterogeneity on meander migration by simulating fluvial erosion and cantilever and planar bank mass failure processes responsible for bank retreat. The impact of stream bank failures on meander migration is conceptualized in our RVR Meander model through a bank armoring factor associated with the dynamics of slump blocks produced by cantilever and planar failures. Simulation periods smaller than the time to cutoff are considered, such that all planform complexity is caused by bank erosion processes and floodplain heterogeneity and not by cutoff dynamics. Cantilever failure continuously affects meander migration, because it is primarily controlled by the fluvial erosion at the bank toe. Hence, it impacts migration rates and meander shapes through the horizontal and vertical distribution of erodibility of floodplain materials. Planar failures are more episodic. However, in floodplain areas characterized by less cohesive materials, they can affect meander evolution in a sustained way and produce preferential migration patterns. Model results show that besides the hydrodynamics, bed morphology and horizontal floodplain heterogeneity, floodplain stratigraphy can significantly affect meander evolution, both in terms of migration rates and planform shapes. Specifically, downstream meander migration can either increase or decrease with respect to the case of a homogeneous floodplain; lateral migration generally decreases as result of bank protection due to slump blocks; and the effect on bend skewness depends on the location and volumes of failed bank material caused by cantilever and planar failures along the bends, with possible achievement of

  9. Advanced RESTART method for the estimation of the probability of failure of highly reliable hybrid dynamic systems

    International Nuclear Information System (INIS)

    Turati, Pietro; Pedroni, Nicola; Zio, Enrico

    2016-01-01

    The efficient estimation of system reliability characteristics is of paramount importance for many engineering applications. Real world system reliability modeling calls for the capability of treating systems that are: i) dynamic, ii) complex, iii) hybrid and iv) highly reliable. Advanced Monte Carlo (MC) methods offer a way to solve these types of problems, which are feasible according to the potentially high computational costs. In this paper, the REpetitive Simulation Trials After Reaching Thresholds (RESTART) method is employed, extending it to hybrid systems for the first time (to the authors’ knowledge). The estimation accuracy and precision of RESTART highly depend on the choice of the Importance Function (IF) indicating how close the system is to failure: in this respect, proper IFs are here originally proposed to improve the performance of RESTART for the analysis of hybrid systems. The resulting overall simulation approach is applied to estimate the probability of failure of the control system of a liquid hold-up tank and of a pump-valve subsystem subject to degradation induced by fatigue. The results are compared to those obtained by standard MC simulation and by RESTART with classical IFs available in the literature. The comparison shows the improvement in the performance obtained by our approach. - Highlights: • We consider the issue of estimating small failure probabilities in dynamic systems. • We employ the RESTART method to estimate the failure probabilities. • New Importance Functions (IFs) are introduced to increase the method performance. • We adopt two dynamic, hybrid, highly reliable systems as case studies. • A comparison with literature IFs proves the effectiveness of the new IFs.

  10. Explicit Dynamic Finite Element Method for Predicting Implosion/Explosion Induced Failure of Shell Structures

    Directory of Open Access Journals (Sweden)

    Jeong-Hoon Song

    2013-01-01

    Full Text Available A simplified implementation of the conventional extended finite element method (XFEM for dynamic fracture in thin shells is presented. Though this implementation uses the same linear combination of the conventional XFEM, it allows for considerable simplifications of the discontinuous displacement and velocity fields in shell finite elements. The proposed method is implemented for the discrete Kirchhoff triangular (DKT shell element, which is one of the most popular shell elements in engineering analysis. Numerical examples for dynamic failure of shells under impulsive loads including implosion and explosion are presented to demonstrate the effectiveness and robustness of the method.

  11. Strain rate dependent deformation and failure behavior of laser welded DP780 steel joint under dynamic tensile loading

    International Nuclear Information System (INIS)

    Liu, Yang; Dong, Danyang; Wang, Lei; Chu, Xi; Wang, Pengfei; Jin, Mengmeng

    2015-01-01

    Laser welded DP steel joints are used widely in the automotive industry for weight reduction. Understanding the deformation and fracture behavior of the base metal (BM) and its welded joint (WJ), especially at high strain rates, is critical for the design of vehicle structures. This paper is concerned with the effects of strain rate on the tensile properties, deformation and fracture behavior of the laser welded DP780 steel joint. Quasi-static and dynamic tensile tests were performed on the WJ and BM of the DP780 steel using an electromechanical universal testing machine and a high-speed tensile testing machine over a wide range of strain rate (0.0001–1142 s −1 ). The microstructure change and microhardness distribution of the DP780 steel after laser welding were examined. Digital image correlation (DIC) and high-speed photography were employed for the strain measurement of the DP780 WJ during dynamic tensile tests. The DP780 WJ is a heterogeneous structure with hardening in fusion zone (FZ) and inner heat-affected zone (HAZ), and softening in outer HAZ. The DP780 BM and WJ exhibit positive strain rate dependence on the YS and UTS, which is smaller at lower strain rates and becomes larger with increasing strain rate, while ductility in terms of total elongation (TE) tends to increase under dynamic loading. Laser welding leads to an overall reduction in the ductility of the DP780 steel. However, the WJ exhibits a similar changing trend of the ductility to that of the BM with respect to the strain rate over the whole strain rate range. As for the DP780 WJ, the distance of tensile failure location from the weld centerline decreases with increasing strain rate. The typical ductile failure characteristics of the DP780 BM and WJ do not change with increasing strain rate. DIC measurements reveal that the strain localization starts even before the maximum load is attained in the DP780 WJ and gradual transition from uniform strains to severely localized strains occurs

  12. Strain rate dependent deformation and failure behavior of laser welded DP780 steel joint under dynamic tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: liuyang@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Dong, Danyang, E-mail: dongdanyang@mail.neu.edu.cn [College of Science, Northeastern University, Shenyang 110819 (China); Wang, Lei, E-mail: wanglei@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Chu, Xi, E-mail: chuxi.ok@163.com [College of Science, Northeastern University, Shenyang 110819 (China); Wang, Pengfei, E-mail: wpf1963871400@163.com [College of Science, Northeastern University, Shenyang 110819 (China); Jin, Mengmeng, E-mail: 24401878@163.com [College of Science, Northeastern University, Shenyang 110819 (China)

    2015-03-11

    Laser welded DP steel joints are used widely in the automotive industry for weight reduction. Understanding the deformation and fracture behavior of the base metal (BM) and its welded joint (WJ), especially at high strain rates, is critical for the design of vehicle structures. This paper is concerned with the effects of strain rate on the tensile properties, deformation and fracture behavior of the laser welded DP780 steel joint. Quasi-static and dynamic tensile tests were performed on the WJ and BM of the DP780 steel using an electromechanical universal testing machine and a high-speed tensile testing machine over a wide range of strain rate (0.0001–1142 s{sup −1}). The microstructure change and microhardness distribution of the DP780 steel after laser welding were examined. Digital image correlation (DIC) and high-speed photography were employed for the strain measurement of the DP780 WJ during dynamic tensile tests. The DP780 WJ is a heterogeneous structure with hardening in fusion zone (FZ) and inner heat-affected zone (HAZ), and softening in outer HAZ. The DP780 BM and WJ exhibit positive strain rate dependence on the YS and UTS, which is smaller at lower strain rates and becomes larger with increasing strain rate, while ductility in terms of total elongation (TE) tends to increase under dynamic loading. Laser welding leads to an overall reduction in the ductility of the DP780 steel. However, the WJ exhibits a similar changing trend of the ductility to that of the BM with respect to the strain rate over the whole strain rate range. As for the DP780 WJ, the distance of tensile failure location from the weld centerline decreases with increasing strain rate. The typical ductile failure characteristics of the DP780 BM and WJ do not change with increasing strain rate. DIC measurements reveal that the strain localization starts even before the maximum load is attained in the DP780 WJ and gradual transition from uniform strains to severely localized strains

  13. Structure, thermodynamics, and dynamical properties of supercooled liquids

    International Nuclear Information System (INIS)

    Kambayashi, Shaw

    1992-12-01

    The equilibrium properties of supercooled liquids with repulsive soft-sphere potentials, u(r) = ε(σ/r) n , have been obtained by solving the integral equation of the theory of liquids and by performing constant-temperature molecular dynamics (MD) simulations. A thermodynamically consistent approximation, proposed recently by Rogers and Young (RY), has been examined for the supercooled soft-sphere fluids. Then, a new approximation for the integral equation, called MHNCS (modified hypernetted-chain integral equation for highly supercooled soft-sphere fluids) approximation, is proposed. The solution of the MHNCS integral equation for highly supercooled liquid states agrees well with the results of computer simulations. The MHNCS integral equation has also been applied for binary soft-sphere mixtures. Dynamical properties of soft-sphere fluids have been investigated by molecular dynamics (MD) simulations. The reduced diffusion constant is found to be insensitive to the choice of the softness of the potential. On the other hand, the spectrum of the velocity autocorrelation function shows a pronounced dependence on the softness of the potential. These significant dynamical properties dependent on the softness parameter (n) are consistent to dynamical behavior observed in liquid alkali metals and liquefied inert gases. The self-part of the density-density autocorrelation function obtained shows a clear nonexponential decay in intermediate time, as the liquid-glass transition is approached. (J.P.N.) 105 refs

  14. Dynamic cellular manufacturing system considering machine failure and workload balance

    Science.gov (United States)

    Rabbani, Masoud; Farrokhi-Asl, Hamed; Ravanbakhsh, Mohammad

    2018-02-01

    Machines are a key element in the production system and their failure causes irreparable effects in terms of cost and time. In this paper, a new multi-objective mathematical model for dynamic cellular manufacturing system (DCMS) is provided with consideration of machine reliability and alternative process routes. In this dynamic model, we attempt to resolve the problem of integrated family (part/machine cell) formation as well as the operators' assignment to the cells. The first objective minimizes the costs associated with the DCMS. The second objective optimizes the labor utilization and, finally, a minimum value of the variance of workload between different cells is obtained by the third objective function. Due to the NP-hard nature of the cellular manufacturing problem, the problem is initially validated by the GAMS software in small-sized problems, and then the model is solved by two well-known meta-heuristic methods including non-dominated sorting genetic algorithm and multi-objective particle swarm optimization in large-scaled problems. Finally, the results of the two algorithms are compared with respect to five different comparison metrics.

  15. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul [Stanford University, Stanford, California 94394 (United States); Varian Medical Systems, Palo Alto, California 94304 (United States); Stanford University, Stanford, California 94394 (United States)

    2010-12-15

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN{>=}125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be {approx}193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was {approx}35 min, while that taken for comprehensive testing was {approx}3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures

  16. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems.

    Science.gov (United States)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul

    2010-12-01

    To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Failures modes with RPN > or = 125 were recommended to be tested monthly. Failure modes with RPN < 125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be approximately 193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was approximately 35 min, while that taken for comprehensive testing was approximately 3.5 h. FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures efficient allocation

  17. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    International Nuclear Information System (INIS)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul

    2010-01-01

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN≥125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be ∼193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was ∼35 min, while that taken for comprehensive testing was ∼3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures efficient allocation

  18. Assessment of structural, thermal, and mechanical properties of portlandite through molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hajilar, Shahin, E-mail: shajilar@iastate.edu [Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011-1066 (United States); Shafei, Behrouz, E-mail: shafei@iastate.edu [Department of Civil, Construction and Environmental Engineering, Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011-1066 (United States)

    2016-12-15

    The structural, thermal, and mechanical properties of portlandite, the primary solid phase of ordinary hydrated cement paste, are investigated using the molecular dynamics method. To understand the effects of temperature on the structural properties of portlandite, the coefficients of thermal expansion of portlandite are determined in the current study and validated with what reported from the experimental tests. The atomic structure of portlandite equilibrated at various temperatures is then subjected to uniaxial tensile strains in the three orthogonal directions and the stress-strain curves are developed. Based on the obtained results, the effect of the direction of straining on the mechanical properties of portlandite is investigated in detail. Structural damage analysis is performed to reveal the failure mechanisms in different directions. The energies of the fractured surfaces are calculated in different directions and compared to those of the ideal surfaces available in the literature. The key mechanical properties, including tensile strength, Young's modulus, and fracture strain, are extracted from the stress-strain curves. The sensitivity of the obtained mechanical properties to temperature and strain rate is then explored in a systematic way. This leads to valuable information on how the structural and mechanical properties of portlandite are affected under various exposure conditions and loading rates. - Graphical abstract: Fracture mechanism of portlandite under uniaxial strain in the z-direction. - Highlights: • The structural, thermal, and mechanical properties of portlandite are investigated. • The coefficients of thermal expansion are determined. • The stress-strain relationships are studied in three orthogonal directions. • The effects of temperature and strain rate on mechanical properties are examined. • The plastic energy required for fracture in the crystalline structure is reported.

  19. Emergent Properties in Natural and Artificial Dynamical Systems

    CERN Document Server

    Aziz-Alaoui, M.A

    2006-01-01

    An important part of the science of complexity is the study of emergent properties arising through dynamical processes in various types of natural and artificial systems. This is the aim of this book, which is the outcome of a discussion meeting within the first European conference on complex systems. It presents multidisciplinary approaches for getting representations of complex systems and using different methods to extract emergent structures. This carefully edited book studies emergent features such as self organization, synchronization, opening on stability and robustness properties. Invariant techniques are presented which can express global emergent properties in dynamical and in temporal evolution systems. This book demonstrates how artificial systems such as a distributed platform can be used for simulation used to search emergent placement during simulation execution.

  20. Properties of parameter estimation techniques for a beta-binomial failure model. Final technical report

    International Nuclear Information System (INIS)

    Shultis, J.K.; Buranapan, W.; Eckhoff, N.D.

    1981-12-01

    Of considerable importance in the safety analysis of nuclear power plants are methods to estimate the probability of failure-on-demand, p, of a plant component that normally is inactive and that may fail when activated or stressed. Properties of five methods for estimating from failure-on-demand data the parameters of the beta prior distribution in a compound beta-binomial probability model are examined. Simulated failure data generated from a known beta-binomial marginal distribution are used to estimate values of the beta parameters by (1) matching moments of the prior distribution to those of the data, (2) the maximum likelihood method based on the prior distribution, (3) a weighted marginal matching moments method, (4) an unweighted marginal matching moments method, and (5) the maximum likelihood method based on the marginal distribution. For small sample sizes (N = or < 10) with data typical of low failure probability components, it was found that the simple prior matching moments method is often superior (e.g. smallest bias and mean squared error) while for larger sample sizes the marginal maximum likelihood estimators appear to be best

  1. Dynamical properties of the Rabi model

    International Nuclear Information System (INIS)

    Hu, Binglu; Zhou, Huili; Chen, Shujie; Xianlong, Gao; Wang, Kelin

    2017-01-01

    We study the dynamical properties of the quantum Rabi model using a systematic expansion method. Based on the observation that the parity symmetry of the Rabi model is kept during evolution of the states, we decompose the initial state and the time-dependent one into positive and negative parity parts expanded by superposition of the coherent states. The evolutions of the corresponding positive and the negative parities are obtained, in which the expansion coefficients in the dynamical equations are known from the derived recurrence relation. (paper)

  2. Evolution properties of the community members for dynamic networks

    Science.gov (United States)

    Yang, Kai; Guo, Qiang; Li, Sheng-Nan; Han, Jing-Ti; Liu, Jian-Guo

    2017-03-01

    The collective behaviors of community members for dynamic social networks are significant for understanding evolution features of communities. In this Letter, we empirically investigate the evolution properties of the new community members for dynamic networks. Firstly, we separate data sets into different slices, and analyze the statistical properties of new members as well as communities they joined in for these data sets. Then we introduce a parameter φ to describe community evolution between different slices and investigate the dynamic community properties of the new community members. The empirical analyses for the Facebook, APS, Enron and Wiki data sets indicate that both the number of new members and joint communities increase, the ratio declines rapidly and then becomes stable over time, and most of the new members will join in the small size communities that is s ≤ 10. Furthermore, the proportion of new members in existed communities decreases firstly and then becomes stable and relatively small for these data sets. Our work may be helpful for deeply understanding the evolution properties of community members for social networks.

  3. An integrated methodology for the dynamic performance and reliability evaluation of fault-tolerant systems

    International Nuclear Information System (INIS)

    Dominguez-Garcia, Alejandro D.; Kassakian, John G.; Schindall, Joel E.; Zinchuk, Jeffrey J.

    2008-01-01

    We propose an integrated methodology for the reliability and dynamic performance analysis of fault-tolerant systems. This methodology uses a behavioral model of the system dynamics, similar to the ones used by control engineers to design the control system, but also incorporates artifacts to model the failure behavior of each component. These artifacts include component failure modes (and associated failure rates) and how those failure modes affect the dynamic behavior of the component. The methodology bases the system evaluation on the analysis of the dynamics of the different configurations the system can reach after component failures occur. For each of the possible system configurations, a performance evaluation of its dynamic behavior is carried out to check whether its properties, e.g., accuracy, overshoot, or settling time, which are called performance metrics, meet system requirements. Markov chains are used to model the stochastic process associated with the different configurations that a system can adopt when failures occur. This methodology not only enables an integrated framework for evaluating dynamic performance and reliability of fault-tolerant systems, but also enables a method for guiding the system design process, and further optimization. To illustrate the methodology, we present a case-study of a lateral-directional flight control system for a fighter aircraft

  4. The dynamics of success and failure: how post-behaviour evaluations relate to subsequent exercise intentions and behaviour.

    Science.gov (United States)

    Kwan, Bethany M; Bryan, Angela D; Sheeran, Paschal

    2018-01-25

    Exercise behaviour change involves multiple experiences with success and failure. The Model of Action Phases (MAP) offers a dynamic account of how success and failure influence both immediate evaluations and future decisions and actions. However, predictions from the MAP have not been formally tested. A longitudinal daily diary study was used to examine how post-behaviour evaluations of exercise success and failure influence subsequent exercise intentions and behaviour. Participants (N = 104) set exercise goals, and then kept a daily online exercise diary for four weeks. Participants self-reported exercise behaviour, affective response to exercise, self-evaluations after success or failure at following through on intentions to exercise, and intentions to exercise in the next week. Multilevel modelling revealed significant within- and between-participant relationships among post-behaviour evaluations, intentions and subsequent behaviour. Findings supported MAP-derived predictions about how success and failure at exercise are associated with feelings about exercise and the self, and inform subsequent exercise intentions and behaviour. Positive post-behaviour evaluations of success or failure may stabilise positive intentions and aid maintenance of exercise behaviour. Implications of these MAP-based findings for intervention design are discussed.

  5. Stochastic dynamics of penetrable rods in one dimension: Entangled dynamics and transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Craven, Galen T.; Popov, Alexander V.; Hernandez, Rigoberto, E-mail: hernandez@chemistry.gatech.edu [Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 (United States)

    2015-04-21

    The dynamical properties of a system of soft rods governed by stochastic hard collisions (SHCs) have been determined over a varying range of softness using molecular dynamics simulations in one dimension and analytic theory. The SHC model allows for interpenetration of the system’s constituent particles in the simulations, generating overlapping clustering behavior analogous to the spatial structures observed in systems governed by deterministic bounded potentials. Through variation of an assigned softness parameter δ, the limiting ranges of intermolecular softness are bridged, connecting the limiting ensemble behavior from hard to ideal (completely soft). Various dynamical and structural observables are measured from simulation and compared to developed theoretical values. The spatial properties are found to be well predicted by theories developed for the deterministic penetrable-sphere model with a transformation from energetic to probabilistic arguments. While the overlapping spatial structures are complex, the dynamical properties can be adequately approximated through a theory built on impulsive interactions with Enskog corrections. Our theory suggests that as the softness of interaction is varied toward the ideal limit, correlated collision processes are less important to the energy transfer mechanism, and Markovian processes dominate the evolution of the configuration space ensemble. For interaction softness close to hard limit, collision processes are highly correlated and overlapping spatial configurations give rise to entanglement of single-particle trajectories.

  6. Mechanics of Failure Mechanisms in Structures

    CERN Document Server

    Carlson, R L; Craig, J I

    2012-01-01

    This book focuses on the mechanisms and underlying mechanics of failure in various classes of materials such as metallic, ceramic, polymeric, composite and bio-material.  Topics include tensile and compressive fracture, crack initiation and growth, fatigue and creep rupture in metallic materials, matrix cracking and delamination and environmental degradation in polymeric composites, failure of bio-materials such as prosthetic heart valves and prosthetic hip joints, failure of ceramics and ceramic matrix composites, failure of metallic matrix composites, static and dynamic buckling failure, dynamic excitations and creep buckling failure in structural systems. Chapters are devoted to failure mechanisms that are characteristic of each of the materials.  The work also provides the basic elements of fracture mechanics and studies in detail several niche topics such as the effects of toughness gradients, variable amplitude loading effects in fatigue, small fatigue cracks, and creep induced brittleness. Furthe...

  7. Solving Component Structural Dynamic Failures Due to Extremely High Frequency Structural Response on the Space Shuttle Program

    Science.gov (United States)

    Frady, Greg; Nesman, Thomas; Zoladz, Thomas; Szabo, Roland

    2010-01-01

    For many years, the capabilities to determine the root-cause failure of component failures have been limited to the analytical tools and the state of the art data acquisition systems. With this limited capability, many anomalies have been resolved by adding material to the design to increase robustness without the ability to determine if the design solution was satisfactory until after a series of expensive test programs were complete. The risk of failure and multiple design, test, and redesign cycles were high. During the Space Shuttle Program, many crack investigations in high energy density turbomachines, like the SSME turbopumps and high energy flows in the main propulsion system, have led to the discovery of numerous root-cause failures and anomalies due to the coexistences of acoustic forcing functions, structural natural modes, and a high energy excitation, such as an edge tone or shedding flow, leading the technical community to understand many of the primary contributors to extremely high frequency high cycle fatique fluid-structure interaction anomalies. These contributors have been identified using advanced analysis tools and verified using component and system tests during component ground tests, systems tests, and flight. The structural dynamics and fluid dynamics communities have developed a special sensitivity to the fluid-structure interaction problems and have been able to adjust and solve these problems in a time effective manner to meet budget and schedule deadlines of operational vehicle programs, such as the Space Shuttle Program over the years.

  8. Launch Vehicle Failure Dynamics and Abort Triggering Analysis

    Science.gov (United States)

    Hanson, John M.; Hill, Ashely D.; Beard, Bernard B.

    2011-01-01

    Launch vehicle ascent is a time of high risk for an on-board crew. There are many types of failures that can kill the crew if the crew is still on-board when the failure becomes catastrophic. For some failure scenarios, there is plenty of time for the crew to be warned and to depart, whereas in some there is insufficient time for the crew to escape. There is a large fraction of possible failures for which time is of the essence and a successful abort is possible if the detection and action happens quickly enough. This paper focuses on abort determination based primarily on data already available from the GN&C system. This work is the result of failure analysis efforts performed during the Ares I launch vehicle development program. Derivation of attitude and attitude rate abort triggers to ensure that abort occurs as quickly as possible when needed, but that false positives are avoided, forms a major portion of the paper. Some of the potential failure modes requiring use of these triggers are described, along with analysis used to determine the success rate of getting the crew off prior to vehicle demise.

  9. Measure theoretical approach to recurrent properties for quantum dynamics

    International Nuclear Information System (INIS)

    Otobe, Yoshiki; Sasaki, Itaru

    2011-01-01

    Poincaré's recurrence theorem, which states that every Hamiltonian dynamics enclosed in a finite volume returns to its initial position as close as one wishes, is a mathematical basis of statistical mechanics. It is Liouville's theorem that guarantees that the dynamics preserves the volume on the state space. A quantum version of Poincaré's theorem was obtained in the middle of the 20th century without any volume structures of the state space (Hilbert space). One of our aims in this paper is to establish such properties of quantum dynamics from an analog of Liouville's theorem, namely, we will construct a natural probability measure on the Hilbert space from a Hamiltonian defined on the space. Then we will show that the measure is invariant under the corresponding Schrödinger flow. Moreover, we show that the dynamics naturally causes an infinite-dimensional Weyl transformation. It also enables us to discuss the ergodic properties of such dynamics. (paper)

  10. Measure theoretical approach to recurrent properties for quantum dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Otobe, Yoshiki [Department of Mathematical Sciences, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621 (Japan); Sasaki, Itaru, E-mail: otobe@math.shinshu-u.ac.jp, E-mail: isasaki@shinshu-u.ac.jp [Fiber-Nanotech Young Researcher Empowerment Center, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621 (Japan)

    2011-11-18

    Poincare's recurrence theorem, which states that every Hamiltonian dynamics enclosed in a finite volume returns to its initial position as close as one wishes, is a mathematical basis of statistical mechanics. It is Liouville's theorem that guarantees that the dynamics preserves the volume on the state space. A quantum version of Poincare's theorem was obtained in the middle of the 20th century without any volume structures of the state space (Hilbert space). One of our aims in this paper is to establish such properties of quantum dynamics from an analog of Liouville's theorem, namely, we will construct a natural probability measure on the Hilbert space from a Hamiltonian defined on the space. Then we will show that the measure is invariant under the corresponding Schroedinger flow. Moreover, we show that the dynamics naturally causes an infinite-dimensional Weyl transformation. It also enables us to discuss the ergodic properties of such dynamics. (paper)

  11. A dynamical system that describes vein graft adaptation and failure.

    Science.gov (United States)

    Garbey, Marc; Berceli, Scott A

    2013-11-07

    Adaptation of vein bypass grafts to the mechanical stresses imposed by the arterial circulation is thought to be the primary determinant for lesion development, yet an understanding of how the various forces dictate local wall remodeling is lacking. We develop a dynamical system that summarizes the complex interplay between the mechanical environment and cell/matrix kinetics, ultimately dictating changes in the vein graft architecture. Based on a systematic mapping of the parameter space, three general remodeling response patterns are observed: (1) shear stabilized intimal thickening, (2) tension induced wall thinning and lumen expansion, and (3) tension stabilized wall thickening. Notable is our observation that the integration of multiple feedback mechanisms leads to a variety of non-linear responses that would be unanticipated by an analysis of each system component independently. This dynamic analysis supports the clinical observation that the majority of vein grafts proceed along an adaptive trajectory, where grafts dilate and mildly thicken in response to the increased tension and shear, but a small portion of the grafts demonstrate a maladaptive phenotype, where progressive inward remodeling and accentuated wall thickening lead to graft failure. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

  12. Dynamic mechanical properties of toughened polyamide composites

    International Nuclear Information System (INIS)

    Alsewailem, Fares D.

    2008-01-01

    The effect of incorporating thermoplastic rubber on the dynamic mechanical properties, storage and loss moduli, of virgin and recycled glass-fiber-reinforced polyamide 66 has been investigated in this study. Styrene-Ethylene-Styrene and Ethylene-Propylene grafted with maleic anhydride were used as elastomers for toughening. Dynamic mechanical properties of the composites were examined by the rotational rhometry. Shear storage and loss moduli of recycled and virgin materials were measured against frequency. Also the variation of storage modulus of the virgin composites was measured against temperatures by conducting a series of torsion tests. Both dynamic storage and loss moduli of the composites were found to increase with increasing glass fiber and rubber contents. Recycled composites had lower values of dynamic modulus compared that of virgin composites; however by proper combining of fiber and rubber into the recycled material, its modulus fairly matches that of the virgin material. Addition of rubber to virgin composites causes a reduction in G' as temperature increases. Rubber, which acts as a stress concentrator, had a major effect on minimizing the overall modulus of the composites. The in G' versus temperature has been observed for all composites: however the temperature at which the transition G' occurs decreases with increasing rubber content. (author)

  13. Molecular Dynamics Modeling of the Effect of Axial and Transverse Compression on the Residual Tensile Properties of Ballistic Fiber

    Directory of Open Access Journals (Sweden)

    Sanjib C. Chowdhury

    2017-02-01

    Full Text Available Ballistic impact induces multiaxial loading on Kevlar® and polyethylene fibers used in protective armor systems. The influence of multiaxial loading on fiber failure is not well understood. Experiments show reduction in the tensile strength of these fibers after axial and transverse compression. In this paper, we use molecular dynamics (MD simulations to explain and develop a fundamental understanding of this experimental observation since the property reduction mechanism evolves from the atomistic level. An all-atom MD method is used where bonded and non-bonded atomic interactions are described through a state-of-the-art reactive force field. Monotonic tension simulations in three principal directions of the models are conducted to determine the anisotropic elastic and strength properties. Then the models are subjected to multi-axial loads—axial compression, followed by axial tension and transverse compression, followed by axial tension. MD simulation results indicate that pre-compression distorts the crystal structure, inducing preloading of the covalent bonds and resulting in lower tensile properties.

  14. Andreas Acrivos Dissertation Award: Onset of Dynamic Wetting Failure - The Mechanics of High-Speed Fluid Displacement

    Science.gov (United States)

    Vandre, Eric

    2014-11-01

    Dynamic wetting is crucial to processes where a liquid displaces another fluid along a solid surface, such as the deposition of a coating liquid onto a moving substrate. Dynamic wetting fails when process speed exceeds some critical value, leading to incomplete fluid displacement and transient phenomena that impact a variety of applications, such as microfluidic devices, oil-recovery systems, and splashing droplets. Liquid coating processes are particularly sensitive to wetting failure, which can induce air entrainment and other catastrophic coating defects. Despite the industrial incentives for careful control of wetting behavior, the hydrodynamic factors that influence the transition to wetting failure remain poorly understood from empirical and theoretical perspectives. This work investigates the fundamentals of wetting failure in a variety of systems that are relevant to industrial coating flows. A hydrodynamic model is developed where an advancing fluid displaces a receding fluid along a smooth, moving substrate. Numerical solutions predict the onset of wetting failure at a critical substrate speed, which coincides with a turning point in the steady-state solution path for a given set of system parameters. Flow-field analysis reveals a physical mechanism where wetting failure results when capillary forces can no longer support the pressure gradients necessary to steadily displace the receding fluid. Novel experimental systems are used to measure the substrate speeds and meniscus shapes associated with the onset of air entrainment during wetting failure. Using high-speed visualization techniques, air entrainment is identified by the elongation of triangular air films with system-dependent size. Air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Meniscus confinement in a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a variety of

  15. Development and validation of a dynamic outcome prediction model for paracetamol-induced acute liver failure

    DEFF Research Database (Denmark)

    Bernal, William; Wang, Yanzhong; Maggs, James

    2016-01-01

    : The models developed here show very good discrimination and calibration, confirmed in independent datasets, and suggest that many patients undergoing transplantation based on existing criteria might have survived with medical management alone. The role and indications for emergency liver transplantation......BACKGROUND: Early, accurate prediction of survival is central to management of patients with paracetamol-induced acute liver failure to identify those needing emergency liver transplantation. Current prognostic tools are confounded by recent improvements in outcome independent of emergency liver...... transplantation, and constrained by static binary outcome prediction. We aimed to develop a simple prognostic tool to reflect current outcomes and generate a dynamic updated estimation of risk of death. METHODS: Patients with paracetamol-induced acute liver failure managed at intensive care units in the UK...

  16. Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics

    Science.gov (United States)

    Monk, Joshua D.; Lawson, John W.

    2016-01-01

    Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.

  17. Why does necking ignore notches in dynamic tension?

    Directory of Open Access Journals (Sweden)

    Rotbaum Y.

    2015-01-01

    Full Text Available Recent experimental work has revealed that necking of tensile specimens, subjected to dynamic loading, is a deterministic phenomenon, governed by the applied boundary conditions. Furthermore it was shown that the potential sited, dictated by the boundary conditions, may prevail even in the presence of a notch, thus necking may occur away of the notched region. The present paper combines experimental and numerical work to address this issue. Specifically, it is shown that the dynamic tensile failure locus is dictated by both the applied velocity boundary condition and the material mechanical properties, specifically strain-rate sensitivity and strain-rate hardening. It is shown that at sufficiently high impact velocities, the flows stress in the notch vicinity becomes quite higher than in the rest of the specimen, so that while the former resists deformation, it transfers the load to the latter, resulting in the formation of a local neck and failure away from the notch. Small local perturbations in the material properties are shown to be sufficient to stabilize the structure under local failure until a neck forms elsewhere. While the physical observations are quite counterintuitive with respect to the engineering views of stress concentrator's effect, the present work rationalizes those observations and also provides information for the designers of dynamically tensioned structures that may contain notches or similar flaws.

  18. A Dynamic Approach to Modeling Dependence Between Human Failure Events

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory

    2015-09-01

    In practice, most HRA methods use direct dependence from THERP—the notion that error be- gets error, and one human failure event (HFE) may increase the likelihood of subsequent HFEs. In this paper, we approach dependence from a simulation perspective in which the effects of human errors are dynamically modeled. There are three key concepts that play into this modeling: (1) Errors are driven by performance shaping factors (PSFs). In this context, the error propagation is not a result of the presence of an HFE yielding overall increases in subsequent HFEs. Rather, it is shared PSFs that cause dependence. (2) PSFs have qualities of lag and latency. These two qualities are not currently considered in HRA methods that use PSFs. Yet, to model the effects of PSFs, it is not simply a matter of identifying the discrete effects of a particular PSF on performance. The effects of PSFs must be considered temporally, as the PSFs will have a range of effects across the event sequence. (3) Finally, there is the concept of error spilling. When PSFs are activated, they not only have temporal effects but also lateral effects on other PSFs, leading to emergent errors. This paper presents the framework for tying together these dynamic dependence concepts.

  19. Orbital free ab initio molecular dynamics simulation study of some static and dynamic properties of liquid noble metals

    Directory of Open Access Journals (Sweden)

    G.M. Bhuiyan

    2012-10-01

    Full Text Available Several static and dynamic properties of liquid Cu, Ag and Au at thermodynamic states near their respective melting points, have been evaluated by means of the orbital free ab-initio molecular dynamics simulation method. The calculated static structure shows good agreement with the available X-ray and neutron diffraction data. As for the dynamic properties, the calculated dynamic structure factors point to the existence of collective density excitations along with a positive dispersion for l-Cu and l-Ag. Several transport coefficients have been obtained which show a reasonable agreement with the available experimental data.

  20. OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES

    Energy Technology Data Exchange (ETDEWEB)

    Grant, C D; Zhang, J Z

    2007-09-28

    This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk materials. Linear, including absorption and luminescence, and nonlinear optical as well as dynamic properties of semiconductor nanoparticles are discussed with focus on their dependence on particle size, shape, and surface characteristics. Both doped and undoped semiconductor nanomaterials are highlighted and contrasted to illustrate the use of doping to effectively alter and probe nanomaterial properties. Some emerging applications of optical nanomaterials are discussed towards the end of the chapter, including solar energy conversion, optical sensing of chemicals and biochemicals, solid state lighting, photocatalysis, and photoelectrochemistry.

  1. Prediction of Spring Rate and Initial Failure Load due to Material Properties of Composite Leaf Spring

    International Nuclear Information System (INIS)

    Oh, Sung Ha; Choi, Bok Lok

    2014-01-01

    This paper presented analysis methods for adapting E-glass fiber/epoxy composite (GFRP) materials to an automotive leaf spring. It focused on the static behaviors of the leaf spring due to the material composition and its fiber orientation. The material properties of the GFRP composite were directly measured based on the ASTM standard test. A reverse implementation was performed to obtain the complete set of in-situ fiber and matrix properties from the ply test results. Next, the spring rates of the composite leaf spring were examined according to the variation of material parameters such as the fiber angles and resin contents of the composite material. Finally, progressive failure analysis was conducted to identify the initial failure load by means of an elastic stress analysis and specific damage criteria. As a result, it was found that damage first occurred along the edge of the leaf spring owing to the shear stresses

  2. Strain-dependent dynamic compressive properties of magnetorheological elastomeric foams

    Science.gov (United States)

    Wereley, Norman M.; Perez, Colette; Choi, Young T.

    2018-05-01

    This paper addresses the strain-dependent dynamic compressive properties (i.e., so-called Payne effect) of magnetorheological elastomeric foams (MREFs). Isotropic MREF samples (i.e., no oriented particle chain structures), fabricated in flat square shapes (nominal size of 26.5 mm x 26.5 mm x 9.5 mm) were synthesized by randomly dispersing micron-sized iron oxide particles (Fe3O4) into a liquid silicone foam in the absence of magnetic field. Five different Fe3O4 particle concentrations of 0, 2.5, 5.0, 7.5, and 10 percent by volume fraction (hereinafter denoted as vol%) were used to investigate the effect of particle concentration on the dynamic compressive properties of the MREFs. The MREFs were sandwiched between two multi-pole flexible plate magnets in order to activate the magnetorheological (MR) strengthening effect. Under two different pre-compression conditions (i.e., 35% and 50%), the dynamic compressive stresses of the MREFs with respect to dynamic strain amplitudes (i.e., 1%-10%) were measured by using a servo-hydraulic testing machine. The complex modulus (i.e., storage modulus and loss modulus) and loss factors of the MREFs with respect to dynamic strain amplitudes were presented as performance indices to evaluate their strain-dependent dynamic compressive behavior.

  3. Strain-dependent dynamic compressive properties of magnetorheological elastomeric foams

    Directory of Open Access Journals (Sweden)

    Norman M. Wereley

    2018-05-01

    Full Text Available This paper addresses the strain-dependent dynamic compressive properties (i.e., so-called Payne effect of magnetorheological elastomeric foams (MREFs. Isotropic MREF samples (i.e., no oriented particle chain structures, fabricated in flat square shapes (nominal size of 26.5 mm x 26.5 mm x 9.5 mm were synthesized by randomly dispersing micron-sized iron oxide particles (Fe3O4 into a liquid silicone foam in the absence of magnetic field. Five different Fe3O4 particle concentrations of 0, 2.5, 5.0, 7.5, and 10 percent by volume fraction (hereinafter denoted as vol% were used to investigate the effect of particle concentration on the dynamic compressive properties of the MREFs. The MREFs were sandwiched between two multi-pole flexible plate magnets in order to activate the magnetorheological (MR strengthening effect. Under two different pre-compression conditions (i.e., 35% and 50%, the dynamic compressive stresses of the MREFs with respect to dynamic strain amplitudes (i.e., 1%-10% were measured by using a servo-hydraulic testing machine. The complex modulus (i.e., storage modulus and loss modulus and loss factors of the MREFs with respect to dynamic strain amplitudes were presented as performance indices to evaluate their strain-dependent dynamic compressive behavior.

  4. Dynamic properties of energy affordability measures

    International Nuclear Information System (INIS)

    Heindl, Peter; Schuessler, Rudolf

    2015-01-01

    Measures of affordability and of fuel poverty are applied in practice to assess the affordability of energy services, for example, or of water or housing. The extensive body of literature on affordability measures has little overlap with the existing literature on poverty measurement. A comprehensive assessment of the response of affordability measures as a result of changes in the distribution of income or expenditure (the dynamic properties) is missing. This paper aims to fill this gap by providing a conceptual discussion on the ‘dynamics’ of both energy affordability measures and fuel poverty measures. Several types of measures are examined in a microsimulation framework. Our results indicate that some measures exhibit odd dynamic behavior. This includes measures used in practice, such as the low income/high cost measure and the double median of expenditure share indicator. Odd dynamic behavior causes the risk of drawing false policy recommendations from the measures. Thus, an appropriate response of affordability measures to changes in relevant variables is a prerequisite for defining meaningful measures that inform about affordability or deprivation in certain domains of consumption. - Highlights: • We investigate changes in fuel poverty measures as result from changes in income and expenditure. • More generally, we investigate dynamic behavior of affordability measures using microsimulation. • We propose axioms regarding dynamic behavior of affordability measures. • Some measures which are used in practice show unintuitive dynamic behavior. • Inappropriate dynamic behavior causes a risk of false policy implications.

  5. Characterization of dynamic properties of ballistic clay

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.; Broos, J.P.F.; Halls, V.; Zheng, J.

    2014-01-01

    In order use material models in (numerical) calculations, the mechanical properties of all materials involved should be known. At TNO an indirect method to determine the dynamic flow stress of materials has been generated by a combination of ballistic penetration tests with an energy-based

  6. The effect of carbon content on mechanical properties, failure and corrosion resistance of deposited chromium metal

    Directory of Open Access Journals (Sweden)

    Леонід Кімович Лещинськiй

    2017-06-01

    Full Text Available It has been shown that if choosing a metal composition for surfacing rolls and rollers of continuous casting machines, both the carbon impact on the mechanical and functional properties and the critical values of the chromium concentration, which determine the corrosion resistance of the metal with regard to electrochemical corrosion theory, should be considered as well. The paper studied the effect of chromium and carbon steel the X5-X12 type on the structure, technological strength, mechanical properties, fracturing resistance and corrosion resistance of the weld metal. The composition of chromium tool steels (deposited metal (X5-used for the rolls of hot rolling mills and (X12-used for continuous casting machines rollers correspond to these values. The impact of carbon on the properties of the deposited metal containing chromium was considered by comparing the data for both types of the deposited metal. It was found that for both types of the deposited metal (X5 and X12, the limiting value of the carbon content, providing an optimal combination of strength, ductility, failure resistance is the same. If the carbon content is more than the limiting value – (0,25% the technological strength and failure resistance of the deposited metal significantly reduce. With increasing carbon content from 0,18 to 0,25% the martensite structure has a mixed morphology – lath and plate. The strength and toughness of the deposited metal grow. Of particular interest is simultaneous increase in the specific work of failure resulted from crack inhibition at the boundary with far less solid and more ductile ferrite. As for the 5% chromium metal, the X12 type composition with 0,25% C, is borderline. With a further increase in the carbon content of the metal both ductility and failure resistance sharply decrease and with 0,40% C the growth rate of fatigue crack increases by almost 1,5 times

  7. Static and dynamic properties of smoothed dissipative particle dynamics

    Science.gov (United States)

    Alizadehrad, Davod; Fedosov, Dmitry A.

    2018-03-01

    In this paper, static and dynamic properties of the smoothed dissipative particle dynamics (SDPD) method are investigated. We study the effect of method parameters on SDPD fluid properties, such as structure, speed of sound, and transport coefficients, and show that a proper choice of parameters leads to a well-behaved and accurate fluid model. In particular, the speed of sound, the radial distribution function (RDF), shear-thinning of viscosity, the mean-squared displacement (〈R2 〉 ∝ t), and the Schmidt number (Sc ∼ O (103) - O (104)) can be controlled, such that the model exhibits a fluid-like behavior for a wide range of temperatures in simulations. Furthermore, in addition to the consideration of fluid density variations for fluid compressibility, a more challenging test of incompressibility is performed by considering the Poisson ratio and divergence of velocity field in an elongational flow. Finally, as an example of complex-fluid flow, we present the applicability and validity of the SDPD method with an appropriate choice of parameters for the simulation of cellular blood flow in irregular geometries. In conclusion, the results demonstrate that the SDPD method is able to approximate well a nearly incompressible fluid behavior, which includes hydrodynamic interactions and consistent thermal fluctuations, thereby providing, a powerful approach for simulations of complex mesoscopic systems.

  8. An FMS Dynamic Production Scheduling Algorithm Considering Cutting Tool Failure and Cutting Tool Life

    International Nuclear Information System (INIS)

    Setiawan, A; Wangsaputra, R; Halim, A H; Martawirya, Y Y

    2016-01-01

    This paper deals with Flexible Manufacturing System (FMS) production rescheduling due to unavailability of cutting tools caused either of cutting tool failure or life time limit. The FMS consists of parallel identical machines integrated with an automatic material handling system and it runs fully automatically. Each machine has a same cutting tool configuration that consists of different geometrical cutting tool types on each tool magazine. The job usually takes two stages. Each stage has sequential operations allocated to machines considering the cutting tool life. In the real situation, the cutting tool can fail before the cutting tool life is reached. The objective in this paper is to develop a dynamic scheduling algorithm when a cutting tool is broken during unmanned and a rescheduling needed. The algorithm consists of four steps. The first step is generating initial schedule, the second step is determination the cutting tool failure time, the third step is determination of system status at cutting tool failure time and the fourth step is the rescheduling for unfinished jobs. The approaches to solve the problem are complete-reactive scheduling and robust-proactive scheduling. The new schedules result differences starting time and completion time of each operations from the initial schedule. (paper)

  9. Physical properties of Cu nanoparticles: A molecular dynamics study

    International Nuclear Information System (INIS)

    Kart, H.H.; Yildirim, H.; Ozdemir Kart, S.; Çağin, T.

    2014-01-01

    Thermodynamical, structural and dynamical properties of Cu nanoparticles are investigated by using Molecular Dynamics (MD) simulations at various temperatures. In this work, MD simulations of the Cu-nanoparticles are performed by means of the MPiSiM codes by utilizing from Quantum Sutton-Chen (Q-SC) many-body force potential to define the interactions between the Cu atoms. The diameters of the copper nanoparticles are varied from 2 nm to 10 nm. MD simulations of Cu nanoparticles are carried out at low and high temperatures to study solid and liquid properties of Cu nanoparticles. Simulation results such as melting point, radial distribution function are compared with the available experimental bulk results. Radial distribution function, mean square displacement, diffusion coefficient, Lindemann index and Honeycutt–Andersen index are also calculated for estimating the melting point of the Copper nanoparticles. - Highlights: • Solid and liquid properties of Cu nanoparticles are studied. • Molecular dynamics utilizing the Quantum Sutton Chen potential is used in this work. • Melting temperatures of nanoparticles are strongly depended on nanoparticle sizes. • Heat capacity, radial distribution function and diffusion coefficients are studied. • Structures of nanoparticles are analyzed by Lindemann and Honeycutt–Andersen index

  10. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals

    Science.gov (United States)

    Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.

    2017-11-01

    A framework for dislocation-based viscoplasticity and dynamic ductile failure has been developed to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. An averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Additionally, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in (Wilkerson and Ramesh, 2014), which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.

  11. Using nonlinearity and spatiotemporal property modulation to control effective structural properties: dynamic rods

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Blekhman, Iliya I.

    2007-01-01

    What are the effective properties of a generally nonlinear material or structure, whose local properties are modulated in both space and time? It has been suggested to use spatiotemporal modulation of structural properties to create materials and structures with adjustable effective properties......, and to call these dynamic materials or spatiotemporal composites. Also, according to theoretical predictions, structural nonlinearity enhances the possibilities of achieving specific effective properties. For example, with an elastic rod having cubical elastic nonlinearities, it seems possible to control......, and exemplified. Then simple approximate analytical expressions are derived for the effective wave speed and natural frequencies for one-dimensional wave propagation in a nonlinear elastic rod, where the spatiotemporal modulation is imposed as a high-frequency standing wave, supposed to be given. Finally the more...

  12. Dynamic mechanical properties of photopolymerizable poly(vinyl alcohol)-acrylate monomer blends

    International Nuclear Information System (INIS)

    Koshiba, M.; Yamaoka, T.; Tsunoda, T.

    1983-01-01

    Dynamic mechanical properties of photopolymerizable poly(vinyl alcohol) (PVA)-monoacrylate blends were investigated by measuring dynamic shear modulus G' and loss tangent, tan delta. The dynamic mechanical properties of the blends before being exposed to UV irradiation were governed by the weight percent of the monomers which act as plasticizers. On the other hand, the UV-irradiated blends seemed to be typical two-phase materials since they revealed two tan delta maxima whose positions were independent of the monomer content. Those two maxima were assigned to PVA and photopolymerized acrylates with reference to the dynamic mechanical data of PVA and a PVA-polyacrylamide polyblend. Those dynamic mechanical data suggested that insolubilization of the blend type photopolymers should be caused by a decrease in solubility due to graft polymerization of acrylate monomers onto PVA. 9 figures, 3 tables

  13. Rupture Dynamics and Scaling Behavior of Hydraulically Stimulated Micro-Earthquakes in a Shale Reservoir

    Science.gov (United States)

    Viegas, G. F.; Urbancic, T.; Baig, A. M.

    2014-12-01

    In hydraulic fracturing completion programs fluids are injected under pressure into fractured rock formations to open escape pathways for trapped hydrocarbons along pre-existing and newly generated fractures. To characterize the failure process, we estimate static and dynamic source and rupture parameters, such as dynamic and static stress drop, radiated energy, seismic efficiency, failure modes, failure plane orientations and dimensions, and rupture velocity to investigate the rupture dynamics and scaling relations of micro-earthquakes induced during a hydraulic fracturing shale completion program in NE British Columbia, Canada. The relationships between the different parameters combined with the in-situ stress field and rock properties provide valuable information on the rupture process giving insights into the generation and development of the fracture network. Approximately 30,000 micro-earthquakes were recorded using three multi-sensor arrays of high frequency geophones temporarily placed close to the treatment area at reservoir depth (~2km). On average the events have low radiated energy, low dynamic stress and low seismic efficiency, consistent with the obtained slow rupture velocities. Events fail in overshoot mode (slip weakening failure model), with fluids lubricating faults and decreasing friction resistance. Events occurring in deeper formations tend to have faster rupture velocities and are more efficient in radiating energy. Variations in rupture velocity tend to correlate with variation in depth, fault azimuth and elapsed time, reflecting a dominance of the local stress field over other factors. Several regions with different characteristic failure modes are identifiable based on coherent stress drop, seismic efficiency, rupture velocities and fracture orientations. Variations of source parameters with rock rheology and hydro-fracture fluids are also observed. Our results suggest that the spatial and temporal distribution of events with similar

  14. Dynamic Mechanical Properties of PMN/CNFs/EP Composites

    International Nuclear Information System (INIS)

    Shi Minxian; Huang Zhixiong; Qin Yan

    2011-01-01

    In this research, piezoelectric ceramic PMN(lead magnesium niobate-lead zirconate-lead titanate)/carbon nano-fibers(CNFs)/epoxy resin(EP) ccomposites were prepared and the dynamic mechanical properties and damping mechanism of PMN/CNFs/EP composites were investigated. The addition of CNFs into PMN/EP composite results in decrease of volume resistivity of the composite. When the concentration of CNFs is 0.6% weight of epoxy resin the volume resistivity of PMN/CNFs/EP composite is about 10 8 Ω·m. Dynamic mechanical analysis indicates that the loss factor, loss area, and damping temperature range of PMN/CNFs/EP composites increase with the CNFs content increasing till to 0.6% of weight of epoxy resin. When the CNFs content is more than 0.6% the damping properties of composites decrease oppositely. In PMN/CNFs/EP composites, the CNFs content 0.6% and the volume resistivity of PMN/CNFs/EP composites about 10 8 Ω·m just satisfy the practicing condition of piezo-damping, so the composites show optimal damping property.

  15. Dynamic compensation of an rf cavity failure in a superconducting linac

    Directory of Open Access Journals (Sweden)

    Jean-Luc Biarrotte

    2008-07-01

    Full Text Available An accelerator driven system (ADS for transmutation of nuclear waste typically requires a 600 MeV–1 GeV accelerator delivering a proton flux of a few mA for demonstrators, and of a few tens of mA for large industrial systems. Such a machine belongs to the category of the high-power proton accelerators, with an additional requirement for exceptional “reliability”: because of the induced thermal stress to the subcritical core, the number of unwanted “beam trips” should not exceed a few per year, a specification that is several orders of magnitude above usual performance. In order to meet this extremely high reliability, the accelerator needs to implement, to the maximum possible extent, a fault-tolerance strategy that would allow beam operation in the presence of most of the envisaged faults that could occur in its beam line components, and in particular rf systems’ failures. This document describes the results of the simulations performed for the analysis of the fault-tolerance capability of the XT-ADS superconducting linac in the case of an rf cavity failure. A new simulation tool, mixing transient rf behavior of the accelerating cavities with full 6D description of the beam dynamics, has been developed for this purpose. Fast fault-recovery scenarios are proposed, and required research and development is identified.

  16. Molecular dynamics study of dynamic and structural properties of supercooled liquid and glassy iron in the rapid-cooling processes

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qi-Long; Huang, Duo-Hui; Yang, Jun-Sheng; Wan, Min-Jie; Wang, Fan-Hou, E-mail: eatonch@gmail.com

    2014-10-01

    Molecular dynamics simulations were applied to study the dynamic and structural properties of supercooled liquid and glassy iron in the rapid-cooling processes. The mean-square displacement and the non-Gaussian parameter were used to describe the dynamic properties. The evolution of structural properties was investigated using the pair distribution functions and bond-angle distribution functions. Results for dynamic and structural relaxations indicate that the dynamic features are consistently correlated with the structure evolution, and there are three temperature regions as the temperature decreases: (1) at higher temperatures (1500 K, 1300 K, and 1100 K), the system remains in the liquid characteristics during the overall relaxation process. (2) At medial temperatures (1050 K, 900 K, and 700 K), a fast β-relaxation is followed by a much slower α-relaxation. There is a little change in the structural properties in the β-relaxation region, while major configuration rearrangements occurred in the α-relaxation range and the crystallization process was completed at the end of α-relaxation region. (3) At lower temperature (500 K), the system shows glassy characteristics during the overall relaxation process. In addition, the melting temperature, glass transition temperature and diffusion coefficients of supercooled liquid iron are also computed.

  17. Geometry- and rate-dependent adhesive failure of micropatterned surfaces

    NARCIS (Netherlands)

    Bakker, H.; Lindstrom, S.B.; Sprakel, J.H.B.

    2012-01-01

    The dynamic nature of adhesive interface failure remains poorly understood, especially when the contact between the two surfaces is localized in microscopic points of adhesion. Here, we explore the dynamic failure of adhesive interfaces composed of a large number of micron-sized pillars against

  18. Dynamical Properties of a Diluted Dipolar-Interaction Heisenberg Spin Glass

    International Nuclear Information System (INIS)

    Zhang Kai-Cheng; Liu Yong; Chi Feng

    2014-01-01

    Up to now the chirality is seldom studied in the diluted spin glass although many investigations have been performed on the site-ordered Edwards—Anderson model. By simulation, we investigate the dynamical properties of both the spin-glass and the chiral-glass phases in a diluted dipolar system, which was manifested to have a spin-glass transition by recent numerical study. By scaling we find that both phases have the same aging behavior and closer aging parameter μ. Similarly, the domains grow in the same way and both phases have a closer barrier exponent Ψ. It means that both the spins and the chirality have the same dynamical properties and they may freeze at the same temperature. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Key indicator tools for shallow slope failure assessment using soil chemical property signatures and soil colour variables.

    Science.gov (United States)

    Othman, Rashidi; Hasni, Shah Irani; Baharuddin, Zainul Mukrim; Hashim, Khairusy Syakirin Has-Yun; Mahamod, Lukman Hakim

    2017-10-01

    Slope failure has become a major concern in Malaysia due to the rapid development and urbanisation in the country. It poses severe threats to any highway construction industry, residential areas, natural resources and tourism activities. The extent of damages that resulted from this catastrophe can be lessened if a long-term early warning system to predict landslide prone areas is implemented. Thus, this study aims to characterise the relationship between Oxisols properties and soil colour variables to be manipulated as key indicators to forecast shallow slope failure. The concentration of each soil property in slope soil was evaluated from two different localities that consist of 120 soil samples from stable and unstable slopes located along the North-South Highway (PLUS) and East-West Highway (LPT). Analysis of variance established highly significant difference (P shallow slope failure were high value of L*(62), low values of c* (20) and h* (66), low concentration of iron (53 mg kg -1 ) and aluminium oxide (37 mg kg -1 ), low soil TOC (0.5%), low CEC (3.6 cmol/kg), slightly acidic soil pH (4.9), high amount of sand fraction (68%) and low amount of clay fraction (20%).

  20. The construction and legitimation of workplace bullying in the public sector: insight into power dynamics and organisational failures in health and social care.

    Science.gov (United States)

    Hutchinson, Marie; Jackson, Debra

    2015-03-01

    Health-care and public sector institutions are high-risk settings for workplace bullying. Despite growing acknowledgement of the scale and consequence of this pervasive problem, there has been little critical examination of the institutional power dynamics that enable bullying. In the aftermath of large-scale failures in care standards in public sector healthcare institutions, which were characterised by managerial bullying, attention to the nexus between bullying, power and institutional failures is warranted. In this study, employing Foucault's framework of power, we illuminate bullying as a feature of structures of power and knowledge in public sector institutions. Our analysis draws upon the experiences of a large sample (n = 3345) of workers in Australian public sector agencies - the type with which most nurses in the public setting will be familiar. In foregrounding these power dynamics, we provide further insight into how cultures that are antithetical to institutional missions can arise and seek to broaden the debate on the dynamics of care failures within public sector institutions. Understanding the practices of power in public sector institutions, particularly in the context of ongoing reform, has important implications for nursing. © 2014 John Wiley & Sons Ltd.

  1. Can complexity decrease in congestive heart failure?

    Science.gov (United States)

    Mukherjee, Sayan; Palit, Sanjay Kumar; Banerjee, Santo; Ariffin, M. R. K.; Rondoni, Lamberto; Bhattacharya, D. K.

    2015-12-01

    The complexity of a signal can be measured by the Recurrence period density entropy (RPDE) from the reconstructed phase space. We have chosen a window based RPDE method for the classification of signals, as RPDE is an average entropic measure of the whole phase space. We have observed the changes in the complexity in cardiac signals of normal healthy person (NHP) and congestive heart failure patients (CHFP). The results show that the cardiac dynamics of a healthy subject is more complex and random compare to the same for a heart failure patient, whose dynamics is more deterministic. We have constructed a general threshold to distinguish the border line between a healthy and a congestive heart failure dynamics. The results may be useful for wide range for physiological and biomedical analysis.

  2. Segmented Symbolic Dynamics for Risk Stratification in Patients with Ischemic Heart Failure, Cardiovascular Engineering and Technology

    OpenAIRE

    Voss, Andreas; Schroeder, Rico; Caminal Magrans, Pere; Vallverdú Ferrer, Montserrat; Brunel, Helena; Cygankiewicz, I.; Vázquez, Rafael; Bayes de Luna, Antonio

    2010-01-01

    Chronic heart failure (CHF) is recognized as major and escalating public health problem. Approximately 69% of CHF patients suffer from cardiac death within 5 years after the initial diagnosis. Until now, no generally accepted ECG risk predictors in CHF patients are available. The objective of this study was to investigate the suitability of the new developed non-linear method segmented symbolic dynamics (SSD) for risk stratification in patients with ischemic cardiomyop...

  3. Study of physical properties of the dynamic filter

    International Nuclear Information System (INIS)

    Souza, Roberto Salomon

    2004-02-01

    This paper presents a characterization of the physical properties of the dynamic filter of Clinac 2300 CD linear accelerator of Varian Medical Systems, installed at the Cancer National Institute (INCA), Rio de Janeiro. The 'dynamic filter factors' were measured for the 6 and 15 MV photons, in squared and rectangular fields, and compared with factors furnished at the accelerator manual and used by the planning system, IN and OUT positions, at the maximum dose depths, 5 cm, 10 cm and 29 cm, for the 6 and 15 MV photons energies. The results demonstrated that the 'dynamic filter factors' does not changes with depth and the PDP for the opened field are the same for the fields with dynamic filters. Last but not least the dynamic filters were measured and compared with the nominal angles of the accelerator and the planning system, where some discrepancies were reported

  4. Tensile Mechanical Properties and Failure Modes of a Basalt Fiber/Epoxy Resin Composite Material

    OpenAIRE

    He, Jingjing; Shi, Junping; Cao, Xiaoshan; Hu, Yifeng

    2018-01-01

    Uniaxial tensile tests of basalt fiber/epoxy (BF/EP) composite material with four different fiber orientations were conducted under four different fiber volume fractions, and the variations of BF/EP composite material failure modes and tensile mechanical properties were analyzed. The results show that when the fiber volume fraction is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all decrease with increasing fiber orientation angle. When the ...

  5. Universal avalanche statistics and triggering close to failure in a mean-field model of rheological fracture

    Science.gov (United States)

    Baró, Jordi; Davidsen, Jörn

    2018-03-01

    The hypothesis of critical failure relates the presence of an ultimate stability point in the structural constitutive equation of materials to a divergence of characteristic scales in the microscopic dynamics responsible for deformation. Avalanche models involving critical failure have determined common universality classes for stick-slip processes and fracture. However, not all empirical failure processes exhibit the trademarks of criticality. The rheological properties of materials introduce dissipation, usually reproduced in conceptual models as a hardening of the coarse grained elements of the system. Here, we investigate the effects of transient hardening on (i) the activity rate and (ii) the statistical properties of avalanches. We find the explicit representation of transient hardening in the presence of generalized viscoelasticity and solve the corresponding mean-field model of fracture. In the quasistatic limit, the accelerated energy release is invariant with respect to rheology and the avalanche propagation can be reinterpreted in terms of a stochastic counting process. A single universality class can be defined from such analogy, and all statistical properties depend only on the distance to criticality. We also prove that interevent correlations emerge due to the hardening—even in the quasistatic limit—that can be interpreted as "aftershocks" and "foreshocks."

  6. Reactive molecular dynamics simulations of the mechanical properties of various phosphorene allotropes

    Science.gov (United States)

    Le, Minh-Quy

    2018-05-01

    Although various phosphorene allotropes have been theoretically predicted to be stable at 0 K, the mechanical properties and fracture mechanism at room temperature remain unclear for many of them. We investigate through reactive molecular dynamics simulations at room temperature the mechanical properties of phosphorene allotropes including: five sheets with hexagonal structures (β-, γ-, δ-, θ-, and α-phosphorene), one sheet with 4-8 membered rings (4-8-P), and two sheets with 5-7 membered rings. High, moderate and slight anisotropies in their mechanical properties are observed, depending on their crystal structures. Their Young’s moduli and tensile strength are approximately in the range from 7.3% through 25%, and from 8.6% through 22% of those of graphene, respectively. At the early stage of fracture, eye-shaped cracks are formed by local bond breaking and perpendicular to the tensile direction in hexagonal and 4-8-P sheets. Complete fractures take place with straight cracks in these hexagonal sheets under tension along the zigzag direction and under tension along the square edge direction in the 4-8-P sheet. Crack meandering and branching are observed during the tension of α-, β-, and γ-phosphorene along the armchair direction; and along the square diagonal direction in the 4-8-P sheet. Under uniaxial tension of two phosphorene sheets with 5-7 atom rings, 12 and 10 membered rings are formed by merging two neighbor heptagons, and a heptagon and its neighbor pentagon, respectively. These 12 and 10 membered rings coalesce subsequently, causing the failure of these two sheets. The results are of great importance in the design of these novel phosphorene allotropes.

  7. Dynamic 123I-BMIPP single-photon emission computed tomography in patients with congestive heart failure: effect of angiotensin II type-1 receptor blockade.

    Science.gov (United States)

    Takeishi, Yasuchika; Minamihaba, Osamu; Yamauchi, Sou; Arimoto, Takanori; Hirono, Osamu; Takahashi, Hiroki; Akiyama, Hideyuki; Miyamoto, Takuya; Nitobe, Joji; Nozaki, Naoki; Tachibana, Hidetada; Okuyama, Masaki; Fukui, Akio; Kubota, Isao; Okada, Akio; Takahashi, Kazuei

    2004-04-01

    Heart failure is a major and growing public health problem with a high mortality rate. Although recent studies have demonstrated that a variety of metabolic and/or neurohumoral factors are involved in the progression of this syndrome, the precise mechanisms responsible for this complex condition are poorly understood. To examine 123I-beta-methyl-iodophenylpentadecanoic acid (BMIPP) kinetics in the early phase soon after tracer injection in patients with congestive heart failure (CHF), we performed dynamic single-photon emission computed tomography (SPECT). Twenty-six patients with CHF and eight control subjects were examined. The consecutive 15 images of 2-min dynamic SPECT were acquired for 30 min after injection. In the early phase after injection (0-4 min), a significant amount of radioactivity existed in the blood pool. After 6 min, the myocardial 123I-BMIPP image was clear and thus the washout rate of 123I-BMIPP from 6 to 30 min was calculated. The washout rate of 123I-BMIPP from the myocardium was faster in patients with CHF than in the controls (8 +/- 4 vs. -5 +/- 3%, p acid metabolism may represent a new mechanism for beneficial effects of angiotensin II receptor blockade on cardiac function and survival in patients with heart failure. 123I-BMIPP washout in the early phase obtained from dynamic SPECT may be a new marker for evaluating the severity of heart failure and the effects of medical treatment.

  8. Computational and experimental studies of microvascular void features for passive-adaptation of structural panel dynamic properties

    Science.gov (United States)

    Sears, Nicholas C.; Harne, Ryan L.

    2018-01-01

    The performance, integrity, and safety of built-up structural systems are critical to their effective employment in diverse engineering applications. In conflict with these goals, harmonic or random excitations of structural panels may promote large amplitude oscillations that are particularly harmful when excitation energies are concentrated around natural frequencies. This contributes to fatigue concerns, performance degradation, and failure. While studies have considered active or passive damping treatments that adapt material characteristics and configurations for structural control, it remains to be understood how vibration properties of structural panels may be tailored via internal material transitions. Motivated to fill this knowledge gap, this research explores an idea of adapting the static and dynamic material distribution of panels through embedded microvascular channels and strategically placed voids that permit the internal movement of fluids within the panels for structural dynamic control. Finite element model and experimental investigations probe how redistributing material in the form of microscale voids influences the global vibration modes and natural frequencies of structural panels. Through parameter studies, the relationships among void shape, number, size, and location are quantified towards their contribution to the changing structural dynamics. For the panel composition and boundary conditions considered in this report, the findings reveal that transferring material between strategically placed voids may result in eigenfrequency changes as great as 10.0, 5.0, and 7.4% for the first, second, and third modes, respectively.

  9. Active Polymers — Emergent Conformational and Dynamical Properties: A Brief Review

    Science.gov (United States)

    Winkler, Roland G.; Elgeti, Jens; Gompper, Gerhard

    2017-10-01

    Active matter exhibits a wealth of emerging nonequilibrium behaviours. A paradigmatic example is the interior of cells, where active components, such as the cytoskeleton, are responsible for its structural organization and the dynamics of the various components. Of particular interest are the properties of polymers and filaments. The intimate coupling of thermal and active noise, hydrodynamic interactions, and polymer conformations implies the emergence of novel structural and dynamical features. In this article, we review recent theoretical and simulation developments and results for the structural and dynamical properties of polymers exposed to activity. Two- and three-dimensional filaments are considered propelled by different mechanisms such as active Brownian particles or hydrodynamically-coupled force dipoles.

  10. Effect of fiber directionality on the static and dynamic mechanical properties of 3D SiCf/SiC composites

    International Nuclear Information System (INIS)

    Hou, Zhenhua; Luo, Ruiying; Yang, Wei; Xu, Huaizhe; Han, Tao

    2016-01-01

    The static and dynamic mechanical properties of three-dimensional (3D) 4-directional and 3D 5-directional braided SiC f /SiC composites fabricated by polymer infiltration and pyrolysis (PIP) were investigated using static and dynamic bending tests, as well as microstructural characterization. X-ray diffraction revealed that polycarbosilane was converted into a matrix of crystalline β-SiC after PIP cycling. Test results indicated that the density, flexural strength, elastic modulus, fracture toughness, and storage modulus of 3D 5-directional SiC f /SiC composites were superior to those of 3D 4-directional braided SiC f /SiC composites; the former also showed a smaller internal friction than the latter. Results from Weibull statistical analysis indicated that the scale parameter σ 0 (736.9 MPa) and Weibull modulus m (21.7) of the 3D 5-directional specimen were higher than those of 3D 4-directional braided SiC f /SiC composites (629.6 MPa, 14.7). Both 3D braided composites demonstrated good toughness and avoided catastrophic brittle fractures under loading because of the effective crack energy dissipating mechanisms of crack deflection, interface debonding, and fiber pull-out. The internal friction and storage modulus of the 3D braided composites were sensitive to temperature. The cross angle of fiber placement in the preform and the direction of the applied force, as well as the pre-crack propagation remarkably influenced the static mechanical properties and failure behavior of the 3D braided SiC f /SiC composites. The dynamic mechanical properties of the 3D braided composites, including internal friction and storage modulus, were also considerably affected by fiber directionality in their preforms.

  11. Investigation on Failures of Composite Beam and Substrate Concrete due to Drying Shrinkage Property of Repair Materials

    Science.gov (United States)

    Pattnaik, Rashmi Ranjan

    2017-06-01

    A Finite Element Analysis (FEA) and an experimental study was conducted on composite beam of repair material and substrate concrete to investigate the failures of the composite beam due to drying shrinkage property of the repair materials. In FEA, the stress distribution in the composite beam due to two concentrate load and shrinkage of repair materials were investigated in addition to the deflected shape of the composite beam. The stress distributions and load deflection shapes of the finite element model were investigated to aid in analysis of the experimental findings. In the experimental findings, the mechanical properties such as compressive strength, split tensile strength, flexural strength, and load-deflection curves were studied in addition to slant shear bond strength, drying shrinkage and failure patterns of the composite beam specimens. Flexure test was conducted to simulate tensile stress at the interface between the repair material and substrate concrete. The results of FEA were used to analyze the experimental results. It was observed that the repair materials with low drying shrinkage are showing compatible failure in the flexure test of the composite beam and deform adequately in the load deflection curves. Also, the flexural strength of the composite beam with low drying shrinkage repair materials showed higher flexural strength as compared to the composite beams with higher drying shrinkage value of the repair materials even though the strength of those materials were more.

  12. Multifractal properties of ball milling dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Budroni, M. A., E-mail: mabudroni@uniss.it; Pilosu, V.; Rustici, M. [Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, Sassari 07100 (Italy); Delogu, F. [Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, Cagliari 09123 (Italy)

    2014-06-15

    This work focuses on the dynamics of a ball inside the reactor of a ball mill. We show that the distribution of collisions at the reactor walls exhibits multifractal properties in a wide region of the parameter space defining the geometrical characteristics of the reactor and the collision elasticity. This feature points to the presence of restricted self-organized zones of the reactor walls where the ball preferentially collides and the mechanical energy is mainly dissipated.

  13. Dynamic Properties of Impulse Measuring Systems

    DEFF Research Database (Denmark)

    Pedersen, A.; Lausen, P.

    1971-01-01

    After some basic considerations the dynamic properties of the measuring system are subjected to a general examination based on a number of responses, characteristic of the system. It is demonstrated that an impulse circuit has an internal impedance different from zero, for which reason...... the interaction between the generator and the measuring circuit is of paramount importance to the voltage across the test object. Based on the measured values the determination of the applied voltage is considered....

  14. Tunable dynamic response of magnetic gels: Impact of structural properties and magnetic fields

    Science.gov (United States)

    Tarama, Mitsusuke; Cremer, Peet; Borin, Dmitry Y.; Odenbach, Stefan; Löwen, Hartmut; Menzel, Andreas M.

    2014-10-01

    Ferrogels and magnetic elastomers feature mechanical properties that can be reversibly tuned from outside through magnetic fields. Here we concentrate on the question of how their dynamic response can be adjusted. The influence of three factors on the dynamic behavior is demonstrated using appropriate minimal models: first, the orientational memory imprinted into one class of the materials during their synthesis; second, the structural arrangement of the magnetic particles in the materials; and third, the strength of an external magnetic field. To illustrate the latter point, structural data are extracted from a real experimental sample and analyzed. Understanding how internal structural properties and external influences impact the dominant dynamical properties helps to design materials that optimize the requested behavior.

  15. Effect of microstructure on static and dynamic mechanical properties of high strength steels

    Science.gov (United States)

    Qu, Jinbo

    The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited

  16. Estimation of failure probabilities of linear dynamic systems by ...

    Indian Academy of Sciences (India)

    An iterative method for estimating the failure probability for certain time-variant reliability problems has been developed. In the paper, the focus is on the displacement response of a linear oscillator driven by white noise. Failure is then assumed to occur when the displacement response exceeds a critical threshold.

  17. Dynamical properties of dissipative XYZ Heisenberg lattices

    Science.gov (United States)

    Rota, R.; Minganti, F.; Biella, A.; Ciuti, C.

    2018-04-01

    We study dynamical properties of dissipative XYZ Heisenberg lattices where anisotropic spin-spin coupling competes with local incoherent spin flip processes. In particular, we explore a region of the parameter space where dissipative magnetic phase transitions for the steady state have been recently predicted by mean-field theories and exact numerical methods. We investigate the asymptotic decay rate towards the steady state both in 1D (up to the thermodynamical limit) and in finite-size 2D lattices, showing that critical dynamics does not occur in 1D, but it can emerge in 2D. We also analyze the behavior of individual homodyne quantum trajectories, which reveal the nature of the transition.

  18. Rate Dependent Multicontinuum Progressive Failure Analysis of Woven Fabric Composite Structures under Dynamic Impact

    Directory of Open Access Journals (Sweden)

    James Lua

    2004-01-01

    Full Text Available Marine composite materials typically exhibit significant rate dependent response characteristics when subjected to extreme dynamic loading conditions. In this work, a strain-rate dependent continuum damage model is incorporated with multicontinuum technology (MCT to predict damage and failure progression for composite material structures. MCT treats the constituents of a woven fabric composite as separate but linked continua, thereby allowing a designer to extract constituent stress/strain information in a structural analysis. The MCT algorithm and material damage model are numerically implemented with the explicit finite element code LS-DYNA3D via a user-defined material model (umat. The effects of the strain-rate hardening model are demonstrated through both simple single element analyses for woven fabric composites and also structural level impact simulations of a composite panel subjected to various impact conditions. Progressive damage at the constituent level is monitored throughout the loading. The results qualitatively illustrate the value of rate dependent material models for marine composite materials under extreme dynamic loading conditions.

  19. The effects of test environment and cyclic stretching on the failure properties of human patellar tendons

    International Nuclear Information System (INIS)

    Haut, R.C.; Powlison, A.C.

    1990-01-01

    There is a need to document the mechanical properties of patellar tendon allografts used for reconstructive surgery of the damaged anterior cruciate ligament, especially the effects of irradiation sterilization. The purpose of this study was to investigate the influences of in vitro test environment and low-level cyclic stretching prior to failure tests on nonirradiated and irradiated human graft tissues. Bilateral patellar tendons were split and each half processed accordingly. Some graft tissues were stretched cyclically at 2.5 mm deformation before failure. Experiments were performed in a 37 degrees C saline bath or with tissues moistened with a drip of the same. The irradiated grafts relaxed less and generated less slack length in the drip environment than the nonirradiated controls. Cyclic stretching did not alter failure characteristics of either graft tissue. While no significant differences in the tensile responses or failure characteristics were noted for irradiated and nonirradiated grafts in the drip, in the bath environment the nonirradiated tissues had greater strength and modulus. This resulted in there being a significant difference between irradiated and nonirradiated tissue responses in a heated saline bath environment. These experimental results exemplify the need to control in vitro test environments in the evaluation of various sterilization and preservation protocols for soft tissue allografts

  20. Hydration Control of the Mechanical and Dynamical Properties of Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Petridis, Loukas; O’Neill, Hugh M.; Johnsen, Mariah [Ripon College, Ripon, Wisconsin 54971, United States; Fan, Bingxin [Department; Schulz, Roland [Department; Mamontov, Eugene; Maranas, Janna [Department; Langan, Paul [Department; Smith, Jeremy C. [Department

    2014-10-13

    The mechanical and dynamical properties of cellulose, the most abundant biomolecule on earth, are essential for its function in plant cell walls and advanced biomaterials. Cellulose is almost always found in a hydrated state, and it is therefore important to understand how hydration influences its dynamics and mechanics. Here, the nanosecond-time scale dynamics of cellulose is characterized using dynamic neutron scattering experiments and molecular dynamics (MD) simulation. The experiments reveal that hydrated samples exhibit a higher average mean-square displacement above ~240 K. The MD simulation reveals that the fluctuations of the surface hydroxymethyl atoms determine the experimental temperature and hydration dependence. The increase in the conformational disorder of the surface hydroxymethyl groups with temperature follows the cellulose persistence length, suggesting a coupling between structural and mechanical properties of the biopolymer. In the MD simulation, 20% hydrated cellulose is more rigid than the dry form, due to more closely packed cellulose chains and water molecules bridging cellulose monomers with hydrogen bonds. This finding may have implications for understanding the origin of strength and rigidity of secondary plant cell walls. The detailed characterization obtained here describes how hydration-dependent increased fluctuations and hydroxymethyl disorder at the cellulose surface lead to enhancement of the rigidity of this important biomolecule.

  1. Validation of a laboratory method for evaluating dynamic properties of reconstructed equine racetrack surfaces.

    Directory of Open Access Journals (Sweden)

    Jacob J Setterbo

    Full Text Available Racetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior.To develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties.Track-testing device (TTD impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression.Most dynamic surface property setting differences (racetrack-laboratory were small relative to surface material type differences (dirt-synthetic. Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces.Laboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof impact (TTD.Dynamic impact properties of race surfaces

  2. Structural, dynamical, and electronic properties of amorphous silicon: An ab initio molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Car, R.; Parrinello, M.

    1988-01-18

    An amorphous silicon structure is obtained with a computer simulation based on a new molecular-dynamics technique in which the interatomic potential is derived from a parameter-free quantum mechanical method. Our results for the atomic structure, the phonon spectrum, and the electronic properties are in excellent agreement with experiment. In addition we study details of the microscopic dynamics which are not directly accessible to experiment. We find in particular that structural defects are associated with weak bonds. These may give rise to low-frequency vibrational modes.

  3. Dynamic rheological properties of viscoelastic magnetic fluids in uniform magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Niu Xiaodong; Ye Xiaojiang; Li Mingjun; Iwamoto, Yuhiro

    2012-01-01

    The dynamic rheological properties of viscoelastic magnetic fluids in externally applied uniform magnetic fields are investigated by a laboratory-made cone-plate rheometer in this study. In particular, the effects of the magnetic field on the viscoelastic properties (the complex dynamic modulus) of the viscoelastic magnetic fluids are studied. In the investigation, three viscoelastic magnetic fluids are made by mixing a magnetic fluid and a viscoelastic fluid with different mass ratios. As a supplementation to the experimental investigation, a theoretical analysis is also presented. The present study shows that the viscosity and elasticity of the viscoelastic magnetic fluids are significantly influenced by the magnetic field and the concentrations of the magnetic particles in the test fluids. Theoretical analysis qualitatively explains the present findings. - Highlights: ► The dynamic rheological properties of the viscoelastic magnetic fluids in uniform magnetic fields are investigated. ► Both the magnetic field strength and the concentration of the magnetic particles in the fluids have significant effects on the viscosity and elasticity of the viscoelastic magnetic fluids. ► Theoretical prediction and analysis qualitatively explains the present findings.

  4. Dynamical properties of lanthanum monochalcogenides

    International Nuclear Information System (INIS)

    Varshney, Dinesh; Rathore, V.; Kaurav, N.; Choudhary, K.K.; Singh, R.K.

    2006-01-01

    We have employed an effective interionic interaction potential approach to describe the dynamical properties of LaS. This potential consists of the long-range Coulomb and three-body interactions (TBI) and the short-range van der Waals (vdW) interaction and the Hafemeister and Flygare type overlap repulsion extended up to the second neighbor ions. The elastic constants obtained from the model have been used to calculate the phonon dispersion relation in the symmetry direction. The phonon dispersion curves of LaS compound. calculated from the present model, agree with the measured data. We also report the two-phonon density of states of LaS. (author)

  5. Failure modes of composite sandwich beams

    Directory of Open Access Journals (Sweden)

    Gdoutos E.

    2008-01-01

    Full Text Available A thorough investigation of failure behavior of composite sandwich beams under three-and four-point bending was undertaken. The beams were made of unidirectional carbon/epoxy facings and a PVC closed-cell foam core. The constituent materials were fully characterized and in the case of the foam core, failure envelopes were developed for general two-dimensional states of stress. Various failure modes including facing wrinkling, indentation failure and core failure were observed and compared with analytical predictions. The initiation, propagation and interaction of failure modes depend on the type of loading, constituent material properties and geometrical dimensions.

  6. Dynamical topology and statistical properties of spatiotemporal chaos.

    Science.gov (United States)

    Zhuang, Quntao; Gao, Xun; Ouyang, Qi; Wang, Hongli

    2012-12-01

    For spatiotemporal chaos described by partial differential equations, there are generally locations where the dynamical variable achieves its local extremum or where the time partial derivative of the variable vanishes instantaneously. To a large extent, the location and movement of these topologically special points determine the qualitative structure of the disordered states. We analyze numerically statistical properties of the topologically special points in one-dimensional spatiotemporal chaos. The probability distribution functions for the number of point, the lifespan, and the distance covered during their lifetime are obtained from numerical simulations. Mathematically, we establish a probabilistic model to describe the dynamics of these topologically special points. In spite of the different definitions in different spatiotemporal chaos, the dynamics of these special points can be described in a uniform approach.

  7. Noise effects on the health status in a dynamic failure model for living organisms

    Science.gov (United States)

    Kang, H.; Jo, J.; Choi, M. Y.; Choi, J.; Yoon, B.-G.

    2007-03-01

    We study internal and external noise effects on the healthy-unhealthy transition and related phenomena in a dynamic failure model for living organisms. It is found that internal noise makes the system weaker, leading to breakdown under smaller stress. The discontinuous healthy-unhealthy transition in a system with global load sharing below a critical point is naturally explained in terms of the bistability for the health status. External noise present in constant stress gives similar results; further, it induces resonance in response to periodic stress, regardless of load transfer. In the case of local load sharing, such periodic stress is revealed more hazardous than the constant stress.

  8. Dynamical properties and extremes of Northern Hemisphere climate fields over the past 60 years

    Science.gov (United States)

    Faranda, Davide; Messori, Gabriele; Alvarez-Castro, M. Carmen; Yiou, Pascal

    2017-12-01

    Atmospheric dynamics are described by a set of partial differential equations yielding an infinite-dimensional phase space. However, the actual trajectories followed by the system appear to be constrained to a finite-dimensional phase space, i.e. a strange attractor. The dynamical properties of this attractor are difficult to determine due to the complex nature of atmospheric motions. A first step to simplify the problem is to focus on observables which affect - or are linked to phenomena which affect - human welfare and activities, such as sea-level pressure, 2 m temperature, and precipitation frequency. We make use of recent advances in dynamical systems theory to estimate two instantaneous dynamical properties of the above fields for the Northern Hemisphere: local dimension and persistence. We then use these metrics to characterize the seasonality of the different fields and their interplay. We further analyse the large-scale anomaly patterns corresponding to phase-space extremes - namely time steps at which the fields display extremes in their instantaneous dynamical properties. The analysis is based on the NCEP/NCAR reanalysis data, over the period 1948-2013. The results show that (i) despite the high dimensionality of atmospheric dynamics, the Northern Hemisphere sea-level pressure and temperature fields can on average be described by roughly 20 degrees of freedom; (ii) the precipitation field has a higher dimensionality; and (iii) the seasonal forcing modulates the variability of the dynamical indicators and affects the occurrence of phase-space extremes. We further identify a number of robust correlations between the dynamical properties of the different variables.

  9. The Influence of Forming Directions and Strain Rate on Dynamic Shear Properties of Aerial Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Ying Meng

    2018-03-01

    Full Text Available Dynamic shear properties under high strain rate are an important basis for studying the dynamic mechanical properties and microscopic mechanisms of materials. Dynamic impact shear tests of aerial aluminum alloy 7050-T7451 in rolling direction (RD, transverse direction (TD and normal direction (ND were performed at a range of strain rates from 2.5 × 104 s−1 to 4.5 × 104 s−1 by High Split Hopkinson Pressure Bar (SHPB. The influence of different forming directions and strain rates on the dynamic shear properties of material and the microstructure evolution under dynamic shear were emphatically analyzed. The results showed that aluminum alloy 7050-T7451 had a certain strain rate sensitivity and positive strain rate strengthening effect, and also the material had no obvious strain strengthening effect. Different forming directions had a great influence on dynamic shear properties. The shear stress in ND was the largest, followed by that in RD, and the lowest was that in TD. The microstructure observation showed that the size and orientation of the grain structure were different in three directions, which led to the preferred orientation of the material. All of those were the main reasons for the difference of dynamic shear properties of the material.

  10. Mechanical behavior and dynamic failure of high-strength ultrafine grained tungsten under uniaxial compression

    International Nuclear Information System (INIS)

    Wei, Q.; Jiao, T.; Ramesh, K.T.; Ma, E.; Kecskes, L.J.; Magness, L.; Dowding, R.; Kazykhanov, V.U.; Valiev, R.Z.

    2006-01-01

    We have systematically investigated the quasi-static and dynamic mechanical behavior (especially dynamic failure) of ultra-fine grained (UFG) tungsten (W) under uniaxial compression. The starting material is of commercial purity and large grain size. We utilized severe plastic deformation to achieve the ultrafine microstructure characterized by grains and subgrains with sizes of ∼500 nm, as identified by transmission electron microscopy. Results of quasi-static compression show that the UFG W behaves in an elastic-nearly perfect plastic manner (i.e., vanishing strain hardening), with its flow stress approaching 2 GPa, close to twice that of conventional coarse grain W. Post-mortem examinations of the quasi-statically loaded samples show no evidence of cracking, in sharp contrast to the behavior of conventional W (where axial cracking is usually observed). Under uniaxial dynamic compression (strain rate ∼10 3 s -1 ), the true stress-true strain curves of the UFG W exhibit significant flow softening, and the peak stress is ∼3 GPa. Furthermore, the strain rate sensitivity of the UFG W is reduced to half the value of the conventional W. Both in situ high-speed photography and post-mortem examinations reveal shear localization and as a consequence, cracking of the UFG W under dynamic uniaxial compression. These observations are consistent with recent observations on other body-centered cubic metals with nanocrystalline or ultrafine microstructures. The experimental results are discussed using existing models for adiabatic shear localization in metals

  11. Comprehensive risk assessment method of catastrophic accident based on complex network properties

    Science.gov (United States)

    Cui, Zhen; Pang, Jun; Shen, Xiaohong

    2017-09-01

    On the macro level, the structural properties of the network and the electrical characteristics of the micro components determine the risk of cascading failures. And the cascading failures, as a process with dynamic development, not only the direct risk but also potential risk should be considered. In this paper, comprehensively considered the direct risk and potential risk of failures based on uncertain risk analysis theory and connection number theory, quantified uncertain correlation by the node degree and node clustering coefficient, then established a comprehensive risk indicator of failure. The proposed method has been proved by simulation on the actual power grid. Modeling a network according to the actual power grid, and verified the rationality of the proposed method.

  12. Dynamical properties of unconventional magnetic systems

    International Nuclear Information System (INIS)

    Helgesen, G.

    1997-05-01

    The Advanced Study Institute addressed the current experimental and theoretical knowledge of the dynamical properties of unconventional magnetic systems including low-dimensional and mesoscopic magnetism, unconventional ground state, quantum magnets and soft matter. The main approach in this Advanced Study Institute was to obtain basic understanding of co-operative phenomena, fluctuations and excitations in the wide range unconventional magnetic systems now being fabricated or envisioned. The report contains abstracts for lectures, invited seminars and posters, together with a list of the 95 participants from 24 countries with e-mail addresses

  13. Numerical simulation of mechanisms of deformation,failure and energy dissipation in porous rock media subjected to wave stresses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The pore characteristics,mineral compositions,physical and mechanical properties of the subarkose sandstones were acquired by means of CT scan,X-ray diffraction and physical tests.A few physical models possessing the same pore characteristics and matrix properties but different porosities compared to the natural sandstones were developed.The 3D finite element models of the rock media with varied porosities were established based on the CT image processing of the physical models and the MIMICS software platform.The failure processes of the porous rock media loaded by the split Hopkinson pressure bar(SHPB) were simulated by satisfying the elastic wave propagation theory.The dynamic responses,stress transition,deformation and failure mechanisms of the porous rock media subjected to the wave stresses were analyzed.It is shown that an explicit and quantitative analysis of the stress,strain and deformation and failure mechanisms of porous rocks under the wave stresses can be achieved by using the developed 3D finite element models.With applied wave stresses of certain amplitude and velocity,no evident pore deformation was observed for the rock media with a porosity less than 15%.The deformation is dominantly the combination of microplasticity(shear strain),cracking(tensile strain) of matrix and coalescence of the cracked regions around pores.Shear stresses lead to microplasticity,while tensile stresses result in cracking of the matrix.Cracking and coalescence of the matrix elements in the neighborhood of pores resulted from the high transverse tensile stress or tensile strain which exceeded the threshold values.The simulation results of stress wave propagation,deformation and failure mechanisms and energy dissipation in porous rock media were in good agreement with the physical tests.The present study provides a reference for analyzing the intrinsic mechanisms of the complex dynamic response,stress transit mode,deformation and failure mechanisms and the disaster

  14. A Molecular Dynamics Study of the Structural and Dynamical Properties of Putative Arsenic Substituted Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Ratna Juwita

    2013-04-01

    Full Text Available Cell membranes are composed mainly of phospholipids which are in turn, composed of five major chemical elements: carbon, hydrogen, nitrogen, oxygen, and phosphorus. Recent studies have suggested the possibility of sustaining life if the phosphorus is substituted by arsenic. Although this issue is still controversial, it is of interest to investigate the properties of arsenated-lipid bilayers to evaluate this possibility. In this study, we simulated arsenated-lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-arsenocholine (POAC, lipid bilayers using all-atom molecular dynamics to understand basic structural and dynamical properties, in particular, the differences from analogous 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, (POPC lipid bilayers. Our simulations showed that POAC lipid bilayers have distinct structural and dynamical properties from those of native POPC lipid bilayers. Relative to POPC lipid bilayers, POAC lipid bilayers have a more compact structure with smaller lateral areas and greater order. The compact structure of POAC lipid bilayers is due to the fact that more inter-lipid salt bridges are formed with arsenate-choline compared to the phosphate-choline of POPC lipid bilayers. These inter-lipid salt bridges bind POAC lipids together and also slow down the head group rotation and lateral diffusion of POAC lipids. Thus, it would be anticipated that POAC and POPC lipid bilayers would have different biological implications.

  15. Dynamical properties and extremes of Northern Hemisphere climate fields over the past 60 years

    Directory of Open Access Journals (Sweden)

    D. Faranda

    2017-12-01

    Full Text Available Atmospheric dynamics are described by a set of partial differential equations yielding an infinite-dimensional phase space. However, the actual trajectories followed by the system appear to be constrained to a finite-dimensional phase space, i.e. a strange attractor. The dynamical properties of this attractor are difficult to determine due to the complex nature of atmospheric motions. A first step to simplify the problem is to focus on observables which affect – or are linked to phenomena which affect – human welfare and activities, such as sea-level pressure, 2 m temperature, and precipitation frequency. We make use of recent advances in dynamical systems theory to estimate two instantaneous dynamical properties of the above fields for the Northern Hemisphere: local dimension and persistence. We then use these metrics to characterize the seasonality of the different fields and their interplay. We further analyse the large-scale anomaly patterns corresponding to phase-space extremes – namely time steps at which the fields display extremes in their instantaneous dynamical properties. The analysis is based on the NCEP/NCAR reanalysis data, over the period 1948–2013. The results show that (i despite the high dimensionality of atmospheric dynamics, the Northern Hemisphere sea-level pressure and temperature fields can on average be described by roughly 20 degrees of freedom; (ii the precipitation field has a higher dimensionality; and (iii the seasonal forcing modulates the variability of the dynamical indicators and affects the occurrence of phase-space extremes. We further identify a number of robust correlations between the dynamical properties of the different variables.

  16. Aspects of simulating the dynamic compaction of a granular ceramic

    International Nuclear Information System (INIS)

    Borg, John P; Vogler, Tracy J

    2009-01-01

    Mesoscale hydrodynamic calculations have been conducted in order to gain further insight into the dynamic compaction characteristics of granular ceramics. With a mesoscale approach each individual grain, as well as the porosity, is modeled explicitly; the bulk behavior of the porous material can be resolved as a result. From these calculations bulk material characteristics such as shock speed, stress and density have been obtained and compared with experimental results. A parametric study has been conducted in order to explore the variation and sensitivity of the computationally derived dynamic response characteristics to micro-scale material properties such as Poisson's ratio, dynamic yield and tensile failure strength; macro-scale parameters such as volume fraction, particle morphology and size distribution were explored as well. The results indicate that the baseline bulk Hugoniot response under-predicts the experimentally measured response. These results are sensitive to the volume fraction, dynamic yield strength and particle arrangement, somewhat sensitive to failure strength and insensitive to the micro-scale Hugoniot and grain morphology. A discussion as to the shortcomings in the mesoscale modeling technique, as well as future considerations, is included

  17. Dynamic high-temperature characterization of an iridium alloy in tension

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Jin, Helena [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bignell, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, E. P. [Ruhr Univ., Bochum (Germany)

    2015-09-01

    Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension bar techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.

  18. Dynamic properties of human incudostapedial joint-Experimental measurement and finite element modeling.

    Science.gov (United States)

    Jiang, Shangyuan; Gan, Rong Z

    2018-04-01

    The incudostapedial joint (ISJ) is a synovial joint connecting the incus and stapes in the middle ear. Mechanical properties of the ISJ directly affect sound transmission from the tympanic membrane to the cochlea. However, how ISJ properties change with frequency has not been investigated. In this paper, we report the dynamic properties of the human ISJ measured in eight samples using a dynamic mechanical analyzer (DMA) for frequencies from 1 to 80 Hz at three temperatures of 5, 25 and 37 °C. The frequency-temperature superposition (FTS) principle was used to extrapolate the results to 8 kHz. The complex modulus of ISJ was measured with a mean storage modulus of 1.14 MPa at 1 Hz that increased to 3.01 MPa at 8 kHz, and a loss modulus that increased from 0.07 to 0.47 MPa. A 3-dimensional finite element (FE) model consisting of the articular cartilage, joint capsule and synovial fluid was then constructed to derive mechanical properties of ISJ components by matching the model results to experimental data. Modeling results showed that mechanical properties of the joint capsule and synovial fluid affected the dynamic behavior of the joint. This study contributes to a better understanding of the structure-function relationship of the ISJ for sound transmission. Copyright © 2018. Published by Elsevier Ltd.

  19. Dynamic fracture of high-strength metallic alloys: experiments and modelling

    OpenAIRE

    Pérez Martín, María Jesús

    2017-01-01

    Fracture toughness is a property which describes the ability of a material containing a crack to resist fracture. Such a characteristic is one of the most important properties for describing the failure criteria of materials and may be a function of loading rate and temperature. Therefore, in the case of materials that may be subjected to dynamic loads or extreme conditions, it is crucial to be aware of the evolution of their fracture behaviour with such variables. The main objective of t...

  20. Tuning critical failure with viscoelasticity: How aftershocks inhibit criticality in an analytical mean field model of fracture.

    Science.gov (United States)

    Baro Urbea, J.; Davidsen, J.

    2017-12-01

    The hypothesis of critical failure relates the presence of an ultimate stability point in the structural constitutive equation of materials to a divergence of characteristic scales in the microscopic dynamics responsible of deformation. Avalanche models involving critical failure have determined universality classes in different systems: from slip events in crystalline and amorphous materials to the jamming of granular media or the fracture of brittle materials. However, not all empirical failure processes exhibit the trademarks of critical failure. As an example, the statistical properties of ultrasonic acoustic events recorded during the failure of porous brittle materials are stationary, except for variations in the activity rate that can be interpreted in terms of aftershock and foreshock activity (J. Baró et al., PRL 2013).The rheological properties of materials introduce dissipation, usually reproduced in atomistic models as a hardening of the coarse-grained elements of the system. If the hardening is associated to a relaxation process the same mechanism is able to generate temporal correlations. We report the analytic solution of a mean field fracture model exemplifying how criticality and temporal correlations are tuned by transient hardening. We provide a physical meaning to the conceptual model by deriving the constitutive equation from the explicit representation of the transient hardening in terms of a generalized viscoelasticity model. The rate of 'aftershocks' is controlled by the temporal evolution of the viscoelastic creep. At the quasistatic limit, the moment release is invariant to rheology. Therefore, the lack of criticality is explained by the increase of the activity rate close to failure, i.e. 'foreshocks'. Finally, the avalanche propagation can be reinterpreted as a pure mathematical problem in terms of a stochastic counting process. The statistical properties depend only on the distance to a critical point, which is universal for any

  1. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure.

    Science.gov (United States)

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor

    2014-03-15

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P renal failure by facilitating pressure transmission to the microvasculature.

  2. Effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture.

    Science.gov (United States)

    Jain, R; Podworny, N; Hearn, T; Anderson, G I; Schemitsch, E H

    1997-10-01

    Comparison of the effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture. Randomized, prospective. Orthopaedic research laboratory. Ten large (greater than twenty-five kilogram) adult dogs. A short, midshaft spiral tibial fracture was created, followed by lag screw fixation and neutralization with an eight-hole, 3.5-millimeter, low-contact dynamic compression plate (LCDCP) made of either 316L stainless steel (n = five) or commercially pure titanium (n = five). After surgery, animals were kept with unrestricted weight-bearing in individual stalls for ten weeks. Cortical bone blood flow was assessed by laser Doppler flowmetry using a standard metalshafted probe (Periflux Pf303, Perimed, Jarfalla, Sweden) applied through holes in the custom-made LCDCPs at five sites. Bone blood flow was determined at four times: (a) prefracture, (b) postfracture, (c) postplating, and (d) ten weeks postplating. After the dogs were killed, the implant was removed and both the treated tibia and contralateral tibia were tested for bending stiffness and load to failure. Fracture creation decreased cortical perfusion in both groups at the fracture site (p = 0.02). The application of neither stainless steel nor titanium LCDCPs further decreased cortical bone blood flow after fracture creation. However, at ten weeks postplating, cortical perfusion significantly increased compared with acute postplating levels in the stainless steel (p = 0.003) and titanium (p = 0.001) groups. Cortical bone blood flow ten weeks postplating was not significantly different between the titanium group and the stainless steel group. Biomechanical tests performed on the tibiae with the plates removed did not reveal any differences in bending stiffness nor load required to cause failure between the two groups. Both titanium and stainless steel LCDCPs were equally effective in allowing revascularization, and

  3. Investigating the Intersession Reliability of Dynamic Brain-State Properties.

    Science.gov (United States)

    Smith, Derek M; Zhao, Yrian; Keilholz, Shella D; Schumacher, Eric H

    2018-06-01

    Dynamic functional connectivity metrics have much to offer to the neuroscience of individual differences of cognition. Yet, despite the recent expansion in dynamic connectivity research, limited resources have been devoted to the study of the reliability of these connectivity measures. To address this, resting-state functional magnetic resonance imaging data from 100 Human Connectome Project subjects were compared across 2 scan days. Brain states (i.e., patterns of coactivity across regions) were identified by classifying each time frame using k means clustering. This was done with and without global signal regression (GSR). Multiple gauges of reliability indicated consistency in the brain-state properties across days and GSR attenuated the reliability of the brain states. Changes in the brain-state properties across the course of the scan were investigated as well. The results demonstrate that summary metrics describing the clustering of individual time frames have adequate test/retest reliability, and thus, these patterns of brain activation may hold promise for individual-difference research.

  4. Static structure, microscopic dynamics and electronic properties of the liquid Bi–Li alloy. An ab initio molecular dynamics study

    International Nuclear Information System (INIS)

    Souto, J; Alemany, M M G; Gallego, L J; González, L E; González, D J

    2013-01-01

    We report an ab initio molecular dynamics study of the static, dynamic and electronic properties of the liquid Bi x Li 1−x alloy, which is a complex binary system with a marked tendency to heterocoordination. The calculated total static structure factors are in good agreement with the available experimental data. The partial dynamic structure factors exhibit side peaks indicative of propagating density fluctuations, and for some concentrations we have found a density fluctuation mode with phase velocity greater than the hydrodynamic sound velocity. We have also evaluated other dynamical properties such as the diffusion coefficients, the shear viscosity and the adiabatic sound velocity. The electronic density of states show that the liquid Bi x Li 1−x alloy has a metallic character, although with strong deviations from the free-electron parabolic curve. The results reported improve the understanding of binary liquid alloys with both fast and slow propagating collective modes. (paper)

  5. Dynamic simulation of steam generator failures

    Energy Technology Data Exchange (ETDEWEB)

    Meister, G [Institut fuer Nukleare Sicherheitsforschung, Kernforschungsanlage Juelich GmbH, Juelich (Germany)

    1988-07-01

    A computer program will be described which is capable to simulate severe transients in a gas heated steam generator. Such transients may arise in the safety analysis of accidents resulting from failures in the heat removal system of an HTGR power plant. Important failure modes which have to be considered are ruptures of one or more steam generator tubes leading to water or steam ejection into the primary system or anomalous operating conditions which my cause damage due to excessive thermal stress. Examples are the complete dryout as a consequence of feedwater interrupt in connection with continuing gas heating and the reflooding of the secondary channel with cold feedwater after dryout. The steam generator program which is capable to simulate accidents of this type is written as a module which can be implemented into a program system fur the simulation of the total heat rejection system. It based on an advanced mathematical model for the two phase flow taking deviations from thermal equilibrium into account. Mass, energy and momentum balances for the primary and secondary fluid and the heat diffusion equations for the heat exchanging wall form a system of coupled differential equations which is solved numerically by an algorithm which is stiffly stable and suppresses effectively oscillations of numerical origin. Results of the simulation of transients of the type mentioned above will be presented and discussed. (author)

  6. Dynamic simulation of steam generator failures

    International Nuclear Information System (INIS)

    Meister, G.

    1988-01-01

    A computer program will be described which is capable to simulate severe transients in a gas heated steam generator. Such transients may arise in the safety analysis of accidents resulting from failures in the heat removal system of an HTGR power plant. Important failure modes which have to be considered are ruptures of one or more steam generator tubes leading to water or steam ejection into the primary system or anomalous operating conditions which my cause damage due to excessive thermal stress. Examples are the complete dryout as a consequence of feedwater interrupt in connection with continuing gas heating and the reflooding of the secondary channel with cold feedwater after dryout. The steam generator program which is capable to simulate accidents of this type is written as a module which can be implemented into a program system fur the simulation of the total heat rejection system. It based on an advanced mathematical model for the two phase flow taking deviations from thermal equilibrium into account. Mass, energy and momentum balances for the primary and secondary fluid and the heat diffusion equations for the heat exchanging wall form a system of coupled differential equations which is solved numerically by an algorithm which is stiffly stable and suppresses effectively oscillations of numerical origin. Results of the simulation of transients of the type mentioned above will be presented and discussed. (author)

  7. NMR Pore Structure and Dynamic Characteristics of Sandstone Caused by Ambient Freeze-Thaw Action

    Directory of Open Access Journals (Sweden)

    Bo Ke

    2017-01-01

    Full Text Available For a deeper understanding of the freeze-thaw weathering effects on the microstructure evolution and deterioration of dynamic mechanical properties of rock, the present paper conducted the nuclear magnetic resonance (NMR tests and impact loading experiments on sandstone under different freeze-thaw cycles. The results of NMR test show that, with the increase of freeze-thaw cycles, the pores expand and pores size tends to be uniform. The experimental results show that the stress-strain curves all go through four stages, namely, densification, elasticity, yielding, and failure. The densification curve is shorter, and the slope of elasticity curve decreases as the freeze-thaw cycles increase. With increasing freeze-thaw cycles, the dynamic peak stress decreases and energy absorption of sandstone increases. The dynamic failure form is an axial splitting failure, and the fragments increase and the size diminishes with increasing freeze-thaw cycles. The higher the porosity is, the more severe the degradation of dynamic characteristics is. An increase model for the relationships between the porosity or energy absorption and freeze-thaw cycles number was built to reveal the increasing trend with the freeze-thaw cycles increase; meanwhile, a decay model was built to predict the dynamic compressive strength degradation of rock after repeated freeze-thaw cycles.

  8. Tensile Mechanical Properties and Dynamic Collagen Fiber Re-Alignment of the Murine Cervix are Dramatically Altered Throughout Pregnancy.

    Science.gov (United States)

    Barnum, Carrie E; Fey, Jennifer L; Weiss, Stephanie N; Barila, Guillermo; Brown, Amy G; Connizzo, Brianne K; Shetye, Snehal S; Elovitz, Michal A; Soslowsky, Louis J

    2017-06-01

    The cervix is a unique organ able to dramatically change its shape and function by serving as a physical barrier for the growing fetus and then undergoing dramatic dilation allowing for delivery of a term infant. As a result, the cervix endures changing mechanical forces from the growing fetus. There is an emerging concept that the cervix may change or remodel "early" in many cases of spontaneous preterm birth (sPTB). However, the mechanical role of the cervix in both normal and preterm birth remains unclear. Therefore, the primary objective of this study was to determine the mechanical and structural responses of murine cervical tissue throughout a normal gestational time course. In this study, both tissue structural and material properties were determined via a quasi-static tensile load-to-failure test, while simultaneously obtaining dynamic collagen fiber re-alignment via cross-polarization imaging. This study demonstrated that the majority of the mechanical properties evaluated decreased at midgestation and not just at term, while collagen fiber re-alignment occurred earlier in the loading curve for cervices at term. This suggests that although structural changes in the cervix occur throughout gestation, the differences in material properties function in combination with collagen fiber re-alignment as mechanical precursors to regulate term gestation. This work lays a foundation for investigating cervical biomechanics and the role of the cervix in preterm birth.

  9. Molecular dynamics study on the relaxation properties of bilayered ...

    Indian Academy of Sciences (India)

    2017-08-31

    Aug 31, 2017 ... Abstract. The influence of defects on the relaxation properties of bilayered graphene (BLG) has been studied by molecular dynamics simulation in nanometre sizes. Type and position of defects were taken into account in the calculated model. The results show that great changes begin to occur in the ...

  10. Effect of Substrates on the Dynamic Properties of Inkjet-Printed Ag Thin Films

    Directory of Open Access Journals (Sweden)

    Deokman Kim

    2018-01-01

    Full Text Available The dynamic properties of inkjet-printed Ag thin films on flexible substrates were measured using flexural wave propagation. The Ag nanoparticle suspension was inkjet-printed on polyimide (PI, silicon wafer, and glass. The effects of flexible substrates on the dynamic properties of the films were investigated. Beam-shaped Ag-printed substrates were fabricated by pico-second laser pulse cutting. The wave approach was presented to analyze the vibrations of the thin film on the substrates. The Young’s modulus and loss factor of the Ag thin films with the substrates were represented by the combined bending stiffness of the bilayer beam. The vibration response of the base-excited cantilever was measured using an accelerometer and laser Doppler vibrometer (LDV. Vibration transfers were analyzed to obtain dynamic characteristics of the Ag-printed bilayer beam. The substrate affects the reduction of the Ag thin film thickness during the sintering process and surface roughness of the film. The proposed method based on the wave approach allows measurement of the dynamic properties regardless of the ratio of the modulus between the thin film and substrate.

  11. Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    Thermal barrier coatings have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, the issue of coating durability under high temperature cyclic conditions is still of major concern. The coating failure is closely related to thermal stresses and oxidation in the coating systems. Coating shrinkage cracking resulting from ceramic sintering and creep at high temperatures can further accelerate the coating failure process. The purpose of this paper is to address critical issues such as ceramic sintering and creep, thermal fatigue and their relevance to coating life prediction. Novel test approaches have been established to obtain critical thermophysical and thermomechanical properties of the coating systems under near-realistic temperature and stress gradients encountered in advanced engine systems. Emphasis is placed on the dynamic changes of the coating thermal conductivity and elastic modulus, fatigue and creep interactions, and resulting failure mechanisms during the simulated engine tests. Detailed experimental and modeling results describing processes occurring in the thermal barrier coating systems provide a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  12. Peri-dynamics

    International Nuclear Information System (INIS)

    Littlewood, D.

    2015-01-01

    Peri-dynamics, a nonlocal extension of continuum mechanics, is a natural framework for capturing constitutive response and modelling pervasive material failure and fracture. Unlike classical approaches incorporating partial derivatives, the peri-dynamic governing equations utilise integral expressions that remain valid in the presence of discontinuities such as cracks. The mathematical theory of peri-dynamics unifies the mechanics of continuous media, cracks, and discrete particles. The result is a consistent framework for capturing a wide range of constitutive responses, including inelasticity, in combination with robust material failure laws. Peri-dynamics has been implemented in a number of computational simulation codes, including the open source code Peridigm and the Sierra/SolidMechanics analysis code at Sandia National Laboratories. (author)

  13. A zipper network model of the failure mechanics of extracellular matrices.

    Science.gov (United States)

    Ritter, Michael C; Jesudason, Rajiv; Majumdar, Arnab; Stamenovic, Dimitrije; Buczek-Thomas, Jo Ann; Stone, Phillip J; Nugent, Matthew A; Suki, Béla

    2009-01-27

    Mechanical failure of soft tissues is characteristic of life-threatening diseases, including capillary stress failure, pulmonary emphysema, and vessel wall aneurysms. Failure occurs when mechanical forces are sufficiently high to rupture the enzymatically weakened extracellular matrix (ECM). Elastin, an important structural ECM protein, is known to stretch beyond 200% strain before failing. However, ECM constructs and native vessel walls composed primarily of elastin and proteoglycans (PGs) have been found to fail at much lower strains. In this study, we hypothesized that PGs significantly contribute to tissue failure. To test this, we developed a zipper network model (ZNM), in which springs representing elastin are organized into long wavy fibers in a zipper-like formation and placed within a network of springs mimicking PGs. Elastin and PG springs possessed distinct mechanical and failure properties. Simulations using the ZNM showed that the failure of PGs alone reduces the global failure strain of the ECM well below that of elastin, and hence, digestion of elastin does not influence the failure strain. Network analysis suggested that whereas PGs drive the failure process and define the failure strain, elastin determines the peak and failure stresses. Predictions of the ZNM were experimentally confirmed by measuring the failure properties of engineered elastin-rich ECM constructs before and after digestion with trypsin, which cleaves the core protein of PGs without affecting elastin. This study reveals a role for PGs in the failure properties of engineered and native ECM with implications for the design of engineered tissues.

  14. Studies of the dynamic properties of materials using neutron scattering

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Windsor, C.G.

    1985-09-01

    The dynamic properties of materials using the neutron scattering technique is reviewed. The basic properties of both nuclear scattering and magnetic scattering are summarized. The experimental methods used in neutron scattering are described, along with access to neutron sources, and neutron inelastic instruments. Applied materials science using inelastic neutron scattering; rotational tunnelling of a methyl group; molecular diffusion from quasi-elastic scattering; and the diffusion of colloidal particles and poly-nuclear complexes; are also briefly discussed. (U.K.)

  15. Fundamental and dynamic properties of intermixed InGaAs-InGaAsP quantum-well lasers

    KAUST Repository

    Chen, Cheng

    2010-09-01

    The fundamental and dynamic properties of InGaAs-InGaAsP lasers, where emission wavelengths were blue-shifted by quantum-well intermixing through ion implantation and annealing, were investigated to assess possible degradation by intermixing. It was found that the fundamental properties such as threshold current and slope efficiency were largely unchanged even after as much as 120 nm of wavelength shift. Meanwhile, the dynamic properties such as modulation efficiency and K factor were degraded after just a moderate degree of intermixing, but the degradation was not worsened by further intermixing. Provided the finite degradation of dynamic properties is tolerable, the present intermixing technique will be very useful for the fabrication of photonic integrated circuits. © 2006 IEEE.

  16. Bicelles and Other Membrane Mimics: Comparison of Structure, Properties, and Dynamics from MD Simulations

    DEFF Research Database (Denmark)

    Vestergaard, Mikkel; Kraft, Johan Frederik; Vosegaard, Thomas

    2015-01-01

    present molecular dynamics simulations to elucidate structural and dynamic properties of small bicelles and compare them to a large alignable bicelle, a small nanodisc, and a lipid bilayer. Properties such as lipid packing and properties related to embedding both an α-helical peptide and a transmembrane...... protein are investigated. The small bicelles are found to be very dynamic and mainly assume a prolate shape substantiating that small bicelles cannot be regarded as well-defined disclike structures. However, addition of a peptide results in an increased tendency to form disc-shaped bicelles. The small......The increased interest in studying membrane proteins has led to the development of new membrane mimics such as bicelles and nanodiscs. However, only limited knowledge is available of how these membrane mimics are affected by embedded proteins and how well they mimic a lipid bilayer. Herein, we...

  17. Dynamic Evaluation of Acrylonitrile Butadiene Styrene Subjected to High-Strain-Rate Compressive Loads

    Science.gov (United States)

    2014-12-01

    Riddick, J. C.; Hall, A. J.; Haile, M. A.; Von Wahlde, R.; Cole, D. P.; Biggs S. J. Effect of Manufacturing Parameters on Failure in Acrylonitrile...for Tensile Properties of Plastics Annu. Book ASTM Stand. 2004, 1–15. 17. Zukas, J. High Velocity Impact Dynamics; John Wiley & Sons, Inc.: New York

  18. Dynamic properties of epidemic spreading on finite size complex networks

    Science.gov (United States)

    Li, Ying; Liu, Yang; Shan, Xiu-Ming; Ren, Yong; Jiao, Jian; Qiu, Ben

    2005-11-01

    The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptible-infected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.

  19. Margins Associated with Loss of Assured Safety for Systems with Multiple Time-Dependent Failure Modes.

    Energy Technology Data Exchange (ETDEWEB)

    Helton, Jon C. [Arizona State Univ., Tempe, AZ (United States); Brooks, Dusty Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sallaberry, Cedric Jean-Marie. [Engineering Mechanics Corp. of Columbus, OH (United States)

    2018-02-01

    Representations for margins associated with loss of assured safety (LOAS) for weak link (WL)/strong link (SL) systems involving multiple time-dependent failure modes are developed. The following topics are described: (i) defining properties for WLs and SLs, (ii) background on cumulative distribution functions (CDFs) for link failure time, link property value at link failure, and time at which LOAS occurs, (iii) CDFs for failure time margins defined by (time at which SL system fails) – (time at which WL system fails), (iv) CDFs for SL system property values at LOAS, (v) CDFs for WL/SL property value margins defined by (property value at which SL system fails) – (property value at which WL system fails), and (vi) CDFs for SL property value margins defined by (property value of failing SL at time of SL system failure) – (property value of this SL at time of WL system failure). Included in this presentation is a demonstration of a verification strategy based on defining and approximating the indicated margin results with (i) procedures based on formal integral representations and associated quadrature approximations and (ii) procedures based on algorithms for sampling-based approximations.

  20. Pill Properties that Cause Dysphagia and Treatment Failure

    Science.gov (United States)

    Fields, Jeremy; Go, Jorge T.; Schulze, Konrad S.

    2015-01-01

    texture; others cited sharp edges, odd shapes, or bad taste/smell. Extra-large pills were widely loathed, with 4 out of 5 participants preferring to take 3 or more medium-sized pills instead of a single jumbo pill. Conclusions Our survey results suggest that 4 out of 5 adult Americans take several pills daily, and do so without undue effort. It also suggests that half of today’s Americans encounter pills that are hard to swallow. Up to 4% of our participants gave up on treatments because they could not swallow the prescribed pills. Up to 7% categorically rejected taking pills that are hard to swallow. Specific material properties are widely blamed for making pills hard to swallow; extra-large capsules and tablets are universally feared, whereas medium-sized pills with a smooth coating are widely preferred. Our findings suggest that health care providers could minimize treatment failures and complications by prescribing and dispensing pills that are easy to swallow. Industry and regulatory bodies may facilitate this by making swallowability an essential criterion in the design and licensing of oral medications. Such policies could lessen the burden of pill taking for Americans and improve the adherence with prescribed treatments. PMID:26543509

  1. Leveraging Ensemble Dynamical Properties to Prioritize Exoplanet Follow-Up Observations

    Science.gov (United States)

    Ballard, Sarah

    2017-01-01

    The number of transiting exoplanets now exceeds several thousand, enabling ensemble studies of the dynamical properties of exoplanetary systems. We require a mixture model of dynamical conditions (whether frozen in from formation or sculpted by planet-planet interactions) to recover Kepler's yield of transiting planets. Around M dwarfs, which will be predominate sites of exoplanet follow-up atmospheric study in the next decade, even a modest orbital eccentricity can sterilize a planet. I will describe efforts to link cheap observables, such as number of transiting planets and presence of transit timing variations, to eccentricity and mutual inclination in exoplanet systems. The addition of a second transiting planet, for example, halves the expected orbital eccentricity. For the vast majority of TESS targets, the light curve alone will furnish the sum total of data about the exoplanet. Extracting information about orbital properties from these light curves will help prioritize precious follow-up resources.

  2. Characterisation of Dynamic Mechanical Properties of Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2005-01-01

    characterizing the dynamic mechanical characteristics of resistance welding machines is suggested, and a test set-up is designed determining the basic, independent machine parameters required in the model. The model is verified by performing a series of mechanical tests as well as real projection welds.......The dynamic mechanical properties of a resistance welding machine have significant influence on weld quality, which must be considered when simulating the welding process numerically. However, due to the complexity of the machine structure and the mutual coupling of components of the machine system......, it is very difficult to measure or calculate the basic, independent machine parameters required in a mathematical model of the machine dynamics, and no test method has so far been presented in literature, which can be applied directly in an industrial environment. In this paper, a mathematical model...

  3. Mesoscale simulation of concrete spall failure

    Science.gov (United States)

    Knell, S.; Sauer, M.; Millon, O.; Riedel, W.

    2012-05-01

    Although intensively studied, it is still being debated which physical mechanisms are responsible for the increase of dynamic strength and fracture energy of concrete observed at high loading rates, and to what extent structural inertia forces on different scales contribute to the observation. We present a new approach for the three dimensional mesoscale modelling of dynamic damage and cracking in concrete. Concrete is approximated as a composite of spherical elastic aggregates of mm to cm size embedded in an elastic cement stone matrix. Cracking within the matrix and at aggregate interfaces in the μm range are modelled with adaptively inserted—initially rigid—cohesive interface elements. The model is applied to analyse the dynamic tensile failure observed in Hopkinson-Bar spallation experiments with strain rates up to 100/s. The influence of the key mesoscale failure parameters of strength, fracture energy and relative weakening of the ITZ on macromechanic strength, momentum and energy conservation is numerically investigated.

  4. Strain limit criteria to predict failure

    International Nuclear Information System (INIS)

    Flanders, H.E.

    1995-01-01

    In recent years extensive effort has been expended to qualify existing structures for conditions that are beyond the original design basis. Determination of the component failure load is useful for this type of evaluation. This paper presents criteria based upon strain limits to predict the load at failure. The failure modes addressed are excessive plastic deformations, localized plastic strains, and structural instability. The effects of analytical method sophistication, as built configurations, material properties degradation, and stress state are addressed by the criteria

  5. Generic Sensor Failure Modeling for Cooperative Systems

    Science.gov (United States)

    Jäger, Georg; Zug, Sebastian

    2018-01-01

    The advent of cooperative systems entails a dynamic composition of their components. As this contrasts current, statically composed systems, new approaches for maintaining their safety are required. In that endeavor, we propose an integration step that evaluates the failure model of shared information in relation to an application’s fault tolerance and thereby promises maintainability of such system’s safety. However, it also poses new requirements on failure models, which are not fulfilled by state-of-the-art approaches. Consequently, this work presents a mathematically defined generic failure model as well as a processing chain for automatically extracting such failure models from empirical data. By examining data of an Sharp GP2D12 distance sensor, we show that the generic failure model not only fulfills the predefined requirements, but also models failure characteristics appropriately when compared to traditional techniques. PMID:29558435

  6. VALIDATING A COMPUTER-BASED TECHNIQUE FOR ASSESSING STABILITY TO FAILURE STRESS

    Directory of Open Access Journals (Sweden)

    I. F. Arshava

    2013-03-01

    Full Text Available An upsurge of interest in the implicit personality assessment, currently observed both in personality psycho-diagnostics and in experimental studies of social attitudes and prejudices, signals the shifting of researchers’ attention from de?ning between-person personality taxonomy to specifying comprehensive within-person processes, the dynamics of which can be captured at the level of an individual case. This research examines the possibility of the implicit assessment of the individual’s stability vs. susceptibility to failure stress by comparing the degrees of ef?cacy in the voluntary self-regulation of a computer-simulated information-processing activity under different conditions (patent of Ukraine № 91842, issued in 2010. By exposing two groups of participants (university undergraduates to processing the information, the scope of which exceeds the human short-term memory capacity at one of the stages of the modeled activity an unexpected and unavoidable failure is elicited. The participants who retain stability of their self-regulation behavior after having been exposed to failure, i.e. who keep processing information as effectively as they did prior to failure, are claimed to retain homeostasis and thus possess emotional stability. Those, who loose homeostasis after failure and display lower standards of self-regulation behavior, are considered to be susceptible to stress. The validity of the suggested type of the implicit diagnostics was empirically tested by clustering (K-means algorithm two samples of the participants on the  properties of their self-regulation behavior and testing between-cluster differences by a set of the explicitly assessed variables: Action control ef?cacy (Kuhl, 2001, preferred strategies of Coping with Stressful Situations (Endler, Parker, 1990,  Purpose-in-Life orientation (a Russian version of the test by Crumbaugh and Maholick, modi?ed by D.Leontiev, 1992, Psychological Well-being (Ryff, 1989

  7. Critical properties of Sudden Quench Dynamics in the anisotropic XY Model

    OpenAIRE

    Guo, Hongli; Liu, Zhao; Fan, Heng; Chen, Shu

    2010-01-01

    We study the zero temperature quantum dynamical critical behavior of the anisotropic XY chain under a sudden quench in a transverse field. We demonstrate theoretically that both quench magnetic susceptibility and two-particle quench correlation can be used to describe the dynamical quantum phase transition (QPT) properties. Either the quench magnetic susceptibility or the derivative of correlation functions as a function of initial magnetic field $a$ exhibits a divergence at the critical poin...

  8. Statistical properties of chaotic dynamical systems which exhibit strange attractors

    International Nuclear Information System (INIS)

    Jensen, R.V.; Oberman, C.R.

    1981-07-01

    A path integral method is developed for the calculation of the statistical properties of turbulent dynamical systems. The method is applicable to conservative systems which exhibit a transition to stochasticity as well as dissipative systems which exhibit strange attractors. A specific dissipative mapping is considered in detail which models the dynamics of a Brownian particle in a wave field with a broad frequency spectrum. Results are presented for the low order statistical moments for three turbulent regimes which exhibit strange attractors corresponding to strong, intermediate, and weak collisional damping

  9. Experimental device for measuring the dynamic properties of diaphragm motors

    Science.gov (United States)

    Fojtášek, Kamil; Dvořák, Lukáš; Mejzlík, Jan

    The subject of this paper is to design and description of the experimental device for the determination dynamic properties of diaphragm pneumatic motors. These motors are structurally quite different from conventional pneumatic linear cylinders. The working fluid is typically compressed air, the piston of motor is replaced by an elastic part and during the working cycle there is a contact of two elastic environments. In the manufacturers catalogs of these motors are not given any working characteristics. Description of the dynamic behavior of diaphragm motor will be used for verification of mathematical models.

  10. Universality in the dynamical properties of seismic vibrations

    Science.gov (United States)

    Chatterjee, Soumya; Barat, P.; Mukherjee, Indranil

    2018-02-01

    We have studied the statistical properties of the observed magnitudes of seismic vibration data in discrete time in an attempt to understand the underlying complex dynamical processes. The observed magnitude data are taken from six different geographical locations. All possible magnitudes are considered in the analysis including catastrophic vibrations, foreshocks, aftershocks and commonplace daily vibrations. The probability distribution functions of these data sets obey scaling law and display a certain universality characteristic. To investigate the universality features in the observed data generated by a complex process, we applied Random Matrix Theory (RMT) in the framework of Gaussian Orthogonal Ensemble (GOE). For all these six places the observed data show a close fit with the predictions of RMT. This reinforces the idea of universality in the dynamical processes generating seismic vibrations.

  11. Progressive Damage and Failure Analysis of Composite Laminates

    Science.gov (United States)

    Joseph, Ashith P. K.

    Composite materials are widely used in various industries for making structural parts due to higher strength to weight ratio, better fatigue life, corrosion resistance and material property tailorability. To fully exploit the capability of composites, it is required to know the load carrying capacity of the parts made of them. Unlike metals, composites are orthotropic in nature and fails in a complex manner under various loading conditions which makes it a hard problem to analyze. Lack of reliable and efficient failure analysis tools for composites have led industries to rely more on coupon and component level testing to estimate the design space. Due to the complex failure mechanisms, composite materials require a very large number of coupon level tests to fully characterize the behavior. This makes the entire testing process very time consuming and costly. The alternative is to use virtual testing tools which can predict the complex failure mechanisms accurately. This reduces the cost only to it's associated computational expenses making significant savings. Some of the most desired features in a virtual testing tool are - (1) Accurate representation of failure mechanism: Failure progression predicted by the virtual tool must be same as those observed in experiments. A tool has to be assessed based on the mechanisms it can capture. (2) Computational efficiency: The greatest advantages of a virtual tools are the savings in time and money and hence computational efficiency is one of the most needed features. (3) Applicability to a wide range of problems: Structural parts are subjected to a variety of loading conditions including static, dynamic and fatigue conditions. A good virtual testing tool should be able to make good predictions for all these different loading conditions. The aim of this PhD thesis is to develop a computational tool which can model the progressive failure of composite laminates under different quasi-static loading conditions. The analysis

  12. Dynamic Output Feedback Based Active Decentralized Fault-Tolerant Control for Reconfigurable Manipulator with Concurrent Failures

    Directory of Open Access Journals (Sweden)

    Yuanchun Li

    2015-01-01

    Full Text Available The goal of this paper is to describe an active decentralized fault-tolerant control (ADFTC strategy based on dynamic output feedback for reconfigurable manipulators with concurrent actuator and sensor failures. Consider each joint module of the reconfigurable manipulator as a subsystem, and treat the fault as the unknown input of the subsystem. Firstly, by virtue of linear matrix inequality (LMI technique, the decentralized proportional-integral observer (DPIO is designed to estimate and compensate the sensor fault online; hereafter, the compensated system model could be derived. Then, the actuator fault is estimated similarly by another DPIO using LMI as well, and the sufficient condition of the existence of H∞ fault-tolerant controller in the dynamic output feedback is presented for the compensated system model. Furthermore, the dynamic output feedback controller is presented based on the estimation of actuator fault to realize active fault-tolerant control. Finally, two 3-DOF reconfigurable manipulators with different configurations are employed to verify the effectiveness of the proposed scheme in simulation. The main advantages of the proposed scheme lie in that it can handle the concurrent faults act on the actuator and sensor on the same joint module, as well as there is no requirement of fault detection and isolation process; moreover, it is more feasible to the modularity of the reconfigurable manipulator.

  13. Local and dynamic properties of light interacting with subwavelength holes

    NARCIS (Netherlands)

    Prangsma, Jord

    2009-01-01

    The discovery of the extraordinary transmission phenomena has initiated an intense study of the interaction of light with subwavelength holes. In this thesis the dynamic and local properties of light interacting with subwavelength holes are investigated. First of all the role of hole shape on the

  14. Early short-term management of control-actuator failures in a linear dynamic system

    International Nuclear Information System (INIS)

    Ben-Haim, Y.

    1989-01-01

    Early short-term management of malfunction attempts to maintain system stability during the early development stages of a failure. This is achieved in two stages. First, the failure is partially diagnosed by comparing observed system behavior against the performance expected for each of the selected set of hypothesized malfunctions. Second, the normal controller is replaced by a compensatory controller whose aim is to maintain system stability while compensating for the failure. Malfunctions involving control actuators are studied here. The aim of this study is to develop a technique for choosing the set of hypothesized failures and compensatory controllers which assure that the state of the system remains within specified bounds for a given duration after initiation of failure, regardless of the precise temporal development of the failure

  15. Effects of pore design on mechanical properties of nanoporous silicon

    International Nuclear Information System (INIS)

    Winter, Nicholas; Becton, Matthew; Zhang, Liuyang; Wang, Xianqiao

    2017-01-01

    Nanoporous silicon has been emerging as a powerful building block for next-generation sensors, catalysts, transistors, and tissue scaffolds. The capability to design novel devices with desired mechanical properties is paramount to their reliability and serviceability. In order to bring further resolution to the highly variable mechanical characteristics of nanoporous silicon, here we perform molecular dynamics simulations to study the effects of ligament thickness, relative density, and pore geometry/orientation on the mechanical properties of nanoporous silicon, thereby determining its Young's modulus, ultimate strength, and toughness as well as the scaling laws versus the features of interior ligaments. Results show that pore shape and pattern dictate stress accumulation inside the designed structure, leading to the corresponding failure signature, such as stretching-dominated, bending-dominated, or stochastic failure signatures, in nanoporous silicon. The nanostructure of the material is also seen to drive or mute size effects such as “smaller is stronger” and “smaller is ductile”. This investigation provides useful insight into the behavior of nanoporous silicon and how one might leverage its promising applications. - Graphical abstract: Molecular dynamics simulations are performed to study the effects of ligament thickness, relative density, and pore geometry/orientation on the mechanical properties of nanoporous silicon, thereby determining its Young's modulus, ultimate strength, and toughness as well as the scaling trends versus the features of interior ligaments.

  16. Local Dynamics in Trained Recurrent Neural Networks.

    Science.gov (United States)

    Rivkind, Alexander; Barak, Omri

    2017-06-23

    Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.

  17. Local Dynamics in Trained Recurrent Neural Networks

    Science.gov (United States)

    Rivkind, Alexander; Barak, Omri

    2017-06-01

    Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.

  18. Haul truck tire dynamics due to tire condition

    International Nuclear Information System (INIS)

    Anzabi, R Vaghar; Nobes, D S; Lipsett, M G

    2012-01-01

    Pneumatic tires are costly components on large off-road haul trucks used in surface mining operations. Tires are prone to damage during operation, and these events can lead to injuries to personnel, loss of equipment, and reduced productivity. Damage rates have significant variability, due to operating conditions and a range of tire fault modes. Currently, monitoring of tire condition is done by physical inspection; and the mean time between inspections is often longer than the mean time between incipient failure and functional failure of the tire. Options for new condition monitoring methods include off-board thermal imaging and camera-based optical methods for detecting abnormal deformation and surface features, as well as on-board sensors to detect tire faults during vehicle operation. Physics-based modeling of tire dynamics can provide a good understanding of the tire behavior, and give insight into observability requirements for improved monitoring systems. This paper describes a model to simulate the dynamics of haul truck tires when a fault is present to determine the effects of physical parameter changes that relate to faults. To simulate the dynamics, a lumped mass 'quarter-vehicle' model has been used to determine the response of the system to a road profile when a failure changes the original properties of the tire. The result is a model of tire vertical displacement that can be used to detect a fault, which will be tested under field conditions in time-varying conditions.

  19. Haul truck tire dynamics due to tire condition

    Science.gov (United States)

    Vaghar Anzabi, R.; Nobes, D. S.; Lipsett, M. G.

    2012-05-01

    Pneumatic tires are costly components on large off-road haul trucks used in surface mining operations. Tires are prone to damage during operation, and these events can lead to injuries to personnel, loss of equipment, and reduced productivity. Damage rates have significant variability, due to operating conditions and a range of tire fault modes. Currently, monitoring of tire condition is done by physical inspection; and the mean time between inspections is often longer than the mean time between incipient failure and functional failure of the tire. Options for new condition monitoring methods include off-board thermal imaging and camera-based optical methods for detecting abnormal deformation and surface features, as well as on-board sensors to detect tire faults during vehicle operation. Physics-based modeling of tire dynamics can provide a good understanding of the tire behavior, and give insight into observability requirements for improved monitoring systems. This paper describes a model to simulate the dynamics of haul truck tires when a fault is present to determine the effects of physical parameter changes that relate to faults. To simulate the dynamics, a lumped mass 'quarter-vehicle' model has been used to determine the response of the system to a road profile when a failure changes the original properties of the tire. The result is a model of tire vertical displacement that can be used to detect a fault, which will be tested under field conditions in time-varying conditions.

  20. Structural, dynamic, electronic, and vibrational properties of flexible, intermediate, and stressed rigid As-Se glasses and liquids from first principles molecular dynamics

    International Nuclear Information System (INIS)

    Bauchy, M.; Kachmar, A.; Micoulaut, M.

    2014-01-01

    The structural, vibrational, electronic, and dynamic properties of amorphous and liquid As x Se 1-x (0.10 Dynamics. Within the above range of compositions, thresholds, and anomalies are found in the behavior of reciprocal and real space properties that can be correlated to the experimental location of the Boolchand intermediate phase in these glassy networks, observed at 0.27 dynamical atomic-scale fingerprints for the onset of rigidity within the network, while also providing a much more complex picture than the one derived from mean-field approaches of stiffness transitions

  1. Striking dynamics and kinetic properties of boxing and MMA gloves

    Directory of Open Access Journals (Sweden)

    Benjamin Lee

    2014-08-01

    Full Text Available With the growing popularity of Mixed Martial Arts (MMA as a competitive sport, questions regarding the dynamic response and properties of MMA gloves arise. High-energy impacts from punches are very similar to boxing yet MMA competition requires the use of 4 oz fingerless glove, compared to the larger full enclosure boxing glove. This work assessed the kinetic properties and strike dynamics of MMA gloves and compared findings with traditional boxing gloves. Gloves mounted on a molded fist were impacted repetitively on an instrumental anvil designed for impact, over a 5 hour period resulting in 10,000 continuous and consistent strikes. Kinetic data from impacts were sampled at the beginning of the data collection and subsequently every 30 minutes (every 1,000 strikes. MMA gloves produced 4-5 times greater peak force and 5 times faster load rate compared to the boxing glove. However, MMA gloves also showed signs of material fatigue, with peak force increasing by 35% and rate of loading increasing by 60% over the duration of the test. Boxing glove characteristics did deteriorate but to a lesser extent. In summary, the kinetic properties of MMA glove differed substantially from the boxing glove resulting in impacts characterized by higher peak forces and more rapid development of force. Material properties including stiffness and thickness play a role in the kinetic characteristics upon impact, and can be inferred to alter injury mechanisms of blunt force trauma.

  2. A discrete element method study on the evolution of thermomechanics of a pebble bed experiencing pebble failure

    Energy Technology Data Exchange (ETDEWEB)

    Van Lew, Jon T., E-mail: jtvanlew@fusion.ucla.edu; Ying, Alice; Abdou, Mohamed

    2014-10-15

    The discrete element method (DEM) is used to study the thermal effects of pebble failure in an ensemble of lithium ceramic spheres. Some pebbles crushing in a large system is unavoidable and this study provides correlations between the extent of pebble failure and the reduction in effective thermal conductivity of the bed. In the model, we homogeneously induced failure and applied nuclear heating until dynamic and thermal steady-state. Conduction between pebbles and from pebbles to the boundary is the only mode of heat transfer presently modeled. The effective thermal conductivity was found to decrease rapidly as a function of the percent of failed pebbles in the bed. It was found that the dominant contributor to the reduction was the drop in inter-particle forces as pebbles fail; implying the extent of failure induced may not occur in real pebble beds. The results are meant to assist designers in the fusion energy community who are planning to use packed beds of ceramic pebbles. The evolution away from experimentally measured thermomechanical properties as pebbles fail is necessary for proper operation of fusion reactors.

  3. Nanowire failure: long = brittle and short = ductile.

    Science.gov (United States)

    Wu, Zhaoxuan; Zhang, Yong-Wei; Jhon, Mark H; Gao, Huajian; Srolovitz, David J

    2012-02-08

    Experimental studies of the tensile behavior of metallic nanowires show a wide range of failure modes, ranging from ductile necking to brittle/localized shear failure-often in the same diameter wires. We performed large-scale molecular dynamics simulations of copper nanowires with a range of nanowire lengths and provide unequivocal evidence for a transition in nanowire failure mode with change in nanowire length. Short nanowires fail via a ductile mode with serrated stress-strain curves, while long wires exhibit extreme shear localization and abrupt failure. We developed a simple model for predicting the critical nanowire length for this failure mode transition and showed that it is in excellent agreement with both the simulation results and the extant experimental data. The present results provide a new paradigm for the design of nanoscale mechanical systems that demarcates graceful and catastrophic failure. © 2012 American Chemical Society

  4. Structural, Dynamic, and Vibrational Properties during Heat Transfer in Si/Ge Superlattices: A Car-Parrinello Molecular Dynamics Study

    OpenAIRE

    Ji, Pengfei; Zhang, Yuwen; Yang, Mo

    2016-01-01

    The structural, dynamic, and vibrational properties during the heat transfer process in Si/Ge superlattices, are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) ar...

  5. Preserving the Boltzmann ensemble in replica-exchange molecular dynamics.

    Science.gov (United States)

    Cooke, Ben; Schmidler, Scott C

    2008-10-28

    We consider the convergence behavior of replica-exchange molecular dynamics (REMD) [Sugita and Okamoto, Chem. Phys. Lett. 314, 141 (1999)] based on properties of the numerical integrators in the underlying isothermal molecular dynamics (MD) simulations. We show that a variety of deterministic algorithms favored by molecular dynamics practitioners for constant-temperature simulation of biomolecules fail either to be measure invariant or irreducible, and are therefore not ergodic. We then show that REMD using these algorithms also fails to be ergodic. As a result, the entire configuration space may not be explored even in an infinitely long simulation, and the simulation may not converge to the desired equilibrium Boltzmann ensemble. Moreover, our analysis shows that for initial configurations with unfavorable energy, it may be impossible for the system to reach a region surrounding the minimum energy configuration. We demonstrate these failures of REMD algorithms for three small systems: a Gaussian distribution (simple harmonic oscillator dynamics), a bimodal mixture of Gaussians distribution, and the alanine dipeptide. Examination of the resulting phase plots and equilibrium configuration densities indicates significant errors in the ensemble generated by REMD simulation. We describe a simple modification to address these failures based on a stochastic hybrid Monte Carlo correction, and prove that this is ergodic.

  6. Mechanical failure and glass transition in metallic glasses

    International Nuclear Information System (INIS)

    Egami, T.

    2011-01-01

    Research highlights: → We review the recent results of molecular dynamics simulations on metallic glasses. → They show the equivalence of mechanical failure and glass transition. → We discuss the microscopic mechanism behind this equivalence. → We show that the density of defects in metallic glasses is as high as a quarter. → Our concepts about the defect state in glasses need to be changed. - Abstract: The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  7. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure

    DEFF Research Database (Denmark)

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth

    2014-01-01

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without...... arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous...... adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic...

  8. Microscopic properties of ionic liquid/organic semiconductor interfaces revealed by molecular dynamics simulations.

    Science.gov (United States)

    Yokota, Yasuyuki; Miyamoto, Hiroo; Imanishi, Akihito; Takeya, Jun; Inagaki, Kouji; Morikawa, Yoshitada; Fukui, Ken-Ichi

    2018-05-09

    Electric double-layer transistors based on ionic liquid/organic semiconductor interfaces have been extensively studied during the past decade because of their high carrier densities at low operation voltages. Microscopic structures and the dynamics of ionic liquids likely determine the device performance; however, knowledge of these is limited by a lack of appropriate experimental tools. In this study, we investigated ionic liquid/organic semiconductor interfaces using molecular dynamics to reveal the microscopic properties of ionic liquids. The organic semiconductors include pentacene, rubrene, fullerene, and 7,7,8,8-tetracyanoquinodimethane (TCNQ). While ionic liquids close to the substrate always form the specific layered structures, the surface properties of organic semiconductors drastically alter the ionic dynamics. Ionic liquids at the fullerene interface behave as a two-dimensional ionic crystal because of the energy gain derived from the favorable electrostatic interaction on the corrugated periodic substrate.

  9. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  10. SIMULATED HUMAN ERROR PROBABILITY AND ITS APPLICATION TO DYNAMIC HUMAN FAILURE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Herberger, Sarah M.; Boring, Ronald L.

    2016-10-01

    Abstract Objectives: Human reliability analysis (HRA) methods typically analyze human failure events (HFEs) at the overall task level. For dynamic HRA, it is important to model human activities at the subtask level. There exists a disconnect between dynamic subtask level and static task level that presents issues when modeling dynamic scenarios. For example, the SPAR-H method is typically used to calculate the human error probability (HEP) at the task level. As demonstrated in this paper, quantification in SPAR-H does not translate to the subtask level. Methods: Two different discrete distributions were generated for each SPAR-H Performance Shaping Factor (PSF) to define the frequency of PSF levels. The first distribution was a uniform, or uninformed distribution that assumed the frequency of each PSF level was equally likely. The second non-continuous distribution took the frequency of PSF level as identified from an assessment of the HERA database. These two different approaches were created to identify the resulting distribution of the HEP. The resulting HEP that appears closer to the known distribution, a log-normal centered on 1E-3, is the more desirable. Each approach then has median, average and maximum HFE calculations applied. To calculate these three values, three events, A, B and C are generated from the PSF level frequencies comprised of subtasks. The median HFE selects the median PSF level from each PSF and calculates HEP. The average HFE takes the mean PSF level, and the maximum takes the maximum PSF level. The same data set of subtask HEPs yields starkly different HEPs when aggregated to the HFE level in SPAR-H. Results: Assuming that each PSF level in each HFE is equally likely creates an unrealistic distribution of the HEP that is centered at 1. Next the observed frequency of PSF levels was applied with the resulting HEP behaving log-normally with a majority of the values under 2.5% HEP. The median, average and maximum HFE calculations did yield

  11. Structural phase transition and failure of nanographite sheets under high pressure: a molecular dynamics study

    International Nuclear Information System (INIS)

    Zhang Bin; Liang Yongcheng; Sun Huiyu

    2007-01-01

    Nanographite sheets under high compressive stresses at ambient temperature have been investigated through molecular dynamics simulations using the Tersoff-Brenner potential. Nanographite undergoes a soft to hard phase transition at a certain compressive stress, about 15 GPa. With increasing compressions, the bonding structures of nanographite are changed, interlayer sp 3 -bonds are formed, and nanographite transforms into a superhard carbon phase (SCP). Further compressions lead to the instabilities of the SCP. Although the detailed lattice structure of the SCP remains elusive, its compressive strength can approach 150 GPa, comparable to that of diamond. The maximum failure stresses of nanographite sheets are sensitive to the inter-and intra-layer interstices. Our results may explain paradoxical experimental results in the available literature

  12. Dynamic decision-making for reliability and maintenance analysis of manufacturing systems based on failure effects

    Science.gov (United States)

    Zhang, Ding; Zhang, Yingjie

    2017-09-01

    A framework for reliability and maintenance analysis of job shop manufacturing systems is proposed in this paper. An efficient preventive maintenance (PM) policy in terms of failure effects analysis (FEA) is proposed. Subsequently, reliability evaluation and component importance measure based on FEA are performed under the PM policy. A job shop manufacturing system is applied to validate the reliability evaluation and dynamic maintenance policy. Obtained results are compared with existed methods and the effectiveness is validated. Some vague understandings for issues such as network modelling, vulnerabilities identification, the evaluation criteria of repairable systems, as well as PM policy during manufacturing system reliability analysis are elaborated. This framework can help for reliability optimisation and rational maintenance resources allocation of job shop manufacturing systems.

  13. Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures

    International Nuclear Information System (INIS)

    Sha, Zhen-Dong; Pei, Qing-Xiang; Ding, Zhiwei; Zhang, Yong-Wei; Jiang, Jin-Wu

    2015-01-01

    Phosphorene, a new two-dimensional (2D) material beyond graphene, has attracted great attention in recent years due to its superior physical and electrical properties. However, compared to graphene and other 2D materials, phosphorene has a relatively low Young’s modulus and fracture strength, which may limit its applications due to possible structure failures. For the mechanical reliability of future phosphorene-based nanodevices, it is necessary to have a deep understanding of the mechanical properties and fracture behaviors of phosphorene. Previous studies on the mechanical properties of phosphorene were based on first principles calculations at 0 K. In this work, we employ molecular dynamics simulations to explore the mechanical properties and fracture behaviors of phosphorene at finite temperatures. It is found that temperature has a significant effect on the mechanical properties of phosphorene. The fracture strength and strain reduce by more than 65% when the temperature increases from 0 K to 450 K. Moreover, the fracture strength and strain in the zigzag direction is more sensitive to the temperature rise than that in the armchair direction. More interestingly, the failure crack propagates preferably along the groove in the puckered structure when uniaxial tension is applied in the armchair direction. In contrast, when the uniaxial tension is applied in the zigzag direction, multiple cracks are observed with rough fracture surfaces. Our present work provides useful information about the mechanical properties and failure behaviors of phosphorene at finite temperatures. (paper)

  14. Formal definition of coherency and computation of minimal cut sequences for binary dynamic and repairable systems

    International Nuclear Information System (INIS)

    Chaux, Pierre-Yves

    2013-01-01

    Preventive risk assessment of a complex system rely on a dynamic models which describe the link between the system failure and the scenarios of failure and repair events from its components. The qualitative analyses of a binary dynamic and repairable system is aiming at computing and analyse the scenarios that lead to the system failure. Since such systems describe a large set of those, only the most representative ones, called Minimal Cut Sequences (MCS), are of interest for the safety engineer. The lack of a formal definition for the MCS has generated multiple definitions either specific to a given model (and thus not generic) or informal. This work proposes i) a formal framework and definition for the MCS while staying independent of the reliability model used, ii) the methodology to compute them using property extracted from their formal definition, iii) an extension of the formal framework for multi-states components in order to perform the qualitative analyses of Boolean logic Driven Markov Processes (BDMP) models. Under the hypothesis that the scenarios implicitly described by any reliability model can always be represented by a finite automaton, this work is defining the coherency for dynamic and repairable systems as the way to give a minimal representation of all scenarios that are leading to the system failure. (author)

  15. Static and dynamical properties of light hadrons in QCD

    International Nuclear Information System (INIS)

    Ioffe, B.L.

    1984-01-01

    The review of QCD determination of static and dynamical properties of hadrons is given. Hadron masses, their transition constants into quark currents, meson formfactors at intermediate momentum transfers, mesonic partial widths and structure functions at small x are considered. A special attention is paid to calculation of static paramaters of hadrons in external fields (nucleon and hyperon magnetic moments, interaction constants with axial currents)

  16. Proactive restoration of slow-failures in optical networks

    DEFF Research Database (Denmark)

    Siracusa, Domenico; Pederzolli, Federico; Salvadori, Elio

    2014-01-01

    Current optical networks, while offering outstanding reliability, still suffer from occasional failures. A resource-efficient procedure to handle these failures in un-protected scenarios is to perform restoration, i.e., to dynamically setup a backup lightpath after the primary one stops working......, which leads to traffic losses while such operation completes. In this paper we propose a technique, applicable to optical networks with centralized control, to better handle failures with slow transients. The idea is to proactively perform the backup lightpath's setup, triggered by either a fixed...

  17. Key properties of expert movement systems in sport : an ecological dynamics perspective.

    Science.gov (United States)

    Seifert, Ludovic; Button, Chris; Davids, Keith

    2013-03-01

    This paper identifies key properties of expertise in sport predicated on the performer-environment relationship. Weaknesses of traditional approaches to expert performance, which uniquely focus on the performer and the environment separately, are highlighted by an ecological dynamics perspective. Key properties of expert movement systems include 'multi- and meta-stability', 'adaptive variability', 'redundancy', 'degeneracy' and the 'attunement to affordances'. Empirical research on these expert system properties indicates that skill acquisition does not emerge from the internal representation of declarative and procedural knowledge, or the imitation of expert behaviours to linearly reduce a perceived 'gap' separating movements of beginners and a putative expert model. Rather, expert performance corresponds with the ongoing co-adaptation of an individual's behaviours to dynamically changing, interacting constraints, individually perceived and encountered. The functional role of adaptive movement variability is essential to expert performance in many different sports (involving individuals and teams; ball games and outdoor activities; land and aquatic environments). These key properties signify that, in sport performance, although basic movement patterns need to be acquired by developing athletes, there exists no ideal movement template towards which all learners should aspire, since relatively unique functional movement solutions emerge from the interaction of key constraints.

  18. Structure/property (constitutive and dynamic strength/damage) characterization of additively manufactured 316L SS

    Science.gov (United States)

    Gray, G. T., III; Livescu, V.; Rigg, P. A.; Trujillo, C. P.; Cady, C. M.; Chen, S. R.; Carpenter, J. S.; Lienert, T. J.; Fensin, S.

    2015-09-01

    For additive manufacturing (AM), the certification and qualification paradigm needs to evolve as there exists no "ASTM-type" additive manufacturing certified process or AM-material produced specifications. Accordingly, utilization of AM materials to meet engineering applications requires quantification of the constitutive properties of these evolving materials in comparison to conventionally-manufactured metals and alloys. Cylinders of 316L SS were produced using a LENS MR-7 laser additive manufacturing system from Optomec (Albuquerque, NM) equipped with a 1kW Yb-fiber laser. The microstructure of the AM-316L SS is detailed in both the as-built condition and following heat-treatments designed to obtain full recrystallization. The constitutive behavior as a function of strain rate and temperature is presented and compared to that of nominal annealed wrought 316L SS plate. The dynamic damage evolution and failure response of all three materials was probed using flyer-plate impact driven spallation experiments at a peak stress of 4.5 GPa to examine incipient spallation response. The spall strength of AM-produced 316L SS was found to be very similar for the peak shock stress studied to that of annealed wrought or AM-316L SS following recrystallization. The damage evolution as a function of microstructure was characterized using optical metallography.

  19. Structural, dynamic, electronic, and vibrational properties of flexible, intermediate, and stressed rigid As-Se glasses and liquids from first principles molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bauchy, M. [Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095-1593 (United States); Kachmar, A. [Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, 4 Place Jussieu, F-75252 Paris Cedex 05 (France); Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Micoulaut, M., E-mail: mmi@lptl.jussieu.fr [Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, 4 Place Jussieu, F-75252 Paris Cedex 05 (France)

    2014-11-21

    The structural, vibrational, electronic, and dynamic properties of amorphous and liquid As{sub x}Se{sub 1-x} (0.10 Dynamics. Within the above range of compositions, thresholds, and anomalies are found in the behavior of reciprocal and real space properties that can be correlated to the experimental location of the Boolchand intermediate phase in these glassy networks, observed at 0.27 dynamical atomic-scale fingerprints for the onset of rigidity within the network, while also providing a much more complex picture than the one derived from mean-field approaches of stiffness transitions.

  20. Dynamical photo-induced electronic properties of molecular junctions

    Science.gov (United States)

    Beltako, K.; Michelini, F.; Cavassilas, N.; Raymond, L.

    2018-03-01

    Nanoscale molecular-electronic devices and machines are emerging as promising functional elements, naturally flexible and efficient, for next-generation technologies. A deeper understanding of carrier dynamics in molecular junctions is expected to benefit many fields of nanoelectronics and power devices. We determine time-resolved charge current flowing at the donor-acceptor interface in molecular junctions connected to metallic electrodes by means of quantum transport simulations. The current is induced by the interaction of the donor with a Gaussian-shape femtosecond laser pulse. Effects of the molecular internal coupling, metal-molecule tunneling, and light-donor coupling on photocurrent are discussed. We then define the time-resolved local density of states which is proposed as an efficient tool to describe the absorbing molecule in contact with metallic electrodes. Non-equilibrium reorganization of hybridized molecular orbitals through the light-donor interaction gives rise to two phenomena: the dynamical Rabi shift and the appearance of Floquet-like states. Such insights into the dynamical photoelectronic structure of molecules are of strong interest for ultrafast spectroscopy and open avenues toward the possibility of analyzing and controlling the internal properties of quantum nanodevices with pump-push photocurrent spectroscopy.

  1. Dynamical and structural properties of lipid membranes in relation to liposomal drug delivery systems

    DEFF Research Database (Denmark)

    Jørgensen, Kent; Høyrup, Lise Pernille Kristine; Pedersen, Tina B.

    2001-01-01

    The structural and dynamical properties of DPPC liposomes containing lipopolymers (PEG-lipids) and charged DPPS lipids have been,studied in relation to the lipid membrane interaction of enzymes and peptides. The results suggest that both the lipid membrane structure and dynamics and in particular...

  2. Dynamic Colour Possibilities and Functional Properties of Thermochromic Printing Inks

    Directory of Open Access Journals (Sweden)

    Rahela Kulcar

    2012-07-01

    Full Text Available Thermochromic printing inks change their colour regarding the change in temperature and they are one of the major groups of colour-changing inks. One of the most frequently used thermochromic material in printing inks are leuco dyes. The colour of thermochromic prints is dynamic, it is not just temperature-dependent, but it also depends on thermal history. The effect is described by colour hysteresis. This paper aims at discussing general aspects of thermochromic inks, dynamic colorimetric properties of leuco dye-based thermochromic inks, their stability and principle of variable-temperature colour measurement. Thermochromic material is protected in round-shaped capsules. They are much larger than pigments in conventional inks. The polymer envelopes of pigment capsules are more stable against oxidation than the binder. If these envelopes are damaged, the dynamic colour is irreversibly lost. Our aim is to analyse the colorimetric properties of several reversible screen-printed UV-curing leuco dye thermochromic inks with different activation temperatures printed on paper. A small analysis of irreversible thermochromic inks will be presented for comparison with reversible thermochromic inks. Moreover, so as to show interesting possibilities, a combination of different inks was made, an irreversible thermochromic ink was printed on top of the red and blue reversible thermochromic inks. Special attention was given to the characterization of colour hysteresis and the meaning of activation temperature.

  3. Parameters governing the failure of steel components

    International Nuclear Information System (INIS)

    Schmitt, W.

    1977-01-01

    The most important feature of any component is the ability to carry safely the load it is designed for. The strength of the component is influenced mainly by three groups of parameters: 1. The loading of the structure; Here the possible loading cases are: normal operation, testing, emergency and faulted conditions; the kinds of loading can be divided into: internal pressure, external forces and moments, temperature loading. 2. The defects in the structure: cavities and inclusions, pores, flaws or cracks. 3. The material properties: Young's modulus, Yield - and ultimate strength, absorbed charpy energy, fracture toughness, etc. For different failure modes one has to take into account different material properties, the loading and the defects are assumed to be within certain deterministic bounds, from which deterministic safety factors can be determined with respect to any failure mode and failure criterion. However, since all parameters have a certain scatter about a mean value, there is a probability to exceed the given bounds. From the extrapolation of the distribution a value for the failure probability can be estimated. (orig.) [de

  4. Life Support with Failures and Variable Supply

    Science.gov (United States)

    Jones, Harry

    2010-01-01

    The life support system for long duration missions will recycle oxygen and water to reduce the material resupply mass from Earth. The impact of life support failures was investigated by dynamic simulation of a lunar outpost habitat life support model. The model was modified to simulate resupply delays, power failures, recycling system failures, and storage failures. Many failures impact the lunar outpost water supply directly or indirectly, depending on the water balance and water storage. Failure effects on the water supply are reduced if Extra Vehicular Activity (EVA) water use is low and the water supply is ample. Additional oxygen can be supplied by scavenging unused propellant or by production from regolith, but the amounts obtained can vary significantly. The requirements for oxygen and water can also vary significantly, especially for EVA. Providing storage buffers can improve efficiency and reliability, and minimize the chance of supply failing to meet demand. Life support failures and supply variations can be survivable if effective solutions are provided by the system design

  5. Intelligent on-line fault tolerant control for unanticipated catastrophic failures.

    Science.gov (United States)

    Yen, Gary G; Ho, Liang-Wei

    2004-10-01

    As dynamic systems become increasingly complex, experience rapidly changing environments, and encounter a greater variety of unexpected component failures, solving the control problems of such systems is a grand challenge for control engineers. Traditional control design techniques are not adequate to cope with these systems, which may suffer from unanticipated dynamic failures. In this research work, we investigate the on-line fault tolerant control problem and propose an intelligent on-line control strategy to handle the desired trajectories tracking problem for systems suffering from various unanticipated catastrophic faults. Through theoretical analysis, the sufficient condition of system stability has been derived and two different on-line control laws have been developed. The approach of the proposed intelligent control strategy is to continuously monitor the system performance and identify what the system's current state is by using a fault detection method based upon our best knowledge of the nominal system and nominal controller. Once a fault is detected, the proposed intelligent controller will adjust its control signal to compensate for the unknown system failure dynamics by using an artificial neural network as an on-line estimator to approximate the unexpected and unknown failure dynamics. The first control law is derived directly from the Lyapunov stability theory, while the second control law is derived based upon the discrete-time sliding mode control technique. Both control laws have been implemented in a variety of failure scenarios to validate the proposed intelligent control scheme. The simulation results, including a three-tank benchmark problem, comply with theoretical analysis and demonstrate a significant improvement in trajectory following performance based upon the proposed intelligent control strategy.

  6. Simulating Hydraulic Fracturing: Failure in soft versus hard rocks

    Science.gov (United States)

    Aleksans, J.; Koehn, D.; Toussaint, R.

    2017-12-01

    In this contribution we discuss the dynamic development of hydraulic fractures, their evolution and the resulting seismicity during fluid injection in a coupled numerical model. The model describes coupling between a solid that can fracture dynamically and a compressible fluid that can push back at the rock and open fractures. With a series of numerical simulations we show how the fracture pattern and seismicity change depending on changes in depth, injection rate, Young's Modulus and breaking strength. Our simulations indicate that the Young's Modulus has the largest influence on the fracture dynamics and also the related seismicity. Simulations of rocks with a Young's modulus smaller than 10 GPa show dominant mode I failure and a growth of fracture aperture with a decrease in Young's modulus. Simulations of rocks with a higher Young's modulus than 10 GPa show fractures with a constant aperture and fracture growth that is mainly governed by a growth in crack length and an increasing amount of mode II failure. We propose that two distinct failure regimes are observed in the simulations, above 10 GPa rocks break with a constant critical stress intensity factor whereas below 10 GPa they break reaching a critical cohesion, i.e. a critical tensile strength. These results are very important for the prediction of fracture dynamics and seismicity during fluid injection, especially since we see a transition from one failure regime to another at around 10 GPa, a Young's modulus that lies in the middle of possible values for natural shale rocks.

  7. An ab-initio study of mechanical, dynamical and electronic properties of MgEu intermetallic

    Science.gov (United States)

    Kumar, S. Ramesh; Jaiganesh, G.; Jayalakshmi, V.

    2018-04-01

    The theoretical investigation on the mechanical, dynamical and electronic properties of MgEu in CsCl-type structure has been carried out through the ab-initio calculations within the framework of the density functional theory and the density functional perturbation theory. For the purpose, Vienna Ab initio Simulation Package and Phonopy packages were used. Our calculated ground-state properties of MgEu are in good agreement with other available results. Our computed elastic constants and phonon spectrum results suggest that MgEu is mechanically and dynamically stable up to 5 GPa. The thermodynamic quantities as a function of temperatures are also reported and discussed. The band structure, density of states and charge density also calculated to understand the electronic properties of MgEu.

  8. Detecting abrupt dynamic change based on changes in the fractal properties of spatial images

    Science.gov (United States)

    Liu, Qunqun; He, Wenping; Gu, Bin; Jiang, Yundi

    2017-10-01

    Many abrupt climate change events often cannot be detected timely by conventional abrupt detection methods until a few years after these events have occurred. The reason for this lag in detection is that abundant and long-term observational data are required for accurate abrupt change detection by these methods, especially for the detection of a regime shift. So, these methods cannot help us understand and forecast the evolution of the climate system in a timely manner. Obviously, spatial images, generated by a coupled spatiotemporal dynamical model, contain more information about a dynamic system than a single time series, and we find that spatial images show the fractal properties. The fractal properties of spatial images can be quantitatively characterized by the Hurst exponent, which can be estimated by two-dimensional detrended fluctuation analysis (TD-DFA). Based on this, TD-DFA is used to detect an abrupt dynamic change of a coupled spatiotemporal model. The results show that the TD-DFA method can effectively detect abrupt parameter changes in the coupled model by monitoring the changing in the fractal properties of spatial images. The present method provides a new way for abrupt dynamic change detection, which can achieve timely and efficient abrupt change detection results.

  9. High Speed Dynamics in Brittle Materials

    Science.gov (United States)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural

  10. World-trade web: Topological properties, dynamics, and evolution

    Science.gov (United States)

    Fagiolo, Giorgio; Reyes, Javier; Schiavo, Stefano

    2009-03-01

    This paper studies the statistical properties of the web of import-export relationships among world countries using a weighted-network approach. We analyze how the distributions of the most important network statistics measuring connectivity, assortativity, clustering, and centrality have coevolved over time. We show that all node-statistic distributions and their correlation structure have remained surprisingly stable in the last 20years —and are likely to do so in the future. Conversely, the distribution of (positive) link weights is slowly moving from a log-normal density towards a power law. We also characterize the autoregressive properties of network-statistics dynamics. We find that network-statistics growth rates are well-proxied by fat-tailed densities like the Laplace or the asymmetric exponential power. Finally, we find that all our results are reasonably robust to a few alternative, economically meaningful, weighting schemes.

  11. Dynamic Mechanical and Thermal Properties of Bagasse/Glass Fiber/Polypropylene Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Mehdi Roohani

    2016-06-01

    Full Text Available This work aims to evaluate the thermal and dynamic mechanical properties of bagasse/glass fiber/polypropylene hybrid composites. Composites were prepared by the melt compounding method and their properties were characterized by differential scanning calorimetry (DSC and dynamic mechanical analysis (DMA. DSC results found that with incorporation of bagasse and glass fiber the melting temperature (Tm and the crystallisation temperature (Tc shift to higher temperatures and the degree of crystallinity (Xc increase. These findings suggest that the fibers played the role of a nucleating agent in composites. Dynamic mechanical analysis indicated that by the incorporation of bagasse and glass fiber into polypropylene, the storage modulus ( and the loss modulus ( increase whereas the mechanical loss factor (tanδ decrease. To assess the effect of reinforcement with increasing temperature, the effectiveness coefficient C was calculated at different temperature ranges and revealed that, at the elevated temperatures, improvement of mechanical properties due to the presence of fibers was more noticeable. The fiber-matrix adhesion efficiency determined by calculating of adhesion factor A in terms of the relative damping of the composite (tan δc and the polymer (tan δpand volume fraction of the fibers (Фf. Calculated adhesion factor A values indicated that by adding glass fiber to bagasse/polypropylene system, the fiber-matrix adhesion improve. Hybrid composite containing 25% bagasse and 15% glass fiber showed better fiber-matrix adhesion.

  12. Robustness analysis of complex networks with power decentralization strategy via flow-sensitive centrality against cascading failures

    Science.gov (United States)

    Guo, Wenzhang; Wang, Hao; Wu, Zhengping

    2018-03-01

    Most existing cascading failure mitigation strategy of power grids based on complex network ignores the impact of electrical characteristics on dynamic performance. In this paper, the robustness of the power grid under a power decentralization strategy is analysed through cascading failure simulation based on AC flow theory. The flow-sensitive (FS) centrality is introduced by integrating topological features and electrical properties to help determine the siting of the generation nodes. The simulation results of the IEEE-bus systems show that the flow-sensitive centrality method is a more stable and accurate approach and can enhance the robustness of the network remarkably. Through the study of the optimal flow-sensitive centrality selection for different networks, we find that the robustness of the network with obvious small-world effect depends more on contribution of the generation nodes detected by community structure, otherwise, contribution of the generation nodes with important influence on power flow is more critical. In addition, community structure plays a significant role in balancing the power flow distribution and further slowing the propagation of failures. These results are useful in power grid planning and cascading failure prevention.

  13. Dynamic properties of motor proteins with two subunits

    International Nuclear Information System (INIS)

    Kolomeisky, Anatoly B; III, Hubert Phillips

    2005-01-01

    The dynamics of motor protein molecules consisting of two subunits is investigated using simple discrete stochastic models. Exact steady-state analytical expressions are obtained for velocities and dispersions for any number of intermediate states and conformations between the corresponding binding states of proteins. These models enable us to provide a detailed description and comparison of two different mechanisms of the motion of motor proteins along the linear tracks: the hand-over-hand mechanism, when the motion of subunits alternate; and the inchworm mechanism, when one subunit is always trailing another one. It is shown that the proteins in the hand-over-hand mechanism move faster and fluctuate more than the molecules in the inchworm mechanism. The effect of external forces on dynamic properties of motor proteins is also discussed. Finally, a quantitative method, based on experimental observations for single motor proteins, is proposed for distinguishing between two mechanisms of motion

  14. Collapse mechanisms of metal foam matrix composites under static and dynamic loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Linul, Emanoil, E-mail: emanoil.linul@upt.ro [Department of Mechanics and Strength of Materials, Politehnica University of Timisoara, 1 Mihai Viteazu Avenue, 300 222 Timisoara (Romania); Marsavina, Liviu [Department of Mechanics and Strength of Materials, Politehnica University of Timisoara, 1 Mihai Viteazu Avenue, 300 222 Timisoara (Romania); Kováčik, Jaroslav [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 13 Bratislava (Slovakia)

    2017-04-06

    The collapse mechanisms of metal foam matrix composites under static and dynamic loading conditions were experimentally and analytically investigated. Closed-cell aluminium foam AlSi10 with 325±10 kg/m{sup 3} density was used as core material, while stainless-steel-mesh is the faces materials. Prior to characterizing the composite sandwich structure, the stainless steel mesh face material and closed-cell aluminium foam were characterized by tensile testing and compression testing, respectively. Experimental tests were performed on sandwich beams using both High Speed Camera and Digital Image Correlation system for strain distribution. All experimental tests were performed at room temperature with constant crosshead speed of 1.67×10{sup −4} m/s for static tests and 2 m/s impact loading speed for dynamic tests. Two main deformation behaviours of investigated metal foam matrix composites were observed following post-failure collapse: face failure and core shear. It was showed that the initiation, propagation and interaction of failure modes depend on the type of loading, constituent material properties and geometrical parameters.

  15. Estimating the biophysical properties of neurons with intracellular calcium dynamics.

    Science.gov (United States)

    Ye, Jingxin; Rozdeba, Paul J; Morone, Uriel I; Daou, Arij; Abarbanel, Henry D I

    2014-06-01

    We investigate the dynamics of a conductance-based neuron model coupled to a model of intracellular calcium uptake and release by the endoplasmic reticulum. The intracellular calcium dynamics occur on a time scale that is orders of magnitude slower than voltage spiking behavior. Coupling these mechanisms sets the stage for the appearance of chaotic dynamics, which we observe within certain ranges of model parameter values. We then explore the question of whether one can, using observed voltage data alone, estimate the states and parameters of the voltage plus calcium (V+Ca) dynamics model. We find the answer is negative. Indeed, we show that voltage plus another observed quantity must be known to allow the estimation to be accurate. We show that observing both the voltage time course V(t) and the intracellular Ca time course will permit accurate estimation, and from the estimated model state, accurate prediction after observations are completed. This sets the stage for how one will be able to use a more detailed model of V+Ca dynamics in neuron activity in the analysis of experimental data on individual neurons as well as functional networks in which the nodes (neurons) have these biophysical properties.

  16. A computational approach for inferring the cell wall properties that govern guard cell dynamics.

    Science.gov (United States)

    Woolfenden, Hugh C; Bourdais, Gildas; Kopischke, Michaela; Miedes, Eva; Molina, Antonio; Robatzek, Silke; Morris, Richard J

    2017-10-01

    Guard cells dynamically adjust their shape in order to regulate photosynthetic gas exchange, respiration rates and defend against pathogen entry. Cell shape changes are determined by the interplay of cell wall material properties and turgor pressure. To investigate this relationship between turgor pressure, cell wall properties and cell shape, we focused on kidney-shaped stomata and developed a biomechanical model of a guard cell pair. Treating the cell wall as a composite of the pectin-rich cell wall matrix embedded with cellulose microfibrils, we show that strong, circumferentially oriented fibres are critical for opening. We find that the opening dynamics are dictated by the mechanical stress response of the cell wall matrix, and as the turgor rises, the pectinaceous matrix stiffens. We validate these predictions with stomatal opening experiments in selected Arabidopsis cell wall mutants. Thus, using a computational framework that combines a 3D biomechanical model with parameter optimization, we demonstrate how to exploit subtle shape changes to infer cell wall material properties. Our findings reveal that proper stomatal dynamics are built on two key properties of the cell wall, namely anisotropy in the form of hoop reinforcement and strain stiffening. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd and Society for Experimental Biology.

  17. Characterization of dynamic change of Fan-delta reservoir properties in water-drive development

    Energy Technology Data Exchange (ETDEWEB)

    Wu Shenghe; Xiong Qihua; Liu Yuhong [Univ. of Petroleum Changping, Beijing (China)

    1997-08-01

    Fan-delta reservoir in Huzhuangji oil field of east China, is a typical highly heterogeneous reservoir. The oil field has been developed by water-drive for 10 years, but the oil recovery is less than 12%, and water cut is over 90%, resulting from high heterogeneity and serious dynamic change of reservoir properties. This paper aims at the study of dynamic change of reservoir properties in water-drive development. Through quantitative imaging analysis and mercury injection analysis of cores from inspection wells, the dynamic change of reservoir pore structure in water-drive development was studied. The results show that the {open_quotes}large pore channels{close_quotes} develop in distributary channel sandstone and become larger in water-drive development, resulting in more serious pore heterogeneity. Through reservoir sensitivity experiments, the rock-fluid reaction in water-drive development is studied. The results show the permeability of some distal bar sandstone and deserted channel sandstone becomes lower due to swelling of I/S clay minerals in pore throats. OD the other hand, the permeability of distributary channel and mouth bar sandstone become larger because the authigenic Koalinites in pore throats are flushed away with the increase of flow rate of injection water. Well-logging analysis of flooded reservoirs are used to study the dynamic change of reservoir properties in various flow units. The distribution of remaining oil is closely related to the types and distribution of flow units.

  18. Critical Evolution of Damage Toward System-Size Failure in Crystalline Rock

    Science.gov (United States)

    Renard, François; Weiss, Jérôme; Mathiesen, Joachim; Ben-Zion, Yehuda; Kandula, Neelima; Cordonnier, Benoît

    2018-02-01

    Rock failure under shear loading conditions controls earthquake and faulting phenomena. We study the dynamics of microscale damage precursory to shear faulting in a quartz-monzonite rock representative of crystalline rocks of the continental crust. Using a triaxial rig that is transparent to X-rays, we image the mechanical evolution of centimeter-size core samples by in situ synchrotron microtomography with a resolution of 6.5 μm. Time-lapse three-dimensional images of the samples inside the rig provide a unique data set of microstructural evolution toward faulting. Above a yield point there is a gradual weakening during which microfractures nucleate and grow until this damage span the whole sample. This leads to shear faults oriented about 30° to the main compressive stress in agreement with Anderson's theory and macroscopic failure. The microfractures can be extracted from the three-dimensional images, and their dynamics and morphology (i.e., number, volume, orientation, shape, and largest cluster) are quantified as a function of increasing stress toward failure. The experimental data show for the first time that the total volume of microfractures, the rate of damage growth, and the size of the largest microfracture all increase and diverge when approaching faulting. The average flatness of the microfractures (i.e., the ratio between the second and third eigenvalues of their covariance matrix) shows a significant decrease near failure. The precursors to faulting developing in the future faulting zone are controlled by the evolving microfracture population. Their divergent dynamics toward failure is reminiscent of a dynamical critical transition.

  19. Intermittency and roughening in the failure of brittle heterogeneous materials

    International Nuclear Information System (INIS)

    Bonamy, Daniel

    2009-01-01

    Stress enhancement in the vicinity of brittle cracks makes the macro-scale failure properties extremely sensitive to the micro-scale material disorder. Therefore, (i) fracturing systems often display a jerky dynamics, so-called crackling noise, with seemingly random sudden energy release spanning over a broad range of scales, reminiscent of earthquakes; (ii) fracture surfaces exhibit roughness at scales much larger than that of material microstructure. Here, I provide a critical review of experiments and simulations performed in this context, highlighting the existence of universal scaling features, independent of both the material and the loading conditions, reminiscent of critical phenomena. I finally discuss recent stochastic descriptions of crack growth in brittle disordered media that seem to capture qualitatively-and sometimes quantitatively-these scaling features.

  20. A Weibull distribution accrual failure detector for cloud computing.

    Science.gov (United States)

    Liu, Jiaxi; Wu, Zhibo; Wu, Jin; Dong, Jian; Zhao, Yao; Wen, Dongxin

    2017-01-01

    Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing.

  1. Dynamic properties of anhydrites, marls and salts of the Gachsaran evaporitic formation, Iran

    International Nuclear Information System (INIS)

    Gorjian, M; Memarian, H; Moosavi, M; Mehrgini, B

    2013-01-01

    A large carbonate oil field in Iran is suffering from severe casing collapses and related operational problems in anhydrite, marl and salt sequences of the Gachsaran cap rock formation. To investigate the causes and cures of operational problems, specifically casing collapse, knowing geomechanical properties of anhydrite, marl and salt of this formation is a prerequisite. However, taking cores in this formation is virtually impossible due to high solubility and weakness of the rocks. Moreover, there are insufficient well log data in this formation and the only available running well log is V p . In this paper, in order to obtain the dynamic parameters of the Gachsaran formation, V p , V s and ρ b in anhydrite, marl and salt cores, which had been taken from depths up to 300 m, were measured. Moreover, V p and V s in salt cores under different triaxial and hydrostatic stress conditions were obtained. The V p –V s, (V p /V s )–V p and V p –ρ b relations in anhydrite, marl and salt were investigated. The established relations in these anhydrite samples were verified by the data derived from limited cores which were taken from 3600 m depth. The relations between dynamic properties of salt with lateral and hydrostatic stresses were investigated. In conclusion, V s , ρ b and the ratio of V p /V s in anhydrite and marl can be estimated through the established relations and having V p logs in the Gachsaran formation. As a result, the dynamic properties of these rocks can be calculated in different depths of this evaporitic formation. Furthermore, the dynamic properties of salt rock seem to be constant in various depths and under differing triaxial and hydrostatic stress conditions. (paper)

  2. Modeling combined tension-shear failure of ductile materials

    International Nuclear Information System (INIS)

    Partom, Y

    2014-01-01

    Failure of ductile materials is usually expressed in terms of effective plastic strain. Ductile materials can fail by two different failure modes, shear failure and tensile failure. Under dynamic loading shear failure has to do with shear localization and formation of adiabatic shear bands. In these bands plastic strain rate is very high, dissipative heating is extensive, and shear strength is lost. Shear localization starts at a certain value of effective plastic strain, when thermal softening overcomes strain hardening. Shear failure is therefore represented in terms of effective plastic strain. On the other hand, tensile failure comes about by void growth under tension. For voids in a tension field there is a threshold state of the remote field for which voids grow spontaneously (cavitation), and the material there fails. Cavitation depends on the remote field stress components and on the flow stress. In this way failure in tension is related to shear strength and to failure in shear. Here we first evaluate the cavitation threshold for different remote field situations, using 2D numerical simulations with a hydro code. We then use the results to compute examples of rate dependent tension-shear failure of a ductile material.

  3. Integrated failure probability estimation based on structural integrity analysis and failure data: Natural gas pipeline case

    International Nuclear Information System (INIS)

    Dundulis, Gintautas; Žutautaitė, Inga; Janulionis, Remigijus; Ušpuras, Eugenijus; Rimkevičius, Sigitas; Eid, Mohamed

    2016-01-01

    In this paper, the authors present an approach as an overall framework for the estimation of the failure probability of pipelines based on: the results of the deterministic-probabilistic structural integrity analysis (taking into account loads, material properties, geometry, boundary conditions, crack size, and defected zone thickness), the corrosion rate, the number of defects and failure data (involved into the model via application of Bayesian method). The proposed approach is applied to estimate the failure probability of a selected part of the Lithuanian natural gas transmission network. The presented approach for the estimation of integrated failure probability is a combination of several different analyses allowing us to obtain: the critical crack's length and depth, the failure probability of the defected zone thickness, dependency of the failure probability on the age of the natural gas transmission pipeline. A model's uncertainty analysis and uncertainty propagation analysis are performed, as well. - Highlights: • Degradation mechanisms of natural gas transmission pipelines. • Fracture mechanic analysis of the pipe with crack. • Stress evaluation of the pipe with critical crack. • Deterministic-probabilistic structural integrity analysis of gas pipeline. • Integrated estimation of pipeline failure probability by Bayesian method.

  4. Dynamical Properties of Internal Shocks Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Pe’er, Asaf; Long, Killian [Physics Department, University College Cork, Cork (Ireland); Casella, Piergiorgio [INAF, Osservatorio Astronomico di Roma, Via Frascati 33, I-00078 Monteporzio Catone (Italy)

    2017-09-01

    Internal shocks between propagating plasma shells, originally ejected at different times with different velocities, are believed to play a major role in dissipating the kinetic energy, thereby explaining the observed light curves and spectra in a large range of transient objects. Even if initially the colliding plasmas are cold, following the first collision, the plasma shells are substantially heated, implying that in a scenario of multiple collisions, most collisions take place between plasmas of non-zero temperatures. Here, we calculate the dynamical properties of plasmas resulting from a collision between arbitrarily hot plasma shells, moving at arbitrary speeds. We provide simple analytical expressions valid for both ultrarelativistic and Newtonian velocities for both hot and cold plasmas. We derive the minimum criteria required for the formation of the two-shock wave system, and show that in the relativistic limit, the minimum Lorentz factor is proportional to the square root of the ratio of the initial plasmas enthalpies. We provide basic scaling laws of synchrotron emission from both the forward and reverse-shock waves, and show how these can be used to deduce the properties of the colliding shells. Finally, we discuss the implications of these results in the study of several astronomical transients, such as X-ray binaries, radio-loud quasars, and gamma-ray bursts.

  5. Dynamic Properties of Star-Branched Polymer Brushes

    International Nuclear Information System (INIS)

    Sikorski, A.; Romiszowski, P.

    2004-01-01

    We studied a simplified model of a polymer brush. It consisted of star-branched chains, which were restricted to a simple cubic lattice. Each star-branched macromolecule consisted of three linear arms of equal length emanating from a common origin (the branching point). The chains were grafted to an impenetrable surface, i.e. they were terminally attached to the surface with one arm. The number of chains was varied from low to high grafting density. The model system was studied at good solvent conditions because the excluded volume effect was the only potential of interaction included in the model. The properties of this model system were studied by means of Monte Carlo simulation. The sampling algorithm was based on local changes of chain conformations. The dynamic properties of the polymer brush were studied and correlated with its structure. The differences in relaxation times of particular star arms were shown. The short-time mobility of polymer layers was analyzed. The lateral self-diffusion of chains was also studied and discussed. (author)

  6. Correction of Dynamic Characteristics of SAR Cryogenic GTE on Consumption of Gasified Fuel

    Science.gov (United States)

    Bukin, V. A.; Gimadiev, A. G.; Gangisetty, G.

    2018-01-01

    When the gas turbine engines (GTE) NK-88 were developed for liquid hydrogen and NK-89 for liquefied natural gas, performance of the systems with a turbo-pump unitary was improved and its proved without direct regulation of the flow of a cryogenic fuel, which was supplied by a centrifugal pump of the turbo-pump unit (TPU) Command from the “kerosene” system. Such type of the automatic control system (SAR) has the property of partial “neutralization” of the delay caused by gasification of the fuel. This does not require any measurements in the cryogenic medium, and the failure of the centrifugal cryogenic pump does not lead to engine failure. On the other hand, the system without direct regulation of the flow of cryogenic fuel has complex internal dynamic connections, their properties are determined by the characteristics of the incoming units and assemblies, and it is difficult to maintain accurate the maximum boundary level and minimum fuel consumption due to the influence of a booster pressure change. Direct regulation of the consumption of cryogenic fuel (prior to its gasification) is the preferred solution, since for using traditional liquid and gaseous fuels this is the main and proven method. The scheme of correction of dynamic characteristics of a single-loop SAR GTE for the consumption of a liquefied cryogenic fuel with a flow rate correction in its gasified state, which ensures the dynamic properties of the system is not worse than for NK-88 and NK-89 engines.

  7. Failure Mechanisms of Brittle Rocks under Uniaxial Compression

    Science.gov (United States)

    Liu, Taoying; Cao, Ping

    2017-09-01

    The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.

  8. Failure behavior of concrete pile and super-structure dynamic response as a result of soil liquefaction during earthquake

    Science.gov (United States)

    Kaneda, Shogo; Hayashi, Kazuhiro; Hachimori, Wataru; Tamura, Shuji; Saito, Taiki

    2017-10-01

    In past earthquake disasters, numerous building structure piles were damaged by soil liquefaction occurring during the earthquake. Damage to these piles, because they are underground, is difficult to find. The authors aim to develop a monitoring method of pile damage based on superstructure dynamic response. This paper investigated the relationship between the damage of large cross section cementitious piles and the dynamic response of the super structure using a centrifuge test apparatus. A dynamic specimen used simple cross section pile models consisting of aluminum rod and mortar, a saturated soil (Toyoura sand) of a relative density of 40% and a super structure model of a natural period of 0.63sec. In the shaking table test under a 50G field (length scale of 1/50), excitation was a total of 3 motions scaled from the Rinkai wave at different amplitudes. The maximum acceleration of each of the excitations was 602gal, 336gal and 299gal. The centrifuge test demonstrated the liquefaction of saturated soil and the failure behavior of piles. In the test result, the damage of piles affected the predominant period of acceleration response spectrum on the footing of the superstructure.

  9. Detection of Failure in Asynchronous Motor Using Soft Computing Method

    Science.gov (United States)

    Vinoth Kumar, K.; Sony, Kevin; Achenkunju John, Alan; Kuriakose, Anto; John, Ano P.

    2018-04-01

    This paper investigates the stator short winding failure of asynchronous motor also their effects on motor current spectrums. A fuzzy logic approach i.e., model based technique possibly will help to detect the asynchronous motor failure. Actually, fuzzy logic similar to humanoid intelligent methods besides expected linguistic empowering inferences through vague statistics. The dynamic model is technologically advanced for asynchronous motor by means of fuzzy logic classifier towards investigate the stator inter turn failure in addition open phase failure. A hardware implementation was carried out with LabVIEW for the online-monitoring of faults.

  10. Dynamical properties of fractal networks: Scaling, numerical simulations, and physical realizations

    International Nuclear Information System (INIS)

    Nakayama, T.; Yakubo, K.; Orbach, R.L.

    1994-01-01

    This article describes the advances that have been made over the past ten years on the problem of fracton excitations in fractal structures. The relevant systems to this subject are so numerous that focus is limited to a specific structure, the percolating network. Recent progress has followed three directions: scaling, numerical simulations, and experiment. In a happy coincidence, large-scale computations, especially those involving array processors, have become possible in recent years. Experimental techniques such as light- and neutron-scattering experiments have also been developed. Together, they form the basis for a review article useful as a guide to understanding these developments and for charting future research directions. In addition, new numerical simulation results for the dynamical properties of diluted antiferromagnets are presented and interpreted in terms of scaling arguments. The authors hope this article will bring the major advances and future issues facing this field into clearer focus, and will stimulate further research on the dynamical properties of random systems

  11. The DYLAM approach for the dynamic reliability analysis of systems

    International Nuclear Information System (INIS)

    Cojazzi, Giacomo

    1996-01-01

    In many real systems, failures occurring to the components, control failures and human interventions often interact with the physical system evolution in such a way that a simple reliability analysis, de-coupled from process dynamics, is very difficult or even impossible. In the last ten years many dynamic reliability approaches have been proposed to properly assess the reliability of these systems characterized by dynamic interactions. The DYLAM methodology, now implemented in its latest version, DYLAM-3, offers a powerful tool for integrating deterministic and failure events. This paper describes the main features of the DYLAM-3 code with reference to the classic fault-tree and event-tree techniques. Some aspects connected to the practical problems underlying dynamic event-trees are also discussed. A simple system, already analyzed with other dynamic methods is used as a reference for the numerical applications. The same system is also studied with a time-dependent fault-tree approach in order to show some features of dynamic methods vs classical techniques. Examples including stochastic failures, without and with repair, failures on demand and time dependent failure rates give an extensive overview of DYLAM-3 capabilities

  12. Two-Scale Modelling of Effects of Microstructure and Thermomechanical Properties on Dynamic Performance of an Aluminium Alloy

    Science.gov (United States)

    2010-09-01

    Influences of microstructure and properties of an aluminium alloy on resistance to dynamic perforation are predicted using a decoupled multiscale ... simulated performance. Library parameters typical for aluminium alloys (Kohn, 1969) are used for the macroscopic equation of state of Al 2139, details of...Two-Scale Modelling of Effects of Microstructure and Thermomechanical Properties on Dynamic Performance of an Aluminium Alloy by J. D

  13. Measures of thermodynamic irreversibility in deterministic and stochastic dynamics

    International Nuclear Information System (INIS)

    Ford, Ian J

    2015-01-01

    It is generally observed that if a dynamical system is sufficiently complex, then as time progresses it will share out energy and other properties amongst its component parts to eliminate any initial imbalances, retaining only fluctuations. This is known as energy dissipation and it is closely associated with the concept of thermodynamic irreversibility, measured by the increase in entropy according to the second law. It is of interest to quantify such behaviour from a dynamical rather than a thermodynamic perspective and to this end stochastic entropy production and the time-integrated dissipation function have been introduced as analogous measures of irreversibility, principally for stochastic and deterministic dynamics, respectively. We seek to compare these measures. First we modify the dissipation function to allow it to measure irreversibility in situations where the initial probability density function (pdf) of the system is asymmetric as well as symmetric in velocity. We propose that it tests for failure of what we call the obversibility of the system, to be contrasted with reversibility, the failure of which is assessed by stochastic entropy production. We note that the essential difference between stochastic entropy production and the time-integrated modified dissipation function lies in the sequence of procedures undertaken in the associated tests of irreversibility. We argue that an assumed symmetry of the initial pdf with respect to velocity inversion (within a framework of deterministic dynamics) can be incompatible with the Past Hypothesis, according to which there should be a statistical distinction between the behaviour of certain properties of an isolated system as it evolves into the far future and the remote past. Imposing symmetry on a velocity distribution is acceptable for many applications of statistical physics, but can introduce difficulties when discussing irreversible behaviour. (paper)

  14. In-situ failure test in the research tunnel at Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Autio, J.; Johansson, E.; Kirkkomaeki, T. [Saanio and Riekkola Consulting Engineers, Helsinki (Finland); Hakala, M. [Gridpoint Finland Oy (Finland); Heikkilae, E. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Rock Engineering

    2000-05-01

    A failure test suitable for execution in the Research Tunnel at Olkiluoto has been planned to study the failure of rock in-situ. The objectives of the in-situ failure test is to assess the applicability of numerical modelling codes and methods to the study of rock failure and associated crack propagation and to develop a novel technique to be used to determine the strength of rock in-situ. The objective of this study was to make a preliminary design of the failure test, assess the technical feasibility of the test and to give input information for further numerical modelling of the test. The design of the failure test is reported and results of preliminary modelling are given. The input information for future modelling includes a study of rock properties, fracture propagation in rock, in-situ stresses and the development of techniques for using the expanding agent to produce artificial stress field. The study showed that mechanical properties such as strength of gneissic tonalite, the main rock type in the Research Tunnel, depends highly on the orientation of schistocity. The in-situ failure test was shown to be technically feasible and a state of stress high enough to cause failure can be created artificially by using a proper expansive agent and design. (orig.)

  15. Micromechanics Based Failure Analysis of Heterogeneous Materials

    Science.gov (United States)

    Sertse, Hamsasew M.

    In recent decades, heterogeneous materials are extensively used in various industries such as aerospace, defense, automotive and others due to their desirable specific properties and excellent capability of accumulating damage. Despite their wide use, there are numerous challenges associated with the application of these materials. One of the main challenges is lack of accurate tools to predict the initiation, progression and final failure of these materials under various thermomechanical loading conditions. Although failure is usually treated at the macro and meso-scale level, the initiation and growth of failure is a complex phenomena across multiple scales. The objective of this work is to enable the mechanics of structure genome (MSG) and its companion code SwiftComp to analyze the initial failure (also called static failure), progressive failure, and fatigue failure of heterogeneous materials using micromechanics approach. The initial failure is evaluated at each numerical integration point using pointwise and nonlocal approach for each constituent of the heterogeneous materials. The effects of imperfect interfaces among constituents of heterogeneous materials are also investigated using a linear traction-displacement model. Moreover, the progressive and fatigue damage analyses are conducted using continuum damage mechanics (CDM) approach. The various failure criteria are also applied at a material point to analyze progressive damage in each constituent. The constitutive equation of a damaged material is formulated based on a consistent irreversible thermodynamics approach. The overall tangent modulus of uncoupled elastoplastic damage for negligible back stress effect is derived. The initiation of plasticity and damage in each constituent is evaluated at each numerical integration point using a nonlocal approach. The accumulated plastic strain and anisotropic damage evolution variables are iteratively solved using an incremental algorithm. The damage analyses

  16. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions.

    Science.gov (United States)

    Luo, Zhongkui; Feng, Wenting; Luo, Yiqi; Baldock, Jeff; Wang, Enli

    2017-10-01

    Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (r C , Mg C ha -1  yr -1 ). Among these variables, we found that the most influential variables on r C were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on r C , followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining r C . The direct correlation of r C with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process-based SOC models. © 2017 John Wiley & Sons Ltd.

  17. Covalent dye attachment influences the dynamics and conformational properties of flexible peptides.

    Directory of Open Access Journals (Sweden)

    Manuel P Luitz

    Full Text Available Fluorescence spectroscopy techniques like Förster resonance energy transfer (FRET and fluorescence correlation spectroscopy (FCS have become important tools for the in vitro and in vivo investigation of conformational dynamics in biomolecules. These methods rely on the distance-dependent quenching of the fluorescence signal of a donor fluorophore either by a fluorescent acceptor fluorophore (FRET or a non-fluorescent quencher, as used in FCS with photoinduced electron transfer (PET. The attachment of fluorophores to the molecule of interest can potentially alter the molecular properties and may affect the relevant conformational states and dynamics especially of flexible biomolecules like intrinsically disordered proteins (IDP. Using the intrinsically disordered S-peptide as a model system, we investigate the impact of terminal fluorescence labeling on the molecular properties. We perform extensive molecular dynamics simulations on the labeled and unlabeled peptide and compare the results with in vitro PET-FCS measurements. Experimental and simulated timescales of end-to-end fluctuations were found in excellent agreement. Comparison between simulations with and without labels reveal that the π-stacking interaction between the fluorophore labels traps the conformation of S-peptide in a single dominant state, while the unlabeled peptide undergoes continuous conformational rearrangements. Furthermore, we find that the open to closed transition rate of S-peptide is decreased by at least one order of magnitude by the fluorophore attachment. Our approach combining experimental and in silico methods provides a benchmark for the simulations and reveals the significant effect that fluorescence labeling can have on the conformational dynamics of small biomolecules, at least for inherently flexible short peptides. The presented protocol is not only useful for comparing PET-FCS experiments with simulation results but provides a strategy to minimize the

  18. Failure analysis of prestressed concrete beam under impact loading

    International Nuclear Information System (INIS)

    Ishikawa, N.; Sonoda, Y.; Kobayashi, N.

    1993-01-01

    This paper presents a failure analysis of prestressed concrete (PC) beam under impact loading. At first, the failure analysis of PC beam section is performed by using the discrete section element method in order to obtain the dynamic bending moment-curvature relation. Secondary, the failure analysis of PC beam is performed by using the rigid panel-spring model. Finally, the numerical calculation is executed and is compared with the experimental results. It is found that this approach can simulate well the experiments at the local and overall failure of the PC beam as well as the impact load and the displacement-time relations. (author)

  19. Extreme events and predictability of catastrophic failure in composite materials and in the Earth

    Science.gov (United States)

    Main, I.; Naylor, M.

    2012-05-01

    Despite all attempts to isolate and predict extreme earthquakes, these nearly always occur without obvious warning in real time: fully deterministic earthquake prediction is very much a `black swan'. On the other hand engineering-scale samples of rocks and other composite materials often show clear precursors to dynamic failure under controlled conditions in the laboratory, and successful evacuations have occurred before several volcanic eruptions. This may be because extreme earthquakes are not statistically special, being an emergent property of the process of dynamic rupture. Nevertheless, probabilistic forecasting of event rate above a given size, based on the tendency of earthquakes to cluster in space and time, can have significant skill compared to say random failure, even in real-time mode. We address several questions in this debate, using examples from the Earth (earthquakes, volcanoes) and the laboratory, including the following. How can we identify `characteristic' events, i.e. beyond the power law, in model selection (do dragon-kings exist)? How do we discriminate quantitatively between stationary and non-stationary hazard models (is a dragon likely to come soon)? Does the system size (the size of the dragon's domain) matter? Are there localising signals of imminent catastrophic failure we may not be able to access (is the dragon effectively invisible on approach)? We focus on the effect of sampling effects and statistical uncertainty in the identification of extreme events and their predictability, and highlight the strong influence of scaling in space and time as an outstanding issue to be addressed by quantitative studies, experimentation and models.

  20. Failure Waves in Shock-Compressed Glasses

    International Nuclear Information System (INIS)

    Kanel, G. I.

    2006-01-01

    The failure wave is a network of cracks that are nucleated on the surface and propagate into the elastically stressed body. It is a mode of catastrophic fracture in an elastically stressed media whose relevance is not limited to impact events. In the paper, main properties of the failure waves are summarized and discussed. It has been shown that the failure wave is really a wave process which is characterized by small increase of the longitudinal stress and corresponding increments of the particle velocity and the density. The propagation velocity of the failure wave is less than the sound speed; it is not directly related to the compressibility but is determined by the crack growth speed. The failure wave is steady if the stress state ahead of it is supported unchanging. In some sense the process is similar to a subsonic combustion wave. Computer simulations based on the phenomenological combustion-like model reproduces well all kinematical aspects of the phenomenon

  1. Statistical properties of anti-symmetrized molecular dynamics

    International Nuclear Information System (INIS)

    Ohnishi, A.; Randrup, J.

    1993-01-01

    We study the statistical equilibrium properties of the recently developed anti-symmetrized molecular dynamics model for heavy-ion reactions. We consider A non-interacting fermions in one dimension, either bound in a common harmonic potential or moving freely within an interval, and perform a Metropolis sampling of the corresponding parameter space. Generally the average excitation and the specific heat, considered as functions of the imposed temperature, behave in a classical manner when the canonical weight is calculated in the mean-field approximation. However, it is possible to obtain results that are much closer to the quantal behavior by modifying the weight to take approximate account of the energy fluctuations within the individual wave packets. (orig.)

  2. The need for speed: informed land acquisitions for conservation in a dynamic property market.

    Science.gov (United States)

    McDonald-Madden, Eve; Bode, Michael; Game, Edward T; Grantham, Hedley; Possingham, Hugh P

    2008-11-01

    Land acquisition is a common approach to biodiversity conservation but is typically subject to property availability on the public market. Consequently, conservation plans are often unable to be implemented as intended. When properties come on the market, conservation agencies must make a choice: purchase immediately, often without a detailed knowledge of its biodiversity value; survey the parcel and accept the risk that it may be removed from the market during this process; or not purchase and hope a better parcel comes on the market at a later date. We describe both an optimal method, using stochastic dynamic programming, and a simple rule of thumb for making such decisions. The solutions to this problem illustrate how optimal conservation is necessarily dynamic and requires explicit consideration of both the time period allowed for implementation and the availability of properties.

  3. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  4. The PTFE-nanocomposites mechanical properties for transport systems dynamic sealing devices elements

    Science.gov (United States)

    Mashkov, Y. K.; Egorova, V. A.; Chemisenko, O. V.; Maliy, O. V.

    2017-06-01

    The mechanical properties study results of polymer nanocomposites based on polytetrafluoroethylene with modifiers in the form of micro- and nanoscale cryptocrystalline graphite and silicon dioxide powders are determined. The nanocomposites mechanical properties determined values provide high sealing degree of transport systems dynamic sealing devices elements. When the temperature changes from cryogenic to high positive then the elastic modulus, tensile strength decrease significantly and nonlinearly, the latter limits the composite usage in heavily loaded tribosystems operating at elevated temperatures.

  5. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Quesnel, David J. [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States)

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical properties of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the

  6. Investigation of static and dynamic properties of condensed matter by using neutron scattering

    International Nuclear Information System (INIS)

    Davidovic, M.

    1997-01-01

    Possibilities of using neutron scattering for investigating microscopic properties of materials are analyzed. Basic neutron scattering theory is presented and its use in structure and dynamics analyses of condense systems. (author)

  7. Preparation and Dynamic Mechanical Properties at Elevated Temperatures of a Tungsten/Glass Composite

    Science.gov (United States)

    Gao, Chong; Wang, Yingchun; Ma, Xueya; Liu, Keyi; Wang, Yubing; Li, Shukui; Cheng, Xingwang

    2018-03-01

    Experiments were conducted to prepare a borosilicate glass matrix composite containing 50 vol.% tungsten and examine its dynamic compressive behavior at elevated temperatures in the range of 450-775 °C. The results show that the homogenous microstructure of the tungsten/glass composite with relative density of 97% can be obtained by hot-pressing sintering at 800 °C for 1 h under pressure of 30 MPa. Dynamic compressive testing was carried out by a separate Hopkinson pressure bar system with a synchronous device. The results show that the peak stress decreases and the composite transforms from brittle to ductile in nature with testing temperature increasing from 450 to 750 °C. The brittle-ductile transition temperature is about 500 °C. Over 775 °C, the composite loses load-bearing capacity totally because of the excessive softening of the glass phase. In addition, the deformation and failure mechanism were analyzed.

  8. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation

    International Nuclear Information System (INIS)

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2015-01-01

    Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance

  9. Structure/property (constitutive and dynamic strength/damage characterization of additively manufactured 316L SS

    Directory of Open Access Journals (Sweden)

    Gray III G.T.

    2015-01-01

    Full Text Available For additive manufacturing (AM, the certification and qualification paradigm needs to evolve as there exists no “ASTM-type” additive manufacturing certified process or AM-material produced specifications. Accordingly, utilization of AM materials to meet engineering applications requires quantification of the constitutive properties of these evolving materials in comparison to conventionally-manufactured metals and alloys. Cylinders of 316L SS were produced using a LENS MR-7 laser additive manufacturing system from Optomec (Albuquerque, NM equipped with a 1kW Yb-fiber laser. The microstructure of the AM-316L SS is detailed in both the as-built condition and following heat-treatments designed to obtain full recrystallization. The constitutive behavior as a function of strain rate and temperature is presented and compared to that of nominal annealed wrought 316L SS plate. The dynamic damage evolution and failure response of all three materials was probed using flyer-plate impact driven spallation experiments at a peak stress of 4.5 GPa to examine incipient spallation response. The spall strength of AM-produced 316L SS was found to be very similar for the peak shock stress studied to that of annealed wrought or AM-316L SS following recrystallization. The damage evolution as a function of microstructure was characterized using optical metallography.

  10. A study on the dynamic behavior of the Meuse/Haute-Marne argillite

    Science.gov (United States)

    Cai, M.; Kaiser, P. K.; Suorineni, F.; Su, K.

    Excavation of underground tunnels can be conducted by tunnel boring machines (TBM) or drill-and-blast. TBMs cause minimum damage to excavation walls. Blasting effects on excavation walls depend on the care with which the blasting is executed. For blast-induced damage in excavation walls, two issues have to be addressed: rate of loss of confinement (rate of excavation) and dynamic loading from wave propagation that causes both intended and unintended damage. To address these two aspects, laboratory dynamic tests were conducted for the determination of the dynamic properties of the Meuse/Haute-Marne argillite. In the present study, 17 tensile (Brazilian) and 15 compression split Hopkinson pressure bar (SHPB) tests were conducted. The test revealed that the dynamic strengths of the argillite are strain rate dependent. The average dynamic increase factors (ratio of dynamic strength to static strength) for tensile and compressive strength are about 3.3 and 2.4, respectively. A high-speed video camera was used to visualize the initiation of failure and subsequent deformation of the specimens. The direct compression specimens were found to deform and fail uniformly around the circumference of the specimen, by a spalling process. The SHPB Brazilian tests indicated that failure occurred in tension along the line of load application. Radial fractures were also observed. The test results can be used for the development of a dynamic constitutive model for the argillite for the prediction of damage in underground excavation utilizing the drill-and blast method.

  11. Functional dynamic MR imaging and pharmacokinetics of Gd-DTPA in patients with renal failure

    International Nuclear Information System (INIS)

    Krestin, G.P.; Neufang, K.F.R.; Friedmann, G.; Clauss, W.; Schuhmann-Giampieri, G.; Stoeckl, B.

    1989-01-01

    This paper reports excretion of Gd-DTPA analyzed in 20 patients with renal parenchymal disease and decreased creatinine clearance (20-80 mL/min) and compared with excretion in five patients with normal renal function. All 25 underwent a dynamic MR study that employed fast gradient-echo sequences with single images during breath holding. The time between appearance of the contrast agent in the renal cortex and signal intensity drop in the medulla was an indicator of glomerular filtration rate and correlated well with creatinine clearance values. Fractionate urine collection and serum analysis up to 120 hours showed a prolonged but complete (98%) elimination of Gd-DTPA. Renal functional parameters did not change after administration of Gd-DTPA, and no nephrotoxic effects were observed. Thus, MR imaging provides a good quantitative evaluation of the glomerular filtration rate; moreover, administration of Gd-DTPA in patients with renal failure does not impair excretory function and can therefore be safely applied in patients with reduced excretory function

  12. Predictive Modeling of Mechanical Properties of Welded Joints Based on Dynamic Fuzzy RBF Neural Network

    Directory of Open Access Journals (Sweden)

    ZHANG Yongzhi

    2016-10-01

    Full Text Available A dynamic fuzzy RBF neural network model was built to predict the mechanical properties of welded joints, and the purpose of the model was to overcome the shortcomings of static neural networks including structural identification, dynamic sample training and learning algorithm. The structure and parameters of the model are no longer head of default, dynamic adaptive adjustment in the training, suitable for dynamic sample data for learning, learning algorithm introduces hierarchical learning and fuzzy rule pruning strategy, to accelerate the training speed of model and make the model more compact. Simulation of the model was carried out by using three kinds of thickness and different process TC4 titanium alloy TIG welding test data. The results show that the model has higher prediction accuracy, which is suitable for predicting the mechanical properties of welded joints, and has opened up a new way for the on-line control of the welding process.

  13. Tensile Creep and Fatigue of Sylramic-iBN Melt-Infiltrated SiC Matrix Composites: Retained Properties, Damage Development, and Failure Mechanisms

    Science.gov (United States)

    Morscher, Greg; Gowayed, yasser; Miller, Robert; Ojard, Greg; Ahmad, Jalees; Santhosh, Unni; John, Reji

    2008-01-01

    An understanding of the elevated temperature tensile creep, fatigue, rupture, and retained properties of ceramic matrix composites (CMC) envisioned for use in gas turbine engine applications are essential for component design and life-prediction. In order to quantify the effect of stress, time, temperature, and oxidation for a state-of-the-art composite system, a wide variety of tensile creep, dwell fatigue, and cyclic fatigue experiments were performed in air at 1204 C for the SiC/SiC CMC system consisting of Sylramic-iBN SiC fibers, BN fiber interphase coating, and slurry-cast melt-infiltrated (MI) SiC-based matrix. Tests were either taken to failure or interrupted. Interrupted tests were then mechanically tested at room temperature to determine the residual properties. The retained properties of most of the composites subjected to tensile creep or fatigue were usually within 20% of the as-produced strength and 10% of the as-produced elastic modulus. It was observed that during creep, residual stresses in the composite are altered to some extent which results in an increased compressive stress in the matrix upon cooling and a subsequent increased stress required to form matrix cracks. Microscopy of polished sections and the fracture surfaces of specimens which failed during stressed-oxidation or after the room-temperature retained property test was performed on some of the specimens in order to quantify the nature and extent of damage accumulation that occurred during the test. It was discovered that the distribution of stress-dependent matrix cracking at 1204 C was similar to the as-produced composites at room temperature; however, matrix crack growth occurred over time and typically did not appear to propagate through thickness except at final failure crack. Failure of the composites was due to either oxidation-induced unbridged crack growth, which dominated the higher stress regime (> 179 MPa) or controlled by degradation of the fibers, probably caused by

  14. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Pengfei; Zhang, Yuwen, E-mail: zhangyu@missouri.edu [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Yang, Mo [College of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2013-12-21

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.

  15. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    International Nuclear Information System (INIS)

    Ji, Pengfei; Zhang, Yuwen; Yang, Mo

    2013-01-01

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective

  16. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    Science.gov (United States)

    Ji, Pengfei; Zhang, Yuwen; Yang, Mo

    2013-12-01

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.

  17. Surface, dynamic and structural properties of liquid Al-Ti alloys

    International Nuclear Information System (INIS)

    Novakovic, R.; Giuranno, D.; Ricci, E.; Tuissi, A.; Wunderlich, R.; Fecht, H.-J.; Egry, I.

    2012-01-01

    The systems containing highly reactive element such as Ti are the most difficult to be determined experimentally and therefore, it is often necessary to estimate the missing values by theoretical models. The thermodynamic data of the Al-Ti system are scarce, its phase diagram is still incomplete and there are very few data on the thermophysical properties of Al-Ti melts. The study on surface, dynamic and static structural properties of liquid Al-Ti alloys has been carried out within the framework of the Compound Formation Model. In spite of the experimental difficulties, the surface tension of liquid Al-2 at.%Ti alloy has been measured over a temperature range by the pinned drop method.

  18. MAPPING OF RESERVOIR PROPERTIES AND FACIES THROUGH INTEGRATION OF STATIC AND DYNAMIC DATA

    Energy Technology Data Exchange (ETDEWEB)

    Albert C. Reynolds; Dean S. Oliver; Fengjun Zhang; Yannong Dong; Jan Arild Skjervheim; Ning Liu

    2003-01-01

    Knowledge of the distribution of permeability and porosity in a reservoir is necessary for the prediction of future oil production, estimation of the location of bypassed oil, and optimization of reservoir management. But while the volume of data that can potentially provide information on reservoir architecture and fluid distributions has increased enormously in the past decade, it is not yet possible to make use of all the available data in an integrated fashion. While it is relatively easy to generate plausible reservoir models that honor static data such as core, log, and seismic data, it is far more difficult to generate plausible reservoir models that honor dynamic data such as transient pressures, saturations, and flow rates. As a result, the uncertainty in reservoir properties is higher than it could be and reservoir management can not be optimized. The goal of this project is to develop computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Solution of this problem is necessary for the quantification of uncertainty in future reservoir performance predictions and for the optimization of reservoir management. Facies (defined here as regions of relatively uniform petrophysical properties) are common features of all reservoirs. Because the flow properties of the various facies can vary greatly, knowledge of the location of facies boundaries is of utmost importance for the prediction of reservoir performance and for the optimization of reservoir management. When the boundaries between facies are fairly well known, but flow properties are poorly known, the average properties for all facies can be determined using traditional techniques. Traditional history matching honors dynamic data by adjusting petrophysical properties in large areas, but in the process of adjusting the reservoir model ignores the static data and often results in implausible reservoir

  19. Special Aspects of Dynamic Properties of Combination Jet Effectors for Flying Vehicle Control

    Directory of Open Access Journals (Sweden)

    Val. V. Zelencov

    2015-01-01

    Full Text Available The paper considers an experimental study of special aspects of disturbed flow region dynamics that is formed when an injected high-pressure gas jet interacts with a supersonic crossflow of gas nearby a surface of a nozzle or a plate. The study objective was to determine a difference of the pressure distribution in the region and its sizes under dynamic action from stationary flow characteristics.The experiment involved measuring pressure distribution on the surface of a nozzle or a plate along with high-speed filming of the flow.The study has revealed that the difference in size of the disturbed flow region and the flow distribution is observed only in transition segments: under injected jet stagnation pressure increase or decrease. The region is formed with a time lag close to zero under pulsation frequencies used. The disturbed flow region size and boundary shape and pressure distribution in constant pressure segment are independent of jet pulsation.It was determined that the dynamic properties (i.e. time of formation of disturbed flow region depend of induced force and crossflow properties.Disturbed flow region size behavior in time domain can be represented by an aperiodic element with a time constant significantly smaller than that of the gas-feed circuit.The results gained make it possible to state that in assessing dynamic properties of combination jet effectors it is sufficient to take into account gas generator and gas-feed circuit which response is significantly slower than that of the disturbed flow region.The recommendations based on the study results can be used for supersonic and hypersonic flying vehicle design.

  20. Dynamical Properties of a Living Nematic

    Science.gov (United States)

    Genkin, Mikhail

    The systems, which are made of a large number or interacting particles, or agents that convert the energy stored in the environment into mechanical motion, are called active systems, or active matter. The examples of active matter include both living and synthetic systems. The size of agents varies significantly: bird flocks and fish schools represent macroscopic active systems, while suspensions of living organisms or artificial colloidal particles are examples of microscopic ones. In this work, I studied one of the simplest realization of active matter termed living (or active) nematics, that can be conceived by mixing swimming bacteria and nematic liquid crystal. Using modeling, numerical simulations and experiments I studied various dynamical properties of active nematics. This work hints into new methods of control and manipulation of active matter. Active nematic exhibits complex spatiotemporal behavior manifested by formation, proliferation, and annihilation of topological defects. A new computational 2D model coupling nematic liquid crystal and swimming bacteria dynamics have been proposed. We investigated the developed system of partial differential equations analytically and integrated it numerically using the highly efficient parallel GPU code. The integration results are in a very good agreement with other theoretical and experimental studies. In addition, our model revealed a number of testable phenomena. The major model prediction (bacteria accumulation in positive and depletion in negative topological defects) was tested by a dedicated experiment. We extended our model to study active nematics in a biphasic state, where nematic and isotropic phases coexist. Typically this coexistence is manifested by formation of tactoids - isotropic elongated regions surrounded by nematic phase, or nematic regions surrounded by isotropic phase. Using numerical integration, we revealed fundamental properties of such systems. Our main model outcome - spontaneous

  1. On the relationship between the dynamic behavior and nanoscale staggered structure of the bone

    Science.gov (United States)

    Qwamizadeh, Mahan; Zhang, Zuoqi; Zhou, Kun; Zhang, Yong Wei

    2015-05-01

    Bone, a typical load-bearing biological material, composed of ordinary base materials such as organic protein and inorganic mineral arranged in a hierarchical architecture, exhibits extraordinary mechanical properties. Up to now, most of previous studies focused on its mechanical properties under static loading. However, failure of the bone occurs often under dynamic loading. An interesting question is: Are the structural sizes and layouts of the bone related or even adapted to the functionalities demanded by its dynamic performance? In the present work, systematic finite element analysis was performed on the dynamic response of nanoscale bone structures under dynamic loading. It was found that for a fixed mineral volume fraction and unit cell area, there exists a nanoscale staggered structure at some specific feature size and layout which exhibits the fastest attenuation of stress waves. Remarkably, these specific feature sizes and layouts are in excellent agreement with those experimentally observed in the bone at the same scale, indicating that the structural size and layout of the bone at the nanoscale are evolutionarily adapted to its dynamic behavior. The present work points out the importance of dynamic effect on the biological evolution of load-bearing biological materials.

  2. Failure behavior / characteristics of fabric reinforced polymer matrix composite and aluminum6061 on dynamic tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Hyejin; Cho, Chongdu [Inha University, Incheon (Korea, Republic of)

    2017-08-15

    Composite materials are composed of multiple types of materials as reinforcement and matrix. Among them, CFRP (Carbon fiber reinforced polymer) is widely used materials in automotive and defense industry. Carbon fibers are used as a reinforcement, of which Young's modulus is in a prepreg form. In automotive industry, especially, high strain rate test is needed to measure dynamic properties, used in dynamic analysis like high inertia included simulation as a car crash. In this paper, a SHTB (Split Hopkinson tensile bar) machine is employed for estimating stress-strain curve under dynamic load condition on aluminum 6061 and CFRP. The strain rate range is about from 100 /s to 1000 /s and the number of prepreg layers of composite specimen is total eight plies which are stacked symmetrically to structure CFRP. As a result, stress / strain point data are obtained and used for simulation into stacked composites.

  3. Failure behavior / characteristics of fabric reinforced polymer matrix composite and aluminum6061 on dynamic tensile loading

    International Nuclear Information System (INIS)

    Bang, Hyejin; Cho, Chongdu

    2017-01-01

    Composite materials are composed of multiple types of materials as reinforcement and matrix. Among them, CFRP (Carbon fiber reinforced polymer) is widely used materials in automotive and defense industry. Carbon fibers are used as a reinforcement, of which Young's modulus is in a prepreg form. In automotive industry, especially, high strain rate test is needed to measure dynamic properties, used in dynamic analysis like high inertia included simulation as a car crash. In this paper, a SHTB (Split Hopkinson tensile bar) machine is employed for estimating stress-strain curve under dynamic load condition on aluminum 6061 and CFRP. The strain rate range is about from 100 /s to 1000 /s and the number of prepreg layers of composite specimen is total eight plies which are stacked symmetrically to structure CFRP. As a result, stress / strain point data are obtained and used for simulation into stacked composites.

  4. Lower head failure analysis

    International Nuclear Information System (INIS)

    Rempe, J.L.; Thinnes, G.L.; Allison, C.M.; Cronenberg, A.W.

    1991-01-01

    The US Nuclear Regulatory Commission is sponsoring a lower vessel head research program to investigate plausible modes of reactor vessel failure in order to determine (a) which modes have the greatest likelihood of occurrence during a severe accident and (b) the range of core debris and accident conditions that lead to these failures. This paper presents the methodology and preliminary results of an investigation of reactor designs and thermodynamic conditions using analytic closed-form approximations to assess the important governing parameters in non-dimensional form. Preliminary results illustrate the importance of vessel and tube geometrical parameters, material properties, and external boundary conditions on predicting vessel failure. Thermal analyses indicate that steady-state temperature distributions will occur in the vessel within several hours, although the exact time is dependent upon vessel thickness. In-vessel tube failure is governed by the tube-to-debris mass ratio within the lower head, where most penetrations are predicted to fail if surrounded by molten debris. Melt penetration distance is dependent upon the effective flow diameter of the tube. Molten debris is predicted to penetrate through tubes with a larger effective flow diameter, such as a boiling water reactor (BWR) drain nozzle. Ex-vessel tube failure for depressurized reactor vessels is predicted to be more likely for a BWR drain nozzle penetration because of its larger effective diameter. At high pressures (between ∼0.1 MPa and ∼12 MPa) ex-vessel tube rupture becomes a dominant failure mechanism, although tube ejection dominates control rod guide tube failure at lower temperatures. However, tube ejection and tube rupture predictions are sensitive to the vessel and tube radial gap size and material coefficients of thermal expansion

  5. Failure analysis and failure prevention in electric power systems

    International Nuclear Information System (INIS)

    Rau, C.A. Jr.; Becker, D.G.; Besuner, P.M.; Cipolla, R.C.; Egan, G.R.; Gupta, P.; Johnson, D.P.; Omry, U.; Tetelman, A.S.; Rettig, T.W.; Peters, D.C.

    1977-01-01

    New methods have been developed and applied to better quantify and increase the reliability, safety, and availability of electric power plants. Present and potential problem areas have been identified both by development of an improved computerized data base of malfunctions in nuclear power plants and by detailed metallurgical and mechanical failure analyses of selected problems. Significant advances in the accuracy and speed of structural analyses have been made through development and application of the boundary integral equation and influence function methods of stress and fracture mechanics analyses. The currently specified flaw evaluation procedures of the ASME Boiler and Pressure Vessel Code have been computerized. Results obtained from these procedures for evaluation of specific in-service inspection indications have been compared with results obtained utilizing the improved analytical methods. Mathematical methods have also been developed to describe and analyze the statistical variations in materials properties and in component loading, and uncertainties in the flaw size that might be passed by quality assurance systems. These new methods have been combined to develop accurate failure rate predictions based upon probabilistic fracture mechanics. Improved failure prevention strategies have been formulated by combining probabilistic fracture mechanics and cost optimization techniques. The approach has been demonstrated by optimizing the nondestructive inspection level with regard to both reliability and cost. (Auth.)

  6. Study of deformation evolution during failure of rock specimens using laser-based vibration measurements

    Science.gov (United States)

    Smolin, I. Yu.; Kulkov, A. S.; Makarov, P. V.; Tunda, V. A.; Krasnoveikin, V. A.; Eremin, M. O.; Bakeev, R. A.

    2017-12-01

    The aim of the paper is to analyze experimental data on the dynamic response of the marble specimen in uniaxial compression. To make it we use the methods of mathematical statistics. The lateral surface velocity evolution obtained by the laser Doppler vibrometer represents the data for analysis. The registered data were regarded as a time series that reflects deformation evolution of the specimen loaded up to failure. The revealed changes in statistical parameters were considered as precursors of failure. It is shown that before failure the deformation response is autocorrelated and reflects the states of dynamic chaos and self-organized criticality.

  7. Supervision and prognosis architecture based on dynamical classification method for the predictive maintenance of dynamical evolving systems

    International Nuclear Information System (INIS)

    Traore, M.; Chammas, A.; Duviella, E.

    2015-01-01

    In this paper, we are concerned by the improvement of the safety, availability and reliability of dynamical systems’ components subjected to slow degradations (slow drifts). We propose an architecture for efficient Predictive Maintenance (PM) according to the real time estimate of the future state of the components. The architecture is built on supervision and prognosis tools. The prognosis method is based on an appropriated supervision technique that consists in drift tracking of the dynamical systems using AUDyC (AUto-adaptive and Dynamical Clustering), that is an auto-adaptive dynamical classifier. Thus, due to the complexity and the dynamical of the considered systems, the Failure Mode Effect and Criticity Analysis (FMECA) is used to identify the key components of the systems. A component is defined as an element of the system that can be impacted by only one failure. A failure of a key component causes a long downtime of the system. From the FMECA, a Fault Tree Analysis (FTA) of the system are built to determine the propagation laws of a failure on the system by using a deductive method. The proposed architecture is implemented for the PM of a thermoregulator. The application on this real system highlights the interests and the performances of the proposed architecture

  8. Thermophysical properties of hydrogen-helium mixtures: re-examination of the mixing rules via quantum molecular dynamics simulations.

    Science.gov (United States)

    Wang, Cong; He, Xian-Tu; Zhang, Ping

    2013-09-01

    Thermophysical properties of hydrogen, helium, and hydrogen-helium mixtures have been investigated in the warm dense matter regime at electron number densities ranging from 6.02 × 10^{29} ∼ 2.41 × 10^{30} m^{-3} and temperatures from 4000 to 20000 K via quantum molecular dynamics simulations. We focus on the dynamical properties such as the equation of states, diffusion coefficients, and viscosity. Mixing rules (density matching, pressure matching, and binary ionic mixing rules) have been validated by checking composite properties of pure species against that of the fully interacting mixture derived from quantum molecular dynamics simulations. These mixing rules reproduce pressures within 10% accuracy, while it is 75% and 50% for the diffusion and viscosity, respectively. The binary ionic mixing rule moves the results into better agreement. Predictions from one component plasma model are also provided and discussed.

  9. Building Failures And Collapses: A Case Study Of Portharcourt ...

    African Journals Online (AJOL)

    The Cases of Building failures and consequent collapse in Nigeria has reached an alarming and lamentable stage. It is a disaster comparable to flood disaster, earthquake and aeroplane clash considering the loss of life and destruction of property. Building failure are mostly observed in big cities where there are multiple ...

  10. Parametric Study on Ultimate Failure Criteria of Elbow Piping Components in Seismically Isolated NPP

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Dae Gi; Ki, Min Kyu [KAERI, Daejeon (Korea, Republic of); Jeon, Bub Gyu; Kim, Nam Sik [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    It is well known that the interface pipes between isolated and non-isolated structures will become the most critical in the seismically isolated NPPs. Therefore, seismic performance of such interface pipes should be evaluated comprehensively especially in terms of the seismic fragility capacity. To evaluate the seismic capacity of interface pipes in the isolated NPP, firstly, we should define the failure mode and failure criteria of critical pipe components. Hence, in this study, we performed the dynamic tests of elbow components which were installed in a seismically isolated NPP, and evaluated the ultimate failure mode and failure criteria by using the test results. To do this, we manufactured 25 critical elbow component specimens and performed cyclic loading tests under the internal pressure condition. The failure mode and failure criteria of a pipe component will be varied by the design parameters such as the internal pressure, pipe diameter, loading type, and loading amplitude. From the tests, we assessed the effects of the variation parameters onto the failure criteria. For the tests, we generated the seismic input protocol of relative displacement between the ends of elbow component. In this paper, elbow in piping system was defined as a fragile element and numerical model was updated by component test. Failure mode of piping component under seismic load was defined by the dynamic tests of ultimate pipe capacity. For the interface piping system, the seismic capacity should be carefully estimated since that the required displacement absorption capacity will be increased significantly by the adoption of the seismic isolation system. In this study, the dynamic tests were performed for the elbow components which were installed in an actual NPPs, and the ultimate failure mode and failure criteria were also evaluated by using the test results.

  11. Sensor failure detection in dynamical systems by Kalman filtering methodology

    International Nuclear Information System (INIS)

    Ciftcioglu, O.

    1991-03-01

    Design of a sensor failure detection system by Kalman filtering methodology is described. The method models the process systems in state-space form, the information on each state being provided by relevant sensors present in the process system. Since the measured states are usually subject to noise, the estimation of the states optimally is an essential requirement. To this end the detection system comprises Kalman estimation filters, the number of which is equal to the number of states concerned. The estimated state of a particular signal in each filter is compared with the corresponding measured signal and difference beyond a predetermined bound is identified as failure, the sensor being identified/isolated as faulty. (author). 19 refs.; 8 figs.; 1 tab

  12. Parathyroid hormone secretion in chronic renal failure

    DEFF Research Database (Denmark)

    Madsen, J C; Rasmussen, A Q; Ladefoged, S D

    1996-01-01

    The aim of study was to introduce and evaluate a method for quantifying the parathyroid hormone (PTH) secretion during hemodialysis in secondary hyperparathyroidism due to end-stage renal failure. We developed a method suitable for inducing sequential hypocalcemia and hypercalcemia during....../ionized calcium curves were constructed, and a mean calcium set-point of 1.16 mmol/liter was estimated compared to the normal mean of about 1.13 mmol/liter. In conclusion, we demonstrate that it is important to use a standardized method to evaluate parathyroid hormone dynamics in chronic renal failure. By the use...... of a standardized method we show that the calcium set-point is normal or slightly elevated, indicating normal parathyroid reactivity to calcium in chronic renal failure....

  13. Parathyroid hormone secretion in chronic renal failure

    DEFF Research Database (Denmark)

    Madsen, J C; Rasmussen, A Q; Ladefoged, S D

    1996-01-01

    /ionized calcium curves were constructed, and a mean calcium set-point of 1.16 mmol/liter was estimated compared to the normal mean of about 1.13 mmol/liter. In conclusion, we demonstrate that it is important to use a standardized method to evaluate parathyroid hormone dynamics in chronic renal failure. By the use...... of a standardized method we show that the calcium set-point is normal or slightly elevated, indicating normal parathyroid reactivity to calcium in chronic renal failure.......The aim of study was to introduce and evaluate a method for quantifying the parathyroid hormone (PTH) secretion during hemodialysis in secondary hyperparathyroidism due to end-stage renal failure. We developed a method suitable for inducing sequential hypocalcemia and hypercalcemia during...

  14. Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel

    Directory of Open Access Journals (Sweden)

    AH Huang

    2010-02-01

    Full Text Available Mesenchymal stem cells (MSCs are an attractive cell source for cartilage tissue engineering given their ability to undergo chondrogenesis in 3D culture systems. Mechanical forces play an important role in regulating both cartilage development and MSC chondrogenic gene expression, however, mechanical stimulation has yet to enhance the mechanical properties of engineered constructs. In this study, we applied long-term dynamic compression to MSC-seeded constructs and assessed whether varying pre-culture duration, loading regimens and inclusion of TGF-beta3 during loading would influence functional outcomes and these phenotypic transitions. Loading initiated before chondrogenesis decreased functional maturation, although chondrogenic gene expression increased. In contrast, loading initiated after chondrogenesis and matrix elaboration further improved the mechanical properties of MSC-based constructs, but only when TGF-beta3 levels were maintained and under specific loading parameters. Although matrix quantity was not affected by dynamic compression, matrix distribution, assessed histologically and by FT-IRIS analysis, was significantly improved on the micro- (pericellular and macro- (construct expanse scales. Further, whole genome expression profiling revealed marked shifts in the molecular topography with dynamic loading. These results demonstrate, for the first time, that dynamic compressive loading initiated after a sufficient period of chondro-induction and with sustained TGF-beta exposure enhances matrix distribution and the mechanical properties of MSC-seeded constructs.

  15. Mechanical properties of dynamic diffusion bonded joints in a mild alloy steel

    International Nuclear Information System (INIS)

    Gomez de Salazar, J. M.; Urena, A.; Menendez, M.

    2001-01-01

    Mechanical properties in Dynamic Diffusion Bonded (DDB) in a A.S.T.M. 1045 steel (=.45%C) joints were studied. The thermomechanical cycle added to the process, favours both the initial deformation stage and probably the diffusion mechanisms which participate in bond formation. (Author) 11 refs

  16. Robustness and Vulnerability of Networks with Dynamical Dependency Groups.

    Science.gov (United States)

    Bai, Ya-Nan; Huang, Ning; Wang, Lei; Wu, Zhi-Xi

    2016-11-28

    The dependency property and self-recovery of failure nodes both have great effects on the robustness of networks during the cascading process. Existing investigations focused mainly on the failure mechanism of static dependency groups without considering the time-dependency of interdependent nodes and the recovery mechanism in reality. In this study, we present an evolving network model consisting of failure mechanisms and a recovery mechanism to explore network robustness, where the dependency relations among nodes vary over time. Based on generating function techniques, we provide an analytical framework for random networks with arbitrary degree distribution. In particular, we theoretically find that an abrupt percolation transition exists corresponding to the dynamical dependency groups for a wide range of topologies after initial random removal. Moreover, when the abrupt transition point is above the failure threshold of dependency groups, the evolving network with the larger dependency groups is more vulnerable; when below it, the larger dependency groups make the network more robust. Numerical simulations employing the Erdős-Rényi network and Barabási-Albert scale free network are performed to validate our theoretical results.

  17. Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties

    Science.gov (United States)

    Funkhouser, Chloe M.; Solis, Francisco J.; Thornton, K.

    2014-04-01

    Multicomponent lipid vesicles are commonly used as a model system for the complex plasma membrane. One phenomenon that is studied using such model systems is phase separation. Vesicles composed of simple lipid mixtures can phase-separate into liquid-ordered and liquid-disordered phases, and since these phases can have different mechanical properties, this separation can lead to changes in the shape of the vesicle. In this work, we investigate the dynamics of phase separation in multicomponent lipid vesicles, using a model that couples composition to mechanical properties such as bending rigidity and spontaneous curvature. The model allows the vesicle surface to deform while conserving surface area and composition. For vesicles initialized as spheres, we study the effects of phase fraction and spontaneous curvature. We additionally initialize two systems with elongated, spheroidal shapes. Dynamic behavior is contrasted in systems where only one phase has a spontaneous curvature similar to the overall vesicle surface curvature and systems where the spontaneous curvatures of both phases are similar to the overall curvature. The bending energy contribution is typically found to slow the dynamics by stabilizing configurations with multiple domains. Such multiple-domain configurations are found more often in vesicles with spheroidal shapes than in nearly spherical vesicles.

  18. Parathyroid hormone secretion in chronic renal failure

    DEFF Research Database (Denmark)

    Madsen, J C; Rasmussen, A Q; Ladefoged, S D

    1996-01-01

    The aim of study was to introduce and evaluate a method for quantifying the parathyroid hormone (PTH) secretion during hemodialysis in secondary hyperparathyroidism due to end-stage renal failure. We developed a method suitable for inducing sequential hypocalcemia and hypercalcemia during....../ionized calcium curves were constructed, and a mean calcium set-point of 1.16 mmol/liter was estimated compared to the normal mean of about 1.13 mmol/liter. In conclusion, we demonstrate that it is important to use a standardized method to evaluate parathyroid hormone dynamics in chronic renal failure. By the use...

  19. Probability of Loss of Assured Safety in Systems with Multiple Time-Dependent Failure Modes: Incorporation of Delayed Link Failure in the Presence of Aleatory Uncertainty.

    Energy Technology Data Exchange (ETDEWEB)

    Helton, Jon C. [Arizona State Univ., Tempe, AZ (United States); Brooks, Dusty Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sallaberry, Cedric Jean-Marie. [Engineering Mechanics Corp. of Columbus, OH (United States)

    2018-02-01

    Probability of loss of assured safety (PLOAS) is modeled for weak link (WL)/strong link (SL) systems in which one or more WLs or SLs could potentially degrade into a precursor condition to link failure that will be followed by an actual failure after some amount of elapsed time. The following topics are considered: (i) Definition of precursor occurrence time cumulative distribution functions (CDFs) for individual WLs and SLs, (ii) Formal representation of PLOAS with constant delay times, (iii) Approximation and illustration of PLOAS with constant delay times, (iv) Formal representation of PLOAS with aleatory uncertainty in delay times, (v) Approximation and illustration of PLOAS with aleatory uncertainty in delay times, (vi) Formal representation of PLOAS with delay times defined by functions of link properties at occurrence times for failure precursors, (vii) Approximation and illustration of PLOAS with delay times defined by functions of link properties at occurrence times for failure precursors, and (viii) Procedures for the verification of PLOAS calculations for the three indicated definitions of delayed link failure.

  20. Blood pressure dynamics during exercise rehabilitation in heart failure patients.

    Science.gov (United States)

    Hecht, Idan; Arad, Michael; Freimark, Dov; Klempfner, Robert

    2017-05-01

    Background Patients suffering from heart failure (HF) may demonstrate an abnormal blood pressure response to exercise (ABPRE), which may revert to a normal one following medical treatment. It is assumed that this change correlates positively with prognosis and functional aspects. The aim of this study was to characterize patients with ABPRE and assess ABPRE normalization and the correlation with clinical and functional outcomes. Methods In the study, 651 patients with HF who underwent cardiac rehabilitation (CR) were examined. Patients who presented an ABPRE during stress testing were identified and divided into those who corrected their initial ABPRE following CR and those who did not. Results Pre-rehabilitation ABPRE was present in 27% of patients, 68% of whom normalized their ABPRE following CR. Two parameters were independently predictive of failure to normalize the blood pressure response: female gender (odds ratio (OR) 3.5; 95% confidence interval (CI) 1.4-9.0) and decreased systolic function (OR 3.2; 95% CI 1.0-9.4). Patients with hypertrophic cardiomyopathy demonstrated higher rates of ABPRE normalization than patients with other causes of HF (93% vs. 62%, respectively, P = 0.03). The research population exhibited an average improvement in exercise capacity (4.7 to 6.4 metabolic equivalents (METS), P failure to correct the ABPRE, while patients with hypertrophic cardiomyopathy demonstrated exceptionally high rates of normalization.

  1. Diuretics in heart failure: practical considerations.

    Science.gov (United States)

    Basraon, Jagroop; Deedwani, Prakash C

    2012-09-01

    This review discusses the role of diuretics in heart failure by focusing on different classifications and mechanisms of action. Pharmacodynamic and pharmacokinetic properties of diuretics are elucidated. The predominant discussion highlights the use of loop diuretics, which are the most commonly used drugs in heart failure. Different methods of using this therapy in different settings along with a comprehensive review of the side-effect profile are highlighted. Special situations necessitating adjustment and the phenomenon of diuretic resistance are explained. Copyright © 2012. Published by Elsevier Inc.

  2. McDonald Generalized Linear Failure Rate Distribution

    Directory of Open Access Journals (Sweden)

    Ibrahim Elbatal

    2014-10-01

    Full Text Available We introduce in this paper a new six-parameters generalized version of the generalized linear failure rate (GLFR distribution which is called McDonald Generalized Linear failure rate (McGLFR distribution. The new distribution is quite flexible and can be used effectively in modeling survival data and reliability problems. It can have a constant, decreasing, increasing, and upside down bathtub-and bathtub shaped failure rate function depending on its parameters. It includes some well-known lifetime distributions as special sub-models. Some structural properties of the new distribution are studied. Moreover we discuss maximum likelihood estimation of the unknown parameters of the new model.

  3. Dynamic properties of independent chromatin domains measured by correlation spectroscopy in living cells.

    NARCIS (Netherlands)

    M. Wachsmuth (Malte); T.A. Knoch (Tobias); K. Rippe (Karsten)

    2016-01-01

    textabstractBackground: Genome organization into subchromosomal topologically associating domains (TADs) is linked to cell-type-specific gene expression programs. However, dynamic properties of such domains remain elusive, and it is unclear how domain plasticity modulates genomic accessibility for

  4. Centrifuge model test of rock slope failure caused by seismic excitation. Plane failure of dip slope

    International Nuclear Information System (INIS)

    Ishimaru, Makoto; Kawai, Tadashi

    2008-01-01

    Recently, it is necessary to assess quantitatively seismic safety of critical facilities against the earthquake induced rock slope failure from the viewpoint of seismic PSA. Under these circumstances, it is essential to evaluate more accurately the possibilities of rock slope failure and the potential failure boundary, which are triggered by earthquake ground motions. The purpose of this study is to analyze dynamic failure characteristics of rock slopes by centrifuge model tests for verification and improvement of the analytical methods. We conducted a centrifuge model test using a dip slope model with discontinuities limitated by Teflon sheets. The centrifugal acceleration was 50G, and the acceleration amplitude of input sin waves increased gradually at every step. The test results were compared with safety factors of the stability analysis based on the limit equilibrium concept. Resultant conclusions are mainly as follows: (1) The slope model collapsed when it was excited by the sine wave of 400gal, which was converted to real field scale, (2) Artificial discontinuities were considerably concerned in the collapse, and the type of collapse was plane failure, (3) From response acceleration records observed at the slope model, we can say that tension cracks were generated near the top of the slope model during excitation, and that might be cause of the collapse, (4) By considering generation of the tension cracks in the stability analysis, correspondence of the analytical results and the experimental results improved. From the obtained results, we need to consider progressive failure in evaluating earthquake induced rock slope failure. (author)

  5. Quantum molecular dynamics simulations of thermophysical properties of fluid ethane

    OpenAIRE

    Zhang, Yujuan; Wang, Cong; Zheng, Fawei; Zhang, Ping

    2012-01-01

    We have performed first-principles molecular-dynamics simulations based on density-functional theory to study the thermophysical properties of ethane under extreme conditions. We present new results for the equation of state of fluid ethane in the warm dense region. The optical conductivity is calculated via the Kubo-Greenwood formula from which the dc conductivity and optical reflectivity are derived. The close correlation between the nonmetal-metal transition of ethane and its decomposition...

  6. Discrete ergodic Jacobi matrices: Spectral properties and Quantum dynamical bounds

    OpenAIRE

    Han, Rui

    2017-01-01

    In this thesis we study discrete quasiperiodic Jacobi operators as well as ergodic operators driven by more general zero topological entropy dynamics. Such operators are deeply connected to physics (quantum Hall effect and graphene) and have enjoyed great attention from mathematics (e.g. several of Simon’s problems). The thesis has two main themes. First, to study spectral properties of quasiperiodic Jacobi matrices, in particular when off-diagonal sampling function has non-zero winding numbe...

  7. Dynamic adsorption property of xenon on activated carbon and carbon molecular sieves

    International Nuclear Information System (INIS)

    Feng Shujuan; Zhou Guoqing; Jin Yuren; Zhou Chongyang

    2010-01-01

    In order to select well adsorptive xenon adsorbent, the dynamic adsorption property of xenon on activated carbon and carbon molecular sieves (CMS) was studied by measuring the xenon dynamic adsorption coefficient as a function velocity of gas, temperature, carrier gas, pressure and concentration of CO 2 . The results show that the highest value of xenon dynamic adsorption coefficient is on CMS1, and the second highest value is on CMS2; when the xenon concentration is less than 10 -5 mol/L or concentration of CO 2 is less than 5 x 10 -5 mol/L, the xenon dynamic adsorption coefficient nearly keeps constant at the specific experimental flow rate. Then the xenon dynamic adsorption coefficient would vary when it was mixed with different kind of carrier gas and become less at more than 5 x 10 -5 mol/L concentration of CO 2 . And the maximal effect factors are temperature and pressure. Therefore, the feasible measures to improve the xenon capability are to cool the adsorbent and increase adsorption pressure. (authors)

  8. Thermophysical properties of fluids: dynamic viscosity and thermal conductivity

    Science.gov (United States)

    Latini, G.

    2017-11-01

    Thermophysical properties of fluids strongly depend upon atomic and molecular structure, complex systems governed by physics laws providing the time evolution. Theoretically the knowledge of the initial position and velocity of each atom, of the interaction forces and of the boundary conditions, leads to the solution; actually this approach contains too many variables and it is generally impossible to obtain an acceptable solution. In many cases it is only possible to calculate or to measure some macroscopic properties of fluids (pressure, temperature, molar volume, heat capacities...). The ideal gas “law,” PV = nRT, was one of the first important correlations of properties and the deviations from this law for real gases were usefully proposed. Moreover the statistical mechanics leads for example to the “hard-sphere” model providing the link between the transport properties and the molecular size and speed of the molecules. Further approximations take into account the intermolecular interactions (the potential functions) which can be used to describe attractions and repulsions. In any case thermodynamics reduces experimental or theoretical efforts by relating one physical property to another: the Clausius-Clapeyron equation provides a classical example of this method and the PVT function must be known accurately. However, in spite of the useful developments in molecular theory and computers technology, often it is usual to search for physical properties when the existing theories are not reliable and experimental data are not available: the required value of the physical or thermophysical property must be estimated or predicted (very often estimation and prediction are improperly used as synonymous). In some cases empirical correlations are useful, if it is clearly defined the range of conditions on which they are based. This work is concerned with dynamic viscosity µ and thermal conductivity λ and is based on clear and important rules to be respected

  9. Correlated seed failure as an environmental veto to synchronize reproduction of masting plants.

    Science.gov (United States)

    Bogdziewicz, Michał; Steele, Michael A; Marino, Shealyn; Crone, Elizabeth E

    2018-07-01

    Variable, synchronized seed production, called masting, is a widespread reproductive strategy in plants. Resource dynamics, pollination success, and, as described here, environmental veto are possible proximate mechanisms driving masting. We explored the environmental veto hypothesis, which assumes that reproductive synchrony is driven by external factors preventing reproduction in some years, by extending the resource budget model of masting with correlated reproductive failure. We ran this model across its parameter space to explore how key parameters interact to drive seeding dynamics. Next, we parameterized the model based on 16 yr of seed production data for populations of red (Quercus rubra) and white (Quercus alba) oaks. We used these empirical models to simulate seeding dynamics, and compared simulated time series with patterns observed in the field. Simulations showed that resource dynamics and reproduction failure can produce masting even in the absence of pollen coupling. In concordance with this, in both oaks, among-year variation in resource gain and correlated reproductive failure were necessary and sufficient to reproduce masting, whereas pollen coupling, although present, was not necessary. Reproductive failure caused by environmental veto may drive large-scale synchronization without density-dependent pollen limitation. Reproduction-inhibiting weather events are prevalent in ecosystems, making described mechanisms likely to operate in many systems. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  10. Exploring the Local Elastic Properties of Bilayer Membranes Using Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Pieffet, Gilles; Botero, Alonso; Peters, Günther H.J.

    2014-01-01

    Membrane mechanical elastic properties regulate a variety of cellular processes involving local membrane deformation, such as ion channel function and vesicle fusion. In this work, we used molecular dynamics simulations to estimate the local elastic properties of a membrane. For this, we calculated...... the stretching process in molecular detail, allowing us to fit this profile to a previously proposed continuum elastic model. Through this approach, we calculated an effective membrane spring constant of 42 kJ-2.mol-1, which is in good agreement with the PMF calculation. Furthermore, the solvation energy we...

  11. Electronic band structure, optical, dynamical and thermodynamic properties of cesium chloride (CsCl from first-principles

    Directory of Open Access Journals (Sweden)

    Bingol Suat

    2015-01-01

    Full Text Available The geometric structural optimization, electronic band structure, total density of states for valence electrons, density of states for phonons, optical, dynamical, and thermodynamical features of cesium chloride have been investigated by linearized augmented plane wave method using the density functional theory under the generalized gradient approximation. Ground state properties of cesium chloride are studied. The calculated ground state properties are consistent with experimental results. Calculated band structure indicates that the cesium chloride structure has an indirect band gap value of 5.46 eV and is an insulator. From the obtained phonon spectra, the cesium chloride structure is dynamically stable along the various directions in the Brillouin zone. Temperature dependent thermodynamic properties are studied using the harmonic approximation model.

  12. Molecular Dynamics Modeling of PPTA Crystals in Aramid Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, Brian Scott [Univ. of California, Berkeley, CA (United States)

    2016-05-19

    In this work, molecular dynamics modeling is used to study the mechanical properties of PPTA crystallites, which are the fundamental microstructural building blocks of polymer aramid bers such as Kevlar. Particular focus is given to constant strain rate axial loading simulations of PPTA crystallites, which is motivated by the rate-dependent mechanical properties observed in some experiments with aramid bers. In order to accommodate the covalent bond rupture that occurs in loading a crystallite to failure, the reactive bond order force eld ReaxFF is employed to conduct the simulations. Two major topics are addressed: The rst is the general behavior of PPTA crystallites under strain rate loading. Constant strain rate loading simulations of crystalline PPTA reveal that the crystal failure strain increases with increasing strain rate, while the modulus is not a ected by the strain rate. Increasing temperature lowers both the modulus and the failure strain. The simulations also identify the C N bond connecting the aromatic rings as weakest primary bond along the backbone of the PPTA chain. The e ect of chain-end defects on PPTA micromechanics is explored, and it is found that the presence of a chain-end defect transfers load to the adjacent chains in the hydrogen-bonded sheet in which the defect resides, but does not in uence the behavior of any other chains in the crystal. Chain-end defects are found to lower the strength of the crystal when clustered together, inducing bond failure via stress concentrations arising from the load transfer to bonds in adjacent chains near the defect site. The second topic addressed is the nature of primary and secondary bond failure in crystalline PPTA. Failure of both types of bonds is found to be stochastic in nature and driven by thermal uctuations of the bonds within the crystal. A model is proposed which uses reliability theory to model bonds under constant strain rate loading as components with time-dependent failure rate

  13. Molecular Dynamics Simulation for the Mechanical Properties of CNT/Polymer Nanocomposites

    International Nuclear Information System (INIS)

    Yang, Seung Hwa; Cho, Maeg Hyo

    2007-01-01

    In order to obtain mechanical properties of CNT/Polymer nano-composites, molecular dynamics simulation is performed. Overall system was modeled as a flexible unit cell in which carbon nanotubes are embedded into a polyethylene matrix for N σ T ensemble simulation. COMPASS force field was chosen to describe inter and intra molecular potential and bulk effect was achieved via periodic boundary conditions. In CNT-polymer interface, only Lennard-Jones non-bond potential was considered. Using Parrinello-Rahman fluctuation method, mechanical properties of orthotropic nano-composites under various temperatures were successfully obtained. Also, we investigated thermal behavior of the short CNT reinforced nanocomposites system with predicting glass transition temperature

  14. Effect of thermally reduced graphene oxide on dynamic mechanical properties of carbon fiber/epoxy composite

    Science.gov (United States)

    Adak, Nitai Chandra; Chhetri, Suman; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    The Carbon fiber (CF)/epoxy composites are being used in the automotive and aerospace industries owing to their high specific mechanical strength to weight ratio compared to the other conventional metal and alloys. However, the low interfacial adhesion between fiber and polymer matrix results the inter-laminar fracture of the composites. Effects of different carbonaceous nanomaterials i.e., carbon nanotubes (CNT), graphene nanosheets (GNPs), graphene oxide (GO) etc. on the static mechanical properties of the composites were investigated in detail. Only a few works focused on the improvement of the dynamic mechanical of the CF/epoxy composites. Herein, the effect of thermally reduced grapheme oxide (TRGO) on the dynamic mechanical properties of the CF/epoxy composites was investigated. At first, GO was synthesized using modified Hummers method and then reduced the synthesized GO inside a vacuum oven at 800 °C for 5 min. The prepared TRGO was dispersed in the epoxy resin to modify the epoxy matrix. Then, a number of TRGO/CF/epoxy laminates were manufactured incorporating different wt% of TRGO by vacuum assisted resin transfer molding (VARTM) technique. The developed laminates were cured at room temperature for 24 h and then post cured at 120 °C for 2 h. The dynamic mechanical analyzer (DMA 8000 Perkin Elmer) was used to examine the dynamic mechanical properties of the TRGO/CF/epoxy composites according to ASTM D7028. The dimension of the specimen was 44×10×2.4 mm3 for the DMA test. This test was carried out under flexural loading mode (duel cantilever) at a frequency of 1 Hz and amplitude of 50 μm. The temperature was ramped from 30 to 200 °C with a heating rate of 5 °C min-1. The dynamic mechanical analysis of the 0.2 wt% TRGO incorporated CF/epoxy composites showed ~ 96% enhancement in storage modulus and ~ 12 °C increments in glass transition temperature (Tg) compared to the base CF/epoxy composites. The fiber-matrix interaction was studied by Cole

  15. Vibrational fatigue failures in short cantilevered piping with socket-welding fittings

    International Nuclear Information System (INIS)

    Smith, J.K.

    1996-01-01

    Approximately 80% of the vibrational fatigue failures in nuclear power plants have been caused by high cycle vibrational fatigue. Many of these failures have occurred in short, small bore (2 in. nominal diameter and smaller), unbraced, cantilevered piping with socket-welding fittings. The fatigue failures initiated in the socket welds. These failures have been unexpected, and have caused costly, unscheduled outages in some cases. In order to reduce the number of vibrational fatigue failures in these short cantilevered pipes, an acceleration based vibrational fatigue screening criteria was developed under Electric Power Research Institute (EPRI) sponsorship. In this paper, the acceleration based criteria will be compared to the results obtained from detailed dynamic modeling of a short, cantilevered pipe

  16. Structural and dynamical properties of the porins OmpF and OmpC: insights from molecular simulations

    International Nuclear Information System (INIS)

    Kumar, Amit; Hajjar, Eric; Ruggerone, Paolo; Ceccarelli, Matteo

    2010-01-01

    In this paper we investigate the structural and dynamical properties of the two major porins (OmpF and OmpC) in Escherichia coli, using molecular dynamics (MD) simulations. In particular we characterized the atomic fluctuations, correlated motions, temperature dependence, solvent-accessible cross-sectional area and water dynamics in the key regions of the two channels. Our in-depth analysis allows us to highlight the importance of both the key conserved and substituted residues between OmpF and OmpC. The latter is characterized by a narrower and longer constriction region with respect to OmpF. OmpC also showed a higher stability upon increasing temperature. We then present the results of transport properties by using accelerated MD simulations to probe the diffusion of norfloxacin (a fluoroquinolone antibiotic) through the two porins OmpF/OmpC. Our study constitutes a step forward towards understanding the structure-function relationship of the two porins' channels. This will benefit the research of antibacterials with improved permeation properties and nanopores that aim to use these porins as sensing systems.

  17. Properties of liquid clusters in large-scale molecular dynamics nucleation simulations

    International Nuclear Information System (INIS)

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K.; Tanaka, Hidekazu

    2014-01-01

    We have performed large-scale Lennard-Jones molecular dynamics simulations of homogeneous vapor-to-liquid nucleation, with 10 9 atoms. This large number allows us to resolve extremely low nucleation rates, and also provides excellent statistics for cluster properties over a wide range of cluster sizes. The nucleation rates, cluster growth rates, and size distributions are presented in Diemand et al. [J. Chem. Phys. 139, 74309 (2013)], while this paper analyses the properties of the clusters. We explore the cluster temperatures, density profiles, potential energies, and shapes. A thorough understanding of the properties of the clusters is crucial to the formulation of nucleation models. Significant latent heat is retained by stable clusters, by as much as ΔkT = 0.1ε for clusters with size i = 100. We find that the clusters deviate remarkably from spherical—with ellipsoidal axis ratios for critical cluster sizes typically within b/c = 0.7 ± 0.05 and a/c = 0.5 ± 0.05. We examine cluster spin angular momentum, and find that it plays a negligible role in the cluster dynamics. The interfaces of large, stable clusters are thinner than planar equilibrium interfaces by 10%−30%. At the critical cluster size, the cluster central densities are between 5% and 30% lower than the bulk liquid expectations. These lower densities imply larger-than-expected surface areas, which increase the energy cost to form a surface, which lowers nucleation rates

  18. Test methods for the dynamic mechanical properties of polymeric materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baker, G.K.

    1980-06-01

    Various test geometries and procedures for the dynamic mechanical analysis of polymers employing a mechanical spectrometer have been evaluated. The methods and materials included in this work are forced torsional pendulum testing of Kevlar/epoxy laminates and rigid urethane foams, oscillatory parallel plate testing to determine the kinetics of the cure of VCE with Hylene MP, oscillatory compressive testing of B-3223 cellular silicone, and oscillatory tensile testing of Silastic E and single Kevlar filaments. Fundamental dynamic mechanical properties, including the storage and loss moduli and loss tangent of the materials tested, were determined as a function of temperature and sometimes of frequency.

  19. A Zebrafish Heart Failure Model for Assessing Therapeutic Agents.

    Science.gov (United States)

    Zhu, Xiao-Yu; Wu, Si-Qi; Guo, Sheng-Ya; Yang, Hua; Xia, Bo; Li, Ping; Li, Chun-Qi

    2018-03-20

    Heart failure is a leading cause of death and the development of effective and safe therapeutic agents for heart failure has been proven challenging. In this study, taking advantage of larval zebrafish, we developed a zebrafish heart failure model for drug screening and efficacy assessment. Zebrafish at 2 dpf (days postfertilization) were treated with verapamil at a concentration of 200 μM for 30 min, which were determined as optimum conditions for model development. Tested drugs were administered into zebrafish either by direct soaking or circulation microinjection. After treatment, zebrafish were randomly selected and subjected to either visual observation and image acquisition or record videos under a Zebralab Blood Flow System. The therapeutic effects of drugs on zebrafish heart failure were quantified by calculating the efficiency of heart dilatation, venous congestion, cardiac output, and blood flow dynamics. All 8 human heart failure therapeutic drugs (LCZ696, digoxin, irbesartan, metoprolol, qiliqiangxin capsule, enalapril, shenmai injection, and hydrochlorothiazide) showed significant preventive and therapeutic effects on zebrafish heart failure (p failure model developed and validated in this study could be used for in vivo heart failure studies and for rapid screening and efficacy assessment of preventive and therapeutic drugs.

  20. Dynamic mechanical properties of 3D fiber-deposited PEOT/PBT scaffolds: An experimental and numerical analysis.

    NARCIS (Netherlands)

    Moroni, Lorenzo; Poort, G.; van Keulen, F.; de Wijn, J.R.; van Blitterswijk, Clemens

    2006-01-01

    Mechanical properties of three-dimensional (3D) scaffolds can be appropriately modulated through novel fabrication techniques like 3D fiber deposition (3DF), by varying scaffold's pore size and shape. Dynamic stiffness, in particular, can be considered as an important property to optimize the

  1. Pipework failures - a review of historical incidents

    International Nuclear Information System (INIS)

    Blything, K.W.; Parry, S.T.

    1988-01-01

    A description is presented of the gathering of historical pipework incident data and its analysis to determine the causes and underlying reasons for failure. The following terms of reference were agreed: (a) To review data on failures associated with pipework to establish the principal causes of failure. This should include not only rupture of the pipe itself, but also pipework induced failures, such as severe flange leaks and excessive strains resulting in failure of connected equipment. (b) To suggest an incident classification for pipework systems which will alert design, construction, maintenance, and operating personnel to the need for special care. (c) To advise non-piping specialists of the type of situation which could result in failure if not allowed for in the design, e.g. dynamic and transient conditions. (d) To recommend, possibly as the result of (a) above, areas where present procedures and codes of practice may require amplification. Brief descriptions are given of selected incidents where the consequences are considered to be serious in terms of damage and financial loss. For consequence analysis, the release rate is an important parameter and, where possible, the proportion of incidents in the failure mode categories, leaks, ''ruptures/severances'' are given. Although not one of the agreed objectives, the determination of failure rates was recognised as an important requirement in the risk assessment of pipework systems. The quality of data gathered however was found to be inadequate for any statistical analysis and no failure rate values are given in this report. (author)

  2. Molecular dynamics simulations of the dielectric properties of fructose aqueous solutions

    International Nuclear Information System (INIS)

    Sonoda, Milton T; Dolores Elola, M; Skaf, Munir S

    2016-01-01

    The static dielectric permittivity and dielectric relaxation properties of fructose aqueous solutions of different concentrations ranging from 1.0 to 4.0 mol l −1 are investigated by means of molecular dynamics simulations. The contributions from intra- and interspecies molecular correlations were computed individually for both the static and frequency-dependent dielectric properties, and the results were compared with the available experimental data. Simulation results in the time- and frequency-domains were analyzed and indicate that the presence of fructose has little effect on the position of the fast, high-frequency (>500 cm −1 ) components of the dielectric response spectrum. The low-frequency (<0.1 cm −1 ) components, however, are markedly influenced by sugar concentration. Our analysis indicates that fructose–fructose and fructose–water interactions strongly affect the rotational-diffusion regime of molecular motions in the solutions. Increasing fructose concentration not only enhances sugar–sugar and sugar-water low frequency contributions to the dielectric loss spectrum but also slows down the reorientational dynamics of water molecules. These results are consistent with previous computer simulations carried out for other disaccharide aqueous solutions. (paper)

  3. Coupled light transport-heat diffusion model for laser dosimetry with dynamic optical properties

    International Nuclear Information System (INIS)

    London, R.A.; Glinsky, M.E.; Zimmerman, G.B.; Eder, D.C.; Jacques, S.L.

    1995-01-01

    The effect of dynamic optical properties on the spatial distribution of light in laser therapy is studied via numerical simulations. A two-dimensional, time dependent computer program called LATIS is used. Laser light transport is simulated with a Monte Carlo technique including anisotropic scattering and absorption. Thermal heat transport is calculated with a finite difference algorithm. Material properties are specified on a 2-D mesh and can be arbitrary functions of space and time. Arrhenius rate equations are solved for tissue damage caused by elevated temperatures. Optical properties are functions of tissue damage, as determined by previous measurements. Results are presented for the time variation of the light distribution and damage within the tissue as the optical properties of the tissue are altered

  4. Elastic properties of surfactant monolayers at liquid-liquid interfaces: A molecular dynamics study

    DEFF Research Database (Denmark)

    Laradji, Mohamed; Mouritsen, Ole G.

    2000-01-01

    Using a simple molecular model based on the Lennard-Jones potential, we systematically study the elastic properties of liquid-liquid interfaces containing surfactant molecules by means of extensive and large-scale molecular dynamics simulations. The main elastic constants of the interface, corres...

  5. Trajectory-based nonadiabatic dynamics with time-dependent density functional theory.

    Science.gov (United States)

    Curchod, Basile F E; Rothlisberger, Ursula; Tavernelli, Ivano

    2013-05-10

    Understanding the fate of an electronically excited molecule constitutes an important task for theoretical chemistry, and practical implications range from the interpretation of atto- and femtosecond spectroscopy to the development of light-driven molecular machines, the control of photochemical reactions, and the possibility of capturing sunlight energy. However, many challenging conceptual and technical problems are involved in the description of these phenomena such as 1) the failure of the well-known Born-Oppenheimer approximation; 2) the need for accurate electronic properties such as potential energy surfaces, excited nuclear forces, or nonadiabatic coupling terms; and 3) the necessity of describing the dynamics of the photoexcited nuclear wavepacket. This review provides an overview of the current methods to address points 1) and 3) and shows how time-dependent density functional theory (TDDFT) and its linear-response extension can be used for point 2). First, the derivation of Ehrenfest dynamics and nonadiabatic Bohmian dynamics is discussed and linked to Tully's trajectory surface hopping. Second, the coupling of these trajectory-based nonadiabatic schemes with TDDFT is described in detail with special emphasis on the derivation of the required electronic structure properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dynamic measurement of coal thermal properties and elemental composition of volatile matter during coal pyrolysis

    Directory of Open Access Journals (Sweden)

    Rohan Stanger

    2014-01-01

    Full Text Available A new technique that allows dynamic measurement of thermal properties, expansion and the elemental chemistry of the volatile matter being evolved as coal is pyrolysed is described. The thermal and other properties are measured dynamically as a function of temperature of the coal without the need for equilibration at temperature. In particular, the technique allows for continuous elemental characterisation of tars as they are evolved during pyrolysis and afterwards as a function of boiling point. The technique is demonstrated by measuring the properties of maceral concentrates from a coal. The variation in heats of reaction, thermal conductivity and expansion as a function of maceral composition is described. Combined with the elemental analysis, the results aid in the interpretation of the chemical processes contributing to the physical and thermal behaviour of the coal during pyrolysis. Potential applications in cokemaking studies are discussed.

  7. Torsional Shear Device for Testing the Dynamic Properties of Recycled Material

    Science.gov (United States)

    Gabryś, Katarzyna; Sas, Wojciech; Soból, Emil; Głuchowski, Andrzej

    2016-12-01

    From the viewpoint of environmental preservation and effective utilization of resources, it is beneficial and necessary to reuse wastes, for example, concrete, as the recycled aggregates for new materials. In this work, the dynamic behavior of such aggregates under low frequency torsional loading is studied. Results show that the properties of such artificial soils match with those reported in the literature for specific natural soils.

  8. Detecting Slow Deformation Signals Preceding Dynamic Failure: A New Strategy For The Mitigation Of Natural Hazards (SAFER)

    Science.gov (United States)

    Vinciguerra, S.; Colombero, C.; Comina, C.; Umili, G.

    2015-12-01

    Rock slope monitoring is a major aim in territorial risk assessment and mitigation. The use of "site specific" microseismic monitoring systems can allow to detect pre-failure signals in unstable sectors within the rock mass and to predict the possible acceleration to the failure. To this aim multi-scale geophysical methods can provide a unique tool for an high-resolution imaging of the internal structure of the rock mass and constraints on the physical state of the medium. We present here a cross-hole seismic tomography survey coupled with laboratory ultrasonic velocity measurements and determination of physical properties on rock samples to characterize the damaged and potentially unstable granitic cliff of Madonna del Sasso (NW, Italy). Results allowed to achieve two main advances, in terms of obtaining: i) a lithological interpretation of the velocity field obtained at the site, ii) a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granite (weathering and anisotropy) of the cliff. A microseismic monitoring system developed by the University of Turin/Compagnia San Paolo, consisting of a network of 4 triaxial geophones (4.5 Hz) connected to a 12-channel data logger, has been deployed on the unstable granitic cliff. More than 2000 events with different waveforms, duration and frequency content were recorded between November 2013 and July 2014. By inspecting the acquired events we identified the key parameters for a reliable distinction among the nature of each signal, i.e. the signal shape (in terms of amplitude, duration, kurtosis) and the frequency content (maximum frequency content and frequency distribution). Four main classes of recorded signals can be recognised: microseismic events, regional earthquakes, electrical noises and calibration signals, and unclassified events (probably grouping rockfalls, quarry blasts, other anthropic and natural sources of seismic noise).

  9. Static and dynamic properties of QCD bound states

    International Nuclear Information System (INIS)

    Kubrak, Stanislav

    2015-01-01

    The QCD phenomenology can be faced with the framework of the coupled quark DSE, meson BSE and baryon Faddeev equation, providing non-perturbative, continuum and Poincare invariant scientific approach. The research performed throughout this thesis is twofold. From one perspective we focus on the investigation of mass spectra for mesons with total spin quantum number J=3 and arising Regge-trajectory for natural parity states J PC =1 -- ,2 ++ ,3 -- within rainbow-ladder single gluon exchange model. The other findings are concerning the impact of the pion cloud effect on J>2 meson states, baryon masses, namely on Nucleon and Delta three-body bound states and meson dynamical properties like the pion form factor.

  10. A Take Stock of Turbine Blades Failure Phenomenon

    Science.gov (United States)

    Roy, Abhijit

    2018-02-01

    Turbine Blade design and engineering is one of the most complicated and important aspects of turbine technology. Experiments with blades can be simple or very complicated, depending upon parameters of analysis. Turbine blades are subjected to vigorous environments, such as high temperatures, high stresses, and a potentially high vibration environment. All these factors can lead to blade failures, which can destroy the turbine, and engine, so careful design is the prime consideration to resist those conditions. A high cycle of fatigue of compressor and turbine blades due to high dynamic stress caused by blade vibration and resonance within the operating range of machinery is common failure mode for turbine machine. Continuous study and investigation on failure of turbine blades are going on since last five decades. Some review papers published during these days aiming to present a review on recent studies and investigations done on failures of turbine blades. All the detailed literature related with the turbine blades has not been described but emphasized to provide all the methodologies of failures adopted by various researches to investigate turbine blade. This paper illustrate on various factors of failure.

  11. Discrimination of time-dependent inflow properties with a cooperative dynamical system.

    Science.gov (United States)

    Ueno, Hiroshi; Tsuruyama, Tatsuaki; Nowakowski, Bogdan; Górecki, Jerzy; Yoshikawa, Kenichi

    2015-10-01

    Many physical, chemical, and biological systems exhibit a cooperative or sigmoidal response with respect to the input. In biochemistry, such behavior is called an allosteric effect. Here, we demonstrate that a system with such properties can be used to discriminate the amplitude or frequency of an external periodic perturbation. Numerical simulations performed for a model sigmoidal kinetics illustrate that there exists a narrow range of frequencies and amplitudes within which the system evolves toward significantly different states. Therefore, observation of system evolution should provide information about the characteristics of the perturbation. The discrimination properties for periodic perturbation are generic. They can be observed in various dynamical systems and for different types of periodic perturbation.

  12. Transitional Failure of Carbon Nanotube Systems under a Combination of Tension and Torsion

    OpenAIRE

    Jeong, Byeong-Woo

    2012-01-01

    Transitional failure envelopes of single- and double-walled carbon nanotubes under combined tension-torsion are predicted using classical molecular dynamics simulations. The observations reveal that while the tensile failure load decreases with combined torsion, the torsional buckling moment increases with combined tension. As a result, the failure envelopes under combined tension-torsion are definitely different from those under pure tension or torsion. In such combined loading, there is a m...

  13. Influence of electrical sheet width on dynamic magnetic properties

    CERN Document Server

    Chevalier, T; Cornut, B

    2000-01-01

    Effects of the width of electrical steel sheets on dynamic magnetic properties are investigated by solving diffusion equation on the cross-section of the sheet. Linear and non-linear cases are studied, and are compared with measurement on Epstein frame. For the first one an analytical solution is found, while for the second, a 2D finite element simulation is achieved. The influence of width is highlighted for a width thickness ratio lower than 10. It is shown that the behaviour modification in such cases is conditioned by the excitation signal waveform, amplitude and also frequency.

  14. Statistical properties of dynamical systems – Simulation and abstract computation

    International Nuclear Information System (INIS)

    Galatolo, Stefano; Hoyrup, Mathieu; Rojas, Cristóbal

    2012-01-01

    Highlights: ► A survey on results about computation and computability on the statistical properties of dynamical systems. ► Computability and non-computability results for invariant measures. ► A short proof for the computability of the convergence speed of ergodic averages. ► A kind of “constructive” version of the pointwise ergodic theorem. - Abstract: We survey an area of recent development, relating dynamics to theoretical computer science. We discuss some aspects of the theoretical simulation and computation of the long term behavior of dynamical systems. We will focus on the statistical limiting behavior and invariant measures. We present a general method allowing the algorithmic approximation at any given accuracy of invariant measures. The method can be applied in many interesting cases, as we shall explain. On the other hand, we exhibit some examples where the algorithmic approximation of invariant measures is not possible. We also explain how it is possible to compute the speed of convergence of ergodic averages (when the system is known exactly) and how this entails the computation of arbitrarily good approximations of points of the space having typical statistical behaviour (a sort of constructive version of the pointwise ergodic theorem).

  15. Dynamic Properties of Glass-Formers Governed by the Frequency Dispersion of the Structural α-Relaxation: Examples from Prilocaine.

    Science.gov (United States)

    Wojnarowska, Z; Rams-Baron, M; Knapik, J; Ngai, K L; Kruk, D; Paluch, M

    2015-10-01

    General and fundamental properties of glass-formers of various chemical bonding and physical structures have been found in the recent past. These important findings should be key to gain basic understanding of the dynamics at all time scales leading to glass transition. However, the entirety of these general properties has not been found in a single glass-former. For others to appreciate the importance of these properties, they need to collect the supporting experimental data from different glass-formers scattered over many publications. This hurdle may account for the current lack of universal recognition of the importance of these general properties by the research community. In this paper we present experimental studies of the dynamic processes over a broad range of time scales of a single glass-former, prilocaine. Practically the entire collection of fundamental properties has been found in this system. The advance should heighten the awareness of the importance of these properties in anyone's effort to solve the glass transition problem.

  16. Transitional Failure of Carbon Nanotube Systems under a Combination of Tension and Torsion

    Directory of Open Access Journals (Sweden)

    Byeong-Woo Jeong

    2012-01-01

    Full Text Available Transitional failure envelopes of single- and double-walled carbon nanotubes under combined tension-torsion are predicted using classical molecular dynamics simulations. The observations reveal that while the tensile failure load decreases with combined torsion, the torsional buckling moment increases with combined tension. As a result, the failure envelopes under combined tension-torsion are definitely different from those under pure tension or torsion. In such combined loading, there is a multitude of failure modes (tensile failure and torsional buckling, and the failure consequently exhibits the feature of transitional failure envelopes. In addition, the safe region of double-walled carbon nanotubes is significantly larger than that of single-walled carbon nanotubes due to the differences in the onset of torsional buckling.

  17. AdaFF: Adaptive Failure-Handling Framework for Composite Web Services

    Science.gov (United States)

    Kim, Yuna; Lee, Wan Yeon; Kim, Kyong Hoon; Kim, Jong

    In this paper, we propose a novel Web service composition framework which dynamically accommodates various failure recovery requirements. In the proposed framework called Adaptive Failure-handling Framework (AdaFF), failure-handling submodules are prepared during the design of a composite service, and some of them are systematically selected and automatically combined with the composite Web service at service instantiation in accordance with the requirement of individual users. In contrast, existing frameworks cannot adapt the failure-handling behaviors to user's requirements. AdaFF rapidly delivers a composite service supporting the requirement-matched failure handling without manual development, and contributes to a flexible composite Web service design in that service architects never care about failure handling or variable requirements of users. For proof of concept, we implement a prototype system of the AdaFF, which automatically generates a composite service instance with Web Services Business Process Execution Language (WS-BPEL) according to the users' requirement specified in XML format and executes the generated instance on the ActiveBPEL engine.

  18. Dynamical properties of tertiarybutylarsine on GaAs(0 0 1) surface

    CERN Document Server

    Ozeki, M; Tanaka, Y

    2002-01-01

    The dynamical properties of tertiarybutylarsine (TBA) was studied on GaAs(0 0 1) surface using a supersonic molecular beam. The temperature and incident energy dependence of the reflected beam revealed a reaction channel of TBA on GaAs surface with a large decrease in the activation energy from 2.7 to 1.8 eV as the incident energy increases from 0.04 to 2.5 eV.

  19. Torsional Shear Device for Testing the Dynamic Properties of Recycled Material

    Directory of Open Access Journals (Sweden)

    Gabryś Katarzyna

    2016-12-01

    Full Text Available From the viewpoint of environmental preservation and effective utilization of resources, it is beneficial and necessary to reuse wastes, for example, concrete, as the recycled aggregates for new materials. In this work, the dynamic behavior of such aggregates under low frequency torsional loading is studied. Results show that the properties of such artificial soils match with those reported in the literature for specific natural soils.

  20. Dynamic strength of rock with single planar joint under various loading rates at various angles of loads applied

    Directory of Open Access Journals (Sweden)

    Pei-Yun Shu

    2018-06-01

    Full Text Available Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar (SHPB testing. A buffer pad between the striker bar and the incident bar of an SHPB apparatus is used to absorb some of the shock energy. This can generate loading rates of 20.2–4627.3 GPa/s, enabling dynamic peak stresses/strengths and associated failure patterns of the specimens to be investigated. The effects of the loading rate and angle of load applied on the dynamic peak stresses/strengths of the specimens are examined. Relevant experimental results demonstrate that the failure pattern of each specimen can be classified as four types: Type A, integrated with or without tiny flake-off; Type B, slide failure; Type C, fracture failure; and Type D, crushing failure. The dynamic peak stresses/strengths of the specimens that have similar failure patterns increase linearly with the loading rate, yielding high correlations that are evident on semi-logarithmic plots. The slope of the failure envelope is the smallest for slide failure, followed by crushing failure, and that of fracture failure is the largest. The magnitude of the plot slope of the dynamic peak stress against the loading rate for the specimens that are still integrated after testing is between that of slide failure and crushing failure. The angle of application has a limited effect on the dynamic peak stresses/strengths of the specimens regardless of the failure pattern, but it affects the bounds of the loading rates that yield each failure pattern, and thus influences the dynamic responses of the single jointed specimen. Slide failure occurs at the lowest loading rate of any failure, but can only occur in single jointed specimen that allows sliding. Crushing failure is typically associated with the largest loading rate, and fracture failure may occur when the loading rate is between the boundaries for slide failure and crushing

  1. Health information systems: failure, success and improvisation.

    Science.gov (United States)

    Heeks, Richard

    2006-02-01

    The generalised assumption of health information systems (HIS) success is questioned by a few commentators in the medical informatics field. They point to widespread HIS failure. The purpose of this paper was therefore to develop a better conceptual foundation for, and practical guidance on, health information systems failure (and success). Literature and case analysis plus pilot testing of developed model. Defining HIS failure and success is complex, and the current evidence base on HIS success and failure rates was found to be weak. Nonetheless, the best current estimate is that HIS failure is an important problem. The paper therefore derives and explains the "design-reality gap" conceptual model. This is shown to be robust in explaining multiple cases of HIS success and failure, yet provides a contingency that encompasses the differences which exist in different HIS contexts. The design-reality gap model is piloted to demonstrate its value as a tool for risk assessment and mitigation on HIS projects. It also throws into question traditional, structured development methodologies, highlighting the importance of emergent change and improvisation in HIS. The design-reality gap model can be used to address the problem of HIS failure, both as a post hoc evaluative tool and as a pre hoc risk assessment and mitigation tool. It also validates a set of methods, techniques, roles and competencies needed to support the dynamic improvisations that are found to underpin cases of HIS success.

  2. 19 CFR 162.93 - Failure to issue notice of seizure.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Failure to issue notice of seizure. 162.93 Section... OF THE TREASURY (CONTINUED) INSPECTION, SEARCH, AND SEIZURE Civil Asset Forfeiture Reform Act § 162.93 Failure to issue notice of seizure. If Customs does not send notice of a seizure of property in...

  3. Failure probability analysis on mercury target vessel

    International Nuclear Information System (INIS)

    Ishikura, Syuichi; Futakawa, Masatoshi; Kogawa, Hiroyuki; Sato, Hiroshi; Haga, Katsuhiro; Ikeda, Yujiro

    2005-03-01

    Failure probability analysis was carried out to estimate the lifetime of the mercury target which will be installed into the JSNS (Japan spallation neutron source) in J-PARC (Japan Proton Accelerator Research Complex). The lifetime was estimated as taking loading condition and materials degradation into account. Considered loads imposed on the target vessel were the static stresses due to thermal expansion and static pre-pressure on He-gas and mercury and the dynamic stresses due to the thermally shocked pressure waves generated repeatedly at 25 Hz. Materials used in target vessel will be degraded by the fatigue, neutron and proton irradiation, mercury immersion and pitting damages, etc. The imposed stresses were evaluated through static and dynamic structural analyses. The material-degradations were deduced based on published experimental data. As a result, it was quantitatively confirmed that the failure probability for the lifetime expected in the design is very much lower, 10 -11 in the safety hull, meaning that it will be hardly failed during the design lifetime. On the other hand, the beam window of mercury vessel suffered with high-pressure waves exhibits the failure probability of 12%. It was concluded, therefore, that the leaked mercury from the failed area at the beam window is adequately kept in the space between the safety hull and the mercury vessel by using mercury-leakage sensors. (author)

  4. Design and evaluation of a robust dynamic neurocontroller for a multivariable aircraft control problem

    Science.gov (United States)

    Troudet, T.; Garg, S.; Merrill, W.

    1992-01-01

    The design of a dynamic neurocontroller with good robustness properties is presented for a multivariable aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and control input commands and rates. The neurocontroller exhibits good robustness through stability margins in phase and vehicle output gains. By maintaining performance and stability in the presence of sensor failures in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight control design.

  5. Dynamic simulation of flash drums using rigorous physical property calculations

    Directory of Open Access Journals (Sweden)

    F. M. Gonçalves

    2007-06-01

    Full Text Available The dynamics of flash drums is simulated using a formulation adequate for phase modeling with equations of state (EOS. The energy and mass balances are written as differential equations for the internal energy and the number of moles of each species. The algebraic equations of the model, solved at each time step, are those of a flash with specified internal energy, volume and mole numbers (UVN flash. A new aspect of our dynamic simulations is the use of direct iterations in phase volumes (instead of pressure for solving the algebraic equations. It was also found that an iterative procedure previously suggested in the literature for UVN flashes becomes unreliable close to phase boundaries and a new alternative is proposed. Another unusual aspect of this work is that the model expressions, including the physical properties and their analytical derivatives, were quickly implemented using computer algebra.

  6. Rapid cable tension estimation using dynamic and mechanical properties

    Science.gov (United States)

    Martínez-Castro, Rosana E.; Jang, Shinae; Christenson, Richard E.

    2016-04-01

    Main tension elements are critical to the overall stability of cable-supported bridges. A dependable and rapid determination of cable tension is desired to assess the state of a cable-supported bridge and evaluate its operability. A portable smart sensor setup is presented to reduce post-processing time and deployment complexity while reliably determining cable tension using dynamic characteristics extracted from spectral analysis. A self-recording accelerometer is coupled with a single-board microcomputer that communicates wirelessly with a remote host computer. The portable smart sensing device is designed such that additional algorithms, sensors and controlling devices for various monitoring applications can be installed and operated for additional structural assessment. The tension-estimating algorithms are based on taut string theory and expand to consider bending stiffness. The successful combination of cable properties allows the use of a cable's dynamic behavior to determine tension force. The tension-estimating algorithms are experimentally validated on a through-arch steel bridge subject to ambient vibration induced by passing traffic. The tension estimation is determined in well agreement with previously determined tension values for the structure.

  7. Minimal agent based model for financial markets II. Statistical properties of the linear and multiplicative dynamics

    Science.gov (United States)

    Alfi, V.; Cristelli, M.; Pietronero, L.; Zaccaria, A.

    2009-02-01

    We present a detailed study of the statistical properties of the Agent Based Model introduced in paper I [Eur. Phys. J. B, DOI: 10.1140/epjb/e2009-00028-4] and of its generalization to the multiplicative dynamics. The aim of the model is to consider the minimal elements for the understanding of the origin of the stylized facts and their self-organization. The key elements are fundamentalist agents, chartist agents, herding dynamics and price behavior. The first two elements correspond to the competition between stability and instability tendencies in the market. The herding behavior governs the possibility of the agents to change strategy and it is a crucial element of this class of models. We consider a linear approximation for the price dynamics which permits a simple interpretation of the model dynamics and, for many properties, it is possible to derive analytical results. The generalized non linear dynamics results to be extremely more sensible to the parameter space and much more difficult to analyze and control. The main results for the nature and self-organization of the stylized facts are, however, very similar in the two cases. The main peculiarity of the non linear dynamics is an enhancement of the fluctuations and a more marked evidence of the stylized facts. We will also discuss some modifications of the model to introduce more realistic elements with respect to the real markets.

  8. Controlling steady-state and dynamical properties of atomic optical bistability

    CERN Document Server

    Joshi, Amitabh

    2012-01-01

    This book provides a comprehensive introduction to the theoretical and experimental studies of atomic optical bistability and multistability, and their dynamical properties in systems with two- and three-level inhomogeneously-broadened atoms inside an optical cavity. By making use of the modified linear absorption and dispersion, as well as the greatly enhanced nonlinearity in the three-level electromagnetically induced transparency system, the optical bistablity and efficient all-optical switching can be achieved at relatively low laser powers, which can be well controlled and manipulated. Un

  9. Flow and Failure in Extension of Monodisperse Polymer Melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.

    is commonly referred to be of either brittle (e.g. cohesive type) or of liquid (e.g. necking type) nature. Here the focus will be on monodisperse polymers, to study numerically the sample flow dynamics in dual wind-up extensional rheometers. The computations are within the ideas of the microstructural......It is well known that failure or rupture phenomenon appears in the extension of polymer melts. These appear not only as failure in extension rheometers, but also as sharkskin, developments of holes in thin polymeric films etc. Sometime these ruptures appear spontaneous as well. The rupture...... 'interchain pressure' theory based on the molecular stress function constitutive model for the polymer melt flow. The purpose is twofold. Primarily to present to what extend the experimentally observed failure, appearing during or after (e.g. as a spontaneous failure) extension, can be explained within...

  10. Temperature-dependent dynamic mechanical properties of magnetorheological elastomers under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Benxiang, E-mail: jubenxiang@qq.com [National Instrument Functional Materials Engineering Technology Research Center, Chongqing 400707 (China); Tang, Rui; Zhang, Dengyou; Yang, Bailian [National Instrument Functional Materials Engineering Technology Research Center, Chongqing 400707 (China); Yu, Miao; Liao, Changrong [College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-01-15

    Both anisotropic and isotropic magnetorheological elastomer (MRE) samples were fabricated by using as-prepared polyurethane (PU) matrix and carbonyl iron particles. Temperature-dependent dynamic mechanical properties of MRE were investigated and analyzed. Due to the unique structural features of as-prepared matrix, temperature has a greater impact on the properties of as-prepared MRE, especially isotropic MRE. With increasing of temperature and magnetic field, MR effect of isotropic MRE can reach up to as high as 4176.5% at temperature of 80 °C, and the mechanism of the temperature-dependent in presence of magnetic field was discussed. These results indicated that MRE is a kind of temperature-dependent material, and can be cycled between MRE and MR plastomer (MRP) by varying temperature. - Highlights: • Both anisotropic and isotropic MRE were fabricated by using as-prepared matrix. • Temperature-dependent properties of MRE under magnetic field were investigated. • As-prepared MRE can transform MRE to MRP by adjusting temperature.

  11. Respiratory system dynamical mechanical properties: modeling in time and frequency domain.

    Science.gov (United States)

    Carvalho, Alysson Roncally; Zin, Walter Araujo

    2011-06-01

    The mechanical properties of the respiratory system are important determinants of its function and can be severely compromised in disease. The assessment of respiratory system mechanical properties is thus essential in the management of some disorders as well as in the evaluation of respiratory system adaptations in response to an acute or chronic process. Most often, lungs and chest wall are treated as a linear dynamic system that can be expressed with differential equations, allowing determination of the system's parameters, which will reflect the mechanical properties. However, different models that encompass nonlinear characteristics and also multicompartments have been used in several approaches and most specifically in mechanically ventilated patients with acute lung injury. Additionally, the input impedance over a range of frequencies can be assessed with a convenient excitation method allowing the identification of the mechanical characteristics of the central and peripheral airways as well as lung periphery impedance. With the evolution of computational power, the airway pressure and flow can be recorded and stored for hours, and hence continuous monitoring of the respiratory system mechanical properties is already available in some mechanical ventilators. This review aims to describe some of the most frequently used models for the assessment of the respiratory system mechanical properties in both time and frequency domain.

  12. Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage

    Directory of Open Access Journals (Sweden)

    Muldrew Ken

    2010-10-01

    Full Text Available Abstract Background As a relatively non-regenerative tissue, articular cartilage has been targeted for cryopreservation as a method of mitigating a lack of donor tissue availability for transplant surgeries. In addition, subzero storage of articular cartilage has long been used in biomedical studies using various storage temperatures. The current investigation studies the potential for freeze-thaw to affect the mechanical properties of articular cartilage through direct comparison of various subzero storage temperatures. Methods Both subzero storage temperature as well as freezing rate were compared using control samples (4°C and samples stored at either -20°C or -80°C as well as samples first snap frozen in liquid nitrogen (-196°C prior to storage at -80°C. All samples were thawed at 37.5°C to testing temperature (22°C. Complex stiffness and hysteresis characterized load resistance and damping properties using a non-destructive, low force magnitude, dynamic indentation protocol spanning a broad loading rate range to identify the dynamic viscoelastic properties of cartilage. Results Stiffness levels remained unchanged with exposure to the various subzero temperatures. Hysteresis increased in samples snap frozen at -196°C and stored at -80°C, though remained unchanged with exposure to the other storage temperatures. Conclusions Mechanical changes shown are likely due to ice lens creation, where frost heave effects may have caused collagen damage. That storage to -20°C and -80°C did not alter the mechanical properties of articular cartilage shows that when combined with a rapid thawing protocol to 37.5°C, the tissue may successfully be stored at subzero temperatures.

  13. Experimental Investigation on Shock Mechanical Properties of Red Sandstone under Preloaded 3D Static Stresses

    Directory of Open Access Journals (Sweden)

    Niu Yong

    2015-11-01

    Full Text Available Triaxial impact mechanical performance experiment was performed to study the mechanical properties of red sandstone subjected to three-dimensional (3D coupled static and dynamic loads, i.e., three confining pressures (0, 5, and 10 MPa and three axial pressures (11, 27, and 43 MPa. A modified 3D split Hopkinson pressure bar testing system was used. The change trend in the deformation of red sandstone and the strength and failure modes under axial pressures and confining pressures were analyzed. Results show that, when the confining pressure is constant, the compressive strength, secant modulus, and energy absorbed per unit volume of red sandstone initially increases and subsequently decreases, whereas the average strain rate exhibits an opposite trend. When the axial pressure is constant, both the compressive strength and secant modulus of red sandstone are enhanced, but the average strain rate is decreased with increasing confining pressure. The energy absorbed per unit volume is initially increased and subsequently decreased as the confining pressure increases. Red sandstone exhibits a cone-shaped compression–shear failure mode under the 3D coupled static and dynamic loads. The conclusions serve as theoretical basis on the mechanical properties of deep medium-strength rock under a high ground stress and external load disturbance condition

  14. Size Effect on Transport Properties of Gaseous Argon: A Molecular Dynamics Simulation Study

    International Nuclear Information System (INIS)

    Lee, Songhi

    2014-01-01

    We have carried out a series of equilibrium molecular dynamics (EMD) simulations of gaseous argon at 273.15 K and 1.00 atm for the calculation of transport properties as a function of the number of argon molecules (N). While the diffusion coefficients (D) of gaseous argon approach to the experimental measure with increasing N, the viscosities (η) and thermal conductivities (λ) obtained for N = 432 are unreliable due to the high fluctuation of the time correlation functions and those for N = 1728 are rather acceptable. Increasing further to N = 6912 has improved the MD results a little closer to the experimental measures for η and λ. Both the EMD results for η and λ for N = 6912 underestimate the experimental measures and it is not expected that the more increasing N makes the closer results to the experimental measures. One possible explanation for the large disagreement between MD results and the experimental measures for η and λ may be due to the use of LJ parameters which were used for liquid argon. In a recent study, we have examined the Green-Kubo formula for the calculation of transport properties (diffusion coefficient, viscosity, and thermal conductivity) of noble gases (He, Ne, Ar, Kr, and Xe) by carrying out a series of equilibrium molecular dynamics (EMD) simulations for the system of N=1728 at 273.15 K and 1.00 atm.1 While the diffusion coefficients (D) of noble gases were obtained through the original Green-Kubo formula, the viscosities (η) and thermal conductivities (λ) were obtained by utilizing the revised Green-Kubo formulas. The structural and dynamic properties of gaseous argon are completely different from those of liquid argon at 94.4 K and 1.374 g/cm 3 . The results for transport properties (D, η, and λ) at 273.15 K and 1.00 atm obtained from our EMD simulations are in general agreement with the experimental data and superior to the rigorous results of the kinetic theory

  15. Mechanical properties of nano and bulk Fe pillars using molecular dynamics and dislocation dynamics simulation

    Directory of Open Access Journals (Sweden)

    S. K. Deb Nath

    2017-10-01

    Full Text Available Using molecular dynamics simulation, tension and bending tests of a Fe nanopillar are carried out to obtain its Young’s modulus and yield strength. Then the comparative study of Young’s modulus and yield strength of a Fe nanopillar under bending and tension are carried out varying its diameter in the range of diameter 1-15nm. We find out the reasons why bending Young’s modulus and yield strength of a Fe nanopillar are higher than those of tension Young’s modulus and yield strength of a Fe nanopillar. Using the mobility parameters of bulk Fe from the experimental study [N. Urabe and J. Weertman, Materials Science and Engineering 18, 41 (1975], its temperature dependent stress-strain relationship, yield strength and strain hardening modulus are obtained from the dislocation dynamics simulations. Strain rate dependent yield strength and strain hardening modulus of bulk Fe pillars under tension are studied. Temperature dependent creep behaviors of bulk Fe pillars under tension are also studied. To verify the soundness of the present dislocation dynamics studies of the mechanical properties of bulk Fe pillars under tension, the stress vs. strain relationship and dislocation density vs. strain of bulk Fe pillars obtained by us are compared with the published results obtained by S. Queyreau, G. Monnet, and B. Devincre, International Journal of Plasticity 25, 361 (2009.

  16. Modeling of Failure for Analysis of Triaxial Braided Carbon Fiber Composites

    Science.gov (United States)

    Goldberg, Robert K.; Littell, Justin D.; Binienda, Wieslaw K.

    2010-01-01

    In the development of advanced aircraft-engine fan cases and containment systems, composite materials are beginning to be used due to their low weight and high strength. The design of these structures must include the capability of withstanding impact loads from a released fan blade. Relatively complex triaxially braided fiber architectures have been found to yield the best performance for the fan cases. To properly work with and design these structures, robust analytical tools are required that can be used in the design process. A new analytical approach models triaxially braided carbon fiber composite materials within the environment of a transient dynamic finite-element code, specifically the commercially available transient dynamic finite-element code LS-DYNA. The geometry of the braided composites is approximated by a series of parallel laminated composites. The composite is modeled by using shell finite elements. The material property data are computed by examining test data from static tests on braided composites, where optical strain measurement techniques are used to examine the local strain variations within the material. These local strain data from the braided composite tests are used along with a judicious application of composite micromechanics- based methods to compute the stiffness properties of an equivalent unidirectional laminated composite required for the shell elements. The local strain data from the braided composite tests are also applied to back out strength and failure properties of the equivalent unidirectional composite. The properties utilized are geared towards the application of a continuum damage mechanics-based composite constitutive model available within LS-DYNA. The developed model can be applied to conduct impact simulations of structures composed of triaxially braided composites. The advantage of this technology is that it facilitates the analysis of the deformation and damage response of a triaxially braided polymer matrix

  17. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials

    Directory of Open Access Journals (Sweden)

    Bao-guo Yao

    2017-10-01

    Full Text Available Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials.

  18. Time step rescaling recovers continuous-time dynamical properties for discrete-time Langevin integration of nonequilibrium systems.

    Science.gov (United States)

    Sivak, David A; Chodera, John D; Crooks, Gavin E

    2014-06-19

    When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.

  19. Protic ammonium carboxylate ionic liquids: insight into structure, dynamics and thermophysical properties by alkyl group functionalization.

    Science.gov (United States)

    Reddy, Th Dhileep N; Mallik, Bhabani S

    2017-04-19

    This study is aimed at characterising the structure, dynamics and thermophysical properties of five alkylammonium carboxylate ionic liquids (ILs) from classical molecular dynamics simulations. The structural features of these ILs were characterised by calculating the site-site radial distribution functions, g(r), spatial distribution functions and structure factors. The structural properties demonstrate that ILs show greater interaction between cations and anions when alkyl chain length increases on the cation or anion. In all ILs, spatial distribution functions show that the anion is close to the acidic hydrogen atoms of the ammonium cation. We determined the role of alkyl group functionalization of the charged entities, cations and anions, in the dynamical behavior and the transport coefficients of this family of ionic liquids. The dynamics of ILs are described by studying the mean square displacement (MSD) of the centres of mass of the ions, diffusion coefficients, ionic conductivities and hydrogen bonds as well as residence dynamics. The diffusion coefficients and ionic conductivity decrease with an increase in the size of the cation or anion. The effect of alkyl chain length on ionic conductivity calculated in this article is consistent with the findings of other experimental studies. Hydrogen bond lifetimes and residence times along with structure factors were also calculated, and are related to alkyl chain length.

  20. Dynamic and Thermodynamic Properties of a CA Engine with Non-Instantaneous Adiabats

    Directory of Open Access Journals (Sweden)

    Ricardo T. Paéz-Hernández

    2017-11-01

    Full Text Available This paper presents an analysis of a Curzon and Alhborn thermal engine model where both internal irreversibilities and non-instantaneous adiabatic branches are considered, operating with maximum ecological function and maximum power output regimes. Its thermodynamic properties are shown, and an analysis of its local dynamic stability is performed. The results derived are compared throughout the work with the results obtained previously for a case in which the adiabatic branches were assumed as instantaneous. The results indicate a better performance for thermodynamic properties in the model with instantaneous adiabatic branches, whereas there is an improvement in robustness in the case where non-instantaneous adiabatic branches are considered.

  1. Material properties for reactor pressure vessels and containment shells under dynamic loading

    International Nuclear Information System (INIS)

    Albertini, C.

    1997-01-01

    The effects of high strain rate, dynamic biaxial loading and deformation mode (tension, shear) on the mechanical properties of AISI 316 austenitic stainless steel in as-received and pre-damaged (creep, LCF) conditions are reported. This research was conducted to assess the performances of the containment shell of fast breeder reactors. The results of this research have been utilized to prepare similar investigations for SA 537 Class 1 ferritic steel used for the containment shell of LWR. The first results of these investigations are reported. A programme to study the mechanical properties of plain concrete with real size aggregate at high strain rate is described. (orig.)

  2. Investigation of a Shock Absorber for Safeguard of Fuel Assemblies Failure

    International Nuclear Information System (INIS)

    Karalevicius, Renatas; Dundulis, Gintautas; Rimkevicius, Sigitas; Uspuras, Eugenijus

    2006-01-01

    The Ignalina NPP has two reactors. The Unit 1 was shut down, therefore the special equipment was designed for transportation of the fuel from Unit 1 to Unit 2. The fuel-loaded basket can drop during transportation. The special shock absorber was designed in order to avoid failure of fuel assemblies during transportation. In case of drop of fuel loaded basket, the failure of fuel assemblies can occur. This shock absorber was studied by scaled experiments at Lithuanian Energy Institute. Static and dynamic investigations of shock absorber are presented in this paper, including dependency of axial force versus axial compression. The finite element codes BRIGADE/Plus and ABAQUS/Explicit were used for analysis. Static simulation was used to optimize the dimensions of shock absorber. Dynamic analysis shows that shock absorber is capable to withstand the dynamic load for successful force suppression function in case of an accident. (authors)

  3. Investigation of failure mechanisms for HTGR core supports

    International Nuclear Information System (INIS)

    Bennett, J.G.; Ju, F.D.; Anderson, C.A.

    1976-12-01

    The report is concerned with potential instabilities of High-Temperature Gas-Cooled Reactor Cores supported by graphite columns. Two failure mechanisms are investigated in detail: that of torsional buckling of the entire core-column assemblage and that of column failure alone. A torsional model of the core-column assemblage is described and static buckling loads are calculated. Dynamic instability of the model to seismic loadings is also investigated. Individual column failure is examined using nonlinear graphite behavior and safety factors for static loading situations are given and compared to values given by conventional design formulas. A model of a cracked graphite column is given and buckling loads are computed for columns using a combined column and fracture mechanics analysis. A finite element analysis of a cracked graphite column is presented

  4. Dynamic reliability of digital-based transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Brissaud, Florent, E-mail: florent.brissaud.2007@utt.f [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France) and Universite de Technologie de Troyes - UTT, Institut Charles Delaunay - ICD and UMR CNRS 6279 STMR, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France); Smidts, Carol [Ohio State University (OSU), Nuclear Engineering Program, Department of Mechanical Engineering, Scott Laboratory, 201 W 19th Ave, Columbus OH 43210 (United States); Barros, Anne; Berenguer, Christophe [Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and UMR CNRS 6279 STMR, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)

    2011-07-15

    Dynamic reliability explicitly handles the interactions between the stochastic behaviour of system components and the deterministic behaviour of process variables. While dynamic reliability provides a more efficient and realistic way to perform probabilistic risk assessment than 'static' approaches, its industrial level applications are still limited. Factors contributing to this situation are the inherent complexity of the theory and the lack of a generic platform. More recently the increased use of digital-based systems has also introduced additional modelling challenges related to specific interactions between system components. Typical examples are the 'intelligent transmitters' which are able to exchange information, and to perform internal data processing and advanced functionalities. To make a contribution to solving these challenges, the mathematical framework of dynamic reliability is extended to handle the data and information which are processed and exchanged between systems components. Stochastic deviations that may affect system properties are also introduced to enhance the modelling of failures. A formalized Petri net approach is then presented to perform the corresponding reliability analyses using numerical methods. Following this formalism, a versatile model for the dynamic reliability modelling of digital-based transmitters is proposed. Finally the framework's flexibility and effectiveness is demonstrated on a substantial case study involving a simplified model of a nuclear fast reactor.

  5. Knowledge representation methods for early failure detection

    International Nuclear Information System (INIS)

    Scherer, K.P.; Stiller, P.

    1990-01-01

    To supervise technical processes like nuclear power plants, it is very important to detect failure modes in an early stage. In the nuclear research center at Karlsruhe an expert system is developed, embedded in a computer network of autonomous computers, which are used for intelligent prepocessing. Events, process data and actual parameter values are stored in slots of special frames in the knowledge base of the expert system. Both rule based and fact based knowledge representations are employed to generate cause consequence chains of failure states. By on-line surveillance of the reactor process, the slots of the frames are dynamically actualized. Immediately after the evaluation, the inference engine starts in the special domain experts (triggered by metarules from a manager) and detects the correspondend failures or anomaly state. Matching the members of the chain and regarding a catalogue of instructions and messages, what is to do by the operator, future failure states can be estimated and propagation can be prohibited. That means qualitative failure prediction based on cause consequence in the static part of the knowledge base. Also, a time series of physical data can be used to predict on analytical way future process state and to continue such a theoretical propagation with matching the cause consuquence chain

  6. Cure behavior, compression set and dynamic mechanical properties of EPDM/NBR blend vulcanizates

    Energy Technology Data Exchange (ETDEWEB)

    Park, C.Y. [Pukyong National Univeristy, Pusan (Korea)

    2001-03-01

    The ethylene propylene diene terpolymer (EPDM) blends with acrylonitrile butadiene rubber (NBR) were prepared by mechanical mixing method. Mooney viscosity, cure behaviors, compression set and dynamic mechanical properties were subsequently examined. Dynamic characteristics of the entire blends determined from a Rheovibron generally showed two glass transitions (T{sub g}'s), -43 deg. C and -4 deg. C for NBR and EPDM, respectively. The tan {delta} peak monotonically shifted toward the higher temperature with increasing NBR content. It was also found that the optimum cure time was significantly decreased with loading of NBR. (author). 13 refs., 4 tabs., 9 figs.

  7. Dynamic rock tensile strengths of Laurentian granite: Experimental observation and micromechanical model

    Directory of Open Access Journals (Sweden)

    Kaiwen Xia

    2017-02-01

    Full Text Available Tensile strength is an important material property for rocks. In applications where rocks are subjected to dynamic loads, the dynamic tensile strength is the controlling parameter. Similar to the study of static tensile strength, there are various methods proposed to measure the dynamic tensile strength of rocks. Here we examine dynamic tensile strength values of Laurentian granite (LG measured from three methods: dynamic direct tension, dynamic Brazilian disc (BD test, and dynamic semi-circular bending (SCB. We found that the dynamic tensile strength from direct tension has the lowest value, and the dynamic SCB gives the highest strength at a given loading rate. Because the dynamic direct tension measures the intrinsic rock tensile strength, it is thus necessary to reconcile the differences in strength values between the direct tension and the other two methods. We attribute the difference between the dynamic BD results and the direct tension results to the overload and internal friction in BD tests. The difference between the dynamic SCB results and the direct tension results can be understood by invoking the non-local failure theory. It is shown that, after appropriate corrections, the dynamic tensile strengths from the two other tests can be reduced to those from direct tension.

  8. The dynamic state monitoring of bearings system

    Directory of Open Access Journals (Sweden)

    Marek Krynke

    2015-03-01

    Full Text Available The article discusses the methods of dynamic state monitoring of bearings system. A vibration signal contains important technical information about the machine condition and is currently the most frequently used in diagnostic bearings systems. One of the main ad-vantages of machine condition monitoring is identifying the cause of failure of the bearings and taking preventative measures, otherwise the operation of such a machine will lead to frequent replacement of the bearings. Monitoring changes in the course of the operation of machin-ery repair strategies allows keeping the conditioned state of dynamic failure conditioned preventive repairs and repairs after-failure time. In addition, the paper also presents the fundamental causes of bearing failure and identifies mechanisms related to the creation of any type of damage.

  9. Dynamical properties of the growing continuum using multiple-scale method

    Directory of Open Access Journals (Sweden)

    Hynčík L.

    2008-12-01

    Full Text Available The theory of growth and remodeling is applied to the 1D continuum. This can be mentioned e.g. as a model of the muscle fibre or piezo-electric stack. Hyperelastic material described by free energy potential suggested by Fung is used whereas the change of stiffness is taken into account. Corresponding equations define the dynamical system with two degrees of freedom. Its stability and the properties of bifurcations are studied using multiple-scale method. There are shown the conditions under which the degenerated Hopf's bifurcation is occuring.

  10. Combining a reactive potential with a harmonic approximation for molecular dynamics simulation of failure: construction of a reduced potential

    Science.gov (United States)

    Tejada, I. G.; Brochard, L.; Stoltz, G.; Legoll, F.; Lelièvre, T.; Cancès, E.

    2015-01-01

    Molecular dynamics is a simulation technique that can be used to study failure in solids, provided the inter-atomic potential energy is able to account for the complex mechanisms at failure. Reactive potentials fitted on ab initio results or on experimental values have the ability to adapt to any complex atomic arrangement and, therefore, are suited to simulate failure. But the complexity of these potentials, together with the size of the systems considered, make simulations computationally expensive. In order to improve the efficiency of numerical simulations, simpler harmonic potentials can be used instead of complex reactive potentials in the regions where the system is close to its ground state and a harmonic approximation reasonably fits the actual reactive potential. However the validity and precision of such an approach has not been investigated in detail yet. We present here a methodology for constructing a reduced potential and combining it with the reactive one. We also report some important features of crack propagation that may be affected by the coupling of reactive and reduced potentials. As an illustrative case, we model a crystalline two-dimensional material (graphene) with a reactive empirical bond-order potential (REBO) or with harmonic potentials made of bond and angle springs that are designed to reproduce the second order approximation of REBO in the ground state. We analyze the consistency of this approximation by comparing the mechanical behavior and the phonon spectra of systems modeled with these potentials. These tests reveal when the anharmonicity effects appear. As anharmonic effects originate from strain, stress or temperature, the latter quantities are the basis for establishing coupling criteria for on the fly substitution in large simulations.

  11. The electronic and optical properties of warm dense nitrous oxide using quantum molecular dynamics simulations

    International Nuclear Information System (INIS)

    Zhang Yujuan; Wang Cong; Zhang Ping

    2012-01-01

    First-principles molecular-dynamics simulations based on density-functional theory have been used to study the electronic and optical properties of fluid nitrous oxide under extreme conditions. Systematic descriptions of pair-correlation function, atomic structure, and the charge density distribution are used to investigate the dissociation of fluid nitrous oxide. The electrical and optical properties are derived from the Kubo-Greenwood formula. It is found that the nonmetal-metal transition for fluid nitrous oxide can be directly associated to the dissociation and has significant influence on the optical properties of the fluid.

  12. High-pressure lattice dynamics and thermodynamic properties of zinc-blende BN from first-principles calculation

    International Nuclear Information System (INIS)

    Wang Huanyou; Xu Hui; Wang Xianchun; Jiang Chunzhi

    2009-01-01

    The density function perturbation theory (DFPT) is employed to study the lattice dynamics and thermodynamic properties (with quasiharmonic approximation) of zinc-blende BN. First we discuss the structural properties and compare the phonon spectrum with available Raman scattering experiments. Thereafter using the calculated phonon dispersions we obtain the PTV equation of state from the free energy. Our results for the above properties are generally speaking in good agreement with experiments and with similar theoretical calculations. Owing to the anharmonic effect at high temperature, the calculated linear thermal expansion coefficients (CTE) are low to experimental data.

  13. Dynamic effective properties of heterogeneous geological formations with spherical inclusions under periodic time variations

    Science.gov (United States)

    Rabinovich, A.; Dagan, G.; Miloh, T.

    2013-04-01

    In unsteady groundwater flow (or similar processes of heat/electrical conduction), the heterogeneous medium structure is characterized by two random properties, the conductivity K and the specific storativity S. The average head field ⟨H ⟩and the associated effective properties Kef, Sef are determined for a layer with a periodic head drop between boundaries, such that H is periodic in time, and a medium made up of a matrix with a dilute concentration of spherical inclusions. In the common quasi-steady approximation, Kef is equal to the classical steady solution while Sef = SA, the arithmetic mean. We derive expressions for the frequency dependent Kef, Sef, which are generally complex, i.e., dynamic. The main result is the delineation of the ranges of the parameters: dimensionless frequency (ω) and contrasts of conductivity (κ) and storativity (s) between the matrix and the inclusions, for which dynamic effects are significant.

  14. Relating Topological Determinants of Complex Networks to Their Spectral Properties: Structural and Dynamical Effects

    Science.gov (United States)

    Castellano, Claudio; Pastor-Satorras, Romualdo

    2017-10-01

    The largest eigenvalue of a network's adjacency matrix and its associated principal eigenvector are key elements for determining the topological structure and the properties of dynamical processes mediated by it. We present a physically grounded expression relating the value of the largest eigenvalue of a given network to the largest eigenvalue of two network subgraphs, considered as isolated: the hub with its immediate neighbors and the densely connected set of nodes with maximum K -core index. We validate this formula by showing that it predicts, with good accuracy, the largest eigenvalue of a large set of synthetic and real-world topologies. We also present evidence of the consequences of these findings for broad classes of dynamics taking place on the networks. As a by-product, we reveal that the spectral properties of heterogeneous networks built according to the linear preferential attachment model are qualitatively different from those of their static counterparts.

  15. EVALUATION OF LIVER FAILURE STAGE IN CHILDREN

    Directory of Open Access Journals (Sweden)

    G. V. Volynets

    2013-01-01

    Full Text Available Aim: to develop a system of evaluation of liver failure stage in children based on the International classification of functioning, disability and health (ICF. Patients and methods: based on the retrospective analysis of 14 biochemical markers, characterizing hepatic role in proteins, lipids and carbohydrates metabolism, of 115 children without liver diseases, 15 children who died of liver failure and 220 patients with various hepatic disorders, being followed-up in the SCCH of RAMS, a score system of evaluation of liver failure stage in children as an additional diagnostic tool was developed. Each of the biochemical markers was assessed according to the 5-point rating scale in dependence of its changes intensity. Results: the sum of points was considered to be a criterion of liver failure stage. According to the ICF recommendations, decrease of points on 0–4% (54–56 points corresponds with absence of liver failure; 5–24% (43–53 points — as mild dysfunction, 25–49% (29–42 points — as moderate; 50-95% (3–28 points — as severe; and 96–100% (0-2 points — as absolute failure. Conclusions: score system of evaluation of liver failure stage can be applied at any step of diagnostics and treatment of children of any age, due to independence of the used markers from the age. It can be used in assessment of the severity of disorder in dynamics, in determination of the prognosis and as criterion of indications to liver transplantation, as well as during medico-social examination.

  16. Dynamic dielectric properties of a wood liquefaction system using polyethylene glycol and glycerol

    Science.gov (United States)

    Mengchao Zhou; Thomas L. Eberhardt; Bo Cai; Chung-Yun Hse; Hui Pan

    2017-01-01

    Microwave-assisted liquefaction has shown potential for rapid thermal processing of lignocellulosic biomass. The efficiency of microwave heating depends largely on the dielectric properties of the materials being heated. The objective of this study was to investigate the dynamic interactions between microwave energy and the reaction system during the liquefaction of a...

  17. A novel test method for measuring the thermal properties of clothing ensembles under dynamic conditions

    International Nuclear Information System (INIS)

    Wan, X; Fan, J

    2008-01-01

    The dynamic thermal properties of clothing ensembles are important to thermal transient comfort, but have so far not been properly quantified. In this paper, a novel test procedure and new index based on measurements on the sweating fabric manikin-Walter are proposed to quantify and measure the dynamic thermal properties of clothing ensembles. Experiments showed that the new index is correlated to the changing rate of the body temperature of the wearer, which is an important indicator of thermal transient comfort. Clothing ensembles having higher values of the index means the wearer will have a faster changing rate of body temperature and shorter duration before approaching a dangerous thermo-physiological state, when he changes from 'resting' to 'exercising' mode. Clothing should therefore be designed to reduce the value of the index

  18. Debugging Nondeterministic Failures in Linux Programs through Replay Analysis

    Directory of Open Access Journals (Sweden)

    Shakaiba Majeed

    2018-01-01

    Full Text Available Reproducing a failure is the first and most important step in debugging because it enables us to understand the failure and track down its source. However, many programs are susceptible to nondeterministic failures that are hard to reproduce, which makes debugging extremely difficult. We first address the reproducibility problem by proposing an OS-level replay system for a uniprocessor environment that can capture and replay nondeterministic events needed to reproduce a failure in Linux interactive and event-based programs. We then present an analysis method, called replay analysis, based on the proposed record and replay system to diagnose concurrency bugs in such programs. The replay analysis method uses a combination of static analysis, dynamic tracing during replay, and delta debugging to identify failure-inducing memory access patterns that lead to concurrency failure. The experimental results show that the presented record and replay system has low-recording overhead and hence can be safely used in production systems to catch rarely occurring bugs. We also present few concurrency bug case studies from real-world applications to prove the effectiveness of the proposed bug diagnosis framework.

  19. Experiments and modeling of ballistic penetration using an energy failure criterion

    Directory of Open Access Journals (Sweden)

    Dolinski M.

    2015-01-01

    Full Text Available One of the most intricate problems in terminal ballistics is the physics underlying penetration and perforation. Several penetration modes are well identified, such as petalling, plugging, spall failure and fragmentation (Sedgwick, 1968. In most cases, the final target failure will combine those modes. Some of the failure modes can be due to brittle material behavior, but penetration of ductile targets by blunt projectiles, involving plugging in particular, is caused by excessive localized plasticity, with emphasis on adiabatic shear banding (ASB. Among the theories regarding the onset of ASB, new evidence was recently brought by Rittel et al. (2006, according to whom shear bands initiate as a result of dynamic recrystallization (DRX, a local softening mechanism driven by the stored energy of cold work. As such, ASB formation results from microstructural transformations, rather than from thermal softening. In our previous work (Dolinski et al., 2010, a failure criterion based on plastic strain energy density was presented and applied to model four different classical examples of dynamic failure involving ASB formation. According to this criterion, a material point starts to fail when the total plastic strain energy density reaches a critical value. Thereafter, the strength of the element decreases gradually to zero to mimic the actual material mechanical behavior. The goal of this paper is to present a new combined experimental-numerical study of ballistic penetration and perforation, using the above-mentioned failure criterion. Careful experiments are carried out using a single combination of AISI 4340 FSP projectiles and 25[mm] thick RHA steel plates, while the impact velocity, and hence the imparted damage, are systematically varied. We show that our failure model, which includes only one adjustable parameter in this present work, can faithfully reproduce each of the experiments without any further adjustment. Moreover, it is shown that the

  20. Investigation of nonlinear dynamic soil property at the Savannah River Site

    International Nuclear Information System (INIS)

    Lee, R.C.

    2000-01-01

    This document summarizes laboratory dynamic soil testing investigations conducted by the University of Texas at Austin (UTA) for the Savannah River Site (SRS) (Stokoe et al., 1995a, Stokoe et al., 1995b, Sponseller and Stokoe, 1995). The purpose of the investigation is to provide an evaluation of past testing results in the context of new test data and the development of consistent site wide models of material strain dependencies based upon geologic formation, depth, and relevant index properties

  1. DEFINING SLUMS USING MULTIDIMENSIONAL AND RELATIONAL PROPERTIES: A DYNAMIC FRAMEWORK FOR INTERVENTION

    Directory of Open Access Journals (Sweden)

    Aisha Abubakar

    2017-07-01

    Full Text Available Phenomenon as old as cities themselves, slums - in their many permutations - have been part of city management for a long time. Descriptions and definitions have gone through trends and so have the strategies to address their conditions and relationship to cities. Summarising various trends, definitions and approaches to solutions of slums, this paper critically analyses more recent and structured approaches that attempt to grasp the complexity of all realities constituting the slum as a key to their management. Then, from a detailed review of properties of slums from literature, it proposes  a rational framework – the Slum Property Map – that organises such properties (cultural, social, economic, environmental into a relationship map where reciprocal links between properties are highlighted and used both to develop narratives of the slum – how it originates, develops and functions for its inhabitants, and in relation to the city- and thus eventually to guide intervention through investment in and management of local assets. The paper presents the Slum Property Map as a comprehensive and dynamic way to understand slums as holding potential for their immediate and future prosperity.

  2. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    Science.gov (United States)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  3. Time-Varying Dynamic Properties of Offshore Wind Turbines Evaluated by Modal Testing

    DEFF Research Database (Denmark)

    Damgaard, Mads; Andersen, J. K. F.; Ibsen, Lars Bo

    2014-01-01

    resonance of the wind turbine structure. In this paper, free vibration tests and a numerical Winkler type approach are used to evaluate the dynamic properties of a total of 30 offshore wind turbines located in the North Sea. Analyses indicate time-varying eigenfrequencies and damping ratios of the lowest...... structural eigenmode. Isolating the oscillation oil damper performance, moveable seabed conditions may lead to the observed time dependency....

  4. Molecular-Dynamic Simulation In Substation Of Advanced Fuel With Improved Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kolokol, Alexander S.; Shimkevich, Alexander L. [Russian Research Center ' Kurchatov Institute' , 1 Kurchatov Sq. Moscow 123182 (Russian Federation)

    2008-07-01

    A disadvantage of the uranium dioxide fuel is very low thermal conductivity than the one of nitride, carbide, metal fuel, and cermets as composites, UO{sub 2}+Me, due to the portion in thermal conductivity of their electronic conductivity and high phonon mobility. An investigation of the microstructure and atomic dynamics of solid solutions as well as the physical and chemical processes in them will make it possible to adjust the properties of the solutions in steps according to prescribed indicators by using alloying additives. The concept for designing an oxide fuel may be promising for the development of a new generation of nuclear reactors. In developing the methods for designing reactor materials as to the nuclear fuel, microscopic structure improving its thermal and physical properties is formulated here. (authors)

  5. A dynamic mathematical test of international property securities bubbles and crashes

    Science.gov (United States)

    Hui, Eddie C. M.; Zheng, Xian; Wang, Hui

    2010-04-01

    This study investigates property securities bubbles and crashes by using a dynamic mathematical methodology developed from the previous research (Watanabe et al. 2007a, b [31,32]). The improved model is used to detect the bubble and crash periods in five international countries/cities (namely, United States, United Kingdom, Japan, Hong Kong and Singapore) from Jan, 2000 to Oct, 2008. By this model definition, we are able to detect the beginning of each bubble period even before it bursts. Meanwhile, the empirical results show that most of property securities markets experienced bubble periods between 2003 and 2007, and crashes happened in Apr 2008 triggered by the Subprime Mortgage Crisis of US. In contrast, Japan suffered the shortest bubble period and no evidence has documented the existence of crash there.

  6. Molecular-Dynamic Simulation In Substation Of Advanced Fuel With Improved Properties

    International Nuclear Information System (INIS)

    Kolokol, Alexander S.; Shimkevich, Alexander L.

    2008-01-01

    A disadvantage of the uranium dioxide fuel is very low thermal conductivity than the one of nitride, carbide, metal fuel, and cermets as composites, UO 2 +Me, due to the portion in thermal conductivity of their electronic conductivity and high phonon mobility. An investigation of the microstructure and atomic dynamics of solid solutions as well as the physical and chemical processes in them will make it possible to adjust the properties of the solutions in steps according to prescribed indicators by using alloying additives. The concept for designing an oxide fuel may be promising for the development of a new generation of nuclear reactors. In developing the methods for designing reactor materials as to the nuclear fuel, microscopic structure improving its thermal and physical properties is formulated here. (authors)

  7. Analysis of acetal toilet fill valve supply line nut failure

    Directory of Open Access Journals (Sweden)

    Anthony Timpanaro

    2017-10-01

    Full Text Available In recent years, there has been a rise in the number of product liability cases involving the failure of toilet water supply line acetal plastic nuts. These nuts can fail in service, causing water leaks that result in significant property and financial losses. This study examines three possible failure modes of acetal plastic toilet water supply nuts. The three failure modes tested were all due to over load failure of the acetal nut and are as follows: (1 Overtightening of the supply line acetal nut, (2 Supply line lateral pull and, (3 Embrittled supply line lateral pull. Additionally, a “hand-tight” torque survey was conducted. The fracture surfaces and characteristics of these failure tests were examined with Stereo Microscopy and Scanning Electron Microscopy (SEM. The failure modes were compared and contrasted to provide guidance in determination of cause in these investigations.

  8. Modeling cascading failures with the crisis of trust in social networks

    Science.gov (United States)

    Yi, Chengqi; Bao, Yuanyuan; Jiang, Jingchi; Xue, Yibo

    2015-10-01

    In social networks, some friends often post or disseminate malicious information, such as advertising messages, informal overseas purchasing messages, illegal messages, or rumors. Too much malicious information may cause a feeling of intense annoyance. When the feeling exceeds a certain threshold, it will lead social network users to distrust these friends, which we call the crisis of trust. The crisis of trust in social networks has already become a universal concern and an urgent unsolved problem. As a result of the crisis of trust, users will cut off their relationships with some of their untrustworthy friends. Once a few of these relationships are made unavailable, it is likely that other friends will decline trust, and a large portion of the social network will be influenced. The phenomenon in which the unavailability of a few relationships will trigger the failure of successive relationships is known as cascading failure dynamics. To our best knowledge, no one has formally proposed cascading failures dynamics with the crisis of trust in social networks. In this paper, we address this potential issue, quantify the trust between two users based on user similarity, and model the minimum tolerance with a nonlinear equation. Furthermore, we construct the processes of cascading failures dynamics by considering the unique features of social networks. Based on real social network datasets (Sina Weibo, Facebook and Twitter), we adopt two attack strategies (the highest trust attack (HT) and the lowest trust attack (LT)) to evaluate the proposed dynamics and to further analyze the changes of the topology, connectivity, cascading time and cascade effect under the above attacks. We numerically find that the sparse and inhomogeneous network structure in our cascading model can better improve the robustness of social networks than the dense and homogeneous structure. However, the network structure that seems like ripples is more vulnerable than the other two network

  9. Thermophysical properties of liquid carbon dioxide under shock compressions: quantum molecular dynamic simulations.

    Science.gov (United States)

    Wang, Cong; Zhang, Ping

    2010-10-07

    Quantum molecular dynamics were used to calculate the equation of state, electrical, and optical properties of liquid carbon dioxide along the Hugoniot at shock pressures up to 74 GPa. The principal Hugoniot derived from the calculated equation of state is in good agreement with experimental results. Molecular dissociation and recombination are investigated through pair correlation functions and decomposition of carbon dioxide is found to be between 40 and 50 GPa along the Hugoniot, where nonmetal-metal transition is observed. In addition, the optical properties of shock compressed carbon dioxide are also theoretically predicted along the Hugoniot.

  10. Mechanical, dynamical and thermodynamic properties of Al-3wt%Mg from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rong [Chongqing Jiaotong Univ., Chongqing (China). College of Materials Science and Engineering; Tang, Bin [Chongqing City Management College, Chongqing (China). Inst. of Finance and Trade; Gao, Tao [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics

    2017-09-01

    The mechanical, dynamical and thermodynamic properties of Al-3wt%Mg have been investigated using the first-principles method. The calculated structural parameter is in good agreement with previous works. Results for the elastic modulus, stress-strain relationships, ideal tensile and shear strengths are presented. Al-3wt%Mg is found to have larger moduli and higher strengths than Al, which is consistent with its exploitation in Al precipitate-hardening mechanisms. The partial density of states (PDOS) show that the partly covalent-like bonding through Al p-Mg s hybridization is the origin of excellent mechanical properties of Al-3wt%Mg. The phonon dispersion curves indicate that Al-3wt%Mg is dynamically stable at ambient pressure and 0 K. Furthermore, the Helmholtz free energy ΔF, the entropy S, the constant-volume specific heat C{sub V} and the phonon contribution to the internal energy ΔE are predicted using the phonon density of states. We expect that our work can provide useful guidance to help with the performance of Al-3wt%Mg.

  11. Mechanical, dynamical and thermodynamic properties of Al-3wt%Mg from first principles

    International Nuclear Information System (INIS)

    Yang, Rong; Tang, Bin; Gao, Tao

    2017-01-01

    The mechanical, dynamical and thermodynamic properties of Al-3wt%Mg have been investigated using the first-principles method. The calculated structural parameter is in good agreement with previous works. Results for the elastic modulus, stress-strain relationships, ideal tensile and shear strengths are presented. Al-3wt%Mg is found to have larger moduli and higher strengths than Al, which is consistent with its exploitation in Al precipitate-hardening mechanisms. The partial density of states (PDOS) show that the partly covalent-like bonding through Al p-Mg s hybridization is the origin of excellent mechanical properties of Al-3wt%Mg. The phonon dispersion curves indicate that Al-3wt%Mg is dynamically stable at ambient pressure and 0 K. Furthermore, the Helmholtz free energy ΔF, the entropy S, the constant-volume specific heat C_V and the phonon contribution to the internal energy ΔE are predicted using the phonon density of states. We expect that our work can provide useful guidance to help with the performance of Al-3wt%Mg.

  12. A spherical model with directional interactions: II. Dynamics and landscape properties

    International Nuclear Information System (INIS)

    Mayer, Christian; Sciortino, Francesco; Tartaglia, Piero; Zaccarelli, Emanuela

    2010-01-01

    We study a binary non-additive hard-sphere mixture with square well interactions only between dissimilar particles. An appropriate choice of the inter-particle potential parameters favors the formation of equilibrium structures with tetrahedral ordering (Zaccarelli et al 2007 J. Chem. Phys. 127 174501). By performing extensive event-driven molecular dynamics simulations, we monitor the dynamics of the system, locating the iso-diffusivity lines in the phase diagram, and discuss their location with respect to the gas-liquid phase separation. We observe the formation of an ideal gel which continuously crosses towards an attractive glass upon increasing the density. Moreover, we evaluate the statistical properties of the potential energy landscape for this model. We find that the configurational entropy, for densities within the optimal network-forming region, is finite even in the ground state and obeys a logarithmic dependence on the energy.

  13. Dynamic strength properties and alpha-phase shock Hugoniot of iron and steel

    Science.gov (United States)

    Thomas, S. A.; Hawkins, M. C.; Matthes, M. K.; Gray, G. T.; Hixson, R. S.

    2018-05-01

    The properties of iron and steel are of considerable interest scientifically to the dynamic materials properties' community, as well as to a broader audience, for many applications. This is true in part because of the existence of a solid-solid phase (α-ɛ) transition at relatively modest stress (13 GPa). Because of this, there is a significant amount of data on iron and steel alloy shock compression properties at stresses above 13 GPa, but much less fundamental data under stress conditions lower than that, where the metals are in the α-phase. New data have been obtained under relatively low stress (below 10 GPa) conditions in which samples are subjected to low-velocity symmetric impact on the order of 0.2 to 0.4 km/s. We used well-developed flyer plate impact methods combined with velocity interferometry to measure wave speeds and strength properties in compression and tension. The shock α-phase Hugoniot data reported here are compared with literature values. A comparison of spall strength and Hugoniot elastic limit is made between different types of steel studied and for pure iron.

  14. Analysis of the failure of a vacuum spin-pit drive turbine spindle shaft

    OpenAIRE

    Pettitt, Jason M.

    2005-01-01

    The Naval Postgraduate School's Rotor Spin Research Facility experienced a failure in the Spring of 2005 in which the rotor dropped from the drive turbine and caused extensive damage. A failure analysis of the drive turbine spindle shaft was conducted in order to determine the cause of failure: whether due to a material or design flaw. Also, a dynamic analysis was conducted in order to determine the natural modes present in the system and the associated frequencies that could have contributed...

  15. Long-term effects as the cause of failure in electronic components

    International Nuclear Information System (INIS)

    Renz, H.; Kreichgauer, H.

    1989-01-01

    After a brief presentation of the utilisation properties of electronic components, their failure rates are discussed with particular reference to the socalled bath-tub curve. The main emphasis is on the construction and manufacture of integrated circuits and the possible types and causes of failure arising from the individual manufacturing stages (layout faults, internal corrosion, masking and etching errors, leakage currents, inadequate heat removal, etc.). A technical insurance assessment is then provided of the long-term failures associated with technological matters. (orig.) [de

  16. Geotechnical properties of rock

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, R.; Gorski, B.; Gyenge, M.

    1995-12-31

    The manual is a compilation of the geotechnical properties of many types of rock that are typical of Canadian mining environments. Included are values for density, porosity, compressive and shear wave velocity, uniaxial compressive strength, Young`s modulus, and Poisson`s ratio. The data base contains material constants that were determined using the Hoek and Brown failure criteria for both before and after failure conditions. 76 data sheets of rock properties in Canadian mines are included. 7 refs., 85 figs., 3 tabs.

  17. Ground-state and dynamical properties of two-dimensional dipolar Fermi liquids

    International Nuclear Information System (INIS)

    Abedinpour, Saeed H.; Asgari, Reza; Tanatar, B.; Polini, Marco

    2014-01-01

    We study the ground-state properties of a two-dimensional spin-polarized fluid of dipolar fermions within the Euler–Lagrange Fermi-hypernetted-chain approximation. Our method is based on the solution of a scattering Schrödinger equation for the “pair amplitude” √(g(r)), where g(r) is the pair distribution function. A key ingredient in our theory is the effective pair potential, which includes a bosonic term from Jastrow–Feenberg correlations and a fermionic contribution from kinetic energy and exchange, which is tailored to reproduce the Hartree–Fock limit at weak coupling. Very good agreement with recent results based on quantum Monte Carlo simulations is achieved over a wide range of coupling constants up to the liquid-to-crystal quantum phase transition. Using the fluctuation–dissipation theorem and a static approximation for the effective inter-particle interactions, we calculate the dynamical density–density response function, and furthermore demonstrate that an undamped zero-sound mode exists for any value of the interaction strength, down to infinitesimally weak couplings. -- Highlights: •We have studied the ground state properties of a strongly correlated two-dimensional fluid of dipolar fermions. •We have calculated the effective inter-particle interaction and the dynamical density–density response function. •We have shown that an undamped zero sound mode exists at any value of the interaction strength

  18. Time to failure of hierarchical load-transfer models of fracture

    DEFF Research Database (Denmark)

    Vázquez-Prada, M; Gómez, J B; Moreno, Y

    1999-01-01

    The time to failure, T, of dynamical models of fracture for a hierarchical load-transfer geometry is studied. Using a probabilistic strategy and juxtaposing hierarchical structures of height n, we devise an exact method to compute T, for structures of height n+1. Bounding T, for large n, we are a...... are able to deduce that the time to failure tends to a nonzero value when n tends to infinity. This numerical conclusion is deduced for both power law and exponential breakdown rules....

  19. Mechanical properties of pillared-graphene nanostructures using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Wang, Chih-Hao; Fang, Te-Hua; Sun, Wei-Li

    2014-01-01

    The deformation behaviour and mechanical properties of three-dimensional (3D) pillared graphene are investigated using molecular dynamics simulations. The Tersoff–Brenner many-body potential model is employed to evaluate the interactions between 3D pillared-graphene carbon atoms and nanotube carbons. The Lennard-Jones potential model is used to compute the interactions between a conical indenter and 3D pillared-graphene carbon atoms. The effects of the size and geometric structure of 3D pillared-graphene are evaluated in terms of the indentation force and contact stiffness. The simulation results for an armchair nanotube of 3D pillared graphene show that the contact stiffness increases with increasing chiral vector of the 3D-pillared graphene. However, the adhesive force sharply decreases with increasing chiral vector of the 3D-pillared graphene. A zigzag nanotube of 3D-pillared graphene exhibits better mechanical properties compared with those of the armchair nanotube. (paper)

  20. Statistical properties of compartmental model parameters extracted from dynamic positron emission tomography experiments

    International Nuclear Information System (INIS)

    Mazoyer, B.M.; Huesman, R.H.; Budinger, T.F.; Knittel, B.L.

    1986-01-01

    Over the past years a major focus of research in physiologic studies employing tracers has been the computer implementation of mathematical methods of kinetic modeling for extracting the desired physiological parameters from tomographically derived data. A study is reported of factors that affect the statistical properties of compartmental model parameters extracted from dynamic positron emission tomography (PET) experiments

  1. Relationships between nanostructure and dynamic-mechanical properties of epoxy network containing PMMA-modified silsesquioxane

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available A new class of organic-inorganic hybrid nanocomposites was obtained by blending PMMA-modified silsesquioxane hybrid materials with epoxy matrix followed by curing with methyl tetrahydrophthalic anhydride. The hybrid materials were obtained by sol-gel method through the hydrolysis and polycondensation of the silicon species of the hybrid precursor, 3-methacryloxypropyltrimethoxysilane (MPTS, simultaneously to the polymerization of the methacrylate (MMA groups covalently bonded to the silicon atoms. The nanostructure of these materials was investigated by small angle X-ray scattering (SAXS and correlated to their dynamic mechanical properties. The SAXS results revealed a hierarchical nanostructure consisting on two structural levels. The first level is related to the siloxane nanoparticles spatially correlated in the epoxy matrix, forming larger hybrid secondary aggregates. The dispersion of siloxane nanoparticles in epoxy matrix was favored by increasing the MMA content in the hybrid material. The presence of small amount of hybrid material affected significantly the dynamic mechanical properties of the epoxy networks.

  2. First passage Brownian functional properties of snowmelt dynamics

    Science.gov (United States)

    Dubey, Ashutosh; Bandyopadhyay, Malay

    2018-04-01

    In this paper, we model snow-melt dynamics in terms of a Brownian motion (BM) with purely time dependent drift and difusion and examine its first passage properties by suggesting and examining several Brownian functionals which characterize the lifetime and reactivity of such stochastic processes. We introduce several probability distribution functions (PDFs) associated with such time dependent BMs. For instance, for a BM with initial starting point x0, we derive analytical expressions for : (i) the PDF P(tf|x0) of the first passage time tf which specify the lifetime of such stochastic process, (ii) the PDF P(A|x0) of the area A till the first passage time and it provides us numerous valuable information about the total fresh water availability during melting, (iii) the PDF P(M) associated with the maximum size M of the BM process before the first passage time, and (iv) the joint PDF P(M; tm) of the maximum size M and its occurrence time tm before the first passage time. These P(M) and P(M; tm) are useful in determining the time of maximum fresh water availability and in calculating the total maximum amount of available fresh water. These PDFs are examined for the power law time dependent drift and diffusion which matches quite well with the available data of snowmelt dynamics.

  3. Mechanical properties of stanene under uniaxial and biaxial loading: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Mojumder, Satyajit [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Amin, Abdullah Al [Department of Mechanical and Aerospace Engineering, Case western Reverse University, Cleveland, Ohio 44106 (United States); Islam, Md Mahbubul, E-mail: mmi122@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-09-28

    Stanene, a graphene like two dimensional honeycomb structure of tin has attractive features in electronics application. In this study, we performed molecular dynamics simulations using modified embedded atom method potential to investigate mechanical properties of stanene. We studied the effect of temperature and strain rate on mechanical properties of α-stanene for both uniaxial and biaxial loading conditions. Our study suggests that with the increasing temperature, both the fracture strength and strain of the stanene decrease. Uniaxial loading in zigzag direction shows higher fracture strength and strain compared to the armchair direction, while no noticeable variation in the mechanical properties is observed for biaxial loading. We also found at a higher loading rate, material exhibits higher fracture strength and strain. These results will aid further investigation of stanene as a potential nano-electronics substitute.

  4. Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Zhang Chenli; Shen Huishen

    2008-01-01

    Molecular dynamics simulation is performed on a double-walled carbon nanotube (DWCNT) to predict its elastic properties based on a double-walled shear deformable shell model. By direct buckling measurement, we present here a method for uniquely determining the effective wall thickness for the shell model. Accounting for two different kinds of DWCNTs by adding an inner or outer tube to a fiducial tube, the mechanical properties of DWCNTs are carefully investigated as compared with those of the fiducial tube. It is found that the predicted values of Young's and shear moduli depend strongly on the construction and helicity of DWCNTs, while the dependence on nanotube length is relatively small. The results also confirm that the temperature variation has a significant effect on the elastic properties of DWCNTs

  5. Study of physical properties of the dynamic filter; Estudo das propriedades fisicas do filtro dinamico

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Roberto Salomon

    2004-02-15

    This paper presents a characterization of the physical properties of the dynamic filter of Clinac 2300 CD linear accelerator of Varian Medical Systems, installed at the Cancer National Institute (INCA), Rio de Janeiro. The 'dynamic filter factors' were measured for the 6 and 15 MV photons, in squared and rectangular fields, and compared with factors furnished at the accelerator manual and used by the planning system, IN and OUT positions, at the maximum dose depths, 5 cm, 10 cm and 29 cm, for the 6 and 15 MV photons energies. The results demonstrated that the 'dynamic filter factors' does not changes with depth and the PDP for the opened field are the same for the fields with dynamic filters. Last but not least the dynamic filters were measured and compared with the nominal angles of the accelerator and the planning system, where some discrepancies were reported.

  6. Rock properties data base

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, R.; Gorski, B.; Gyenge, M.

    1991-03-01

    As mining companies proceed deeper and into areas whose stability is threatened by high and complex stress fields, the science of rock mechanics becomes invaluable in designing underground mine strata control programs. CANMET's Mining Research Laboratories division has compiled a summary of pre- and post-failure mechanical properties of rock types which were tested to provide design data. The 'Rock Properties Data Base' presents the results of these tests, and includes many rock types typical of Canadian mine environments. The data base also contains 'm' and 's' values determined using Hoek and Brown's failure criteria for both pre- and post-failure conditions. 7 refs., 3 tabs., 9 figs., 1 append.

  7. Risk of shear failure and extensional failure around over-stressed excavations in brittle rock

    Directory of Open Access Journals (Sweden)

    Nick Barton

    2017-04-01

    Full Text Available The authors investigate the failure modes surrounding over-stressed tunnels in rock. Three lines of investigation are employed: failure in over-stressed three-dimensional (3D models of tunnels bored under 3D stress, failure modes in two-dimensional (2D numerical simulations of 1000 m and 2000 m deep tunnels using FRACOD, both in intact rock and in rock masses with one or two joint sets, and finally, observations in TBM (tunnel boring machine tunnels in hard and medium hard massive rocks. The reason for ‘stress-induced’ failure to initiate, when the assumed maximum tangential stress is approximately (0.4–0.5σc (UCS, uniaxial compressive strength in massive rock, is now known to be due to exceedance of a critical extensional strain which is generated by a Poisson's ratio effect. However, because similar ‘stress/strength’ failure limits are found in mining, nuclear waste research excavations, and deep road tunnels in Norway, one is easily misled into thinking of compressive stress induced failure. Because of this, the empirical SRF (stress reduction factor in the Q-system is set to accelerate as the estimated ratio σθmax/σc >> 0.4. In mining, similar ‘stress/strength’ ratios are used to suggest depth of break-out. The reality behind the fracture initiation stress/strength ratio of ‘0.4’ is actually because of combinations of familiar tensile and compressive strength ratios (such as 10 with Poisson's ratio (say 0.25. We exceed the extensional strain limits and start to see acoustic emission (AE when tangential stress σθ ≈ 0.4σc, due to simple arithmetic. The combination of 2D theoretical FRACOD models and actual tunnelling suggests frequent initiation of failure by ‘stable’ extensional strain fracturing, but propagation in ‘unstable’ and therefore dynamic shearing. In the case of very deep tunnels (and 3D physical simulations, compressive stresses may be too high for extensional strain fracturing, and

  8. Acceleration to failure in geophysical signals prior to laboratory rock failure and volcanic eruptions (Invited)

    Science.gov (United States)

    Main, I. G.; Bell, A. F.; Greenhough, J.; Heap, M. J.; Meredith, P. G.

    2010-12-01

    The nucleation processes that ultimately lead to earthquakes, volcanic eruptions, rock bursts in mines, and landslides from cliff slopes are likely to be controlled at some scale by brittle failure of the Earth’s crust. In laboratory brittle deformation experiments geophysical signals commonly exhibit an accelerating trend prior to dynamic failure. Similar signals have been observed prior to volcanic eruptions, including volcano-tectonic earthquake event and moment release rates. Despite a large amount of effort in the search, no such statistically robust systematic trend is found prior to natural earthquakes. Here we describe the results of a suite of laboratory tests on Mount Etna Basalt and other rocks to examine the nature of the non-linear scaling from laboratory to field conditions, notably using laboratory ‘creep’ tests to reduce the boundary strain rate to conditions more similar to those in the field. Seismic event rate, seismic moment release rate and rate of porosity change show a classic ‘bathtub’ graph that can be derived from a simple damage model based on separate transient and accelerating sub-critical crack growth mechanisms, resulting from separate processes of negative and positive feedback in the population dynamics. The signals exhibit clear precursors based on formal statistical model tests using maximum likelihood techniques with Poisson errors. After correcting for the finite loading time of the signal, the results show a transient creep rate that decays as a classic Omori law for earthquake aftershocks, and remarkably with an exponent near unity, as commonly observed for natural earthquake sequences. The accelerating trend follows an inverse power law when fitted in retrospect, i.e. with prior knowledge of the failure time. In contrast the strain measured on the sample boundary shows a less obvious but still accelerating signal that is often absent altogether in natural strain data prior to volcanic eruptions. To test the

  9. The use of molecular dynamics for the thermodynamic properties of simple and transition metals

    International Nuclear Information System (INIS)

    Straub, G.K.

    1987-04-01

    The technique of computer simulation of the molecular dynamics in metallic systems to calculate thermodynamic properties is discussed. The nature of a metal as determined by its electronic structure is used to determine the total adiabatic potential. The effective screened ion-ion interaction can then be used in a molecular dynamics simulation. The method for the construction of a molecular dynamics ensemble, its relation to the canonical ensemble, and the definition of thermodynamic functions from the Helmholtz free energy is given. The method for the analysis of the molecular dynamics results from quasiharmonic lattice dynamics and the decomposition in terms of harmonic and anharmonic contributions is given for solids. For fluid phase metals, procedures for calculating the thermodynamics and determining the constant of entropy are presented. The solid-fluid phase boundary as a function of pressure and temperature is determined using the results of molecular dynamics. Throughout, examples and results for metallic sodium are used. The treatment of the transition metal electronic d-states in terms of an effective pair-wise interaction is also discussed and the phonon dispersion curves of Al, Ni, and Cu are calculated

  10. Failure analysis of superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Amit; Campbell, A M; Coombs, T A [Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)

    2006-06-01

    The dynamics of superconductor bearings in a cryogenic failure scenario have been analyzed. As the superconductor warms up, the rotor goes through multiple resonance frequencies, begins to slow down and finally touches down when the superconductor goes through its transition temperature. The bearing can be modelled as a system of springs with axial, radial and cross stiffness. These springs go through various resonant modes as the temperature of the superconductor begins to rise. We have presented possible explanations for such behavio0008.

  11. Risk importance measures in the dynamic flowgraph methodology

    International Nuclear Information System (INIS)

    Tyrväinen, T.

    2013-01-01

    This paper presents new risk importance measures applicable to a dynamic reliability analysis approach with multi-state components. Dynamic reliability analysis methods are needed because traditional methods, such as fault tree analysis, can describe system's dynamical behaviour only in limited manner. Dynamic flowgraph methodology (DFM) is an approach used for analysing systems with time dependencies and feedback loops. The aim of DFM is to identify root causes of a top event, usually representing the system's failure. Components of DFM models are analysed at discrete time points and they can have multiple states. Traditional risk importance measures developed for static and binary logic are not applicable to DFM as such. Some importance measures have previously been developed for DFM but their ability to describe how components contribute to the top event is fairly limited. The paper formulates dynamic risk importance measures that measure the importances of states of components and take the time-aspect of DFM into account in a logical way that supports the interpretation of results. Dynamic risk importance measures are developed as generalisations of the Fussell-Vesely importance and the risk increase factor. -- Highlights: • New risk importance measures are developed for the dynamic flowgraph methodology. • Dynamic risk importance measures are formulated for states of components. • An approach to handle failure modes of a component in DFM is presented. • Dynamic risk importance measures take failure times into account. • Component's influence on the system's reliability can be analysed in detail

  12. Estimating thermodynamic properties by molecular dynamics simulations: The properties of fluids at high pressures and temperatures

    International Nuclear Information System (INIS)

    Fraser, D.G.; Refson, K.

    1992-01-01

    The molecular dynamics calculations reported above give calculated P-V-T properties for H 2 O up to 1500 K and 100 GPa, which agree remarkably well with the available experimental data. We also observe the phase transition to a crystalline, orientationally disordered cubic ice structure. No account was taken of molecular flexibility in these calculations nor of potential dissociation at high pressures as suggested by Hamman (1981). However, we note that the closest next-nearest-neighbour O-H approach remains significantly greater than the TIP4P fixed O-H bond length within the water molecule for all pressures studied. The equation of state proposed here should be useful for estimating the properties of H 2 O at up to 1500 K and 100 G Pa (1 Mbar) and is much easier to use in practice than modified Redlich Kwong equations. Extension of these methods to the studies of other fluids and of fluid mixtures at high temperatures and pressures will require good potential models for the species involved, and this is likely to involve a combination of good ab initio work and semiempirical modelling. Once developed, these models should allow robust predictions of thermodynamic properties beyond the range of the experimental data on the basis of fundamental molecular information

  13. Development of Unavailability Estimation Method Considering Various Operating States of Dynamic Systems

    International Nuclear Information System (INIS)

    Shin, Seung Ki; Kang, Hyun Gook; Seong, Poong Hyun

    2011-01-01

    A dynamic system can be defined as a system which has a state at any given time which can be represented by a point in an appropriate state space. In order to analyze the dynamic systems, various failure mechanisms with time requirements such as the failure orders of sub-components and the changes of system states with time need to be modeled and quantitatively estimated. Since the conventional static fault tree analysis has imitations when applied to the dynamic systems, two types of dynamic fault tree methods have been developed. Dugan et al. proposed four dynamic gates to handle failure mechanisms composed of sequence-dependent events and Cepin and Mavko proposed the use of house events to handle failure mechanisms of dynamic systems which have various operating states with time. However, modeling a fault tree from a complex system is a cumbersome task even for the experts who is familiar to it, and demands a great amount of attention and caution to avoid errors. In order to model complex systems more conveniently from system block diagrams compared to the fault tree, a reliability graph with general gates (RGGG) was developed by introduction of general gates to a conventional reliability graph. The RGGG is an easy-to-modeling method as powerful as fault tree. It was also improved to analyze the dynamic failure mechanisms composed of sequence-dependent events with the addition of dynamic nodes. In this paper, unavailability assessment method for dynamic systems which have various operating states is proposed using the RGGG method. To achieve this, a novel concept of reliability matrix for the RGGG is introduced and Bayesian Networks are used for the quantification

  14. Structural and dynamic properties of solid state ionics

    International Nuclear Information System (INIS)

    Sakuma, T.

    1995-01-01

    The structural and dynamic properties of solid state ionics are reviewed. The low temperature phase transition of the copper halide-chalcogen compounds by specific heat measurements, electrical conductivity measurements and x-ray diffraction measurements are explained. The structures of solid state ionics investigated by the usual x-ray diffraction method and the anomalous x-ray scattering (AXS) measurement are discussed. The expression of the diffuse scattering intensity including the correlations among the thermal displacements of atoms has been given and applied to α-AgI type solid state ionics and lithium sulphate. The presence of low-energy excitations in crystalline copper ion conductors and the superionic conducting glass is investigated by neutron inelastic scattering measurements. The relation between the excitation energy and the mass of the cations is discussed. (author). 141 refs., 21 figs., 7 tabs

  15. Stochastic evaluation of the dynamic response and the cumulative damage of nuclear power plant piping

    International Nuclear Information System (INIS)

    Suzuki, Kohei; Aoki, Shigeru; Hanaoka, Masaaki

    1981-01-01

    This report deals with a fundamental study concerning an evaluation of uncertainties of the nuclear piping response and cumulative damage under excess-earthquake loadings. The main purposes of this study cover following several problems. (1) Experimental estimation analysis of the uncertainties concerning the dynamic response and the cumulative failure by using piping test model. (2) Numerical simulation analysis by Monte Carlo method under the assumption that relation between restoring force and deformation is characterized by perfectly elasto-plastic one. (Checking the mathematical model.) (3) Development of the conventional uncertainty estimating method by introducing a perturbation technique based on an appropriate equivalently linearized approach. (Checking the estimation technique.) (4) An application of this method to more realistical cases. Through above mentioned procedures some important results are obtained as follows; First, fundamental statistical properties of the natural frequencies and the number of cycle to failure crack initiation are evaluated. Second, the effect of the frequency fluctuation and the yielding fluctuation are estimated and examined through Monte Carlo simulation technique. It has become clear that the yielding fluctuation gives significant effect on the piping power response up to its failure initiation. Finally some results through proposed perturbation technique are discussed. Statistical properties estimated coincide fairly well with those through numerical simulation. (author)

  16. Researches Regarding the Influence of Cu Content on Static and Dynamic Properties of Sintered Steels

    Directory of Open Access Journals (Sweden)

    Liviu BRÂNDUŞAN

    2004-02-01

    Full Text Available The utilisation of iron powder in sintered steels subjected to variable loadings was confined because of their low fatigue resistance and the fact that this kind of loading is unknown for the users. Lately, a lot of effort was made to determine the fatigue behaviour and to identify new methods for improving these properties.In this paper are analyse the behaviour of elaborate materials from iron powder, DWP 200.28 with cooper addition, pressed at 600 MPa and sintered at 1120°C for 30 minutes in endogas. The cooper is add to improve the mechanical characteristics, by forming some favourable microstructures and more round pores from the material macrostructure. For this materials tensile resistance, elongation, Young modulus and the number of cycles until failure are analysed. We find that the cooper add say in a different way these properties.

  17. Functional microimaging. A hierarchical investigation of bone failure behavior

    International Nuclear Information System (INIS)

    Voide, Romain; Lenthe, G.Harry van; Stauber, Martin; Schneider, Philipp; Thurner, Philipp J.; Mueller, Ralph; Wyss, Peter; Stampanoni, Marco

    2008-01-01

    Biomechanical testing is the gold standard to determine bone competence, and has been used extensively. Direct mechanical testing provides detailed information on overall bone mechanical and material properties, but fails in revealing local properties such as local deformations and strains and does not permit quantification of fracture progression. Therefore, we incorporated several imaging methods in our mechanical setups to get a better insight into bone deformation and failure characteristics on various levels of structural organization. Our aim was to develop an integrative approach for hierarchical investigation of bone, working at different scales of resolution ranging from the whole bone to its ultrastructure. Inbred strains of mice make useful models to study bone properties. In this study, we concentrated on C57BL/6 (B6) and in C3H/He (C3H) mice, two strains known for their differences in bone phenotype. At the macroscopic level, we used high-resolution and high-speed cameras which allowed to visualize global failure behavior and fracture initiation with high temporal resolution. This image data proved especially important when dealing with small bones such as murine femora. At the microscopic level, bone microstructure, i.e. trabecular architecture and cortical porosity, are known to influence bone strength and failure mechanisms significantly. For this reason, we developed an image-guided failure assessment technique, also referred to as functional microimaging, allowing direct time-lapsed three-dimensional visualization and computation of local displacements and strains for better quantification of fracture initiation and progression. While the resolution of conventional desktop micro-computed tomography is typically around a few micrometers, computer tomography systems based on highly brilliant synchrotron radiation X-ray sources permit to explore the sub-micrometer world. This allowed, for the first time, to uncover fully nondestructively the 3D

  18. Rapidly exploring structural and dynamic properties of signaling networks using PathwayOracle

    Directory of Open Access Journals (Sweden)

    Ram Prahlad T

    2008-08-01

    Full Text Available Abstract Background In systems biology the experimentalist is presented with a selection of software for analyzing dynamic properties of signaling networks. These tools either assume that the network is in steady-state or require highly parameterized models of the network of interest. For biologists interested in assessing how signal propagates through a network under specific conditions, the first class of methods does not provide sufficiently detailed results and the second class requires models which may not be easily and accurately constructed. A tool that is able to characterize the dynamics of a signaling network using an unparameterized model of the network would allow biologists to quickly obtain insights into a signaling network's behavior. Results We introduce PathwayOracle, an integrated suite of software tools for computationally inferring and analyzing structural and dynamic properties of a signaling network. The feature which differentiates PathwayOracle from other tools is a method that can predict the response of a signaling network to various experimental conditions and stimuli using only the connectivity of the signaling network. Thus signaling models are relatively easy to build. The method allows for tracking signal flow in a network and comparison of signal flows under different experimental conditions. In addition, PathwayOracle includes tools for the enumeration and visualization of coherent and incoherent signaling paths between proteins, and for experimental analysis – loading and superimposing experimental data, such as microarray intensities, on the network model. Conclusion PathwayOracle provides an integrated environment in which both structural and dynamic analysis of a signaling network can be quickly conducted and visualized along side experimental results. By using the signaling network connectivity, analyses and predictions can be performed quickly using relatively easily constructed signaling network models

  19. Reliability physics and engineering time-to-failure modeling

    CERN Document Server

    McPherson, J W

    2013-01-01

    Reliability Physics and Engineering provides critically important information that is needed for designing and building reliable cost-effective products. Key features include:  ·       Materials/Device Degradation ·       Degradation Kinetics ·       Time-To-Failure Modeling ·       Statistical Tools ·       Failure-Rate Modeling ·       Accelerated Testing ·       Ramp-To-Failure Testing ·       Important Failure Mechanisms for Integrated Circuits ·       Important Failure Mechanisms for  Mechanical Components ·       Conversion of Dynamic  Stresses into Static Equivalents ·       Small Design Changes Producing Major Reliability Improvements ·       Screening Methods ·       Heat Generation and Dissipation ·       Sampling Plans and Confidence Intervals This textbook includes numerous example problems with solutions. Also, exercise problems along with the answers are included at the end of each chapter. Relia...

  20. Complex networks under dynamic repair model

    Science.gov (United States)

    Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao

    2018-01-01

    Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.

  1. Influence of attractions on the static and dynamic properties of simulated single and multichain systems

    International Nuclear Information System (INIS)

    Bishop, M.; Kalos, M.H.; Frisch, H.L.

    1983-01-01

    The influence of the attractive portion of the Lennard-Jones potential on the statics and dynamics of both single chain and multichain systems is investigated by reptation and molecular dynamics simulations. There is no significant effect at a reduced temperature of 10.0. At a temperature of 1.7 the single chain and multichain system at low densities (0.1) indicate that the attractions cause both the chains to be significantly more compact and a slowing of the time autocorrelation functions of the square of the end-to-end distance and radius of gyration. At a moderate density of 0.5, the attractions have almost no effect on the static structure, but they still influence the dynamic properties

  2. Dynamic soil properties in response to anthropogenic disturbance

    Science.gov (United States)

    Vanacker, Veerle; Ortega, Raúl

    2013-04-01

    Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedbacks between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. Here, we study dynamic soil properties for a rapidly changing anthropogenic landscape, and focus on the coupling between physical erosion, soil production and soil chemical weathering. The archaeological site of Santa Maria de Melque (Toledo, Central Spain) was selected for its remarkably long occupation history dating back to the 7th century AD. As part of the agricultural complex, four retention reservoirs were built in the Early Middle Ages. The sedimentary archive was used to track the evolution in sedimentation rates and geochemical properties of the sediment. Catchment-wide soil erosion rates vary slightly between the various occupation phases (7th century-now), but are of the same magnitude as the cosmogenic nuclide-derived erosion rates. However, there exists large spatial variation in physical erosion rates that are coupled with chemical weathering intensities. The sedimentary records suggest that there are important changes in the spatial pattern of sediment source areas through time as a result of changing land use patterns

  3. Detecting failure of climate predictions

    Science.gov (United States)

    Runge, Michael C.; Stroeve, Julienne C.; Barrett, Andrew P.; McDonald-Madden, Eve

    2016-01-01

    The practical consequences of climate change challenge society to formulate responses that are more suited to achieving long-term objectives, even if those responses have to be made in the face of uncertainty1, 2. Such a decision-analytic focus uses the products of climate science as probabilistic predictions about the effects of management policies3. Here we present methods to detect when climate predictions are failing to capture the system dynamics. For a single model, we measure goodness of fit based on the empirical distribution function, and define failure when the distribution of observed values significantly diverges from the modelled distribution. For a set of models, the same statistic can be used to provide relative weights for the individual models, and we define failure when there is no linear weighting of the ensemble models that produces a satisfactory match to the observations. Early detection of failure of a set of predictions is important for improving model predictions and the decisions based on them. We show that these methods would have detected a range shift in northern pintail 20 years before it was actually discovered, and are increasingly giving more weight to those climate models that forecast a September ice-free Arctic by 2055.

  4. Evaluation of ethanol aged PVDF: diffusion, crystallinity and dynamic mechanical thermal properties

    International Nuclear Information System (INIS)

    Silva, Agmar J.J.; Costa, Marysilvia F.

    2015-01-01

    This work discuss firstly the effect of the ethanol fuel absorption by PVDF at 60°C through mass variation tests. A Fickian character was observed for the ethanol absorption kinetics of the aged PVDF at 60°C. In the second step, the dynamic mechanical thermal properties (E’, E’, E” and tan δ) of the PVDF were evaluated through dynamic mechanical thermal analysis (DMTA). The chemical structure of the materials was analyzed by X-ray diffraction analysis (XRD), and significant changes in the degree of crystallinity were verified after the aging. However, DMTA results showed a reduction in the storage modulus (E') of the aged PVDF, which was associated to diffusion of ethanol and swelling of the PVDF, which generated a prevailing plasticizing effect and led to reduction of its structural stiffness. (author)

  5. Automated derivation of failure symptoms for diagnosis of nuclear plant

    International Nuclear Information System (INIS)

    Washio, T.; Kitamura, M.; Kotajima, K.; Sugiyama, K.

    1986-01-01

    A method of automated derivation of failure symptoms was developed as an approach to computer-aided failure diagnosis in a nuclear power plant. The automated derivation is realized using a knowledge representation called the semantic network (S-net). The purpose of this paper is to demonstrate the applicability of the S-net representation as a basic tool for deriving failure symptoms. If one can generate symptoms automatically, the computer-aided plant safety analysis and diagnosis can be performed easily by evaluating the influence of the failures on the whole plant. A specific description format called a 'network list' was introduced to implement the knowledge of the structure of the plant. The failure symptoms are derived automatically, based on the knowledge of the structure of the plant, using a PROLOG-based database handling system. This approach allows us to derive the failure symptoms of the plant without using conventional event-chain models (e.g. a cause-consequence tree) which are subject to human errors in their design and implementation. Applicability of this method was evaluated with a simulation model of the dynamics of the secondary system of a PWR. (author)

  6. ORIGIN OF CHEMICAL AND DYNAMICAL PROPERTIES OF THE GALACTIC THICK DISK

    International Nuclear Information System (INIS)

    Bekki, Kenji; Tsujimoto, Takuji

    2011-01-01

    We adopt a scenario in which the Galactic thick disk was formed by minor merging between the first generation of the Galactic thin disk (FGTD) and a dwarf galaxy about ∼9 Gyr ago and thereby investigate chemical and dynamical properties of the Galactic thick disk. In this scenario, the dynamical properties of the thick disk have long been influenced both by the mass growth of the second generation of the Galactic thin disk (i.e., the present thin disk) and by its non-axisymmetric structures. On the other hand, the early star formation history and chemical evolution of the thin disk was influenced by the remaining gas of the thick disk. Based on N-body simulations and chemical evolution models, we investigate the radial metallicity gradient, structural and kinematical properties, and detailed chemical abundance patterns of the thick disk. Our numerical simulations show that the ancient minor merger event can significantly flatten the original radial metallicity gradient of the FGTD, in particular, in the outer part, and also can be responsible for migration of inner metal-rich stars into the outer part (R > 10 kpc). The simulations show that the central region of the thick disk can develop a bar due to dynamical effects of a separate bar in the thin disk. Whether or not rotational velocities (V φ ) can correlate with metallicities ([Fe/H]) for the simulated thick disks depends on the initial metallicity gradients of the FGTDs. The simulated orbital eccentricity distributions in the thick disk for models with higher mass ratios (∼0.2) and lower orbital eccentricities (∼0.5) of minor mergers are in good agreement with the corresponding observations. The simulated V φ -|z| relation of the thick disk in models with low orbital inclination angles of mergers are also in good agreement with the latest observational results. The vertical metallicity gradient of the simulated thick disk is rather flat or very weakly negative in the solar neighborhood. Our Galactic

  7. Development and psychometric evaluation of the Thirst Distress Scale for patients with heart failure.

    Science.gov (United States)

    Waldréus, Nana; Jaarsma, Tiny; van der Wal, Martje Hl; Kato, Naoko P

    2018-03-01

    Patients with heart failure can experience thirst distress. However, there is no instrument to measure this in patients with heart failure. The aim of the present study was to develop the Thirst Distress Scale for patients with Heart Failure (TDS-HF) and to evaluate psychometric properties of the scale. The TDS-HF was developed to measure thirst distress in patients with heart failure. Face and content validity was confirmed using expert panels including patients and healthcare professionals. Data on the TDS-HF was collected from patients with heart failure at outpatient heart failure clinics and hospitals in Sweden, the Netherlands and Japan. Psychometric properties were evaluated using data from 256 heart failure patients (age 72±11 years). Concurrent validity of the scale was assessed using a thirst intensity visual analogue scale. Patients did not have any difficulties answering the questions, and time taken to answer the questions was about five minutes. Factor analysis of the scale showed one factor. After psychometric testing, one item was deleted. For the eight item TDS-HF, a single factor explained 61% of the variance and Cronbach's alpha was 0.90. The eight item TDS-HF was significantly associated with the thirst intensity score ( r=0.55, pfailure.

  8. LSSVM-Based Rock Failure Criterion and Its Application in Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Changxing Zhu

    2015-01-01

    Full Text Available A rock failure criterion is very important for the prediction of the failure of rocks or rock masses in rock mechanics and engineering. Least squares support vector machines (LSSVM are a powerful tool for addressing complex nonlinear problems. This paper describes a LSSVM-based rock failure criterion for analyzing the deformation of a circular tunnel under different in situ stresses without assuming a function form. First, LSSVM was used to represent the nonlinear relationship between the mechanical properties of rock and the failure behavior of the rock in order to construct a rock failure criterion based on experimental data. Then, this was used in a hypothetical numerical analysis of a circular tunnel to analyze the mechanical behavior of the rock mass surrounding the tunnel. The Mohr-Coulomb and Hoek-Brown failure criteria were also used to analyze the same case, and the results were compared; these clearly indicate that LSSVM can be used to establish a rock failure criterion and to predict the failure of a rock mass during excavation of a circular tunnel.

  9. Quantitative analysis of dynamic adhesion properties in human hepatocellular carcinoma cells with fullerenol.

    Science.gov (United States)

    Liu, Yang; Wang, Zuobin; Wang, Xinyue; Huang, Yanhong

    2015-12-01

    In this study, the effect of fullerenol (C60(OH)24) on the cellular dynamic biomechanical behaviors of living human hepatocellular carcinoma (SMCC-7721) cancer cells were investigated by atomic force microscope (AFM) nanoindentation. As an important biomarker of cellular information, the cell adhesion is essential to maintain proper functioning as well as links with the pathogenesis and canceration. Nonetheless, it is challenging to properly evaluate the complex adhesion properties as all the biomechanical parameters interfere with each other. To investigate the dynamic adhesion changes, especially in the case of the fullerenol treatment, the detachment force and work, adhesion events, and membrane tether properties were measured and analyzed systematically with the proposed quantitative method. The statistical analyses suggest that, under the same operating parameters of AFM, the dependence of adhesion energy on the tip-cell contact area is weakened after the fullerenol treatment and the probability of adhesion decreases significantly from 30.6% to 4.2%. In addition, the disruption of the cytoskeleton resulted in a 34% decrease of the average membrane tether force and a 21% increase of the average tether length. Benefiting from the quantitative method, this work contributes to revealing the effects of fullerenol on the cellular biomechanical properties of the living SMCC-7721 cells in a precise and rigorous way and additionally is further instructive to interpret the interaction mechanism of other potential nanomedicines with living cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Heart failure induces changes in acid-sensing ion channels in sensory neurons innervating skeletal muscle.

    Science.gov (United States)

    Gibbons, David D; Kutschke, William J; Weiss, Robert M; Benson, Christopher J

    2015-10-15

    Heart failure is associated with diminished exercise capacity, which is driven, in part, by alterations in exercise-induced autonomic reflexes triggered by skeletal muscle sensory neurons (afferents). These overactive reflexes may also contribute to the chronic state of sympathetic excitation, which is a major contributor to the morbidity and mortality of heart failure. Acid-sensing ion channels (ASICs) are highly expressed in muscle afferents where they sense metabolic changes associated with ischaemia and exercise, and contribute to the metabolic component of these reflexes. Therefore, we tested if ASICs within muscle afferents are altered in heart failure. We used whole-cell patch clamp to study the electrophysiological properties of acid-evoked currents in isolated, labelled muscle afferent neurons from control and heart failure (induced by myocardial infarction) mice. We found that the percentage of muscle afferents that displayed ASIC-like currents, the current amplitudes, and the pH dose-response relationships were not altered in mice with heart failure. On the other hand, the biophysical properties of ASIC-like currents were significantly different in a subpopulation of cells (40%) from heart failure mice. This population displayed diminished pH sensitivity, altered desensitization kinetics, and very fast recovery from desensitization. These unique properties define these channels within this subpopulation of muscle afferents as being heteromeric channels composed of ASIC2a and -3 subunits. Heart failure induced a shift in the subunit composition of ASICs within muscle afferents, which significantly altered their pH sensing characteristics. These results might, in part, contribute to the changes in exercise-mediated reflexes that are associated with heart failure. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  11. Improved crystallinity and dynamic mechanical properties of reclaimed waste tire rubber/EVA blends under the influence of electron beam irradiation

    Science.gov (United States)

    Ramarad, Suganti; Ratnam, Chantara T.; Khalid, Mohammad; Chuah, Abdullah Luqman; Hanson, Svenja

    2017-01-01

    Dependence on automobiles has led to a huge amount of waste tires produced annually around the globe. In this study, the feasibility of recycling these waste tires by blending reclaimed waste tire rubber (RTR) with poly(ethylene-co-vinyl acetate) (EVA) and electron beam irradiation was studied. The RTR/EVA blends containing 100-0 wt% of RTR were prepared in the internal mixer followed by electron beam (EB) irradiation with doses ranging from 50 to 200 kGy. The processing torques, calorimetric and dynamic mechanical properties of the blends were studied. Blends were found to have lower processing torque indicating easier processability of RTR/EVA blends compared to EVA. RTR domains were found to be dispersed in EVA matrix, whereas, irradiation improved the dispersion of RTR into smaller domains in EVA matrix. Results showed the addition of EVA improves the efficiency of irradiation induced crosslink formation and dynamic mechanical properties of the blends at the expense of the calorimetric properties. Storage and loss modulus of 50 wt% RTR blend was higher than RTR and EVA, suggesting partial miscibility of the blend. Whereas, electron beam irradiation improved the calorimetric properties and dynamic mechanical properties of the blends through redistribution of RTR in smaller domain sizes within EVA.

  12. Evaluation of glass transition temperature and dynamic mechanical properties of autopolymerized hard direct denture reline resins.

    Science.gov (United States)

    Takase, Kazuma; Watanabe, Ikuya; Kurogi, Tadafumi; Murata, Hiroshi

    2015-01-01

    This study assessed methods for evaluation of glass transition temperature (Tg) of autopolymerized hard direct denture reline resins using dynamic mechanical analysis and differential scanning calorimetry in addition to the dynamic mechanical properties. The Tg values of 3 different reline resins were determined using a dynamic viscoelastometer and differential scanning calorimeter, and rheological parameters were also determined. Although all materials exhibited higher storage modulus and loss modulus values, and a lower loss tangent at 37˚C with a higher frequency, the frequency dependence was not large. Tg values obtained by dynamic mechanical analysis were higher than those by differential scanning calorimetry and higher frequency led to higher Tg, while more stable Tg values were also obtained by that method. These results suggest that dynamic mechanical analysis is more advantageous for characterization of autopolymerized hard direct denture reline resins than differential scanning calorimetry.

  13. Modeling Dynamic Anisotropic Behaviour and Spall Failure in Commercial Aluminium Alloys AA7010

    Science.gov (United States)

    Mohd Nor, M. K.; Ma'at, N.; Ho, C. S.

    2018-04-01

    This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour involves very high pressures and shockwaves in orthotropic materials of aluminium alloys. The previous published constitutive model is used as a reference to start the development in this work. The proposed formulation that used a new definition of Mandel stress tensor to define Hill's yield criterion and a new shock equation of state (EOS) of the generalised orthotropic pressure is further enhanced with Grady spall failure model to closely predict shockwave propagation and spall failure in the chosen commercial aluminium alloy. This hyperelastic-plastic constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM's version, named Material Type 92 (Mat92). The implementations of a new EOS of the generalised orthotropic pressure including the spall failure are also discussed in this paper. The capability of the proposed constitutive model to capture the complex behaviour of the selected material is validated against range of Plate Impact Test data at 234, 450 and 895 ms-1 impact velocities.

  14. Local and global statistical dynamical properties of chaotic Markov analytic maps and repellers: A coarse grained and spectral perspective

    International Nuclear Information System (INIS)

    MacKernan, Donal; Basios, Vasileios

    2009-01-01

    The statistical properties of chaotic Markov analytic maps and equivalent repellers are investigated through matrix representations of the Frobenius-Perron operator (U). The associated basis sets are constructed using Chebyshev functions and Markov partitions which can be tailored to examine statistical dynamical properties associated with observables having support over local regions or for example, about periodic orbits. The decay properties of corresponding time correlations functions are given by a analytic expression of the spectra of U which is expected to be valid for a much larger class of systems than that studied here. An explicit and general expression is also derived for the correction factor to the dynamical zeta functions occurring when analytic function spaces are not invariant under U.

  15. Starch/polyester films: simultaneous optimisation of the properties for the production of biodegradable plastic bags

    Directory of Open Access Journals (Sweden)

    J. B. Olivato

    2013-01-01

    Full Text Available Blends of starch/polyester have been of great interest in the development of biodegradable packaging. A method based on multiple responses optimisation (Desirability was used to evaluate the properties of tensile strength, perforation force, elongation and seal strength of cassava starch/poly(butylene adipate-co-terephthalate (PBAT blown films produced via a one-step reactive extrusion using tartaric acid (TA as a compatibiliser. Maximum results for all the properties were set as more desirable, with an optimal formulation being obtained which contained (55:45 starch/PBAT (88.2 wt. (%, glycerol (11.0 wt. (% and TA (0.8 wt. (%. Biodegradable plastic bags were produced using the film with this formulation, and analysed according to the standard method of the Associação Brasileira de Normas Técnicas (ABNT. The bags exhibited a 45% failure rate in free-falling dart impact tests, a 10% of failure rate in dynamic load tests and no failure in static load tests. These results meet the specifications set by the standard. Thus, the biodegradable plastic bags fabricated with an optimised formulation could be useful as an alternative to those made from non-biodegradable materials if the nominal capacity declared for this material is considered.

  16. Effect of water phase transition on dynamic ruptures with thermal pressurization: Numerical simulations with changes in physical properties of water

    Science.gov (United States)

    Urata, Yumi; Kuge, Keiko; Kase, Yuko

    2015-02-01

    Phase transitions of pore water have never been considered in dynamic rupture simulations with thermal pressurization (TP), although they may control TP. From numerical simulations of dynamic rupture propagation including TP, in the absence of any water phase transition process, we predict that frictional heating and TP are likely to change liquid pore water into supercritical water for a strike-slip fault under depth-dependent stress. This phase transition causes changes of a few orders of magnitude in viscosity, compressibility, and thermal expansion among physical properties of water, thus affecting the diffusion of pore pressure. Accordingly, we perform numerical simulations of dynamic ruptures with TP, considering physical properties that vary with the pressure and temperature of pore water on a fault. To observe the effects of the phase transition, we assume uniform initial stress and no fault-normal variations in fluid density and viscosity. The results suggest that the varying physical properties decrease the total slip in cases with high stress at depth and small shear zone thickness. When fault-normal variations in fluid density and viscosity are included in the diffusion equation, they activate TP much earlier than the phase transition. As a consequence, the total slip becomes greater than that in the case with constant physical properties, eradicating the phase transition effect. Varying physical properties do not affect the rupture velocity, irrespective of the fault-normal variations. Thus, the phase transition of pore water has little effect on dynamic ruptures. Fault-normal variations in fluid density and viscosity may play a more significant role.

  17. Dynamic behaviour and shock-induced martensite transformation in near-beta Ti-5553 alloy under high strain rate loading

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2015-01-01

    Full Text Available Ti-5553 alloy is a near-beta titanium alloy with high strength and high fracture toughness. In this paper, the dynamic behaviour and shock-induced martensite phase transformation of Ti-5553 alloy with alpha/beta phases were investigated. Split Hopkinson Pressure Bar was employed to investigate the dynamic properties. Microstructure evolutions were characterized by Scanning Electronic Microscopy and Transmission Electron Microscope. The experimental results have demonstrated that Ti-5553 alloy with alpha/beta phases exhibits various strain rate hardening effects, both failure through adiabatic shear band. Ti-5553 alloy with Widmannstatten microstructure exhibit more obvious strain rate hardening effect, lower critical strain rate for ASB nucleation, compared with the alloy with Bimodal microstructures. Under dynamic compression, shock-induced beta to alpha” martensite transformation occurs.

  18. Influence of Fissure Number on the Mechanical Properties of Layer-Crack Rock Models under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Yun-liang Tan

    2018-01-01

    Full Text Available Many case studies have revealed that rock bursts generally occur in the high stress concentration area where layer-crack structures often exist, especially for brittle coal or rock masses. Understanding the mechanical properties of layer-crack rock models is beneficial for rational design and stability analysis of rock engineering project and rock burst prevention. This study experimentally investigated the influence of fissure number on the mechanical properties of layer-crack rock models through uniaxial compression tests. The digital speckle correlation method (DSCM and acoustic emission (AE techniques were applied to record and analyze the information of deformation and failure processes. Test results show the following: the bearing capacity of layer-crack specimen decreases compared with intact specimen, but their failure modes are similar, which are the splitting failure accompanied with local shear failure; the nonuniform deformation phenomenon begins to appear at the elastic deformation stage for layer-crack specimens; the AE behavior of intact specimens consists of three stages, that is, active stage, quiet stage, and major active stage, but for layer-crack specimens, it is characteristic by three peaks without quiet stage. In addition, as the fissure number of layer-crack specimens increases, the bearing capacity of specimens decreases, the appearing time of nonuniform deformation phenomenon in the specimen surface decreases, the AE events are denser and denser in each peak stage, and the risk of dynamic instability of layer-crack structure increases. At last, the failure mechanism of layer-crack structure and the related mitigation advices were discussed based on the test results. In general, the novelty is that this paper focuses on the failure mechanism of layer-crack structure directly.

  19. Nanomaterials under extreme environments: A study of structural and dynamic properties using reactive molecular dynamics simulations

    Science.gov (United States)

    Shekhar, Adarsh

    nanoporous silica are different from that of bulk water, and insight into the properties of confined water is important for our understanding of many geological and biological processes. Nanoporous silica has a wide range of technological applications because it is easy to tune the size of pores and their morphologies and to functionalize pore surfaces with a variety of molecular moieties. Nanoporous silica is used in catalysis, chromatography, anticorrosion coatings, desalination membranes, and as drug delivery vehicles. We use reactive molecular dynamics to study the structure and dynamics of nanoconfined water between 100 and 300 K

  20. Evolutionary neural network modeling for software cumulative failure time prediction

    International Nuclear Information System (INIS)

    Tian Liang; Noore, Afzel

    2005-01-01

    An evolutionary neural network modeling approach for software cumulative failure time prediction based on multiple-delayed-input single-output architecture is proposed. Genetic algorithm is used to globally optimize the number of the delayed input neurons and the number of neurons in the hidden layer of the neural network architecture. Modification of Levenberg-Marquardt algorithm with Bayesian regularization is used to improve the ability to predict software cumulative failure time. The performance of our proposed approach has been compared using real-time control and flight dynamic application data sets. Numerical results show that both the goodness-of-fit and the next-step-predictability of our proposed approach have greater accuracy in predicting software cumulative failure time compared to existing approaches

  1. ACE inhibitors and calcium antagonists in the treatment of congestive heart failure

    DEFF Research Database (Denmark)

    Hansen, J F

    1995-01-01

    heart failure in the SOLVD trials. In post-myocardial infarction patients, the calcium antagonist nifedipine did not affect mortality or morbidity; diltiazem improved prognosis in patients without congestive heart failure and in patients with non-Q-wave infarction; and verapamil improved prognosis...... by prevention of reinfarction and sudden death. Combination treatment with both verapamil, which has pronounced antiischemic properties and prevents sudden death and reinfarction, and an ACE inhibitor, which prevents the progression of heart failure, is a possibility for future cardiovascular therapy...

  2. The modelling and control of failure in bi-material ceramic laminates

    International Nuclear Information System (INIS)

    Phillipps, A.J.; Howard, S.J.; Clegg, W.J.; Clyne, T.W.

    1993-01-01

    Recent experimental and theoretical work on simple, single phase, laminated systems has indicated that failure resistant ceramics can be produced using an elegant method that avoids many of the problems and limitations of comparable fibrous ceramic composites. Theoretical work on these laminated systems has shown good agreement with experiment and simulated the effects of material properties and laminate structure on the composite performance. This work has provided guidelines for optimised laminate performance. In the current study, theoretical work has been simply extended to predict the behaviour of bi-material laminates with alternating layers of weak and strong material with different stiffnesses. Expressions for the strain energy release rates of internal advancing cracks are derived and combined with existing criteria to predict the failure behaviour of these laminates during bending. The modelling indicates three modes of failure dictated by the relative proportions, thicknesses and interfacial properties of the weak and strong phases. A critical percentage of strong phase is necessary to improve failure behaviour, in an identical argument to that for fibre composites. Incorporation of compliant layers is also investigated and implications for laminate design discussed. (orig.)

  3. Clinical usefulness of 123I-MIBG myocardial scintigraphy as a marker of the severity and prognosis of congestive heart failure

    International Nuclear Information System (INIS)

    Shiga, Koji

    1999-01-01

    To evaluate the clinical usefulness of 123 I-MIBG myocardial scintigraphy in patients with congestive heart failure. Myocardial dynamic imaging was performed immediately after 123 I-MIBG administration at 1 frame/sec for 500 sec in 52 patients with or without congestive heart failure. The %uptake/ROI, dynamic heart to mediastinum uptake ratio (H/M) and dynamic washout rate (WR) were calculated from their time activity curves to assess the relationship between the NYHA functional class and these values. In 52 other patients with heart failure, the initial and delayed MIBG anterior planar images were obtained, and H/M in delayed images and WR between initial and delayed images were measured. The patients were followed up for 31.8±16.8 months, and their survival rates were compared among three groups, H/M 123 I-MIBG myocardial scintigraphy is very useful to diagnose the severity and prognosis in patients with congestive heart failure. (K.H.)

  4. Personnel reliability impact on petrochemical facilities monitoring system's failure skipping probability

    Science.gov (United States)

    Kostyukov, V. N.; Naumenko, A. P.

    2017-08-01

    The paper dwells upon urgent issues of evaluating impact of actions conducted by complex technological systems operators on their safe operation considering application of condition monitoring systems for elements and sub-systems of petrochemical production facilities. The main task for the research is to distinguish factors and criteria of monitoring system properties description, which would allow to evaluate impact of errors made by personnel on operation of real-time condition monitoring and diagnostic systems for machinery of petrochemical facilities, and find and objective criteria for monitoring system class, considering a human factor. On the basis of real-time condition monitoring concepts of sudden failure skipping risk, static and dynamic error, monitoring systems, one may solve a task of evaluation of impact that personnel's qualification has on monitoring system operation in terms of error in personnel or operators' actions while receiving information from monitoring systems and operating a technological system. Operator is considered as a part of the technological system. Although, personnel's behavior is usually a combination of the following parameters: input signal - information perceiving, reaction - decision making, response - decision implementing. Based on several researches on behavior of nuclear powers station operators in USA, Italy and other countries, as well as on researches conducted by Russian scientists, required data on operator's reliability were selected for analysis of operator's behavior at technological facilities diagnostics and monitoring systems. The calculations revealed that for the monitoring system selected as an example, the failure skipping risk for the set values of static (less than 0.01) and dynamic (less than 0.001) errors considering all related factors of data on reliability of information perception, decision-making, and reaction fulfilled is 0.037, in case when all the facilities and error probability are under

  5. Deriving seasonal dynamics in ecosystem properties of semi-arid savanna grasslands from in situ-based hyperspectral reflectance

    DEFF Research Database (Denmark)

    Tagesson, Håkan Torbern; Fensholt, Rasmus; Huber, S.

    2015-01-01

    strongly affected by solar zenith angles and sensor viewing geometry, as were many combinations of visible wavelengths. This study provides analyses based upon novel multi-angular hyperspectral data for validation of Earth-observation-based properties of semi-arid ecosystems, as well as insights...... between normalised difference spectral indices (NDSIs) and the measured ecosystem properties. Finally, the effects of variable sun sensor viewing geometry on different NDSI wavelength combinations were analysed. The wavelengths with the strongest correlation to seasonal dynamics in ecosystem properties...

  6. High velocity properties of the dynamic frictional force between ductile metals

    International Nuclear Information System (INIS)

    Hammerberg, James Edward; Hollan, Brad L.; Germann, Timothy C.; Ravelo, Ramon J.

    2010-01-01

    The high velocity properties of the tangential frictional force between ductile metal interfaces seen in large-scale NonEquilibrium Molecular Dynamics (NEMD) simulations are characterized by interesting scaling behavior. In many cases a power law decrease in the frictional force with increasing velocity is observed at high velocities. We discuss the velocity dependence of the high velocity branch of the tangential force in terms of structural transformation and ultimate transition, at the highest velocities, to confined fluid behavior characterized by a critical strain rate. The particular case of an Al/Al interface is discussed.

  7. Quantum molecular dynamics simulations of thermophysical properties of fluid ethane.

    Science.gov (United States)

    Zhang, Yujuan; Wang, Cong; Zheng, Fawei; Zhang, Ping

    2012-12-01

    We have performed first-principles molecular-dynamics simulations based on density-functional theory to study the thermophysical properties of ethane under extreme conditions. We present results for the equation of state of fluid ethane in the warm dense region. The optical conductivity is calculated via the Kubo-Greenwood formula from which the dc conductivity and optical reflectivity are derived. The close correlation between the nonmetal-metal transition of ethane and its decomposition, that ethane dissociates significantly into molecular and/or atomic hydrogen and some long alkane chains, has been systematically studied by analyzing the optical conductivity spectra, pair correlation functions, electronic density of states, and charge density distribution of fluid ethane.

  8. Experimental and Numerical Evaluation of Rock Dynamic Test with Split-Hopkinson Pressure Bar

    Directory of Open Access Journals (Sweden)

    Kang Peng

    2017-01-01

    Full Text Available Feasibility of rock dynamic properties by split-Hopkinson pressure bar (SHPB was experimentally and numerically evaluated with ANSYS/LS-DYNA. The effects of different diameters, different loading rates, and different propagation distances on wave dispersion of input bars in SHPB with rectangle and half-sine wave loadings were analyzed. The results show that the dispersion effect on the diameter of input bar, loading rate, and propagation distance under half-sine waveform loading is ignorable compared with the rectangle wave loading. Moreover, the degrees of stress uniformity under rectangle and half-sine input wave loadings are compared in SHPB tests, and the time required for stress uniformity is calculated under different above-mentioned loadings. It is confirmed that the stress uniformity can be realized more easily using the half-sine pulse loading compared to the rectangle pulse loading, and this has significant advantages in the dynamic test of rock-like materials. Finally, the Holmquist-Johnson-Concrete constitutive model is introduced to simulate the failure mechanism and failure and fragmentation characteristics of rock under different strain rates. And the numerical results agree with that obtained from the experiment, which confirms the effectiveness of the model and the method.

  9. Modeling Impact-induced Failure of Polysilicon MEMS: A Multi-scale Approach.

    Science.gov (United States)

    Mariani, Stefano; Ghisi, Aldo; Corigliano, Alberto; Zerbini, Sarah

    2009-01-01

    Failure of packaged polysilicon micro-electro-mechanical systems (MEMS) subjected to impacts involves phenomena occurring at several length-scales. In this paper we present a multi-scale finite element approach to properly allow for: (i) the propagation of stress waves inside the package; (ii) the dynamics of the whole MEMS; (iii) the spreading of micro-cracking in the failing part(s) of the sensor. Through Monte Carlo simulations, some effects of polysilicon micro-structure on the failure mode are elucidated.

  10. Changes in the physical properties of the dynamic layer and its correlation with permeate quality in a self-forming dynamic membrane bioreactor.

    Science.gov (United States)

    Guan, Dao; Dai, Ji; Watanabe, Yoshimasa; Chen, Guanghao

    2018-09-01

    The self-forming dynamic membrane bioreactor (SFDMBR) is a biological wastewater treatment technology based on the conventional membrane bioreactor (MBR) with membrane material modification to a large pore size (30-100 μm). This modification requires a dynamic layer formed by activated sludge to provide effective filtration function for high-quality permeate production. The properties of the dynamic layer are therefore important for permeate quality in SFDMBRs. The interaction between the structure of the dynamic layer and the performance of SFDMBRs is little known but understandably complex. To elucidate the interaction, a lab-scale SFDMBR system coupled with a nylon woven mesh as the supporting material was operated. After development of a mature dynamic layer, excellent solid-liquid separation was achieved, as evidenced by a low permeate turbidity of less than 2 NTU. The permeate turbidity stayed below this level for nearly 80 days. In the fouling phase, the dynamic layer was compressed with an increase in the trans-membrane pressure and the quality of the permeate kept deteriorating until the turbidity exceeded 10 NTU. The investigation revealed that the majority of permeate particles were dissociated from the dynamic layer on the back surface of the supporting material, which is caused by the compression, breakdown, and dissociation of the dynamic layer. This phenomenon was observed directly in experiment instead of model prediction or conjecture for the first time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Magnetic properties of novel dynamic self-assembled structures generated on the liquid/air interface

    International Nuclear Information System (INIS)

    Snezhko, A.; Aranson, I.S.

    2007-01-01

    We report on experimental and theoretical studies of magnetic properties of recently discovered dynamic multi-segment self-organized structures ('magnetic snakes'). Magnetic order and response of such snakes are determined by a novel unconventional mechanism provided by a self-induced surface wave. It gives rise to a nontrivial magnetic order: the segments of the snake exhibit long-range antiferromagnetic order mediated by the surface waves, while each segment is composed of ferromagnetically aligned chains of microparticles. Magnetic properties of the snakes are probed by in-plane magnetic field. A phenomenological model is proposed to explain the experimental observations

  12. Estimation of static parameters based on dynamical and physical properties in limestone rocks

    Science.gov (United States)

    Ghafoori, Mohammad; Rastegarnia, Ahmad; Lashkaripour, Gholam Reza

    2018-01-01

    Due to the importance of uniaxial compressive strength (UCS), static Young's modulus (ES) and shear wave velocity, it is always worth to predict these parameters from empirical relations that suggested for other formations with same lithology. This paper studies the physical, mechanical and dynamical properties of limestone rocks using the results of laboratory tests which carried out on 60 the Jahrum and the Asmari formations core specimens. The core specimens were obtained from the Bazoft dam site, hydroelectric supply and double-curvature arch dam in Iran. The Dynamic Young's modulus (Ed) and dynamic Poisson ratio were calculated using the existing relations. Some empirical relations were presented to estimate uniaxial compressive strength, as well as static Young's modulus and shear wave velocity (Vs). Results showed the static parameters such as uniaxial compressive strength and static Young's modulus represented low correlation with water absorption. It is also found that the uniaxial compressive strength and static Young's modulus had high correlation with compressional wave velocity and dynamic Young's modulus, respectively. Dynamic Young's modulus was 5 times larger than static Young's modulus. Further, the dynamic Poisson ratio was 1.3 times larger than static Poisson ratio. The relationship between shear wave velocity (Vs) and compressional wave velocity (Vp) was power and positive with high correlation coefficient. Prediction of uniaxial compressive strength based on Vp was better than that based on Vs . Generally, both UCS and static Young's modulus (ES) had good correlation with Ed.

  13. Cellular Automata on Graphs: Topological Properties of ER Graphs Evolved towards Low-Entropy Dynamics

    Directory of Open Access Journals (Sweden)

    Marc-Thorsten Hütt

    2012-06-01

    Full Text Available Cellular automata (CA are a remarkably  efficient tool for exploring general properties of complex systems and spatiotemporal patterns arising from local rules. Totalistic cellular automata,  where the update  rules depend  only on the density of neighboring states, are at the same time a versatile  tool for exploring  dynamical  processes on graphs. Here we briefly review our previous results on cellular automata on graphs, emphasizing some systematic relationships between network architecture and dynamics identified in this way. We then extend the investigation  towards graphs obtained in a simulated-evolution procedure, starting from Erdő s–Rényi (ER graphs and selecting for low entropies of the CA dynamics. Our key result is a strong association of low Shannon entropies with a broadening of the graph’s degree distribution.

  14. Temperature-dependent mechanical properties of single-layer molybdenum disulphide: Molecular dynamics nanoindentation simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junhua, E-mail: junhua.zhao@uni-weimar.de [Jiangsu Province Key Laboratory of Advanced Manufacturing Equipment and Technology of Food, Jiangnan University, 214122 Wuxi (China); Institute of Structural Mechanics, Bauhaus-University Weimar, 99423 Weimar (Germany); Jiang, Jin-Wu, E-mail: jwjiang5918@hotmail.com [Institute of Structural Mechanics, Bauhaus-University Weimar, 99423 Weimar (Germany); Rabczuk, Timon, E-mail: timon.rabczuk@uni-weimar.de [Institute of Structural Mechanics, Bauhaus-University Weimar, 99423 Weimar (Germany); School of Civil, Environmental and Architectural Engineering, Korea University, 136-701 Seoul (Korea, Republic of)

    2013-12-02

    The temperature-dependent mechanical properties of single-layer molybdenum disulphide (MoS{sub 2}) are obtained using molecular dynamics (MD) nanoindentation simulations. The Young's moduli, maximum load stress, and maximum loading strain decrease with increasing temperature from 4.2 K to 500 K. The obtained Young's moduli are in good agreement with those using our MD uniaxial tension simulations and the available experimental results. The tendency of maximum loading strain with different temperature is opposite with that of metal materials due to the short range Stillinger-Weber potentials in MoS{sub 2}. Furthermore, the indenter tip radius and fitting strain effect on the mechanical properties are also discussed.

  15. Load to Failure and Stiffness

    Science.gov (United States)

    Esquivel, Amanda O.; Duncan, Douglas D.; Dobrasevic, Nikola; Marsh, Stephanie M.; Lemos, Stephen E.

    2015-01-01

    Background: Rotator cuff tendinopathy is a frequent cause of shoulder pain that can lead to decreased strength and range of motion. Failures after using the single-row technique of rotator cuff repair have led to the development of the double-row technique, which is said to allow for more anatomical restoration of the footprint. Purpose: To compare 5 different types of suture patterns while maintaining equality in number of anchors. The hypothesis was that the Mason-Allen–crossed cruciform transosseous-equivalent technique is superior to other suture configurations while maintaining equality in suture limbs and anchors. Study Design: Controlled laboratory study. Methods: A total of 25 fresh-frozen cadaveric shoulders were randomized into 5 suture configuration groups: single-row repair with simple stitch technique; single-row repair with modified Mason-Allen technique; double-row Mason-Allen technique; double-row cross-bridge technique; and double-row suture bridge technique. Load and displacement were recorded at 100 Hz until failure. Stiffness and bone mineral density were also measured. Results: There was no significant difference in peak load at failure, stiffness, maximum displacement at failure, or mean bone mineral density among the 5 suture configuration groups (P row rotator cuff repair to be superior to the single-row repair; however, clinical research does not necessarily support this. This study found no difference when comparing 5 different repair methods, supporting research that suggests the number of sutures and not the pattern can affect biomechanical properties. PMID:26665053

  16. Crack identification and evolution law in the vibration failure process of loaded coal

    Science.gov (United States)

    Li, Chengwu; Ai, Dihao; Sun, Xiaoyuan; Xie, Beijing

    2017-08-01

    To study the characteristics of coal cracks produced in the vibration failure process, we set up a static load and static and dynamic combination load failure test simulation system, prepared with different particle size, formation pressure, and firmness coefficient coal samples. Through static load damage testing of coal samples and then dynamic load (vibration exciter) and static (jack) combination destructive testing, the crack images of coal samples under the load condition were obtained. Combined with digital image processing technology, an algorithm of crack identification with high precision and in real-time is proposed. With the crack features of the coal samples under different load conditions as the research object, we analyzed the distribution of cracks on the surface of the coal samples and the factors influencing crack evolution using the proposed algorithm and a high-resolution industrial camera. Experimental results showed that the major portion of the crack after excitation is located in the rear of the coal sample where the vibration exciter cannot act. Under the same disturbance conditions, crack size and particle size exhibit a positive correlation, while crack size and formation pressure exhibit a negative correlation. Soft coal is more likely to lead to crack evolution than hard coal, and more easily causes instability failure. The experimental results and crack identification algorithm provide a solid basis for the prevention and control of instability and failure of coal and rock mass, and they are helpful in improving the monitoring method of coal and rock dynamic disasters.

  17. Failure internal pressure of spherical steel containments

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, G.

    1985-01-01

    An application of the British CEGB's R6 Failure Assessment Approach to the determination of failure internal pressure of nuclear power plant spherical steel containments is presented. The presence of hypothetical cracks both in the base metal and in the welding material of the containment, with geometrical idealizations according to the ASME Boiler and Pressure Vessel Code (Section XI), was taken into account in order to analyze the sensitivity of the failure assessment with the values of the material fracture properties. Calculations of the elastoplastic collapse load have been performed by means of the Finite Element System SAMCEF. The clean axisymmetric shell (neglecting the influence of nozzles and minor irregularities) and two major penetrations (personnel and emergency locks) have been taken separately into account. Large-strain elastoplastic behaviour of the material was considered in the Code, using lower bounds of true stress-true strain relations obtained by testing a collection of tensile specimens. Assuming the presence of cracks in non-perturbed regions, the reserve factor for test pressure and the failure internal pressure have been determined as a function of the flaw depth. (orig.)

  18. Persistence and failure of mean-field approximations adapted to a class of systems of delay-coupled excitable units

    Science.gov (United States)

    Franović, Igor; Todorović, Kristina; Vasović, Nebojša; Burić, Nikola

    2014-02-01

    We consider the approximations behind the typical mean-field model derived for a class of systems made up of type II excitable units influenced by noise and coupling delays. The formulation of the two approximations, referred to as the Gaussian and the quasi-independence approximation, as well as the fashion in which their validity is verified, are adapted to reflect the essential properties of the underlying system. It is demonstrated that the failure of the mean-field model associated with the breakdown of the quasi-independence approximation can be predicted by the noise-induced bistability in the dynamics of the mean-field system. As for the Gaussian approximation, its violation is related to the increase of noise intensity, but the actual condition for failure can be cast in qualitative, rather than quantitative terms. We also discuss how the fulfillment of the mean-field approximations affects the statistics of the first return times for the local and global variables, further exploring the link between the fulfillment of the quasi-independence approximation and certain forms of synchronization between the individual units.

  19. Real-time visualization of dynamic particle contact failures

    Energy Technology Data Exchange (ETDEWEB)

    Parab, Niranjan D.; Hudspeth, Matthew; Claus, Ben; Guo, Zherui; Sun, Tao; Fezzaa, Kamel; Chen, Weinong W.

    2017-01-01

    Granular materials are widely used to resist impact and blast. Under these dynamic loadings, the constituent particles in the granular system fracture. To study the fracture mechanisms in brittle particles under dynamic compressive loading, a high speed X-ray phase contrast imaging setup was synchronized with a Kolsky bar apparatus. Controlled compressive loading was applied on two contacting particles using the Kolsky bar apparatus and fracture process was captured using the high speed X-ray imaging setup. Five different particles were investigated: soda-lime glass, polycrystalline silica (silicon dioxide), polycrystalline silicon, barium titanate glass, and yttrium stabilized zirconia. For both soda lime glass and polycrystalline silica particles, one of the particles fragmented explosively, thus breaking into many small pieces. For Silicon and barium titanate glass particles, a finite number of cracks were observed in one of the particles causing it to fracture. For yttrium stabilized zirconia particles, a single meridonial crack developed in one of the particles, breaking it into two parts.

  20. Stochastic failure modelling of unidirectional composite ply failure

    International Nuclear Information System (INIS)

    Whiteside, M.B.; Pinho, S.T.; Robinson, P.

    2012-01-01

    Stochastic failure envelopes are generated through parallelised Monte Carlo Simulation of a physically based failure criteria for unidirectional carbon fibre/epoxy matrix composite plies. Two examples are presented to demonstrate the consequence on failure prediction of both statistical interaction of failure modes and uncertainty in global misalignment. Global variance-based Sobol sensitivity indices are computed to decompose the observed variance within the stochastic failure envelopes into contributions from physical input parameters. The paper highlights a selection of the potential advantages stochastic methodologies offer over the traditional deterministic approach.

  1. Magnetic effects on the solvent properties investigated by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Moosavi, Fatemeh, E-mail: moosavibaigi@um.ac.ir; Gholizadeh, Mostafa

    2014-03-15

    This paper investigates how an external constant magnetic field in the Z-direction affects the performance of a solvent. The molecular dynamics simulation comprised common inorganic and organic solvents including water, acetone, acetonitrile, toluene, and n-hexane at the ambient temperature and pressure. A static magnetic field applied in the simulation process is able to reduce the solvent mobility in the solution in order to enhance the solvent–solute reaction. Simulation results show that the diffusivity decreases because of increasing the effective interactions. Besides, magnetic field reduces the volume of the solvent and increases the strength of the hydrogen bonds by maximizing attractive electrostatic and vdW interactions caused by changes in the radial distribution function of the solvents. Hydrogen-bonding characteristics of solvents investigated by molecular dynamics simulations were evidence for the hydrogen bonding strength of O···H that is a more efficient intermolecular hydrogen-bonding in comparison with N···H. - Highlights: • Molecular dynamics simulation technique investigates the effect of magnetic field on transport dynamics inside the solvent bulk. • External constant magnetic field influences on intermolecular interactions, thermophysics, and transport properties of the solvents. • Applying magnetic field strengthened hydrogen bond maximizes attractive electrostatic interactions, charge distribution becomes stronger, and the molecule mobility is demoted. • The low diffusivity of the solvents in the solutions increases the performance of the interactions and promotes the interactions. • On introducing a magnetic field of flux density parallel to the Z-direction, solvent acts as an obstacle to diffusion of solutes.

  2. Failure mechanisms and electromechanical coupling in semiconducting nanowires

    Directory of Open Access Journals (Sweden)

    Peng B.

    2010-06-01

    Full Text Available One dimensional nanostructures, like nanowires and nanotubes, are increasingly being researched for the development of next generation devices like logic gates, transistors, and solar cells. In particular, semiconducting nanowires with a nonsymmetric wurtzitic crystal structure, such as zinc oxide (ZnO and gallium nitride (GaN, have drawn immense research interests due to their electromechanical coupling. The designing of the future nanowire-based devices requires component-level characterization of individual nanowires. In this paper, we present a unique experimental set-up to characterize the mechanical and electromechanical behaviour of individual nanowires. Using this set-up and complementary atomistic simulations, mechanical properties of ZnO nanowires and electromechanical properties of GaN nanowires were investigated. In ZnO nanowires, elastic modulus was found to depend on nanowire diameter decreasing from 190 GPa to 140 GPa as the wire diameter increased from 5 nm to 80 nm. Inconsistent failure mechanisms were observed in ZnO nanowires. Experiments revealed a brittle fracture, whereas simulations using a pairwise potential predicted a phase transformation prior to failure. This inconsistency is addressed in detail from an experimental as well as computational perspective. Lastly, in addition to mechanical properties, preliminary results on the electromechanical properties of gallium nitride nanowires are also reported. Initial investigations reveal that the piezoresistive and piezoelectric behaviour of nanowires is different from bulk gallium nitride.

  3. Available states and available space: Static properties that predict dynamics of confined fluids

    OpenAIRE

    Goel, Gaurav; Krekelberg, William P.; Pond, Mark J.; Mittal, Jeetain; Shen, Vincent K.; Errington, Jeffrey R.; Truskett, Thomas M.

    2009-01-01

    Although density functional theory provides reliable predictions for the static properties of simple fluids under confinement, a theory of comparative accuracy for the transport coefficients has yet to emerge. Nonetheless, there is evidence that knowledge of how confinement modifies static behavior can aid in forecasting dynamics. Specifically, molecular simulation studies have shown that the relationship between excess entropy and self diffusivity of a bulk equilibrium fluid changes only mod...

  4. Atomistic Simulation of the Rate-Dependent Ductile-to-Brittle Failure Transition in Bicrystalline Metal Nanowires.

    Science.gov (United States)

    Tao, Weiwei; Cao, Penghui; Park, Harold S

    2018-02-14

    The mechanical properties and plastic deformation mechanisms of metal nanowires have been studied intensely for many years. One of the important yet unresolved challenges in this field is to bridge the gap in properties and deformation mechanisms reported for slow strain rate experiments (∼10 -2 s -1 ), and high strain rate molecular dynamics (MD) simulations (∼10 8 s -1 ) such that a complete understanding of strain rate effects on mechanical deformation and plasticity can be obtained. In this work, we use long time scale atomistic modeling based on potential energy surface exploration to elucidate the atomistic mechanisms governing a strain-rate-dependent incipient plasticity and yielding transition for face centered cubic (FCC) copper and silver nanowires. The transition occurs for both metals with both pristine and rough surfaces for all computationally accessible diameters (ductile-to-brittle transition in failure mode similar to previous experimental studies on bicrystalline silver nanowires is observed, which is driven by differences in dislocation activity and grain boundary mobility as compared to the high strain rate case.

  5. Dynamic reliability networks with self-healing units

    International Nuclear Information System (INIS)

    Jenab, K.; Seyed Hosseini, S.M.; Dhillon, B.S.

    2008-01-01

    This paper presents an analytical approach for dynamic reliability networks used for the failure limit strategy in maintenance optimization. The proposed approach utilizes the moment generating function (MGF) and the flow-graph concept to depict the functional and reliability diagrams of the system comprised of series, parallel or mix configuration of self-healing units. The self-healing unit is featured by the embedded failure detection and recovery mechanisms presented by self-loop in flow-graph networks. The newly developed analytical approach provides the probability of the system failure and time-to-failure data i.e., mean and standard deviation time-to-failure used for maintenance optimization

  6. Lattice dynamics and substrate-dependent transport properties of (In, Yb)-doped CoSb3 skutterudite thin films

    KAUST Repository

    Sarath Kumar, S. R.; Cha, Dong Kyu; Alshareef, Husam N.

    2011-01-01

    Lattice dynamics, low-temperature electrical transport, and high-temperature thermoelectric properties of (In, Yb)-doped CoSb3thin films on different substrates are reported. Pulsed laser deposition under optimized conditions yielded single

  7. Evaluation of Fatigue Life of CRM-Reinforced SMA and Its Relationship to Dynamic Stiffness

    Directory of Open Access Journals (Sweden)

    Nuha Salim Mashaan

    2014-01-01

    Full Text Available Fatigue cracking is an essential problem of asphalt concrete that contributes to pavement damage. Although stone matrix asphalt (SMA has significantly provided resistance to rutting failure, its resistance to fatigue failure is yet to be fully addressed. The aim of this study is to evaluate the effect of crumb rubber modifier (CRM on stiffness and fatigue properties of SMA mixtures at optimum binder content, using four different modification levels, namely, 6%, 8%, 10%, and 12% CRM by weight of the bitumen. The testing undertaken on the asphalt mix comprises the dynamic stiffness (indirect tensile test, dynamic creep (repeated load creep, and fatigue test (indirect tensile fatigue test at temperature of 25°C. The indirect tensile fatigue test was conducted at three different stress levels (200, 300, and 400 kPa. Experimental results indicate that CRM-reinforced SMA mixtures exhibit significantly higher fatigue life compared to the mixtures without CRM. Further, higher correlation coefficient was obtained between the fatigue life and resilient modulus as compared to permanent strain; thus resilient modulus might be a more reliable indicator in evaluating the fatigue life of asphalt mixture.

  8. Evaluation of fatigue life of CRM-reinforced SMA and its relationship to dynamic stiffness.

    Science.gov (United States)

    Mashaan, Nuha Salim; Karim, Mohamed Rehan; Abdel Aziz, Mahrez; Ibrahim, Mohd Rasdan; Katman, Herda Yati; Koting, Suhana

    2014-01-01

    Fatigue cracking is an essential problem of asphalt concrete that contributes to pavement damage. Although stone matrix asphalt (SMA) has significantly provided resistance to rutting failure, its resistance to fatigue failure is yet to be fully addressed. The aim of this study is to evaluate the effect of crumb rubber modifier (CRM) on stiffness and fatigue properties of SMA mixtures at optimum binder content, using four different modification levels, namely, 6%, 8%, 10%, and 12% CRM by weight of the bitumen. The testing undertaken on the asphalt mix comprises the dynamic stiffness (indirect tensile test), dynamic creep (repeated load creep), and fatigue test (indirect tensile fatigue test) at temperature of 25°C. The indirect tensile fatigue test was conducted at three different stress levels (200, 300, and 400 kPa). Experimental results indicate that CRM-reinforced SMA mixtures exhibit significantly higher fatigue life compared to the mixtures without CRM. Further, higher correlation coefficient was obtained between the fatigue life and resilient modulus as compared to permanent strain; thus resilient modulus might be a more reliable indicator in evaluating the fatigue life of asphalt mixture.

  9. Convex models and probabilistic approach of nonlinear fatigue failure

    International Nuclear Information System (INIS)

    Qiu Zhiping; Lin Qiang; Wang Xiaojun

    2008-01-01

    This paper is concerned with the nonlinear fatigue failure problem with uncertainties in the structural systems. In the present study, in order to solve the nonlinear problem by convex models, the theory of ellipsoidal algebra with the help of the thought of interval analysis is applied. In terms of the inclusion monotonic property of ellipsoidal functions, the nonlinear fatigue failure problem with uncertainties can be solved. A numerical example of 25-bar truss structures is given to illustrate the efficiency of the presented method in comparison with the probabilistic approach

  10. A Survey of Nanoflare Properties in Active Regions Observed with the Solar Dynamics Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Viall, Nicholeen M.; Klimchuk, James A. [NASA Goddard Space Flight Center, Solar Physics Laboratory, Greenbelt, MD 20771 (United States)

    2017-06-20

    In this paper, we examine 15 different active regions (ARs) observed with the Solar Dynamics Observatory and analyze their nanoflare properties. We have recently developed a technique that systematically identifies and measures plasma temperature dynamics by computing time lags between light curves. The time lag method tests whether the plasma is maintained at a steady temperature, or if it is dynamic, undergoing heating and cooling cycles. An important aspect of our technique is that it analyzes both observationally distinct coronal loops as well as the much more prevalent diffuse emission between them. We find that the widespread cooling reported previously for NOAA AR 11082 is a generic property of all ARs. The results are consistent with impulsive nanoflare heating followed by slower cooling. Only occasionally, however, is there full cooling from above 7 MK to well below 1 MK. More often, the plasma cools to approximately 1–2 MK before being reheated by another nanoflare. These same 15 ARs were first studied by Warren et al. We find that the degree of cooling is not well correlated with the reported slopes of the emission measure distribution. We also conclude that the Fe xviii emitting plasma that they measured is mostly in a state of cooling. These results support the idea that nanoflares have a distribution of energies and frequencies, with the average delay between successive events on an individual flux tube being comparable to the plasma cooling timescale.

  11. Study on Mechanical Properties of Barite Concrete under Impact Load

    Science.gov (United States)

    Chen, Z. F.; Cheng, K.; Wu, D.; Gan, Y. C.; Tao, Q. W.

    2018-03-01

    In order to research the mechanical properties of Barite concrete under impact load, a group of concrete compression tests was carried out under the impact load by using the drop test machine. A high-speed camera was used to record the failure process of the specimen during the impact process. The test results show that:with the increase of drop height, the loading rate, the peak load, the strain under peak load, the strain rate and the dynamic increase factor (DIF) all increase gradually. The ultimate tensile strain is close to each other, and the time of impact force decreases significantly, showing significant strain rate effect.

  12. Collaborative Research Program on Advanced Metals and Ceramics for Armor and Anti-Armor Applications Dynamic Behavior of Non-Crystalline and Crystalline Metallic Systems

    Science.gov (United States)

    2006-09-01

    compression, including real-time cinematography of failure under dynamic compression, was evaluated. The results (figure 10) clearly show that the failure... art of simulations of dynamic failure and damage mechanisms. An explicit dynamic parallel code has been developed to track damage mechanisms in the

  13. Static and dynamic properties of three-dimensional dot-type magnonic crystals

    International Nuclear Information System (INIS)

    Maksymov, Artur; Spinu, Leonard

    2016-01-01

    The static and dynamic magnetization of three-dimensional magnonic metamaterials has been investigated. By numerical means it was analyzed the impact of space dimensionality on the properties of magnonic crystal with unit cell consisting of four dots. It is find out the possibility of multi-vortex core formation which is related to the increasing of the crystal height by three-dimensional periodicity of single crystal layer. Additionally is provided the analysis of ferromagnetic resonance phenomenon for two-dimensional and three-dimensional structures. For the unsaturated magnetization of three-dimensional crystal the several pronounced resonance frequencies were detected.

  14. Static and dynamic properties of three-dimensional dot-type magnonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maksymov, Artur, E-mail: maxyartur@gmail.com [Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Spinu, Leonard [Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)

    2016-04-01

    The static and dynamic magnetization of three-dimensional magnonic metamaterials has been investigated. By numerical means it was analyzed the impact of space dimensionality on the properties of magnonic crystal with unit cell consisting of four dots. It is find out the possibility of multi-vortex core formation which is related to the increasing of the crystal height by three-dimensional periodicity of single crystal layer. Additionally is provided the analysis of ferromagnetic resonance phenomenon for two-dimensional and three-dimensional structures. For the unsaturated magnetization of three-dimensional crystal the several pronounced resonance frequencies were detected.

  15. Study on Geotechnique and Geohydrology in Failure Areas, P2PLR-BATAN, Serpong

    International Nuclear Information System (INIS)

    Heri-Syaeful; Suharji; Sartapa; Suparjo-AS

    2004-01-01

    Failures in reverse side of 50 and 52 building, first en occurred in early 2002, temporary treatment on slope failure which conducted in the middle of the year 2002 has not solved the problem, because it did not consider the aspect of geo technique and geohydrology that causing the failure. Geo technique and geohydrology study in failure area covered field work, laboratory work and geo technic/geohydrology analysis. Field works includes topographic mapping, core drilling, hand auger, groundwater level monitoring, standard penetration test and undisturbed sampling. Laboratory work includes index properties and engineering properties test. Studio works covered geotechnical analysis for the calculation of safety factor, while geohydrology analysis to understand the groundwater system. Slope stability analysis resulting the small number of safety factor, between 0,305-1,637 on normal condition, 0,293-1,597 on saturated condition and 0,205-1,075 on earthquake condition. From the geohydrology analysis, concluded that water clogging still occurs in several areas of slope, causing the excess of pore water pressure and decreasing the value of soil shear strength. (author)

  16. Effects of material properties