WorldWideScience

Sample records for dynamic evolutionary hybrid

  1. Evolutionary Design of Both Topologies and Parameters of a Hybrid Dynamical System

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2012-01-01

    This paper investigates the issue of evolutionary design of open-ended plants for hybrid dynamical systems--i.e. both their topologies and parameters. Hybrid bond graphs are used to represent dynamical systems involving both continuous and discrete system dynamics. Genetic programming, with some...... of hybrid dynamical systems that fulfill predefined design specifications. A comprehensive investigation of a case study of DC-DC converter design demonstrates the feasibility and effectiveness of the HBGGP approach. Important characteristics of the approach are also discussed, with some future research...

  2. Evolutionary and Ecological Consequences of Interspecific Hybridization in Cladocerans

    NARCIS (Netherlands)

    Schwenk, K.; Spaak, P.

    1995-01-01

    The evolutionary process of interspecific hybridization in cladocerans is reviewed based on ecological and population genetic data. The evolutionary consequences of hybridization, biogeographic patterns and fitness comparisons are analyzed within the conceptual framework of theories on

  3. Evolutionary design of discrete controllers for hybrid mechatronic systems

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2015-01-01

    This paper investigates the issue of evolutionary design of controllers for hybrid mechatronic systems. Finite State Automaton (FSA) is selected as the representation for a discrete controller due to its interpretability, fast execution speed and natural extension to a statechart, which is very...... popular in industrial applications. A case study of a two-tank system is used to demonstrate that the proposed evolutionary approach can lead to a successful design of an FSA controller for the hybrid mechatronic system, represented by a hybrid bond graph. Generalisation of the evolved FSA controller...... of the evolutionary design of controllers for hybrid mechatronic systems. Finally, some important future research directions are pointed out, leading to the major work of the succeeding part of the research....

  4. A Hybrid Chaotic Quantum Evolutionary Algorithm

    DEFF Research Database (Denmark)

    Cai, Y.; Zhang, M.; Cai, H.

    2010-01-01

    A hybrid chaotic quantum evolutionary algorithm is proposed to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm. The proposed algorithm adopts the chaotic initialization method to generate initial population which will form a pe...... tests. The presented algorithm is applied to urban traffic signal timing optimization and the effect is satisfied....

  5. Evaluation of models generated via hybrid evolutionary algorithms ...

    African Journals Online (AJOL)

    2016-04-02

    Apr 2, 2016 ... Evaluation of models generated via hybrid evolutionary algorithms for the prediction of Microcystis ... evolutionary algorithms (HEA) proved to be highly applica- ble to the hypertrophic reservoirs of South Africa. .... discovered and optimised using a large-scale parallel computational device and relevant soft-.

  6. Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana Irises.

    Science.gov (United States)

    Arnold, M L; Ballerini, E S; Brothers, A N

    2012-03-01

    Estimates of hybrid fitness have been used as either a platform for testing the potential role of natural hybridization in the evolution of species and species complexes or, alternatively, as a rationale for dismissing hybridization events as being of any evolutionary significance. From the time of Darwin's publication of The Origin, through the neo-Darwinian synthesis, to the present day, the observation of variability in hybrid fitness has remained a challenge for some models of speciation. Yet, Darwin and others have reported the elevated fitness of hybrid genotypes under certain environmental conditions. In modern scientific terminology, this observation reflects the fact that hybrid genotypes can demonstrate genotype × environment interactions. In the current review, we illustrate the development of one plant species complex, namely the Louisiana Irises, into a 'model system' for investigating hybrid fitness and the role of genetic exchange in adaptive evolution and diversification. In particular, we will argue that a multitude of approaches, involving both experimental and natural environments, and incorporating both manipulative analyses and surveys of natural populations, are necessary to adequately test for the evolutionary significance of introgressive hybridization. An appreciation of the variability of hybrid fitness leads to the conclusion that certain genetic signatures reflect adaptive evolution. Furthermore, tests of the frequency of allopatric versus sympatric/parapatric divergence (that is, divergence with ongoing gene flow) support hybrid genotypes as a mechanism of evolutionary diversification in numerous species complexes.

  7. Constrained Optimization Based on Hybrid Evolutionary Algorithm and Adaptive Constraint-Handling Technique

    DEFF Research Database (Denmark)

    Wang, Yong; Cai, Zixing; Zhou, Yuren

    2009-01-01

    A novel approach to deal with numerical and engineering constrained optimization problems, which incorporates a hybrid evolutionary algorithm and an adaptive constraint-handling technique, is presented in this paper. The hybrid evolutionary algorithm simultaneously uses simplex crossover and two...... mutation operators to generate the offspring population. Additionally, the adaptive constraint-handling technique consists of three main situations. In detail, at each situation, one constraint-handling mechanism is designed based on current population state. Experiments on 13 benchmark test functions...... and four well-known constrained design problems verify the effectiveness and efficiency of the proposed method. The experimental results show that integrating the hybrid evolutionary algorithm with the adaptive constraint-handling technique is beneficial, and the proposed method achieves competitive...

  8. Hybrid Projected Gradient-Evolutionary Search Algorithm for Mixed Integer Nonlinear Optimization Problems

    National Research Council Canada - National Science Library

    Homaifar, Abdollah; Esterline, Albert; Kimiaghalam, Bahram

    2005-01-01

    The Hybrid Projected Gradient-Evolutionary Search Algorithm (HPGES) algorithm uses a specially designed evolutionary-based global search strategy to efficiently create candidate solutions in the solution space...

  9. Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.

    Science.gov (United States)

    Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito

    2014-11-11

    Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.

  10. A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics

    Directory of Open Access Journals (Sweden)

    Shan Li

    2014-01-01

    Full Text Available With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.

  11. Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana.

    Science.gov (United States)

    MacLeod, Amy; Rodríguez, Ariel; Vences, Miguel; Orozco-terWengel, Pablo; García, Carolina; Trillmich, Fritz; Gentile, Gabriele; Caccone, Adalgisa; Quezada, Galo; Steinfartz, Sebastian

    2015-06-22

    The effects of the direct interaction between hybridization and speciation-two major contrasting evolutionary processes--are poorly understood. We present here the evolutionary history of the Galápagos marine iguana (Amblyrhynchus cristatus) and reveal a case of incipient within--island speciation, which is paralleled by between-island hybridization. In-depth genome-wide analyses suggest that Amblyrhynchus diverged from its sister group, the Galápagos land iguanas, around 4.5 million years ago (Ma), but divergence among extant populations is exceedingly young (less than 50,000 years). Despite Amblyrhynchus appearing as a single long-branch species phylogenetically, we find strong population structure between islands, and one case of incipient speciation of sister lineages within the same island--ostensibly initiated by volcanic events. Hybridization between both lineages is exceedingly rare, yet frequent hybridization with migrants from nearby islands is evident. The contemporary snapshot provided by highly variable markers indicates that speciation events may have occurred throughout the evolutionary history of marine iguanas, though these events are not visible in the deeper phylogenetic trees. We hypothesize that the observed interplay of speciation and hybridization might be a mechanism by which local adaptations, generated by incipient speciation, can be absorbed into a common gene pool, thereby enhancing the evolutionary potential of the species as a whole. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana

    Science.gov (United States)

    MacLeod, Amy; Rodríguez, Ariel; Vences, Miguel; Orozco-terWengel, Pablo; García, Carolina; Trillmich, Fritz; Gentile, Gabriele; Caccone, Adalgisa; Quezada, Galo; Steinfartz, Sebastian

    2015-01-01

    The effects of the direct interaction between hybridization and speciation—two major contrasting evolutionary processes—are poorly understood. We present here the evolutionary history of the Galápagos marine iguana (Amblyrhynchus cristatus) and reveal a case of incipient within-island speciation, which is paralleled by between-island hybridization. In-depth genome-wide analyses suggest that Amblyrhynchus diverged from its sister group, the Galápagos land iguanas, around 4.5 million years ago (Ma), but divergence among extant populations is exceedingly young (less than 50 000 years). Despite Amblyrhynchus appearing as a single long-branch species phylogenetically, we find strong population structure between islands, and one case of incipient speciation of sister lineages within the same island—ostensibly initiated by volcanic events. Hybridization between both lineages is exceedingly rare, yet frequent hybridization with migrants from nearby islands is evident. The contemporary snapshot provided by highly variable markers indicates that speciation events may have occurred throughout the evolutionary history of marine iguanas, though these events are not visible in the deeper phylogenetic trees. We hypothesize that the observed interplay of speciation and hybridization might be a mechanism by which local adaptations, generated by incipient speciation, can be absorbed into a common gene pool, thereby enhancing the evolutionary potential of the species as a whole. PMID:26041359

  13. Cross-species amplification of 41 microsatellites in European cyprinids: A tool for evolutionary, population genetics and hybridization studies

    Directory of Open Access Journals (Sweden)

    Gilles André

    2010-05-01

    Full Text Available Abstract Background Cyprinids display the most abundant and widespread species among the European freshwater Teleostei and are known to hybridize quite commonly. Nevertheless, a limited number of markers for conducting comparative differentiation, evolutionary and hybridization dynamics studies are available to date. Findings Five multiplex PCR sets were optimized in order to assay 41 cyprinid-specific polymorphic microsatellite loci (including 10 novel loci isolated from Chondrostoma nasus nasus, Chondrostoma toxostoma toxostoma and Leuciscus leuciscus for 503 individuals (440 purebred specimens and 63 hybrids from 15 European cyprinid species. The level of genetic diversity was assessed in Alburnus alburnus, Alburnoides bipunctatus, C. genei, C. n. nasus, C. soetta, C. t. toxostoma, L. idus, L. leuciscus, Pachychilon pictum, Rutilus rutilus, Squalius cephalus and Telestes souffia. The applicability of the markers was also tested on Abramis brama, Blicca bjoerkna and Scardinius erythrophtalmus specimens. Overall, between 24 and 37 of these markers revealed polymorphic for the investigated species and 23 markers amplified for all the 15 European cyprinid species. Conclusions The developed set of markers demonstrated its performance in discriminating European cyprinid species. Furthermore, it allowed detecting and characterizing hybrid individuals. These microsatellites will therefore be useful to perform comparative evolutionary and population genetics studies dealing with European cyprinids, what is of particular interest in conservation issues and constitutes a tool of choice to conduct hybridization studies.

  14. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.

    Science.gov (United States)

    Hanski, Ilkka A

    2011-08-30

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.

  15. Evolutionary dynamics with fluctuating population sizes and strong mutualism

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David R.

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  16. Evolutionary dynamics with fluctuating population sizes and strong mutualism.

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David R

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  17. Natural hybridization between Senecio jacobaea and Senecio aquaticus : ecological outcomes and evolutionary consequences

    NARCIS (Netherlands)

    Kirk, Heather Erin

    2009-01-01

    Plant hybridization has been shown to have important ecological and evolutionary consequences in a number of genera, including Senecio. Here, I investigate the possible consequences of natural hybridization between Senecio jacobaea and S. aquaticus. It is shown that many factors are involved in

  18. On evolutionary ray-projection dynamics

    NARCIS (Netherlands)

    Joosten, Reinoud A.M.G.; Roorda, Berend

    2011-01-01

    We introduce the ray-projection dynamics in evolutionary game theory by employing a ray projection of the relative fitness (vector) function, i.e., a projection unto the unit simplex along a ray through the origin. Ray-projection dynamics are weakly compatible in the terminology of Friedman

  19. Passivity analysis of higher order evolutionary dynamics and population games

    KAUST Repository

    Mabrok, Mohamed

    2017-01-05

    Evolutionary dynamics describe how the population composition changes in response to the fitness levels, resulting in a closed-loop feedback system. Recent work established a connection between passivity theory and certain classes of population games, namely so-called “stable games”. In particular, it was shown that a combination of stable games and (an analogue of) passive evolutionary dynamics results in stable convergence to Nash equilibrium. This paper considers the converse question of necessary conditions for evolutionary dynamics to exhibit stable behaviors for all generalized stable games. Using methods from robust control analysis, we show that if an evolutionary dynamic does not satisfy a passivity property, then it is possible to construct a generalized stable game that results in instability. The results are illustrated on selected evolutionary dynamics with particular attention to replicator dynamics, which are also shown to be lossless, a special class of passive systems.

  20. Calculating evolutionary dynamics in structured populations.

    Directory of Open Access Journals (Sweden)

    Charles G Nathanson

    2009-12-01

    Full Text Available Evolution is shaping the world around us. At the core of every evolutionary process is a population of reproducing individuals. The outcome of an evolutionary process depends on population structure. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured populations. This class includes the recently introduced "games in phenotype space" and "evolutionary set theory." There can be local interactions for determining the relative fitness of individuals, but we require global updating, which means all individuals compete uniformly for reproduction. We study the competition of two strategies in the context of an evolutionary game and determine which strategy is favored in the limit of weak selection. We derive an intuitive formula for the structure coefficient, sigma, and provide a method for efficient numerical calculation.

  1. Passivity and Evolutionary Game Dynamics

    KAUST Repository

    Park, Shinkyu; Shamma, Jeff S.; Martins, Nuno C.

    2018-01-01

    This paper investigates an energy conservation and dissipation -- passivity -- aspect of dynamic models in evolutionary game theory. We define a notion of passivity using the state-space representation of the models, and we devise systematic methods to examine passivity and to identify properties of passive dynamic models. Based on the methods, we describe how passivity is connected to stability in population games and illustrate stability of passive dynamic models using numerical simulations.

  2. Passivity and Evolutionary Game Dynamics

    KAUST Repository

    Park, Shinkyu

    2018-03-21

    This paper investigates an energy conservation and dissipation -- passivity -- aspect of dynamic models in evolutionary game theory. We define a notion of passivity using the state-space representation of the models, and we devise systematic methods to examine passivity and to identify properties of passive dynamic models. Based on the methods, we describe how passivity is connected to stability in population games and illustrate stability of passive dynamic models using numerical simulations.

  3. Evolutionary constrained optimization

    CERN Document Server

    Deb, Kalyanmoy

    2015-01-01

    This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...

  4. Multiscale structure in eco-evolutionary dynamics

    Science.gov (United States)

    Stacey, Blake C.

    In a complex system, the individual components are neither so tightly coupled or correlated that they can all be treated as a single unit, nor so uncorrelated that they can be approximated as independent entities. Instead, patterns of interdependency lead to structure at multiple scales of organization. Evolution excels at producing such complex structures. In turn, the existence of these complex interrelationships within a biological system affects the evolutionary dynamics of that system. I present a mathematical formalism for multiscale structure, grounded in information theory, which makes these intuitions quantitative, and I show how dynamics defined in terms of population genetics or evolutionary game theory can lead to multiscale organization. For complex systems, "more is different," and I address this from several perspectives. Spatial host--consumer models demonstrate the importance of the structures which can arise due to dynamical pattern formation. Evolutionary game theory reveals the novel effects which can result from multiplayer games, nonlinear payoffs and ecological stochasticity. Replicator dynamics in an environment with mesoscale structure relates to generalized conditionalization rules in probability theory. The idea of natural selection "acting at multiple levels" has been mathematized in a variety of ways, not all of which are equivalent. We will face down the confusion, using the experience developed over the course of this thesis to clarify the situation.

  5. Eco-evolutionary dynamics in a coevolving host-virus system.

    Science.gov (United States)

    Frickel, Jens; Sieber, Michael; Becks, Lutz

    2016-04-01

    Eco-evolutionary dynamics have been shown to be important for understanding population and community stability and their adaptive potential. However, coevolution in the framework of eco-evolutionary theory has not been addressed directly. Combining experiments with an algal host and its viral parasite, and mathematical model analyses we show eco-evolutionary dynamics in antagonistic coevolving populations. The interaction between antagonists initially resulted in arms race dynamics (ARD) with selective sweeps, causing oscillating host-virus population dynamics. However, ARD ended and populations stabilised after the evolution of a general resistant host, whereas a trade-off between host resistance and growth then maintained host diversity over time (trade-off driven dynamics). Most importantly, our study shows that the interaction between ecology and evolution had important consequences for the predictability of the mode and tempo of adaptive change and for the stability and adaptive potential of populations. © 2016 John Wiley & Sons Ltd/CNRS.

  6. Evolutionary Dynamics and Diversity in Microbial Populations

    Science.gov (United States)

    Thompson, Joel; Fisher, Daniel

    2013-03-01

    Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.

  7. Mate Choice Drives Evolutionary Stability in a Hybrid Complex.

    Directory of Open Access Journals (Sweden)

    Miguel Morgado-Santos

    Full Text Available Previous studies have shown that assortative mating acts as a driver of speciation by countering hybridization between two populations of the same species (pre-zygotic isolation or through mate choice among the hybrids (hybrid speciation. In both speciation types, assortative mating promotes speciation over a transient hybridization stage. We studied mate choice in a hybrid vertebrate complex, the allopolyploid fish Squalius alburnoides. This complex is composed by several genomotypes connected by an intricate reproductive dynamics. We developed a model that predicts the hybrid complex can persist when females exhibit particular mate choice patterns. Our model is able to reproduce the diversity of population dynamic outcomes found in nature, namely the dominance of the triploids and the dominance of the tetraploids, depending on female mate choice patterns and frequency of the parental species. Experimental mate choice trials showed that females exhibit the preferences predicted by the model. Thus, despite the known role of assortative mating in driving speciation, our findings suggest that certain mate choice patterns can instead hinder speciation and support the persistence of hybrids over time without speciation or extinction.

  8. A Distributed Dynamic Super Peer Selection Method Based on Evolutionary Game for Heterogeneous P2P Streaming Systems

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2013-01-01

    Full Text Available Due to high efficiency and good scalability, hierarchical hybrid P2P architecture has drawn more and more attention in P2P streaming research and application fields recently. The problem about super peer selection, which is the key problem in hybrid heterogeneous P2P architecture, is becoming highly challenging because super peers must be selected from a huge and dynamically changing network. A distributed super peer selection (SPS algorithm for hybrid heterogeneous P2P streaming system based on evolutionary game is proposed in this paper. The super peer selection procedure is modeled based on evolutionary game framework firstly, and its evolutionarily stable strategies are analyzed. Then a distributed Q-learning algorithm (ESS-SPS according to the mixed strategies by analysis is proposed for the peers to converge to the ESSs based on its own payoff history. Compared to the traditional randomly super peer selection scheme, experiments results show that the proposed ESS-SPS algorithm achieves better performance in terms of social welfare and average upload rate of super peers and keeps the upload capacity of the P2P streaming system increasing steadily with the number of peers increasing.

  9. Bridging developmental systems theory and evolutionary psychology using dynamic optimization.

    Science.gov (United States)

    Frankenhuis, Willem E; Panchanathan, Karthik; Clark Barrett, H

    2013-07-01

    Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic optimization integrates developmental systems theorists' focus on dynamics and contingency with the 'design stance' of evolutionary psychology. It provides a theoretical framework as well as a set of tools for exploring the properties of developmental systems that natural selection might favor, given particular evolutionary ecologies. We also discuss limitations of the approach. © 2013 Blackwell Publishing Ltd.

  10. Evolutionary dynamics of complex communications networks

    CERN Document Server

    Karyotis, Vasileios; Papavassiliou, Symeon

    2013-01-01

    Until recently, most network design techniques employed a bottom-up approach with lower protocol layer mechanisms affecting the development of higher ones. This approach, however, has not yielded fascinating results in the case of wireless distributed networks. Addressing the emerging aspects of modern network analysis and design, Evolutionary Dynamics of Complex Communications Networks introduces and develops a top-bottom approach where elements of the higher layer can be exploited in modifying the lowest physical topology-closing the network design loop in an evolutionary fashion similar to

  11. Unfair and Anomalous Evolutionary Dynamics from Fluctuating Payoffs

    Science.gov (United States)

    Stollmeier, Frank; Nagler, Jan

    2018-02-01

    Evolution occurs in populations of reproducing individuals. Reproduction depends on the payoff a strategy receives. The payoff depends on the environment that may change over time, on intrinsic uncertainties, and on other sources of randomness. These temporal variations in the payoffs can affect which traits evolve. Understanding evolutionary game dynamics that are affected by varying payoffs remains difficult. Here we study the impact of arbitrary amplitudes and covariances of temporally varying payoffs on the dynamics. The evolutionary dynamics may be "unfair," meaning that, on average, two coexisting strategies may persistently receive different payoffs. This mechanism can induce an anomalous coexistence of cooperators and defectors in the prisoner's dilemma, and an unexpected selection reversal in the hawk-dove game.

  12. The evolutionary rate dynamically tracks changes in HIV-1 epidemics

    Energy Technology Data Exchange (ETDEWEB)

    Maljkovic-berry, Irina [Los Alamos National Laboratory; Athreya, Gayathri [Los Alamos National Laboratory; Daniels, Marcus [Los Alamos National Laboratory; Bruno, William [Los Alamos National Laboratory; Korber, Bette [Los Alamos National Laboratory; Kuiken, Carla [Los Alamos National Laboratory; Ribeiro, Ruy M [Los Alamos National Laboratory

    2009-01-01

    Large-sequence datasets provide an opportunity to investigate the dynamics of pathogen epidemics. Thus, a fast method to estimate the evolutionary rate from large and numerous phylogenetic trees becomes necessary. Based on minimizing tip height variances, we optimize the root in a given phylogenetic tree to estimate the most homogenous evolutionary rate between samples from at least two different time points. Simulations showed that the method had no bias in the estimation of evolutionary rates and that it was robust to tree rooting and topological errors. We show that the evolutionary rates of HIV-1 subtype B and C epidemics have changed over time, with the rate of evolution inversely correlated to the rate of virus spread. For subtype B, the evolutionary rate slowed down and tracked the start of the HAART era in 1996. Subtype C in Ethiopia showed an increase in the evolutionary rate when the prevalence increase markedly slowed down in 1995. Thus, we show that the evolutionary rate of HIV-1 on the population level dynamically tracks epidemic events.

  13. Evolutionary dynamics of mammalian karyotypes

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2012-12-01

    Full Text Available This special volume of Cytogenetic and Genome Research (edited by Roscoe Stanyon, University of Florence and Alexander Graphodatsky, Siberian division of the Russian Academy of Sciences is dedicated to the fascinating long search of the forces behind the evolutionary dynamics of mammalian karyotypes, revealed after the hypotonic miracle of the 1950s....

  14. Evolution in Mind: Evolutionary Dynamics, Cognitive Processes, and Bayesian Inference.

    Science.gov (United States)

    Suchow, Jordan W; Bourgin, David D; Griffiths, Thomas L

    2017-07-01

    Evolutionary theory describes the dynamics of population change in settings affected by reproduction, selection, mutation, and drift. In the context of human cognition, evolutionary theory is most often invoked to explain the origins of capacities such as language, metacognition, and spatial reasoning, framing them as functional adaptations to an ancestral environment. However, evolutionary theory is useful for understanding the mind in a second way: as a mathematical framework for describing evolving populations of thoughts, ideas, and memories within a single mind. In fact, deep correspondences exist between the mathematics of evolution and of learning, with perhaps the deepest being an equivalence between certain evolutionary dynamics and Bayesian inference. This equivalence permits reinterpretation of evolutionary processes as algorithms for Bayesian inference and has relevance for understanding diverse cognitive capacities, including memory and creativity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Hybrid Disease Diagnosis Using Multiobjective Optimization with Evolutionary Parameter Optimization

    Directory of Open Access Journals (Sweden)

    MadhuSudana Rao Nalluri

    2017-01-01

    Full Text Available With the widespread adoption of e-Healthcare and telemedicine applications, accurate, intelligent disease diagnosis systems have been profoundly coveted. In recent years, numerous individual machine learning-based classifiers have been proposed and tested, and the fact that a single classifier cannot effectively classify and diagnose all diseases has been almost accorded with. This has seen a number of recent research attempts to arrive at a consensus using ensemble classification techniques. In this paper, a hybrid system is proposed to diagnose ailments using optimizing individual classifier parameters for two classifier techniques, namely, support vector machine (SVM and multilayer perceptron (MLP technique. We employ three recent evolutionary algorithms to optimize the parameters of the classifiers above, leading to six alternative hybrid disease diagnosis systems, also referred to as hybrid intelligent systems (HISs. Multiple objectives, namely, prediction accuracy, sensitivity, and specificity, have been considered to assess the efficacy of the proposed hybrid systems with existing ones. The proposed model is evaluated on 11 benchmark datasets, and the obtained results demonstrate that our proposed hybrid diagnosis systems perform better in terms of disease prediction accuracy, sensitivity, and specificity. Pertinent statistical tests were carried out to substantiate the efficacy of the obtained results.

  16. Hybridization in East African swarm-raiding army ants

    DEFF Research Database (Denmark)

    Kronauer, Daniel Jc; Peters, Marcell K; Schöning, Caspar

    2011-01-01

    Hybridization can have complex effects on evolutionary dynamics in ants because of the combination of haplodiploid sex-determination and eusociality. While hybrid non-reproductive workers have been found in a range of species, examples of gene-flow via hybrid queens and males are rare. We studied...... hybridization in East African army ants (Dorylus subgenus Anomma) using morphology, mitochondrial DNA sequences, and nuclear microsatellites....

  17. Genome size as a key to evolutionary complex aquatic plants: polyploidy and hybridization in Callitriche (Plantaginaceae.

    Directory of Open Access Journals (Sweden)

    Jan Prančl

    Full Text Available Despite their complex evolutionary histories, aquatic plants are highly underrepresented in contemporary biosystematic studies. Of them, the genus Callitriche is particularly interesting because of such evolutionary features as wide variation in chromosome numbers and pollination systems. However, taxonomic difficulties have prevented broader investigation of this genus. In this study we applied flow cytometry to Callitriche for the first time in order to gain an insight into evolutionary processes and genome size differentiation in the genus. Flow cytometry complemented by confirmation of chromosome counts was applied to an extensive dataset of 1077 Callitriche individuals from 495 localities in 11 European countries and the USA. Genome size was determined for 12 taxa. The results suggest that many important processes have interacted in the evolution of the genus, including polyploidization and hybridization. Incongruence between genome size and ploidy level, intraspecific variation in genome size, formation of autotriploid and hybridization between species with different pollination systems were also detected. Hybridization takes place particularly in the diploid-tetraploid complex C. cophocarpa-C. platycarpa, for which the triploid hybrids were frequently recorded in the area of co-occurrence of its parents. A hitherto unknown hybrid (probably C. hamulata × C. cophocarpa with a unique chromosome number was discovered in the Czech Republic. However, hybridization occurs very rarely among most of the studied species. The main ecological preferences were also compared among the taxa collected. Although Callitriche taxa often grow in mixed populations, the ecological preferences of individual species are distinctly different in some cases. Anyway, flow cytometry is a very efficient method for taxonomic delimitation, determination and investigation of Callitriche species, and is even able to distinguish homoploid taxa and identify introduced

  18. Evolutionary dynamics on infinite strategy spaces

    OpenAIRE

    Oechssler, Jörg; Riedel, Frank

    1998-01-01

    The study of evolutionary dynamics was so far mainly restricted to finite strategy spaces. In this paper we show that this unsatisfying restriction is unnecessary. We specify a simple condition under which the continuous time replicator dynamics are well defined for the case of infinite strategy spaces. Furthermore, we provide new conditions for the stability of rest points and show that even strict equilibria may be unstable. Finally, we apply this general theory to a number of applications ...

  19. Environmental fluctuations restrict eco-evolutionary dynamics in predator-prey system.

    Science.gov (United States)

    Hiltunen, Teppo; Ayan, Gökçe B; Becks, Lutz

    2015-06-07

    Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria-ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Population and evolutionary dynamics in spatially structured seasonally varying environments.

    Science.gov (United States)

    Reid, Jane M; Travis, Justin M J; Daunt, Francis; Burthe, Sarah J; Wanless, Sarah; Dytham, Calvin

    2018-03-25

    Increasingly imperative objectives in ecology are to understand and forecast population dynamic and evolutionary responses to seasonal environmental variation and change. Such population and evolutionary dynamics result from immediate and lagged responses of all key life-history traits, and resulting demographic rates that affect population growth rate, to seasonal environmental conditions and population density. However, existing population dynamic and eco-evolutionary theory and models have not yet fully encompassed within-individual and among-individual variation, covariation, structure and heterogeneity, and ongoing evolution, in a critical life-history trait that allows individuals to respond to seasonal environmental conditions: seasonal migration. Meanwhile, empirical studies aided by new animal-tracking technologies are increasingly demonstrating substantial within-population variation in the occurrence and form of migration versus year-round residence, generating diverse forms of 'partial migration' spanning diverse species, habitats and spatial scales. Such partially migratory systems form a continuum between the extreme scenarios of full migration and full year-round residence, and are commonplace in nature. Here, we first review basic scenarios of partial migration and associated models designed to identify conditions that facilitate the maintenance of migratory polymorphism. We highlight that such models have been fundamental to the development of partial migration theory, but are spatially and demographically simplistic compared to the rich bodies of population dynamic theory and models that consider spatially structured populations with dispersal but no migration, or consider populations experiencing strong seasonality and full obligate migration. Second, to provide an overarching conceptual framework for spatio-temporal population dynamics, we define a 'partially migratory meta-population' system as a spatially structured set of locations that can

  1. Evolutionary dynamics of a smoothed war of attrition game.

    Science.gov (United States)

    Iyer, Swami; Killingback, Timothy

    2016-05-07

    In evolutionary game theory the War of Attrition game is intended to model animal contests which are decided by non-aggressive behavior, such as the length of time that a participant will persist in the contest. The classical War of Attrition game assumes that no errors are made in the implementation of an animal׳s strategy. However, it is inevitable in reality that such errors must sometimes occur. Here we introduce an extension of the classical War of Attrition game which includes the effect of errors in the implementation of an individual׳s strategy. This extension of the classical game has the important feature that the payoff is continuous, and as a consequence admits evolutionary behavior that is fundamentally different from that possible in the original game. We study the evolutionary dynamics of this new game in well-mixed populations both analytically using adaptive dynamics and through individual-based simulations, and show that there are a variety of possible outcomes, including simple monomorphic or dimorphic configurations which are evolutionarily stable and cannot occur in the classical War of Attrition game. In addition, we study the evolutionary dynamics of this extended game in a variety of spatially and socially structured populations, as represented by different complex network topologies, and show that similar outcomes can also occur in these situations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Evolutionary game dynamics in a growing structured population

    Energy Technology Data Exchange (ETDEWEB)

    Poncela, Julia; Gomez-Gardenes, Jesus; Moreno, Yamir [Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, E-50009 Zaragoza (Spain); Traulsen, Arne [Emmy-Noether Group for Evolutionary Dynamics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen (Germany)], E-mail: traulsen@evolbio.mpg.de

    2009-08-15

    We discuss a model for evolutionary game dynamics in a growing, network-structured population. In our model, new players can either make connections to random preexisting players or preferentially attach to those that have been successful in the past. The latter depends on the dynamics of strategies in the game, which we implement following the so-called Fermi rule such that the limits of weak and strong strategy selection can be explored. Our framework allows to address general evolutionary games. With only two parameters describing the preferential attachment and the intensity of selection, we describe a wide range of network structures and evolutionary scenarios. Our results show that even for moderate payoff preferential attachment, over represented hubs arise. Interestingly, we find that while the networks are growing, high levels of cooperation are attained, but the same network structure does not promote cooperation as a static network. Therefore, the mechanism of payoff preferential attachment is different to those usually invoked to explain the promotion of cooperation in static, already-grown networks.

  3. Evolutionary game dynamics in a growing structured population

    International Nuclear Information System (INIS)

    Poncela, Julia; Gomez-Gardenes, Jesus; Moreno, Yamir; Traulsen, Arne

    2009-01-01

    We discuss a model for evolutionary game dynamics in a growing, network-structured population. In our model, new players can either make connections to random preexisting players or preferentially attach to those that have been successful in the past. The latter depends on the dynamics of strategies in the game, which we implement following the so-called Fermi rule such that the limits of weak and strong strategy selection can be explored. Our framework allows to address general evolutionary games. With only two parameters describing the preferential attachment and the intensity of selection, we describe a wide range of network structures and evolutionary scenarios. Our results show that even for moderate payoff preferential attachment, over represented hubs arise. Interestingly, we find that while the networks are growing, high levels of cooperation are attained, but the same network structure does not promote cooperation as a static network. Therefore, the mechanism of payoff preferential attachment is different to those usually invoked to explain the promotion of cooperation in static, already-grown networks.

  4. Surgeons and suture zones: Hybridization among four surgeonfish species in the Indo-Pacific with variable evolutionary outcomes

    KAUST Repository

    DiBattista, Joseph; Whitney, Jonathan; Craig, Matthew T.; Hobbs, Jean-Paul A.; Rocha, Luiz A.; Feldheim, Kevin A.; Berumen, Michael L.; Bowen, Brian W.

    2016-01-01

    Closely related species can provide valuable insights into evolutionary processes through comparison of their ecology, geographic distribution and the history recorded in their genomes. In the Indo-Pacific, many reef fishes are divided into sister species that come into secondary contact at biogeographic borders, most prominently where Indian Ocean and Pacific Ocean faunas meet. It is unclear whether hybridization in this contact zone represents incomplete speciation, secondary contact, an evolutionary dead-end (for hybrids) or some combination of the above. To address these issues, we conducted comprehensive surveys of two widely-distributed surgeonfish species, Acanthurus leucosternon (N = 141) and A. nigricans (N = 412), with mtDNA cytochrome b sequences and ten microsatellite loci. These surgeonfishes are found primarily in the Indian and Pacific Oceans, respectively, but overlap at the Christmas and Cocos-Keeling Islands hybrid zone in the eastern Indian Ocean. We also sampled the two other Pacific members of this species complex, A. achilles (N = 54) and A. japonicus (N = 49), which are known to hybridize with A. nigricans where their ranges overlap. Our results indicate separation between the four species that range from the recent Pleistocene to late Pliocene (235,000 to 2.25 million years ago). The Pacific A. achilles is the most divergent (and possibly ancestral) species with mtDNA dcorr ≈ 0.04, whereas the other two Pacific species (A. japonicus and A. nigricans) are distinguishable only at a population or subspecies level (ΦST = 0.6533, P < 0.001). Little population structure was observed within species, with evidence of recent population expansion across all four geographic ranges. We detected sharing of mtDNA haplotypes between species and extensive hybridization based on microsatellites, consistent with later generation hybrids but also the effects of allele homoplasy. Despite extensive introgression, 98% of specimens had concordance between mt

  5. Surgeons and suture zones: Hybridization among four surgeonfish species in the Indo-Pacific with variable evolutionary outcomes

    KAUST Repository

    DiBattista, Joseph

    2016-04-30

    Closely related species can provide valuable insights into evolutionary processes through comparison of their ecology, geographic distribution and the history recorded in their genomes. In the Indo-Pacific, many reef fishes are divided into sister species that come into secondary contact at biogeographic borders, most prominently where Indian Ocean and Pacific Ocean faunas meet. It is unclear whether hybridization in this contact zone represents incomplete speciation, secondary contact, an evolutionary dead-end (for hybrids) or some combination of the above. To address these issues, we conducted comprehensive surveys of two widely-distributed surgeonfish species, Acanthurus leucosternon (N = 141) and A. nigricans (N = 412), with mtDNA cytochrome b sequences and ten microsatellite loci. These surgeonfishes are found primarily in the Indian and Pacific Oceans, respectively, but overlap at the Christmas and Cocos-Keeling Islands hybrid zone in the eastern Indian Ocean. We also sampled the two other Pacific members of this species complex, A. achilles (N = 54) and A. japonicus (N = 49), which are known to hybridize with A. nigricans where their ranges overlap. Our results indicate separation between the four species that range from the recent Pleistocene to late Pliocene (235,000 to 2.25 million years ago). The Pacific A. achilles is the most divergent (and possibly ancestral) species with mtDNA dcorr ≈ 0.04, whereas the other two Pacific species (A. japonicus and A. nigricans) are distinguishable only at a population or subspecies level (ΦST = 0.6533, P < 0.001). Little population structure was observed within species, with evidence of recent population expansion across all four geographic ranges. We detected sharing of mtDNA haplotypes between species and extensive hybridization based on microsatellites, consistent with later generation hybrids but also the effects of allele homoplasy. Despite extensive introgression, 98% of specimens had concordance between mt

  6. Electricity demand and spot price forecasting using evolutionary computation combined with chaotic nonlinear dynamic model

    International Nuclear Information System (INIS)

    Unsihuay-Vila, C.; Zambroni de Souza, A.C.; Marangon-Lima, J.W.; Balestrassi, P.P.

    2010-01-01

    This paper proposes a new hybrid approach based on nonlinear chaotic dynamics and evolutionary strategy to forecast electricity loads and prices. The main idea is to develop a new training or identification stage in a nonlinear chaotic dynamic based predictor. In the training stage five optimal parameters for a chaotic based predictor are searched through an optimization model based on evolutionary strategy. The objective function of the optimization model is the mismatch minimization between the multi-step-ahead forecasting of predictor and observed data such as it is done in identification problems. The first contribution of this paper is that the proposed approach is capable of capturing the complex dynamic of demand and price time series considered resulting in a more accuracy forecasting. The second contribution is that the proposed approach run on-line manner, i.e. the optimal set of parameters and prediction is executed automatically which can be used to prediction in real-time, it is an advantage in comparison with other models, where the choice of their input parameters are carried out off-line, following qualitative/experience-based recipes. A case study of load and price forecasting is presented using data from New England, Alberta, and Spain. A comparison with other methods such as autoregressive integrated moving average (ARIMA) and artificial neural network (ANN) is shown. The results show that the proposed approach provides a more accurate and effective forecasting than ARIMA and ANN methods. (author)

  7. An Evolutionary Comparison of the Handicap Principle and Hybrid Equilibrium Theories of Signaling

    Science.gov (United States)

    Kane, Patrick; Zollman, Kevin J. S.

    2015-01-01

    The handicap principle has come under significant challenge both from empirical studies and from theoretical work. As a result, a number of alternative explanations for honest signaling have been proposed. This paper compares the evolutionary plausibility of one such alternative, the “hybrid equilibrium,” to the handicap principle. We utilize computer simulations to compare these two theories as they are instantiated in Maynard Smith’s Sir Philip Sidney game. We conclude that, when both types of communication are possible, evolution is unlikely to lead to handicap signaling and is far more likely to result in the partially honest signaling predicted by hybrid equilibrium theory. PMID:26348617

  8. Surgeons and suture zones: Hybridization among four surgeonfish species in the Indo-Pacific with variable evolutionary outcomes.

    Science.gov (United States)

    DiBattista, Joseph D; Whitney, Jonathan; Craig, Matthew T; Hobbs, Jean-Paul A; Rocha, Luiz A; Feldheim, Kevin A; Berumen, Michael L; Bowen, Brian W

    2016-08-01

    Closely related species can provide valuable insights into evolutionary processes through comparison of their ecology, geographic distribution and the history recorded in their genomes. In the Indo-Pacific, many reef fishes are divided into sister species that come into secondary contact at biogeographic borders, most prominently where Indian Ocean and Pacific Ocean faunas meet. It is unclear whether hybridization in this contact zone represents incomplete speciation, secondary contact, an evolutionary dead-end (for hybrids) or some combination of the above. To address these issues, we conducted comprehensive surveys of two widely-distributed surgeonfish species, Acanthurus leucosternon (N=141) and A. nigricans (N=412), with mtDNA cytochrome b sequences and ten microsatellite loci. These surgeonfishes are found primarily in the Indian and Pacific Oceans, respectively, but overlap at the Christmas and Cocos-Keeling Islands hybrid zone in the eastern Indian Ocean. We also sampled the two other Pacific members of this species complex, A. achilles (N=54) and A. japonicus (N=49), which are known to hybridize with A. nigricans where their ranges overlap. Our results indicate separation between the four species that range from the recent Pleistocene to late Pliocene (235,000-2.25million years ago). The Pacific A. achilles is the most divergent (and possibly ancestral) species with mtDNA dcorr≈0.04, whereas the other two Pacific species (A. japonicus and A. nigricans) are distinguishable only at a population or subspecies level (ΦST=0.6533, P<0.001). Little population structure was observed within species, with evidence of recent population expansion across all four geographic ranges. We detected sharing of mtDNA haplotypes between species and extensive hybridization based on microsatellites, consistent with later generation hybrids but also the effects of allele homoplasy. Despite extensive introgression, 98% of specimens had concordance between mtDNA lineage and

  9. Dynamics and control of hybrid mechanical systems

    NARCIS (Netherlands)

    Leonov, G.A.; Nijmeijer, H.; Pogromski, A.Y.; Fradkov, A.L.

    2010-01-01

    The papers in this edited volume aim to provide a better understanding of the dynamics and control of a large class of hybrid dynamical systems that are described by different models in different state space domains. They not only cover important aspects and tools for hybrid systems analysis and

  10. Evolutionary dynamics of cooperation in neutral populations

    Science.gov (United States)

    Szolnoki, Attila; Perc, Matjaž

    2018-01-01

    Cooperation is a difficult proposition in the face of Darwinian selection. Those that defect have an evolutionary advantage over cooperators who should therefore die out. However, spatial structure enables cooperators to survive through the formation of homogeneous clusters, which is the hallmark of network reciprocity. Here we go beyond this traditional setup and study the spatiotemporal dynamics of cooperation in a population of populations. We use the prisoner's dilemma game as the mathematical model and show that considering several populations simultaneously gives rise to fascinating spatiotemporal dynamics and pattern formation. Even the simplest assumption that strategies between different populations are payoff-neutral with one another results in the spontaneous emergence of cyclic dominance, where defectors of one population become prey of cooperators in the other population, and vice versa. Moreover, if social interactions within different populations are characterized by significantly different temptations to defect, we observe that defectors in the population with the largest temptation counterintuitively vanish the fastest, while cooperators that hang on eventually take over the whole available space. Our results reveal that considering the simultaneous presence of different populations significantly expands the complexity of evolutionary dynamics in structured populations, and it allows us to understand the stability of cooperation under adverse conditions that could never be bridged by network reciprocity alone.

  11. Evolutionary restoration of fertility in an interspecies hybrid yeast, by whole-genome duplication after a failed mating-type switch.

    Directory of Open Access Journals (Sweden)

    Raúl A Ortiz-Merino

    2017-05-01

    Full Text Available Many interspecies hybrids have been discovered in yeasts, but most of these hybrids are asexual and can replicate only mitotically. Whole-genome duplication has been proposed as a mechanism by which interspecies hybrids can regain fertility, restoring their ability to perform meiosis and sporulate. Here, we show that this process occurred naturally during the evolution of Zygosaccharomyces parabailii, an interspecies hybrid that was formed by mating between 2 parents that differed by 7% in genome sequence and by many interchromosomal rearrangements. Surprisingly, Z. parabailii has a full sexual cycle and is genetically haploid. It goes through mating-type switching and autodiploidization, followed by immediate sporulation. We identified the key evolutionary event that enabled Z. parabailii to regain fertility, which was breakage of 1 of the 2 homeologous copies of the mating-type (MAT locus in the hybrid, resulting in a chromosomal rearrangement and irreparable damage to 1 MAT locus. This rearrangement was caused by HO endonuclease, which normally functions in mating-type switching. With 1 copy of MAT inactivated, the interspecies hybrid now behaves as a haploid. Our results provide the first demonstration that MAT locus damage is a naturally occurring evolutionary mechanism for whole-genome duplication and restoration of fertility to interspecies hybrids. The events that occurred in Z. parabailii strongly resemble those postulated to have caused ancient whole-genome duplication in an ancestor of Saccharomyces cerevisiae.

  12. Sex ratio meiotic drive as a plausible evolutionary mechanism for hybrid male sterility.

    Science.gov (United States)

    Zhang, Linbin; Sun, Tianai; Woldesellassie, Fitsum; Xiao, Hailian; Tao, Yun

    2015-03-01

    Biological diversity on Earth depends on the multiplication of species or speciation, which is the evolution of reproductive isolation such as hybrid sterility between two new species. An unsolved puzzle is the exact mechanism(s) that causes two genomes to diverge from their common ancestor so that some divergent genes no longer function properly in the hybrids. Here we report genetic analyses of divergent genes controlling male fertility and sex ratio in two very young fruitfly species, Drosophila albomicans and D. nasuta. A majority of the genetic divergence for both traits is mapped to the same regions by quantitative trait loci mappings. With introgressions, six major loci are found to contribute to both traits. This genetic colocalization implicates that genes for hybrid male sterility have evolved primarily for controlling sex ratio. We propose that genetic conflicts over sex ratio may operate as a perpetual dynamo for genome divergence. This particular evolutionary mechanism may largely contribute to the rapid evolution of hybrid male sterility and the disproportionate enrichment of its underlying genes on the X chromosome--two patterns widely observed across animals.

  13. Evolutionary dynamics on graphs: Efficient method for weak selection

    Science.gov (United States)

    Fu, Feng; Wang, Long; Nowak, Martin A.; Hauert, Christoph

    2009-04-01

    Investigating the evolutionary dynamics of game theoretical interactions in populations where individuals are arranged on a graph can be challenging in terms of computation time. Here, we propose an efficient method to study any type of game on arbitrary graph structures for weak selection. In this limit, evolutionary game dynamics represents a first-order correction to neutral evolution. Spatial correlations can be empirically determined under neutral evolution and provide the basis for formulating the game dynamics as a discrete Markov process by incorporating a detailed description of the microscopic dynamics based on the neutral correlations. This framework is then applied to one of the most intriguing questions in evolutionary biology: the evolution of cooperation. We demonstrate that the degree heterogeneity of a graph impedes cooperation and that the success of tit for tat depends not only on the number of rounds but also on the degree of the graph. Moreover, considering the mutation-selection equilibrium shows that the symmetry of the stationary distribution of states under weak selection is skewed in favor of defectors for larger selection strengths. In particular, degree heterogeneity—a prominent feature of scale-free networks—generally results in a more pronounced increase in the critical benefit-to-cost ratio required for evolution to favor cooperation as compared to regular graphs. This conclusion is corroborated by an analysis of the effects of population structures on the fixation probabilities of strategies in general 2×2 games for different types of graphs. Computer simulations confirm the predictive power of our method and illustrate the improved accuracy as compared to previous studies.

  14. Spatial effect on stochastic dynamics of bistable evolutionary games

    International Nuclear Information System (INIS)

    So, Kohaku H Z; Ohtsuki, Hisashi; Kato, Takeo

    2014-01-01

    We consider the lifetimes of metastable states in bistable evolutionary games (coordination games), and examine how they are affected by spatial structure. A semiclassical approximation based on a path integral method is applied to stochastic evolutionary game dynamics with and without spatial structure, and the lifetimes of the metastable states are evaluated. It is shown that the population dependence of the lifetimes is qualitatively different in these two models. Our result indicates that spatial structure can accelerate the transitions between metastable states. (paper)

  15. Towards a Population Dynamics Theory for Evolutionary Computing: Learning from Biological Population Dynamics in Nature

    Science.gov (United States)

    Ma, Zhanshan (Sam)

    In evolutionary computing (EC), population size is one of the critical parameters that a researcher has to deal with. Hence, it was no surprise that the pioneers of EC, such as De Jong (1975) and Holland (1975), had already studied the population sizing from the very beginning of EC. What is perhaps surprising is that more than three decades later, we still largely depend on the experience or ad-hoc trial-and-error approach to set the population size. For example, in a recent monograph, Eiben and Smith (2003) indicated: "In almost all EC applications, the population size is constant and does not change during the evolutionary search." Despite enormous research on this issue in recent years, we still lack a well accepted theory for population sizing. In this paper, I propose to develop a population dynamics theory forEC with the inspiration from the population dynamics theory of biological populations in nature. Essentially, the EC population is considered as a dynamic system over time (generations) and space (search space or fitness landscape), similar to the spatial and temporal dynamics of biological populations in nature. With this conceptual mapping, I propose to 'transplant' the biological population dynamics theory to EC via three steps: (i) experimentally test the feasibility—whether or not emulating natural population dynamics improves the EC performance; (ii) comparatively study the underlying mechanisms—why there are improvements, primarily via statistical modeling analysis; (iii) conduct theoretical analysis with theoretical models such as percolation theory and extended evolutionary game theory that are generally applicable to both EC and natural populations. This article is a summary of a series of studies we have performed to achieve the general goal [27][30]-[32]. In the following, I start with an extremely brief introduction on the theory and models of natural population dynamics (Sections 1 & 2). In Sections 4 to 6, I briefly discuss three

  16. Feedback between Population and Evolutionary Dynamics Determines the Fate of Social Microbial Populations

    Science.gov (United States)

    Sanchez, Alvaro; Gore, Jeff

    2013-01-01

    The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50–100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators “spiral” to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate

  17. feedback between population and evolutionary dynamics determines the fate of social microbial populations.

    Directory of Open Access Journals (Sweden)

    Alvaro Sanchez

    Full Text Available The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50-100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators "spiral" to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the

  18. Hybrid dynamical systems observation and control

    CERN Document Server

    Defoort, Michael

    2015-01-01

    This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systems – systems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...

  19. Contrasting evolutionary dynamics between angiosperm and mammalian genomes

    Czech Academy of Sciences Publication Activity Database

    Kejnovský, Eduard; Leitch, I.J.; Leitch, A.R.

    2009-01-01

    Roč. 24, č. 10 (2009), s. 572-582 ISSN 0169-5347 R&D Projects: GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : genomes * evolutionary dynamics * recombination Subject RIV: BO - Biophysics Impact factor: 11.564, year: 2009

  20. HTTR plant dynamic simulation using a hybrid computer

    International Nuclear Information System (INIS)

    Shimazaki, Junya; Suzuki, Katsuo; Nabeshima, Kunihiko; Watanabe, Koichi; Shinohara, Yoshikuni; Nakagawa, Shigeaki.

    1990-01-01

    A plant dynamic simulation of High-Temperature Engineering Test Reactor has been made using a new-type hybrid computer. This report describes a dynamic simulation model of HTTR, a hybrid simulation method for SIMSTAR and some results obtained from dynamics analysis of HTTR simulation. It concludes that the hybrid plant simulation is useful for on-line simulation on account of its capability of computation at high speed, compared with that of all digital computer simulation. With sufficient accuracy, 40 times faster computation than real time was reached only by changing an analog time scale for HTTR simulation. (author)

  1. Hybrid Predictive Control for Dynamic Transport Problems

    CERN Document Server

    Núñez, Alfredo A; Cortés, Cristián E

    2013-01-01

    Hybrid Predictive Control for Dynamic Transport Problems develops methods for the design of predictive control strategies for nonlinear-dynamic hybrid discrete-/continuous-variable systems. The methodology is designed for real-time applications, particularly the study of dynamic transport systems. Operational and service policies are considered, as well as cost reduction. The control structure is based on a sound definition of the key variables and their evolution. A flexible objective function able to capture the predictive behaviour of the system variables is described. Coupled with efficient algorithms, mainly drawn from the area of computational intelligence, this is shown to optimize performance indices for real-time applications. The framework of the proposed predictive control methodology is generic and, being able to solve nonlinear mixed-integer optimization problems dynamically, is readily extendable to other industrial processes. The main topics of this book are: ●hybrid predictive control (HPC) ...

  2. Sex ratio meiotic drive as a plausible evolutionary mechanism for hybrid male sterility.

    Directory of Open Access Journals (Sweden)

    Linbin Zhang

    2015-03-01

    Full Text Available Biological diversity on Earth depends on the multiplication of species or speciation, which is the evolution of reproductive isolation such as hybrid sterility between two new species. An unsolved puzzle is the exact mechanism(s that causes two genomes to diverge from their common ancestor so that some divergent genes no longer function properly in the hybrids. Here we report genetic analyses of divergent genes controlling male fertility and sex ratio in two very young fruitfly species, Drosophila albomicans and D. nasuta. A majority of the genetic divergence for both traits is mapped to the same regions by quantitative trait loci mappings. With introgressions, six major loci are found to contribute to both traits. This genetic colocalization implicates that genes for hybrid male sterility have evolved primarily for controlling sex ratio. We propose that genetic conflicts over sex ratio may operate as a perpetual dynamo for genome divergence. This particular evolutionary mechanism may largely contribute to the rapid evolution of hybrid male sterility and the disproportionate enrichment of its underlying genes on the X chromosome--two patterns widely observed across animals.

  3. Evolutionary dynamics of incubation periods.

    Science.gov (United States)

    Ottino-Loffler, Bertrand; Scott, Jacob G; Strogatz, Steven H

    2017-12-21

    The incubation period for typhoid, polio, measles, leukemia and many other diseases follows a right-skewed, approximately lognormal distribution. Although this pattern was discovered more than sixty years ago, it remains an open question to explain its ubiquity. Here, we propose an explanation based on evolutionary dynamics on graphs. For simple models of a mutant or pathogen invading a network-structured population of healthy cells, we show that skewed distributions of incubation periods emerge for a wide range of assumptions about invader fitness, competition dynamics, and network structure. The skewness stems from stochastic mechanisms associated with two classic problems in probability theory: the coupon collector and the random walk. Unlike previous explanations that rely crucially on heterogeneity, our results hold even for homogeneous populations. Thus, we predict that two equally healthy individuals subjected to equal doses of equally pathogenic agents may, by chance alone, show remarkably different time courses of disease.

  4. Evolutionary dynamics under interactive diversity

    Science.gov (United States)

    Su, Qi; Li, Aming; Wang, Long

    2017-10-01

    As evidenced by many cases in human societies, individuals often make different behavior decisions in different interactions, and adaptively adjust their behavior in changeable interactive scenarios. However, up to now, how such diverse interactive behavior affects cooperation dynamics has still remained unknown. Here we develop a general framework of interactive diversity, which models individuals’ separated behavior against distinct opponents and their adaptive adjustment in response to opponents’ strategies, to explore the evolution of cooperation. We find that interactive diversity enables individuals to reciprocate every single opponent, and thus sustains large-scale reciprocal interactions. Our work witnesses an impressive boost of cooperation for a notably extensive range of parameters and for all pairwise games. These results are robust against well-mixed and various networked populations, and against degree-normalized and cumulative payoff patterns. From the perspective of network dynamics, distinguished from individuals competing for nodes in most previous work, in this paper, the system evolves in the form of behavior disseminating along edges. We propose a theoretical method based on evolution of edges, which predicts well both the frequency of cooperation and the compact cooperation clusters. Our thorough investigation clarifies the positive role of interactive diversity in resolving social dilemmas and highlights the significance of understanding evolutionary dynamics from the viewpoint of edge dynamics.

  5. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes.

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C; Fan, Chuanzhu

    2016-09-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. © 2016 American Society of Plant Biologists. All rights reserved.

  6. Evolutionary dynamics of protein domain architecture in plants

    Directory of Open Access Journals (Sweden)

    Zhang Xue-Cheng

    2012-01-01

    Full Text Available Abstract Background Protein domains are the structural, functional and evolutionary units of the protein. Protein domain architectures are the linear arrangements of domain(s in individual proteins. Although the evolutionary history of protein domain architecture has been extensively studied in microorganisms, the evolutionary dynamics of domain architecture in the plant kingdom remains largely undefined. To address this question, we analyzed the lineage-based protein domain architecture content in 14 completed green plant genomes. Results Our analyses show that all 14 plant genomes maintain similar distributions of species-specific, single-domain, and multi-domain architectures. Approximately 65% of plant domain architectures are universally present in all plant lineages, while the remaining architectures are lineage-specific. Clear examples are seen of both the loss and gain of specific protein architectures in higher plants. There has been a dynamic, lineage-wise expansion of domain architectures during plant evolution. The data suggest that this expansion can be largely explained by changes in nuclear ploidy resulting from rounds of whole genome duplications. Indeed, there has been a decrease in the number of unique domain architectures when the genomes were normalized into a presumed ancestral genome that has not undergone whole genome duplications. Conclusions Our data show the conservation of universal domain architectures in all available plant genomes, indicating the presence of an evolutionarily conserved, core set of protein components. However, the occurrence of lineage-specific domain architectures indicates that domain architecture diversity has been maintained beyond these core components in plant genomes. Although several features of genome-wide domain architecture content are conserved in plants, the data clearly demonstrate lineage-wise, progressive changes and expansions of individual protein domain architectures, reinforcing

  7. Passivity analysis of higher order evolutionary dynamics and population games

    KAUST Repository

    Mabrok, Mohamed; Shamma, Jeff S.

    2017-01-01

    Evolutionary dynamics describe how the population composition changes in response to the fitness levels, resulting in a closed-loop feedback system. Recent work established a connection between passivity theory and certain classes of population

  8. Evolutionary programming for goal-driven dynamic planning

    Science.gov (United States)

    Vaccaro, James M.; Guest, Clark C.; Ross, David O.

    2002-03-01

    one step closer to solving more difficult real-world AI problems. Using a hybrid approach that includes adaptation via evolutionary computation for the intelligent planning of a Risk player's turn provides better dynamic intelligent planning than more uniform approaches.

  9. Bidirectional Dynamic Diversity Evolutionary Algorithm for Constrained Optimization

    Directory of Open Access Journals (Sweden)

    Weishang Gao

    2013-01-01

    Full Text Available Evolutionary algorithms (EAs were shown to be effective for complex constrained optimization problems. However, inflexible exploration-exploitation and improper penalty in EAs with penalty function would lead to losing the global optimum nearby or on the constrained boundary. To determine an appropriate penalty coefficient is also difficult in most studies. In this paper, we propose a bidirectional dynamic diversity evolutionary algorithm (Bi-DDEA with multiagents guiding exploration-exploitation through local extrema to the global optimum in suitable steps. In Bi-DDEA potential advantage is detected by three kinds of agents. The scale and the density of agents will change dynamically according to the emerging of potential optimal area, which play an important role of flexible exploration-exploitation. Meanwhile, a novel double optimum estimation strategy with objective fitness and penalty fitness is suggested to compute, respectively, the dominance trend of agents in feasible region and forbidden region. This bidirectional evolving with multiagents can not only effectively avoid the problem of determining penalty coefficient but also quickly converge to the global optimum nearby or on the constrained boundary. By examining the rapidity and veracity of Bi-DDEA across benchmark functions, the proposed method is shown to be effective.

  10. The pachytene checkpoint and its relationship to evolutionary patterns of polyploidization and hybrid sterility.

    Science.gov (United States)

    Li, X C; Barringer, B C; Barbash, D A

    2009-01-01

    Sterility is a commonly observed phenotype in interspecific hybrids. Sterility may result from chromosomal or genic incompatibilities, and much progress has been made toward understanding the genetic basis of hybrid sterility in various taxa. The underlying mechanisms causing hybrid sterility, however, are less well known. The pachytene checkpoint is a meiotic surveillance system that many organisms use to detect aberrant meiotic products, in order to prevent the production of defective gametes. We suggest that activation of the pachytene checkpoint may be an important mechanism contributing to two types of hybrid sterility. First, the pachytene checkpoint may form the mechanistic basis of some gene-based hybrid sterility phenotypes. Second, the pachytene checkpoint may be an important mechanism that mediates chromosomal-based hybrid sterility phenotypes involving gametes with non-haploid (either non-reduced or aneuploid) chromosome sets. Studies in several species suggest that the strength of the pachytene checkpoint is sexually dimorphic, observations that warrant future investigation into whether such variation may contribute to differences in patterns of sterility between male and female interspecific hybrids. In addition, plants seem to lack the pachytene checkpoint, which correlates with increased production of unreduced gametes and a higher incidence of polyploid species in plants versus animals. Although the pachytene checkpoint occurs in many animals and in fungi, at least some of the genes that execute the pachytene checkpoint are different among organisms. This finding suggests that the penetrance of the pachytene checkpoint, and even its presence or absence can evolve rapidly. The surprising degree of evolutionary flexibility in this meiotic surveillance system may contribute to the observed variation in patterns of hybrid sterility and in rates of polyploidization.

  11. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics.

    Science.gov (United States)

    Turcotte, Martin M; Reznick, David N; Hare, J Daniel

    2011-11-01

    Rapid evolution challenges the assumption that evolution is too slow to impact short-term ecological dynamics. This insight motivates the study of 'Eco-Evolutionary Dynamics' or how evolution and ecological processes reciprocally interact on short time scales. We tested how rapid evolution impacts concurrent population dynamics using an aphid (Myzus persicae) and an undomesticated host (Hirschfeldia incana) in replicated wild populations. We manipulated evolvability by creating non-evolving (single clone) and potentially evolving (two-clone) aphid populations that contained genetic variation in intrinsic growth rate. We observed significant evolution in two-clone populations whether or not they were exposed to predators and competitors. Evolving populations grew up to 42% faster and attained up to 67% higher density, compared with non-evolving control populations but only in treatments exposed to competitors and predators. Increased density also correlates with relative fitness of competing clones suggesting a full eco-evolutionary dynamic cycle defined as reciprocal interactions between evolution and density. © 2011 Blackwell Publishing Ltd/CNRS.

  12. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes1[OPEN

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C.; Fan, Chuanzhu

    2016-01-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella. Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. PMID:27485883

  13. A Self-adaptive Dynamic Evaluation Model for Diabetes Mellitus, Based on Evolutionary Strategies

    Directory of Open Access Journals (Sweden)

    An-Jiang Lu

    2016-03-01

    Full Text Available In order to evaluate diabetes mellitus objectively and accurately, this paper builds a self-adaptive dynamic evaluation model for diabetes mellitus, based on evolutionary strategies. First of all, on the basis of a formalized description of the evolutionary process of diabetes syndromes, using a state transition function, it judges whether a disease is evolutionary, through an excitation parameter. It then, provides evidence for the rebuilding of the evaluation index system. After that, by abstracting and rebuilding the composition of evaluation indexes, it makes use of a heuristic algorithm to determine the composition of the evolved evaluation index set of diabetes mellitus, It then, calculates the weight of each index in the evolved evaluation index set of diabetes mellitus by building a dependency matrix and realizes the self-adaptive dynamic evaluation of diabetes mellitus under an evolutionary environment. Using this evaluation model, it is possible to, quantify all kinds of diagnoses and treatment experiences of diabetes and finally to adopt ideal diagnoses and treatment measures for different patients with diabetics.

  14. A dynamic parking charge optimal control model under perspective of commuters' evolutionary game behavior

    Science.gov (United States)

    Lin, XuXun; Yuan, PengCheng

    2018-01-01

    In this research we consider commuters' dynamic learning effect by modeling the trip mode choice behavior from a new perspective of dynamic evolutionary game theory. We explore the behavior pattern of different types of commuters and study the evolution path and equilibrium properties under different traffic conditions. We further establish a dynamic parking charge optimal control (referred to as DPCOC) model to alter commuters' trip mode choice while minimizing the total social cost. Numerical tests show. (1) Under fixed parking fee policy, the evolutionary results are completely decided by the travel time and the only method for public transit induction is to increase the parking charge price. (2) Compared with fixed parking fee policy, DPCOC policy proposed in this research has several advantages. Firstly, it can effectively turn the evolutionary path and evolutionary stable strategy to a better situation while minimizing the total social cost. Secondly, it can reduce the sensitivity of trip mode choice behavior to traffic congestion and improve the ability to resist interferences and emergencies. Thirdly, it is able to control the private car proportion to a stable state and make the trip behavior more predictable for the transportation management department. The research results can provide theoretical basis and decision-making references for commuters' mode choice prediction, dynamic setting of urban parking charge prices and public transit induction.

  15. Cosmological dynamics of a hybrid chameleon scenario

    OpenAIRE

    Nozari, Kourosh; Rashidi, N.

    2013-01-01

    We consider a hybrid scalar field which is non-minimally coupled to the matter and models a chameleon cosmology. By introducing an effective potential, we study the dependence of the effective potential's minimum and hybrid chameleon field's masses to the local matter density. In a dynamical system technique, we analyze the phase space of this two-field chameleon model, find its fixed points and study their stability. We show that the hybrid chameleon domination solution is a stable attractor...

  16. Disease processes as hybrid dynamical systems

    Directory of Open Access Journals (Sweden)

    Pietro Liò

    2012-08-01

    Full Text Available We investigate the use of hybrid techniques in complex processes of infectious diseases. Since predictive disease models in biomedicine require a multiscale approach for understanding the molecule-cell-tissue-organ-body interactions, heterogeneous methodologies are often employed for describing the different biological scales. Hybrid models provide effective means for complex disease modelling where the action and dosage of a drug or a therapy could be meaningfully investigated: the infection dynamics can be classically described in a continuous fashion, while the scheduling of multiple treatment discretely. We define an algebraic language for specifying general disease processes and multiple treatments, from which a semantics in terms of hybrid dynamical system can be derived. Then, the application of control-theoretic tools is proposed in order to compute the optimal scheduling of multiple therapies. The potentialities of our approach are shown in the case study of the SIR epidemic model and we discuss its applicability on osteomyelitis, a bacterial infection affecting the bone remodelling system in a specific and multiscale manner. We report that formal languages are helpful in giving a general homogeneous formulation for the different scales involved in a multiscale disease process; and that the combination of hybrid modelling and control theory provides solid grounds for computational medicine.

  17. Experimental test of an eco-evolutionary dynamic feedback loop between evolution and population density in the green peach aphid.

    Science.gov (United States)

    Turcotte, Martin M; Reznick, David N; Daniel Hare, J

    2013-05-01

    An eco-evolutionary feedback loop is defined as the reciprocal impacts of ecology on evolutionary dynamics and evolution on ecological dynamics on contemporary timescales. We experimentally tested for an eco-evolutionary feedback loop in the green peach aphid, Myzus persicae, by manipulating initial densities and evolution. We found strong evidence that initial aphid density alters the rate and direction of evolution, as measured by changes in genotype frequencies through time. We also found that evolution of aphids within only 16 days, or approximately three generations, alters the rate of population growth and predicts density compared to nonevolving controls. The impact of evolution on population dynamics also depended on density. In one evolution treatment, evolution accelerated population growth by up to 10.3% at high initial density or reduced it by up to 6.4% at low initial density. The impact of evolution on population growth was as strong as or stronger than that caused by a threefold change in intraspecific density. We found that, taken together, ecological condition, here intraspecific density, alters evolutionary dynamics, which in turn alter concurrent population growth rate (ecological dynamics) in an eco-evolutionary feedback loop. Our results suggest that ignoring evolution in studies predicting population dynamics might lead us to over- or underestimate population density and that we cannot predict the evolutionary outcome within aphid populations without considering population size.

  18. A quantitative evolutionary theory of adaptive behavior dynamics.

    Science.gov (United States)

    McDowell, J J

    2013-10-01

    The idea that behavior is selected by its consequences in a process analogous to organic evolution has been discussed for over 100 years. A recently proposed theory instantiates this idea by means of a genetic algorithm that operates on a population of potential behaviors. Behaviors in the population are represented by numbers in decimal integer (phenotypic) and binary bit string (genotypic) forms. One behavior from the population is emitted at random each time tick, after which a new population of potential behaviors is constructed by recombining parent behavior bit strings. If the emitted behavior produced a benefit to the organism, then parents are chosen on the basis of their phenotypic similarity to the emitted behavior; otherwise, they are chosen at random. After parent behavior recombination, the population is subjected to a small amount of mutation by flipping random bits in the population's bit strings. The behavior generated by this process of selection, reproduction, and mutation reaches equilibrium states that conform to every empirically valid equation of matching theory, exactly and without systematic error. These equations are known to describe the behavior of many vertebrate species, including humans, in a variety of experimental, naturalistic, natural, and social environments. The evolutionary theory also generates instantaneous dynamics and patterns of preference change in constantly changing environments that are consistent with the dynamics of live-organism behavior. These findings support the assertion that the world of behavior we observe and measure is generated by evolutionary dynamics. PsycINFO Database Record (c) 2013 APA, all rights reserved

  19. Hybrid dynamics for currency modeling

    OpenAIRE

    Theodosopoulos, Ted; Trifunovic, Alex

    2006-01-01

    We present a simple hybrid dynamical model as a tool to investigate behavioral strategies based on trend following. The multiplicative symbolic dynamics are generated using a lognormal diffusion model for the at-the-money implied volatility term structure. Thus, are model exploits information from derivative markets to obtain qualititative properties of the return distribution for the underlier. We apply our model to the JPY-USD exchange rate and the corresponding 1mo., 3mo., 6mo. and 1yr. im...

  20. The Evolutionary Dynamics of Biofuel Value Chains

    DEFF Research Database (Denmark)

    Ponte, Stefano

    2014-01-01

    In this paper I propose to push the frontier of global value chain (GVC) governance analysis through the concept of ‘polarity’. Much of the existing GVC literature has focused on ‘unipolar’ value chains, where one group of ‘lead firms’ inhabiting a specific function in a chain plays a dominant role...... in governing it. Some scholars have explored the dynamics of governance in GVCs characterized as ‘bipolar’, where two sets of actors in different functional positions both drive the chain. I expand this direction further to suggest conceptualizing governance within a continuum between unipolarity...... and multipolarity. Empirically, I do so by examining the evolutionary dynamics of governance in biofuel value chains, with specific focus on the key regulatory and institutional features that facilitated their emergence and expansion. First, I examine the formation, evolution, and governance of three national/regional...

  1. Hybrid Microgrid Configuration Optimization with Evolutionary Algorithms

    Science.gov (United States)

    Lopez, Nicolas

    This dissertation explores the Renewable Energy Integration Problem, and proposes a Genetic Algorithm embedded with a Monte Carlo simulation to solve large instances of the problem that are impractical to solve via full enumeration. The Renewable Energy Integration Problem is defined as finding the optimum set of components to supply the electric demand to a hybrid microgrid. The components considered are solar panels, wind turbines, diesel generators, electric batteries, connections to the power grid and converters, which can be inverters and/or rectifiers. The methodology developed is explained as well as the combinatorial formulation. In addition, 2 case studies of a single objective optimization version of the problem are presented, in order to minimize cost and to minimize global warming potential (GWP) followed by a multi-objective implementation of the offered methodology, by utilizing a non-sorting Genetic Algorithm embedded with a monte Carlo Simulation. The method is validated by solving a small instance of the problem with known solution via a full enumeration algorithm developed by NREL in their software HOMER. The dissertation concludes that the evolutionary algorithms embedded with Monte Carlo simulation namely modified Genetic Algorithms are an efficient form of solving the problem, by finding approximate solutions in the case of single objective optimization, and by approximating the true Pareto front in the case of multiple objective optimization of the Renewable Energy Integration Problem.

  2. Attractive evolutionary equilibria

    OpenAIRE

    Roorda, Berend; Joosten, Reinoud

    2011-01-01

    We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary dynamics. For instance, each attractive evolutionarily stable strategy is an attractive evolutionarily stable equilibrium for certain barycentric ray-projection dynamics, and vice versa.

  3. Application of Hybrid Dynamical Theory to the Cardiovascular System

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2014-10-14

    In hybrid dynamical systems, the state evolves in continuous time as well as in discrete modes activated by internal conditions or by external events. In the recent years, hybrid systems modeling has been used to represent the dynamics of biological systems. In such systems, discrete behaviors might originate from unexpected changes in normal performance, e.g., a transition from a healthy to an abnormal condition. Simplifications, model assumptions, and/or modeled (and ignored) nonlinearities can be represented by sudden changes in the state. Modeling cardiovascular system (CVS), one of the most fascinating but most complex human physiological systems, with a hybrid approach, is the focus of this chapter. The hybrid property appears naturally in the CVS thanks to the presence of valves which, depending on their state (closed or open), divide the cardiac cycle into four phases. This chapter shows how hybrid models can be used for modeling the CVS. In addition, it describes a preliminary study on the detection of some cardiac anomalies based on the hybrid model and using the standard observer-based approach.

  4. Unexpected Nongenetic Individual Heterogeneity and Trait Covariance in Daphnia and Its Consequences for Ecological and Evolutionary Dynamics.

    Science.gov (United States)

    Cressler, Clayton E; Bengtson, Stefan; Nelson, William A

    2017-07-01

    Individual differences in genetics, age, or environment can cause tremendous differences in individual life-history traits. This individual heterogeneity generates demographic heterogeneity at the population level, which is predicted to have a strong impact on both ecological and evolutionary dynamics. However, we know surprisingly little about the sources of individual heterogeneity for particular taxa or how different sources scale up to impact ecological and evolutionary dynamics. Here we experimentally study the individual heterogeneity that emerges from both genetic and nongenetic sources in a species of freshwater zooplankton across a large gradient of food quality. Despite the tight control of environment, we still find that the variation from nongenetic sources is greater than that from genetic sources over a wide range of food quality and that this variation has strong positive covariance between growth and reproduction. We evaluate the general consequences of genetic and nongenetic covariance for ecological and evolutionary dynamics theoretically and find that increasing nongenetic variation slows evolution independent of the correlation in heritable life-history traits but that the impact on ecological dynamics depends on both nongenetic and genetic covariance. Our results demonstrate that variation in the relative magnitude of nongenetic versus genetic sources of variation impacts the predicted ecological and evolutionary dynamics.

  5. Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Guillaume Chevereau

    Full Text Available The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolutionary dynamics leading to resistance. However, it remains largely unknown why the rates of resistance evolution via spontaneous mutations and the diversity of mutational paths vary substantially between drugs. Here we comprehensively quantify the distribution of fitness effects (DFE of mutations, a key determinant of evolutionary dynamics, in the presence of eight antibiotics representing the main modes of action. Using precise high-throughput fitness measurements for genome-wide Escherichia coli gene deletion strains, we find that the width of the DFE varies dramatically between antibiotics and, contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence of stress. We show that this previously underappreciated divergence in DFE width among antibiotics is largely caused by their distinct drug-specific dose-response characteristics. Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for nitrofurantoin than for other drugs. A population genetics model predicts that resistance evolution for drugs with this property is severely limited and confined to reproducible mutational paths. We tested this prediction in laboratory evolution experiments using the "morbidostat", a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin resistance indeed evolved extremely slowly via reproducible mutations-an almost paradoxical behavior since this drug causes DNA damage and increases the mutation

  6. Essays on nonlinear evolutionary game dynamics

    NARCIS (Netherlands)

    Ochea, M.I.

    2010-01-01

    Evolutionary game theory has been viewed as an evolutionary repair of rational actor game theory in the hope that a population of boundedly rational players may attain convergence to classic rational solutions, such as the Nash Equilibrium, via some learning or evolutionary process. In this thesis

  7. A Hybrid Multiobjective Evolutionary Approach for Flexible Job-Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Jian Xiong

    2012-01-01

    Full Text Available This paper addresses multiobjective flexible job-shop scheduling problem (FJSP with three simultaneously considered objectives: minimizing makespan, minimizing total workload, and minimizing maximal workload. A hybrid multiobjective evolutionary approach (H-MOEA is developed to solve the problem. According to the characteristic of FJSP, a modified crowding distance measure is introduced to maintain the diversity of individuals. In the proposed H-MOEA, well-designed chromosome representation and genetic operators are developed for FJSP. Moreover, a local search procedure based on critical path theory is incorporated in H-MOEA to improve the convergence ability of the algorithm. Experiment results on several well-known benchmark instances demonstrate the efficiency and stability of the proposed algorithm. The comparison with other recently published approaches validates that H-MOEA can obtain Pareto-optimal solutions with better quality and/or diversity.

  8. Hybrid photovoltaic–thermal solar collectors dynamic modeling

    International Nuclear Information System (INIS)

    Amrizal, N.; Chemisana, D.; Rosell, J.I.

    2013-01-01

    Highlights: ► A hybrid photovoltaic/thermal dynamic model is presented. ► The model, once calibrated, can predict the power output for any set of climate data. ► The physical electrical model includes explicitly thermal and irradiance dependences. ► The results agree with those obtained through steady-state characterization. ► The model approaches the junction cell temperature through the system energy balance. -- Abstract: A hybrid photovoltaic/thermal transient model has been developed and validated experimentally. The methodology extends the quasi-dynamic thermal model stated in the EN 12975 in order to involve the electrical performance and consider the dynamic behavior minimizing constraints when characterizing the collector. A backward moving average filtering procedure has been applied to improve the model response for variable working conditions. Concerning the electrical part, the model includes the thermal and radiation dependences in its variables. The results revealed that the characteristic parameters included in the model agree reasonably well with the experimental values obtained from the standard steady-state and IV characteristic curve measurements. After a calibration process, the model is a suitable tool to predict the thermal and electrical performance of a hybrid solar collector, for a specific weather data set.

  9. Hybrid Semantics of Stochastic Programs with Dynamic Reconfiguration

    Directory of Open Access Journals (Sweden)

    Alberto Policriti

    2009-10-01

    Full Text Available We begin by reviewing a technique to approximate the dynamics of stochastic programs --written in a stochastic process algebra-- by a hybrid system, suitable to capture a mixed discrete/continuous evolution. In a nutshell, the discrete dynamics is kept stochastic while the continuous evolution is given in terms of ODEs, and the overall technique, therefore, naturally associates a Piecewise Deterministic Markov Process with a stochastic program. The specific contribution in this work consists in an increase of the flexibility of the translation scheme, obtained by allowing a dynamic reconfiguration of the degree of discreteness/continuity of the semantics. We also discuss the relationships of this approach with other hybrid simulation strategies for biochemical systems.

  10. An efficient hybrid evolutionary algorithm based on PSO and HBMO algorithms for multi-objective Distribution Feeder Reconfiguration

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, Taher [Electronic and Electrical Engineering Department, Shiraz University of Technology, Shiraz (Iran)

    2009-08-15

    This paper introduces a robust searching hybrid evolutionary algorithm to solve the multi-objective Distribution Feeder Reconfiguration (DFR). The main objective of the DFR is to minimize the real power loss, deviation of the nodes' voltage, the number of switching operations, and balance the loads on the feeders. Because of the fact that the objectives are different and no commensurable, it is difficult to solve the problem by conventional approaches that may optimize a single objective. This paper presents a new approach based on norm3 for the DFR problem. In the proposed method, the objective functions are considered as a vector and the aim is to maximize the distance (norm2) between the objective function vector and the worst objective function vector while the constraints are met. Since the proposed DFR is a multi objective and non-differentiable optimization problem, a new hybrid evolutionary algorithm (EA) based on the combination of the Honey Bee Mating Optimization (HBMO) and the Discrete Particle Swarm Optimization (DPSO), called DPSO-HBMO, is implied to solve it. The results of the proposed reconfiguration method are compared with the solutions obtained by other approaches, the original DPSO and HBMO over different distribution test systems. (author)

  11. New MPPT algorithm based on hybrid dynamical theory

    KAUST Repository

    Elmetennani, Shahrazed

    2014-11-01

    This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.

  12. New MPPT algorithm based on hybrid dynamical theory

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem; Benmansour, K.; Boucherit, M. S.; Tadjine, M.

    2014-01-01

    This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.

  13. Application of network methods for understanding evolutionary dynamics in discrete habitats.

    Science.gov (United States)

    Greenbaum, Gili; Fefferman, Nina H

    2017-06-01

    In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene-flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population-genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene-flow patterns. In the last decades, network theory - a branch of discrete mathematics concerned with complex interactions between discrete elements - has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population-genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology. © 2017 John Wiley & Sons Ltd.

  14. EDEN: evolutionary dynamics within environments

    Science.gov (United States)

    Münch, Philipp C.; Stecher, Bärbel; McHardy, Alice C.

    2017-01-01

    Abstract Summary Metagenomics revolutionized the field of microbial ecology, giving access to Gb-sized datasets of microbial communities under natural conditions. This enables fine-grained analyses of the functions of community members, studies of their association with phenotypes and environments, as well as of their microevolution and adaptation to changing environmental conditions. However, phylogenetic methods for studying adaptation and evolutionary dynamics are not able to cope with big data. EDEN is the first software for the rapid detection of protein families and regions under positive selection, as well as their associated biological processes, from meta- and pangenome data. It provides an interactive result visualization for detailed comparative analyses. Availability and implementation EDEN is available as a Docker installation under the GPL 3.0 license, allowing its use on common operating systems, at http://www.github.com/hzi-bifo/eden. Contact alice.mchardy@helmholtz-hzi.de Supplementary information Supplementary data are available at Bioinformatics online. PMID:28637301

  15. Falsification of matching theory and confirmation of an evolutionary theory of behavior dynamics in a critical experiment.

    Science.gov (United States)

    McDowell, J J; Calvin, Olivia L; Hackett, Ryan; Klapes, Bryan

    2017-07-01

    Two competing predictions of matching theory and an evolutionary theory of behavior dynamics, and one additional prediction of the evolutionary theory, were tested in a critical experiment in which human participants worked on concurrent schedules for money (Dallery et al., 2005). The three predictions concerned the descriptive adequacy of matching theory equations, and of equations describing emergent equilibria of the evolutionary theory. Tests of the predictions falsified matching theory and supported the evolutionary theory. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Evolutionary insights into scleractinian corals using comparative genomic hybridizations.

    Science.gov (United States)

    Aranda, Manuel; DeSalvo, Michael K; Bayer, Till; Medina, Monica; Voolstra, Christian R

    2012-09-21

    Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization). Our results showed that the current microarray platform for A. palmata is able to provide biological relevant information for a wide variety of coral species covering both the complex clade as well the robust clade. Analysis of the fraction of highly diverged genes showed a significantly higher amount of genes without annotation corroborating previous findings that point towards a higher rate of divergence for taxonomically restricted genes. Among the genes with annotation, we found many mitochondrial genes to be highly diverged in M. faveolata when compared to A. palmata, while the majority of nuclear encoded genes maintained an average divergence rate. The use of present microarray platforms for transcriptional analyses in different coral species will greatly enhance the understanding of the molecular basis of stress and health and highlight evolutionary differences between scleractinian coral species. On a genomic basis, we show that cDNA arrays can be used to identify patterns of divergence. Mitochondrion-encoded genes seem to have diverged faster than nuclear encoded genes in robust corals. Accordingly, this

  17. Evidence of natural selection acting on a polymorphic hybrid incompatibility locus in Mimulus.

    Science.gov (United States)

    Sweigart, Andrea L; Flagel, Lex E

    2015-02-01

    As a common cause of reproductive isolation in diverse taxa, hybrid incompatibilities are fundamentally important to speciation. A key question is which evolutionary forces drive the initial substitutions within species that lead to hybrid dysfunction. Previously, we discovered a simple genetic incompatibility that causes nearly complete male sterility and partial female sterility in hybrids between the two closely related yellow monkeyflower species Mimulus guttatus and M. nasutus. In this report, we fine map the two major incompatibility loci-hybrid male sterility 1 (hms1) and hybrid male sterility 2 (hms2)-to small nuclear genomic regions (each <70 kb) that include strong candidate genes. With this improved genetic resolution, we also investigate the evolutionary dynamics of hms1 in a natural population of M. guttatus known to be polymorphic at this locus. Using classical genetic crosses and population genomics, we show that a 320-kb region containing the hms1 incompatibility allele has risen to intermediate frequency in this population by strong natural selection. This finding provides direct evidence that natural selection within plant species can lead to hybrid dysfunction between species. Copyright © 2015 by the Genetics Society of America.

  18. Evolutionary Game Dynamics in a Fitness-Dependent Wright-Fisher Process with Noise

    International Nuclear Information System (INIS)

    Quan Ji; Wang Xianjia

    2011-01-01

    Evolutionary game dynamics in finite size populations can be described by a fitness-dependent Wright-Fisher process. We consider symmetric 2x2 games in a well-mixed population. In our model, two parameters to describe the level of player's rationality and noise intensity in environment are introduced. In contrast with the fixation probability method that used in a noiseless case, the introducing of the noise intensity parameter makes the process an ergodic Markov process and based on the limit distribution of the process, we can analysis the evolutionary stable strategy (ESS) of the games. We illustrate the effects of the two parameters on the ESS of games using the Prisoner's dilemma games (PDG) and the snowdrift games (SG). We also compare the ESS of our model with that of the replicator dynamics in infinite size populations. The results are determined by simulation experiments. (general)

  19. Pseudorandom numbers: evolutionary models in image processing, biology, and nonlinear dynamic systems

    Science.gov (United States)

    Yaroslavsky, Leonid P.

    1996-11-01

    We show that one can treat pseudo-random generators, evolutionary models of texture images, iterative local adaptive filters for image restoration and enhancement and growth models in biology and material sciences in a unified way as special cases of dynamic systems with a nonlinear feedback.

  20. The co-evolutionary dynamics of directed network of spin market agents

    Science.gov (United States)

    Horváth, Denis; Kuscsik, Zoltán; Gmitra, Martin

    2006-09-01

    The spin market model [S. Bornholdt, Int. J. Mod. Phys. C 12 (2001) 667] is generalized by employing co-evolutionary principles, where strategies of the interacting and competitive traders are represented by local and global couplings between the nodes of dynamic directed stochastic network. The co-evolutionary principles are applied in the frame of Bak-Sneppen self-organized dynamics [P. Bak, K. Sneppen, Phys. Rev. Lett. 71 (1993) 4083] that includes the processes of selection and extinction actuated by the local (node) fitness. The local fitness is related to orientation of spin agent with respect to the instant magnetization. The stationary regime is formed due to the interplay of self-organization and adaptivity effects. The fat tailed distributions of log-price returns are identified numerically. The non-trivial model consequence is the evidence of the long time market memory indicated by the power-law range of the autocorrelation function of volatility with exponent smaller than one. The simulations yield network topology with broad-scale node degree distribution characterized by the range of exponents 1.3social networks.

  1. Dynamic Power Management for Portable Hybrid Power-Supply Systems Utilizing Approximate Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Jooyoung Park

    2015-05-01

    Full Text Available Recently, the optimization of power flows in portable hybrid power-supply systems (HPSSs has become an important issue with the advent of a variety of mobile systems and hybrid energy technologies. In this paper, a control strategy is considered for dynamically managing power flows in portable HPSSs employing batteries and supercapacitors. Our dynamic power management strategy utilizes the concept of approximate dynamic programming (ADP. ADP methods are important tools in the fields of stochastic control and machine learning, and the utilization of these tools for practical engineering problems is now an active and promising research field. We propose an ADP-based procedure based on optimization under constraints including the iterated Bellman inequalities, which can be solved by convex optimization carried out offline, to find the optimal power management rules for portable HPSSs. The effectiveness of the proposed procedure is tested through dynamic simulations for smartphone workload scenarios, and simulation results show that the proposed strategy can successfully cope with uncertain workload demands.

  2. An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm.

    Science.gov (United States)

    Deb, Kalyanmoy; Sinha, Ankur

    2010-01-01

    Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.

  3. Ancient Origin of the Tryptophan Operon and the Dynamics of Evolutionary Change†

    Science.gov (United States)

    Xie, Gary; Keyhani, Nemat O.; Bonner; Jensen, Roy A.

    2003-01-01

    The seven conserved enzymatic domains required for tryptophan (Trp) biosynthesis are encoded in seven genetic regions that are organized differently (whole-pathway operons, multiple partial-pathway operons, and dispersed genes) in prokaryotes. A comparative bioinformatics evaluation of the conservation and organization of the genes of Trp biosynthesis in prokaryotic operons should serve as an excellent model for assessing the feasibility of predicting the evolutionary histories of genes and operons associated with other biochemical pathways. These comparisons should provide a better understanding of possible explanations for differences in operon organization in different organisms at a genomics level. These analyses may also permit identification of some of the prevailing forces that dictated specific gene rearrangements during the course of evolution. Operons concerned with Trp biosynthesis in prokaryotes have been in a dynamic state of flux. Analysis of closely related organisms among the Bacteria at various phylogenetic nodes reveals many examples of operon scission, gene dispersal, gene fusion, gene scrambling, and gene loss from which the direction of evolutionary events can be deduced. Two milestone evolutionary events have been mapped to the 16S rRNA tree of Bacteria, one splitting the operon in two, and the other rejoining it by gene fusion. The Archaea, though less resolved due to a lesser genome representation, appear to exhibit more gene scrambling than the Bacteria. The trp operon appears to have been an ancient innovation; it was already present in the common ancestor of Bacteria and Archaea. Although the operon has been subjected, even in recent times, to dynamic changes in gene rearrangement, the ancestral gene order can be deduced with confidence. The evolutionary history of the genes of the pathway is discernible in rough outline as a vertical line of descent, with events of lateral gene transfer or paralogy enriching the analysis as interesting

  4. Ancient origin of the tryptophan operon and the dynamics of evolutionary change.

    Science.gov (United States)

    Xie, Gary; Keyhani, Nemat O; Bonner, Carol A; Jensen, Roy A

    2003-09-01

    The seven conserved enzymatic domains required for tryptophan (Trp) biosynthesis are encoded in seven genetic regions that are organized differently (whole-pathway operons, multiple partial-pathway operons, and dispersed genes) in prokaryotes. A comparative bioinformatics evaluation of the conservation and organization of the genes of Trp biosynthesis in prokaryotic operons should serve as an excellent model for assessing the feasibility of predicting the evolutionary histories of genes and operons associated with other biochemical pathways. These comparisons should provide a better understanding of possible explanations for differences in operon organization in different organisms at a genomics level. These analyses may also permit identification of some of the prevailing forces that dictated specific gene rearrangements during the course of evolution. Operons concerned with Trp biosynthesis in prokaryotes have been in a dynamic state of flux. Analysis of closely related organisms among the Bacteria at various phylogenetic nodes reveals many examples of operon scission, gene dispersal, gene fusion, gene scrambling, and gene loss from which the direction of evolutionary events can be deduced. Two milestone evolutionary events have been mapped to the 16S rRNA tree of Bacteria, one splitting the operon in two, and the other rejoining it by gene fusion. The Archaea, though less resolved due to a lesser genome representation, appear to exhibit more gene scrambling than the Bacteria. The trp operon appears to have been an ancient innovation; it was already present in the common ancestor of Bacteria and Archaea. Although the operon has been subjected, even in recent times, to dynamic changes in gene rearrangement, the ancestral gene order can be deduced with confidence. The evolutionary history of the genes of the pathway is discernible in rough outline as a vertical line of descent, with events of lateral gene transfer or paralogy enriching the analysis as interesting

  5. Origin and cross-century dynamics of an avian hybrid zone.

    Science.gov (United States)

    Morales-Rozo, Andrea; Tenorio, Elkin A; Carling, Matthew D; Cadena, Carlos Daniel

    2017-12-15

    Characterizations of the dynamics of hybrid zones in space and time can give insights about traits and processes important in population divergence and speciation. We characterized a hybrid zone between tanagers in the genus Ramphocelus (Aves, Thraupidae) located in southwestern Colombia. We evaluated whether this hybrid zone originated as a result of secondary contact or of primary differentiation, and described its dynamics across time using spatial analyses of molecular, morphological, and coloration data in combination with paleodistribution modeling. Models of potential historical distributions based on climatic data and genetic signatures of demographic expansion suggested that the hybrid zone likely originated following secondary contact between populations that expanded their ranges out of isolated areas in the Quaternary. Concordant patterns of variation in phenotypic characters across the hybrid zone and its narrow extent are suggestive of a tension zone, maintained by a balance between dispersal and selection against hybrids. Estimates of phenotypic cline parameters obtained using specimens collected over nearly a century revealed that, in recent decades, the zone appears to have moved to the east and to higher elevations, and may have become narrower. Genetic variation was not clearly structured along the hybrid zone, but comparisons between historical and contemporary specimens suggested that temporal changes in its genetic makeup may also have occurred. Our data suggest that the hybrid zone likey resulted from secondary contact between populations. The observed changes in the hybrid zone may be a result of sexual selection, asymmetric gene flow, or environmental change.

  6. Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Hong-Wen He

    2010-11-01

    Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.

  7. Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics.

    Science.gov (United States)

    Solé, Ricard V; Montoya, José M; Erwin, Douglas H

    2002-01-01

    Biotic recoveries following mass extinctions are characterized by a process in which whole ecologies are reconstructed from low-diversity systems, often characterized by opportunistic groups. The recovery process provides an unexpected window to ecosystem dynamics. In many aspects, recovery is very similar to ecological succession, but important differences are also apparently linked to the innovative patterns of niche construction observed in the fossil record. In this paper, we analyse the similarities and differences between ecological succession and evolutionary recovery to provide a preliminary ecological theory of recoveries. A simple evolutionary model with three trophic levels is presented, and its properties (closely resembling those observed in the fossil record) are compared with characteristic patterns of ecological response to disturbances in continuous models of three-level ecosystems. PMID:12079530

  8. Attractive evolutionary equilibria

    NARCIS (Netherlands)

    Joosten, Reinoud A.M.G.; Roorda, Berend

    2011-01-01

    We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary

  9. Effect of surface modification and hybridization on dynamic ...

    Indian Academy of Sciences (India)

    Epoxy; Roystonea regia; glass; surface modification; hybridization; dynamic mechanical ... other advantages such as light weight, low cost, high specific ... ful technique to study the mechanical behaviour of mate- ... The test reveals response.

  10. New MPPT algorithm for PV applications based on hybrid dynamical approach

    KAUST Repository

    Elmetennani, Shahrazed

    2016-10-24

    This paper proposes a new Maximum Power Point Tracking (MPPT) algorithm for photovoltaic applications using the multicellular converter as a stage of power adaptation. The proposed MPPT technique has been designed using a hybrid dynamical approach to model the photovoltaic generator. The hybrid dynamical theory has been applied taking advantage of the particular topology of the multicellular converter. Then, a hybrid automata has been established to optimize the power production. The maximization of the produced solar energy is achieved by switching between the different operative modes of the hybrid automata, which is conditioned by some invariance and transition conditions. These conditions have been validated by simulation tests under different conditions of temperature and irradiance. Moreover, the performance of the proposed algorithm has been then evaluated by comparison with standard MPPT techniques numerically and by experimental tests under varying external working conditions. The results have shown the interesting features that the hybrid MPPT technique presents in terms of performance and simplicity for real time implementation.

  11. New MPPT algorithm for PV applications based on hybrid dynamical approach

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem; Djemai, M.; Tadjine, M.

    2016-01-01

    This paper proposes a new Maximum Power Point Tracking (MPPT) algorithm for photovoltaic applications using the multicellular converter as a stage of power adaptation. The proposed MPPT technique has been designed using a hybrid dynamical approach to model the photovoltaic generator. The hybrid dynamical theory has been applied taking advantage of the particular topology of the multicellular converter. Then, a hybrid automata has been established to optimize the power production. The maximization of the produced solar energy is achieved by switching between the different operative modes of the hybrid automata, which is conditioned by some invariance and transition conditions. These conditions have been validated by simulation tests under different conditions of temperature and irradiance. Moreover, the performance of the proposed algorithm has been then evaluated by comparison with standard MPPT techniques numerically and by experimental tests under varying external working conditions. The results have shown the interesting features that the hybrid MPPT technique presents in terms of performance and simplicity for real time implementation.

  12. Hybridization affects life-history traits and host specificity in Diorhabda spp

    Science.gov (United States)

    Hybridization is an influential evolutionary process that has been viewed alternatively as an evolutionary dead-end or as an important creative evolutionary force. In colonizing species, such as introduced biological control agents, hybridization can negate the effects of bottlenecks and genetic dri...

  13. Home and away- the evolutionary dynamics of homing endonucleases

    Directory of Open Access Journals (Sweden)

    Barzel Adi

    2011-11-01

    Full Text Available Abstract Background Homing endonucleases (HEases are a large and diverse group of site-specific DNAases. They reside within self-splicing introns and inteins, and promote their horizontal dissemination. In recent years, HEases have been the focus of extensive research due to their promising potential use in gene targeting procedures for the treatment of genetic diseases and for the genetic engineering of crop, animal models and cell lines. Results Using mathematical analysis and computational modeling, we present here a novel account for the evolution and population dynamics of HEase genes (HEGs. We describe HEGs as paradoxical selfish elements whose long-term persistence in a single population relies on low transmission rates and a positive correlation between transmission efficiency and toxicity. Conclusion Plausible conditions allow HEGs to sustain at high frequency through long evolutionary periods, with the endonuclease frequency being either at equilibrium or periodically oscillating. The predictions of our model may prove important not only for evolutionary theory but also for gene therapy and bio-engineering applications of HEases.

  14. Evolutionary insights into scleractinian corals using comparative genomic hybridizations

    Directory of Open Access Journals (Sweden)

    Aranda Manuel

    2012-09-01

    Full Text Available Abstract Background Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization. Results Our results showed that the current microarray platform for A. palmata is able to provide biological relevant information for a wide variety of coral species covering both the complex clade as well the robust clade. Analysis of the fraction of highly diverged genes showed a significantly higher amount of genes without annotation corroborating previous findings that point towards a higher rate of divergence for taxonomically restricted genes. Among the genes with annotation, we found many mitochondrial genes to be highly diverged in M. faveolata when compared to A. palmata, while the majority of nuclear encoded genes maintained an average divergence rate. Conclusions The use of present microarray platforms for transcriptional analyses in different coral species will greatly enhance the understanding of the molecular basis of stress and health and highlight evolutionary differences between scleractinian coral species. On a genomic basis, we show that cDNA arrays can be used to identify patterns of divergence. Mitochondrion-encoded genes seem to have diverged faster than

  15. Genome-wide analysis of allele frequency change in sunflower crop-wild hybrid populations evolving under natural conditions

    Science.gov (United States)

    Hybridization is known to occur between cultivated and wild populations of numerous plant species. This represents a major mechanism by which a wild population’s genetic structure and evolutionary dynamics could be altered. Studying crop-derived alleles in wild populations is also relevant to assess...

  16. A Dynamic Multistage Hybrid Swarm Intelligence Optimization Algorithm for Function Optimization

    Directory of Open Access Journals (Sweden)

    Daqing Wu

    2012-01-01

    Full Text Available A novel dynamic multistage hybrid swarm intelligence optimization algorithm is introduced, which is abbreviated as DM-PSO-ABC. The DM-PSO-ABC combined the exploration capabilities of the dynamic multiswarm particle swarm optimizer (PSO and the stochastic exploitation of the cooperative artificial bee colony algorithm (CABC for solving the function optimization. In the proposed hybrid algorithm, the whole process is divided into three stages. In the first stage, a dynamic multiswarm PSO is constructed to maintain the population diversity. In the second stage, the parallel, positive feedback of CABC was implemented in each small swarm. In the third stage, we make use of the particle swarm optimization global model, which has a faster convergence speed to enhance the global convergence in solving the whole problem. To verify the effectiveness and efficiency of the proposed hybrid algorithm, various scale benchmark problems are tested to demonstrate the potential of the proposed multistage hybrid swarm intelligence optimization algorithm. The results show that DM-PSO-ABC is better in the search precision, and convergence property and has strong ability to escape from the local suboptima when compared with several other peer algorithms.

  17. Hybridisation among groupers (genus Cephalopholis) at the eastern Indian Ocean suture zone: taxonomic and evolutionary implications

    Science.gov (United States)

    Payet, Samuel D.; Hobbs, Jean-Paul A.; DiBattista, Joseph D.; Newman, Stephen J.; Sinclair-Taylor, Tane; Berumen, Michael L.; McIlwain, Jennifer L.

    2016-12-01

    Hybridisation is a significant evolutionary process that until recently was considered rare in the marine environment. A suture zone in the eastern Indian Ocean is home to numerous hybridising sister species, providing an ideal opportunity to determine how hybridisation affects speciation and biodiversity in coral reef fishes. At this location, hybridisation between two grouper (Epinephelidae) species: Cephalopholis urodeta (Pacific Ocean) and C. nigripinnis (Indian Ocean) was investigated to determine the genetic basis of hybridisation and to compare the ecology and life history of hybrids and their parent species. This approach aimed to provide insights into the taxonomic and evolutionary consequences of hybridisation. Despite clear phenotypic differences, multiple molecular markers revealed hybrids, and their parent species were genetically homogenous within and (thousands of kilometres) outside of the hybrid zone. Hybrids were at least as fit as their parent species (in terms of growth, reproduction, and abundance) and were observed in a broad range of intermediate phenotypes. The two species appear to be interbreeding at Christmas Island due to inherent biological and ecological compatibilities, and the lack of genetic structure may be explained by three potential scenarios: (1) hybridisation and introgression; (2) discordance between morphology and genetics; and (3) incomplete lineage sorting. Further molecular analyses are necessary to discriminate these scenarios. Regardless of which applies, C. urodeta and C. nigripinnis are unlikely to evolve in reproductive isolation as they cohabit where they are common (Christmas Island) and will source congeneric mates where they are rare (Cocos Keeling Islands). Our results add to the growing body of evidence that hybridisation among coral reef fishes is a dynamic evolutionary factor.

  18. Hybridisation among groupers (genus Cephalopholis) at the eastern Indian Ocean suture zone: taxonomic and evolutionary implications

    KAUST Repository

    Payet, Samuel D.

    2016-08-05

    Hybridisation is a significant evolutionary process that until recently was considered rare in the marine environment. A suture zone in the eastern Indian Ocean is home to numerous hybridising sister species, providing an ideal opportunity to determine how hybridisation affects speciation and biodiversity in coral reef fishes. At this location, hybridisation between two grouper (Epinephelidae) species: Cephalopholis urodeta (Pacific Ocean) and C. nigripinnis (Indian Ocean) was investigated to determine the genetic basis of hybridisation and to compare the ecology and life history of hybrids and their parent species. This approach aimed to provide insights into the taxonomic and evolutionary consequences of hybridisation. Despite clear phenotypic differences, multiple molecular markers revealed hybrids, and their parent species were genetically homogenous within and (thousands of kilometres) outside of the hybrid zone. Hybrids were at least as fit as their parent species (in terms of growth, reproduction, and abundance) and were observed in a broad range of intermediate phenotypes. The two species appear to be interbreeding at Christmas Island due to inherent biological and ecological compatibilities, and the lack of genetic structure may be explained by three potential scenarios: (1) hybridisation and introgression; (2) discordance between morphology and genetics; and (3) incomplete lineage sorting. Further molecular analyses are necessary to discriminate these scenarios. Regardless of which applies, C. urodeta and C. nigripinnis are unlikely to evolve in reproductive isolation as they cohabit where they are common (Christmas Island) and will source congeneric mates where they are rare (Cocos Keeling Islands). Our results add to the growing body of evidence that hybridisation among coral reef fishes is a dynamic evolutionary factor. © 2016 Springer-Verlag Berlin Heidelberg

  19. Hybridisation among groupers (genus Cephalopholis) at the eastern Indian Ocean suture zone: taxonomic and evolutionary implications

    KAUST Repository

    Payet, Samuel D.; Hobbs, Jean-Paul A.; DiBattista, Joseph; Newman, Stephen J.; Sinclair-Taylor, Tane; Berumen, Michael L.; McIlwain, Jennifer L.

    2016-01-01

    Hybridisation is a significant evolutionary process that until recently was considered rare in the marine environment. A suture zone in the eastern Indian Ocean is home to numerous hybridising sister species, providing an ideal opportunity to determine how hybridisation affects speciation and biodiversity in coral reef fishes. At this location, hybridisation between two grouper (Epinephelidae) species: Cephalopholis urodeta (Pacific Ocean) and C. nigripinnis (Indian Ocean) was investigated to determine the genetic basis of hybridisation and to compare the ecology and life history of hybrids and their parent species. This approach aimed to provide insights into the taxonomic and evolutionary consequences of hybridisation. Despite clear phenotypic differences, multiple molecular markers revealed hybrids, and their parent species were genetically homogenous within and (thousands of kilometres) outside of the hybrid zone. Hybrids were at least as fit as their parent species (in terms of growth, reproduction, and abundance) and were observed in a broad range of intermediate phenotypes. The two species appear to be interbreeding at Christmas Island due to inherent biological and ecological compatibilities, and the lack of genetic structure may be explained by three potential scenarios: (1) hybridisation and introgression; (2) discordance between morphology and genetics; and (3) incomplete lineage sorting. Further molecular analyses are necessary to discriminate these scenarios. Regardless of which applies, C. urodeta and C. nigripinnis are unlikely to evolve in reproductive isolation as they cohabit where they are common (Christmas Island) and will source congeneric mates where they are rare (Cocos Keeling Islands). Our results add to the growing body of evidence that hybridisation among coral reef fishes is a dynamic evolutionary factor. © 2016 Springer-Verlag Berlin Heidelberg

  20. Evolutionary optimization and game strategies for advanced multi-disciplinary design applications to aeronautics and UAV design

    CERN Document Server

    Periaux, Jacques; Lee, Dong Seop Chris

    2015-01-01

    Many complex aeronautical design problems can be formulated with efficient multi-objective evolutionary optimization methods and game strategies. This book describes the role of advanced innovative evolution tools in the solution, or the set of solutions of single or multi disciplinary optimization. These tools use the concept of multi-population, asynchronous parallelization and hierarchical topology which allows different models including precise, intermediate and approximate models with each node belonging to the different hierarchical layer handled by a different Evolutionary Algorithm. The efficiency of evolutionary algorithms for both single and multi-objective optimization problems are significantly improved by the coupling of EAs with games and in particular by a new dynamic methodology named “Hybridized Nash-Pareto games”. Multi objective Optimization techniques and robust design problems taking into account uncertainties are introduced and explained in detail. Several applications dealing with c...

  1. Learning and anticipation in online dynamic optimization with evolutionary algorithms: The stochastic case

    NARCIS (Netherlands)

    P.A.N. Bosman (Peter); J.A. La Poutré (Han); D. Thierens (Dirk)

    2007-01-01

    htmlabstractThe focus of this paper is on how to design evolutionary algorithms (EAs) for solving stochastic dynamic optimization problems online, i.e. as time goes by. For a proper design, the EA must not only be capable of tracking shifting optima, it must also take into account the future

  2. Effects of hybridization and evolutionary constraints on secondary metabolites: the genetic architecture of phenylpropanoids in European populus species.

    Science.gov (United States)

    Caseys, Celine; Stritt, Christoph; Glauser, Gaetan; Blanchard, Thierry; Lexer, Christian

    2015-01-01

    The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar) and P. tremula (European aspen) and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS). We detected 41 quantitative trait loci (QTL) for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the 'model forest tree' Populus.

  3. Effects of hybridization and evolutionary constraints on secondary metabolites: the genetic architecture of phenylpropanoids in European populus species.

    Directory of Open Access Journals (Sweden)

    Celine Caseys

    Full Text Available The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar and P. tremula (European aspen and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS. We detected 41 quantitative trait loci (QTL for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the 'model forest tree' Populus.

  4. Hybridization Associated with Cycles of Ecological Succession in a Passerine Bird.

    Science.gov (United States)

    Duckworth, Renée A; Semenov, Georgy A

    2017-10-01

    Identifying the diversity of contexts that can lead to hybridization is important for understanding its prevalence and dynamics in natural populations. Despite the potential of ecological succession to dramatically alter species co-occurrence and abundances, it is unknown whether it directly promotes hybridization and, if so, has long-lasting consequences. Here, we summarize 30 years of survey data across 10 populations to show that in western and mountain bluebirds, heterospecific pairing occurs during repeatable and transient colonization events at the early stages of species turnover. Despite mixed pairing occurring only during early succession, genetic data showed presence of hybrids at both early and late successional stages. Moreover, hybrids showed novel patterns of variation in morphology and behavior, emphasizing that even ephemeral contexts for hybridization can have important evolutionary consequences. Our results suggest that because ecological succession often brings together closely related competitors in disparate numbers but lasts for only a brief period of time, it may be a widespread but underappreciated context for hybridization.

  5. Evolutionary Dynamics of Nitrogen Fixation in the Legume–Rhizobia Symbiosis

    Science.gov (United States)

    Fujita, Hironori; Aoki, Seishiro; Kawaguchi, Masayoshi

    2014-01-01

    The stabilization of host–symbiont mutualism against the emergence of parasitic individuals is pivotal to the evolution of cooperation. One of the most famous symbioses occurs between legumes and their colonizing rhizobia, in which rhizobia extract nutrients (or benefits) from legume plants while supplying them with nitrogen resources produced by nitrogen fixation (or costs). Natural environments, however, are widely populated by ineffective rhizobia that extract benefits without paying costs and thus proliferate more efficiently than nitrogen-fixing cooperators. How and why this mutualism becomes stabilized and evolutionarily persists has been extensively discussed. To better understand the evolutionary dynamics of this symbiosis system, we construct a simple model based on the continuous snowdrift game with multiple interacting players. We investigate the model using adaptive dynamics and numerical simulations. We find that symbiotic evolution depends on the cost–benefit balance, and that cheaters widely emerge when the cost and benefit are similar in strength. In this scenario, the persistence of the symbiotic system is compatible with the presence of cheaters. This result suggests that the symbiotic relationship is robust to the emergence of cheaters, and may explain the prevalence of cheating rhizobia in nature. In addition, various stabilizing mechanisms, such as partner fidelity feedback, partner choice, and host sanction, can reinforce the symbiotic relationship by affecting the fitness of symbionts in various ways. This result suggests that the symbiotic relationship is cooperatively stabilized by various mechanisms. In addition, mixed nodule populations are thought to encourage cheater emergence, but our model predicts that, in certain situations, cheaters can disappear from such populations. These findings provide a theoretical basis of the evolutionary dynamics of legume–rhizobia symbioses, which is extendable to other single-host, multiple

  6. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  7. Fast stochastic algorithm for simulating evolutionary population dynamics

    Science.gov (United States)

    Tsimring, Lev; Hasty, Jeff; Mather, William

    2012-02-01

    Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.

  8. A Dynamic Traffic Signal Timing Model and its Algorithm for Junction of Urban Road

    DEFF Research Database (Denmark)

    Cai, Yanguang; Cai, Hao

    2012-01-01

    As an important part of Intelligent Transportation System, the scientific traffic signal timing of junction can improve the efficiency of urban transport. This paper presents a novel dynamic traffic signal timing model. According to the characteristics of the model, hybrid chaotic quantum...... evolutionary algorithm is employed to solve it. The proposed model has simple structure, and only requires traffic inflow speed and outflow speed are bounded functions with at most finite number of discontinuity points. The condition is very loose and better meets the requirements of the practical real......-time and dynamic signal control of junction. To obtain the optimal solution of the model by hybrid chaotic quantum evolutionary algorithm, the model is converted to an easily solvable form. To simplify calculation, we give the expression of the partial derivative and change rate of the objective function...

  9. A Novel Handwritten Letter Recognizer Using Enhanced Evolutionary Neural Network

    Science.gov (United States)

    Mahmoudi, Fariborz; Mirzashaeri, Mohsen; Shahamatnia, Ehsan; Faridnia, Saed

    This paper introduces a novel design for handwritten letter recognition by employing a hybrid back-propagation neural network with an enhanced evolutionary algorithm. Feeding the neural network consists of a new approach which is invariant to translation, rotation, and scaling of input letters. Evolutionary algorithm is used for the global search of the search space and the back-propagation algorithm is used for the local search. The results have been computed by implementing this approach for recognizing 26 English capital letters in the handwritings of different people. The computational results show that the neural network reaches very satisfying results with relatively scarce input data and a promising performance improvement in convergence of the hybrid evolutionary back-propagation algorithms is exhibited.

  10. Hybridizing Evolutionary Algorithms with Opportunistic Local Search

    DEFF Research Database (Denmark)

    Gießen, Christian

    2013-01-01

    There is empirical evidence that memetic algorithms (MAs) can outperform plain evolutionary algorithms (EAs). Recently the first runtime analyses have been presented proving the aforementioned conjecture rigorously by investigating Variable-Depth Search, VDS for short (Sudholt, 2008). Sudholt...

  11. Effect of surface modification and hybridization on dynamic ...

    Indian Academy of Sciences (India)

    Storage and loss modulus values increased after treatments with simultaneous decrease in tan values. Roystonea regia and glass fibres were used together with varying proportions as reinforcement in epoxy matrix to study the hybridization effect on dynamic mechanical properties. Storage and loss modulus values ...

  12. Dynamic Modeling and Simulation of a Switched Reluctance Motor in a Series Hybrid Electric Vehicle

    OpenAIRE

    Siavash Sadeghi; Mojtaba Mirsalim; Arash Hassanpour Isfahani

    2010-01-01

    Dynamic behavior analysis of electric motors is required in order to accuratelyevaluate the performance, energy consumption and pollution level of hybrid electricvehicles. Simulation tools for hybrid electric vehicles are divided into steady state anddynamic models. Tools with steady-state models are useful for system-level analysiswhereas tools that utilize dynamic models give in-depth information about the behavior ofsublevel components. For the accurate prediction of hybrid electric vehicl...

  13. Hybrid Differential Dynamic Programming with Stochastic Search

    Science.gov (United States)

    Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob

    2016-01-01

    Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASAs Dawn mission. The Dawn trajectory was designed with the DDP-based Static Dynamic Optimal Control algorithm used in the Mystic software. Another recently developed method, Hybrid Differential Dynamic Programming (HDDP) is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.

  14. Hybrid Robust Multi-Objective Evolutionary Optimization Algorithm

    Science.gov (United States)

    2009-03-10

    xfar by xint. Else, generate a new individual, using the Sobol pseudo- random sequence generator within the upper and lower bounds of the variables...12. Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons. 2002. 13. Sobol , I. M., "Uniformly Distributed Sequences

  15. Nuclear and plastid markers reveal the persistence of genetic identity: a new perspective on the evolutionary history of Petunia exserta.

    Science.gov (United States)

    Segatto, Ana Lúcia Anversa; Cazé, Ana Luíza Ramos; Turchetto, Caroline; Klahre, Ulrich; Kuhlemeier, Cris; Bonatto, Sandro Luis; Freitas, Loreta Brandão

    2014-01-01

    Recently divergent species that can hybridize are ideal models for investigating the genetic exchanges that can occur while preserving the species boundaries. Petunia exserta is an endemic species from a very limited and specific area that grows exclusively in rocky shelters. These shaded spots are an inhospitable habitat for all other Petunia species, including the closely related and widely distributed species P. axillaris. Individuals with intermediate morphologic characteristics have been found near the rocky shelters and were believed to be putative hybrids between P. exserta and P. axillaris, suggesting a situation where Petunia exserta is losing its genetic identity. In the current study, we analyzed the plastid intergenic spacers trnS/trnG and trnH/psbA and six nuclear CAPS markers in a large sampling design of both species to understand the evolutionary process occurring in this biological system. Bayesian clustering methods, cpDNA haplotype networks, genetic diversity statistics, and coalescence-based analyses support a scenario where hybridization occurs while two genetic clusters corresponding to two species are maintained. Our results reinforce the importance of coupling differentially inherited markers with an extensive geographic sample to assess the evolutionary dynamics of recently diverged species that can hybridize. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Transgressive Hybrids as Hopeful Monsters.

    Science.gov (United States)

    Dittrich-Reed, Dylan R; Fitzpatrick, Benjamin M

    2013-06-01

    The origin of novelty is a critical subject for evolutionary biologists. Early geneticists speculated about the sudden appearance of new species via special macromutations, epitomized by Goldschmidt's infamous "hopeful monster". Although these ideas were easily dismissed by the insights of the Modern Synthesis, a lingering fascination with the possibility of sudden, dramatic change has persisted. Recent work on hybridization and gene exchange suggests an underappreciated mechanism for the sudden appearance of evolutionary novelty that is entirely consistent with the principles of modern population genetics. Genetic recombination in hybrids can produce transgressive phenotypes, "monstrous" phenotypes beyond the range of parental populations. Transgressive phenotypes can be products of epistatic interactions or additive effects of multiple recombined loci. We compare several epistatic and additive models of transgressive segregation in hybrids and find that they are special cases of a general, classic quantitative genetic model. The Dobzhansky-Muller model predicts "hopeless" monsters, sterile and inviable transgressive phenotypes. The Bateson model predicts "hopeful" monsters with fitness greater than either parental population. The complementation model predicts both. Transgressive segregation after hybridization can rapidly produce novel phenotypes by recombining multiple loci simultaneously. Admixed populations will also produce many similar recombinant phenotypes at the same time, increasing the probability that recombinant "hopeful monsters" will establish true-breeding evolutionary lineages. Recombination is not the only (or even most common) process generating evolutionary novelty, but might be the most credible mechanism for sudden appearance of new forms.

  17. Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs

    Science.gov (United States)

    Ying, Li-Min; Zhou, Jie; Tang, Ming; Guan, Shu-Guang; Zou, Yong

    2018-02-01

    The mean fixation time is often not accurate for describing the timescales of fixation probabilities of evolutionary games taking place on complex networks. We simulate the game dynamics on top of complex network topologies and approximate the fixation time distributions using a mean-field approach. We assume that there are two absorbing states. Numerically, we show that the mean fixation time is sufficient in characterizing the evolutionary timescales when network structures are close to the well-mixing condition. In contrast, the mean fixation time shows large inaccuracies when networks become sparse. The approximation accuracy is determined by the network structure, and hence by the suitability of the mean-field approach. The numerical results show good agreement with the theoretical predictions.

  18. Evolutionary Dynamics of Collective Action in Structured Populations

    Science.gov (United States)

    Santos, Marta Daniela de Almeida

    The pervasiveness of cooperation in Nature is not easily explained. If evolution is characterized by competition and survival of the fittest, why should selfish individuals cooperate with each other? Evolutionary Game Theory (EGT) provides a suitable mathematical framework to study this problem, central to many areas of science. Conventionally, interactions between individuals are modeled in terms of one-shot, symmetric 2-Person Dilemmas of Cooperation, but many real-life situations involve decisions within groups with more than 2 individuals, which are best-dealt in the framework of N-Person games. In this Thesis, we investigate the evolutionary dynamics of two paradigmatic collective social dilemmas - the N-Person Prisoner's Dilemma (NPD) and the N-Person Snowdrift Game (NSG) on structured populations, modeled by networks with diverse topological properties. Cooperative strategies are just one example of the many traits that can be transmitted on social networks. Several recent studies based on empirical evidence from a medical database have suggested the existence of a 3 degrees of influence rule, according to which not only our "friends", but also our friends' friends, and our friends' friends' friends, have a non-trivial influence on our decisions. We investigate the degree of peer influence that emerges from the spread of cooperative strategies, opinions and diseases on populations with distinct underlying networks of contacts. Our results show that networks naturally entangle individuals into interactions of many-body nature and that for each network class considered different processes lead to identical degrees of influence. None

  19. Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure.

    Science.gov (United States)

    Liu, Shanbiao; Wu, Xing; Zhang, Dongdong; Guo, Congwei; Wang, Peng; Hu, Weida; Li, Xinming; Zhou, Xiaofeng; Xu, Hejun; Luo, Chen; Zhang, Jian; Chu, Junhao

    2017-07-19

    Mechanical flexible electronic skin has been focused on sensing various physical parameters, such as pressure and temperature. The studies of material design and array-accessible devices are the building blocks of strain sensors for subtle pressure sensing. Here, we report a new and facile preparation of a graphene hybrid structure with an ultrafast dynamic pressure response. Graphene oxide nanosheets are used as a surfactant to prevent graphene restacking in aqueous solution. This graphene hybrid structure exhibits a frequency-independent pressure resistive sensing property. Exceeding natural skin, such pressure sensors, can provide transient responses from static up to 10 000 Hz dynamic frequencies. Integrated by the controlling system, the array-accessible sensors can manipulate a robot arm and self-rectify the temperature of a heating blanket. This may pave a path toward the future application of graphene-based wearable electronics.

  20. Culture belief based multi-objective hybrid differential evolutionary algorithm in short term hydrothermal scheduling

    International Nuclear Information System (INIS)

    Zhang Huifeng; Zhou Jianzhong; Zhang Yongchuan; Lu Youlin; Wang Yongqiang

    2013-01-01

    Highlights: ► Culture belief is integrated into multi-objective differential evolution. ► Chaotic sequence is imported to improve evolutionary population diversity. ► The priority of convergence rate is proved in solving hydrothermal problem. ► The results show the quality and potential of proposed algorithm. - Abstract: A culture belief based multi-objective hybrid differential evolution (CB-MOHDE) is presented to solve short term hydrothermal optimal scheduling with economic emission (SHOSEE) problem. This problem is formulated for compromising thermal cost and emission issue while considering its complicated non-linear constraints with non-smooth and non-convex characteristics. The proposed algorithm integrates a modified multi-objective differential evolutionary algorithm into the computation model of culture algorithm (CA) as well as some communication protocols between population space and belief space, three knowledge structures in belief space are redefined according to these problem-solving characteristics, and in the differential evolution a chaotic factor is embedded into mutation operator for avoiding the premature convergence by enlarging the search scale when the search trajectory reaches local optima. Furthermore, a new heuristic constraint-handling technique is utilized to handle those complex equality and inequality constraints of SHOSEE problem. After the application on hydrothermal scheduling system, the efficiency and stability of the proposed CB-MOHDE is verified by its more desirable results in comparison to other method established recently, and the simulation results also reveal that CB-MOHDE can be a promising alternative for solving SHOSEE.

  1. Analysis of Ant Colony Optimization and Population-Based Evolutionary Algorithms on Dynamic Problems

    DEFF Research Database (Denmark)

    Lissovoi, Andrei

    the dynamic optimum for finite alphabets up to size μ, while MMAS is able to do so for any finite alphabet size. Parallel Evolutionary Algorithms on Maze. We prove that while a (1 + λ) EA is unable to track the optimum of the dynamic fitness function Maze for offspring population size up to λ = O(n1-ε......This thesis presents new running time analyses of nature-inspired algorithms on various dynamic problems. It aims to identify and analyse the features of algorithms and problem classes which allow efficient optimization to occur in the presence of dynamic behaviour. We consider the following...... settings: λ-MMAS on Dynamic Shortest Path Problems. We investigate how in-creasing the number of ants simulated per iteration may help an ACO algorithm to track optimum in a dynamic problem. It is shown that while a constant number of ants per-vertex is sufficient to track some oscillations, there also...

  2. Curvature perturbation and waterfall dynamics in hybrid inflation

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Firouzjahi, Hassan; Sasaki, Misao

    2011-01-01

    We investigate the parameter spaces of hybrid inflation model with special attention paid to the dynamics of waterfall field and curvature perturbations induced from its quantum fluctuations. Depending on the inflaton field value at the time of phase transition and the sharpness of the phase transition inflation can have multiple extended stages. We find that for models with mild phase transition the induced curvature perturbation from the waterfall field is too large to satisfy the COBE normalization. We investigate the model parameter space where the curvature perturbations from the waterfall quantum fluctuations vary between the results of standard hybrid inflation and the results obtained here

  3. Curvature perturbation and waterfall dynamics in hybrid inflation

    Energy Technology Data Exchange (ETDEWEB)

    Abolhasani, Ali Akbar [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Firouzjahi, Hassan [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Sasaki, Misao, E-mail: abolhasani@mail.ipm.ir, E-mail: firouz@mail.ipm.ir, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2011-10-01

    We investigate the parameter spaces of hybrid inflation model with special attention paid to the dynamics of waterfall field and curvature perturbations induced from its quantum fluctuations. Depending on the inflaton field value at the time of phase transition and the sharpness of the phase transition inflation can have multiple extended stages. We find that for models with mild phase transition the induced curvature perturbation from the waterfall field is too large to satisfy the COBE normalization. We investigate the model parameter space where the curvature perturbations from the waterfall quantum fluctuations vary between the results of standard hybrid inflation and the results obtained here.

  4. Theoretical Approaches in Evolutionary Ecology: Environmental Feedback as a Unifying Perspective.

    Science.gov (United States)

    Lion, Sébastien

    2018-01-01

    Evolutionary biology and ecology have a strong theoretical underpinning, and this has fostered a variety of modeling approaches. A major challenge of this theoretical work has been to unravel the tangled feedback loop between ecology and evolution. This has prompted the development of two main classes of models. While quantitative genetics models jointly consider the ecological and evolutionary dynamics of a focal population, a separation of timescales between ecology and evolution is assumed by evolutionary game theory, adaptive dynamics, and inclusive fitness theory. As a result, theoretical evolutionary ecology tends to be divided among different schools of thought, with different toolboxes and motivations. My aim in this synthesis is to highlight the connections between these different approaches and clarify the current state of theory in evolutionary ecology. Central to this approach is to make explicit the dependence on environmental dynamics of the population and evolutionary dynamics, thereby materializing the eco-evolutionary feedback loop. This perspective sheds light on the interplay between environmental feedback and the timescales of ecological and evolutionary processes. I conclude by discussing some potential extensions and challenges to our current theoretical understanding of eco-evolutionary dynamics.

  5. Dynamic and photometric evolutionary models of tidal tails and ripples

    International Nuclear Information System (INIS)

    Wallin, J.F.

    1989-01-01

    An investigation into the causes of star formation in tidal tails has been conducted using a restricted three-body dynamical model in conjunction with a broad-band photometric evolutionary code. In these models, regions of compression form inside the disk and along the tidal tail and tidal bridge. The effects these density changes have on the colors of the tidal features are examined with a broad-band photometric evolutionary code. A spiral galaxy population is synthesized and the effects of modest changes in the star formation rate are explored. Limits on the density changes needed to make detectable changes in the colors are calculated using a Schmidt (1959) law. These models suggest that the blue colors and knotty features observed in the tidal features of some galaxies result from increased rates of star formation induced by tidally produced density increases. Limitations of this model are discussed along with photometric evolutionary models based on the density evolution in the tails. The Lynds and Toomre (1976) interpretation of ring galaxies as the natural result of a nearly head-on collision between a disk galaxy and a companion galaxy has become widely accepted. Similarly, Quinn's (1984) interpretation of the shells in elliptical galaxies as the aftermath of the cannibalization of a low-mass companion has been quite successful in accounting for the observations. Restricted three-body calculations of high inclination, low impact parameter encounters demonstrate that the shell-like ripples observed in a number of disk galaxies can also be produced as collisional artifacts from internal oscillations much as in ring galaxies

  6. Generating high-speed dynamic running gaits in a quadruped robot using an evolutionary search.

    Science.gov (United States)

    Krasny, Darren P; Orin, David E

    2004-08-01

    Over the past several decades, there has been a considerable interest in investigating high-speed dynamic gaits for legged robots. While much research has been published, both in the biomechanics and engineering fields regarding the analysis of these gaits, no single study has adequately characterized the dynamics of high-speed running as can be achieved in a realistic, yet simple, robotic system. The goal of this paper is to find the most energy-efficient, natural, and unconstrained gallop that can be achieved using a simulated quadrupedal robot with articulated legs, asymmetric mass distribution, and compliant legs. For comparison purposes, we also implement the bound and canter. The model used here is planar, although we will show that it captures much of the predominant dynamic characteristics observed in animals. While it is not our goal to prove anything about biological locomotion, the dynamic similarities between the gaits we produce and those found in animals does indicate a similar underlying dynamic mechanism. Thus, we will show that achieving natural, efficient high-speed locomotion is possible even with a fairly simple robotic system. To generate the high-speed gaits, we use an efficient evolutionary algorithm called set-based stochastic optimization. This algorithm finds open-loop control parameters to generate periodic trajectories for the body. Several alternative methods are tested to generate periodic trajectories for the legs. The combined solutions found by the evolutionary search and the periodic-leg methods, over a range of speeds up to 10.0 m/s, reveal "biological" characteristics that are emergent properties of the underlying gaits.

  7. Dynamic Garment Simulation based on Hybrid Bounding Volume Hierarchy

    Directory of Open Access Journals (Sweden)

    Zhu Dongyong

    2016-12-01

    Full Text Available In order to solve the computing speed and efficiency problem of existing dynamic clothing simulation, this paper presents a dynamic garment simulation based on a hybrid bounding volume hierarchy. It firstly uses MCASG graph theory to do the primary segmentation for a given three-dimensional human body model. And then it applies K-means cluster to do the secondary segmentation to collect the human body’s upper arms, lower arms, upper legs, lower legs, trunk, hip and woman’s chest as the elementary units of dynamic clothing simulation. According to different shapes of these elementary units, it chooses the closest and most efficient hybrid bounding box to specify these units, such as cylinder bounding box and elliptic cylinder bounding box. During the process of constructing these bounding boxes, it uses the least squares method and slices of the human body to get the related parameters. This approach makes it possible to use the least amount of bounding boxes to create close collision detection regions for the appearance of the human body. A spring-mass model based on a triangular mesh of the clothing model is finally constructed for dynamic simulation. The simulation result shows the feasibility and superiority of the method described.

  8. An energy management for series hybrid electric vehicle using improved dynamic programming

    Science.gov (United States)

    Peng, Hao; Yang, Yaoquan; Liu, Chunyu

    2018-02-01

    With the increasing numbers of hybrid electric vehicle (HEV), management for two energy sources, engine and battery, is more and more important to achieve the minimum fuel consumption. This paper introduces several working modes of series hybrid electric vehicle (SHEV) firstly and then describes the mathematical model of main relative components in SHEV. On the foundation of this model, dynamic programming is applied to distribute energy of engine and battery on the platform of matlab and acquires less fuel consumption compared with traditional control strategy. Besides, control rule recovering energy in brake profiles is added into dynamic programming, so shorter computing time is realized by improved dynamic programming and optimization on algorithm.

  9. Dynamics, morphogenesis and convergence of evolutionary quantum Prisoner's Dilemma games on networks

    Science.gov (United States)

    Yong, Xi

    2016-01-01

    The authors proposed a quantum Prisoner's Dilemma (PD) game as a natural extension of the classic PD game to resolve the dilemma. Here, we establish a new Nash equilibrium principle of the game, propose the notion of convergence and discover the convergence and phase-transition phenomena of the evolutionary games on networks. We investigate the many-body extension of the game or evolutionary games in networks. For homogeneous networks, we show that entanglement guarantees a quick convergence of super cooperation, that there is a phase transition from the convergence of defection to the convergence of super cooperation, and that the threshold for the phase transitions is principally determined by the Nash equilibrium principle of the game, with an accompanying perturbation by the variations of structures of networks. For heterogeneous networks, we show that the equilibrium frequencies of super-cooperators are divergent, that entanglement guarantees emergence of super-cooperation and that there is a phase transition of the emergence with the threshold determined by the Nash equilibrium principle, accompanied by a perturbation by the variations of structures of networks. Our results explore systematically, for the first time, the dynamics, morphogenesis and convergence of evolutionary games in interacting and competing systems. PMID:27118882

  10. Approaches to understanding the impact of life-history features on plant-pathogen co-evolutionary dynamics

    Science.gov (United States)

    Jeremy J. Burdon; Peter H. Thrall; Adnane Nemri

    2012-01-01

    Natural plant-pathogen associations are complex interactions in which the interplay of environment, host, and pathogen factors results in spatially heterogeneous ecological and epidemiological dynamics. The evolutionary patterns that result from the interaction of these factors are still relatively poorly understood. Recently, integration of the appropriate spatial and...

  11. Characterizing Phase Transitions in a Model of Neutral Evolutionary Dynamics

    Science.gov (United States)

    Scott, Adam; King, Dawn; Bahar, Sonya

    2013-03-01

    An evolutionary model was recently introduced for sympatric, phenotypic evolution over a variable fitness landscape with assortative mating (Dees & Bahar 2010). Organisms in the model are described by coordinates in a two-dimensional phenotype space, born at random coordinates with limited variation from their parents as determined by a mutation parameter, mutability. The model has been extended to include both neutral evolution and asexual reproduction in Scott et al (submitted). It has been demonstrated that a second order, non-equilibrium phase transition occurs for the temporal dynamics as the mutability is varied, for both the original model and for neutral conditions. This transition likely belongs to the directed percolation universality class. In contrast, the spatial dynamics of the model shows characteristics of an ordinary percolation phase transition. Here, we characterize the phase transitions exhibited by this model by determining critical exponents for the relaxation times, characteristic lengths, and cluster (species) mass distributions. Missouri Research Board; J.S. McDonnell Foundation

  12. Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces

    International Nuclear Information System (INIS)

    Brown, W. Michael; Wang, Peng; Plimpton, Steven J.; Tharrington, Arnold N.

    2011-01-01

    The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - (1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory, (2) minimizing the amount of code that must be ported for efficient acceleration, (3) utilizing the available processing power from both many-core CPUs and accelerators, and (4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.

  13. Global analyses of evolutionary dynamics and exhaustive search for social norms that maintain cooperation by reputation.

    Science.gov (United States)

    Ohtsuki, Hisashi; Iwasa, Yoh

    2007-02-07

    Reputation formation is a key to understanding indirect reciprocity. In particular, the way to assign reputation to each individual, namely a norm that describes who is good and who is bad, greatly affects the possibility of sustained cooperation in the population. Previously, we have exhaustively studied reputation dynamics that are able to maintain a high level of cooperation at the ESS. However, this analysis examined the stability of monomorphic population and did not investigate polymorphic population where several strategies coexist. Here, we study the evolutionary dynamics of multiple behavioral strategies by replicator dynamics. We exhaustively study all 16 possible norms under which the reputation of a player in the next round is determined by the action of the self and the reputation of the opponent. For each norm, we explore evolutionary dynamics of three strategies: unconditional cooperators, unconditional defectors, and conditional cooperators. We find that only three norms, simple-standing, Kandori, and shunning, can make conditional cooperation evolutionarily stable, hence, realize sustained cooperation. The other 13 norms, including scoring, ultimately lead to the invasion by defectors. Also, we study the model in which private reputation errors exist to a small extent. In this case, we find the stable coexistence of unconditional and conditional cooperators under the three norms.

  14. The puzzle of partial migration: Adaptive dynamics and evolutionary game theory perspectives.

    Science.gov (United States)

    De Leenheer, Patrick; Mohapatra, Anushaya; Ohms, Haley A; Lytle, David A; Cushing, J M

    2017-01-07

    We consider the phenomenon of partial migration which is exhibited by populations in which some individuals migrate between habitats during their lifetime, but others do not. First, using an adaptive dynamics approach, we show that partial migration can be explained on the basis of negative density dependence in the per capita fertilities alone, provided that this density dependence is attenuated for increasing abundances of the subtypes that make up the population. We present an exact formula for the optimal proportion of migrants which is expressed in terms of the vital rates of migrant and non-migrant subtypes only. We show that this allocation strategy is both an evolutionary stable strategy (ESS) as well as a convergence stable strategy (CSS). To establish the former, we generalize the classical notion of an ESS because it is based on invasion exponents obtained from linearization arguments, which fail to capture the stabilizing effects of the nonlinear density dependence. These results clarify precisely when the notion of a "weak ESS", as proposed in Lundberg (2013) for a related model, is a genuine ESS. Secondly, we use an evolutionary game theory approach, and confirm, once again, that partial migration can be attributed to negative density dependence alone. In this context, the result holds even when density dependence is not attenuated. In this case, the optimal allocation strategy towards migrants is the same as the ESS stemming from the analysis based on the adaptive dynamics. The key feature of the population models considered here is that they are monotone dynamical systems, which enables a rather comprehensive mathematical analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Regulatory divergence of X-linked genes and hybrid male sterility in mice.

    Science.gov (United States)

    Oka, Ayako; Shiroishi, Toshihiko

    2014-01-01

    Postzygotic reproductive isolation is the reduction of fertility or viability in hybrids between genetically diverged populations. One example of reproductive isolation, hybrid male sterility, may be caused by genetic incompatibility between diverged genetic factors in two distinct populations. Genetic factors involved in hybrid male sterility are disproportionately located on the X chromosome. Recent studies showing the evolutionary divergence in gene regulatory networks or epigenetic effects suggest that the genetic incompatibilities occur at much broader levels than had previously been thought (e.g., incompatibility of protein-protein interactions). The latest studies suggest that evolutionary divergence of transcriptional regulation causes genetic incompatibilities in hybrid animals, and that such incompatibilities preferentially involve X-linked genes. In this review, we focus on recent progress in understanding hybrid sterility in mice, including our studies, and we discuss the evolutionary significance of regulatory divergence for speciation.

  16. Dynamic Model of Islamic Hybrid Securities: Empirical Evidence From Malaysia Islamic Capital Market

    Directory of Open Access Journals (Sweden)

    Jaafar Pyeman

    2016-12-01

    Full Text Available Capital structure selection is fundamentally important in corporate financial management as it influence on mutually return and risk to stakeholders. Despite of Malaysia’s position as one of the major players of Islamic Financial Market, there are still lack of studies has been conducted on the capital structure of shariah compliant firms especially related to hybrid securities. The objective of this study is to determine the hybrid securities issuance model among the shariah compliant firms in Malaysia. As such, this study is to expand the literature review by providing comprehensive analysis on the hybrid capital structure and to develop dynamic Islamic hybrid securities model for shariah compliant firms. We use panel data of 50 companies that have been issuing the hybrid securities from the year of 2004- 2012. The outcomes of the studies are based on the dynamic model GMM estimation for the determinants of hybrid securities. Based on our model, risk and growth are considered as the most determinant factors for issuing convertible bond and loan stock. These results suggest that, the firms that have high risk but having good growth prospect will choose hybrid securities of convertible bond. The model also support the backdoor equity listing hypothesis by Stein (1992 where the hybrid securities enable the profitable firms to venture into positive NPV project by issuing convertible bond as it offer lower coupon rate as compare to the normal debt rate

  17. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    Science.gov (United States)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  18. EvoluCode: Evolutionary Barcodes as a Unifying Framework for Multilevel Evolutionary Data.

    Science.gov (United States)

    Linard, Benjamin; Nguyen, Ngoc Hoan; Prosdocimi, Francisco; Poch, Olivier; Thompson, Julie D

    2012-01-01

    Evolutionary systems biology aims to uncover the general trends and principles governing the evolution of biological networks. An essential part of this process is the reconstruction and analysis of the evolutionary histories of these complex, dynamic networks. Unfortunately, the methodologies for representing and exploiting such complex evolutionary histories in large scale studies are currently limited. Here, we propose a new formalism, called EvoluCode (Evolutionary barCode), which allows the integration of different evolutionary parameters (eg, sequence conservation, orthology, synteny …) in a unifying format and facilitates the multilevel analysis and visualization of complex evolutionary histories at the genome scale. The advantages of the approach are demonstrated by constructing barcodes representing the evolution of the complete human proteome. Two large-scale studies are then described: (i) the mapping and visualization of the barcodes on the human chromosomes and (ii) automatic clustering of the barcodes to highlight protein subsets sharing similar evolutionary histories and their functional analysis. The methodologies developed here open the way to the efficient application of other data mining and knowledge extraction techniques in evolutionary systems biology studies. A database containing all EvoluCode data is available at: http://lbgi.igbmc.fr/barcodes.

  19. MIL-STD-1553 dynamic bus controller/remote terminal hybrid set

    Science.gov (United States)

    Friedman, S. N.

    This paper describes the performance, physical and electrical requirements of a Dual Redundant BUS Interface Unit (BIU) acting as a BUS Controller Interface Unit (BCIU) or Remote Terminal Unit (RTU) between a Motorola 68000 VME BUS and MIL-STD-1553B Multiplex Data Bus. A discussion of how the BIU Hybrid set is programmed, and operates as a BCIU or RTU, will be included. This paper will review Dynamic Bus Control and other Mode Code capabilities. The BIU Hybrid Set interfaces to a 68000 Microprocessor with a VME Bus using programmed I/O transfers. This special interface will be discussed along with the internal Dual Access Memory (4K x 16) used to support the data exchanges between the CPU and the BIU Hybrid Set. The hybrid set's physical size and power requirements will be covered. This includes the present Double Eurocard the BIU function is presently being offered on.

  20. Short- and long-term evolutionary dynamics of bacterial insertion sequences: insights from Wolbachia endosymbionts.

    Science.gov (United States)

    Cerveau, Nicolas; Leclercq, Sébastien; Leroy, Elodie; Bouchon, Didier; Cordaux, Richard

    2011-01-01

    Transposable elements (TE) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Long-term TE evolution can readily be reconstructed in eukaryotes, thanks to many degraded copies constituting genomic fossil records of past TE proliferations. By contrast, bacterial genomes usually experience high sequence turnover and short TE retention times, thereby obscuring ancient TE evolutionary patterns. We found that Wolbachia bacterial genomes contain 52-171 insertion sequence (IS) TEs. IS account for 11% of Wolbachia wRi, which is one of the highest IS genomic coverage reported in prokaryotes to date. We show that many IS groups are currently expanding in various Wolbachia genomes and that IS horizontal transfers are frequent among strains, which can explain the apparent synchronicity of these IS proliferations. Remarkably, >70% of Wolbachia IS are nonfunctional. They constitute an unusual bacterial IS genomic fossil record providing direct empirical evidence for a long-term IS evolutionary dynamics following successive periods of intense transpositional activity. Our results show that comprehensive IS annotations have the potential to provide new insights into prokaryote TE evolution and, more generally, prokaryote genome evolution. Indeed, the identification of an important IS genomic fossil record in Wolbachia demonstrates that IS elements are not always of recent origin, contrary to the conventional view of TE evolution in prokaryote genomes. Our results also raise the question whether the abundance of IS fossils is specific to Wolbachia or it may be a general, albeit overlooked, feature of prokaryote genomes.

  1. Evolutionary biology of bacterial and fungal pathogens

    National Research Council Canada - National Science Library

    Baquero, F

    2008-01-01

    ... and Evolutionary Dynamics of Pathogens * 21 Keith A. Crandall and Marcos Pérez-Losada II. Evolutionary Genetics of Microbial Pathogens 4. Environmental and Social Influences on Infectious Disea...

  2. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach

    Directory of Open Access Journals (Sweden)

    David Lee Erickson

    2014-11-01

    Full Text Available Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1,347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK and psbA-trnH and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance metrics that are commonly used to infer assembly processes were estimated for each plot (Phylogenetic Distance [PD], Mean Phylogenetic Distance [MPD], and Mean Nearest Taxon Distance [MNTD]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for

  3. DYNAMIC HYBRIDS UNDER SOLVENCY II: RISK ANALYSIS AND MODIFICATION POSSIBILITIES

    Directory of Open Access Journals (Sweden)

    Christian Maier

    2017-06-01

    Full Text Available In this study, we investigate the new and standardized European system of supervisory called Solvency II. In essence, asymmetric distribution of information between policyholder and insurer triggered this new regulation which aims at better protecting policyholders. Its three-pillar model is about to challenge both, insurers as well as policyholders. The first pillar includes quantitative aspects, the second pillar contains qualitative aspects and the third pillar comprises market transparency and reporting obligations. Underwriting risks, the default risk of a bank and market risks can be identified for the dynamic hybrid. Solvency II covers all these risks in the first pillar and insurers shall deposit sufficient risk-bearing capital. In our analysis, we first identify the dynamic hybrid specific risks under the Solvency II regime und then develop product modifications to reduce this risk.

  4. Distribution of 45S rDNA in Modern Rose Cultivars (Rosa hybrida), Rosa rugosa, and Their Interspecific Hybrids Revealed by Fluorescence in situ Hybridization.

    Science.gov (United States)

    Ding, Xiao-Liu; Xu, Ting-Liang; Wang, Jing; Luo, Le; Yu, Chao; Dong, Gui-Min; Pan, Hui-Tang; Zhang, Qi-Xiang

    2016-01-01

    To elucidate the evolutionary dynamics of the location and number of rDNA loci in the process of polyploidization in the genus Rosa, we examined 45S rDNA sites in the chromosomes of 6 modern rose cultivars (R. hybrida), 5 R. rugosa cultivars, and 20 hybrid progenies by fluorescence in situ hybridization. Variation in the number of rDNA sites in parents and their interspecific hybrids was detected. As expected, 4 rDNA sites were observed in the genomes of 4 modern rose cultivars, while 3 hybridization sites were observed in the 2 others. Two expected rDNA sites were found in 2 R. rugosa cultivars, while in the other 3 R. rugosa cultivars 4 sites were present. Among the 20 R. hybrida × R. rugosa offspring, 13 carried the expected number of rDNA sites, and 1 had 6 hybridization sites, which exceeded the expected number by far. The other 6 offspring had either 2 or 3 hybridization sites, which was less than expected. Differences in the number of rDNA loci were observed in interspecific offspring, indicating that rDNA loci exhibit instability after distant hybridization events. Abnormal chromosome pairing may be the main factor explaining the variation in rDNA sites during polyploidization. © 2016 S. Karger AG, Basel.

  5. Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks.

    Science.gov (United States)

    Billiard, Sylvain; Ferrière, Régis; Méléard, Sylvie; Tran, Viet Chi

    2015-11-01

    How the neutral diversity is affected by selection and adaptation is investigated in an eco-evolutionary framework. In our model, we study a finite population in continuous time, where each individual is characterized by a trait under selection and a completely linked neutral marker. Population dynamics are driven by births and deaths, mutations at birth, and competition between individuals. Trait values influence ecological processes (demographic events, competition), and competition generates selection on trait variation, thus closing the eco-evolutionary feedback loop. The demographic effects of the trait are also expected to influence the generation and maintenance of neutral variation. We consider a large population limit with rare mutation, under the assumption that the neutral marker mutates faster than the trait under selection. We prove the convergence of the stochastic individual-based process to a new measure-valued diffusive process with jumps that we call Substitution Fleming-Viot Process (SFVP). When restricted to the trait space this process is the Trait Substitution Sequence first introduced by Metz et al. (1996). During the invasion of a favorable mutation, a genetical bottleneck occurs and the marker associated with this favorable mutant is hitchhiked. By rigorously analysing the hitchhiking effect and how the neutral diversity is restored afterwards, we obtain the condition for a time-scale separation; under this condition, we show that the marker distribution is approximated by a Fleming-Viot distribution between two trait substitutions. We discuss the implications of the SFVP for our understanding of the dynamics of neutral variation under eco-evolutionary feedbacks and illustrate the main phenomena with simulations. Our results highlight the joint importance of mutations, ecological parameters, and trait values in the restoration of neutral diversity after a selective sweep.

  6. Dynamic simulation of urban hybrid electric vehicles; Dynamische Simulation von Stadthybridfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Winke, Florian; Bargende, Michael [Stuttgart Univ. (Germany). Inst. fuer Verbrennungsmotoren und Kraftfahrwesen (IVK)

    2013-09-15

    As a result of the rising requirements on the development process of modern vehicles, simulation models for the prediction of fuel efficiency have become an irreplaceable tool in the automotive industry. Especially for the design of hybrid electric drivetrains, the increasingly short development cycles can only be met by the use of efficient simulation models. At the IVK of the University of Stuttgart, different approaches to simulating the longitudinal dynamics of hybrid electric vehicles were analysed and compared within the presented project. The focus of the investigations was on urban operation. The objective was to develop a hybrid vehicle concept that allows an equitable comparison with pure battery electric vehicles. (orig.)

  7. Using Self-Adaptive Evolutionary Algorithms to Evolve Dynamism-Oriented Maps for a Real Time Strategy Game

    OpenAIRE

    Lara-Cabrera, Raúl; Cotta, Carlos; Fernández Leiva, Antonio J.

    2013-01-01

    This work presents a procedural content generation system that uses an evolutionary algorithm in order to generate interesting maps for a real-time strategy game, called Planet Wars. Interestingness is here captured by the dynamism of games (i.e., the extent to which they are action-packed). We consider two different approaches to measure the dynamism of the games resulting from these generated maps, one based on fluctuations in the resources controlled by either player and another one based ...

  8. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast.

    Directory of Open Access Journals (Sweden)

    David Gresham

    2008-12-01

    Full Text Available The experimental evolution of laboratory populations of microbes provides an opportunity to observe the evolutionary dynamics of adaptation in real time. Until very recently, however, such studies have been limited by our inability to systematically find mutations in evolved organisms. We overcome this limitation by using a variety of DNA microarray-based techniques to characterize genetic changes -- including point mutations, structural changes, and insertion variation -- that resulted from the experimental adaptation of 24 haploid and diploid cultures of Saccharomyces cerevisiae to growth in either glucose, sulfate, or phosphate-limited chemostats for approximately 200 generations. We identified frequent genomic amplifications and rearrangements as well as novel retrotransposition events associated with adaptation. Global nucleotide variation detection in ten clonal isolates identified 32 point mutations. On the basis of mutation frequencies, we infer that these mutations and the subsequent dynamics of adaptation are determined by the batch phase of growth prior to initiation of the continuous phase in the chemostat. We relate these genotypic changes to phenotypic outcomes, namely global patterns of gene expression, and to increases in fitness by 5-50%. We found that the spectrum of available mutations in glucose- or phosphate-limited environments combined with the batch phase population dynamics early in our experiments allowed several distinct genotypic and phenotypic evolutionary pathways in response to these nutrient limitations. By contrast, sulfate-limited populations were much more constrained in both genotypic and phenotypic outcomes. Thus, the reproducibility of evolution varies with specific selective pressures, reflecting the constraints inherent in the system-level organization of metabolic processes in the cell. We were able to relate some of the observed adaptive mutations (e.g., transporter gene amplifications to known features

  9. Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.

    Science.gov (United States)

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo

    2017-09-22

    Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.

  10. A dynamic simulation tool for the battery-hybrid hydrogen fuel cell vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.M. [Hawaii Natural Energy Institute, University of Hawaii, Manoa (United States); Ramaswamy, S.; Cunningham, J.M. [California Univ., Berkeley, CA (United States); Hauer, K.H. [xcellvision, Major-Hirst-Strasse 11, 38422 Wolfsburg (Germany)

    2006-10-15

    This paper describes a dynamic fuel cell vehicle simulation tool for the battery-hybrid direct-hydrogen fuel cell vehicle. The emphasis is on simulation of the hybridized hydrogen fuel cell system within an existing fuel cell vehicle simulation tool. The discussion is focused on the simulation of the sub-systems that are unique to the hybridized direct-hydrogen vehicle, and builds on a previous paper that described a simulation tool for the load-following direct-hydrogen vehicle. The configuration of the general fuel cell vehicle simulation tool has been previously presented in detail, and is only briefly reviewed in the introduction to this paper. Strictly speaking, the results provided in this paper only serve as an example that is valid for the specific fuel cell vehicle design configuration analyzed. Different design choices may lead to different results, depending strongly on the parameters used and choices taken during the detailed design process required for this highly non-linear and n-dimensional system. The primary purpose of this paper is not to provide a dynamic simulation tool that is the ''final word'' for the ''optimal'' hybrid fuel cell vehicle design. The primary purpose is to provide an explanation of a simulation method for analyzing the energetic aspects of a hybrid fuel cell vehicle. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  11. Evolutionary algorithms for mobile ad hoc networks

    CERN Document Server

    Dorronsoro, Bernabé; Danoy, Grégoire; Pigné, Yoann; Bouvry, Pascal

    2014-01-01

    Describes how evolutionary algorithms (EAs) can be used to identify, model, and minimize day-to-day problems that arise for researchers in optimization and mobile networking. Mobile ad hoc networks (MANETs), vehicular networks (VANETs), sensor networks (SNs), and hybrid networks—each of these require a designer’s keen sense and knowledge of evolutionary algorithms in order to help with the common issues that plague professionals involved in optimization and mobile networking. This book introduces readers to both mobile ad hoc networks and evolutionary algorithms, presenting basic concepts as well as detailed descriptions of each. It demonstrates how metaheuristics and evolutionary algorithms (EAs) can be used to help provide low-cost operations in the optimization process—allowing designers to put some “intelligence” or sophistication into the design. It also offers efficient and accurate information on dissemination algorithms topology management, and mobility models to address challenges in the ...

  12. Evolutionary Multiplayer Games

    OpenAIRE

    Gokhale, Chaitanya S.; Traulsen, Arne

    2014-01-01

    Evolutionary game theory has become one of the most diverse and far reaching theories in biology. Applications of this theory range from cell dynamics to social evolution. However, many applications make it clear that inherent non-linearities of natural systems need to be taken into account. One way of introducing such non-linearities into evolutionary games is by the inclusion of multiple players. An example is of social dilemmas, where group benefits could e.g.\\ increase less than linear wi...

  13. How mutation alters the evolutionary dynamics of cooperation on networks

    Science.gov (United States)

    Ichinose, Genki; Satotani, Yoshiki; Sayama, Hiroki

    2018-05-01

    Cooperation is ubiquitous at every level of living organisms. It is known that spatial (network) structure is a viable mechanism for cooperation to evolve. A recently proposed numerical metric, average gradient of selection (AGoS), a useful tool for interpreting and visualizing evolutionary dynamics on networks, allows simulation results to be visualized on a one-dimensional phase space. However, stochastic mutation of strategies was not considered in the analysis of AGoS. Here we extend AGoS so that it can analyze the evolution of cooperation where mutation may alter strategies of individuals on networks. We show that our extended AGoS correctly visualizes the final states of cooperation with mutation in the individual-based simulations. Our analyses revealed that mutation always has a negative effect on the evolution of cooperation regardless of the payoff functions, fraction of cooperators, and network structures. Moreover, we found that scale-free networks are the most vulnerable to mutation and thus the dynamics of cooperation are altered from bistability to coexistence on those networks, undergoing an imperfect pitchfork bifurcation.

  14. Dissipative dynamics of superconducting hybrid qubit systems

    International Nuclear Information System (INIS)

    Montes, Enrique; Calero, Jesus M; Reina, John H

    2009-01-01

    We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a σ x x σ z interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.

  15. Dissipative dynamics of superconducting hybrid qubit systems

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Enrique; Calero, Jesus M; Reina, John H, E-mail: enriquem@univalle.edu.c, E-mail: j.reina-estupinan@physics.ox.ac.u [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)

    2009-05-01

    We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a sigma{sub x} x sigma{sub z} interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.

  16. Best practices in the use of hybrid static-dynamic signs.

    Science.gov (United States)

    2012-12-01

    Static signs are traditionally used to convey messages to the road users. The need to quickly communicate up-to-date messages to the road users has given rise to the increasing use of dynamic message signs (DMS). An alternative to DMS is hybrid signs...

  17. Extension to linear dynamics for hybrid stress finite element formulation based on additional displacements

    Science.gov (United States)

    Sumihara, K.

    Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.

  18. Innovation dynamics of Salvadoran agri-food industry from an evolutionary perspective

    Energy Technology Data Exchange (ETDEWEB)

    Peraza Castaneda, E.H.; Aleixandre Mendizábal, G.

    2016-07-01

    This paper presents a holistic approach to analyse the dynamics of innovation of a low-tech sector in a less developed economy, the agri-food industry in El Salvador, in the context of evolutionary economy. This requires using complementary quantitative and qualitative data and methodologies to better understand how Salvadoran agri-food industry innovation system works and how STI public policies can improve the performance of a key sector in terms of national socioeconomic development. The work already done shows a concentrated and vigorous sector with some upstream and downstream connections that innovate depending on firm size, age, R&D activities and use of industrial property rights. (Author)

  19. Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host-pathogen interactions.

    Science.gov (United States)

    Burdon, J J; Thrall, P H; Ericson, L

    2013-08-01

    Reciprocal interactions between hosts and pathogens drive ecological, epidemiological and co-evolutionary trajectories, resulting in complex patterns of diversity at population, species and community levels. Recent results confirm the importance of negative frequency-dependent rather than 'arms-race' processes in the evolution of individual host-pathogen associations. At the community level, complex relationships between species abundance and diversity dampen or alter pathogen impacts. Invasive pathogens challenge these controls reflecting the earliest stages of evolutionary associations (akin to arms-race) where disease effects may be so great that they overwhelm the host's and community's ability to respond. Viewing these different stabilization/destabilization phases as a continuum provides a valuable perspective to assessment of the role of genetics and ecology in the dynamics of both natural and invasive host-pathogen associations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Dynamic Resource Allocation in Hybrid Access Femtocell Network

    Directory of Open Access Journals (Sweden)

    Afaz Uddin Ahmed

    2014-01-01

    Full Text Available Intercell interference is one of the most challenging issues in femtocell deployment under the coverage of existing macrocell. Allocation of resources between femtocell and macrocell is essential to counter the effects of interference in dense femtocell networks. Advances in resource management strategies have improved the control mechanism for interference reduction at lower node density, but most of them are ineffective at higher node density. In this paper, a dynamic resource allocation management algorithm (DRAMA for spectrum shared hybrid access OFDMA femtocell network is proposed. To reduce the macro-femto-tier interference and to improve the quality of service, the proposed algorithm features a dynamic resource allocation scheme by controlling them both centrally and locally. The proposed scheme focuses on Femtocell Access Point (FAP owners’ satisfaction and allows maximum utilization of available resources based on congestion in the network. A simulation environment is developed to study the quantitative performance of DRAMA in hybrid access-control femtocell network and compare it to closed and open access mechanisms. The performance analysis shows that higher number of random users gets connected to the FAP without compromising FAP owners’ satisfaction allowing the macrocell to offload a large number of users in a dense heterogeneous network.

  1. Exciton Dynamics of 2D Hybrid Perovskite Nanocrystal

    Science.gov (United States)

    Guo, Rui; Zhu, Zhuan; Boulesbaa, Abdelaziz; Venkatesan, Swaminathan; Xiao, Kai; Bao, Jiming; Yao, Yan; Li, Wenzhi

    Organic-inorganic hybrid perovskites have emerged as promising materials for applications in photovoltaic and optoelectronic devices. Among the perovskites, two dimensional (2D) perovskites are of great interests due to their remarkable optical and electrical properties as well as the flexibility of material selection for the organic and inorganic moieties. In this study, we demonstrate the solution-phase growth of large square-shaped single-crystalline 2D hybrid perovskites of (C6H5C2H4 NH3) 2 PbBr4 with a few unit cells thickness. Compared to the bulk crystal, a band gap shift and new photoluminescence (PL) peak are observed from the hybrid perovskite sheets. Color of the 2D crystals can be tuned by adjusting the sheet thickness. Pump-probe spectroscopy is used to investigate the exciton dynamics and exhibits a biexponential decay with an amplitude-weighted lifetime of 16.7 ps. Such high-quality (C6H5C2H4 NH3) 2 PbBr4 sheets are expected to have high PL quantum efficiency which can be adopted for light-emitting devices. National Science Foundation (Grant No. CMMI-1334417 and DMR-1506640).

  2. Evolutionary robotics

    Indian Academy of Sciences (India)

    In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...

  3. Hybrid female mate choice as a species isolating mechanism: environment matters.

    Science.gov (United States)

    Schmidt, E M; Pfennig, K S

    2016-04-01

    A fundamental goal of biology is to understand how new species arise and are maintained. Female mate choice is potentially critical to the speciation process: mate choice can prevent hybridization and thereby generate reproductive isolation between potentially interbreeding groups. Yet, in systems where hybridization occurs, mate choice by hybrid females might also play a key role in reproductive isolation by affecting hybrid fitness and contributing to patterns of gene flow between species. We evaluated whether hybrid mate choice behaviour could serve as such an isolating mechanism using spadefoot toad hybrids of Spea multiplicata and Spea bombifrons. We assessed the mate preferences of female hybrid spadefoot toads for sterile hybrid males vs. pure-species males in two alternative habitat types in which spadefoots breed: deep or shallow water. We found that, in deep water, hybrid females preferred the calls of sterile hybrid males to those of S. multiplicata males. Thus, maladaptive hybrid mate preferences could serve as an isolating mechanism. However, in shallow water, the preference for hybrid male calls was not expressed. Moreover, hybrid females did not prefer hybrid calls to those of S. bombifrons in either environment. Because hybrid female mate choice was context-dependent, its efficacy as a reproductive isolating mechanism will depend on both the environment in which females choose their mates as well as the relative frequencies of males in a given population. Thus, reproductive isolation between species, as well as habitat specific patterns of gene flow between species, might depend critically on the nature of hybrid mate preferences and the way in which they vary across environments. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  4. Numerical methodologies for investigation of moderate-velocity flow using a hybrid computational fluid dynamics - molecular dynamics simulation approach

    International Nuclear Information System (INIS)

    Ko, Soon Heum; Kim, Na Yong; Nikitopoulos, Dimitris E.; Moldovan, Dorel; Jha, Shantenu

    2014-01-01

    Numerical approaches are presented to minimize the statistical errors inherently present due to finite sampling and the presence of thermal fluctuations in the molecular region of a hybrid computational fluid dynamics (CFD) - molecular dynamics (MD) flow solution. Near the fluid-solid interface the hybrid CFD-MD simulation approach provides a more accurate solution, especially in the presence of significant molecular-level phenomena, than the traditional continuum-based simulation techniques. It also involves less computational cost than the pure particle-based MD. Despite these advantages the hybrid CFD-MD methodology has been applied mostly in flow studies at high velocities, mainly because of the higher statistical errors associated with low velocities. As an alternative to the costly increase of the size of the MD region to decrease statistical errors, we investigate a few numerical approaches that reduce sampling noise of the solution at moderate-velocities. These methods are based on sampling of multiple simulation replicas and linear regression of multiple spatial/temporal samples. We discuss the advantages and disadvantages of each technique in the perspective of solution accuracy and computational cost.

  5. Design, Dynamics, and Workspace of a Hybrid-Driven-Based Cable Parallel Manipulator

    Directory of Open Access Journals (Sweden)

    Bin Zi

    2013-01-01

    Full Text Available The design, dynamics, and workspace of a hybrid-driven-based cable parallel manipulator (HDCPM are presented. The HDCPM is able to perform high efficiency, heavy load, and high-performance motion due to the advantages of both the cable parallel manipulator and the hybrid-driven planar five-bar mechanism. The design is performed according to theories of mechanism structure synthesis for cable parallel manipulators. The dynamic formulation of the HDCPM is established on the basis of Newton-Euler method. The workspace of the manipulator is analyzed additionally. As an example, a completely restrained HDCPM with 3 degrees of freedom is studied in simulation in order to verify the validity of the proposed design, workspace, and dynamic analysis. The simulation results, compared with the theoretical analysis, and the case study previously performed show that the manipulator design is reasonable and the mathematical models are correct, which provides the theoretical basis for future physical prototype and control system design.

  6. Dynamic performance analysis of two regional Nuclear Hybrid Energy Systems

    International Nuclear Information System (INIS)

    Garcia, Humberto E.; Chen, Jun; Kim, Jong S.; Vilim, Richard B.; Binder, William R.; Bragg Sitton, Shannon M.; Boardman, Richard D.; McKellar, Michael G.; Paredis, Christiaan J.J.

    2016-01-01

    In support of more efficient utilization of clean energy generation sources, including renewable and nuclear options, HES (hybrid energy systems) can be designed and operated as FER (flexible energy resources) to meet both electrical and thermal energy needs in the electric grid and industrial sectors. These conceptual systems could effectively and economically be utilized, for example, to manage the increasing levels of dynamic variability and uncertainty introduced by VER (variable energy resources) such as renewable sources (e.g., wind, solar), distributed energy resources, demand response schemes, and modern energy demands (e.g., electric vehicles) with their ever changing usage patterns. HES typically integrate multiple energy inputs (e.g., nuclear and renewable generation) and multiple energy outputs (e.g., electricity, gasoline, fresh water) using complementary energy conversion processes. This paper reports a dynamic analysis of two realistic HES including a nuclear reactor as the main baseload heat generator and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by their application in scenarios with multiple commodity production and high renewable penetration. It is performed for regional cases – not generic examples – based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses. - Highlights: • Hybrids including renewables can operate as dispatchable flexible energy resources. • Nuclear energy can address high variability and uncertainty in energy systems. • Nuclear hybrids can reliably provide grid services over various time horizons. • Nuclear energy can provide operating reserves and grid inertia under high renewables. • Nuclear hybrids can greatly reduce GHG emissions and support grid and industry needs.

  7. On Reciprocal Causation in the Evolutionary Process.

    Science.gov (United States)

    Svensson, Erik I

    2018-01-01

    Recent calls for a revision of standard evolutionary theory (SET) are based partly on arguments about the reciprocal causation. Reciprocal causation means that cause-effect relationships are bi-directional, as a cause could later become an effect and vice versa. Such dynamic cause-effect relationships raise questions about the distinction between proximate and ultimate causes, as originally formulated by Ernst Mayr. They have also motivated some biologists and philosophers to argue for an Extended Evolutionary Synthesis (EES). The EES will supposedly expand the scope of the Modern Synthesis (MS) and SET, which has been characterized as gene-centred, relying primarily on natural selection and largely neglecting reciprocal causation. Here, I critically examine these claims, with a special focus on the last conjecture. I conclude that reciprocal causation has long been recognized as important by naturalists, ecologists and evolutionary biologists working in the in the MS tradition, although it it could be explored even further. Numerous empirical examples of reciprocal causation in the form of positive and negative feedback are now well known from both natural and laboratory systems. Reciprocal causation have also been explicitly incorporated in mathematical models of coevolutionary arms races, frequency-dependent selection, eco-evolutionary dynamics and sexual selection. Such dynamic feedback were already recognized by Richard Levins and Richard Lewontin in their bok The Dialectical Biologist . Reciprocal causation and dynamic feedback might also be one of the few contributions of dialectical thinking and Marxist philosophy in evolutionary theory. I discuss some promising empirical and analytical tools to study reciprocal causation and the implications for the EES. Finally, I briefly discuss how quantitative genetics can be adapated to studies of reciprocal causation, constructive inheritance and phenotypic plasticity and suggest that the flexibility of this approach

  8. Spatial evolutionary epidemiology of spreading epidemics.

    Science.gov (United States)

    Lion, S; Gandon, S

    2016-10-26

    Most spatial models of host-parasite interactions either neglect the possibility of pathogen evolution or consider that this process is slow enough for epidemiological dynamics to reach an equilibrium on a fast timescale. Here, we propose a novel approach to jointly model the epidemiological and evolutionary dynamics of spatially structured host and pathogen populations. Starting from a multi-strain epidemiological model, we use a combination of spatial moment equations and quantitative genetics to analyse the dynamics of mean transmission and virulence in the population. A key insight of our approach is that, even in the absence of long-term evolutionary consequences, spatial structure can affect the short-term evolution of pathogens because of the build-up of spatial differentiation in mean virulence. We show that spatial differentiation is driven by a balance between epidemiological and genetic effects, and this quantity is related to the effect of kin competition discussed in previous studies of parasite evolution in spatially structured host populations. Our analysis can be used to understand and predict the transient evolutionary dynamics of pathogens and the emergence of spatial patterns of phenotypic variation. © 2016 The Author(s).

  9. Hybrid approximations via second order combined dynamic derivatives on time scales

    Directory of Open Access Journals (Sweden)

    Qin Sheng

    2007-09-01

    Full Text Available This article focuses on the approximation of conventional second order derivative via the combined (diamond-$\\alpha$ dynamic derivative on time scales with necessary smoothness conditions embedded. We will show the constraints under which the second order dynamic derivative provides a consistent approximation to the conventional second derivative; the cases where the dynamic derivative approximates the derivative only via a proper modification of the existing formula; and the situations in which the dynamic derivative can never approximate consistently even with the help of available structure correction methods. Constructive error analysis will be given via asymptotic expansions for practical hybrid modeling and computational applications.

  10. Stochastic win-stay-lose-shift strategy with dynamic aspirations in evolutionary social dilemmas

    Science.gov (United States)

    Amaral, Marco A.; Wardil, Lucas; Perc, Matjaž; da Silva, Jafferson K. L.

    2016-09-01

    In times of plenty expectations rise, just as in times of crisis they fall. This can be mathematically described as a win-stay-lose-shift strategy with dynamic aspiration levels, where individuals aspire to be as wealthy as their average neighbor. Here we investigate this model in the realm of evolutionary social dilemmas on the square lattice and scale-free networks. By using the master equation and Monte Carlo simulations, we find that cooperators coexist with defectors in the whole phase diagram, even at high temptations to defect. We study the microscopic mechanism that is responsible for the striking persistence of cooperative behavior and find that cooperation spreads through second-order neighbors, rather than by means of network reciprocity that dominates in imitation-based models. For the square lattice the master equation can be solved analytically in the large temperature limit of the Fermi function, while for other cases the resulting differential equations must be solved numerically. Either way, we find good qualitative agreement with the Monte Carlo simulation results. Our analysis also reveals that the evolutionary outcomes are to a large degree independent of the network topology, including the number of neighbors that are considered for payoff determination on lattices, which further corroborates the local character of the microscopic dynamics. Unlike large-scale spatial patterns that typically emerge due to network reciprocity, here local checkerboard-like patterns remain virtually unaffected by differences in the macroscopic properties of the interaction network.

  11. Evolutionary dynamics of adult stem cells: Comparison of random and immortal strand segregation mechanisms

    OpenAIRE

    Tannenbaum, Emmanuel; Sherley, James L.; Shakhnovich, Eugene I.

    2004-01-01

    This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) Random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell. (2) ``Immortal DNA strand'' co-segregation, for which the stem cell reta...

  12. Genomic markers reveal introgressive hybridization in the Indo-West Pacific mangroves: a case study.

    Directory of Open Access Journals (Sweden)

    Mei Sun

    2011-05-01

    Full Text Available Biodiversity of mangrove ecosystems is difficult to assess, at least partly due to lack of genetic verification of morphology-based documentation of species. Natural hybridization, on the one hand, plays an important role in evolution as a source of novel gene combinations and a mechanism of speciation. However, on the other hand, recurrent introgression allows gene flow between species and could reverse the process of genetic differentiation among populations required for speciation. To understand the dynamic evolutionary consequences of hybridization, this study examines genomic structure of hybrids and parental species at the population level. In the Indo-West Pacific, Bruguiera is one of the dominant mangrove genera and species ranges overlap extensively with one another. Morphological intermediates between sympatric Bruguiera gymnorrhiza and Bruguiera sexangula have been reported as a variety of B. sexangula or a new hybrid species, B. × rhynchopetala. However, the direction of hybridization and extent of introgression are unclear. A large number of species-specific inter-simple sequence repeat (ISSR markers were found in B. gymnorrhiza and B. sexangula, and the additive ISSR profiling of B. × rhynchopetala ascertained its hybrid status and identified its parental origin. The varying degree of scatterness among hybrid individuals in Principal Coordinate Analysis and results from NewHybrids analysis indicate that B. × rhynchopetala comprises different generations of introgressants in addition to F(1s. High genetic relatedness between B. × rhynchopetala and B. gymnorrhiza based on nuclear and chloroplast sequences suggests preferential hybrid backcrosses to B. gymnorrhiza. We conclude that B. × rhynchopetala has not evolved into an incipient hybrid species, and its persistence can be explained by recurrent hybridization and introgression. Genomic data provide insights into the hybridization dynamics of mangrove plants. Such information

  13. A system dynamics model based on evolutionary game theory for green supply chain management diffusion among Chinese manufacturers

    DEFF Research Database (Denmark)

    Tian, Yihui; Govindan, Kannan; Zhu, Qinghua

    2014-01-01

    In this study, a system dynamics (SD) model is developed to guide the subsidy policies to promote the diffusion of green supply chain management (GSCM) in China. The relationships of stakeholders such as government, enterprises and consumers are analyzed through evolutionary game theory. Finally...

  14. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation

    Science.gov (United States)

    2018-01-01

    Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site. PMID:29370230

  15. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation.

    Directory of Open Access Journals (Sweden)

    Hazlee Azil Illias

    Full Text Available Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM with modified evolutionary particle swarm optimisation (EPSO algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO-Time Varying Acceleration Coefficient (TVAC technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site.

  16. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation.

    Science.gov (United States)

    Illias, Hazlee Azil; Zhao Liang, Wee

    2018-01-01

    Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site.

  17. Multivariate dynamic linear models for estimating the effect of experimental interventions in an evolutionary operations setup in dairy herds

    DEFF Research Database (Denmark)

    Stygar, Anna Helena; Krogh, Mogens Agerbo; Kristensen, Troels

    2017-01-01

    Evolutionary operations is a method to exploit the association of often small changes in process variables, planned during systematic experimentation and occurring during the normal production flow, to production characteristics to find a way to alter the production process to be more efficient....... The objective of this study was to construct a tool to assess the intervention effect on milk production in an evolutionary operations setup. The method used for this purpose was a dynamic linear model (DLM) with Kalman filtering. The DLM consisted of parameters describing milk yield in a herd, individual cows...... bulk tank records. The presented model proved to be a flexible and dynamic tool, and it was successfully applied for systematic experimentation in dairy herds. The model can serve as a decision support tool for on-farm process optimization exploiting planned changes in process variables...

  18. Evolutionary Policy Transfer and Search Methods for Boosting Behavior Quality: RoboCup Keep-Away Case Study

    Directory of Open Access Journals (Sweden)

    Geoff Nitschke

    2017-11-01

    Full Text Available This study evaluates various evolutionary search methods to direct neural controller evolution in company with policy (behavior transfer across increasingly complex collective robotic (RoboCup keep-away tasks. Robot behaviors are first evolved in a source task and then transferred for further evolution to more complex target tasks. Evolutionary search methods tested include objective-based search (fitness function, behavioral and genotypic diversity maintenance, and hybrids of such diversity maintenance and objective-based search. Evolved behavior quality is evaluated according to effectiveness and efficiency. Effectiveness is the average task performance of transferred and evolved behaviors, where task performance is the average time the ball is controlled by a keeper team. Efficiency is the average number of generations taken for the fittest evolved behaviors to reach a minimum task performance threshold given policy transfer. Results indicate that policy transfer coupled with hybridized evolution (behavioral diversity maintenance and objective-based search addresses the bootstrapping problem for increasingly complex keep-away tasks. That is, this hybrid method (coupled with policy transfer evolves behaviors that could not otherwise be evolved. Also, this hybrid evolutionary search was demonstrated as consistently evolving topologically simple neural controllers that elicited high-quality behaviors.

  19. Evolutionary dynamics of bacteria in a human host environment

    DEFF Research Database (Denmark)

    Yang, Lei; Jelsbak, Lars; Marvig, Rasmus Lykke

    2011-01-01

    Laboratory evolution experiments have led to important findings relating organism adaptation and genomic evolution. However, continuous monitoring of long-term evolution has been lacking for natural systems, limiting our understanding of these processes in situ. Here we characterize the evolution...... long-term in vitro evolution experiments. The evolved phenotype of the infecting bacteria further suggests that the opportunistic pathogen has transitioned to become a primary pathogen for cystic fibrosis patients.......Laboratory evolution experiments have led to important findings relating organism adaptation and genomic evolution. However, continuous monitoring of long-term evolution has been lacking for natural systems, limiting our understanding of these processes in situ. Here we characterize...... the evolutionary dynamics of a lineage of a clinically important opportunistic bacterial pathogen, Pseudomonas aeruginosa, as it adapts to the airways of several individual cystic fibrosis patients over 200,000 bacterial generations, and provide estimates of mutation rates of bacteria in a natural environment...

  20. A Hybrid Quantum Evolutionary Algorithm with Improved Decoding Scheme for a Robotic Flow Shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Weidong Lei

    2017-01-01

    Full Text Available We aim at solving the cyclic scheduling problem with a single robot and flexible processing times in a robotic flow shop, which is a well-known optimization problem in advanced manufacturing systems. The objective of the problem is to find an optimal robot move sequence such that the throughput rate is maximized. We propose a hybrid algorithm based on the Quantum-Inspired Evolutionary Algorithm (QEA and genetic operators for solving the problem. The algorithm integrates three different decoding strategies to convert quantum individuals into robot move sequences. The Q-gate is applied to update the states of Q-bits in each individual. Besides, crossover and mutation operators with adaptive probabilities are used to increase the population diversity. A repairing procedure is proposed to deal with infeasible individuals. Comparison results on both benchmark and randomly generated instances demonstrate that the proposed algorithm is more effective in solving the studied problem in terms of solution quality and computational time.

  1. A New Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Complex Networks

    Directory of Open Access Journals (Sweden)

    Guoqiang Chen

    2013-01-01

    Full Text Available Community detection in dynamic networks is an important research topic and has received an enormous amount of attention in recent years. Modularity is selected as a measure to quantify the quality of the community partition in previous detection methods. But, the modularity has been exposed to resolution limits. In this paper, we propose a novel multiobjective evolutionary algorithm for dynamic networks community detection based on the framework of nondominated sorting genetic algorithm. Modularity density which can address the limitations of modularity function is adopted to measure the snapshot cost, and normalized mutual information is selected to measure temporal cost, respectively. The characteristics knowledge of the problem is used in designing the genetic operators. Furthermore, a local search operator was designed, which can improve the effectiveness and efficiency of community detection. Experimental studies based on synthetic datasets show that the proposed algorithm can obtain better performance than the compared algorithms.

  2. Multi-Objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Mengjun Ming

    2017-05-01

    Full Text Available Due to the scarcity of conventional energy resources and the greenhouse effect, renewable energies have gained more attention. This paper proposes methods for multi-objective optimal design of hybrid renewable energy system (HRES in both isolated-island and grid-connected modes. In each mode, the optimal design aims to find suitable configurations of photovoltaic (PV panels, wind turbines, batteries and diesel generators in HRES such that the system cost and the fuel emission are minimized, and the system reliability/renewable ability (corresponding to different modes is maximized. To effectively solve this multi-objective problem (MOP, the multi-objective evolutionary algorithm based on decomposition (MOEA/D using localized penalty-based boundary intersection (LPBI method is proposed. The algorithm denoted as MOEA/D-LPBI is demonstrated to outperform its competitors on the HRES model as well as a set of benchmarks. Moreover, it effectively obtains a good approximation of Pareto optimal HRES configurations. By further considering a decision maker’s preference, the most satisfied configuration of the HRES can be identified.

  3. Modelling the WWER-type reactor dynamics using a hybrid computer. Part 1

    International Nuclear Information System (INIS)

    Karpeta, C.

    Results of simulation studies into reactor and steam generator dynamics of a WWER type power plant are presented. Spatial kinetics of the reactor core is described by a nodal approximation to diffusion equations, xenon poisoning equations and heat transfer equations. The simulation of the reactor model dynamics was performed on a hybrid computer. Models of both a horizontal and a vertical steam generator were developed. The dynamics was investigated over a large range of power by computing the transients on a digital computer. (author)

  4. Hybrid Approximate Dynamic Programming Approach for Dynamic Optimal Energy Flow in the Integrated Gas and Power Systems

    DEFF Research Database (Denmark)

    Shuai, Hang; Ai, Xiaomeng; Wen, Jinyu

    2017-01-01

    This paper proposes a hybrid approximate dynamic programming (ADP) approach for the multiple time-period optimal power flow in integrated gas and power systems. ADP successively solves Bellman's equation to make decisions according to the current state of the system. So, the updated near future...

  5. Microcanonical and hybrid simulations of lattice quantum chromodynamics with dynamical fermions

    International Nuclear Information System (INIS)

    Sinclair, D.K.

    1986-10-01

    Lattice QCD is simulated using Microcanonical and Hybrid (Micro-canonical/Langevin) methods to facilitate the inclusion of dynamical fermions (quarks). We report on simulations with 4 flavors of light dynamical quarks on a 10 3 x 6 lattice to study the finite temperature deconfinement/chiral transition which should be observable in relativistic heavy ion collisions, as a function of quark mass. A first order transition is observed at large mass, weakens at intermediate mass and strengthens for very small quark mass

  6. A modified hybrid uncertain analysis method for dynamic response field of the LSOAAC with random and interval parameters

    Science.gov (United States)

    Zi, Bin; Zhou, Bin

    2016-07-01

    For the prediction of dynamic response field of the luffing system of an automobile crane (LSOAAC) with random and interval parameters, a hybrid uncertain model is introduced. In the hybrid uncertain model, the parameters with certain probability distribution are modeled as random variables, whereas, the parameters with lower and upper bounds are modeled as interval variables instead of given precise values. Based on the hybrid uncertain model, the hybrid uncertain dynamic response equilibrium equation, in which different random and interval parameters are simultaneously included in input and output terms, is constructed. Then a modified hybrid uncertain analysis method (MHUAM) is proposed. In the MHUAM, based on random interval perturbation method, the first-order Taylor series expansion and the first-order Neumann series, the dynamic response expression of the LSOAAC is developed. Moreover, the mathematical characteristics of extrema of bounds of dynamic response are determined by random interval moment method and monotonic analysis technique. Compared with the hybrid Monte Carlo method (HMCM) and interval perturbation method (IPM), numerical results show the feasibility and efficiency of the MHUAM for solving the hybrid LSOAAC problems. The effects of different uncertain models and parameters on the LSOAAC response field are also investigated deeply, and numerical results indicate that the impact made by the randomness in the thrust of the luffing cylinder F is larger than that made by the gravity of the weight in suspension Q . In addition, the impact made by the uncertainty in the displacement between the lower end of the lifting arm and the luffing cylinder a is larger than that made by the length of the lifting arm L .

  7. Dynamic behavior of the mechanical systems from the structure of a hybrid automobile

    Science.gov (United States)

    Dinel, Popa; Irina, Tudor; Nicolae-Doru, Stănescu

    2017-10-01

    In introduction are presented solutions of planetary mechanisms that can be used in the construction of the hybrid automobiles where the thermal and electrical sources must be coupled. The systems have in their composition a planetary mechanism with two degrees of mobility at which are coupled a thermal engine, two revertible electrical machines, a gear transmission with four gears and a differential mechanism which transmits the motion at the driving wheels. For the study of the dynamical behavior, with numerical results, one designs such mechanisms, models the elements with solids in AutoCAD, and obtains the mechanical properties of the elements. Further on, we present and solve the equations of motion of a hybrid automotive for which one knows the dynamical parameters.

  8. Towards a mechanistic foundation of evolutionary theory.

    Science.gov (United States)

    Doebeli, Michael; Ispolatov, Yaroslav; Simon, Burt

    2017-02-15

    Most evolutionary thinking is based on the notion of fitness and related ideas such as fitness landscapes and evolutionary optima. Nevertheless, it is often unclear what fitness actually is, and its meaning often depends on the context. Here we argue that fitness should not be a basal ingredient in verbal or mathematical descriptions of evolution. Instead, we propose that evolutionary birth-death processes, in which individuals give birth and die at ever-changing rates, should be the basis of evolutionary theory, because such processes capture the fundamental events that generate evolutionary dynamics. In evolutionary birth-death processes, fitness is at best a derived quantity, and owing to the potential complexity of such processes, there is no guarantee that there is a simple scalar, such as fitness, that would describe long-term evolutionary outcomes. We discuss how evolutionary birth-death processes can provide useful perspectives on a number of central issues in evolution.

  9. Applications of dynamical systems in biology and medicine

    CERN Document Server

    Radunskaya, Ami

    2015-01-01

    This volume highlights problems from a range of biological and medical applications that can be interpreted as questions about system behavior or control.  Topics include drug resistance in cancer and malaria, biological fluid dynamics, auto-regulation in the kidney, anti-coagulation therapy, evolutionary diversification and photo-transduction.  Mathematical techniques used to describe and investigate these biological and medical problems include ordinary, partial and stochastic differentiation equations, hybrid discrete-continuous approaches, as well as 2 and 3D numerical simulation. .

  10. An Evolutionary Mobility Aware Multi-Objective Hybrid Routing Algorithm for Heterogeneous Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Kulkarni, Nandkumar P.; Prasad, Neeli R.; Prasad, Ramjee

    deliberation. To tackle these two problems, Mobile Wireless Sensor Networks (MWSNs) is a better choice. In MWSN, Sensor nodes move freely to a target area without the need for any special infrastructure. Due to mobility, the routing process in MWSN has become more complicated as connections in the network can...... such as Average Energy consumption, Control Overhead, Reaction Time, LQI, and HOP Count. The authors study the influence of energy heterogeneity and mobility of sensor nodes on the performance of EMRP. The Performance of EMRP compared with Simple Hybrid Routing Protocol (SHRP) and Dynamic Multi-Objective Routing...

  11. Integrated evolutionary computation neural network quality controller for automated systems

    Energy Technology Data Exchange (ETDEWEB)

    Patro, S.; Kolarik, W.J. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Industrial Engineering

    1999-06-01

    With increasing competition in the global market, more and more stringent quality standards and specifications are being demands at lower costs. Manufacturing applications of computing power are becoming more common. The application of neural networks to identification and control of dynamic processes has been discussed. The limitations of using neural networks for control purposes has been pointed out and a different technique, evolutionary computation, has been discussed. The results of identifying and controlling an unstable, dynamic process using evolutionary computation methods has been presented. A framework for an integrated system, using both neural networks and evolutionary computation, has been proposed to identify the process and then control the product quality, in a dynamic, multivariable system, in real-time.

  12. Filtering in Hybrid Dynamic Bayesian Networks

    Science.gov (United States)

    Andersen, Morten Nonboe; Andersen, Rasmus Orum; Wheeler, Kevin

    2000-01-01

    We implement a 2-time slice dynamic Bayesian network (2T-DBN) framework and make a 1-D state estimation simulation, an extension of the experiment in (v.d. Merwe et al., 2000) and compare different filtering techniques. Furthermore, we demonstrate experimentally that inference in a complex hybrid DBN is possible by simulating fault detection in a watertank system, an extension of the experiment in (Koller & Lerner, 2000) using a hybrid 2T-DBN. In both experiments, we perform approximate inference using standard filtering techniques, Monte Carlo methods and combinations of these. In the watertank simulation, we also demonstrate the use of 'non-strict' Rao-Blackwellisation. We show that the unscented Kalman filter (UKF) and UKF in a particle filtering framework outperform the generic particle filter, the extended Kalman filter (EKF) and EKF in a particle filtering framework with respect to accuracy in terms of estimation RMSE and sensitivity with respect to choice of network structure. Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. Furthermore, we investigate the influence of data noise in the watertank simulation using UKF and PFUKD and show that the algorithms are more sensitive to changes in the measurement noise level that the process noise level. Theory and implementation is based on (v.d. Merwe et al., 2000).

  13. Dynamic Performance Comparison for MPPT-PV Systems using Hybrid Pspice/Matlab Simulation

    Science.gov (United States)

    Aouchiche, N.; Becherif, M.; HadjArab, A.; Aitcheikh, M. S.; Ramadan, H. S.; Cheknane, A.

    2016-10-01

    The power generated by solar photovoltaic (PV) module depends on the surrounding irradiance and temperature. This paper presents a hybrid Matlab™/Pspice™ simulation model of PV system, combined with Cadence software SLPS. The hybridization is performed in order to gain the advantages of both simulation tools such as accuracy and efficiency in both Pspice electronic circuit and Matlab™ mathematical modelling respectively. For this purpose, the PV panel and the boost converter are developed using Pspice™ and hybridized with the mathematical Matlab™ model of maximum power point method controller (MPPT) through SLPS. The main objective is verify the significance of using the proposed hybrid simulation techniques in comparing the different MPPT algorithms such as the perturbation and observation (P&O), incremental of conductance (Inc-Cond) and counter reaction voltage using pilot cell (Pilot-Cell). Various simulations are performed under different atmospheric conditions in order to evaluate the dynamic behaviour for the system under study in terms of stability, efficiency and rapidity.

  14. Evolutionary principles and their practical application.

    Science.gov (United States)

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-03-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.

  15. Stability properties of nonlinear dynamical systems and evolutionary stable states

    Energy Technology Data Exchange (ETDEWEB)

    Gleria, Iram, E-mail: iram@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió-AL (Brazil); Brenig, Leon [Faculté des Sciences, Université Libre de Bruxelles, 1050 Brussels (Belgium); Rocha Filho, Tarcísio M.; Figueiredo, Annibal [Instituto de Física and International Center for Condensed Matter Physics, Universidade de Brasília, 70919-970 Brasília-DF (Brazil)

    2017-03-18

    Highlights: • We address the problem of equilibrium stability in a general class of non-linear systems. • We link Evolutionary Stable States (ESS) to stable fixed points of square quasi-polynomial (QP) systems. • We show that an interior ES point may be related to stable interior fixed points of QP systems. - Abstract: In this paper we address the problem of stability in a general class of non-linear systems. We establish a link between the concepts of asymptotic stable interior fixed points of square Quasi-Polynomial systems and evolutionary stable states, a property of some payoff matrices arising from evolutionary games.

  16. Looking for the optimal rate of recombination for evolutionary dynamics

    Science.gov (United States)

    Saakian, David B.

    2018-01-01

    We consider many-site mutation-recombination models of evolution with selection. We are looking for situations where the recombination increases the mean fitness of the population, and there is an optimal recombination rate. We found two fitness landscapes supporting such nonmonotonic behavior of the mean fitness versus the recombination rate. The first case is related to the evolution near the error threshold on a neutral-network-like fitness landscape, for moderate genome lengths and large population. The more realistic case is the second one, in which we consider the evolutionary dynamics of a finite population on a rugged fitness landscape (the smooth fitness landscape plus some random contributions to the fitness). We also give the solution to the horizontal gene transfer model in the case of asymmetric mutations. To obtain nonmonotonic behavior for both mutation and recombination, we need a specially designed (ideal) fitness landscape.

  17. Evolutionary game theory for physical and biological scientists. I. Training and validating population dynamics equations.

    Science.gov (United States)

    Liao, David; Tlsty, Thea D

    2014-08-06

    Failure to understand evolutionary dynamics has been hypothesized as limiting our ability to control biological systems. An increasing awareness of similarities between macroscopic ecosystems and cellular tissues has inspired optimism that game theory will provide insights into the progression and control of cancer. To realize this potential, the ability to compare game theoretic models and experimental measurements of population dynamics should be broadly disseminated. In this tutorial, we present an analysis method that can be used to train parameters in game theoretic dynamics equations, used to validate the resulting equations, and used to make predictions to challenge these equations and to design treatment strategies. The data analysis techniques in this tutorial are adapted from the analysis of reaction kinetics using the method of initial rates taught in undergraduate general chemistry courses. Reliance on computer programming is avoided to encourage the adoption of these methods as routine bench activities.

  18. Evolutionary Dynamics of Collective Behavior Selection and Drift: Flocking, Collapse, and Oscillation.

    Science.gov (United States)

    Tan, Shaolin; Wang, Yaonan; Chen, Yao; Wang, Zhen

    2016-06-14

    Behavioral choice is ubiquitous across a wide range of interactive decision-making processes and a myriad of scientific disciplines. With regard to this issue, one entitative problem is actually to understand how collective social behaviors form and evolve among populations when they face a variety of conflict alternatives. In this paper, a selection-drift dynamic model is formulated to characterize the behavior imitation and exploration processes in social populations. Based on the proposed framework, several typical behavior evolution patterns, including behavioral flocking, collapse, and oscillation, are reproduced with different kinds of behavior networks. Interestingly, for the selection-drift dynamics on homogeneous symmetric behavior networks, we unveil the phase transition from behavioral flocking to collapse and derive the bifurcation diagram of the evolutionary stable behaviors in social behavior evolution. While via analyzing the survival conditions of the best behavior on heterogeneous symmetric behavior networks, we propose a selection-drift mechanism to guarantee consensus at the optimal behavior. Moreover, when the selection-drift dynamics on asymmetric behavior networks is simulated, it is shown that breaking the symmetry in behavior networks can induce various behavioral oscillations. These obtained results may shed new insights into understanding, detecting, and further controlling how social norm and cultural trends evolve.

  19. Local Fitness Landscapes Predict Yeast Evolutionary Dynamics in Directionally Changing Environments.

    Science.gov (United States)

    Gorter, Florien A; Aarts, Mark G M; Zwaan, Bas J; de Visser, J Arjan G M

    2018-01-01

    The fitness landscape is a concept that is widely used for understanding and predicting evolutionary adaptation. The topography of the fitness landscape depends critically on the environment, with potentially far-reaching consequences for evolution under changing conditions. However, few studies have assessed directly how empirical fitness landscapes change across conditions, or validated the predicted consequences of such change. We previously evolved replicate yeast populations in the presence of either gradually increasing, or constant high, concentrations of the heavy metals cadmium (Cd), nickel (Ni), and zinc (Zn), and analyzed their phenotypic and genomic changes. Here, we reconstructed the local fitness landscapes underlying adaptation to each metal by deleting all repeatedly mutated genes both by themselves and in combination. Fitness assays revealed that the height, and/or shape, of each local fitness landscape changed considerably across metal concentrations, with distinct qualitative differences between unconditionally (Cd) and conditionally toxic metals (Ni and Zn). This change in topography had particularly crucial consequences in the case of Ni, where a substantial part of the individual mutational fitness effects changed in sign across concentrations. Based on the Ni landscape analyses, we made several predictions about which mutations had been selected when during the evolution experiment. Deep sequencing of population samples from different time points generally confirmed these predictions, demonstrating the power of landscape reconstruction analyses for understanding and ultimately predicting evolutionary dynamics, even under complex scenarios of environmental change. Copyright © 2018 by the Genetics Society of America.

  20. Heterogeneous update mechanisms in evolutionary games: Mixing innovative and imitative dynamics

    Science.gov (United States)

    Amaral, Marco Antonio; Javarone, Marco Alberto

    2018-04-01

    Innovation and evolution are two processes of paramount relevance for social and biological systems. In general, the former allows the introduction of elements of novelty, while the latter is responsible for the motion of a system in its phase space. Often, these processes are strongly related, since an innovation can trigger the evolution, and the latter can provide the optimal conditions for the emergence of innovations. Both processes can be studied by using the framework of evolutionary game theory, where evolution constitutes an intrinsic mechanism. At the same time, the concept of innovation requires an opportune mathematical representation. Notably, innovation can be modeled as a strategy, or it can constitute the underlying mechanism that allows agents to change strategy. Here, we analyze the second case, investigating the behavior of a heterogeneous population, composed of imitative and innovative agents. Imitative agents change strategy only by imitating that of their neighbors, whereas innovative ones change strategy without the need for a copying source. The proposed model is analyzed by means of analytical calculations and numerical simulations in different topologies. Remarkably, results indicate that the mixing of mechanisms can be detrimental to cooperation near phase transitions. In those regions, the spatial reciprocity from imitative mechanisms is destroyed by innovative agents, leading to the downfall of cooperation. Our investigation sheds some light on the complex dynamics emerging from the heterogeneity of strategy revision methods, highlighting the role of innovation in evolutionary games.

  1. Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization.

    Science.gov (United States)

    Elhossini, Ahmed; Areibi, Shawki; Dony, Robert

    2010-01-01

    This paper proposes an efficient particle swarm optimization (PSO) technique that can handle multi-objective optimization problems. It is based on the strength Pareto approach originally used in evolutionary algorithms (EA). The proposed modified particle swarm algorithm is used to build three hybrid EA-PSO algorithms to solve different multi-objective optimization problems. This algorithm and its hybrid forms are tested using seven benchmarks from the literature and the results are compared to the strength Pareto evolutionary algorithm (SPEA2) and a competitive multi-objective PSO using several metrics. The proposed algorithm shows a slower convergence, compared to the other algorithms, but requires less CPU time. Combining PSO and evolutionary algorithms leads to superior hybrid algorithms that outperform SPEA2, the competitive multi-objective PSO (MO-PSO), and the proposed strength Pareto PSO based on different metrics.

  2. Dynamical analysis of Parkinsonian state emulated by hybrid Izhikevich neuron models

    Science.gov (United States)

    Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Li, Huiyan; Loparo, Kenneth A.; Fietkiewicz, Chris

    2015-11-01

    Computational models play a significant role in exploring novel theories to complement the findings of physiological experiments. Various computational models have been developed to reveal the mechanisms underlying brain functions. Particularly, in the development of therapies to modulate behavioral and pathological abnormalities, computational models provide the basic foundations to exhibit transitions between physiological and pathological conditions. Considering the significant roles of the intrinsic properties of the globus pallidus and the coupling connections between neurons in determining the firing patterns and the dynamical activities of the basal ganglia neuronal network, we propose a hypothesis that pathological behaviors under the Parkinsonian state may originate from combined effects of intrinsic properties of globus pallidus neurons and synaptic conductances in the whole neuronal network. In order to establish a computational efficient network model, hybrid Izhikevich neuron model is used due to its capacity of capturing the dynamical characteristics of the biological neuronal activities. Detailed analysis of the individual Izhikevich neuron model can assist in understanding the roles of model parameters, which then facilitates the establishment of the basal ganglia-thalamic network model, and contributes to a further exploration of the underlying mechanisms of the Parkinsonian state. Simulation results show that the hybrid Izhikevich neuron model is capable of capturing many of the dynamical properties of the basal ganglia-thalamic neuronal network, such as variations of the firing rates and emergence of synchronous oscillations under the Parkinsonian condition, despite the simplicity of the two-dimensional neuronal model. It may suggest that the computational efficient hybrid Izhikevich neuron model can be used to explore basal ganglia normal and abnormal functions. Especially it provides an efficient way of emulating the large-scale neuron network

  3. An Evolutionary Robotics Approach to the Control of Plant Growth and Motion: Modeling Plants and Crossing the Reality Gap

    DEFF Research Database (Denmark)

    Wahby, Mostafa; Hofstadler, Daniel Nicolas; Heinrich, Mary Katherine

    2016-01-01

    The self-organizing bio-hybrid collaboration of robots and natural plants allows for a variety of interesting applications. As an example we investigate how robots can be used to control the growth and motion of a natural plant, using LEDs to provide stimuli. We follow an evolutionary robotics...... approach where task performance is determined by monitoring the plant's reaction. First, we do initial plant experiments with simple, predetermined controllers. Then we use image sampling data as a model of the dynamics of the plant tip xy position. Second, we use this approach to evolve robot controllers...

  4. Aerodynamic Shape Optimization Using Hybridized Differential Evolution

    Science.gov (United States)

    Madavan, Nateri K.

    2003-01-01

    An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.

  5. 'SEEDY' (Simulation of Evolutionary and Epidemiological Dynamics: An R Package to Follow Accumulation of Within-Host Mutation in Pathogens.

    Directory of Open Access Journals (Sweden)

    Colin J Worby

    Full Text Available Genome sequencing is an increasingly common component of infectious disease outbreak investigations. However, the relationship between pathogen transmission and observed genetic data is complex, and dependent on several uncertain factors. As such, simulation of pathogen dynamics is an important tool for interpreting observed genomic data in an infectious disease outbreak setting, in order to test hypotheses and to explore the range of outcomes consistent with a given set of parameters. We introduce 'seedy', an R package for the simulation of evolutionary and epidemiological dynamics (http://cran.r-project.org/web/packages/seedy/. Our software implements stochastic models for the accumulation of mutations within hosts, as well as individual-level disease transmission. By allowing variables such as the transmission bottleneck size, within-host effective population size and population mixing rates to be specified by the user, our package offers a flexible framework to investigate evolutionary dynamics during disease outbreaks. Furthermore, our software provides theoretical pairwise genetic distance distributions to provide a likelihood of person-to-person transmission based on genomic observations, and using this framework, implements transmission route assessment for genomic data collected during an outbreak. Our open source software provides an accessible platform for users to explore pathogen evolution and outbreak dynamics via simulation, and offers tools to assess observed genomic data in this context.

  6. Evolutionary disarmament in interspecific competition.

    Science.gov (United States)

    Kisdi, E; Geritz, S A

    2001-12-22

    Competitive asymmetry, which is the advantage of having a larger body or stronger weaponry than a contestant, drives spectacular evolutionary arms races in intraspecific competition. Similar asymmetries are well documented in interspecific competition, yet they seldom lead to exaggerated traits. Here we demonstrate that two species with substantially different size may undergo parallel coevolution towards a smaller size under the same ecological conditions where a single species would exhibit an evolutionary arms race. We show that disarmament occurs for a wide range of parameters in an ecologically explicit model of competition for a single shared resource; disarmament also occurs in a simple Lotka-Volterra competition model. A key property of both models is the interplay between evolutionary dynamics and population density. The mechanism does not rely on very specific features of the model. Thus, evolutionary disarmament may be widespread and may help to explain the lack of interspecific arms races.

  7. Transfer matrix method for dynamics modeling and independent modal space vibration control design of linear hybrid multibody system

    Science.gov (United States)

    Rong, Bao; Rui, Xiaoting; Lu, Kun; Tao, Ling; Wang, Guoping; Ni, Xiaojun

    2018-05-01

    In this paper, an efficient method of dynamics modeling and vibration control design of a linear hybrid multibody system (MS) is studied based on the transfer matrix method. The natural vibration characteristics of a linear hybrid MS are solved by using low-order transfer equations. Then, by constructing the brand-new body dynamics equation, augmented operator and augmented eigenvector, the orthogonality of augmented eigenvector of a linear hybrid MS is satisfied, and its state space model expressed in each independent model space is obtained easily. According to this dynamics model, a robust independent modal space-fuzzy controller is designed for vibration control of a general MS, and the genetic optimization of some critical control parameters of fuzzy tuners is also presented. Two illustrative examples are performed, which results show that this method is computationally efficient and with perfect control performance.

  8. Dynamic performance of self-operated three-way valve used in a hybrid air conditioner

    International Nuclear Information System (INIS)

    Zhang, Penglei; Zhou, Dehai; Shi, Wenxing; Li, Xianting; Wang, Baolong

    2014-01-01

    A hybrid air conditioner combining a thermosyphon cycle with a vapor compression refrigeration cycle has a large energy saving potential compared with a common air conditioner for spaces requiring year-round cooling. The performance of the switch between the vapor compression mode and the thermosyphon mode largely impacts the safety and reliability of hybrid air conditioners. Therefore, a self-operated three-way valve is proposed. A thermodynamic model and a kinetic model are developed in this paper to evaluate the dynamic performance of the switch valve. The effects of the spring force constant, compressor discharging volume, fit clearance and piston length on the dynamic performance of the switch valve are analyzed. In conclusion, the proposed self-operated three-way valve can realize the switch operation accurately. - Highlights: •A self-operated three-way valve is proposed for hybrid air conditioners. •The thermodynamic model and kinetic model of the self-operated three-way valve are developed. •The validity of models is verified by experiments. •Effects of four main design parameters on the operating performance of the valve are researched

  9. Mean-Potential Law in Evolutionary Games

    Science.gov (United States)

    Nałecz-Jawecki, Paweł; Miekisz, Jacek

    2018-01-01

    The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1 /3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.

  10. Molecularly barcoded Zika virus libraries to probe in vivo evolutionary dynamics.

    Directory of Open Access Journals (Sweden)

    Matthew T Aliota

    2018-03-01

    Full Text Available Defining the complex dynamics of Zika virus (ZIKV infection in pregnancy and during transmission between vertebrate hosts and mosquito vectors is critical for a thorough understanding of viral transmission, pathogenesis, immune evasion, and potential reservoir establishment. Within-host viral diversity in ZIKV infection is low, which makes it difficult to evaluate infection dynamics. To overcome this biological hurdle, we constructed a molecularly barcoded ZIKV. This virus stock consists of a "synthetic swarm" whose members are genetically identical except for a run of eight consecutive degenerate codons, which creates approximately 64,000 theoretical nucleotide combinations that all encode the same amino acids. Deep sequencing this region of the ZIKV genome enables counting of individual barcodes to quantify the number and relative proportions of viral lineages present within a host. Here we used these molecularly barcoded ZIKV variants to study the dynamics of ZIKV infection in pregnant and non-pregnant macaques as well as during mosquito infection/transmission. The barcoded virus had no discernible fitness defects in vivo, and the proportions of individual barcoded virus templates remained stable throughout the duration of acute plasma viremia. ZIKV RNA also was detected in maternal plasma from a pregnant animal infected with barcoded virus for 67 days. The complexity of the virus population declined precipitously 8 days following infection of the dam, consistent with the timing of typical resolution of ZIKV in non-pregnant macaques and remained low for the subsequent duration of viremia. Our approach showed that synthetic swarm viruses can be used to probe the composition of ZIKV populations over time in vivo to understand vertical transmission, persistent reservoirs, bottlenecks, and evolutionary dynamics.

  11. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach

    Science.gov (United States)

    Erickson, David L.; Jones, Frank A.; Swenson, Nathan G.; Pei, Nancai; Bourg, Norman A.; Chen, Wenna; Davies, Stuart J.; Ge, Xue-jun; Hao, Zhanqing; Howe, Robert W.; Huang, Chun-Lin; Larson, Andrew J.; Lum, Shawn K. Y.; Lutz, James A.; Ma, Keping; Meegaskumbura, Madhava; Mi, Xiangcheng; Parker, John D.; Fang-Sun, I.; Wright, S. Joseph; Wolf, Amy T.; Ye, W.; Xing, Dingliang; Zimmerman, Jess K.; Kress, W. John

    2014-01-01

    Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK, and psbA-trnH) and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance (PD) metrics that are commonly used to infer assembly processes were estimated for each plot [PD, Mean Phylogenetic Distance (MPD), and Mean Nearest Taxon Distance (MNTD)]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for individual plots, estimates of

  12. Long range personalized cancer treatment strategies incorporating evolutionary dynamics.

    Science.gov (United States)

    Yeang, Chen-Hsiang; Beckman, Robert A

    2016-10-22

    Current cancer precision medicine strategies match therapies to static consensus molecular properties of an individual's cancer, thus determining the next therapeutic maneuver. These strategies typically maintain a constant treatment while the cancer is not worsening. However, cancers feature complicated sub-clonal structure and dynamic evolution. We have recently shown, in a comprehensive simulation of two non-cross resistant therapies across a broad parameter space representing realistic tumors, that substantial improvement in cure rates and median survival can be obtained utilizing dynamic precision medicine strategies. These dynamic strategies explicitly consider intratumoral heterogeneity and evolutionary dynamics, including predicted future drug resistance states, and reevaluate optimal therapy every 45 days. However, the optimization is performed in single 45 day steps ("single-step optimization"). Herein we evaluate analogous strategies that think multiple therapeutic maneuvers ahead, considering potential outcomes at 5 steps ahead ("multi-step optimization") or 40 steps ahead ("adaptive long term optimization (ALTO)") when recommending the optimal therapy in each 45 day block, in simulations involving both 2 and 3 non-cross resistant therapies. We also evaluate an ALTO approach for situations where simultaneous combination therapy is not feasible ("Adaptive long term optimization: serial monotherapy only (ALTO-SMO)"). Simulations utilize populations of 764,000 and 1,700,000 virtual patients for 2 and 3 drug cases, respectively. Each virtual patient represents a unique clinical presentation including sizes of major and minor tumor subclones, growth rates, evolution rates, and drug sensitivities. While multi-step optimization and ALTO provide no significant average survival benefit, cure rates are significantly increased by ALTO. Furthermore, in the subset of individual virtual patients demonstrating clinically significant difference in outcome between

  13. Neotropical fish-fruit interactions: eco-evolutionary dynamics and conservation.

    Science.gov (United States)

    Correa, Sandra Bibiana; Costa-Pereira, Raul; Fleming, Theodore; Goulding, Michael; Anderson, Jill T

    2015-11-01

    Frugivorous fish play a prominent role in seed dispersal and reproductive dynamics of plant communities in riparian and floodplain habitats of tropical regions worldwide. In Neotropical wetlands, many plant species have fleshy fruits and synchronize their fruiting with the flood season, when fruit-eating fish forage in forest and savannahs for periods of up to 7 months. We conducted a comprehensive analysis to examine the evolutionary origin of fish-fruit interactions, describe fruit traits associated with seed dispersal and seed predation, and assess the influence of fish size on the effectiveness of seed dispersal by fish (ichthyochory). To date, 62 studies have documented 566 species of fruits and seeds from 82 plant families in the diets of 69 Neotropical fish species. Fish interactions with flowering plants are likely to be as old as 70 million years in the Neotropics, pre-dating most modern bird-fruit and mammal-fruit interactions, and contributing to long-distance seed dispersal and possibly the radiation of early angiosperms. Ichthyochory occurs across the angiosperm phylogeny, and is more frequent among advanced eudicots. Numerous fish species are capable of dispersing small seeds, but only a limited number of species can disperse large seeds. The size of dispersed seeds and the probability of seed dispersal both increase with fish size. Large-bodied species are the most effective seed dispersal agents and remain the primary target of fishing activities in the Neotropics. Thus, conservation efforts should focus on these species to ensure continuity of plant recruitment dynamics and maintenance of plant diversity in riparian and floodplain ecosystems. © 2015 Cambridge Philosophical Society.

  14. Modeling and Optimal Control of a Class of Warfare Hybrid Dynamic Systems Based on Lanchester (n,1 Attrition Model

    Directory of Open Access Journals (Sweden)

    Xiangyong Chen

    2014-01-01

    hybrid dynamic systems is established based on Lanchester equation in a (n,1 battle, where a heterogeneous force of n different troop types faces a homogeneous force. This model can be characterized by the interaction of continuous-time models (governed by Lanchester equation, and discrete event systems (described by variable tactics. Furthermore, an expository discussion is presented on an optimal variable tactics control problem for warfare hybrid dynamic system. The optimal control strategies are designed based on dynamic programming and differential game theory. As an example of the consequences of this optimal control problem, we take the (2, 1 case and solve the optimal strategies in a (2, 1 case. Simulation results show the feasibility of warfare hybrid system model and the effectiveness of the optimal control strategies designed.

  15. Dynamic mechanical and dielectric behavior of banana–glass hybrid fiber reinforced polyester composites.

    CSIR Research Space (South Africa)

    Pothan, LA

    2009-01-01

    Full Text Available Hybrid composites of glass and banana fiber (obtained from the pseudo stem of Musa sapientum) in polyester matrix, are subjected to dynamic mechanical analysis over a range of temperature and three different frequencies. The effect of temperature...

  16. Evolutionary Hybrid Particle Swarm Optimization Algorithm for Solving NP-Hard No-Wait Flow Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Laxmi A. Bewoor

    2017-10-01

    Full Text Available The no-wait flow shop is a flowshop in which the scheduling of jobs is continuous and simultaneous through all machines without waiting for any consecutive machines. The scheduling of a no-wait flow shop requires finding an appropriate sequence of jobs for scheduling, which in turn reduces total processing time. The classical brute force method for finding the probabilities of scheduling for improving the utilization of resources may become trapped in local optima, and this problem can hence be observed as a typical NP-hard combinatorial optimization problem that requires finding a near optimal solution with heuristic and metaheuristic techniques. This paper proposes an effective hybrid Particle Swarm Optimization (PSO metaheuristic algorithm for solving no-wait flow shop scheduling problems with the objective of minimizing the total flow time of jobs. This Proposed Hybrid Particle Swarm Optimization (PHPSO algorithm presents a solution by the random key representation rule for converting the continuous position information values of particles to a discrete job permutation. The proposed algorithm initializes population efficiently with the Nawaz-Enscore-Ham (NEH heuristic technique and uses an evolutionary search guided by the mechanism of PSO, as well as simulated annealing based on a local neighborhood search to avoid getting stuck in local optima and to provide the appropriate balance of global exploration and local exploitation. Extensive computational experiments are carried out based on Taillard’s benchmark suite. Computational results and comparisons with existing metaheuristics show that the PHPSO algorithm outperforms the existing methods in terms of quality search and robustness for the problem considered. The improvement in solution quality is confirmed by statistical tests of significance.

  17. Comparative Genomics of the Bacterial Genus Streptococcus Illuminates Evolutionary Implications of Species Groups

    Science.gov (United States)

    Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun

    2014-01-01

    Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into “species groups”. However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups. PMID:24977706

  18. Classification of Two Class Motor Imagery Tasks Using Hybrid GA-PSO Based K-Means Clustering.

    Science.gov (United States)

    Suraj; Tiwari, Purnendu; Ghosh, Subhojit; Sinha, Rakesh Kumar

    2015-01-01

    Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based K-means clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO based K-means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) based K-means clustering techniques in terms of both accuracy and execution time. The lesser execution time of hybrid GA-PSO technique makes it suitable for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and desynchronization (ERD) feature vector is formed.

  19. Static and dynamic mechanical properties of alkali treated unidirectional continuous Palmyra Palm Leaf Stalk Fiber/jute fiber reinforced hybrid polyester composites

    International Nuclear Information System (INIS)

    Shanmugam, D.; Thiruchitrambalam, M.

    2013-01-01

    Highlights: • New type of hybrid composite with Palmyra Palm Leaf Stalk Fibers (PPLSF) and jute. • Composites fabricated with continuous, unidirectional fibers. • Alkali treatment and hybridizing jute imparted good static and dynamic properties. • Properties are comparable with well know natural/glass fiber composites. • New hybrid composite can be an alternative in place of synthetic fiber composites. - Abstract: Alkali treated continuous Palmyra Palm Leaf Stalk Fiber (PPLSF) and jute fibers were used as reinforcement in unsaturated polyester matrix and their static and dynamic mechanical properties were evaluated. Continuous PPLSF and jute fibers were aligned unidirectionally in bi-layer arrangement and the hybrid composites were fabricated by compression molding process. Positive hybrid effect was observed for the composites due to hybridization. Increasing jute fiber loading showed a considerable increase in tensile and flexural properties of the hybrid composites as compared to treated PPLSF composites. Scanning Electron microscopy (SEM) of the fractured surfaces showed the nature of fiber/matrix interface. The impact strength of the hybrid composites were observed to be less compared to pure PPLSF composites. Addition of jute fibers to PPLSF and alkali treatment of the fibers has enhanced the storage and loss modulus of the hybrid composites. A positive shift of Tan δ peaks to higher temperature and reduction in the peak height of the composites was also observed. The composites with higher jute loading showed maximum damping behavior. Overall the hybridization was found to be efficient showing increased static and dynamic mechanical properties. A comparative study of properties of this hybrid composite with other hybrids made out of using natural/glass fibers is elaborated. Hybridization of alkali treated jute and PPLSF has resulted in enhanced properties which are comparable with other natural/glass fiber composites thus increasing the scope of

  20. Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems.

    Science.gov (United States)

    Zhai, Pei; Williams, Eric D

    2010-10-15

    This paper advances the life cycle assessment (LCA) of photovoltaic systems by expanding the boundary of the included processes using hybrid LCA and accounting for the technology-driven dynamics of embodied energy and carbon emissions. Hybrid LCA is an extended method that combines bottom-up process-sum and top-down economic input-output (EIO) methods. In 2007, the embodied energy was 4354 MJ/m(2) and the energy payback time (EPBT) was 2.2 years for a multicrystalline silicon PV system under 1700 kWh/m(2)/yr of solar radiation. These results are higher than those of process-sum LCA by approximately 60%, indicating that processes excluded in process-sum LCA, such as transportation, are significant. Even though PV is a low-carbon technology, the difference between hybrid and process-sum results for 10% penetration of PV in the U.S. electrical grid is 0.13% of total current grid emissions. Extending LCA from the process-sum to hybrid analysis makes a significant difference. Dynamics are characterized through a retrospective analysis and future outlook for PV manufacturing from 2001 to 2011. During this decade, the embodied carbon fell substantially, from 60 g CO(2)/kWh in 2001 to 21 g/kWh in 2011, indicating that technological progress is realizing reductions in embodied environmental impacts as well as lower module price.

  1. A dynamic-epistemic hybrid logic for intentions and information changes in strategic games

    NARCIS (Netherlands)

    Roy, O.

    2009-01-01

    In this paper I present a dynamic-epistemic hybrid logic for reasoning about information and intention changes in situations of strategic interaction. I provide a complete axiomatization for this logic, and then use it to study intentions-based transformations of decision problems.

  2. Hybridization and the evolution of reef coral diversity.

    Science.gov (United States)

    Vollmer, Steven V; Palumbi, Stephen R

    2002-06-14

    Hundreds of coral species coexist sympatrically on reefs, reproducing in mass-spawning events where hybridization appears common. In the Caribbean, DNA sequence data from all three sympatric Acropora corals show that mass spawning does not erode species barriers. Species A. cervicornis and A. palmata are distinct at two nuclear loci or share ancestral alleles. Morphotypes historically given the name Acropora prolifera are entirely F(1) hybrids of these two species, showing morphologies that depend on which species provides the egg for hybridization. Although selection limits the evolutionary potential of hybrids, F(1) individuals can reproduce asexually and form long-lived, potentially immortal hybrids with unique morphologies.

  3. Widespread hybridization and bidirectional introgression in sympatric species of coral reef fish

    KAUST Repository

    Harrison, Hugo B.; Berumen, Michael L.; Saenz-Agudelo, Pablo; Salas, Eva; Williamson, David H.; Jones, Geoffrey P.

    2017-01-01

    interspecific hybrids from a collection of 2,991 coral trout sampled in inshore and mid-shelf reefs of the southern Great Barrier Reef. Hybrids were ubiquitous among reefs, fertile and spanned multiple generations suggesting both ecological and evolutionary

  4. Evolutionary dynamics of molecular markers during local adaptation: a case study in Drosophila subobscura

    Directory of Open Access Journals (Sweden)

    Matos Margarida

    2009-06-01

    Full Text Available Abstract Here we present a correction to our article "Evolutionary dynamics of molecular markers during local adaptation: a case study in Drosophila subobscura". We have recently detected an error concerning the application of the Ln RH formula – a test to detect positive selection – to our microsatellite data. Here we provide the corrected data and discuss its implications for our overall findings. The corrections presented here have produced some changes relative to our previous results, namely in a locus (dsub14 that presents indications of being affected by positive selection. In general, our populations present less consistent indications of positive selection for this particular locus in both periods studied – between generations 3 and 14 and between generation 14 and 40 of laboratory adaptation. Despite this, the main findings of our study regarding the possibility of positive selection acting on that particular microsatellite still hold. As previously concluded in our article, further studies should be performed on this specific microsatellite locus (and neighboring areas to elucidate in greater detail the evolutionary forces acting on this specific region of the O chromosome of Drosophila subobscura.

  5. Evolutionary game dynamics of controlled and automatic decision-making.

    Science.gov (United States)

    Toupo, Danielle F P; Strogatz, Steven H; Cohen, Jonathan D; Rand, David G

    2015-07-01

    We integrate dual-process theories of human cognition with evolutionary game theory to study the evolution of automatic and controlled decision-making processes. We introduce a model in which agents who make decisions using either automatic or controlled processing compete with each other for survival. Agents using automatic processing act quickly and so are more likely to acquire resources, but agents using controlled processing are better planners and so make more effective use of the resources they have. Using the replicator equation, we characterize the conditions under which automatic or controlled agents dominate, when coexistence is possible and when bistability occurs. We then extend the replicator equation to consider feedback between the state of the population and the environment. Under conditions in which having a greater proportion of controlled agents either enriches the environment or enhances the competitive advantage of automatic agents, we find that limit cycles can occur, leading to persistent oscillations in the population dynamics. Critically, however, these limit cycles only emerge when feedback occurs on a sufficiently long time scale. Our results shed light on the connection between evolution and human cognition and suggest necessary conditions for the rise and fall of rationality.

  6. Evolutionary game dynamics of controlled and automatic decision-making

    Science.gov (United States)

    Toupo, Danielle F. P.; Strogatz, Steven H.; Cohen, Jonathan D.; Rand, David G.

    2015-07-01

    We integrate dual-process theories of human cognition with evolutionary game theory to study the evolution of automatic and controlled decision-making processes. We introduce a model in which agents who make decisions using either automatic or controlled processing compete with each other for survival. Agents using automatic processing act quickly and so are more likely to acquire resources, but agents using controlled processing are better planners and so make more effective use of the resources they have. Using the replicator equation, we characterize the conditions under which automatic or controlled agents dominate, when coexistence is possible and when bistability occurs. We then extend the replicator equation to consider feedback between the state of the population and the environment. Under conditions in which having a greater proportion of controlled agents either enriches the environment or enhances the competitive advantage of automatic agents, we find that limit cycles can occur, leading to persistent oscillations in the population dynamics. Critically, however, these limit cycles only emerge when feedback occurs on a sufficiently long time scale. Our results shed light on the connection between evolution and human cognition and suggest necessary conditions for the rise and fall of rationality.

  7. Emergence of structured communities through evolutionary dynamics.

    Science.gov (United States)

    Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M

    2015-10-21

    Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Evolutionary insights into scleractinian corals using comparative genomic hybridizations.

    KAUST Repository

    Aranda, Manuel

    2012-09-21

    Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization).

  9. Evolutionary insights into scleractinian corals using comparative genomic hybridizations.

    KAUST Repository

    Aranda, Manuel; DeSalvo, Michael K; Bayer, Till; Medina, Monica; Voolstra, Christian R.

    2012-01-01

    Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization).

  10. Competition-colonization trade-offs, competitive uncertainty, and the evolutionary assembly of species.

    Directory of Open Access Journals (Sweden)

    Pradeep Pillai

    Full Text Available We utilize a standard competition-colonization metapopulation model in order to study the evolutionary assembly of species. Based on earlier work showing how models assuming strict competitive hierarchies will likely lead to runaway evolution and self-extinction for all species, we adopt a continuous competition function that allows for levels of uncertainty in the outcome of competition. We then, by extending the standard patch-dynamic metapopulation model in order to include evolutionary dynamics, allow for the coevolution of species into stable communities composed of species with distinct limiting similarities. Runaway evolution towards stochastic extinction then becomes a limiting case controlled by the level of competitive uncertainty. We demonstrate how intermediate competitive uncertainty maximizes the equilibrium species richness as well as maximizes the adaptive radiation and self-assembly of species under adaptive dynamics with mutations of non-negligible size. By reconciling competition-colonization tradeoff theory with co-evolutionary dynamics, our results reveal the importance of intermediate levels of competitive uncertainty for the evolutionary assembly of species.

  11. Model validation of solar PV plant with hybrid data dynamic simulation based on fast-responding generator method

    Directory of Open Access Journals (Sweden)

    Zhao Dawei

    2016-01-01

    Full Text Available In recent years, a significant number of large-scale solar photovoltaic (PV plants have been put into operation or been under planning around the world. The model accuracy of solar PV plant is the key factor to investigate the mutual influences between solar PV plants and a power grid. However, this problem has not been well solved, especially in how to apply the real measurements to validate the models of the solar PV plants. Taking fast-responding generator method as an example, this paper presents a model validation methodology for solar PV plant via the hybrid data dynamic simulation. First, the implementation scheme of hybrid data dynamic simulation suitable for DIgSILENT PowerFactory software is proposed, and then an analysis model of solar PV plant integration based on IEEE 9 system is established. At last, model validation of solar PV plant is achieved by employing hybrid data dynamic simulation. The results illustrate the effectiveness of the proposed method in solar PV plant model validation.

  12. Modeling and Optimal Control of a Class of Warfare Hybrid Dynamic Systems Based on Lanchester (n,1) Attrition Model

    OpenAIRE

    Chen, Xiangyong; Zhang, Ancai

    2014-01-01

    For the particularity of warfare hybrid dynamic process, a class of warfare hybrid dynamic systems is established based on Lanchester equation in a (n,1) battle, where a heterogeneous force of n different troop types faces a homogeneous force. This model can be characterized by the interaction of continuous-time models (governed by Lanchester equation), and discrete event systems (described by variable tactics). Furthermore, an expository discussion is presented on an optimal variable tact...

  13. Energy-Efficient Scheduling Problem Using an Effective Hybrid Multi-Objective Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Lvjiang Yin

    2016-12-01

    Full Text Available Nowadays, manufacturing enterprises face the challenge of just-in-time (JIT production and energy saving. Therefore, study of JIT production and energy consumption is necessary and important in manufacturing sectors. Moreover, energy saving can be attained by the operational method and turn off/on idle machine method, which also increases the complexity of problem solving. Thus, most researchers still focus on small scale problems with one objective: a single machine environment. However, the scheduling problem is a multi-objective optimization problem in real applications. In this paper, a single machine scheduling model with controllable processing and sequence dependence setup times is developed for minimizing the total earliness/tardiness (E/T, cost, and energy consumption simultaneously. An effective multi-objective evolutionary algorithm called local multi-objective evolutionary algorithm (LMOEA is presented to tackle this multi-objective scheduling problem. To accommodate the characteristic of the problem, a new solution representation is proposed, which can convert discrete combinational problems into continuous problems. Additionally, a multiple local search strategy with self-adaptive mechanism is introduced into the proposed algorithm to enhance the exploitation ability. The performance of the proposed algorithm is evaluated by instances with comparison to other multi-objective meta-heuristics such as Nondominated Sorting Genetic Algorithm II (NSGA-II, Strength Pareto Evolutionary Algorithm 2 (SPEA2, Multiobjective Particle Swarm Optimization (OMOPSO, and Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D. Experimental results demonstrate that the proposed LMOEA algorithm outperforms its counterparts for this kind of scheduling problems.

  14. Hybrid computer simulation of the dynamics of the Hoger Onderwijs Reactor

    International Nuclear Information System (INIS)

    Moers, J.C.; Vries, J.W. de.

    1976-01-01

    A distributed parameter model for the dynamics of the Hoger Onderwijs Reactor (HOR) at Delft is presented. The neutronic and the thermodynamic part of this model have been separately implemented on the AD4-IBM1800 Hybrid Computer of the Delft University of Technology Computation Centre. A continuous Space/Discrete Time solution method has been employed. Some test results of the simulation are included

  15. Improving the Adaptability of Simulated Evolutionary Swarm Robots in Dynamically Changing Environments

    Science.gov (United States)

    Yao, Yao; Marchal, Kathleen; Van de Peer, Yves

    2014-01-01

    One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store ‘good behaviour’ and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment. PMID:24599485

  16. Improving the adaptability of simulated evolutionary swarm robots in dynamically changing environments.

    Directory of Open Access Journals (Sweden)

    Yao Yao

    Full Text Available One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN. An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store 'good behaviour' and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment.

  17. Enhanced configurational sampling with hybrid non-equilibrium molecular dynamics-Monte Carlo propagator

    Science.gov (United States)

    Suh, Donghyuk; Radak, Brian K.; Chipot, Christophe; Roux, Benoît

    2018-01-01

    Molecular dynamics (MD) trajectories based on classical equations of motion can be used to sample the configurational space of complex molecular systems. However, brute-force MD often converges slowly due to the ruggedness of the underlying potential energy surface. Several schemes have been proposed to address this problem by effectively smoothing the potential energy surface. However, in order to recover the proper Boltzmann equilibrium probability distribution, these approaches must then rely on statistical reweighting techniques or generate the simulations within a Hamiltonian tempering replica-exchange scheme. The present work puts forth a novel hybrid sampling propagator combining Metropolis-Hastings Monte Carlo (MC) with proposed moves generated by non-equilibrium MD (neMD). This hybrid neMD-MC propagator comprises three elementary elements: (i) an atomic system is dynamically propagated for some period of time using standard equilibrium MD on the correct potential energy surface; (ii) the system is then propagated for a brief period of time during what is referred to as a "boosting phase," via a time-dependent Hamiltonian that is evolved toward the perturbed potential energy surface and then back to the correct potential energy surface; (iii) the resulting configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-end momentum reversal prescription is used at the end of the neMD trajectories to guarantee that the hybrid neMD-MC sampling propagator obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The hybrid neMD-MC sampling propagator is designed and implemented to enhance the sampling by relying on the accelerated MD and solute tempering schemes. It is also combined with the adaptive biased force sampling algorithm to examine. Illustrative tests with specific biomolecular systems indicate that the method can yield

  18. Evolutionary games on graphs

    Science.gov (United States)

    Szabó, György; Fáth, Gábor

    2007-07-01

    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by non-mean-field-type social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.

  19. Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: Experimental study

    Science.gov (United States)

    Soltani, Omid; Akbari, Mohammad

    2016-10-01

    In this paper, the effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid is examined. The experiments carried out in the solid volume fraction range of 0 to 1.0% under the temperature ranging from 30 °C to 60 °C. The results showed that the hybrid nanofluid behaves as a Newtonian fluid for all solid volume fractions and temperatures considered. The measurements also indicated that the dynamic viscosity increases with increasing the solid volume fraction and decreases with the temperature rising. The relative viscosity revealed that when the solid volume fraction enhances from 0.1 to 1%, the dynamic viscosity increases up to 168%. Finally, using experimental data, in order to predict the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluids, a new correlation has been suggested. The comparisons between the correlation outputs and experimental results showed that the suggested correlation has an acceptable accuracy.

  20. Bridging the gap between Schumpeterian competition and evolutionary game theory

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    This paper suggests that the analysis of Schumpeterian competition within the Nelson-Winter model should be complemented with evolutionary game theory. This model and its limitations for density-dependent Schumpeterian strategies are presented in terms of the equations of evolutionary dynamics. F...

  1. Fast and stable redox reactions of MnO2/CNT hybrid electrodes for dynamically stretchable pseudocapacitors

    Science.gov (United States)

    Gu, Taoli; Wei, Bingqing

    2015-07-01

    Pseudocapacitors, which are energy storage devices that take advantage of redox reactions to store electricity, have a different charge storage mechanism compared to lithium-ion batteries (LIBs) and electric double-layer capacitors (EDLCs), and they could realize further gains if they were used as stretchable power sources. The realization of dynamically stretchable pseudocapacitors and understanding of the underlying fundamentals of their mechanical-electrochemical relationship have become indispensable. We report herein the electrochemical performance of dynamically stretchable pseudocapacitors using buckled MnO2/CNT hybrid electrodes. The extremely small relaxation time constant of less than 0.15 s indicates a fast redox reaction at the MnO2/CNT hybrid electrodes, securing a stable electrochemical performance for the dynamically stretchable pseudocapacitors. This finding and the fundamental understanding gained from the pseudo-capacitive behavior coupled with mechanical deformation under a dynamic stretching mode would provide guidance to further improve their overall performance including a higher power density than LIBs, a higher energy density than EDLCs, and a long-life cycling stability. Most importantly, these results will potentially accelerate the applications of stretchable pseudocapacitors for flexible and biomedical electronics.Pseudocapacitors, which are energy storage devices that take advantage of redox reactions to store electricity, have a different charge storage mechanism compared to lithium-ion batteries (LIBs) and electric double-layer capacitors (EDLCs), and they could realize further gains if they were used as stretchable power sources. The realization of dynamically stretchable pseudocapacitors and understanding of the underlying fundamentals of their mechanical-electrochemical relationship have become indispensable. We report herein the electrochemical performance of dynamically stretchable pseudocapacitors using buckled MnO2/CNT hybrid

  2. Dynamic analysis of hybrid energy systems under flexible operation and variable renewable generation – Part II: Dynamic cost analysis

    International Nuclear Information System (INIS)

    Garcia, Humberto E.; Mohanty, Amit; Lin, Wen-Chiao; Cherry, Robert S.

    2013-01-01

    Dynamic analysis of HES (hybrid energy systems) under flexible operation and variable renewable generation is considered in this two-part communication to better understand various challenges and opportunities associated with the high system variability arising from the integration of renewable energy into the power grid. Advanced HES solutions are investigated in which multiple forms of energy commodities, such as electricity and chemical products, may be exchanged. In particular, a comparative dynamic cost analysis is conducted in this part two of the communication to determine best HES options. The cost function includes a set of metrics for computing fixed costs, such as fixed operations and maintenance and overnight capital costs, and also variable operational costs, such as cost of operational variability, variable operations and maintenance cost, and cost of environmental impact, together with revenues. Assuming natural gas, coal, and nuclear as primary heat sources, preliminary results identify the level of renewable penetration at which a given advanced HES option (e.g., a nuclear hybrid) becomes increasingly more economical than a traditional electricity-only generation solution. Conditions are also revealed under which carbon resources may be better utilized as carbon sources for chemical production rather than as combustion material for electricity generation. - Highlights: ► Dynamic analysis of HES to investigate challenges related to renewable penetration. ► Evaluation of dynamic synergies among HES constituents on system performance. ► Comparison of traditional versus advanced HES candidates. ► Dynamic cost analysis of HES candidates to investigate their economic viability. ► Identification of conditions under which an energy commodity may be best utilized

  3. Dynamic Modeling and Control Strategy Optimization for a Hybrid Electric Tracked Vehicle

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2015-01-01

    Full Text Available A new hybrid electric tracked bulldozer composed of an engine generator, two driving motors, and an ultracapacitor is put forward, which can provide high efficiencies and less fuel consumption comparing with traditional ones. This paper first presents the terramechanics of this hybrid electric tracked bulldozer. The driving dynamics for this tracked bulldozer is then analyzed. After that, based on analyzing the working characteristics of the engine, generator, and driving motors, the power train system model and control strategy optimization is established by using MATLAB/Simulink and OPTIMUS software. Simulation is performed under a representative working condition, and the results demonstrate that fuel economy of the HETV can be significantly improved.

  4. Modeling evolutionary games in populations with demographic structure

    DEFF Research Database (Denmark)

    Li, Xiang-Yi; Giaimo, Stefano; Baudisch, Annette

    2015-01-01

    interactions, but usually omits life history and the demographic structure of the population. Here we show how an integration of both aspects can substantially alter the underlying evolutionary dynamics. We study the replicator dynamics of strategy interactions in life stage structured populations. Individuals...

  5. Molecular data highlight hybridization in squirrel monkeys (Saimiri, Cebidae

    Directory of Open Access Journals (Sweden)

    Jeferson Carneiro

    Full Text Available Abstract Hybridization has been reported increasingly frequently in recent years, fueling the debate on its role in the evolutionary history of species. Some studies have shown that hybridization is very common in captive New World primates, and hybrid offspring have phenotypes and physiological responses distinct from those of the "pure" parents, due to gene introgression. Here we used the TA15 Alu insertion to investigate hybridization in the genus Saimiri. Our results indicate the hybridization of Saimiri boliviensis peruviensis with S. sciureus macrodon, and S. b. boliviensis with S. ustus. Unexpectedly, some hybrids of both S. boliviensis peruviensis and S. b. boliviensis were homozygous for the absence of the insertion, which indicates that the hybrids were fertile.

  6. Hybrid Inflation: Multi-field Dynamics and Cosmological Constraints

    Science.gov (United States)

    Clesse, Sébastien

    2011-09-01

    The dynamics of hybrid models is usually approximated by the evolution of a scalar field slowly rolling along a nearly flat valley. Inflation ends with a waterfall phase, due to a tachyonic instability. This final phase is usually assumed to be nearly instantaneous. In this thesis, we go beyond these approximations and analyze the exact 2-field dynamics of hybrid models. Several effects are put in evidence: 1) the possible slow-roll violations along the valley induce the non existence of inflation at small field values. Provided super-planckian fields, the scalar spectrum of the original model is red, in agreement with observations. 2) The initial field values are not fine-tuned along the valley but also occupy a considerable part of the field space exterior to it. They form a structure with fractal boundaries. Using bayesian methods, their distribution in the whole parameter space is studied. Natural bounds on the potential parameters are derived. 3) For the original model, inflation is found to continue for more than 60 e-folds along waterfall trajectories in some part of the parameter space. The scalar power spectrum of adiabatic perturbations is modified and is generically red, possibly in agreement with CMB observations. Topological defects are conveniently stretched outside the observable Universe. 4) The analysis of the initial conditions is extended to the case of a closed Universe, in which the initial singularity is replaced by a classical bounce. In the third part of the thesis, we study how the present CMB constraints on the cosmological parameters could be ameliorated with the observation of the 21cm cosmic background, by future giant radio-telescopes. Forecasts are determined for a characteristic Fast Fourier Transform Telescope, by using both Fisher matrix and MCMC methods.

  7. Dynamic Mechanical and Thermal Properties of Bagasse/Glass Fiber/Polypropylene Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Mehdi Roohani

    2016-06-01

    Full Text Available This work aims to evaluate the thermal and dynamic mechanical properties of bagasse/glass fiber/polypropylene hybrid composites. Composites were prepared by the melt compounding method and their properties were characterized by differential scanning calorimetry (DSC and dynamic mechanical analysis (DMA. DSC results found that with incorporation of bagasse and glass fiber the melting temperature (Tm and the crystallisation temperature (Tc shift to higher temperatures and the degree of crystallinity (Xc increase. These findings suggest that the fibers played the role of a nucleating agent in composites. Dynamic mechanical analysis indicated that by the incorporation of bagasse and glass fiber into polypropylene, the storage modulus ( and the loss modulus ( increase whereas the mechanical loss factor (tanδ decrease. To assess the effect of reinforcement with increasing temperature, the effectiveness coefficient C was calculated at different temperature ranges and revealed that, at the elevated temperatures, improvement of mechanical properties due to the presence of fibers was more noticeable. The fiber-matrix adhesion efficiency determined by calculating of adhesion factor A in terms of the relative damping of the composite (tan δc and the polymer (tan δpand volume fraction of the fibers (Фf. Calculated adhesion factor A values indicated that by adding glass fiber to bagasse/polypropylene system, the fiber-matrix adhesion improve. Hybrid composite containing 25% bagasse and 15% glass fiber showed better fiber-matrix adhesion.

  8. The Genealogical Population Dynamics of HIV-1 in a Large Transmission Chain: Bridging within and among Host Evolutionary Rates

    Science.gov (United States)

    Vrancken, Bram; Rambaut, Andrew; Suchard, Marc A.; Drummond, Alexei; Baele, Guy; Derdelinckx, Inge; Van Wijngaerden, Eric; Vandamme, Anne-Mieke; Van Laethem, Kristel; Lemey, Philippe

    2014-01-01

    Transmission lies at the interface of human immunodeficiency virus type 1 (HIV-1) evolution within and among hosts and separates distinct selective pressures that impose differences in both the mode of diversification and the tempo of evolution. In the absence of comprehensive direct comparative analyses of the evolutionary processes at different biological scales, our understanding of how fast within-host HIV-1 evolutionary rates translate to lower rates at the between host level remains incomplete. Here, we address this by analyzing pol and env data from a large HIV-1 subtype C transmission chain for which both the timing and the direction is known for most transmission events. To this purpose, we develop a new transmission model in a Bayesian genealogical inference framework and demonstrate how to constrain the viral evolutionary history to be compatible with the transmission history while simultaneously inferring the within-host evolutionary and population dynamics. We show that accommodating a transmission bottleneck affords the best fit our data, but the sparse within-host HIV-1 sampling prevents accurate quantification of the concomitant loss in genetic diversity. We draw inference under the transmission model to estimate HIV-1 evolutionary rates among epidemiologically-related patients and demonstrate that they lie in between fast intra-host rates and lower rates among epidemiologically unrelated individuals infected with HIV subtype C. Using a new molecular clock approach, we quantify and find support for a lower evolutionary rate along branches that accommodate a transmission event or branches that represent the entire backbone of transmitted lineages in our transmission history. Finally, we recover the rate differences at the different biological scales for both synonymous and non-synonymous substitution rates, which is only compatible with the ‘store and retrieve’ hypothesis positing that viruses stored early in latently infected cells

  9. Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.

    Science.gov (United States)

    Chen, Yangzhou; Guo, Yuqi; Wang, Ying

    2017-03-29

    In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.

  10. Random and non-random mating populations: Evolutionary dynamics in meiotic drive.

    Science.gov (United States)

    Sarkar, Bijan

    2016-01-01

    Game theoretic tools are utilized to analyze a one-locus continuous selection model of sex-specific meiotic drive by considering nonequivalence of the viabilities of reciprocal heterozygotes that might be noticed at an imprinted locus. The model draws attention to the role of viability selections of different types to examine the stable nature of polymorphic equilibrium. A bridge between population genetics and evolutionary game theory has been built up by applying the concept of the Fundamental Theorem of Natural Selection. In addition to pointing out the influences of male and female segregation ratios on selection, configuration structure reveals some noted results, e.g., Hardy-Weinberg frequencies hold in replicator dynamics, occurrence of faster evolution at the maximized variance fitness, existence of mixed Evolutionarily Stable Strategy (ESS) in asymmetric games, the tending evolution to follow not only a 1:1 sex ratio but also a 1:1 different alleles ratio at particular gene locus. Through construction of replicator dynamics in the group selection framework, our selection model introduces a redefining bases of game theory to incorporate non-random mating where a mating parameter associated with population structure is dependent on the social structure. Also, the model exposes the fact that the number of polymorphic equilibria will depend on the algebraic expression of population structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Evolutionary game theory and organizational ecology: The case of resource-partitioning theory

    OpenAIRE

    ZHOU, Chaohong; VAN WITTELOOSTUIJN, Arjen

    2009-01-01

    Abstract: In this paper, we construct a mathematical model that applies tools from evolutionary game theory to issues in organizational ecology. Evolutionary game theory shares the key feature of mathematical rigor with the industrial organization tradition, but is similar to organizational ecology by emphasizing evolutionary dynamics. Evolutionary game theory may well be a complementary modeling tool for the analytical study of organizational ecology issues, next to formal logic, standard ga...

  12. A hybrid algorithm for parallel molecular dynamics simulations

    Science.gov (United States)

    Mangiardi, Chris M.; Meyer, R.

    2017-10-01

    This article describes algorithms for the hybrid parallelization and SIMD vectorization of molecular dynamics simulations with short-range forces. The parallelization method combines domain decomposition with a thread-based parallelization approach. The goal of the work is to enable efficient simulations of very large (tens of millions of atoms) and inhomogeneous systems on many-core processors with hundreds or thousands of cores and SIMD units with large vector sizes. In order to test the efficiency of the method, simulations of a variety of configurations with up to 74 million atoms have been performed. Results are shown that were obtained on multi-core systems with Sandy Bridge and Haswell processors as well as systems with Xeon Phi many-core processors.

  13. More efficient evolutionary strategies for model calibration with watershed model for demonstration

    Science.gov (United States)

    Baggett, J. S.; Skahill, B. E.

    2008-12-01

    Evolutionary strategies allow automatic calibration of more complex models than traditional gradient based approaches, but they are more computationally intensive. We present several efficiency enhancements for evolution strategies, many of which are not new, but when combined have been shown to dramatically decrease the number of model runs required for calibration of synthetic problems. To reduce the number of expensive model runs we employ a surrogate objective function for an adaptively determined fraction of the population at each generation (Kern et al., 2006). We demonstrate improvements to the adaptive ranking strategy that increase its efficiency while sacrificing little reliability and further reduce the number of model runs required in densely sampled parts of parameter space. Furthermore, we include a gradient individual in each generation that is usually not selected when the search is in a global phase or when the derivatives are poorly approximated, but when selected near a smooth local minimum can dramatically increase convergence speed (Tahk et al., 2007). Finally, the selection of the gradient individual is used to adapt the size of the population near local minima. We show, by incorporating these enhancements into the Covariance Matrix Adaption Evolution Strategy (CMAES; Hansen, 2006), that their synergetic effect is greater than their individual parts. This hybrid evolutionary strategy exploits smooth structure when it is present but degrades to an ordinary evolutionary strategy, at worst, if smoothness is not present. Calibration of 2D-3D synthetic models with the modified CMAES requires approximately 10%-25% of the model runs of ordinary CMAES. Preliminary demonstration of this hybrid strategy will be shown for watershed model calibration problems. Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larrañga, I. Inza and E. Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of

  14. Hybrid Multi-objective Forecasting of Solar Photovoltaic Output Using Kalman Filter based Interval Type-2 Fuzzy Logic System

    DEFF Research Database (Denmark)

    Hassan, Saima; Ahmadieh Khanesar, Mojtaba; Hajizadeh, Amin

    2017-01-01

    Learning of fuzzy parameters for system modeling using evolutionary algorithms is an interesting topic. In this paper, two optimal design and tuning of Interval type-2 fuzzy logic system are proposed using hybrid learning algorithms. The consequent parameters of the interval type-2 fuzzy logic...... system in both the hybrid algorithms are tuned using Kalman filter. Whereas the antecedent parameters of the system in the first hybrid algorithm is optimized using the multi-objective particle swarm optimization (MOPSO) and using the multi-objective evolutionary algorithm Based on Decomposition (MOEA...

  15. The stability concept of evolutionary game theory a dynamic approach

    CERN Document Server

    1992-01-01

    These Notes grew from my research in evolutionary biology, specifically on the theory of evolutionarily stable strategies (ESS theory), over the past ten years. Personally, evolutionary game theory has given me the opportunity to transfer my enthusiasm for abstract mathematics to more practical pursuits. I was fortunate to have entered this field in its infancy when many biologists recognized its potential but were not prepared to grant it general acceptance. This is no longer the case. ESS theory is now a rapidly expanding (in both applied and theoretical directions) force that no evolutionary biologist can afford to ignore. Perhaps, to continue the life-cycle metaphor, ESS theory is now in its late adolescence and displays much of the optimism and exuberance of this exciting age. There are dangers in writing a text about a theory at this stage of development. A comprehensive treatment would involve too many loose ends for the reader to appreciate the central message. On the other hand, the current central m...

  16. Inclusion of methoxy groups inverts the thermodynamic stabilities of DNA-RNA hybrid duplexes: A molecular dynamics simulation study.

    Science.gov (United States)

    Suresh, Gorle; Priyakumar, U Deva

    2015-09-01

    Modified nucleic acids have found profound applications in nucleic acid based technologies such as antisense and antiviral therapies. Previous studies on chemically modified nucleic acids have suggested that modifications incorporated in furanose sugar especially at 2'-position attribute special properties to nucleic acids when compared to other modifications. 2'-O-methyl modification to deoxyribose sugars of DNA-RNA hybrids is one such modification that increases nucleic acid stability and has become an attractive class of compounds for potential antisense applications. It has been reported that modification of DNA strands with 2'-O-methyl group reverses the thermodynamic stability of DNA-RNA hybrid duplexes. Molecular dynamics simulations have been performed on two hybrid duplexes (DR and RD) which differ from each other and 2'-O-methyl modified counterparts to investigate the effect of 2'-O-methyl modification on their duplex stability. The results obtained suggest that the modification drives the conformations of both the hybrid duplexes towards A-RNA like conformation. The modified hybrid duplexes exhibit significantly contrasting dynamics and hydration patterns compared to respective parent duplexes. In line with the experimental results, the relative binding free energies suggest that the introduced modifications stabilize the less stable DR hybrid, but destabilize the more stable RD duplex. Binding free energy calculations suggest that the increased hydrophobicity is primarily responsible for the reversal of thermodynamic stability of hybrid duplexes. Free energy component analysis further provides insights into the stability of modified duplexes. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber

    2014-01-01

    Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.

  18. A brief introduction to continuous evolutionary optimization

    CERN Document Server

    Kramer, Oliver

    2014-01-01

    Practical optimization problems are often hard to solve, in particular when they are black boxes and no further information about the problem is available except via function evaluations. This work introduces a collection of heuristics and algorithms for black box optimization with evolutionary algorithms in continuous solution spaces. The book gives an introduction to evolution strategies and parameter control. Heuristic extensions are presented that allow optimization in constrained, multimodal, and multi-objective solution spaces. An adaptive penalty function is introduced for constrained optimization. Meta-models reduce the number of fitness and constraint function calls in expensive optimization problems. The hybridization of evolution strategies with local search allows fast optimization in solution spaces with many local optima. A selection operator based on reference lines in objective space is introduced to optimize multiple conflictive objectives. Evolutionary search is employed for learning kernel ...

  19. The effect of mycorrhizal inoculation on hybrid poplar fine root dynamics in hydrocarbon contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Gunderson, J.; Knight, J.D.; Van Rees, K.C.J. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Soil Science

    2006-07-01

    The biological remediation of contaminated soils using plants was discussed. Hybrid poplars are good candidates for phytoremediation because they root deeply, cycle large amounts of water and grow quickly. Their fine root system is pivotal in nutrient and water acquisition. Therefore, in order to maximize the phytoremediation potential, it is important to understand the response of the fine root system. In addition to degrading organic chemicals, ectomycorrhizal (ECM) fungi provide the host with greater access to nutrients. This study determined the relationship between residual soil hydrocarbons and soil properties at a field site. The effects of residual contamination on hybrid poplar fine root dynamics was also examined along with the effect of ectomycorrhizal colonization on hybrid poplar fine root dynamics when grown in diesel contaminated soil under controlled conditions. A minirhizotron camera inside a growth chamber captured images of mycorrhizal inoculation on hybrid poplar fine root production. Walker hybrid poplar seedlings were grown for 12 weeks in a control soil and also in a diesel contaminated soil. Seedlings were also grown in control and diesel contaminated, ectomycorrhizal inoculated soils. The inoculum was a mycorrhizal mix containing Pisolithus tinctorius and Rhizopogon spp. The images showed that colonization by ECM fungi increased hybrid poplar fine root production and aboveground biomass in a diesel contaminated soil compared to non-colonized trees in the same soil. Root:shoot ratios were much higher in the diesel contaminated/non-inoculated treatment than in either of the control soil treatments. Results of phytoremediation in diesel contaminated soil were better in the non-colonized treatment than in the colonized treatment. Both treatments removed more contaminants from the soil than the unplanted control. Much higher quantities of hydrocarbons were found sequestered in the roots from the inoculated treatment than from the non

  20. Evolutionary pulsational mode dynamics in nonthermal turbulent viscous astrofluids

    Science.gov (United States)

    Karmakar, Pralay Kumar; Dutta, Pranamika

    2017-11-01

    The pulsational mode of gravitational collapse in a partially ionized self-gravitating inhomogeneous viscous nonthermal nonextensive astrofluid in the presence of turbulence pressure is illustratively analyzed. The constitutive thermal species, lighter electrons and ions, are thermostatistically treated with the nonthermal κ-distribution laws. The inertial species, such as identical heavier neutral and charged dust microspheres, are modelled in the turbulent fluid framework. All the possible linear processes responsible for dust-dust collisions are accounted. The Larson logatropic equations of state relating the dust thermal (linear) and turbulence (nonlinear) pressures with dust densities are included. A regular linear normal perturbation analysis (local) over the complex astrocloud ensues in a generalized quartic dispersion relation with unique nature of plasma-dependent multi-parametric coefficients. A numerical standpoint is provided to showcase the basic mode features in a judicious astronomical paradigm. It is shown that both the kinematic viscosity of the dust fluids and nonthermality parameter (kappa, the power-law tail index) of the thermal species act as stabilizing (damping) agent against the gravity; and so forth. The underlying evolutionary microphysics is explored. The significance of redistributing astrofluid material via waveinduced accretion in dynamic nonhomologic structureless cloud collapse leading to hierarchical astrostructure formation is actualized.

  1. Individual-based modeling of ecological and evolutionary processes

    Science.gov (United States)

    DeAngelis, Donald L.; Mooij, Wolf M.

    2005-01-01

    Individual-based models (IBMs) allow the explicit inclusion of individual variation in greater detail than do classical differential-equation and difference-equation models. Inclusion of such variation is important for continued progress in ecological and evolutionary theory. We provide a conceptual basis for IBMs by describing five major types of individual variation in IBMs: spatial, ontogenetic, phenotypic, cognitive, and genetic. IBMs are now used in almost all subfields of ecology and evolutionary biology. We map those subfields and look more closely at selected key papers on fish recruitment, forest dynamics, sympatric speciation, metapopulation dynamics, maintenance of diversity, and species conservation. Theorists are currently divided on whether IBMs represent only a practical tool for extending classical theory to more complex situations, or whether individual-based theory represents a radically new research program. We feel that the tension between these two poles of thinking can be a source of creativity in ecology and evolutionary theory.

  2. Fixation times in evolutionary games under weak selection

    International Nuclear Information System (INIS)

    Altrock, Philipp M; Traulsen, Arne

    2009-01-01

    In evolutionary game dynamics, reproductive success increases with the performance in an evolutionary game. If strategy A performs better than strategy B, strategy A will spread in the population. Under stochastic dynamics, a single mutant will sooner or later take over the entire population or go extinct. We analyze the mean exit times (or average fixation times) associated with this process. We show analytically that these times depend on the payoff matrix of the game in an amazingly simple way under weak selection, i.e. strong stochasticity: the payoff difference Δπ is a linear function of the number of A individuals i, Δπ=u i+v. The unconditional mean exit time depends only on the constant term v. Given that a single A mutant takes over the population, the corresponding conditional mean exit time depends only on the density dependent term u. We demonstrate this finding for two commonly applied microscopic evolutionary processes.

  3. AN EVOLUTIONARY ALGORITHM FOR FAST INTENSITY BASED IMAGE MATCHING BETWEEN OPTICAL AND SAR SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    P. Fischer

    2018-04-01

    Full Text Available This paper presents a hybrid evolutionary algorithm for fast intensity based matching between satellite imagery from SAR and very high-resolution (VHR optical sensor systems. The precise and accurate co-registration of image time series and images of different sensors is a key task in multi-sensor image processing scenarios. The necessary preprocessing step of image matching and tie-point detection is divided into a search problem and a similarity measurement. Within this paper we evaluate the use of an evolutionary search strategy for establishing the spatial correspondence between satellite imagery of optical and radar sensors. The aim of the proposed algorithm is to decrease the computational costs during the search process by formulating the search as an optimization problem. Based upon the canonical evolutionary algorithm, the proposed algorithm is adapted for SAR/optical imagery intensity based matching. Extensions are drawn using techniques like hybridization (e.g. local search and others to lower the number of objective function calls and refine the result. The algorithm significantely decreases the computational costs whilst finding the optimal solution in a reliable way.

  4. Evolutionary Games with Randomly Changing Payoff Matrices

    Science.gov (United States)

    Yakushkina, Tatiana; Saakian, David B.; Bratus, Alexander; Hu, Chin-Kun

    2015-06-01

    Evolutionary games are used in various fields stretching from economics to biology. In most of these games a constant payoff matrix is assumed, although some works also consider dynamic payoff matrices. In this article we assume a possibility of switching the system between two regimes with different sets of payoff matrices. Potentially such a model can qualitatively describe the development of bacterial or cancer cells with a mutator gene present. A finite population evolutionary game is studied. The model describes the simplest version of annealed disorder in the payoff matrix and is exactly solvable at the large population limit. We analyze the dynamics of the model, and derive the equations for both the maximum and the variance of the distribution using the Hamilton-Jacobi equation formalism.

  5. Quantifying evolutionary dynamics from variant-frequency time series

    Science.gov (United States)

    Khatri, Bhavin S.

    2016-09-01

    From Kimura’s neutral theory of protein evolution to Hubbell’s neutral theory of biodiversity, quantifying the relative importance of neutrality versus selection has long been a basic question in evolutionary biology and ecology. With deep sequencing technologies, this question is taking on a new form: given a time-series of the frequency of different variants in a population, what is the likelihood that the observation has arisen due to selection or neutrality? To tackle the 2-variant case, we exploit Fisher’s angular transformation, which despite being discovered by Ronald Fisher a century ago, has remained an intellectual curiosity. We show together with a heuristic approach it provides a simple solution for the transition probability density at short times, including drift, selection and mutation. Our results show under that under strong selection and sufficiently frequent sampling these evolutionary parameters can be accurately determined from simulation data and so they provide a theoretical basis for techniques to detect selection from variant or polymorphism frequency time-series.

  6. Controlled initiation and quantitative visualization of cell interaction dynamics - a novel hybrid microscopy method -

    NARCIS (Netherlands)

    Snijder-van As, M.I.

    2010-01-01

    This thesis describes the development, validation, and application of a hybrid microscopy technique to study cell-substrate and cell-cell interactions in a controlled and quantitative manner. We studied the spatial and temporal dynamics of the selected membrane molecules CD6 and the activated

  7. Evolutionary dynamics of mating-type loci of Mycosphaerella spp. occurring on banana.

    Science.gov (United States)

    Arzanlou, Mahdi; Crous, Pedro W; Zwiers, Lute-Harm

    2010-01-01

    The devastating Sigatoka disease complex of banana is primarily caused by three closely related heterothallic fungi belonging to the genus Mycosphaerella: M. fijiensis, M. musicola, and M. eumusae. Previous phylogenetic work showing common ancestry led us to analyze the mating-type loci of these Mycosphaerella species occurring on banana. We reasoned that this might provide better insight into the evolutionary history of these species. PCR and chromosome-walking approaches were used to clone the mating-type loci of M. musicola and M. eumusae. Sequences were compared to the published mating-type loci of M. fijiensis and other Mycosphaerella spp., and a novel organization of the MAT loci was found. The mating-type loci of the examined Mycosphaerella species are expanded, containing two additional Mycosphaerella-specific genes in a unique genomic organization. The proteins encoded by these novel genes show a higher interspecies than intraspecies homology. Moreover, M. fijiensis, M. musicola, and M. eumusae contain two additional mating-type-like loci, containing parts of both MAT1-1-1 and MAT1-2-1. The data indicate that M. fijiensis, M. musicola, and M. eumusae share an ancestor in which a fusion event occurred between MAT1-1-1 and MAT1-2-1 sequences and in which additional genes became incorporated into the idiomorph. The new genes incorporated have since then evolved independently in the MAT1-1 and MAT1-2 loci. Thus, these data are an example of the evolutionary dynamics of fungal MAT loci in general and show the great flexibility of the MAT loci of Mycosphaerella species in particular.

  8. Evolutionary Dynamics of Small RNAs in 27 Escherichia coli and Shigella Genomes

    Science.gov (United States)

    Skippington, Elizabeth; Ragan, Mark A.

    2012-01-01

    Small RNAs (sRNAs) are widespread in bacteria and play critical roles in regulating physiological processes. They are best characterized in Escherichia coli K-12 MG1655, where 83 sRNAs constitute nearly 2% of the gene complement. Most sRNAs act by base pairing with a target mRNA, modulating its translation and/or stability; many of these RNAs share only limited complementarity to their mRNA target, and require the chaperone Hfq to facilitate base pairing. Little is known about the evolutionary dynamics of bacterial sRNAs. Here, we apply phylogenetic and network analyses to investigate the evolutionary processes and principles that govern sRNA gene distribution in 27 E. coli and Shigella genomes. We identify core (encoded in all 27 genomes) and variable sRNAs; more than two-thirds of the E. coli K-12 MG1655 sRNAs are core, whereas the others show patterns of presence and absence that are principally due to genetic loss, not duplication or lateral genetic transfer. We present evidence that variable sRNAs are less tightly integrated into cellular genetic regulatory networks than are the core sRNAs, and that Hfq facilitates posttranscriptional cross talk between the E. coli–Shigella core and variable genomes. Finally, we present evidence that more than 80% of genes targeted by Hfq-associated core sRNAs have been transferred within the E. coli–Shigella clade, and that most of these genes have been transferred intact. These results suggest that Hfq and sRNAs help integrate laterally acquired genes into established regulatory networks. PMID:22223756

  9. Genome-wide evolutionary dynamics of influenza B viruses on a global scale.

    Directory of Open Access Journals (Sweden)

    Pinky Langat

    2017-12-01

    Full Text Available The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally.

  10. Genome-wide evolutionary dynamics of influenza B viruses on a global scale

    Science.gov (United States)

    Langat, Pinky; Bowden, Thomas A.; Edwards, Stephanie; Gall, Astrid; Rambaut, Andrew; Daniels, Rodney S.; Russell, Colin A.; Pybus, Oliver G.; McCauley, John

    2017-01-01

    The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally. PMID:29284042

  11. Evolutionary dynamics of hepatitis C virus NS3 protease domain during and following treatment with narlaprevir, a potent NS3 protease inhibitor

    NARCIS (Netherlands)

    de Bruijne, J.; Thomas, X. V.; Rebers, S. P.; Weegink, C. J.; Treitel, M. A.; Hughes, E.; Bergmann, J. F.; de Knegt, R. J.; Janssen, H. L. A.; Reesink, H. W.; Molenkamp, R.; Schinkel, J.

    2013-01-01

    Narlaprevir, a hepatitis C virus (HCV) NS3/4A serine protease inhibitor, has demonstrated robust antiviral activity in a placebo-controlled phase 1 study. To study evolutionary dynamics of resistant variants, the NS3 protease sequence was clonally analysed in thirty-two HCV genotype 1-infected

  12. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles

    DEFF Research Database (Denmark)

    Colombo, Stefano; Cun, Dongmei; Remaut, Katrien

    2015-01-01

    Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA) nano...... of transfection-competent siRNA-DOTAP lipoplexes from the LPNs. Based on these results, we suggest a model for the nanostructural characteristics of the LPNs, in which the siRNA is organized in lamellar superficial assemblies and/or as complexes entrapped in the polymeric matrix.......Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA......) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X...

  13. Despotism, democracy, and the evolutionary dynamics of leadership and followership.

    Science.gov (United States)

    Van Vugt, Mark

    2009-01-01

    Responds to comments made by George B. Graen and Stephen J. Guastello on the current author's article Leadership, followership, and evolution: Some lessons from the past by Van Vugt, Hogan, and Kaiser. In the original article my co-authors and I proposed a new way of thinking about leadership, informed by evolutionary (neo-Darwinian) theory. In the first commentary, Graen noted that we ignored a number of recently developed psychological theories of leadership that take into account the leader-follower relationship, most notably LMX theory. LMX theory asserts that leadership effectiveness and team performance are affected by the quality of working relationships between superior and subordinates. Because the original article primarily dealt with questions about the origins of leadership--the phylogenetic and evolutionary causes--we had to be concise in our review of proximate psychological theories of leadership. In the second commentary, Guastello concurred with the importance of an evolutionary game analysis for studying leadership but disagreed with certain details of our analysis. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  14. Cooperative Evolutionary Game and Applications in Construction Supplier Tendency

    Directory of Open Access Journals (Sweden)

    Qianqian Shi

    2018-01-01

    Full Text Available Major construction projects have a great influence on the national economy and society, wherein cooperative relationship between construction suppliers plays an increasingly significant role in the overall supply chain system. However, the relationships between suppliers are noncontractual, multistage, dynamic, and complicated. To gain a deeper insight into the suppliers’ cooperative relationships, an evolutionary game model is developed to explore the cooperation tendency of multisuppliers. A replicator dynamic system is further formulated to investigate the evolutionary stable strategies of multisuppliers. Then, fourteen “when-then” type scenarios are concluded and classified into six different evolutionary tracks. Meanwhile, the critical influencing factors are identified. The results show that the suppliers’ production capacity, owner-supplier contract, and the owner’s incentive mechanism influence the cooperation tendency of suppliers directly. The managerial implications contribute to insightful references for a more stable cooperative relationship between the owner and suppliers.

  15. Differential Dynamic Evolutionary Model of Emergency Financial Service Supply Chain in Natural Disaster Risk Management

    Directory of Open Access Journals (Sweden)

    Shujian Ma

    2016-01-01

    Full Text Available A government-market-public partnership (GMPP could be a feasible arrangement for providing insurance coverage for natural disaster. Firstly, we put forward GMPP management mode. Secondly, the emergency financial service supply chain for natural disaster risk is built from the view of supply chain. Finally, the objective of this paper is to obtain insights into the cooperative and competitive relationship in GMPP system. We establish the cooperative and competitive differential dynamic evolutionary models and prove the existence of equilibrium solutions in order to solve the coordination problems. In conclusion, the equilibrium solutions can be achieved among the insurers, the operating governments, and the public.

  16. Structure of herbivore communities in two oak (Quercus spp.) hybrid zones.

    Science.gov (United States)

    Boecklen, William J; Spellenberg, Richard

    1990-11-01

    We examined patterns of density and species diversity for leaf-mining Lepidopterans and gall-forming Hymenopterans in two oak (Quercus spp.) hybrid zones: Quercus depressipes x Q. rugosa and Q. emoryi x Q. coccolobifolia. In both species complexes, hybrid hosts typically supported significantly lower densities and species diversity of parasites than did parental types. This contradicts the findings of Whitham (1989) that suggested that hybrid hosts may act as parasite sinks both in ecological and evolutionary time. We discuss features of hybrid zones that are likely to influence patterns of herbivory.

  17. Dynamic Coordinated Shifting Control of Automated Mechanical Transmissions without a Clutch in a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Xinlei Liu

    2012-08-01

    Full Text Available On the basis of the shifting process of automated mechanical transmissions (AMTs for traditional hybrid electric vehicles (HEVs, and by combining the features of electric machines with fast response speed, the dynamic model of the hybrid electric AMT vehicle powertrain is built up, the dynamic characteristics of each phase of shifting process are analyzed, and a control strategy in which torque and speed of the engine and electric machine are coordinatively controlled to achieve AMT shifting control for a plug-in hybrid electric vehicle (PHEV without clutch is proposed. In the shifting process, the engine and electric machine are well controlled, and the shift jerk and power interruption and restoration time are reduced. Simulation and real car test results show that the proposed control strategy can more efficiently improve the shift quality for PHEVs equipped with AMTs.

  18. Natural hybridization and reproductive isolation between two Primula speciesFA

    Institute of Scientific and Technical Information of China (English)

    Yanping Xie; Xingfu Zhu; Yongpeng Ma; Jianli Zhao; Li Li; Qingjun Li

    2017-01-01

    Natural hybridization frequently occurs in plants and can facilitate gene flow between species,possibly resulting in species refusion.However,various reproductive barriers block the formation of hybrids and maintain species integrity.Here,we conducted a field survey to examine natural hybridization and reproductive isolation (RI) between sympatric populations of Primula secundiflora and P.poissonii using ten nuclear simple sequence repeat (SSR) loci.Although introgressive hybridization occurred,species boundaries between P.secundiflora and P.poissonii were maintained through nearly complete reproductive isolation.These interfertile species provide an excellent model for studying the RI mechanisms and evolutionary forces that maintain species boundaries.

  19. Hybridization and genome evolution I: The role of contingency during hybrid speciation

    Directory of Open Access Journals (Sweden)

    Fabrice EROUKHMANOFF, Richard I. BAILEY, Glenn-Peter SæTRE

    2013-10-01

    Full Text Available Homoploid hybrid speciation (HHS involves the recombination of two differentiated genomes into a novel, functional one without a change in chromosome number. Theoretically, there are numerous ways for two parental genomes to recombine. Hence, chance may play a large role in the formation of a hybrid species. If these genome combinations can evolve rapidly following hybridization and sympatric situations are numerous, recurrent homoploid hybrid speciation is a possibility. We argue that three different, but not mutually exclusive, types of contingencies could influence this process. First, many of these “hopeful monsters” of recombinant parent genotypes would likely have low fitness. Only specific combinations of parental genomic contributions may produce viable, intra-fertile hybrid species able to accommodate potential constraints arising from intragenomic conflict. Second, ecological conditions (competition, geography of the contact zones or the initial frequency of both parent species might favor different outcomes ranging from sympatric coexistence to the formation of hybrid swarms and ultimately hybrid speciation. Finally, history may also play an important role in promoting or constraining recurrent HHS if multiple hybridization events occur sequentially and parental divergence or isolation differs along this continuum. We discuss under which conditions HHS may occur multiple times in parallel and to what extent recombination and selection may fuse the parent genomes in the same or different ways. We conclude by examining different approaches that might help to solve this intriguing evolutionary puzzle [Current Zoology 59 (5: 667-674, 2013]. 

  20. Hybridization between invasive Spartina Densiflora (Poaceae) and native S. Foliosa in San Francisco Bay, California, USA

    Science.gov (United States)

    Rapid evolution in contemporary time can result when related species, brought together through human-aided introduction, hybridize. The evolutionary consequences of post introduction hybridization range from allopolyploid speciation to extinction of species through genetic amalg...

  1. Evolutionary dynamics of fluctuating populations with strong mutualism

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David

    2013-03-01

    Evolutionary game theory with finite interacting populations is receiving increased attention, including subtle phenomena associated with number fluctuations, i.e., ``genetic drift.'' Models of cooperation and competition often utilize a simplified Moran model, with a strictly fixed total population size. We explore a more general evolutionary model with independent fluctuations in the numbers of two distinct species, in a regime characterized by ``strong mutualism.'' The model has two absorbing states, each corresponding to fixation of one of the two species, and allows exploration of the interplay between growth, competition, and mutualism. When mutualism is favored, number fluctuations eventually drive the system away from a stable fixed point, characterized by cooperation, to one of the absorbing states. Well-mixed populations will thus be taken over by a single species in a finite time, despite the bias towards cooperation. We calculate both the fixation probability and the mean fixation time as a function of the initial conditions and carrying capacities in the strong mutualism regime, using the method of matched asymptotic expansions. Our results are compared to computer simulations.

  2. Advances on research epigenetic change of hybrid and polyploidy ...

    African Journals Online (AJOL)

    MERCY

    2011-09-07

    Sep 7, 2011 ... evolution is speculated as a simulation of the evolutionary steps that .... Molecular studies indicate that epigenetic events are important in ...... Patterns of hybrid loss of imprinting reveal tissue- and cluster-specific regulation.

  3. A hybrid computer simulation of reactor spatial dynamics

    International Nuclear Information System (INIS)

    Hinds, H.W.

    1977-08-01

    The partial differential equations describing the one-speed spatial dynamics of thermal neutron reactors were converted to a set of ordinary differential equations, using finite-difference approximations for the spatial derivatives. The variables were then normalized to a steady-state reference condition in a novel manner, to yield an equation set particularly suitable for implementation on a hybrid computer. One Applied Dynamics AD/FIVE analog-computer console is capable of solving, all in parallel, up to 30 simultaneous differential equations. This corresponds roughly to eight reactor nodes, each with two active delayed-neutron groups. To improve accuracy, an increase in the number of nodes is usually required. Using the Hsu-Howe multiplexing technique, an 8-node, one-dimensional module was switched back and forth between the left and right halves of the reactor, to simulate a 16-node model, also in one dimension. These two versions (8 or 16 nodes) of the model were tested on benchmark problems of the loss-of-coolant type, which were also solved using the digital code FORSIM, with two energy groups and 26 nodes. Good agreement was obtained between the two solution techniques. (author)

  4. Optimal Solution for VLSI Physical Design Automation Using Hybrid Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    I. Hameem Shanavas

    2014-01-01

    Full Text Available In Optimization of VLSI Physical Design, area minimization and interconnect length minimization is an important objective in physical design automation of very large scale integration chips. The objective of minimizing the area and interconnect length would scale down the size of integrated chips. To meet the above objective, it is necessary to find an optimal solution for physical design components like partitioning, floorplanning, placement, and routing. This work helps to perform the optimization of the benchmark circuits with the above said components of physical design using hierarchical approach of evolutionary algorithms. The goal of minimizing the delay in partitioning, minimizing the silicon area in floorplanning, minimizing the layout area in placement, minimizing the wirelength in routing has indefinite influence on other criteria like power, clock, speed, cost, and so forth. Hybrid evolutionary algorithm is applied on each of its phases to achieve the objective. Because evolutionary algorithm that includes one or many local search steps within its evolutionary cycles to obtain the minimization of area and interconnect length. This approach combines a hierarchical design like genetic algorithm and simulated annealing to attain the objective. This hybrid approach can quickly produce optimal solutions for the popular benchmarks.

  5. Parasites and competitors suppress bacterial pathogen synergistically due to evolutionary trade-offs

    NARCIS (Netherlands)

    Wang, Xiaofang; Wei, Zhong; Li, Mei; Wang, Xueqi; Shan, Anqi; Mei, Xinlan; Jousset, Alexandre; Shen, Qirong; Xu, Yangchun; Friman, Ville Petri

    2017-01-01

    Parasites and competitors are important for regulating pathogen densities and subsequent disease dynamics. It is, however, unclear to what extent this is driven by ecological and evolutionary processes. Here, we used experimental evolution to study the eco-evolutionary feedbacks among Ralstonia

  6. Co-Evolution of Opinion and Strategy in Persuasion Dynamics:. AN Evolutionary Game Theoretical Approach

    Science.gov (United States)

    Ding, Fei; Liu, Yun; Li, Yong

    In this paper, a new model of opinion formation within the framework of evolutionary game theory is presented. The model simulates strategic situations when people are in opinion discussion. Heterogeneous agents adjust their behaviors to the environment during discussions, and their interacting strategies evolve together with opinions. In the proposed game, we take into account payoff discount to join a discussion, and the situation that people might drop out of an unpromising game. Analytical and emulational results show that evolution of opinion and strategy always tend to converge, with utility threshold, memory length, and decision uncertainty parameters influencing the convergence time. The model displays different dynamical regimes when we set differently the rule when people are at a loss in strategy.

  7. Evolutionary competition between boundedly rational behavioral rules in oligopoly games

    International Nuclear Information System (INIS)

    Cerboni Baiardi, Lorenzo; Lamantia, Fabio; Radi, Davide

    2015-01-01

    In this paper, we propose an evolutionary model of oligopoly competition where agents can select between different behavioral rules to make decisions on productions. We formalize the model as a general class of evolutionary oligopoly games and then we consider an example with two specific rules, namely Local Monopolistic Approximation and Gradient dynamics. We provide several results on the global dynamic properties of the model, showing that in some cases the attractor of the system may belong to an invariant plane where only one behavioral rule is adopted (monomorphic state). The attractors on the invariant planes can be either strong attractors or weak attractors. However, we also explain why the system can be in a state of Evolutionary Stable Heterogeneity, where it is more profitable for the agents to employ both heuristics in the long term (polymorphic state).

  8. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium.

    Science.gov (United States)

    Catania, Francesco; Lynch, Michael

    2010-05-04

    In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa) remains a virtually unexplored issue. By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Our observations 1) shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2) are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3) reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  9. Hybrid systems with constraints

    CERN Document Server

    Daafouz, Jamal; Sigalotti, Mario

    2013-01-01

    Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.This book is dedicated mainly to

  10. An evolutionary explanation of the value premium puzzle

    OpenAIRE

    Hens, Thorsten; Lensberg, Terje; Schenk-Hoppé, Klaus Reiner; Wöhrmann, Peter

    2011-01-01

    As early as 1934 Graham and Dodd conjectured that excess returns from value investment originate from a tendency of stock prices to converge towards a fundamental value. This paper confirms their insights within the evolutionary finance model of Evstigneev et al. (Econ Theory 27:449–468, (Evstigneev et al. 2006)). Our empirical results show the predictive power of the evolutionary benchmark valuation for the relative market capitalization and its dynamics in the sample of firms listed in the ...

  11. Dynamic Analysis of a Hybrid Energy Storage System (H-ESS Coupled to a Photovoltaic (PV Plant

    Directory of Open Access Journals (Sweden)

    Linda Barelli

    2018-02-01

    Full Text Available Nowadays energy storage is strongly needed to allow grid safety and stability due to the wide penetration of renewable plants. Mainly economic and technological issues impede a relevant integration of conventional storage devices in the energy system. In this scenario, the hybridization of different storage technologies can be a techno-economic solution useful to overcome these issues and promote their diffusion. Hybridization allows multi-operation modes of the Energy Storage System (ESS, merging the positive features of base-technologies and extending their application ranges. This paper provides a dynamic analysis of a hybrid energy storage system (H-ESS consisting of a flywheel and a battery pack coupled to a photovoltaic generation plant and a residential load up to 20 kW. A dynamic model of the overall micro-grid (MG was developed implementing the H-ESS preliminary sizing and a suitable management algorithm. The instantaneous behavior of each component was evaluated. A brief summary of the MG performance at different weather and load conditions was provided together with a characterization of the impact of power fluctuations on the battery current and on the power exchange with the grid.

  12. Dynamics of Rex3 in the genomes of endangered Iberian Leuciscinae (Teleostei, Cyprinidae and their natural hybrids

    Directory of Open Access Journals (Sweden)

    Carla Sofia A. Pereira

    2015-10-01

    Full Text Available Iberian Leuciscinae are greatly diverse comprising taxa of hybrid origin. With highly conservative karyotypes, Iberian Chondrostoma s.l. have recently demonstrated sub-chromosomal differentiation and rapid genome restructuring in natural hybrids, which was confirmed by ribosomal DNA (rDNA transposition and/or multiplication. To understand the role of repetitive DNAs in the differentiation of their genomes, a genetic and molecular cytogenetic survey was conducted in Achondrostoma oligolepis, Anaecypris hispanica, Iberochondrostoma lemmingii, I. lusitanicum, Pseudochondrostoma duriense, P. polylepis, Squalius pyrenaicus and hybrids between A. oligolepis x (P. duriense/P. polylepis, which represent 'alburnine', chondrostomine and Squalius lineages. The chromosomal distribution of Rex3 retroelement was found highly compartmentalized at centromeres and moderately at telomeres, co-localizing with 5S rDNA loci, and grossly correlating with heterochromatin and blocks of C0t-1 DNA. This accumulation was evident in at least 10 chromosome pairs, a pattern that seemed to be shared among the different species, likely predating their divergence. Nevertheless, species-specific clusters were detected in I. lusitanicum, P. duriense, P. polylepis and S. pyrenaicus demonstrating rapid and independent differentiation. Natural hybrids followed the same accumulation pattern and association with repetitive sequences but with increased number of Rex3 clusters and correlating with translocated 45S rDNA clusters. Rex3 sequence phylogeny didn't agree with its hosts' phylogeny but the observed distribution pattern is congruent with an evolutionary tendency to protect its activity, a robust regulatory system and/or events of horizontal transfer. This is the first report of retroelement physical mapping in Cyprinidae. It helped outlining conceivable ancestral homologies and recognizing retrotransposon activation in hybrids, being possibly associated with genome

  13. Evolutionary dynamics of microsatellite distribution in plants: insight from the comparison of sequenced brassica, Arabidopsis and other angiosperm species.

    Directory of Open Access Journals (Sweden)

    Jiaqin Shi

    Full Text Available Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences. The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type the angiosperm species (aside from a few species all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite

  14. Evolutionary Dynamics of Microsatellite Distribution in Plants: Insight from the Comparison of Sequenced Brassica, Arabidopsis and Other Angiosperm Species

    Science.gov (United States)

    Shi, Jiaqin; Huang, Shunmou; Fu, Donghui; Yu, Jinyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2013-01-01

    Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences). The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number) of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type) the angiosperm species (aside from a few species) all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite distribution with

  15. Fast Construction of Near Parsimonious Hybridization Networks for Multiple Phylogenetic Trees.

    Science.gov (United States)

    Mirzaei, Sajad; Wu, Yufeng

    2016-01-01

    Hybridization networks represent plausible evolutionary histories of species that are affected by reticulate evolutionary processes. An established computational problem on hybridization networks is constructing the most parsimonious hybridization network such that each of the given phylogenetic trees (called gene trees) is "displayed" in the network. There have been several previous approaches, including an exact method and several heuristics, for this NP-hard problem. However, the exact method is only applicable to a limited range of data, and heuristic methods can be less accurate and also slow sometimes. In this paper, we develop a new algorithm for constructing near parsimonious networks for multiple binary gene trees. This method is more efficient for large numbers of gene trees than previous heuristics. This new method also produces more parsimonious results on many simulated datasets as well as a real biological dataset than a previous method. We also show that our method produces topologically more accurate networks for many datasets.

  16. Robustness of cooperation in the evolutionary prisoner's dilemma on complex networks

    International Nuclear Information System (INIS)

    Poncela, J; Gomez-Gardenes, J; FlorIa, L M; Moreno, Y

    2007-01-01

    Recent studies on the evolutionary dynamics of the prisoner's dilemma game in scale-free networks have demonstrated that the heterogeneity of the network interconnections enhances the evolutionary success of cooperation. In this paper we address the issue of how the characterization of the asymptotic states of the evolutionary dynamics depends on the initial concentration of cooperators. We find that the measure and the connectedness properties of the set of nodes where cooperation reaches fixation is largely independent of initial conditions, in contrast with the behaviour of both the set of nodes where defection is fixed, and the fluctuating nodes. We also check for the robustness of these results when varying the degree heterogeneity along a one-parametric family of networks interpolating between the class of Erdos-Renyi graphs and the Barabasi-Albert networks

  17. Multiple Time-Step Dual-Hamiltonian Hybrid Molecular Dynamics - Monte Carlo Canonical Propagation Algorithm.

    Science.gov (United States)

    Chen, Yunjie; Kale, Seyit; Weare, Jonathan; Dinner, Aaron R; Roux, Benoît

    2016-04-12

    A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method.

  18. Genetic architecture of hybrid male sterility in Drosophila: analysis of intraspecies variation for interspecies isolation.

    Science.gov (United States)

    Reed, Laura K; LaFlamme, Brooke A; Markow, Therese A

    2008-08-27

    The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete. Isofemale strains of D. mojavensis vary significantly in their production of sterile F(1) sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL) mapping analyses directly on F(1) hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS) in the F(1) is complex, involving multiple QTL, epistasis, and cytoplasmic effects. The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation.

  19. A hybrid particle–field molecular dynamics approach: a route toward efficient coarse-grained models for biomembranes

    International Nuclear Information System (INIS)

    Milano, Giuseppe; De Nicola, Antonio; Kawakatsu, Toshihiro

    2013-01-01

    This paper gives an overview of the coarse-grained models of phospholipids recently developed by the authors in the frame of a hybrid particle–field molecular dynamics technique. This technique employs a special class of coarse-grained models that are gaining popularity because they allow simulations of large scale systems and, at the same time, they provide sufficiently detailed chemistry for the mapping scheme adopted. The comparison of the computational costs of our approach with standard molecular dynamics simulations is a function of the system size and the number of processors employed in the parallel calculations. Due to the low amount of data exchange, the larger the number of processors, the better are the performances of the hybrid particle–field models. This feature makes these models very promising ones in the exploration of several problems in biophysics. (paper)

  20. Advanced RESTART method for the estimation of the probability of failure of highly reliable hybrid dynamic systems

    International Nuclear Information System (INIS)

    Turati, Pietro; Pedroni, Nicola; Zio, Enrico

    2016-01-01

    The efficient estimation of system reliability characteristics is of paramount importance for many engineering applications. Real world system reliability modeling calls for the capability of treating systems that are: i) dynamic, ii) complex, iii) hybrid and iv) highly reliable. Advanced Monte Carlo (MC) methods offer a way to solve these types of problems, which are feasible according to the potentially high computational costs. In this paper, the REpetitive Simulation Trials After Reaching Thresholds (RESTART) method is employed, extending it to hybrid systems for the first time (to the authors’ knowledge). The estimation accuracy and precision of RESTART highly depend on the choice of the Importance Function (IF) indicating how close the system is to failure: in this respect, proper IFs are here originally proposed to improve the performance of RESTART for the analysis of hybrid systems. The resulting overall simulation approach is applied to estimate the probability of failure of the control system of a liquid hold-up tank and of a pump-valve subsystem subject to degradation induced by fatigue. The results are compared to those obtained by standard MC simulation and by RESTART with classical IFs available in the literature. The comparison shows the improvement in the performance obtained by our approach. - Highlights: • We consider the issue of estimating small failure probabilities in dynamic systems. • We employ the RESTART method to estimate the failure probabilities. • New Importance Functions (IFs) are introduced to increase the method performance. • We adopt two dynamic, hybrid, highly reliable systems as case studies. • A comparison with literature IFs proves the effectiveness of the new IFs.

  1. Recent Advances on Hybrid Intelligent Systems

    CERN Document Server

    Melin, Patricia; Kacprzyk, Janusz

    2013-01-01

    This book presents recent advances on hybrid intelligent systems using soft computing techniques for intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain groups of papers around a similar subject. The first part consists of papers with the main theme of hybrid intelligent systems for control and robotics, which are basically state of the art papers that propose new models and concepts, which can be the basis for achieving intelligent control and mobile robotics. The second part contains papers with the main theme of hybrid intelligent systems for pattern recognition and time series prediction, which are basically papers using nature-inspired techniques, like evolutionary algo...

  2. Dynamic modelling of an adsorption storage tank using a hybrid approach combining computational fluid dynamics and process simulation

    Science.gov (United States)

    Mota, J.P.B.; Esteves, I.A.A.C.; Rostam-Abadi, M.

    2004-01-01

    A computational fluid dynamics (CFD) software package has been coupled with the dynamic process simulator of an adsorption storage tank for methane fuelled vehicles. The two solvers run as independent processes and handle non-overlapping portions of the computational domain. The codes exchange data on the boundary interface of the two domains to ensure continuity of the solution and of its gradient. A software interface was developed to dynamically suspend and activate each process as necessary, and be responsible for data exchange and process synchronization. This hybrid computational tool has been successfully employed to accurately simulate the discharge of a new tank design and evaluate its performance. The case study presented here shows that CFD and process simulation are highly complementary computational tools, and that there are clear benefits to be gained from a close integration of the two. ?? 2004 Elsevier Ltd. All rights reserved.

  3. Langley's CSI evolutionary model: Phase O

    Science.gov (United States)

    Belvin, W. Keith; Elliott, Kenny B.; Horta, Lucas G.; Bailey, Jim P.; Bruner, Anne M.; Sulla, Jeffrey L.; Won, John; Ugoletti, Roberto M.

    1991-01-01

    A testbed for the development of Controls Structures Interaction (CSI) technology to improve space science platform pointing is described. The evolutionary nature of the testbed will permit the study of global line-of-sight pointing in phases 0 and 1, whereas, multipayload pointing systems will be studied beginning with phase 2. The design, capabilities, and typical dynamic behavior of the phase 0 version of the CSI evolutionary model (CEM) is documented for investigator both internal and external to NASA. The model description includes line-of-sight pointing measurement, testbed structure, actuators, sensors, and real time computers, as well as finite element and state space models of major components.

  4. Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors.

    Directory of Open Access Journals (Sweden)

    Andrea Sottoriva

    2011-05-01

    Full Text Available The cancer stem cell (CSC concept is a highly debated topic in cancer research. While experimental evidence in favor of the cancer stem cell theory is apparently abundant, the results are often criticized as being difficult to interpret. An important reason for this is that most experimental data that support this model rely on transplantation studies. In this study we use a novel cellular Potts model to elucidate the dynamics of established malignancies that are driven by a small subset of CSCs. Our results demonstrate that epigenetic mutations that occur during mitosis display highly altered dynamics in CSC-driven malignancies compared to a classical, non-hierarchical model of growth. In particular, the heterogeneity observed in CSC-driven tumors is considerably higher. We speculate that this feature could be used in combination with epigenetic (methylation sequencing studies of human malignancies to prove or refute the CSC hypothesis in established tumors without the need for transplantation. Moreover our tumor growth simulations indicate that CSC-driven tumors display evolutionary features that can be considered beneficial during tumor progression. Besides an increased heterogeneity they also exhibit properties that allow the escape of clones from local fitness peaks. This leads to more aggressive phenotypes in the long run and makes the neoplasm more adaptable to stringent selective forces such as cancer treatment. Indeed when therapy is applied the clone landscape of the regrown tumor is more aggressive with respect to the primary tumor, whereas the classical model demonstrated similar patterns before and after therapy. Understanding these often counter-intuitive fundamental properties of (non-hierarchically organized malignancies is a crucial step in validating the CSC concept as well as providing insight into the therapeutical consequences of this model.

  5. Vitis phylogenomics: hybridization intensities from a SNP array outperform genotype calls.

    Directory of Open Access Journals (Sweden)

    Allison J Miller

    Full Text Available Understanding relationships among species is a fundamental goal of evolutionary biology. Single nucleotide polymorphisms (SNPs identified through next generation sequencing and related technologies enable phylogeny reconstruction by providing unprecedented numbers of characters for analysis. One approach to SNP-based phylogeny reconstruction is to identify SNPs in a subset of individuals, and then to compile SNPs on an array that can be used to genotype additional samples at hundreds or thousands of sites simultaneously. Although powerful and efficient, this method is subject to ascertainment bias because applying variation discovered in a representative subset to a larger sample favors identification of SNPs with high minor allele frequencies and introduces bias against rare alleles. Here, we demonstrate that the use of hybridization intensity data, rather than genotype calls, reduces the effects of ascertainment bias. Whereas traditional SNP calls assess known variants based on diversity housed in the discovery panel, hybridization intensity data survey variation in the broader sample pool, regardless of whether those variants are present in the initial SNP discovery process. We apply SNP genotype and hybridization intensity data derived from the Vitis9kSNP array developed for grape to show the effects of ascertainment bias and to reconstruct evolutionary relationships among Vitis species. We demonstrate that phylogenies constructed using hybridization intensities suffer less from the distorting effects of ascertainment bias, and are thus more accurate than phylogenies based on genotype calls. Moreover, we reconstruct the phylogeny of the genus Vitis using hybridization data, show that North American subgenus Vitis species are monophyletic, and resolve several previously poorly known relationships among North American species. This study builds on earlier work that applied the Vitis9kSNP array to evolutionary questions within Vitis vinifera

  6. Ac-driven vortex-antivortex dynamics in nanostructured superconductor-ferromagnetic hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Clessio L.S., E-mail: clsl@df.ufpe.br [Nucleo de Tecnologia, Centro Academico do Agreste, Universidade Federal de Pernambuco, 55002-970 Caruaru-PE (Brazil); Souza Silva, Clecio C. de; Aguiar, J. Albino [Departamento de Fisica, Universidade Federal de Pernambuco, 50670-901 Recife-PE (Brazil)

    2012-09-15

    The dynamics of ac-driven vortices and antivortices in a superconducting film interacting with an array of magnetic dipoles on top is investigated via hybrid molecular dynamics-Monte Carlo simulations. The dipole array considered in this study is capable to stabilize in equilibrium vortex-antivortex pairs. The appearance of a net electric field out of the ac excitation demonstrates that this system behaves as a voltage rectifier. Because of the asymmetric nature of the effective pinning potential generated by the dipole array, the ac-driven vortices and antivortices are ratcheted in opposite directions, thereby contributing additively to the observed net voltage. In addition, for high frequency values, the dc electric field-ac amplitude curves present a series of steps. A careful analysis of the time series of the electric field and number of vortex-antivortex (v-av) pairs reveals that these steps are related to mode-locking between the drive frequency and the number of v-av creation-annihilation events.

  7. Dynamic Power Dispatch Considering Electric Vehicles and Wind Power Using Decomposition Based Multi-Objective Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Boyang Qu

    2017-12-01

    Full Text Available The intermittency of wind power and the large-scale integration of electric vehicles (EVs bring new challenges to the reliability and economy of power system dispatching. In this paper, a novel multi-objective dynamic economic emission dispatch (DEED model is proposed considering the EVs and uncertainties of wind power. The total fuel cost and pollutant emission are considered as the optimization objectives, and the vehicle to grid (V2G power and the conventional generator output power are set as the decision variables. The stochastic wind power is derived by Weibull probability distribution function. Under the premise of meeting the system energy and user’s travel demand, the charging and discharging behavior of the EVs are dynamically managed. Moreover, we propose a two-step dynamic constraint processing strategy for decision variables based on penalty function, and, on this basis, the Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D algorithm is improved. The proposed model and approach are verified by the 10-generator system. The results demonstrate that the proposed DEED model and the improved MOEA/D algorithm are effective and reasonable.

  8. Co-evolutionary dynamics of the human-environment system in the Heihe River basin in the past 2000years.

    Science.gov (United States)

    Lu, Zhixiang; Wei, Yongping; Feng, Qi; Xie, Jiali; Xiao, Honglang; Cheng, Guodong

    2018-09-01

    There is limited quantitative understanding of interactions between human and environmental systems over the millennial scale. We aim to reveal the co-evolutionary dynamics of the human-environment system in a river basin by simulating the water use and net primary production (NPP) allocation for human and environmental systems over the last 2000years in Heihe River basin (HRB) in northwest China. We partition the catchment total evapotranspiration (ET) into ET for human and environmental systems with a social-hydrological framework and estimate the NPP for human and environmental systems using the Box-Lieth model, then classify the co-evolutionary processes of the human-environment system into distinct phases using the rate of changes of NPP over time, and discover the trade-offs or synergies relationships between them based on the elasticity of change of the NPP for humans to the change of NPP for environment. The co-evolutionary dynamics of human-environment system in the HRB can be divided into four periods, including: Phase I (Han Dynasty-Yuan Dynasty): predevelopment characterized by nearly no trade-offs between human and environment; Phase II (Yuan Dynasty-RC): slow agricultural development: characterized by a small human win due to small trade-offs between human and environment; Phase III (RC-2000): rapid agricultural development: characterized by a large human win due to large trade-offs between human and environment, and Phase IV (2000-2010): a rebalance characterized by large human wins with a small-environment win due to synergies, although these occurred very occasionally. This study provides a quantitative approach to describe the co-evolution of the human-environment system from the perspective of trade-offs and synergies in the millennial scale for the first time. The relationships between humans and environment changed from trade-off to synergy with the implementation of the water reallocation scheme in 2000. These findings improve the

  9. Random Evolutionary Dynamics Driven by Fitness and House-of-Cards Mutations: Sampling Formulae

    Science.gov (United States)

    Huillet, Thierry E.

    2017-07-01

    We first revisit the multi-allelic mutation-fitness balance problem, especially when mutations obey a house of cards condition, where the discrete-time deterministic evolutionary dynamics of the allelic frequencies derives from a Shahshahani potential. We then consider multi-allelic Wright-Fisher stochastic models whose deviation to neutrality is from the Shahshahani mutation/selection potential. We next focus on the weak selection, weak mutation cases and, making use of a Gamma calculus, we compute the normalizing partition functions of the invariant probability densities appearing in their Wright-Fisher diffusive approximations. Using these results, generalized Ewens sampling formulae (ESF) from the equilibrium distributions are derived. We start treating the ESF in the mixed mutation/selection potential case and then we restrict ourselves to the ESF in the simpler house-of-cards mutations only situation. We also address some issues concerning sampling problems from infinitely-many alleles weak limits.

  10. New lager yeast strains generated by interspecific hybridization.

    Science.gov (United States)

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2015-05-01

    The interspecific hybrid Saccharomyces pastorianus is the most commonly used yeast in brewery fermentations worldwide. Here, we generated de novo lager yeast hybrids by mating a domesticated and strongly flocculent Saccharomyces cerevisiae ale strain with the Saccharomyces eubayanus type strain. The hybrids were characterized with respect to the parent strains in a wort fermentation performed at temperatures typical for lager brewing (12 °C). The resulting beers were analysed for sugar and aroma compounds, while the yeasts were tested for their flocculation ability and α-glucoside transport capability. These hybrids inherited beneficial properties from both parent strains (cryotolerance, maltotriose utilization and strong flocculation) and showed apparent hybrid vigour, fermenting faster and producing beer with higher alcohol content (5.6 vs 4.5 % ABV) than the parents. Results suggest that interspecific hybridization is suitable for production of novel non-GM lager yeast strains with unique properties and will help in elucidating the evolutionary history of industrial lager yeast.

  11. Silencing of Transposable Elements by piRNAs in Drosophila: An Evolutionary Perspective.

    Science.gov (United States)

    Luo, Shiqi; Lu, Jian

    2017-06-01

    Transposable elements (TEs) are DNA sequences that can move within the genome. TEs have greatly shaped the genomes, transcriptomes, and proteomes of the host organisms through a variety of mechanisms. However, TEs generally disrupt genes and destabilize the host genomes, which substantially reduce fitness of the host organisms. Understanding the genomic distribution and evolutionary dynamics of TEs will greatly deepen our understanding of the TE-mediated biological processes. Most TE insertions are highly polymorphic in Drosophila melanogaster, providing us a good system to investigate the evolution of TEs at the population level. Decades of theoretical and experimental studies have well established "transposition-selection" population genetics model, which assumes that the equilibrium between TE replication and purifying selection determines the copy number of TEs in the genome. In the last decade, P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) were demonstrated to be master repressors of TE activities in Drosophila. The discovery of piRNAs revolutionized our understanding of TE repression, because it reveals that the host organisms have evolved an adaptive mechanism to defend against TE invasion. Tremendous progress has been made to understand the molecular mechanisms by which piRNAs repress active TEs, although many details in this process remain to be further explored. The interaction between piRNAs and TEs well explains the molecular mechanisms underlying hybrid dysgenesis for the I-R and P-M systems in Drosophila, which have puzzled evolutionary biologists for decades. The piRNA repression pathway provides us an unparalleled system to study the co-evolutionary process between parasites and host organisms. Copyright © 2017 Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. Production and hosting by Elsevier B.V. All rights reserved.

  12. Origin and evolutionary dynamics of Hepatitis B virus (HBV) genotype E in Madagascar.

    Science.gov (United States)

    Lo Presti, Alessandra; Andriamandimby, Soa Fy; Lai, Alessia; Angeletti, Silvia; Cella, Eleonora; Mottini, Giovanni; Guarino, Michele Pier Luca; Balotta, Claudia; Galli, Massimo; Heraud, Jean-Michel; Zehender, Gianguglielmo; Ciccozzi, Massimo

    2017-02-01

    Africa is one of the endemic regions of HBV infection. In particular, genotype E is highly endemic in most of sub-Saharan Africa such as West African countries where it represents more than 90% of total infections. Madagascar, which is classified as a high endemic area for HBV and where the most prevalent genotype is E, might play a relevant role in the dispersion of this genotype due to its crucial position in the Indian Ocean. The aim of this study was to investigate the origin, population dynamics, and circulation of HBV-E genotype in Madagascar through high-resolution phylogenetic and phylodynamic approaches. The phylogenetic tree indicated that Malagasy isolates were intermixed and closely related with sequences mostly from West African countries. The Bayesian tree highlighted three statistically supported clusters of Malagasy strains which dated back to the years 1981 (95% HPD: 1971-1992), 1986 (95% HPD: 1974-1996), and 1989 (95% HPD: 1974-2001). Population dynamics analysis showed an exponential increase in the number of HBV-E infections approximately from the year 1975 until 2000s. The migration analysis was also performed and a dynamic pattern of gene flow was identified. In conclusion, this study confirms previous observation of HBV-E circulation in Africa and expands these findings at Madagascar demonstrating its recent introduction, and highlighting the role of the African countries in the spread of HBV-E genotype. Further studies on molecular epidemiology of HBV genotype E are needed to clarify the evolutionary history of this genotype.

  13. Ecological interactions drive evolutionary loss of traits.

    Science.gov (United States)

    Ellers, Jacintha; Kiers, E Toby; Currie, Cameron R; McDonald, Bradon R; Visser, Bertanne

    2012-10-01

    Loss of traits can dramatically alter the fate of species. Evidence is rapidly accumulating that the prevalence of trait loss is grossly underestimated. New findings demonstrate that traits can be lost without affecting the external phenotype, provided the lost function is compensated for by species interactions. This is important because trait loss can tighten the ecological relationship between partners, affecting the maintenance of species interactions. Here, we develop a new perspective on so-called `compensated trait loss' and how this type of trait loss may affect the evolutionary dynamics between interacting organisms. We argue that: (1) the frequency of compensated trait loss is currently underestimated because it can go unnoticed as long as ecological interactions are maintained; (2) by analysing known cases of trait loss, specific factors promoting compensated trait loss can be identified and (3) genomic sequencing is a key way forwards in detecting compensated trait loss. We present a comprehensive literature survey showing that compensated trait loss is taxonomically widespread, can involve essential traits, and often occurs as replicated evolutionary events. Despite its hidden nature, compensated trait loss is important in directing evolutionary dynamics of ecological relationships and has the potential to change facultative ecological interactions into obligatory ones. © 2012 Blackwell Publishing Ltd/CNRS.

  14. A hybrid approach to designing inbound-resupply strategies

    NARCIS (Netherlands)

    Dullaert, Wout; Vernimmen, Bert; Raa, Birger; Witlox, Frank

    A new hybrid approach was developed to determine the optimal inbound-resupply strategy when suppliers ship goods to receivers. The optimal reorder level was calculated on the basis of a simulation of the distribution of demand and the lead time of the various sourcing alternatives. An evolutionary

  15. Recent advances in swarm intelligence and evolutionary computation

    CERN Document Server

    2015-01-01

    This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference f...

  16. Widespread over-expression of the X chromosome in sterile F₁hybrid mice.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Good

    2010-09-01

    Full Text Available The X chromosome often plays a central role in hybrid male sterility between species, but it is unclear if this reflects underlying regulatory incompatibilities. Here we combine phenotypic data with genome-wide expression data to directly associate aberrant expression patterns with hybrid male sterility between two species of mice. We used a reciprocal cross in which F₁ males are sterile in one direction and fertile in the other direction, allowing us to associate expression differences with sterility rather than with other hybrid phenotypes. We found evidence of extensive over-expression of the X chromosome during spermatogenesis in sterile but not in fertile F₁ hybrid males. Over-expression was most pronounced in genes that are normally expressed after meiosis, consistent with an X chromosome-wide disruption of expression during the later stages of spermatogenesis. This pattern was not a simple consequence of faster evolutionary divergence on the X chromosome, because X-linked expression was highly conserved between the two species. Thus, transcriptional regulation of the X chromosome during spermatogenesis appears particularly sensitive to evolutionary divergence between species. Overall, these data provide evidence for an underlying regulatory basis to reproductive isolation in house mice and underscore the importance of transcriptional regulation of the X chromosome to the evolution of hybrid male sterility.

  17. Widespread over-expression of the X chromosome in sterile F₁hybrid mice.

    Science.gov (United States)

    Good, Jeffrey M; Giger, Thomas; Dean, Matthew D; Nachman, Michael W

    2010-09-30

    The X chromosome often plays a central role in hybrid male sterility between species, but it is unclear if this reflects underlying regulatory incompatibilities. Here we combine phenotypic data with genome-wide expression data to directly associate aberrant expression patterns with hybrid male sterility between two species of mice. We used a reciprocal cross in which F₁ males are sterile in one direction and fertile in the other direction, allowing us to associate expression differences with sterility rather than with other hybrid phenotypes. We found evidence of extensive over-expression of the X chromosome during spermatogenesis in sterile but not in fertile F₁ hybrid males. Over-expression was most pronounced in genes that are normally expressed after meiosis, consistent with an X chromosome-wide disruption of expression during the later stages of spermatogenesis. This pattern was not a simple consequence of faster evolutionary divergence on the X chromosome, because X-linked expression was highly conserved between the two species. Thus, transcriptional regulation of the X chromosome during spermatogenesis appears particularly sensitive to evolutionary divergence between species. Overall, these data provide evidence for an underlying regulatory basis to reproductive isolation in house mice and underscore the importance of transcriptional regulation of the X chromosome to the evolution of hybrid male sterility.

  18. Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games

    Science.gov (United States)

    Peña, Jorge; Rochat, Yannick

    2012-01-01

    By combining evolutionary game theory and graph theory, “games on graphs” study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner’s dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner’s dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures. PMID:22970237

  19. Selfish genetic elements, genetic conflict, and evolutionary innovation.

    Science.gov (United States)

    Werren, John H

    2011-06-28

    Genomes are vulnerable to selfish genetic elements (SGEs), which enhance their own transmission relative to the rest of an individual's genome but are neutral or harmful to the individual as a whole. As a result, genetic conflict occurs between SGEs and other genetic elements in the genome. There is growing evidence that SGEs, and the resulting genetic conflict, are an important motor for evolutionary change and innovation. In this review, the kinds of SGEs and their evolutionary consequences are described, including how these elements shape basic biological features, such as genome structure and gene regulation, evolution of new genes, origin of new species, and mechanisms of sex determination and development. The dynamics of SGEs are also considered, including possible "evolutionary functions" of SGEs.

  20. Achieving sustainable plant disease management through evolutionary principles.

    Science.gov (United States)

    Zhan, Jiasui; Thrall, Peter H; Burdon, Jeremy J

    2014-09-01

    Plants and their pathogens are engaged in continuous evolutionary battles and sustainable disease management requires novel systems to create environments conducive for short-term and long-term disease control. In this opinion article, we argue that knowledge of the fundamental factors that drive host-pathogen coevolution in wild systems can provide new insights into disease development in agriculture. Such evolutionary principles can be used to guide the formulation of sustainable disease management strategies which can minimize disease epidemics while simultaneously reducing pressure on pathogens to evolve increased infectivity and aggressiveness. To ensure agricultural sustainability, disease management programs that reflect the dynamism of pathogen population structure are essential and evolutionary biologists should play an increasing role in their design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Tangled trios? Characterizing a hybrid zone in Castilleja (Orobanchaceae)

    Science.gov (United States)

    Erika l. Hersch-Green; Richard. Cronn

    2009-01-01

    Hybridization and polyploidization are exceedingly important processes because both influence the ecological envelope and evolutionary trajectory of land plants. These processes are frequently invoked for Castilleja (Indian paintbrushes) as contributors to morphological and genetic novelty and as complicating factors in species delimitations. Here...

  2. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium

    Directory of Open Access Journals (Sweden)

    Lynch Michael

    2010-05-01

    Full Text Available Abstract Background In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa remains a virtually unexplored issue. Results By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Conclusions Our observations 1 shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2 are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3 reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  3. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach

    International Nuclear Information System (INIS)

    Sakko, Arto; Rossi, Tuomas P; Nieminen, Risto M

    2014-01-01

    The presence of plasmonic material influences the optical properties of nearby molecules in untrivial ways due to the dynamical plasmon-molecule coupling. We combine quantum and classical calculation schemes to study this phenomenon in a hybrid system that consists of a Na 2 molecule located in the gap between two Au/Ag nanoparticles. The molecule is treated quantum-mechanically with time-dependent density-functional theory, and the nanoparticles with quasistatic classical electrodynamics. The nanoparticle dimer has a plasmon resonance in the visible part of the electromagnetic spectrum, and the Na 2 molecule has an electron-hole excitation in the same energy range. Due to the dynamical interaction of the two subsystems the plasmon and the molecular excitations couple, creating a hybridized molecular-plasmon excited state. This state has unique properties that yield e.g. enhanced photoabsorption compared to the freestanding Na 2 molecule. The computational approach used enables decoupling of the mutual plasmon-molecule interaction, and our analysis verifies that it is not legitimate to neglect the backcoupling effect when describing the dynamical interaction between plasmonic material and nearby molecules. Time-resolved analysis shows nearly instantaneous formation of the coupled state, and provides an intuitive picture of the underlying physics. (paper)

  4. Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents.

    Science.gov (United States)

    Gilbert, Scott F; Bosch, Thomas C G; Ledón-Rettig, Cristina

    2015-10-01

    The integration of research from developmental biology and ecology into evolutionary theory has given rise to a relatively new field, ecological evolutionary developmental biology (Eco-Evo-Devo). This field integrates and organizes concepts such as developmental symbiosis, developmental plasticity, genetic accommodation, extragenic inheritance and niche construction. This Review highlights the roles that developmental symbiosis and developmental plasticity have in evolution. Developmental symbiosis can generate particular organs, can produce selectable genetic variation for the entire animal, can provide mechanisms for reproductive isolation, and may have facilitated evolutionary transitions. Developmental plasticity is crucial for generating novel phenotypes, facilitating evolutionary transitions and altered ecosystem dynamics, and promoting adaptive variation through genetic accommodation and niche construction. In emphasizing such non-genomic mechanisms of selectable and heritable variation, Eco-Evo-Devo presents a new layer of evolutionary synthesis.

  5. EVOLUTIONARY APPROACH TO DETERMINATION OF STRUCTURE OF TAX SYSTEM

    Directory of Open Access Journals (Sweden)

    Nathalie V. Yurchenkova

    2013-01-01

    Full Text Available Capacity of national tax systems isn’t fully revealed across all countries. Problems with tax administration, tax avoidance, leaving from the taxation of corporations and the leading financial organizations in the offshore confirm adaptation hypothesis stating that taxpayers adapt for changes in times quicker and more qualitatively than the state institutes. The leading role in formation of an evolutionary paradigm of the taxation belongs now to tools of evolutionary dynamics at social level.

  6. Evolutionary Dynamics of Mating-Type Loci of Mycosphaerella spp. Occurring on Banana▿ †

    Science.gov (United States)

    Arzanlou, Mahdi; Crous, Pedro W.; Zwiers, Lute-Harm

    2010-01-01

    The devastating Sigatoka disease complex of banana is primarily caused by three closely related heterothallic fungi belonging to the genus Mycosphaerella: M. fijiensis, M. musicola, and M. eumusae. Previous phylogenetic work showing common ancestry led us to analyze the mating-type loci of these Mycosphaerella species occurring on banana. We reasoned that this might provide better insight into the evolutionary history of these species. PCR and chromosome-walking approaches were used to clone the mating-type loci of M. musicola and M. eumusae. Sequences were compared to the published mating-type loci of M. fijiensis and other Mycosphaerella spp., and a novel organization of the MAT loci was found. The mating-type loci of the examined Mycosphaerella species are expanded, containing two additional Mycosphaerella-specific genes in a unique genomic organization. The proteins encoded by these novel genes show a higher interspecies than intraspecies homology. Moreover, M. fijiensis, M. musicola, and M. eumusae contain two additional mating-type-like loci, containing parts of both MAT1-1-1 and MAT1-2-1. The data indicate that M. fijiensis, M. musicola, and M. eumusae share an ancestor in which a fusion event occurred between MAT1-1-1 and MAT1-2-1 sequences and in which additional genes became incorporated into the idiomorph. The new genes incorporated have since then evolved independently in the MAT1-1 and MAT1-2 loci. Thus, these data are an example of the evolutionary dynamics of fungal MAT loci in general and show the great flexibility of the MAT loci of Mycosphaerella species in particular. PMID:19915079

  7. ON THE STABILIZATION OF THE LINEAR HYBRID SYSTEM STRUCTURE

    Directory of Open Access Journals (Sweden)

    Kirillov

    2014-11-01

    Full Text Available The linear control hybrid system, consisting of a fi- nite set of subsystems (modes having different dimensions, is considered. The moments of reset time are determined by some complementary function – evolutionary time. This function satisfies the special complementary ordinary differential equation. The mode stabilization problem is solved for some class of piecewise linear controls. The method of stabilization relies on the set of invariant planes, the existence of which is due to the special form of the hybrid system.

  8. Early events in speciation: Polymorphism for hybrid male sterility in Drosophila

    OpenAIRE

    Reed, Laura K.; Markow, Therese A.

    2004-01-01

    Capturing the process of speciation early enough to determine the initial genetic causes of reproductive isolation remains a major challenge in evolutionary biology. We have found, to our knowledge, the first example of substantial intraspecific polymorphism for genetic factors contributing to hybrid male sterility. Specifically, we show that the occurrence of hybrid male sterility in crosses between Drosophila mojavensis and its sister species, Drosophila arizonae, is controlled by factors p...

  9. Dynamic Hybrid Simulation of the Lunar Wake During ARTEMIS Crossing

    Science.gov (United States)

    Wiehle, S.; Plaschke, F.; Angelopoulos, V.; Auster, H.; Glassmeier, K.; Kriegel, H.; Motschmann, U. M.; Mueller, J.

    2010-12-01

    The interaction of the highly dynamic solar wind with the Moon is simulated with the A.I.K.E.F. (Adaptive Ion Kinetic Electron Fluid) code for the ARTEMIS P1 flyby on February 13, 2010. The A.I.K.E.F. hybrid plasma simulation code is the improved version of the Braunschweig code. It is able to automatically increase simulation grid resolution in areas of interest during runtime, which greatly increases resolution as well as performance. As the Moon has no intrinsic magnetic field and no ionosphere, the solar wind particles are absorbed at its surface, resulting in the formation of the lunar wake at the nightside. The solar wind magnetic field is basically convected through the Moon and the wake is slowly filled up with solar wind particles. However, this interaction is strongly influenced by the highly dynamic solar wind during the flyby. This is considered by a dynamic variation of the upstream conditions in the simulation using OMNI solar wind measurement data. By this method, a very good agreement between simulation and observations is achieved. The simulations show that the stationary structure of the lunar wake constitutes a tableau vivant in space representing the well-known Friedrichs diagram for MHD waves.

  10. Genetic architecture of hybrid male sterility in Drosophila: analysis of intraspecies variation for interspecies isolation.

    Directory of Open Access Journals (Sweden)

    Laura K Reed

    Full Text Available BACKGROUND: The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete. METHODOLOGY/PRINCIPAL FINDINGS: Isofemale strains of D. mojavensis vary significantly in their production of sterile F(1 sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL mapping analyses directly on F(1 hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS in the F(1 is complex, involving multiple QTL, epistasis, and cytoplasmic effects. CONCLUSIONS/SIGNIFICANCE: The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation.

  11. Formal verification of dynamic hybrid systems: a NuSMV-based model checking approach

    Directory of Open Access Journals (Sweden)

    Xu Zhi

    2018-01-01

    Full Text Available Software security is an important and challenging research topic in developing dynamic hybrid embedded software systems. Ensuring the correct behavior of these systems is particularly difficult due to the interactions between the continuous subsystem and the discrete subsystem. Currently available security analysis methods for system risks have been limited, as they rely on manual inspections of the individual subsystems under simplifying assumptions. To improve this situation, a new approach is proposed that is based on the symbolic model checking tool NuSMV. A dual PID system is used as an example system, for which the logical part and the computational part of the system are modeled in a unified manner. Constraints are constructed on the controlled object, and a counter-example path is ultimately generated, indicating that the hybrid system can be analyzed by the model checking tool.

  12. Compositional Modelling of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Strubbe, S.N.

    2005-01-01

    In this thesis we present a modelling framework for compositional modelling of stochastic hybrid systems. Hybrid systems consist of a combination of continuous and discrete dynamics. The state space of a hybrid system is hybrid in the sense that it consists of a continuous component and a discrete

  13. Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian Tertiary relict Cercidiphyllum (Cercidiphyllaceae).

    Science.gov (United States)

    Qi, Xin-Shuai; Chen, Chen; Comes, Hans Peter; Sakaguchi, Shota; Liu, Yi-Hui; Tanaka, Nobuyuki; Sakio, Hitoshi; Qiu, Ying-Xiong

    2012-10-01

    East Asia's temperate deciduous forests served as sanctuary for Tertiary relict trees, but their ages and response to past climate change remain largely unknown. To address this issue, we elucidated the evolutionary and population demographic history of Cercdiphyllum, comprising species in China/Japan (Cercdiphyllum japonicum) and central Japan (Cercdiphyllum magnificum). Fifty-three populations were genotyped using chloroplast and ribosomal DNA sequences and microsatellite loci to assess molecular structure and diversity in relation to past (Last Glacial Maximum) and present distributions based on ecological niche modelling. Late Tertiary climate cooling was reflected in a relatively recent speciation event, dated at the Mio-/Pliocene boundary. During glacials, the warm-temperate C. japonicum experienced massive habitat losses in some areas (north-central China/north Japan) but increases in others (southwest/-east China, East China Sea landbridge, south Japan). In China, the Sichuan Basin and/or the middle-Yangtze were source areas of postglacial northward recolonization; in Japan, this may have been facilitated through introgressive hybridization with the cool-temperate C. magnificum. Our findings challenge the notion of relative evolutionary and demographic stability of Tertiary relict trees, and may serve as a guideline for assessing the impact of Neogene climate change on the evolution and distribution of East Asian temperate plants. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  14. Evolutionary dynamics of human autoimmune disease genes and malfunctioned immunological genes

    Directory of Open Access Journals (Sweden)

    Podder Soumita

    2012-01-01

    Full Text Available Abstract Background One of the main issues of molecular evolution is to divulge the principles in dictating the evolutionary rate differences among various gene classes. Immunological genes have received considerable attention in evolutionary biology as candidates for local adaptation and for studying functionally important polymorphisms. The normal structure and function of immunological genes will be distorted when they experience mutations leading to immunological dysfunctions. Results Here, we examined the fundamental differences between the genes which on mutation give rise to autoimmune or other immune system related diseases and the immunological genes that do not cause any disease phenotypes. Although the disease genes examined are analogous to non-disease genes in product, expression, function, and pathway affiliation, a statistically significant decrease in evolutionary rate has been found in autoimmune disease genes relative to all other immune related diseases and non-disease genes. Possible ways of accumulation of mutation in the three steps of the central dogma (DNA-mRNA-Protein have been studied to trace the mutational effects predisposed to disease consequence and acquiring higher selection pressure. Principal Component Analysis and Multivariate Regression Analysis have established the predominant role of single nucleotide polymorphisms in guiding the evolutionary rate of immunological disease and non-disease genes followed by m-RNA abundance, paralogs number, fraction of phosphorylation residue, alternatively spliced exon, protein residue burial and protein disorder. Conclusions Our study provides an empirical insight into the etiology of autoimmune disease genes and other immunological diseases. The immediate utility of our study is to help in disease gene identification and may also help in medicinal improvement of immune related disease.

  15. Physical Mapping Using Simulated Annealing and Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Vesterstrøm, Jacob Svaneborg

    2003-01-01

    optimization method when searching for an ordering of the fragments in PM. In this paper, we applied an evolutionary algorithm to the problem, and compared its performance to that of SA and local search on simulated PM data, in order to determine the important factors in finding a good ordering of the segments....... The analysis highlights the importance of a good PM model, a well-correlated fitness function, and high quality hybridization data. We suggest that future work in PM should focus on design of more reliable fitness functions and on developing error-screening algorithms....

  16. Dynamic force profile in hydraulic hybrid vehicles: a numerical investigation

    Science.gov (United States)

    Mohaghegh-Motlagh, Amin; Elahinia, Mohammad H.

    2010-04-01

    A hybrid hydraulic vehicle (HHV) combines a hydraulic sub-system with the conventional drivetrain in order to improve fuel economy for heavy vehicles. The added hydraulic module manages the storage and release of fluid power necessary to assist the motion of the vehicle. The power collected by a pump/motor (P/M) from the regenerative braking phase is stored in a high-pressure accumulator and then released by the P/M to the driveshaft during the acceleration phase. This technology is effective in significantly improving fuel-economy for heavy-class vehicles with frequent stop-and-go drive schedules. Despite improved fuel economy and higher vehicle acceleration, noise and vibrations are one of the main problems of these vehicles. The dual function P/Ms are the main source of noise and vibration in a HHV. This study investigates the dynamics of a P/M and particularly the profile and frequency-dependence of the dynamic forces generated by a bent-axis P/M unit. To this end, the fluid dynamics side of the problem has been simplified for investigating the system from a dynamics perspective. A mathematical model of a bent axis P/M has been developed to investigate the cause of vibration and noise in HHVs. The forces are calculated in time and frequency domains. The results of this work can be used to study the vibration response of the chassis and to design effective vibration isolation systems for HHVs.

  17. Convergence dynamics of hybrid bidirectional associative memory neural networks with distributed delays

    International Nuclear Information System (INIS)

    Liao Xiaofeng; Wong, K.-W.; Yang Shizhong

    2003-01-01

    In this Letter, the characteristics of the convergence dynamics of hybrid bidirectional associative memory neural networks with distributed transmission delays are studied. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the Lyapunov functionals are constructed and the generalized Halanay-type inequalities are employed to derive the delay-independent sufficient conditions under which the networks converge exponentially to the equilibria associated with temporally uniform external inputs. Some examples are given to illustrate the correctness of our results

  18. Widespread Over-Expression of the X Chromosome in Sterile F1 Hybrid Mice

    Science.gov (United States)

    Good, Jeffrey M.; Giger, Thomas; Dean, Matthew D.; Nachman, Michael W.

    2010-01-01

    The X chromosome often plays a central role in hybrid male sterility between species, but it is unclear if this reflects underlying regulatory incompatibilities. Here we combine phenotypic data with genome-wide expression data to directly associate aberrant expression patterns with hybrid male sterility between two species of mice. We used a reciprocal cross in which F1 males are sterile in one direction and fertile in the other direction, allowing us to associate expression differences with sterility rather than with other hybrid phenotypes. We found evidence of extensive over-expression of the X chromosome during spermatogenesis in sterile but not in fertile F1 hybrid males. Over-expression was most pronounced in genes that are normally expressed after meiosis, consistent with an X chromosome-wide disruption of expression during the later stages of spermatogenesis. This pattern was not a simple consequence of faster evolutionary divergence on the X chromosome, because X-linked expression was highly conserved between the two species. Thus, transcriptional regulation of the X chromosome during spermatogenesis appears particularly sensitive to evolutionary divergence between species. Overall, these data provide evidence for an underlying regulatory basis to reproductive isolation in house mice and underscore the importance of transcriptional regulation of the X chromosome to the evolution of hybrid male sterility. PMID:20941395

  19. Hydrogen atom as a quantum-classical hybrid system

    International Nuclear Information System (INIS)

    Zhan, Fei; Wu, Biao

    2013-01-01

    Hydrogen atom is studied as a quantum-classical hybrid system, where the proton is treated as a classical object while the electron is regarded as a quantum object. We use a well known mean-field approach to describe this hybrid hydrogen atom; the resulting dynamics for the electron and the proton is compared to their full quantum dynamics. The electron dynamics in the hybrid description is found to be only marginally different from its full quantum counterpart. The situation is very different for the proton: in the hybrid description, the proton behaves like a free particle; in the fully quantum description, the wave packet center of the proton orbits around the center of mass. Furthermore, we find that the failure to describe the proton dynamics properly can be regarded as a manifestation of the fact that there is no conservation of momentum in the mean-field hybrid approach. We expect that such a failure is a common feature for all existing approaches for quantum-classical hybrid systems of Born-Oppenheimer type.

  20. A New Methodology for Solving Trajectory Planning and Dynamic Load-Carrying Capacity of a Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Wanjin Guo

    2016-01-01

    Full Text Available A new methodology using a direct method for obtaining the best found trajectory planning and maximum dynamic load-carrying capacity (DLCC is presented for a 5-degree of freedom (DOF hybrid robot manipulator. A nonlinear constrained multiobjective optimization problem is formulated with four objective functions, namely, travel time, total energy involved in the motion, joint jerks, and joint acceleration. The vector of decision variables is defined by the sequence of the time-interval lengths associated with each two consecutive via-points on the desired trajectory of the 5-DOF robot generalized coordinates. Then this vector of decision variables is computed in order to minimize the cost function (which is the weighted sum of these four objective functions subject to constraints on joint positions, velocities, acceleration, jerks, forces/torques, and payload mass. Two separate approaches are proposed to deal with the trajectory planning problem and the maximum DLCC calculation for the 5-DOF robot manipulator using an evolutionary optimization technique. The adopted evolutionary algorithm is the elitist nondominated sorting genetic algorithm (NSGA-II. A numerical application is performed for obtaining best found solutions of trajectory planning and maximum DLCC calculation for the 5-DOF hybrid robot manipulator.

  1. Evolutionary Sound Synthesis Controlled by Gestural Data

    Directory of Open Access Journals (Sweden)

    Jose Fornari

    2011-05-01

    Full Text Available This article focuses on the interdisciplinary research involving Computer Music and Generative Visual Art. We describe the implementation of two interactive artistic systems based on principles of Gestural Data (WILSON, 2002 retrieval and self-organization (MORONI, 2003, to control an Evolutionary Sound Synthesis method (ESSynth. The first implementation uses, as gestural data, image mapping of handmade drawings. The second one uses gestural data from dynamic body movements of dance. The resulting computer output is generated by an interactive system implemented in Pure Data (PD. This system uses principles of Evolutionary Computation (EC, which yields the generation of a synthetic adaptive population of sound objects. Considering that music could be seen as “organized sound” the contribution of our study is to develop a system that aims to generate "self-organized sound" – a method that uses evolutionary computation to bridge between gesture, sound and music.

  2. Comparative genetics of hybrid incompatibility: sterility in two Solanum species crosses.

    Science.gov (United States)

    Moyle, Leonie C; Nakazato, Takuya

    2008-07-01

    The genetic basis of hybrid sterility can provide insight into the genetic and evolutionary origins of species barriers. We examine the genetics of hybrid incompatibility between two diploid plant species in the plant clade Solanum sect. Lycopersicon. Using a set of near-isogenic lines (NILs) representing the wild species Solanum pennellii (formerly Lycopersicon pennellii) in the genetic background of the cultivated tomato S. lycopersicum (formerly L. esculentum), we found that hybrid pollen and seed infertility are each based on a modest number of loci, male (pollen) and other (seed) incompatibility factors are roughly comparable in number, and seed-infertility QTL act additively or recessively. These findings are remarkably consistent with our previous analysis in a different species pair, S. lycopersicum x S. habrochaites. Data from both studies contrast strongly with data from Drosophila. Finally, QTL for pollen and seed sterility from the two Solanum studies were chromosomally colocalized, indicating a shared evolutionary history for these QTL, a nonrandom genomic distribution of loci causing sterility, and/or a proclivity of certain genes to be involved in hybrid sterility. We show that comparative mapping data can delimit the probable timing of evolution of detected QTL and discern which sterility loci likely evolved earliest among species.

  3. Language Multiplicity and Dynamism: Emergent Bilinguals Taking Ownership of Language Use in a Hybrid Curricular Space

    Science.gov (United States)

    Martínez-Álvarez, Patricia

    2017-01-01

    This study explores the impact of hybrid instructional spaces on the purposeful and expansive use of translanguaging practices. Utilizing technology, the study explores the role of multimodality in bilinguals' language multiplicity and dynamism. The research addresses: (a) how do emergent bilinguals in dual language programs deploy their full…

  4. Chaotic Multiobjective Evolutionary Algorithm Based on Decomposition for Test Task Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Hui Lu

    2014-01-01

    Full Text Available Test task scheduling problem (TTSP is a complex optimization problem and has many local optima. In this paper, a hybrid chaotic multiobjective evolutionary algorithm based on decomposition (CMOEA/D is presented to avoid becoming trapped in local optima and to obtain high quality solutions. First, we propose an improving integrated encoding scheme (IES to increase the efficiency. Then ten chaotic maps are applied into the multiobjective evolutionary algorithm based on decomposition (MOEA/D in three phases, that is, initial population and crossover and mutation operators. To identify a good approach for hybrid MOEA/D and chaos and indicate the effectiveness of the improving IES several experiments are performed. The Pareto front and the statistical results demonstrate that different chaotic maps in different phases have different effects for solving the TTSP especially the circle map and ICMIC map. The similarity degree of distribution between chaotic maps and the problem is a very essential factor for the application of chaotic maps. In addition, the experiments of comparisons of CMOEA/D and variable neighborhood MOEA/D (VNM indicate that our algorithm has the best performance in solving the TTSP.

  5. Modeling and simulation of a controlled steam generator in the context of dynamic reliability using a Stochastic Hybrid Automaton

    International Nuclear Information System (INIS)

    Babykina, Génia; Brînzei, Nicolae; Aubry, Jean-François; Deleuze, Gilles

    2016-01-01

    The paper proposes a modeling framework to support Monte Carlo simulations of the behavior of a complex industrial system. The aim is to analyze the system dependability in the presence of random events, described by any type of probability distributions. Continuous dynamic evolutions of physical parameters are taken into account by a system of differential equations. Dynamic reliability is chosen as theoretical framework. Based on finite state automata theory, the formal model is built by parallel composition of elementary sub-models using a bottom-up approach. Considerations of a stochastic nature lead to a model called the Stochastic Hybrid Automaton. The Scilab/Scicos open source environment is used for implementation. The case study is carried out on an example of a steam generator of a nuclear power plant. The behavior of the system is studied by exploring its trajectories. Possible system trajectories are analyzed both empirically, using the results of Monte Carlo simulations, and analytically, using the formal system model. The obtained results are show to be relevant. The Stochastic Hybrid Automaton appears to be a suitable tool to address the dynamic reliability problem and to model real systems of high complexity; the bottom-up design provides precision and coherency of the system model. - Highlights: • A part of a nuclear power plant is modeled in the context of dynamic reliability. • Stochastic Hybrid Automaton is used as an input model for Monte Carlo simulations. • The model is formally built using a bottom-up approach. • The behavior of the system is analyzed empirically and analytically. • A formally built SHA shows to be a suitable tool to approach dynamic reliability.

  6. Bridge Deterioration Prediction Model Based On Hybrid Markov-System Dynamic

    Directory of Open Access Journals (Sweden)

    Widodo Soetjipto Jojok

    2017-01-01

    Full Text Available Instantaneous bridge failure tends to increase in Indonesia. To mitigate this condition, Indonesia’s Bridge Management System (I-BMS has been applied to continuously monitor the condition of bridges. However, I-BMS only implements visual inspection for maintenance priority of the bridge structure component instead of bridge structure system. This paper proposes a new bridge failure prediction model based on hybrid Markov-System Dynamic (MSD. System dynamic is used to represent the correlation among bridge structure components while Markov chain is used to calculate temporal probability of the bridge failure. Around 235 data of bridges in Indonesia were collected from Directorate of Bridge the Ministry of Public Works and Housing for calculating transition probability of the model. To validate the model, a medium span concrete bridge was used as a case study. The result shows that the proposed model can accurately predict the bridge condition. Besides predicting the probability of the bridge failure, this model can also be used as an early warning system for bridge monitoring activity.

  7. The faith dynamic in creationism and evolutionary theory

    OpenAIRE

    Jackson, Edgar Basil

    2012-01-01

    This study attempts to examine evolutionary theory and creationism objectively without engaging in an apology for or a criticism of either. It compares the presuppositions and assumptions of both systems, and examines the role of faith in religion and in the scientific theory of evolution. After discussing the nature of the scientific method and the development of the theory of evolution, the study explores the dichotomy of faith and reason, the ways in which these operate in theories of int...

  8. Dynamic formation of asexual diploid and polyploid lineages: multilocus analysis of Cobitis reveals the mechanisms maintaining the diversity of clones.

    Directory of Open Access Journals (Sweden)

    Karel Janko

    Full Text Available Given the hybrid genomic constitutions and increased ploidy of many asexual animals, the identification of processes governing the origin and maintenance of clonal diversity provides useful information about the evolutionary consequences of interspecific hybridization, asexuality and polyploidy. In order to understand the processes driving observed diversity of biotypes and clones in the Cobitis taenia hybrid complex, we performed fine-scale genetic analysis of Central European hybrid zone between two sexual species using microsatellite genotyping and mtDNA sequencing. We found that the hybrid zone is populated by an assemblage of clonally (gynogenetically reproducing di-, tri- and tetraploid hybrid lineages and that successful clones, which are able of spatial expansion, recruit from two ploidy levels, i.e. diploid and triploid. We further compared the distribution of observed estimates of clonal ages to theoretical distributions simulated under various assumptions and showed that new clones are most likely continuously recruited from ancestral populations. This suggests that the clonal diversity is maintained by dynamic equilibrium between origination and extinction of clonal lineages. On the other hand, an interclonal selection is implied by nonrandom spatial distribution of individual clones with respect to the coexisting sexual species. Importantly, there was no evidence for sexually reproducing hybrids or clonally reproducing non-hybrid forms. Together with previous successful laboratory synthesis of clonal Cobitis hybrids, our data thus provide the most compelling evidence that 1 the origin of asexuality is causally linked to interspecific hybridization; 2 successful establishment of clones is not restricted to one specific ploidy level and 3 the initiation of clonality and polyploidy may be dynamic and continuous in asexual complexes.

  9. Integrating Evolutionary Game Theory into Mechanistic Genotype-Phenotype Mapping.

    Science.gov (United States)

    Zhu, Xuli; Jiang, Libo; Ye, Meixia; Sun, Lidan; Gragnoli, Claudia; Wu, Rongling

    2016-05-01

    Natural selection has shaped the evolution of organisms toward optimizing their structural and functional design. However, how this universal principle can enhance genotype-phenotype mapping of quantitative traits has remained unexplored. Here we show that the integration of this principle and functional mapping through evolutionary game theory gains new insight into the genetic architecture of complex traits. By viewing phenotype formation as an evolutionary system, we formulate mathematical equations to model the ecological mechanisms that drive the interaction and coordination of its constituent components toward population dynamics and stability. Functional mapping provides a procedure for estimating the genetic parameters that specify the dynamic relationship of competition and cooperation and predicting how genes mediate the evolution of this relationship during trait formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Special Issue: New trends and applications on hybrid artificial intelligence systems

    OpenAIRE

    Corchado Rodríguez, Emilio; Graña Romay, Manuel; Woźniak, MichaŁ

    2017-01-01

    This Special Issue is an outgrowth of the HAIS'10, the 5th International Conference on Hybrid Artificial Intelligence Systems, which was held in San Sebastián, Spain, 23–25 June 2010. The HAIS conference series is devoted to the presentation of innovative techniques involving the hybridization of emerging and active topics in data mining and decision support systems, information fusion, evolutionary computation, visualization techniques, ensemble models, intelligent agent-based systems (compl...

  11. Evolutionary dynamics of populations with conflicting interactions: Classification and analytical treatment considering asymmetry and power

    Science.gov (United States)

    Helbing, Dirk; Johansson, Anders

    2010-01-01

    Evolutionary game theory has been successfully used to investigate the dynamics of systems, in which many entities have competitive interactions. From a physics point of view, it is interesting to study conditions under which a coordination or cooperation of interacting entities will occur, be it spins, particles, bacteria, animals, or humans. Here, we analyze the case, where the entities are heterogeneous, particularly the case of two populations with conflicting interactions and two possible states. For such systems, explicit mathematical formulas will be determined for the stationary solutions and the associated eigenvalues, which determine their stability. In this way, four different types of system dynamics can be classified and the various kinds of phase transitions between them will be discussed. While these results are interesting from a physics point of view, they are also relevant for social, economic, and biological systems, as they allow one to understand conditions for (1) the breakdown of cooperation, (2) the coexistence of different behaviors (“subcultures”), (3) the evolution of commonly shared behaviors (“norms”), and (4) the occurrence of polarization or conflict. We point out that norms have a similar function in social systems that forces have in physics.

  12. Evaluation of methods for extraction of the volitional EMG in dynamic hybrid muscle activation

    Directory of Open Access Journals (Sweden)

    Mizrahi Joseph

    2006-11-01

    Full Text Available Abstract Background Hybrid muscle activation is a modality used for muscle force enhancement, in which muscle contraction is generated from two different excitation sources: volitional and external, by means of electrical stimulation (ES. Under hybrid activation, the overall EMG signal is the combination of the volitional and ES-induced components. In this study, we developed a computational scheme to extract the volitional EMG envelope from the overall dynamic EMG signal, to serve as an input signal for control purposes, and for evaluation of muscle forces. Methods A "synthetic" database was created from in-vivo experiments on the Tibialis Anterior of the right foot to emulate hybrid EMG signals, including the volitional and induced components. The database was used to evaluate the results obtained from six signal processing schemes, including seven different modules for filtration, rectification and ES component removal. The schemes differed from each other by their module combinations, as follows: blocking window only, comb filter only, blocking window and comb filter, blocking window and peak envelope, comb filter and peak envelope and, finally, blocking window, comb filter and peak envelope. Results and conclusion The results showed that the scheme including all the modules led to an excellent approximation of the volitional EMG envelope, as extracted from the hybrid signal, and underlined the importance of the artifact blocking window module in the process. The results of this work have direct implications on the development of hybrid muscle activation rehabilitation systems for the enhancement of weakened muscles.

  13. Evolutionary modeling-based approach for model errors correction

    Directory of Open Access Journals (Sweden)

    S. Q. Wan

    2012-08-01

    Full Text Available The inverse problem of using the information of historical data to estimate model errors is one of the science frontier research topics. In this study, we investigate such a problem using the classic Lorenz (1963 equation as a prediction model and the Lorenz equation with a periodic evolutionary function as an accurate representation of reality to generate "observational data."

    On the basis of the intelligent features of evolutionary modeling (EM, including self-organization, self-adaptive and self-learning, the dynamic information contained in the historical data can be identified and extracted by computer automatically. Thereby, a new approach is proposed to estimate model errors based on EM in the present paper. Numerical tests demonstrate the ability of the new approach to correct model structural errors. In fact, it can actualize the combination of the statistics and dynamics to certain extent.

  14. An Evaluation of Molecular Dynamics Performance on the Hybrid Cray XK6 Supercomputer

    International Nuclear Information System (INIS)

    Brown, W. Michael; Nguyen, Trung D.; Fuentes-Cabrera, Miguel A.; Fowlkes, Jason Davidson; Rack, Philip D.; Berger, Mark

    2012-01-01

    For many years, the drive towards computational physics studies that match the size and time-scales of experiment has been fueled by increases in processor and interconnect performance that could be exploited with relatively little modification to existing codes. Engineering and electrical power constraints have disrupted this trend, requiring more drastic changes to both hardware and software solutions. Here, we present details of the Cray XK6 architecture that achieves increased performance with the use of GPU accelerators. We review software development efforts in the LAMMPS molecular dynamics package that have been implemented in order to utilize hybrid high performance computers. We present benchmark results for solid-state, biological, and mesoscopic systems and discuss some challenges for utilizing hybrid systems. We present some early work in improving application performance on the XK6 and performance results for the simulation of liquid copper nanostructures with the embedded atom method.

  15. Exponential Expansion in Evolutionary Economics

    DEFF Research Database (Denmark)

    Frederiksen, Peter; Jagtfelt, Tue

    2013-01-01

    This article attempts to solve current problems of conceptual fragmentation within the field of evolutionary economics. One of the problems, as noted by a number of observers, is that the field suffers from an assemblage of fragmented and scattered concepts (Boschma and Martin 2010). A solution...... to this problem is proposed in the form of a model of exponential expansion. The model outlines the overall structure and function of the economy as exponential expansion. The pictographic model describes four axiomatic concepts and their exponential nature. The interactive, directional, emerging and expanding...... concepts are described in detail. Taken together it provides the rudimentary aspects of an economic system within an analytical perspective. It is argued that the main dynamic processes of the evolutionary perspective can be reduced to these four concepts. The model and concepts are evaluated in the light...

  16. Hidden long evolutionary memory in a model biochemical network

    Science.gov (United States)

    Ali, Md. Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-04-01

    We introduce a minimal model for the evolution of functional protein-interaction networks using a sequence-based mutational algorithm, and apply the model to study neutral drift in networks that yield oscillatory dynamics. Starting with a functional core module, random evolutionary drift increases network complexity even in the absence of specific selective pressures. Surprisingly, we uncover a hidden order in sequence space that gives rise to long-term evolutionary memory, implying strong constraints on network evolution due to the topology of accessible sequence space.

  17. Hybridization promotes color polymorphism in the aposematic harlequin poison frog, Oophaga histrionica

    OpenAIRE

    Medina, Iliana; Wang, Ian J; Salazar, Camilo; Amézquita, Adolfo

    2013-01-01

    Whether hybridization can be a mechanism that drives phenotypic diversity is a widely debated topic in evolutionary biology. In poison frogs (Dendrobatidae), assortative mating has been invoked to explain how new color morphs persist despite the expected homogenizing effects of natural selection. Here, we tested the complementary hypothesis that new morphs arise through hybridization between different color morphs. Specifically, we (1) reconstructed the phylogenetic relationships among the st...

  18. Development and application of dynamic hybrid multi-region inventory analysis for macro-level environmental policy analysis. A case study on climate policy in Taiwan

    NARCIS (Netherlands)

    Chao, C.-W.; Heijungs, R.

    2013-01-01

    We develop a novel inventory method called Dynamic Hybrid Multi-Region Inventory analysis (DHMRI), which integrates the EEMRIOA and Integrated Hybrid LCA and applies time-dependent environmental intervention information for inventory analysis. Consequently, DHMRI is able to quantify the change in

  19. Hybridized Kibble-Zurek scaling in the driven critical dynamics across an overlapping critical region

    Science.gov (United States)

    Zhai, Liang-Jun; Wang, Huai-Yu; Yin, Shuai

    2018-04-01

    The conventional Kibble-Zurek scaling describes the scaling behavior in the driven dynamics across a single critical region. In this paper, we study the driven dynamics across an overlapping critical region, in which a critical region (Region A) is overlaid by another critical region (Region B). We develop a hybridized Kibble-Zurek scaling (HKZS) to characterize the scaling behavior in the driven process. According to the HKZS, the driven dynamics in the overlapping region can be described by the critical theories for both Region A and Region B simultaneously. This results in a constraint on the scaling function in the overlapping critical region. We take the quantum Ising chain in an imaginary longitudinal field as an example. In this model, the critical region of the Yang-Lee edge singularity and the critical region of the ferromagnetic-paramagnetic phase transition overlap with each other. We numerically confirm the HKZS by simulating the driven dynamics in this overlapping critical region. The HKZSs in other models are also discussed.

  20. Treatment resistance in urothelial carcinoma: an evolutionary perspective.

    Science.gov (United States)

    Vlachostergios, Panagiotis J; Faltas, Bishoy M

    2018-05-02

    The emergence of treatment-resistant clones is a critical barrier to cure in patients with urothelial carcinoma. Setting the stage for the evolution of resistance, urothelial carcinoma is characterized by extensive mutational heterogeneity, which is detectable even in patients with early stage disease. Chemotherapy and immunotherapy both act as selective pressures that shape the evolutionary trajectory of urothelial carcinoma throughout the course of the disease. A detailed understanding of the dynamics of evolutionary drivers is required for the rational development of curative therapies. Herein, we describe the molecular basis of the clonal evolution of urothelial carcinomas and the use of genomic approaches to predict treatment responses. We discuss various mechanisms of resistance to chemotherapy with a focus on the mutagenic effects of the DNA dC->dU-editing enzymes APOBEC3 family of proteins. We also review the evolutionary mechanisms underlying resistance to immunotherapy, such as the loss of clonal tumour neoantigens. By dissecting treatment resistance through an evolutionary lens, the field will advance towards true precision medicine for urothelial carcinoma.

  1. Evolutionary-driven support vector machines for determining the degree of liver fibrosis in chronic hepatitis C.

    Science.gov (United States)

    Stoean, Ruxandra; Stoean, Catalin; Lupsor, Monica; Stefanescu, Horia; Badea, Radu

    2011-01-01

    Hepatic fibrosis, the principal pointer to the development of a liver disease within chronic hepatitis C, can be measured through several stages. The correct evaluation of its degree, based on recent different non-invasive procedures, is of current major concern. The latest methodology for assessing it is the Fibroscan and the effect of its employment is impressive. However, the complex interaction between its stiffness indicator and the other biochemical and clinical examinations towards a respective degree of liver fibrosis is hard to be manually discovered. In this respect, the novel, well-performing evolutionary-powered support vector machines are proposed towards an automated learning of the relationship between medical attributes and fibrosis levels. The traditional support vector machines have been an often choice for addressing hepatic fibrosis, while the evolutionary option has been validated on many real-world tasks and proven flexibility and good performance. The evolutionary approach is simple and direct, resulting from the hybridization of the learning component within support vector machines and the optimization engine of evolutionary algorithms. It discovers the optimal coefficients of surfaces that separate instances of distinct classes. Apart from a detached manner of establishing the fibrosis degree for new cases, a resulting formula also offers insight upon the correspondence between the medical factors and the respective outcome. What is more, a feature selection genetic algorithm can be further embedded into the method structure, in order to dynamically concentrate search only on the most relevant attributes. The data set refers 722 patients with chronic hepatitis C infection and 24 indicators. The five possible degrees of fibrosis range from F0 (no fibrosis) to F4 (cirrhosis). Since the standard support vector machines are among the most frequently used methods in recent artificial intelligence studies for hepatic fibrosis staging, the

  2. Evolutionary stability concepts in a stochastic environment

    Science.gov (United States)

    Zheng, Xiu-Deng; Li, Cong; Lessard, Sabin; Tao, Yi

    2017-09-01

    Over the past 30 years, evolutionary game theory and the concept of an evolutionarily stable strategy have been not only extensively developed and successfully applied to explain the evolution of animal behaviors, but also widely used in economics and social sciences. Nonetheless, the stochastic dynamical properties of evolutionary games in randomly fluctuating environments are still unclear. In this study, we investigate conditions for stochastic local stability of fixation states and constant interior equilibria in a two-phenotype model with random payoffs following pairwise interactions. Based on this model, we develop the concepts of stochastic evolutionary stability (SES) and stochastic convergence stability (SCS). We show that the condition for a pure strategy to be SES and SCS is more stringent than in a constant environment, while the condition for a constant mixed strategy to be SES is less stringent than the condition to be SCS, which is less stringent than the condition in a constant environment.

  3. Early events in speciation: polymorphism for hybrid male sterility in Drosophila.

    Science.gov (United States)

    Reed, Laura K; Markow, Therese A

    2004-06-15

    Capturing the process of speciation early enough to determine the initial genetic causes of reproductive isolation remains a major challenge in evolutionary biology. We have found, to our knowledge, the first example of substantial intraspecific polymorphism for genetic factors contributing to hybrid male sterility. Specifically, we show that the occurrence of hybrid male sterility in crosses between Drosophila mojavensis and its sister species, Drosophila arizonae, is controlled by factors present at different frequencies in different populations of D. mojavensis. In addition, we show that hybrid male sterility is a complex phenotype; some hybrid males with motile sperm still cannot sire offspring. Because male sterility factors in hybrids between these species are not yet fixed within D. mojavensis, this system provides an invaluable opportunity to characterize the genetics of reproductive isolation at an early stage.

  4. Optimization of a continuous hybrid impeller mixer via computational fluid dynamics.

    Science.gov (United States)

    Othman, N; Kamarudin, S K; Takriff, M S; Rosli, M I; Engku Chik, E M F; Meor Adnan, M A K

    2014-01-01

    This paper presents the preliminary steps required for conducting experiments to obtain the optimal operating conditions of a hybrid impeller mixer and to determine the residence time distribution (RTD) using computational fluid dynamics (CFD). In this paper, impeller speed and clearance parameters are examined. The hybrid impeller mixer consists of a single Rushton turbine mounted above a single pitched blade turbine (PBT). Four impeller speeds, 50, 100, 150, and 200 rpm, and four impeller clearances, 25, 50, 75, and 100 mm, were the operation variables used in this study. CFD was utilized to initially screen the parameter ranges to reduce the number of actual experiments needed. Afterward, the residence time distribution (RTD) was determined using the respective parameters. Finally, the Fluent-predicted RTD and the experimentally measured RTD were compared. The CFD investigations revealed that an impeller speed of 50 rpm and an impeller clearance of 25 mm were not viable for experimental investigations and were thus eliminated from further analyses. The determination of RTD using a k-ε turbulence model was performed using CFD techniques. The multiple reference frame (MRF) was implemented and a steady state was initially achieved followed by a transient condition for RTD determination.

  5. Novel brewing yeast hybrids: creation and application.

    Science.gov (United States)

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2017-01-01

    The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.

  6. The evolutionary ecology of clonally propagated domesticated plants.

    Science.gov (United States)

    McKey, Doyle; Elias, Marianne; Pujol, Benoît; Duputié, Anne

    2010-04-01

    While seed-propagated crops have contributed many evolutionary insights, evolutionary biologists have often neglected clonally propagated crops. We argue that widespread notions about their evolution under domestication are oversimplified, and that they offer rich material for evolutionary studies. The diversity of their wild ancestors, the diverse ecologies of the crop populations themselves, and the intricate mix of selection pressures, acting not only on the parts harvested but also on the parts used by humans to make clonal propagules, result in complex and diverse evolutionary trajectories under domestication. We examine why farmers propagate some plants clonally, and discuss the evolutionary dynamics of sexual reproduction in clonal crops. We explore how their mixed clonal/sexual reproductive systems function, based on the sole example studied in detail, cassava (Manihot esculenta). Biotechnology is now expanding the number of clonal crops, continuing the 10 000-yr-old trend to increase crop yields by propagating elite genotypes. In an era of rapid global change, it is more important than ever to understand how the adaptive potential of clonal crops can be maintained. A key component of strategies for preserving this adaptive potential is the maintenance of mixed clonal/sexual systems, which can be achieved by encouraging and valuing farmer knowledge about the sexual reproductive biology of their clonal crops.

  7. Hybrid finite element and Brownian dynamics method for charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Gary A., E-mail: ghuber@ucsd.edu; Miao, Yinglong [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0365 (United States); Zhou, Shenggao [Department of Mathematics and Mathematical Center for Interdiscipline Research, Soochow University, 1 Shizi Street, Suzhou, 215006 Jiangsu (China); Li, Bo [Department of Mathematics and Quantitative Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112 (United States); McCammon, J. Andrew [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093 (United States); Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0365 (United States); Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 (United States)

    2016-04-28

    Diffusion is often the rate-determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. A previous study introduced a new hybrid diffusion method that couples the strengths of each of these two methods, but was limited by the lack of interactions among the particles; the force on each particle had to be from an external field. This study further develops the method to allow charged particles. The method is derived for a general multidimensional system and is presented using a basic test case for a one-dimensional linear system with one charged species and a radially symmetric system with three charged species.

  8. Television as a Hybrid Repertoire of Memory. New Dynamic Practices of Cultural Memory in the Multi-Platform Era

    NARCIS (Netherlands)

    Hagedoorn, Berber

    2013-01-01

    abstractIn this article, television is reconsidered as a hybrid ‘repertoire’ ofmemory. It is demonstrated how new dynamic production and scheduling practicesin connection with highly accessible and participatory forms of user engagementoffer opportunities for television users to engage with the

  9. Hybrid SOA-SQP algorithm for dynamic economic dispatch with valve-point effects

    Energy Technology Data Exchange (ETDEWEB)

    Sivasubramani, S.; Swarup, K.S. [Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)

    2010-12-15

    This paper proposes a hybrid technique combining a new heuristic algorithm named seeker optimization algorithm (SOA) and sequential quadratic programming (SQP) method for solving dynamic economic dispatch problem with valve-point effects. The SOA is based on the concept of simulating the act of human searching, where the search direction is based on the empirical gradient (EG) by evaluating the response to the position changes and the step length is based on uncertainty reasoning by using a simple fuzzy rule. In this paper, SOA is used as a base level search, which can give a good direction to the optimal global region and SQP as a local search to fine tune the solution obtained from SOA. Thus SQP guides SOA to find optimal or near optimal solution in the complex search space. Two test systems i.e., 5 unit with losses and 10 unit without losses, have been taken to validate the efficiency of the proposed hybrid method. Simulation results clearly show that the proposed method outperforms the existing method in terms of solution quality. (author)

  10. Bucking the trend in wolf-dog hybridization: first evidence from europe of hybridization between female dogs and male wolves.

    Science.gov (United States)

    Hindrikson, Maris; Männil, Peep; Ozolins, Janis; Krzywinski, Andrzej; Saarma, Urmas

    2012-01-01

    Studies on hybridization have proved critical for understanding key evolutionary processes such as speciation and adaptation. However, from the perspective of conservation, hybridization poses a concern, as it can threaten the integrity and fitness of many wild species, including canids. As a result of habitat fragmentation and extensive hunting pressure, gray wolf (Canis lupus) populations have declined dramatically in Europe and elsewhere during recent centuries. Small and fragmented populations have persisted, but often only in the presence of large numbers of dogs, which increase the potential for hybridization and introgression to deleteriously affect wolf populations. Here, we demonstrate hybridization between wolf and dog populations in Estonia and Latvia, and the role of both genders in the hybridization process, using combined analysis of maternal, paternal and biparental genetic markers. Eight animals exhibiting unusual external characteristics for wolves - six from Estonia and two from Latvia - proved to be wolf-dog hybrids. However, one of the hybridization events was extraordinary. Previous field observations and genetic studies have indicated that mating between wolves and dogs is sexually asymmetrical, occurring predominantly between female wolves and male dogs. While this was also the case among the Estonian hybrids, our data revealed the existence of dog mitochondrial genomes in the Latvian hybrids and, together with Y chromosome and autosomal microsatellite data, thus provided the first evidence from Europe of mating between male wolves and female dogs. We discuss patterns of sexual asymmetry in wolf-dog hybridization.

  11. Discordant introgression in a rapidly expanding hybrid swarm

    Science.gov (United States)

    Ward, Jessica L.; Blum, Mike J.; Walters, David M.; Porter, Brady A.; Burkhead, Noel; Freeman, Byron

    2012-01-01

    The erosion of species boundaries can involve rapid evolutionary change. Consequently, many aspects of the process remain poorly understood, including the formation, expansion, and evolution of hybrid swarms. Biological invasions involving hybridization present exceptional opportunities to study the erosion of species boundaries because timelines of interactions and outcomes are frequently well known. Here, we examined clinal variation across codominant and maternally inherited genetic markers as well as phenotypic traits to characterize the expansion and evolution of a hybrid swarm between native Cyprinella venusta and invasive Cyprinella lutrensis minnows. Discordant introgression of phenotype, microsatellite multilocus genotype, and mtDNA haplotype indicates that the observable expansion of the C. venusta x C. lutrensis hybrid swarm is a false invasion front. Both parental and hybrid individuals closely resembling C. lutrensis are numerically dominant in the expansion wake, indicating that the non-native parental phenotype may be selectively favored. These findings show that cryptic introgression can extend beyond the phenotypic boundaries of hybrid swarms and that hybrid swarms likely expand more rapidly than can be documented from phenotypic variation alone. Similarly, dominance of a single parental phenotype following an introduction event may lead to instances of species erosion being mistaken for species displacement without hybridization.

  12. Dynamic Ising model: reconstruction of evolutionary trees

    International Nuclear Information System (INIS)

    De Oliveira, P M C

    2013-01-01

    An evolutionary tree is a cascade of bifurcations starting from a single common root, generating a growing set of daughter species as time goes by. ‘Species’ here is a general denomination for biological species, spoken languages or any other entity which evolves through heredity. From the N currently alive species within a clade, distances are measured through pairwise comparisons made by geneticists, linguists, etc. The larger is such a distance that, for a pair of species, the older is their last common ancestor. The aim is to reconstruct the previously unknown bifurcations, i.e. the whole clade, from knowledge of the N(N − 1)/2 quoted distances, which are taken for granted. A mechanical method is presented and its applicability is discussed. (paper)

  13. Evolutionary Nephrology.

    Science.gov (United States)

    Chevalier, Robert L

    2017-05-01

    Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  14. Evolutionary Nephrology

    Directory of Open Access Journals (Sweden)

    Robert L. Chevalier

    2017-05-01

    Full Text Available Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as “maladaptive.” In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or from evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ∼40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons, evolutionary selection for APOL1 mutations (which provide resistance to trypanosome infection, a tradeoff, and modern life experience (Western diet mismatch leading to diabetes and hypertension. Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout the life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo, developmental programming, and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  15. Sampling Enrichment toward Target Structures Using Hybrid Molecular Dynamics-Monte Carlo Simulations.

    Directory of Open Access Journals (Sweden)

    Kecheng Yang

    Full Text Available Sampling enrichment toward a target state, an analogue of the improvement of sampling efficiency (SE, is critical in both the refinement of protein structures and the generation of near-native structure ensembles for the exploration of structure-function relationships. We developed a hybrid molecular dynamics (MD-Monte Carlo (MC approach to enrich the sampling toward the target structures. In this approach, the higher SE is achieved by perturbing the conventional MD simulations with a MC structure-acceptance judgment, which is based on the coincidence degree of small angle x-ray scattering (SAXS intensity profiles between the simulation structures and the target structure. We found that the hybrid simulations could significantly improve SE by making the top-ranked models much closer to the target structures both in the secondary and tertiary structures. Specifically, for the 20 mono-residue peptides, when the initial structures had the root-mean-squared deviation (RMSD from the target structure smaller than 7 Å, the hybrid MD-MC simulations afforded, on average, 0.83 Å and 1.73 Å in RMSD closer to the target than the parallel MD simulations at 310K and 370K, respectively. Meanwhile, the average SE values are also increased by 13.2% and 15.7%. The enrichment of sampling becomes more significant when the target states are gradually detectable in the MD-MC simulations in comparison with the parallel MD simulations, and provide >200% improvement in SE. We also performed a test of the hybrid MD-MC approach in the real protein system, the results showed that the SE for 3 out of 5 real proteins are improved. Overall, this work presents an efficient way of utilizing solution SAXS to improve protein structure prediction and refinement, as well as the generation of near native structures for function annotation.

  16. Analyses of Evolutionary Characteristics of the Hemagglutinin-Esterase Gene of Influenza C Virus during a Period of 68 Years Reveals Evolutionary Patterns Different from Influenza A and B Viruses

    Directory of Open Access Journals (Sweden)

    Yuki Furuse

    2016-11-01

    Full Text Available Infections with the influenza C virus causing respiratory symptoms are common, particularly among children. Since isolation and detection of the virus are rarely performed, compared with influenza A and B viruses, the small number of available sequences of the virus makes it difficult to analyze its evolutionary dynamics. Recently, we reported the full genome sequence of 102 strains of the virus. Here, we exploited the data to elucidate the evolutionary characteristics and phylodynamics of the virus compared with influenza A and B viruses. Along with our data, we obtained public sequence data of the hemagglutinin-esterase gene of the virus; the dataset consists of 218 unique sequences of the virus collected from 14 countries between 1947 and 2014. Informatics analyses revealed that (1 multiple lineages have been circulating globally; (2 there have been weak and infrequent selective bottlenecks; (3 the evolutionary rate is low because of weak positive selection and a low capability to induce mutations; and (4 there is no significant positive selection although a few mutations affecting its antigenicity have been induced. The unique evolutionary dynamics of the influenza C virus must be shaped by multiple factors, including virological, immunological, and epidemiological characteristics.

  17. Evolutionary games under incompetence.

    Science.gov (United States)

    Kleshnina, Maria; Filar, Jerzy A; Ejov, Vladimir; McKerral, Jody C

    2018-02-26

    The adaptation process of a species to a new environment is a significant area of study in biology. As part of natural selection, adaptation is a mutation process which improves survival skills and reproductive functions of species. Here, we investigate this process by combining the idea of incompetence with evolutionary game theory. In the sense of evolution, incompetence and training can be interpreted as a special learning process. With focus on the social side of the problem, we analyze the influence of incompetence on behavior of species. We introduce an incompetence parameter into a learning function in a single-population game and analyze its effect on the outcome of the replicator dynamics. Incompetence can change the outcome of the game and its dynamics, indicating its significance within what are inherently imperfect natural systems.

  18. Synergistic Coherence of Bifurcation Evolutionary Processes of Mergers and Acquisitions of Enterprises

    Directory of Open Access Journals (Sweden)

    Ivanchenko Hennadii F.

    2016-08-01

    Full Text Available The aim of the article is developing information tools for the economic and mathematical modeling of the dynamics of evolutionary processes concerning trophic relationships of populations of enterprises, which allowed to conduct the phase and bifurcation analysis of possible dynamic regimes of the populations’ evolution, determine the mechanisms of influence of the external environment and the internal structure of the system, identify patterns and limits of stability of M&A processes. In the work the main provisions of the evolutionary concept concerning development of the population of enterprises as an economic system are analyzed, the provisions of the evolutionary concept of population systems’ development are considered, the basis of evolutionary modeling methods allowing to analyze the functioning of populations of enterprises in terms of individual strategies of each enterprise’s behavior is studied. The basic principles of synergy of the life cycle evolution for populations of enterprises are determined. An evolutionary approach to the evaluation of a synergistic effect of M & A is proposed. The evolutionary modeling of the scenario for self-organization of populations of dairy industry enterprises through a combination of statistical and expert data is applied. There also created a model of the population of firms reflecting behavioral and resource and technological characteristics of the studied in the work real population of industrial enterprises, which form the input flows of matter, energy and information to the dairy industry, which allows to combine the reflection of main possible options in terms of the external conditions of the population functioning and its internal structure.

  19. The role of evolutionary biology in research and control of liver flukes in Southeast Asia.

    Science.gov (United States)

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F; Wilcox, Bruce A

    2016-09-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Evolutionary molecular medicine.

    Science.gov (United States)

    Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S

    2012-05-01

    Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

  1. Evolutionary dynamics of adult stem cells: comparison of random and immortal-strand segregation mechanisms.

    Science.gov (United States)

    Tannenbaum, Emmanuel; Sherley, James L; Shakhnovich, Eugene I

    2005-04-01

    This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell and (2) "immortal DNA strand" co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by [Cairns Nature (London) 255, 197 (1975)], by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.

  2. Recent hybrid origin of three rare chinese turtles

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Bryan L.; Parham, James F.

    2006-02-07

    Three rare geoemydid turtles described from Chinese tradespecimens in the early 1990s, Ocadia glyphistoma, O. philippeni, andSacalia pseudocellata, are suspected to be hybrids because they are knownonly from their original descriptions and because they have morphologiesintermediate between other, better-known species. We cloned the allelesof a bi-parentally inherited nuclear intron from samples of these threespecies. The two aligned parental alleles of O. glyphistoma, O.philippeni, and S. pseudocellata have 5-11.5 times more heterozygouspositions than do 13 other geoemydid species. Phylogenetic analysis showsthat the two alleles from each turtle are strongly paraphyletic, butcorrectly match sequences of other species that were hypothesized frommorphology to be their parental species. We conclude that these rareturtles represent recent hybrids rather than valid species. Specifically,"O. glyphistoma" is a hybrid of Mauremys sinensis and M. cf. annamensis,"O. philippeni" is a hybrid of M. sinensis and Cuora trifasciata, and "S.pseudocellata" is a hybrid of C. trifasciata and S. quadriocellata.Conservation resources are better directed toward finding and protectingpopulations of other rare Southeast Asian turtles that do representdistinct evolutionary lineages.

  3. Evolved finite state controller for hybrid system in reduced search space

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun

    2009-01-01

    This paper presents an evolutionary methodology to automatically generate finite state automata (FSA) controllers to control hybrid systems. The proposed approach reduces the search space using an invariant analysis of the system. FSA controllers for a case study of two-tank system have been...

  4. An Extensible Component-Based Multi-Objective Evolutionary Algorithm Framework

    DEFF Research Database (Denmark)

    Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard

    2017-01-01

    The ability to easily modify the problem definition is currently missing in Multi-Objective Evolutionary Algorithms (MOEA). Existing MOEA frameworks do not support dynamic addition and extension of the problem formulation. The existing frameworks require a re-specification of the problem definition...

  5. Analysis and design of hybrid control systems

    Energy Technology Data Exchange (ETDEWEB)

    Malmborg, J.

    1998-05-01

    Different aspects of hybrid control systems are treated: analysis, simulation, design and implementation. A systematic methodology using extended Lyapunov theory for design of hybrid systems is developed. The methodology is based on conventional control designs in separate regions together with a switching strategy. Dynamics are not well defined if the control design methods lead to fast mode switching. The dynamics depend on the salient features of the implementation of the mode switches. A theorem for the stability of second order switching together with the resulting dynamics is derived. The dynamics on an intersection of two sliding sets are defined for two relays working on different time scales. The current simulation packages have problems modeling and simulating hybrid systems. It is shown how fast mode switches can be found before or during simulation. The necessary analysis work is a very small overhead for a modern simulation tool. To get some experience from practical problems with hybrid control the switching strategy is implemented in two different software environments. In one of them a time-optimal controller is added to an existing PID controller on a commercial control system. Successful experiments with this hybrid controller shows the practical use of the method 78 refs, 51 figs, 2 tabs

  6. A network growth model based on the evolutionary ultimatum game

    International Nuclear Information System (INIS)

    Deng, L L; Zhou, G G; Cai, J H; Wang, C; Tang, W S

    2012-01-01

    In this paper, we provide a network growth model with incorporation into the ultimatum game dynamics. The network grows on the basis of the payoff-oriented preferential attachment mechanism, where a new node is added into the network and attached preferentially to nodes with higher payoffs. The interplay between the network growth and the game dynamics gives rise to quite interesting dynamical behaviors. Simulation results show the emergence of altruistic behaviors in the ultimatum game, which is affected by the growing network structure. Compared with the static counterpart case, the levels of altruistic behaviors are promoted. The corresponding strategy distributions and wealth distributions are also presented to further demonstrate the strategy evolutionary dynamics. Subsequently, we turn to the topological properties of the evolved network, by virtue of some statistics. The most studied characteristic path length and the clustering coefficient of the network are shown to indicate their small-world effect. Then the degree distributions are analyzed to clarify the interplay of structure and evolutionary dynamics. In particular, the difference between our growth network and the static counterpart is revealed. To explain clearly the evolved networks, the rich-club ordering and the assortative mixing coefficient are exploited to reveal the degree correlation. (paper)

  7. A hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks.

    Science.gov (United States)

    Choi, Yong-Kyu; Hosoya, Kenta; Lee, Chung Ghiu; Hanawa, Masanori; Park, Chang-Soo

    2011-03-28

    We propose and experimentally demonstrate a hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks. Dynamic function is implemented by mechanically tuning the Fourier encoder/decoder for optical code division multiple access (OCDMA) encoding/decoding. Wavelength division multiplexing (WDM) is utilized for node assignment and 4-chip Fourier code recovers the matched signal from the codes. For an optical source well adapted to WDM channels and its short optical pulse generation, reflective semiconductor optical amplifiers (RSOAs) are used with a fiber Bragg grating (FBG) and gain-switched. To demonstrate we experimentally investigated a two-node hybrid WDM/OCDMA ring with a 4-chip Fourier encoder/decoder fabricated by cascading four FBGs with the bit error rate (BER) of <10(-9) for the node span of 10.64 km at 1.25 Gb/s.

  8. Adaptation and hybridization in computational intelligence

    CERN Document Server

    Jr, Iztok

    2015-01-01

      This carefully edited book takes a walk through recent advances in adaptation and hybridization in the Computational Intelligence (CI) domain. It consists of ten chapters that are divided into three parts. The first part illustrates background information and provides some theoretical foundation tackling the CI domain, the second part deals with the adaptation in CI algorithms, while the third part focuses on the hybridization in CI. This book can serve as an ideal reference for researchers and students of computer science, electrical and civil engineering, economy, and natural sciences that are confronted with solving the optimization, modeling and simulation problems. It covers the recent advances in CI that encompass Nature-inspired algorithms, like Artificial Neural networks, Evolutionary Algorithms and Swarm Intelligence –based algorithms.  

  9. The dynamics of diverse segmental amplifications in populations of Saccharomyces cerevisiae adapting to strong selection.

    Science.gov (United States)

    Payen, Celia; Di Rienzi, Sara C; Ong, Giang T; Pogachar, Jamie L; Sanchez, Joseph C; Sunshine, Anna B; Raghuraman, M K; Brewer, Bonita J; Dunham, Maitreya J

    2014-03-20

    Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity, and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining quantitative polymerase chain reaction, array comparative genomic hybridization, restriction digestion and contour-clamped homogeneous electric field gel electrophoresis, and whole-genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. During a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that were driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolved under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared with single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another.

  10. Effect of Cation Rotation on Charge Dynamics in Hybrid Lead Halide Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Gélvez-Rueda, María C.; Cao, Duyen H.; Patwardhan, Sameer; Renaud, Nicolas; Stoumpos, Constantinos C.; Schatz, George C.; Hupp, Joseph T.; Farha, Omar K.; Savenije, Tom J.; Kanatzidis, Mercouri G.; Grozema, Ferdinand C.

    2016-08-04

    Organic-inorganic hybrid halide perovskites are a promising class of materials for photovoltaic application with reported power efficiencies over similar to 22%. However, not much is known about the influence of the organic dipole rotation and phase transitions on charge carrier dynamics. Here, we report substantial changes in mobility and lifetime of charge carriers in CH3NH3PbI3 after the low-temperature tetragonal (beta) to orthorhombic (gamma) phase transition. By using microwave conductivity measurements, we observed that the mobility and lifetime of ionized charge carriers increase as the temperature decreases and a sudden increment is seen after the beta-gamma phase transition. For CH3NH3PbI3, the mobility and the half-lifetime increase by a factor of 36 compared with the values before the beta-gamma phase transition. We attribute the considerable change in the dynamics at low temperature to the decrease of the inherent dynamic disorder of the organic cation (CH3NH3+) inside the perovskite crystal structure.

  11. Hybrid systems, optimal control and hybrid vehicles theory, methods and applications

    CERN Document Server

    Böhme, Thomas J

    2017-01-01

    This book assembles new methods showing the automotive engineer for the first time how hybrid vehicle configurations can be modeled as systems with discrete and continuous controls. These hybrid systems describe naturally and compactly the networks of embedded systems which use elements such as integrators, hysteresis, state-machines and logical rules to describe the evolution of continuous and discrete dynamics and arise inevitably when modeling hybrid electric vehicles. They can throw light on systems which may otherwise be too complex or recondite. Hybrid Systems, Optimal Control and Hybrid Vehicles shows the reader how to formulate and solve control problems which satisfy multiple objectives which may be arbitrary and complex with contradictory influences on fuel consumption, emissions and drivability. The text introduces industrial engineers, postgraduates and researchers to the theory of hybrid optimal control problems. A series of novel algorithmic developments provides tools for solving engineering pr...

  12. Control Systems for a Dynamic Multi-Physics Model of a Nuclear Hybrid Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [ORNL; Fugate, David W [ORNL; Cetiner, Sacit M [ORNL

    2017-01-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as either thermal power, electrical power, or both. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different local markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  13. Species collapse via hybridization in Darwin's tree finches.

    Science.gov (United States)

    Kleindorfer, Sonia; O'Connor, Jody A; Dudaniec, Rachael Y; Myers, Steven A; Robertson, Jeremy; Sulloway, Frank J

    2014-03-01

    Species hybridization can lead to fitness costs, species collapse, and novel evolutionary trajectories in changing environments. Hybridization is predicted to be more common when environmental conditions change rapidly. Here, we test patterns of hybridization in three sympatric tree finch species (small tree finch Camarhynchus parvulus, medium tree finch Camarhynchus pauper, and large tree finch: Camarhynchus psittacula) that are currently recognized on Floreana Island, Galápagos Archipelago. Genetic analysis of microsatellite data from contemporary samples showed two genetic populations and one hybrid cluster in both 2005 and 2010; hybrid individuals were derived from genetic population 1 (small morph) and genetic population 2 (large morph). Females of the large and rare species were more likely to pair with males of the small common species. Finch populations differed in morphology in 1852-1906 compared with 2005/2010. An unsupervised clustering method showed (a) support for three morphological clusters in the historical tree finch sample (1852-1906), which is consistent with current species recognition; (b) support for two or three morphological clusters in 2005 with some (19%) hybridization; and (c) support for just two morphological clusters in 2010 with frequent (41%) hybridization. We discuss these findings in relation to species demarcations of Camarhynchus tree finches on Floreana Island.

  14. Optimization of a Continuous Hybrid Impeller Mixer via Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    N. Othman

    2014-01-01

    Full Text Available This paper presents the preliminary steps required for conducting experiments to obtain the optimal operating conditions of a hybrid impeller mixer and to determine the residence time distribution (RTD using computational fluid dynamics (CFD. In this paper, impeller speed and clearance parameters are examined. The hybrid impeller mixer consists of a single Rushton turbine mounted above a single pitched blade turbine (PBT. Four impeller speeds, 50, 100, 150, and 200 rpm, and four impeller clearances, 25, 50, 75, and 100 mm, were the operation variables used in this study. CFD was utilized to initially screen the parameter ranges to reduce the number of actual experiments needed. Afterward, the residence time distribution (RTD was determined using the respective parameters. Finally, the Fluent-predicted RTD and the experimentally measured RTD were compared. The CFD investigations revealed that an impeller speed of 50 rpm and an impeller clearance of 25 mm were not viable for experimental investigations and were thus eliminated from further analyses. The determination of RTD using a k-ε turbulence model was performed using CFD techniques. The multiple reference frame (MRF was implemented and a steady state was initially achieved followed by a transient condition for RTD determination.

  15. Reconstruction of the evolutionary history of Saccharomyces cerevisiae x S. kudriavzevii hybrids based on multilocus sequence analysis.

    Directory of Open Access Journals (Sweden)

    David Peris

    Full Text Available In recent years, interspecific hybridization and introgression are increasingly recognized as significant events in the evolution of Saccharomyces yeasts. These mechanisms have probably been involved in the origin of novel yeast genotypes and phenotypes, which in due course were to colonize and predominate in the new fermentative environments created by human manipulation. The particular conditions in which hybrids arose are still unknown, as well as the number of possible hybridization events that generated the whole set of natural hybrids described in the literature during recent years. In this study, we could infer at least six different hybridization events that originated a set of 26 S. cerevisiae x S. kudriavzevii hybrids isolated from both fermentative and non-fermentative environments. Different wine S. cerevisiae strains and European S. kudriavzevii strains were probably involved in the hybridization events according to gene sequence information, as well as from previous data on their genome composition and ploidy. Finally, we postulate that these hybrids may have originated after the introduction of vine growing and winemaking practices by the Romans to the present Northern vine-growing limits and spread during the expansion of improved viticulture and enology practices that occurred during the Late Middle Ages.

  16. Reconstruction of the Evolutionary History of Saccharomyces cerevisiae x S. kudriavzevii Hybrids Based on Multilocus Sequence Analysis

    Science.gov (United States)

    Peris, David; Lopes, Christian A.; Arias, Armando; Barrio, Eladio

    2012-01-01

    In recent years, interspecific hybridization and introgression are increasingly recognized as significant events in the evolution of Saccharomyces yeasts. These mechanisms have probably been involved in the origin of novel yeast genotypes and phenotypes, which in due course were to colonize and predominate in the new fermentative environments created by human manipulation. The particular conditions in which hybrids arose are still unknown, as well as the number of possible hybridization events that generated the whole set of natural hybrids described in the literature during recent years. In this study, we could infer at least six different hybridization events that originated a set of 26 S. cerevisiae x S. kudriavzevii hybrids isolated from both fermentative and non-fermentative environments. Different wine S. cerevisiae strains and European S. kudriavzevii strains were probably involved in the hybridization events according to gene sequence information, as well as from previous data on their genome composition and ploidy. Finally, we postulate that these hybrids may have originated after the introduction of vine growing and winemaking practices by the Romans to the present Northern vine-growing limits and spread during the expansion of improved viticulture and enology practices that occurred during the Late Middle Ages. PMID:23049811

  17. Evolutionary experimentation through hybridization under laboratory condition in Drosophila: Evidence for Recombinational Speciation

    Directory of Open Access Journals (Sweden)

    Ramachandra Nallur B

    2003-10-01

    Full Text Available Abstract Background Drosophila nasuta nasuta (2n = 8 and Drosophila nasuta albomicans (2n = 6 are a pair of sibling allopatric chromosomal cross-fertile races of the nasuta subgroup of immigrans species group of Drosophila. Interracial hybridization between these two races has given rise to new karyotypic strains called Cytorace 1 and Cytorace 2 (first phase. Further hybridization between Thailand strain of D. n. albomicans and D. n. nasuta of Coorg strain has resulted in the evolution of two more Cytoraces, namely Cytorace 3 and Cytorace 4 (second phase. The third phase Cytoraces (Cytorace 5 to Cytorace 16 have evolved through interracial hybridization among first, second phase Cytoraces along with parental races. Each of these Cytoraces is composed of recombined genomes of the parental races. Here, we have made an attempt to systematically assess the impact of hybridization on karyotypes, morphometric and life history traits in all 16 Cytoraces. Results The results reveal that in most cases, the newly evolved Cytoraces, with different chromosome constitutions, exhibit decreased body size, better fitness and live longer than their parents. Particularly, Cytorace 5, 6 and 8 have evolved with very much higher range values of quantitative traits than the parents and other Cytoraces, which suggests the role of transgressive segregation in the evolution of these Cytoraces. Conclusion Thus, the rapid divergence recorded in the chromosomes, karyotypes, body size and fitness traits of Cytoraces exhibit the early event of recombinational raciation / speciation in the evolution of the Cytoraces under laboratory conditions.

  18. On the Existence of Evolutionary Learning Equilibriums

    Directory of Open Access Journals (Sweden)

    Masudul Alam Choudhury

    2011-12-01

    Full Text Available The usual kinds of Fixed-Point Theorems formalized on the existence of competitive equilibrium that explain much of economic theory at the core of economics can operate only on bounded and closed sets with convex mappings. But these conditions are hardly true of the real world of economic and financial complexities and perturbations. The category of learning sets explained by continuous fields of interactive, integrative and evolutionary behaviour caused by dynamic preferences at the individual and institutional and social levels cannot maintain the assumption of closed, bounded and convex sets. Thus learning sets and multi-system inter-temporal relations explained by pervasive complementarities and  participation between variables and entities, and evolution by learning, have evolutionary equilibriums. Such a study requires a new methodological approach. This paper formalizes such a methodology for evolutionary equilibriums in learning spaces. It briefly points out the universality of learning equilibriums in all mathematical structures. For a particular case though, the inter-systemic interdependence between sustainable development and ethics and economics in the specific understanding of learning domain is pointed out.

  19. A hybrid stochastic hierarchy equations of motion approach to treat the low temperature dynamics of non-Markovian open quantum systems

    Science.gov (United States)

    Moix, Jeremy M.; Cao, Jianshu

    2013-10-01

    The hierarchical equations of motion technique has found widespread success as a tool to generate the numerically exact dynamics of non-Markovian open quantum systems. However, its application to low temperature environments remains a serious challenge due to the need for a deep hierarchy that arises from the Matsubara expansion of the bath correlation function. Here we present a hybrid stochastic hierarchical equation of motion (sHEOM) approach that alleviates this bottleneck and leads to a numerical cost that is nearly independent of temperature. Additionally, the sHEOM method generally converges with fewer hierarchy tiers allowing for the treatment of larger systems. Benchmark calculations are presented on the dynamics of two level systems at both high and low temperatures to demonstrate the efficacy of the approach. Then the hybrid method is used to generate the exact dynamics of systems that are nearly impossible to treat by the standard hierarchy. First, exact energy transfer rates are calculated across a broad range of temperatures revealing the deviations from the Förster rates. This is followed by computations of the entanglement dynamics in a system of two qubits at low temperature spanning the weak to strong system-bath coupling regimes.

  20. A Hybrid Dynamic Programming for Solving Fixed Cost Transportation with Discounted Mechanism

    Directory of Open Access Journals (Sweden)

    Farhad Ghassemi Tari

    2016-01-01

    Full Text Available The problem of allocating different types of vehicles for transporting a set of products from a manufacturer to its depots/cross docks, in an existing transportation network, to minimize the total transportation costs, is considered. The distribution network involves a heterogeneous fleet of vehicles, with a variable transportation cost and a fixed cost in which a discount mechanism is applied on the fixed part of the transportation costs. It is assumed that the number of available vehicles is limited for some types. A mathematical programming model in the form of the discrete nonlinear optimization model is proposed. A hybrid dynamic programming algorithm is developed for finding the optimal solution. To increase the computational efficiency of the solution algorithm, several concepts and routines, such as the imbedded state routine, surrogate constraint concept, and bounding schemes, are incorporated in the dynamic programming algorithm. A real world case problem is selected and solved by the proposed solution algorithm, and the optimal solution is obtained.

  1. Efficient hybrid non-equilibrium molecular dynamics--Monte Carlo simulations with symmetric momentum reversal.

    Science.gov (United States)

    Chen, Yunjie; Roux, Benoît

    2014-09-21

    Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct

  2. Efficient hybrid non-equilibrium molecular dynamics - Monte Carlo simulations with symmetric momentum reversal

    Science.gov (United States)

    Chen, Yunjie; Roux, Benoît

    2014-09-01

    Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct

  3. When Reputation Enforces Evolutionary Cooperation in Unreliable MANETs.

    Science.gov (United States)

    Tang, Changbing; Li, Ang; Li, Xiang

    2015-10-01

    In self-organized mobile ad hoc networks (MANETs), network functions rely on cooperation of self-interested nodes, where a challenge is to enforce their mutual cooperation. In this paper, we study cooperative packet forwarding in a one-hop unreliable channel which results from loss of packets and noisy observation of transmissions. We propose an indirect reciprocity framework based on evolutionary game theory, and enforce cooperation of packet forwarding strategies in both structured and unstructured MANETs. Furthermore, we analyze the evolutionary dynamics of cooperative strategies and derive the threshold of benefit-to-cost ratio to guarantee the convergence of cooperation. The numerical simulations verify that the proposed evolutionary game theoretic solution enforces cooperation when the benefit-to-cost ratio of the altruistic exceeds the critical condition. In addition, the network throughput performance of our proposed strategy in structured MANETs is measured, which is in close agreement with that of the full cooperative strategy.

  4. Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application

    International Nuclear Information System (INIS)

    Tang, Yong; Yuan, Wei; Pan, Minqiang; Wan, Zhenping

    2011-01-01

    A hybrid system combining a 2 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack and a lead-acid battery pack is developed for a lightweight cruising vehicle. The dynamic performances of this PEMFC system with and without the assistance of the batteries are systematically investigated in a series of laboratory and road tests. The stack current and voltage have timely dynamic responses to the load variations. Particularly, the current overshoot and voltage undershoot both happen during the step-up load tests. These phenomena are closely related to the charge double-layer effect and the mass transfer mechanisms such as the water and gas transport and distribution in the fuel cell. When the external load is beyond the range of the fuel cell system, the battery immediately participates in power output with a higher transient discharging current especially in the accelerating and climbing processes. The DC-DC converter exhibits a satisfying performance in adaptive modulation. It helps rectify the voltage output in a rigid manner and prevent the fuel cell system from being overloaded. The dynamic responses of other operating parameters such as the anodic operating pressure and the inlet and outlet temperatures are also investigated. The results show that such a hybrid system is able to dynamically satisfy the vehicular power demand.

  5. Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology.

    NARCIS (Netherlands)

    A.F. van Belkum (Alex); M. Struelens; A. de Visser (Arjan); H.A. Verbrugh (Henri); M. Tibayrench

    2001-01-01

    textabstractCurrently, genetic typing of microorganisms is widely used in several major fields of microbiological research. Taxonomy, research aimed at elucidation of evolutionary dynamics or phylogenetic relationships, population genetics of microorganisms, and

  6. A Control Scheme That Uses Dynamic Postural Synergies to Coordinate a Hybrid Walking Neuroprosthesis: Theory and Experiments.

    Science.gov (United States)

    Alibeji, Naji A; Molazadeh, Vahidreza; Dicianno, Brad E; Sharma, Nitin

    2018-01-01

    A hybrid walking neuroprosthesis that combines functional electrical stimulation (FES) with a powered lower limb exoskeleton can be used to restore walking in persons with paraplegia. It provides therapeutic benefits of FES and torque reliability of the powered exoskeleton. Moreover, by harnessing metabolic power of muscles via FES, the hybrid combination has a potential to lower power consumption and reduce actuator size in the powered exoskeleton. Its control design, however, must overcome the challenges of actuator redundancy due to the combined use of FES and electric motor. Further, dynamic disturbances such as electromechanical delay (EMD) and muscle fatigue must be considered during the control design process. This ensures stability and control performance despite disparate dynamics of FES and electric motor. In this paper, a general framework to coordinate FES of multiple gait-governing muscles with electric motors is presented. A muscle synergy-inspired control framework is used to derive the controller and is motivated mainly to address the actuator redundancy issue. Dynamic postural synergies between FES of the muscles and the electric motors were artificially generated through optimizations and result in key dynamic postures when activated. These synergies were used in the feedforward path of the control system. A dynamic surface control technique, modified with a delay compensation term, is used as the feedback controller to address model uncertainty, the cascaded muscle activation dynamics, and EMD. To address muscle fatigue, the stimulation levels in the feedforward path were gradually increased based on a model-based fatigue estimate. A Lyapunov-based stability approach was used to derive the controller and guarantee its stability. The synergy-based controller was demonstrated experimentally on an able-bodied subject and person with an incomplete spinal cord injury.

  7. A Control Scheme That Uses Dynamic Postural Synergies to Coordinate a Hybrid Walking Neuroprosthesis: Theory and Experiments

    Directory of Open Access Journals (Sweden)

    Naji A. Alibeji

    2018-04-01

    Full Text Available A hybrid walking neuroprosthesis that combines functional electrical stimulation (FES with a powered lower limb exoskeleton can be used to restore walking in persons with paraplegia. It provides therapeutic benefits of FES and torque reliability of the powered exoskeleton. Moreover, by harnessing metabolic power of muscles via FES, the hybrid combination has a potential to lower power consumption and reduce actuator size in the powered exoskeleton. Its control design, however, must overcome the challenges of actuator redundancy due to the combined use of FES and electric motor. Further, dynamic disturbances such as electromechanical delay (EMD and muscle fatigue must be considered during the control design process. This ensures stability and control performance despite disparate dynamics of FES and electric motor. In this paper, a general framework to coordinate FES of multiple gait-governing muscles with electric motors is presented. A muscle synergy-inspired control framework is used to derive the controller and is motivated mainly to address the actuator redundancy issue. Dynamic postural synergies between FES of the muscles and the electric motors were artificially generated through optimizations and result in key dynamic postures when activated. These synergies were used in the feedforward path of the control system. A dynamic surface control technique, modified with a delay compensation term, is used as the feedback controller to address model uncertainty, the cascaded muscle activation dynamics, and EMD. To address muscle fatigue, the stimulation levels in the feedforward path were gradually increased based on a model-based fatigue estimate. A Lyapunov-based stability approach was used to derive the controller and guarantee its stability. The synergy-based controller was demonstrated experimentally on an able-bodied subject and person with an incomplete spinal cord injury.

  8. Eco-evolutionary feedback and the invasion of cooperation in prisoner's dilemma games.

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    Full Text Available Unveiling the origin and forms of cooperation in nature poses profound challenges in evolutionary ecology. The prisoner's dilemma game is an important metaphor for studying the evolution of cooperation. We here classified potential mechanisms for cooperation evolution into schemes of frequency- and density-dependent selection, and focused on the density-dependent selection in the ecological prisoner's dilemma games. We found that, although assortative encounter is still the necessary condition in ecological games for cooperation evolution, a harsh environment, indicated by a high mortality, can foster the invasion of cooperation. The Hamilton rule provides a fundamental condition for the evolution of cooperation by ensuring an enhanced relatedness between players in low-density populations. Incorporating ecological dynamics into evolutionary games opens up a much wider window for the evolution of cooperation, and exhibits a variety of complex behaviors of dynamics, such as limit and heteroclinic cycles. An alternative evolutionary, or rather succession, sequence was proposed that cooperation first appears in harsh environments, followed by the invasion of defection, which leads to a common catastrophe. The rise of cooperation (and altruism, thus, could be much easier in the density-dependent ecological games than in the classic frequency-dependent evolutionary games.

  9. Chemical evolutionary games.

    Science.gov (United States)

    Aristotelous, Andreas C; Durrett, Richard

    2014-05-01

    Inspired by the use of hybrid cellular automata in modeling cancer, we introduce a generalization of evolutionary games in which cells produce and absorb chemicals, and the chemical concentrations dictate the death rates of cells and their fitnesses. Our long term aim is to understand how the details of the interactions in a system with n species and m chemicals translate into the qualitative behavior of the system. Here, we study two simple 2×2 games with two chemicals and revisit the two and three species versions of the one chemical colicin system studied earlier by Durrett and Levin (1997). We find that in the 2×2 examples, the behavior of our new spatial model can be predicted from that of the mean field differential equation using ideas of Durrett and Levin (1994). However, in the three species colicin model, the system with diffusion does not have the coexistence which occurs in the lattices model in which sites interact with only their nearest neighbors. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Stochastic evolutionary dynamics in minimum-effort coordination games

    Science.gov (United States)

    Li, Kun; Cong, Rui; Wang, Long

    2016-08-01

    The minimum-effort coordination game draws recently more attention for the fact that human behavior in this social dilemma is often inconsistent with the predictions of classical game theory. Here, we combine evolutionary game theory and coalescence theory to investigate this game in finite populations. Both analytic results and individual-based simulations show that effort costs play a key role in the evolution of contribution levels, which is in good agreement with those observed experimentally. Besides well-mixed populations, set structured populations have also been taken into consideration. Therein we find that large number of sets and moderate migration rate greatly promote effort levels, especially for high effort costs.

  11. A hybrid mammalian cell cycle model

    Directory of Open Access Journals (Sweden)

    Vincent Noël

    2013-08-01

    Full Text Available Hybrid modeling provides an effective solution to cope with multiple time scales dynamics in systems biology. Among the applications of this method, one of the most important is the cell cycle regulation. The machinery of the cell cycle, leading to cell division and proliferation, combines slow growth, spatio-temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations induced by post-translational modifications. The advancement through the cell cycle comprises a well defined sequence of stages, separated by checkpoint transitions. The combination of continuous and discrete changes justifies hybrid modelling approaches to cell cycle dynamics. We present a piecewise-smooth version of a mammalian cell cycle model, obtained by hybridization from a smooth biochemical model. The approximate hybridization scheme, leading to simplified reaction rates and binary event location functions, is based on learning from a training set of trajectories of the smooth model. We discuss several learning strategies for the parameters of the hybrid model.

  12. An evolutionary perspective on anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    David John Klinke

    2013-01-01

    Full Text Available The challenges associated with demonstrating a durable response using molecular targeted therapies in cancer has sparked a renewed interest in viewing cancer from an evolutionary perspective. Evolutionary processes have three common traits: heterogeneity, dynamics, and a selective fitness landscape. Mutagens randomly alter the genome of host cells creating a population of cells that contain different somatic mutations. This genomic rearrangement perturbs cellular homeostasis through changing how cells interact with their tissue microenvironment. To counterbalance the ability of mutated cells to outcompete for limited resources, control structures are encoded within the cell and within the organ system, such as innate and adaptive immunity, to restore cellular homeostasis. These control structures shape the selective fitness landscape and determine whether a cell that harbors particular somatic mutations is retained or eliminated from a cell population. While next-generation sequencing has revealed the complexity and heterogeneity of oncogenic transformation, understanding the dynamics of oncogenesis and how cancer cells alter the selective fitness landscape remain unclear. In this technology review, we will summarize how recent advances in technology have impacted our understanding of these three attributes of cancer as an evolutionary process. In particular, we will focus on how advances in genome sequencing have enabled quantifying cellular heterogeneity, advances in computational power have enabled explicit testing of postulated intra- and intercellular control structures against the available data using simulation, and advances in proteomics have enabled identifying novel mechanisms of cellular cross-talk that cancer cells use to alter the fitness landscape.

  13. On the complexity of the Saccharomyces bayanus taxon: hybridization and potential hybrid speciation.

    Directory of Open Access Journals (Sweden)

    Laura Pérez-Través

    Full Text Available Although the genus Saccharomyces has been thoroughly studied, some species in the genus has not yet been accurately resolved; an example is S. bayanus, a taxon that includes genetically diverse lineages of pure and hybrid strains. This diversity makes the assignation and classification of strains belonging to this species unclear and controversial. They have been subdivided by some authors into two varieties (bayanus and uvarum, which have been raised to the species level by others. In this work, we evaluate the complexity of 46 different strains included in the S. bayanus taxon by means of PCR-RFLP analysis and by sequencing of 34 gene regions and one mitochondrial gene. Using the sequence data, and based on the S. bayanus var. bayanus reference strain NBRC 1948, a hypothetical pure S. bayanus was reconstructed for these genes that showed alleles with similarity values lower than 97% with the S. bayanus var. uvarum strain CBS 7001, and of 99-100% with the non S. cerevisiae portion in S. pastorianus Weihenstephan 34/70 and with the new species S. eubayanus. Among the S. bayanus strains under study, different levels of homozygosity, hybridization and introgression were found; however, no pure S. bayanus var. bayanus strain was identified. These S. bayanus hybrids can be classified into two types: homozygous (type I and heterozygous hybrids (type II, indicating that they have been originated by different hybridization processes. Therefore, a putative evolutionary scenario involving two different hybridization events between a S. bayanus var. uvarum and unknown European S. eubayanus-like strains can be postulated to explain the genomic diversity observed in our S. bayanus var. bayanus strains.

  14. The evolutionary turnover of recombination hot spots contributes to speciation in mice.

    Science.gov (United States)

    Smagulova, Fatima; Brick, Kevin; Pu, Yongmei; Camerini-Otero, R Daniel; Petukhova, Galina V

    2016-02-01

    Meiotic recombination is required for the segregation of homologous chromosomes and is essential for fertility. In most mammals, the DNA double-strand breaks (DSBs) that initiate meiotic recombination are directed to a subset of genomic loci (hot spots) by sequence-specific binding of the PRDM9 protein. Rapid evolution of the DNA-binding specificity of PRDM9 and gradual erosion of PRDM9-binding sites by gene conversion will alter the recombination landscape over time. To better understand the evolutionary turnover of recombination hot spots and its consequences, we mapped DSB hot spots in four major subspecies of Mus musculus with different Prdm9 alleles and in their F1 hybrids. We found that hot spot erosion governs the preferential usage of some Prdm9 alleles over others in hybrid mice and increases sequence diversity specifically at hot spots that become active in the hybrids. As crossovers are disfavored at such hot spots, we propose that sequence divergence generated by hot spot turnover may create an impediment for recombination in hybrids, potentially leading to reduced fertility and, eventually, speciation. Published by Cold Spring Harbor Laboratory Press.

  15. Hybridization rates between lettuce (Lactuca sativa) and its wild relative (L. serriola) under field conditions

    OpenAIRE

    D'Andrea, Luigi; Felber, François; Guadagnuolo, Roberto

    2008-01-01

    Hybridization and introgression between crops and wild relatives may have important evolutionary and ecological consequences such as gene swamping or increased invasiveness. In the present study, we investigated hybridization under field conditions between crop lettuce (Lactuca sativa) and its wild relative prickly lettuce (L. serriola), two cross-compatible, predominantly autogamous and insect pollinated species. In 2003 and 2004, we estimated the rates of hybridization between L. sativa and...

  16. Evolutionary fuzzy ARTMAP neural networks for classification of semiconductor defects.

    Science.gov (United States)

    Tan, Shing Chiang; Watada, Junzo; Ibrahim, Zuwairie; Khalid, Marzuki

    2015-05-01

    Wafer defect detection using an intelligent system is an approach of quality improvement in semiconductor manufacturing that aims to enhance its process stability, increase production capacity, and improve yields. Occasionally, only few records that indicate defective units are available and they are classified as a minority group in a large database. Such a situation leads to an imbalanced data set problem, wherein it engenders a great challenge to deal with by applying machine-learning techniques for obtaining effective solution. In addition, the database may comprise overlapping samples of different classes. This paper introduces two models of evolutionary fuzzy ARTMAP (FAM) neural networks to deal with the imbalanced data set problems in a semiconductor manufacturing operations. In particular, both the FAM models and hybrid genetic algorithms are integrated in the proposed evolutionary artificial neural networks (EANNs) to classify an imbalanced data set. In addition, one of the proposed EANNs incorporates a facility to learn overlapping samples of different classes from the imbalanced data environment. The classification results of the proposed evolutionary FAM neural networks are presented, compared, and analyzed using several classification metrics. The outcomes positively indicate the effectiveness of the proposed networks in handling classification problems with imbalanced data sets.

  17. Feasibility of waste to Bio-diesel production via Nuclear-Biomass hybrid model. System dynamics analysis

    International Nuclear Information System (INIS)

    Nam, Hoseok; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    Nuclear-Biomass hybrid system which takes waste biomass from municipal, agricultural area, and forest as feedstock produces Bio-diesel fuel from synthesis gas generated by endothermic pyrolytic gasification using high temperature nuclear heat. Over 900 degree Celsius of exterior thermal heat from nuclear reactors, Very High Temperature Reactor (VHTR) and some other heat sources, bring about waste biomass gasification to produce maximum amount of chemical energy from feedstock. Hydrogen from Biomass gasification or Bio-diesel as the product of Fischer-Tropsch reaction following it provide fuels for transport sector. Nuclear-Biomass hybrid system is a new alternatives to produce more energy generating synergy effects by efficiently utilizing the high temperature heat from nuclear reactor that might be considerably wasted by thermal cycle, and also energy loss from biomass combustion or biochemical processes. System Dynamics approach is taken to analyze low-carbon synthesis fuel, Bio-diesel, production with combination of carbon monoxide and hydrogen from biomass gasification. Feedstock cost considering collection, transportation, storage and facility for biomass gasification impacts the economic feasibility of this model. This paper provides the implication of practical nuclear-biomass hybrid system application with feedstock supply chain through evaluation of economic feasibility. (author)

  18. Evolutionary dynamics of the Pgk1 gene in the polyploid genus Kengyilia (Triticeae: Poaceae and its diploid relatives.

    Directory of Open Access Journals (Sweden)

    Xing Fan

    Full Text Available The level and pattern of nucleotide variation in duplicate gene provide important information on the evolutionary history of polyploids and divergent process between homoeologous loci within lineages. Kengyilia is a group of allohexaploid species with the StYP genomic constitutions in the wheat tribe. To investigate the evolutionary dynamics of the Pgk1 gene in Kengyilia and its diploid relatives, three copies of Pgk1 homoeologues were isolated from all sampled hexaploid Kengyilia species and analyzed with the Pgk1 sequences from 47 diploid taxa representing 18 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1 Kengyilia species from the Central Asia and the Qinghai-Tibetan plateau have independent origins with geographically differentiated P genome donors and diverged levels of nucleotide diversity at Pgk1 locus; (2 a relatively long-time sweep event has allowed the Pgk1 gene within Agropyron to adapt to cold climate triggered by the recent uplifts of the Qinghai-Tibetan Plateau; (3 sweep event and population expansion might result in the difference in the d(N/d(S value of the Pgk1 gene in allopatric Agropyron populations, and this difference may be genetically transmitted to Kengyilia lineages via independent polyploidization events; (4 an 83 bp MITE element insertion has shaped the Pgk1 loci in the P genome lineage with different geographical regions; (5 the St and P genomes in Kengyilia were donated by Pseudoroegneria and Agropyron, respectively, and the Y genome is closely related to the Xp genome of Peridictyon sanctum. The interplay of evolutionary forces involving diverged natural selection, population expansion, and transposable events in geographically differentiated P genome donors could attribute to geographical differentiation of Kengyilia species via independent origins.

  19. A multilevel evolutionary framework for sustainability analysis

    Directory of Open Access Journals (Sweden)

    Timothy M. Waring

    2015-06-01

    Full Text Available Sustainability theory can help achieve desirable social-ecological states by generalizing lessons across contexts and improving the design of sustainability interventions. To accomplish these goals, we argue that theory in sustainability science must (1 explain the emergence and persistence of social-ecological states, (2 account for endogenous cultural change, (3 incorporate cooperation dynamics, and (4 address the complexities of multilevel social-ecological interactions. We suggest that cultural evolutionary theory broadly, and cultural multilevel selection in particular, can improve on these fronts. We outline a multilevel evolutionary framework for describing social-ecological change and detail how multilevel cooperative dynamics can determine outcomes in environmental dilemmas. We show how this framework complements existing sustainability frameworks with a description of the emergence and persistence of sustainable institutions and behavior, a means to generalize causal patterns across social-ecological contexts, and a heuristic for designing and evaluating effective sustainability interventions. We support these assertions with case examples from developed and developing countries in which we track cooperative change at multiple levels of social organization as they impact social-ecological outcomes. Finally, we make suggestions for further theoretical development, empirical testing, and application.

  20. Large fluctuations and fixation in evolutionary games

    International Nuclear Information System (INIS)

    Assaf, Michael; Mobilia, Mauro

    2010-01-01

    We study large fluctuations in evolutionary games belonging to the coordination and anti-coordination classes. The dynamics of these games, modeling cooperation dilemmas, is characterized by a coexistence fixed point separating two absorbing states. We are particularly interested in the problem of fixation that refers to the possibility that a few mutants take over the entire population. Here, the fixation phenomenon is induced by large fluctuations and is investigated by a semiclassical WKB (Wentzel–Kramers–Brillouin) theory generalized to treat stochastic systems possessing multiple absorbing states. Importantly, this method allows us to analyze the combined influence of selection and random fluctuations on the evolutionary dynamics beyond the weak selection limit often considered in previous works. We accurately compute, including pre-exponential factors, the probability distribution function in the long-lived coexistence state and the mean fixation time necessary for a few mutants to take over the entire population in anti-coordination games, and also the fixation probability in the coordination class. Our analytical results compare excellently with extensive numerical simulations. Furthermore, we demonstrate that our treatment is superior to the Fokker–Planck approximation when the selection intensity is finite

  1. Evolutionary thinking

    Science.gov (United States)

    Hunt, Tam

    2014-01-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps’ book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging “integral” or “evolutionary” cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766

  2. Evolutionary relationships between miRNA genes and their activity.

    Science.gov (United States)

    Zhu, Yan; Skogerbø, Geir; Ning, Qianqian; Wang, Zhen; Li, Biqing; Yang, Shuang; Sun, Hong; Li, Yixue

    2012-12-22

    The emergence of vertebrates is characterized by a strong increase in miRNA families. MicroRNAs interact broadly with many transcripts, and the evolution of such a system is intriguing. However, evolutionary questions concerning the origin of miRNA genes and their subsequent evolution remain unexplained. In order to systematically understand the evolutionary relationship between miRNAs gene and their function, we classified human known miRNAs into eight groups based on their evolutionary ages estimated by maximum parsimony method. New miRNA genes with new functional sequences accumulated more dynamically in vertebrates than that observed in Drosophila. Different levels of evolutionary selection were observed over miRNA gene sequences with different time of origin. Most genic miRNAs differ from their host genes in time of origin, there is no particular relationship between the age of a miRNA and the age of its host genes, genic miRNAs are mostly younger than the corresponding host genes. MicroRNAs originated over different time-scales are often predicted/verified to target the same or overlapping sets of genes, opening the possibility of substantial functional redundancy among miRNAs of different ages. Higher degree of tissue specificity and lower expression level was found in young miRNAs. Our data showed that compared with protein coding genes, miRNA genes are more dynamic in terms of emergence and decay. Evolution patterns are quite different between miRNAs of different ages. MicroRNAs activity is under tight control with well-regulated expression increased and targeting decreased over time. Our work calls attention to the study of miRNA activity with a consideration of their origin time.

  3. The Causes and Evolutionary Consequences of Mixed Singing in Two Hybridizing Songbird Species (Luscinia spp.)

    Science.gov (United States)

    Vokurková, Jana; Petrusková, Tereza; Reifová, Radka; Kozman, Alexandra; Mořkovský, Libor; Kipper, Silke; Weiss, Michael; Reif, Jiří; Dolata, Paweł T.; Petrusek, Adam

    2013-01-01

    Bird song plays an important role in the establishment and maintenance of prezygotic reproductive barriers. When two closely related species come into secondary contact, song convergence caused by acquisition of heterospecific songs into the birds’ repertoires is often observed. The proximate mechanisms responsible for such mixed singing, and its effect on the speciation process, are poorly understood. We used a combination of genetic and bioacoustic analyses to test whether mixed singing observed in the secondary contact zone of two passerine birds, the Thrush Nightingale (Luscinia luscinia) and the Common Nightingale (L. megarhynchos), is caused by introgressive hybridization. We analysed song recordings of both species from allopatric and sympatric populations together with genotype data from one mitochondrial and seven nuclear loci. Semi-automated comparisons of our recordings with an extensive catalogue of Common Nightingale song types confirmed that most of the analysed sympatric Thrush Nightingale males were ‘mixed singers’ that use heterospecific song types in their repertoires. None of these ‘mixed singers’ possessed any alleles introgressed from the Common Nightingale, suggesting that they were not backcross hybrids. We also analysed songs of five individuals with intermediate phenotype, which were identified as F1 hybrids between the Thrush Nightingale female and the Common Nightingale male by genetic analysis. Songs of three of these hybrids corresponded to the paternal species (Common Nightingale) but the remaining two sung a mixed song. Our results suggest that although hybridization might increase the tendency for learning songs from both parental species, interspecific cultural transmission is the major proximate mechanism explaining the occurrence of mixed singers among the sympatric Thrush Nightingales. We also provide evidence that mixed singing does not substantially increase the rate of interspecific hybridization and discuss the

  4. In vitro adhesion of staphylococci to diamond-like carbon polymer hybrids under dynamic flow conditions.

    Science.gov (United States)

    Soininen, Antti; Levon, Jaakko; Katsikogianni, Maria; Myllymaa, Katja; Lappalainen, Reijo; Konttinen, Yrjö T; Kinnari, Teemu J; Tiainen, Veli-Matti; Missirlis, Yannis

    2011-03-01

    This study compares the ability of selected materials to inhibit adhesion of two bacterial strains commonly implicated in implant-related infections. These two strains are Staphylococcus aureus (S-15981) and Staphylococcus epidermidis (ATCC 35984). In experiments we tested six different materials, three conventional implant metals: titanium, tantalum and chromium, and three diamond-like carbon (DLC) coatings: DLC, DLC-polydimethylsiloxane hybrid (DLC-PDMS-h) and DLC-polytetrafluoroethylene hybrid (DLC-PTFE-h) coatings. DLC coating represents extremely hard material whereas DLC hybrids represent novel nanocomposite coatings. The two DLC polymer hybrid films were chosen for testing due to their hardness, corrosion resistance and extremely good non-stick (hydrophobic and oleophobic) properties. Bacterial adhesion assay tests were performed under dynamic flow conditions by using parallel plate flow chambers (PPFC). The results show that adhesion of S. aureus to DLC-PTFE-h and to tantalum was significantly (P DLC-PDMS-h (0.671 ± 0.001 × 10(7)/cm(2) and 0.751 ± 0.002 × 10(7)/cm(2) vs. 1.055 ± 0.002 × 10(7)/cm(2), respectively). No significant differences were detected between other tested materials. Hence DLC-PTFE-h coating showed as low susceptibility to S. aureus adhesion as all the tested conventional implant metals. The adherence of S. epidermidis to biomaterials was not significantly (P DLC-PTFE-h films could be used as a biomaterial coating without increasing the risk of implant-related infections.

  5. An Evolutionary Game Theory Model of Spontaneous Brain Functioning.

    Science.gov (United States)

    Madeo, Dario; Talarico, Agostino; Pascual-Leone, Alvaro; Mocenni, Chiara; Santarnecchi, Emiliano

    2017-11-22

    Our brain is a complex system of interconnected regions spontaneously organized into distinct networks. The integration of information between and within these networks is a continuous process that can be observed even when the brain is at rest, i.e. not engaged in any particular task. Moreover, such spontaneous dynamics show predictive value over individual cognitive profile and constitute a potential marker in neurological and psychiatric conditions, making its understanding of fundamental importance in modern neuroscience. Here we present a theoretical and mathematical model based on an extension of evolutionary game theory on networks (EGN), able to capture brain's interregional dynamics by balancing emulative and non-emulative attitudes among brain regions. This results in the net behavior of nodes composing resting-state networks identified using functional magnetic resonance imaging (fMRI), determining their moment-to-moment level of activation and inhibition as expressed by positive and negative shifts in BOLD fMRI signal. By spontaneously generating low-frequency oscillatory behaviors, the EGN model is able to mimic functional connectivity dynamics, approximate fMRI time series on the basis of initial subset of available data, as well as simulate the impact of network lesions and provide evidence of compensation mechanisms across networks. Results suggest evolutionary game theory on networks as a new potential framework for the understanding of human brain network dynamics.

  6. Solving advanced multi-objective robust designs by means of multiple objective evolutionary algorithms (MOEA): A reliability application

    Energy Technology Data Exchange (ETDEWEB)

    Salazar A, Daniel E. [Division de Computacion Evolutiva (CEANI), Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Universidad de Las Palmas de Gran Canaria. Canary Islands (Spain)]. E-mail: danielsalazaraponte@gmail.com; Rocco S, Claudio M. [Universidad Central de Venezuela, Facultad de Ingenieria, Caracas (Venezuela)]. E-mail: crocco@reacciun.ve

    2007-06-15

    This paper extends the approach proposed by the second author in [Rocco et al. Robust design using a hybrid-cellular-evolutionary and interval-arithmetic approach: a reliability application. In: Tarantola S, Saltelli A, editors. SAMO 2001: Methodological advances and useful applications of sensitivity analysis. Reliab Eng Syst Saf 2003;79(2):149-59 [special issue

  7. Carboxylated nitrile butadiene rubber/hybrid filler composites

    Directory of Open Access Journals (Sweden)

    Ahmad Mousa

    2012-08-01

    Full Text Available The surface properties of the OSW and NLS are measured with the dynamic contact-angle technique. The x-ray photoelectron spectroscopy (XPS of the OSW reveals that the OSW possesses various reactive functional groups namely hydroxyl groups (OH. Hybrid filler from NLS and OSW were incorporated into carboxylated nitrile rubber (XNBR to produce XNBR hybrid composites. The reaction of OH groups from the OSW with COOH of the XNBR is checked by attenuated total reflectance spectra (ATR-IR of the composites. The degree of curing ΔM (maximum torque-minimum torque as a function of hybrid filler as derived from moving die rheometer (MDR is reported. The stress-strain behavior of the hybrid composites as well as the dynamic mechanical thermal analysis (DMTA is studied. Bonding quality and dispersion of the hybrid filler with and in XNBR are examined using scanning-transmission electron microscopy (STEM in SEM.

  8. Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants.

    Science.gov (United States)

    Barton, Ian S; Fuqua, Clay; Platt, Thomas G

    2018-01-01

    Many important pathogens maintain significant populations in highly disparate disease and non-disease environments. The consequences of this environmental heterogeneity in shaping the ecological and evolutionary dynamics of these facultative pathogens are incompletely understood. Agrobacterium tumefaciens, the causative agent for crown gall disease of plants has proven a productive model for many aspects of interactions between pathogens and their hosts and with other microbes. In this review, we highlight how this past work provides valuable context for the use of this system to examine how heterogeneity and transitions between disease and non-disease environments influence the ecology and evolution of facultative pathogens. We focus on several features common among facultative pathogens, such as the physiological remodelling required to colonize hosts from environmental reservoirs and the consequences of competition with host and non-host associated microbiota. In addition, we discuss how the life history of facultative pathogens likely often results in ecological tradeoffs associated with performance in disease and non-disease environments. These pathogens may therefore have different competitive dynamics in disease and non-disease environments and are subject to shifting selective pressures that can result in pathoadaptation or the within-host spread of avirulent phenotypes. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Effects of behavioral response and vaccination policy on epidemic spreading--an approach based on evolutionary-game dynamics.

    Science.gov (United States)

    Zhang, Hai-Feng; Wu, Zhi-Xi; Tang, Ming; Lai, Ying-Cheng

    2014-07-11

    How effective are governmental incentives to achieve widespread vaccination coverage so as to prevent epidemic outbreak? The answer largely depends on the complex interplay among the type of incentive, individual behavioral responses, and the intrinsic epidemic dynamics. By incorporating evolutionary games into epidemic dynamics, we investigate the effects of two types of incentives strategies: partial-subsidy policy in which certain fraction of the cost of vaccination is offset, and free-subsidy policy in which donees are randomly selected and vaccinated at no cost. Through mean-field analysis and computations, we find that, under the partial-subsidy policy, the vaccination coverage depends monotonically on the sensitivity of individuals to payoff difference, but the dependence is non-monotonous for the free-subsidy policy. Due to the role models of the donees for relatively irrational individuals and the unchanged strategies of the donees for rational individuals, the free-subsidy policy can in general lead to higher vaccination coverage. Our findings indicate that any disease-control policy should be exercised with extreme care: its success depends on the complex interplay among the intrinsic mathematical rules of epidemic spreading, governmental policies, and behavioral responses of individuals.

  10. Matching indices taking the dynamic hybrid electrical and thermal grids information into account for the decision-making of nZEB on-site renewable energy systems

    International Nuclear Information System (INIS)

    Cao, Sunliang; Sirén, Kai

    2015-01-01

    Highlights: • Use dynamic hourly-based grid information (PEF/CEF/tariffs) in nZEB control. • Hourly dynamic primary energy factor, CO 2 factor and tariffs for hybrid grids. • Methodology which links the on-site matching with dynamic grid information. • Multi-objective control indicators reflects both matching and grid information. • The influence of the dynamic grid information on the energy/environment/cost. - Abstract: Future nearly-zero energy buildings (nZEBs) will be involved with the twofold problem of on-site matching and hybrid–grid interactions. Theoretically, the hybrid grids’ information is dynamic, such as primary energy factors, equivalent CO 2 emission factors, and grid tariffs. Regarding primary energy consumption, equivalent CO 2 emissions or the grid cost of the nZEB, the significance of specific aspects of the matching capability, such as on-site energy faction (OEF) and on-site energy matching (OEM), will also become dynamic and variable with respect to the evolution of the grid information. Therefore, the primary goal is to develop a methodology as a multi-objective control criterion for the nZEB energy system, which can reflect both the on-site matching capability and dynamic grid information of environmental or economic impacts. The developed methodology is to quantitatively link the dynamic grid information with the weighting factors of the weighted matching index (WMI), following the monotone relationships between the extended matching indices and grid information. The methodology is implemented in this study to control an nZEB energy system with hybrid grid connections. The results show that the developed methodology can seek an optimised balance between the objectives of maximising the matching capability and minimising the environmental/economic load

  11. Hybrid intelligent methodology to design translation invariant morphological operators for Brazilian stock market prediction.

    Science.gov (United States)

    Araújo, Ricardo de A

    2010-12-01

    This paper presents a hybrid intelligent methodology to design increasing translation invariant morphological operators applied to Brazilian stock market prediction (overcoming the random walk dilemma). The proposed Translation Invariant Morphological Robust Automatic phase-Adjustment (TIMRAA) method consists of a hybrid intelligent model composed of a Modular Morphological Neural Network (MMNN) with a Quantum-Inspired Evolutionary Algorithm (QIEA), which searches for the best time lags to reconstruct the phase space of the time series generator phenomenon and determines the initial (sub-optimal) parameters of the MMNN. Each individual of the QIEA population is further trained by the Back Propagation (BP) algorithm to improve the MMNN parameters supplied by the QIEA. Also, for each prediction model generated, it uses a behavioral statistical test and a phase fix procedure to adjust time phase distortions observed in stock market time series. Furthermore, an experimental analysis is conducted with the proposed method through four Brazilian stock market time series, and the achieved results are discussed and compared to results found with random walk models and the previously introduced Time-delay Added Evolutionary Forecasting (TAEF) and Morphological-Rank-Linear Time-lag Added Evolutionary Forecasting (MRLTAEF) methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Yield performance and stability of CMS-based triticale hybrids.

    Science.gov (United States)

    Mühleisen, Jonathan; Piepho, Hans-Peter; Maurer, Hans Peter; Reif, Jochen Christoph

    2015-02-01

    CMS-based triticale hybrids showed only marginal midparent heterosis for grain yield and lower dynamic yield stability compared to inbred lines. Hybrids of triticale (×Triticosecale Wittmack) are expected to possess outstanding yield performance and increased dynamic yield stability. The objectives of the present study were to (1) examine the optimum choice of the biometrical model to compare yield stability of hybrids versus lines, (2) investigate whether hybrids exhibit a more pronounced grain yield performance and yield stability, and (3) study optimal strategies to predict yield stability of hybrids. Thirteen female and seven male parental lines and their 91 factorial hybrids as well as 30 commercial lines were evaluated for grain yield in up to 20 environments. Hybrids were produced using a cytoplasmic male sterility (CMS)-inducing cytoplasm that originated from Triticumtimopheevii Zhuk. We found that the choice of the biometrical model can cause contrasting results and concluded that a group-by-environment interaction term should be added to the model when estimating stability variance of hybrids and lines. midparent heterosis for grain yield was on average 3 % with a range from -15.0 to 11.5 %. No hybrid outperformed the best inbred line. Hybrids had, on average, lower dynamic yield stability compared to the inbred lines. Grain yield performance of hybrids could be predicted based on midparent values and general combining ability (GCA)-predicted values. In contrast, stability variance of hybrids could be predicted only based on GCA-predicted values. We speculated that negative effects of the used CMS cytoplasm might be the reason for the low performance and yield stability of the hybrids. For this purpose a detailed study on the reasons for the drawback of the currently existing CMS system in triticale is urgently required comprising also the search of potentially alternative hybridization systems.

  13. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General Article Volume 21 Issue 9 September 2016 pp 803- ... Keywords. Evolutionary game theory, evolutionary stable state, conflict, cooperation, biological games.

  14. Numerical and Evolutionary Optimization Workshop

    CERN Document Server

    Trujillo, Leonardo; Legrand, Pierrick; Maldonado, Yazmin

    2017-01-01

    This volume comprises a selection of works presented at the Numerical and Evolutionary Optimization (NEO) workshop held in September 2015 in Tijuana, Mexico. The development of powerful search and optimization techniques is of great importance in today’s world that requires researchers and practitioners to tackle a growing number of challenging real-world problems. In particular, there are two well-established and widely known fields that are commonly applied in this area: (i) traditional numerical optimization techniques and (ii) comparatively recent bio-inspired heuristics. Both paradigms have their unique strengths and weaknesses, allowing them to solve some challenging problems while still failing in others. The goal of the NEO workshop series is to bring together people from these and related fields to discuss, compare and merge their complimentary perspectives in order to develop fast and reliable hybrid methods that maximize the strengths and minimize the weaknesses of the underlying paradigms. Throu...

  15. Evolutionary dynamics of ecological niche in three Rhinogobio fishes from the upper Yangtze River inferred from morphological traits

    Science.gov (United States)

    Wang, Meirong; Liu, Fei; Lin, Pengcheng; Yang, Shaorong; Liu, Huanzhang

    2015-01-01

    In the past decades, it has been debated whether ecological niche should be conserved among closely related species (phylogenetic niche conservatism, PNC) or largely divergent (traditional ecological niche theory and ecological speciation) and whether niche specialist and generalist might remain in equilibrium or niche generalist could not appear. In this study, we employed morphological traits to describe ecological niche and test whether different niche dimensions exhibit disparate evolutionary patterns. We conducted our analysis on three Rhinogobio fish species (R. typus,R. cylindricus, and R. ventralis) from the upper Yangtze River, China. Among the 32 measured morphological traits except body length, PCA extracted the first four principal components with their loading scores >1.000. To find the PNC among species, Mantel tests were conducted with the Euclidean distances calculated from the four principal components (representing different niche dimensions) against the pairwise distances calculated from mitochondrial cytochrome b sequence variations. The results showed that the second and the third niche dimension, both related to swimming ability and behavior, exhibited phylogenetic conservatism. Further comparison on niche breadth among these three species revealed that the fourth dimension of R. typus showed the greatest width, indicating that this dimension exhibited niche generalism. In conclusion, our results suggested that different niche dimensions could show different evolutionary dynamic patterns: they may exhibit PNC or not, and some dimensions may evolve generalism. PMID:25691981

  16. Effect of backbone chemistry on hybridization thermodynamics of oligonucleic acids: a coarse-grained molecular dynamics simulation study.

    Science.gov (United States)

    Ghobadi, Ahmadreza F; Jayaraman, Arthi

    2016-02-28

    In this paper we study how varying oligonucleic acid backbone chemistry affects the hybridization/melting thermodynamics of oligonucleic acids. We first describe the coarse-grained (CG) model with tunable parameters that we developed to enable the study of both naturally occurring oligonucleic acids, such as DNA, and their chemically-modified analogues, such as peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). The DNA melting curves obtained using such a CG model and molecular dynamics simulations in an implicit solvent and with explicit ions match with the melting curves obtained using the empirical nearest-neighbor models. We use these CG simulations to then elucidate the effect of backbone flexibility, charge, and nucleobase spacing along the backbone on the melting curves, potential energy and conformational entropy change upon hybridization and base-pair hydrogen bond residence time. We find that increasing backbone flexibility decreases duplex thermal stability and melting temperature mainly due to increased conformational entropy loss upon hybridization. Removing charges from the backbone enhances duplex thermal stability due to the elimination of electrostatic repulsion and as a result a larger energetic gain upon hybridization. Lastly, increasing nucleobase spacing decreases duplex thermal stability due to decreasing stacking interactions that are important for duplex stability.

  17. Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology.

    NARCIS (Netherlands)

    Belkum, van A.; Struelens, M.; Visser, de J.A.G.M.; Verburgh, H.; Tibayrenc., M.

    2001-01-01

    Currently, genetic typing of microorganisms is widely used in several major fields of microbiological research. Taxonomy, research aimed at elucidation of evolutionary dynamics or phylogenetic relationships, population genetics of microorganisms, and microbial epidemiology all rely on genetic typing

  18. Marine Dispersal Scales Are Congruent over Evolutionary and Ecological Time

    KAUST Repository

    Pinsky, Malin L.

    2016-12-15

    The degree to which offspring remain near their parents or disperse widely is critical for understanding population dynamics, evolution, and biogeography, and for designing conservation actions. In the ocean, most estimates suggesting short-distance dispersal are based on direct ecological observations of dispersing individuals, while indirect evolutionary estimates often suggest substantially greater homogeneity among populations. Reconciling these two approaches and their seemingly competing perspectives on dispersal has been a major challenge. Here we show for the first time that evolutionary and ecological measures of larval dispersal can closely agree by using both to estimate the distribution of dispersal distances. In orange clownfish (Amphiprion percula) populations in Kimbe Bay, Papua New Guinea, we found that evolutionary dispersal kernels were 17 km (95% confidence interval: 12–24 km) wide, while an exhaustive set of direct larval dispersal observations suggested kernel widths of 27 km (19–36 km) or 19 km (15–27 km) across two years. The similarity between these two approaches suggests that ecological and evolutionary dispersal kernels can be equivalent, and that the apparent disagreement between direct and indirect measurements can be overcome. Our results suggest that carefully applied evolutionary methods, which are often less expensive, can be broadly relevant for understanding ecological dispersal across the tree of life.

  19. Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame

    International Nuclear Information System (INIS)

    Song, Kedong; Li, Liying; Li, Wenfang; Zhu, Yanxia; Jiao, Zeren; Lim, Mayasari; Fang, Meiyun; Shi, Fangxin; Wang, Ling; Liu, Tianqing

    2015-01-01

    Cartilage transplantation using in vitro tissue engineered cartilage is considered a promising treatment for articular cartilage defects. In this study, we assessed the advantages of adipose derived stem cells (ADSCs) combined with chitosan/gelatin hybrid hydrogel scaffolds, which acted as a cartilage biomimetic scaffold, to fabricate a tissue engineered cartilage dynamically in vitro and compared this with traditional static culture. Physical properties of the hydrogel scaffolds were evaluated and ADSCs were inoculated into the hydrogel at a density of 1 × 10 7 cells/mL and cultured in a spinner flask with a special designed steel framework and feed with chondrogenic inductive media for two weeks. The results showed that the average pore size, porosity, swelling rate and elasticity modulus of hybrid scaffolds with good biocompatibility were 118.25 ± 19.51 μm, 82.60 ± 2.34%, 361.28 ± 0.47% and 61.2 ± 0.16 kPa, respectively. ADSCs grew well in chitosan/gelatin hybrid scaffold and successfully differentiated into chondrocytes, showing that the scaffolds were suitable for tissue engineering applications in cartilage regeneration. Induced cells cultivated in a dynamic spinner flask with a special designed steel frame expressed more proteoglycans and the cell distribution was much more uniform with the scaffold being filled mostly with extracellular matrix produced by cells. A spinner flask with framework promoted proliferation and chondrogenic differentiation of ADSCs within chitosan/gelatin hybrid scaffolds and accelerated dynamic fabrication of cell–hydrogel constructs, which could be a selective and good method to construct tissue engineered cartilage in vitro. - Highlights: • ADSCs/hybrid scaffold constructs are dynamically fabricated in a spinner flask with a special framework. • Inside convection in spinner flask made enough supplement of oxygen and nutrients far beyond the depth of passive diffusion. • 3D culture environment accelerated mass

  20. Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kedong, E-mail: kedongsong@dlut.edu.cn [State Key Laboratory of Fine Chemicals, Dalian R& D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024 (China); Li, Liying; Li, Wenfang [State Key Laboratory of Fine Chemicals, Dalian R& D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024 (China); Zhu, Yanxia [Anti-Ageing and Regenerative Medicine Centre, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060 Guangdong (China); Jiao, Zeren [State Key Laboratory of Fine Chemicals, Dalian R& D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024 (China); Lim, Mayasari [Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Fang, Meiyun [Department of Hematology, First Affiliated Hospital, Dalian Medical University, Dalian 116011 (China); Shi, Fangxin [Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian 116011 (China); Wang, Ling, E-mail: whwl@hotmail.com [Department of Obstetrics and Gynecology, First Affiliated Hospital, Dalian Medical University, Dalian 116011 (China); Liu, Tianqing, E-mail: liutq@dlut.edu.cn [State Key Laboratory of Fine Chemicals, Dalian R& D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-10-01

    Cartilage transplantation using in vitro tissue engineered cartilage is considered a promising treatment for articular cartilage defects. In this study, we assessed the advantages of adipose derived stem cells (ADSCs) combined with chitosan/gelatin hybrid hydrogel scaffolds, which acted as a cartilage biomimetic scaffold, to fabricate a tissue engineered cartilage dynamically in vitro and compared this with traditional static culture. Physical properties of the hydrogel scaffolds were evaluated and ADSCs were inoculated into the hydrogel at a density of 1 × 10{sup 7} cells/mL and cultured in a spinner flask with a special designed steel framework and feed with chondrogenic inductive media for two weeks. The results showed that the average pore size, porosity, swelling rate and elasticity modulus of hybrid scaffolds with good biocompatibility were 118.25 ± 19.51 μm, 82.60 ± 2.34%, 361.28 ± 0.47% and 61.2 ± 0.16 kPa, respectively. ADSCs grew well in chitosan/gelatin hybrid scaffold and successfully differentiated into chondrocytes, showing that the scaffolds were suitable for tissue engineering applications in cartilage regeneration. Induced cells cultivated in a dynamic spinner flask with a special designed steel frame expressed more proteoglycans and the cell distribution was much more uniform with the scaffold being filled mostly with extracellular matrix produced by cells. A spinner flask with framework promoted proliferation and chondrogenic differentiation of ADSCs within chitosan/gelatin hybrid scaffolds and accelerated dynamic fabrication of cell–hydrogel constructs, which could be a selective and good method to construct tissue engineered cartilage in vitro. - Highlights: • ADSCs/hybrid scaffold constructs are dynamically fabricated in a spinner flask with a special framework. • Inside convection in spinner flask made enough supplement of oxygen and nutrients far beyond the depth of passive diffusion. • 3D culture environment accelerated mass

  1. Optimal management with hybrid dynamics : The shallow lake problem

    NARCIS (Netherlands)

    Reddy, P.V.; Schumacher, Hans; Engwerda, Jacob; Camlibel, M.K.; Julius, A.A.; Pasumarthy, R.

    2015-01-01

    In this article we analyze an optimal management problem that arises in ecological economics using hybrid systems modeling. First, we introduce a discounted autonomous infinite horizon hybrid optimal control problem and develop few tools to analyze the necessary conditions for optimality. Next,

  2. Hybridization of Strength Pareto Multiobjective Optimization with Modified Cuckoo Search Algorithm for Rectangular Array.

    Science.gov (United States)

    Abdul Rani, Khairul Najmy; Abdulmalek, Mohamedfareq; A Rahim, Hasliza; Siew Chin, Neoh; Abd Wahab, Alawiyah

    2017-04-20

    This research proposes the various versions of modified cuckoo search (MCS) metaheuristic algorithm deploying the strength Pareto evolutionary algorithm (SPEA) multiobjective (MO) optimization technique in rectangular array geometry synthesis. Precisely, the MCS algorithm is proposed by incorporating the Roulette wheel selection operator to choose the initial host nests (individuals) that give better results, adaptive inertia weight to control the positions exploration of the potential best host nests (solutions), and dynamic discovery rate to manage the fraction probability of finding the best host nests in 3-dimensional search space. In addition, the MCS algorithm is hybridized with the particle swarm optimization (PSO) and hill climbing (HC) stochastic techniques along with the standard strength Pareto evolutionary algorithm (SPEA) forming the MCSPSOSPEA and MCSHCSPEA, respectively. All the proposed MCS-based algorithms are examined to perform MO optimization on Zitzler-Deb-Thiele's (ZDT's) test functions. Pareto optimum trade-offs are done to generate a set of three non-dominated solutions, which are locations, excitation amplitudes, and excitation phases of array elements, respectively. Overall, simulations demonstrates that the proposed MCSPSOSPEA outperforms other compatible competitors, in gaining a high antenna directivity, small half-power beamwidth (HPBW), low average side lobe level (SLL) suppression, and/or significant predefined nulls mitigation, simultaneously.

  3. Limit Cycle Analysis in a Class of Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Antonio Favela-Contreras

    2016-01-01

    Full Text Available Hybrid systems are those that inherently combine discrete and continuous dynamics. This paper considers the hybrid system model to be an extension of the discrete automata associating a continuous evolution with each discrete state. This model is called the hybrid automaton. In this work, we achieve a mathematical formulation of the steady state and we show a way to obtain the initial conditions region to reach a specific limit cycle for a class of uncoupled and coupled continuous-linear hybrid systems. The continuous-linear term is used in the sense of the system theory and, in this sense, continuous-linear hybrid automata will be defined. Thus, some properties and theorems that govern the hybrid automata dynamic behavior to evaluate a limit cycle existence have been established; this content is explained under a theoretical framework.

  4. EVOLUTIONARY THEORY AND THE MARKET COMPETITION

    Directory of Open Access Journals (Sweden)

    SIRGHI Nicoleta

    2014-12-01

    Full Text Available Evolutionary theory study of processes that transform economy for firms, institutions, industries, employment, production, trade and growth within, through the actions of diverse agents from experience and interactions, using evolutionary methodology. Evolutionary theory analyses the unleashing of a process of technological and institutional innovation by generating and testing a diversity of ideas which discover and accumulate more survival value for the costs incurred than competing alternatives.This paper presents study the behavior of the firms on the market used the evolutionary theory.The paper is to present in full the developments that have led to the re-assessment of theories of firms starting from the criticism on Coase's theory based on the lack of testable hypotheses and on non-operative definition of transaction costs. In the literature in the field studies on firms were allotted a secondary place for a long period of time, to date the new theories of the firm hold a dominant place in the firms’ economic analysis. In an article, published in 1937, Ronald H. Coase identified the main sources of the cost of using the market mechanism. The firms theory represent a issue intensively studied in the literature in the field, regarding the survival, competitiveness and innovation of firm on the market. The research of Nelson and Winter, “An Evolutionary Theory of Economic Change” (1982 is the starting point for a modern literature in the field which considers the approach of the theory of the firm from an evolutionary perspective. Nelson and Winter have shown that the “orthodox” theory, is objectionable primarily by the fact that the hypothesis regarding profit maximization has a normative character and is not valid in any situation. Nelson and Winter reconsidered their microeconomic analysis showing that excessive attention should not be paid to market equilibrium but rather to dynamic processes resulting from irreversible

  5. Multiparty Evolutionary Game Model in Coal Mine Safety Management and Its Application

    Directory of Open Access Journals (Sweden)

    Rongwu Lu

    2018-01-01

    Full Text Available Coal mine safety management involves many interested parties and there are complex relationships between them. According to game theory, a multiparty evolutionary game model is established to analyze the selection of strategies. Then, a simplified three-party model is taken as an example to carry out detailed analysis and solution. Based on stability theory of dynamics system and phase diagram analysis, this article studies replicator dynamics of the evolutionary model to make an optimization analysis of the behaviors of those interested parties and the adjustment mechanism of safety management policies and decisions. The results show how the charge of supervision of government department and inspection of coal mine enterprise impact the efficiency of safety management and the effect of constraint measures and incentive and other measures in safety management.

  6. Hybridization among distantly related species: Examples from the polyploid genus Curcuma (Zingiberaceae).

    Science.gov (United States)

    Záveská, Eliška; Fér, Tomáš; Šída, Otakar; Marhold, Karol; Leong-Škorničková, Jana

    2016-07-01

    Discerning relationships among species evolved by reticulate and/or polyploid evolution is not an easy task, although it is widely discussed. The economically important genus Curcuma (ca. 120 spp.; Zingiberaceae), broadly distributed in tropical SE Asia, is a particularly interesting example of a group of palaeopolyploid origin whose evolution is driven mainly by hybridization and polyploidization. Although a phylogeny and a new infrageneric classification of Curcuma, based on commonly used molecular markers (ITS and cpDNA), have recently been proposed, significant evolutionary questions remain unresolved. We applied a multilocus approach and a combination of modern analytical methods to this genus to distinguish causes of gene tree incongruence and to identify hybrids and their parental species. Five independent regions of nuclear DNA (DCS, GAPDH, GLOBOSA3, LEAFY, ITS) and four non-coding cpDNA regions (trnL-trnF, trnT-trnL, psbA-trnH and matK), analysed as a single locus, were employed to construct a species tree and hybrid species trees using (*)BEAST and STEM-hy. Detection of hybridogenous species in the dataset was also conducted using the posterior predictive checking approach as implemented in JML. The resulting species tree outlines the relationships among major evolutionary lineages within Curcuma, which were previously unresolved or which conflicted depending upon whether they were based on ITS or cpDNA markers. Moreover, by using the additional markers in tests of plausible topologies of hybrid species trees for C. vamana, C. candida, C. roscoeana and C. myanmarensis suggested by previous molecular and morphological evidence, we found strong evidence that all the species except C. candida are of subgeneric hybrid origin. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The ecological and evolutionary implications of merging different types of networks

    NARCIS (Netherlands)

    Fontaine, C.; Guimaraes, P.R.; Kéfi, S.; Loeuille, N.; Memmott, J.; Putten, van der W.H.; Veen, F.J.; Thébault, E.

    2011-01-01

    Interactions among species drive the ecological and evolutionary processes in ecological communities. These interactions are effectively key components of biodiversity. Studies that use a network approach to study the structure and dynamics of communities of interacting species have revealed many

  8. Network evolution driven by dynamics applied to graph coloring

    International Nuclear Information System (INIS)

    Wu Jian-She; Li Li-Guang; Yu Xin; Jiao Li-Cheng; Wang Xiao-Hua

    2013-01-01

    An evolutionary network driven by dynamics is studied and applied to the graph coloring problem. From an initial structure, both the topology and the coupling weights evolve according to the dynamics. On the other hand, the dynamics of the network are determined by the topology and the coupling weights, so an interesting structure-dynamics co-evolutionary scheme appears. By providing two evolutionary strategies, a network described by the complement of a graph will evolve into several clusters of nodes according to their dynamics. The nodes in each cluster can be assigned the same color and nodes in different clusters assigned different colors. In this way, a co-evolution phenomenon is applied to the graph coloring problem. The proposed scheme is tested on several benchmark graphs for graph coloring

  9. Evolutionary Algorithm for Optimal Vaccination Scheme

    International Nuclear Information System (INIS)

    Parousis-Orthodoxou, K J; Vlachos, D S

    2014-01-01

    The following work uses the dynamic capabilities of an evolutionary algorithm in order to obtain an optimal immunization strategy in a user specified network. The produced algorithm uses a basic genetic algorithm with crossover and mutation techniques, in order to locate certain nodes in the inputted network. These nodes will be immunized in an SIR epidemic spreading process, and the performance of each immunization scheme, will be evaluated by the level of containment that provides for the spreading of the disease

  10. Restriction endonuclease analysis of chloroplast DNA in interspecies somatic Hybrids of Petunia.

    Science.gov (United States)

    Kumar, A; Cocking, E C; Bovenberg, W A; Kool, A J

    1982-12-01

    Restriction endonuclease cleavage pattern analysis of chloroplast DNA (cpDNA) of three different interspecific somatic hybrid plants revealed that the cytoplasms of the hybrids contained only cpDNA of P. parodii. The somatic hybrid plants analysed were those between P. parodii (wild type) + P. hybrida (wild type); P. parodii (wild type)+P. inflata (cytoplasmic albino mutant); P. parodii (wild type) + P. parviflora (nuclear albino mutant). The presence of only P. parodii chloroplasts in the somatic hybrid of P. parodii + P. inflata is possibly due to the stringent selection used for somatic hybrid production. However, in the case of the two other somatic hybrids P. parodii + P. hybrida and P. parodii + P. parviflora it was not possible to determine whether the presence of only P. parodii chloroplasts in these somatic hybrid plants was due to the nature of the selection schemes used or simply occurred by chance. The relevance of such somatic hybrid material for the study of genomic-cytoplasmic interaction is discussed, as well as the use of restriction endonuclease fragment patterns for the analysis of taxonomic and evolutionary inter-relationships in the genus Petunia.

  11. Game equilibrium models I evolution and game dynamics

    CERN Document Server

    1991-01-01

    There are two main approaches towards the phenotypic analysis of frequency dependent natural selection. First, there is the approach of evolutionary game theory, which was introduced in 1973 by John Maynard Smith and George R. Price. In this theory, the dynamical process of natural selection is not modeled explicitly. Instead, the selective forces acting within a population are represented by a fitness function, which is then analysed according to the concept of an evolutionarily stable strategy or ESS. Later on, the static approach of evolutionary game theory has been complemented by a dynamic stability analysis of the replicator equations. Introduced by Peter D. Taylor and Leo B. Jonker in 1978, these equations specify a class of dynamical systems, which provide a simple dynamic description of a selection process. Usually, the investigation of the replicator dynamics centers around a stability analysis of their stationary solutions. Although evolutionary stability and dynamic stability both intend to charac...

  12. Evolutionary neural networks: a new alternative for neutron spectrometry

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Martinez B, M. R.; Vega C, H. R.; Galleo, E.

    2009-10-01

    A device used to perform neutron spectroscopy is the system known as a system of Bonner spheres spectrometer, this system has some disadvantages, one of these is the need for reconstruction using a code that is based on an iterative reconstruction algorithm, whose greater inconvenience is the need for a initial spectrum, as close as possible to the spectrum that is desired to avoid this inconvenience has been reported several procedures in reconstruction, combined with various types of experimental methods, based on artificial intelligence technology how genetic algorithms, artificial neural networks and hybrid systems evolved artificial neural networks using genetic algorithms. This paper analyzes the intersection of neural networks and evolutionary algorithms applied in the neutron spectroscopy and dosimetry. Due to this is an emerging technology, there are not tools for doing analysis of the obtained results, by what this paper presents a computing tool to analyze the neutron spectra and the equivalent doses obtained through the hybrid technology of neural networks and genetic algorithms. The toolmaker offers a user graphical environment, friendly and easy to operate. (author)

  13. Genetic interactions underlying hybrid male sterility in the Drosophila bipectinata species complex.

    Science.gov (United States)

    Mishra, Paras Kumar; Singh, Bashisth Narayan

    2006-06-01

    Understanding genetic mechanisms underlying hybrid male sterility is one of the most challenging problems in evolutionary biology especially speciation. By using the interspecific hybridization method roles of Y chromosome, Major Hybrid Sterility (MHS) genes and cytoplasm in sterility of hybrid males have been investigated in a promising group, the Drosophila bipectinata species complex that consists of four closely related species: D. pseudoananassae, D. bipectinata, D. parabipectinata and D. malerkotliana. The interspecific introgression analyses show that neither cytoplasm nor MHS genes are involved but X-Y interactions may be playing major role in hybrid male sterility between D. pseudoananassae and the other three species. The results of interspecific introgression analyses also show considerable decrease in the number of males in the backcross offspring and all males have atrophied testes. There is a significant positive correlation between sex - ratio distortion and severity of sterility in backcross males. These findings provide evidence that D. pseudoananassae is remotely related with other three species of the D. bipectinata species complex.

  14. Study on hybrid multi-objective optimization algorithm for inverse treatment planning of radiation therapy

    International Nuclear Information System (INIS)

    Li Guoli; Song Gang; Wu Yican

    2007-01-01

    Inverse treatment planning for radiation therapy is a multi-objective optimization process. The hybrid multi-objective optimization algorithm is studied by combining the simulated annealing(SA) and genetic algorithm(GA). Test functions are used to analyze the efficiency of algorithms. The hybrid multi-objective optimization SA algorithm, which displacement is based on the evolutionary strategy of GA: crossover and mutation, is implemented in inverse planning of external beam radiation therapy by using two kinds of objective functions, namely the average dose distribution based and the hybrid dose-volume constraints based objective functions. The test calculations demonstrate that excellent converge speed can be achieved. (authors)

  15. Dynamic model updating based on strain mode shape and natural frequency using hybrid pattern search technique

    Science.gov (United States)

    Guo, Ning; Yang, Zhichun; Wang, Le; Ouyang, Yan; Zhang, Xinping

    2018-05-01

    Aiming at providing a precise dynamic structural finite element (FE) model for dynamic strength evaluation in addition to dynamic analysis. A dynamic FE model updating method is presented to correct the uncertain parameters of the FE model of a structure using strain mode shapes and natural frequencies. The strain mode shape, which is sensitive to local changes in structure, is used instead of the displacement mode for enhancing model updating. The coordinate strain modal assurance criterion is developed to evaluate the correlation level at each coordinate over the experimental and the analytical strain mode shapes. Moreover, the natural frequencies which provide the global information of the structure are used to guarantee the accuracy of modal properties of the global model. Then, the weighted summation of the natural frequency residual and the coordinate strain modal assurance criterion residual is used as the objective function in the proposed dynamic FE model updating procedure. The hybrid genetic/pattern-search optimization algorithm is adopted to perform the dynamic FE model updating procedure. Numerical simulation and model updating experiment for a clamped-clamped beam are performed to validate the feasibility and effectiveness of the present method. The results show that the proposed method can be used to update the uncertain parameters with good robustness. And the updated dynamic FE model of the beam structure, which can correctly predict both the natural frequencies and the local dynamic strains, is reliable for the following dynamic analysis and dynamic strength evaluation.

  16. About a Class of Positive Hybrid Dynamic Linear Systems and an Associate Extended Kalman-Yakubovich-Popov Lemma

    Directory of Open Access Journals (Sweden)

    M. De la Sen

    2017-01-01

    Full Text Available This paper formulates an “ad hoc” robust version under parametrical disturbances of the discrete version of the Kalman-Yakubovich-Popov Lemma for a class of positive hybrid dynamic linear systems which consist of a continuous-time system coupled with a discrete-time or a digital one. An extended discrete system, whose state vector contains both the digital one and the discretization of the continuous-time one at sampling instants, is a key analysis element in the formulation. The hyperstability and asymptotic hyperstability properties of the studied class of positive hybrid systems under feedback from any member of a nonlinear (and, eventually, time-varying class of controllers, which satisfies a Popov’s-type inequality, are also investigated as linked to the positive realness of the associated transfer matrices.

  17. Television as a Hybrid Repertoire of Memory. New Dynamic Practices of Cultural Memory in the Multi-Platform Era

    Directory of Open Access Journals (Sweden)

    Berber Hagedoorn

    2013-06-01

    Full Text Available In this article, television is reconsidered as a hybrid ‘repertoire’ ofmemory. It is demonstrated how new dynamic production and scheduling practicesin connection with highly accessible and participatory forms of user engagementoffer opportunities for television users to engage with the past, and how suchpractices affect television as a practice of memory. The media platform HollandDoc is discussed as a principal casestudy. By adopting and expanding Aleida Assmann’s model of the dynamics ofcultural memory between remembering and forgetting, a new model to studytelevision as cultural memory is proposed which represents the medium’shybridity in the multi-platform era.

  18. Electrokinetic acceleration of DNA hybridization in microsystems.

    Science.gov (United States)

    Lei, Kin Fong; Wang, Yun-Hsiang; Chen, Huai-Yi; Sun, Jia-Hong; Cheng, Ji-Yen

    2015-06-01

    In this work, electrokinetic acceleration of DNA hybridization was investigated by different combinations of frequencies and amplitudes of actuating electric signals. Because the frequencies from low to high can induce different kinds of electrokinetic forces, i.e., electroosmotic to electrothermal forces, this work provides an in-depth investigation of electrokinetic enhanced hybridization. Concentric circular Cr/Au microelectrodes of 350 µm in diameter were fabricated on a glass substrate and probe DNA was immobilized on the electrode surface. Target DNA labeled with fluorescent dyes suspending in solution was then applied to the electrode. Different electrokinetic forces were induced by the application of different electric signals to the circular microelectrodes. Local microfluidic vortexes were generated to increase the collision efficiency between the target DNA suspending in solution and probe DNA immobilized on the electrode surface. DNA hybridization on the electrode surface could be accelerated by the electrokinetic forces. The level of hybridization was represented by the fluorescent signal intensity ratio. Results revealed that such 5-min dynamic hybridization increased 4.5 fold of signal intensity ratio as compared to a 1-h static hybridization. Moreover, dynamic hybridization was found to have better differentiation ability between specific and non-specific target DNA. This study provides a strategy to accelerate DNA hybridization in microsystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Solution of Fractional Order System of Bagley-Torvik Equation Using Evolutionary Computational Intelligence

    Directory of Open Access Journals (Sweden)

    Muhammad Asif Zahoor Raja

    2011-01-01

    Full Text Available A stochastic technique has been developed for the solution of fractional order system represented by Bagley-Torvik equation. The mathematical model of the equation was developed with the help of feed-forward artificial neural networks. The training of the networks was made with evolutionary computational intelligence based on genetic algorithm hybrid with pattern search technique. Designed scheme was successfully applied to different forms of the equation. Results are compared with standard approximate analytic, stochastic numerical solvers and exact solutions.

  20. The fossil record of phenotypic integration and modularity: A deep-time perspective on developmental and evolutionary dynamics.

    Science.gov (United States)

    Goswami, Anjali; Binder, Wendy J; Meachen, Julie; O'Keefe, F Robin

    2015-04-21

    Variation is the raw material for natural selection, but the factors shaping variation are still poorly understood. Genetic and developmental interactions can direct variation, but there has been little synthesis of these effects with the extrinsic factors that can shape biodiversity over large scales. The study of phenotypic integration and modularity has the capacity to unify these aspects of evolutionary study by estimating genetic and developmental interactions through the quantitative analysis of morphology, allowing for combined assessment of intrinsic and extrinsic effects. Data from the fossil record in particular are central to our understanding of phenotypic integration and modularity because they provide the only information on deep-time developmental and evolutionary dynamics, including trends in trait relationships and their role in shaping organismal diversity. Here, we demonstrate the important perspective on phenotypic integration provided by the fossil record with a study of Smilodon fatalis (saber-toothed cats) and Canis dirus (dire wolves). We quantified temporal trends in size, variance, phenotypic integration, and direct developmental integration (fluctuating asymmetry) through 27,000 y of Late Pleistocene climate change. Both S. fatalis and C. dirus showed a gradual decrease in magnitude of phenotypic integration and an increase in variance and the correlation between fluctuating asymmetry and overall integration through time, suggesting that developmental integration mediated morphological response to environmental change in the later populations of these species. These results are consistent with experimental studies and represent, to our knowledge, the first deep-time validation of the importance of developmental integration in stabilizing morphological evolution through periods of environmental change.

  1. Evaluation of Induced Settlements of Piled Rafts in the Coupled Static-Dynamic Loads Using Neural Networks and Evolutionary Polynomial Regression

    Directory of Open Access Journals (Sweden)

    Ali Ghorbani

    2017-01-01

    Full Text Available Coupled Piled Raft Foundations (CPRFs are broadly applied to share heavy loads of superstructures between piles and rafts and reduce total and differential settlements. Settlements induced by static/coupled static-dynamic loads are one of the main concerns of engineers in designing CPRFs. Evaluation of induced settlements of CPRFs has been commonly carried out using three-dimensional finite element/finite difference modeling or through expensive real-scale/prototype model tests. Since the analyses, especially in the case of coupled static-dynamic loads, are not simply conducted, this paper presents two practical methods to gain the values of settlement. First, different nonlinear finite difference models under different static and coupled static-dynamic loads are developed to calculate exerted settlements. Analyses are performed with respect to different axial loads and pile’s configurations, numbers, lengths, diameters, and spacing for both loading cases. Based on the results of well-validated three-dimensional finite difference modeling, artificial neural networks and evolutionary polynomial regressions are then applied and introduced as capable methods to accurately present both static and coupled static-dynamic settlements. Also, using a sensitivity analysis based on Cosine Amplitude Method, axial load is introduced as the most influential parameter, while the ratio l/d is reported as the least effective parameter on the settlements of CPRFs.

  2. A new hybrid genetic algorithm for optimizing the single and multivariate objective functions

    Energy Technology Data Exchange (ETDEWEB)

    Tumuluru, Jaya Shankar [Idaho National Laboratory; McCulloch, Richard Chet James [Idaho National Laboratory

    2015-07-01

    In this work a new hybrid genetic algorithm was developed which combines a rudimentary adaptive steepest ascent hill climbing algorithm with a sophisticated evolutionary algorithm in order to optimize complex multivariate design problems. By combining a highly stochastic algorithm (evolutionary) with a simple deterministic optimization algorithm (adaptive steepest ascent) computational resources are conserved and the solution converges rapidly when compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random events such as breeding and mutation. In the adaptive steepest ascent algorithm each variable is perturbed by a small amount and the variable that caused the most improvement is incremented by a small step. If the direction of most benefit is exactly opposite of the previous direction with the most benefit then the step size is reduced by a factor of 2, thus the step size adapts to the terrain. A graphical user interface was created in MATLAB to provide an interface between the hybrid genetic algorithm and the user. Additional features such as bounding the solution space and weighting the objective functions individually are also built into the interface. The algorithm developed was tested to optimize the functions developed for a wood pelleting process. Using process variables (such as feedstock moisture content, die speed, and preheating temperature) pellet properties were appropriately optimized. Specifically, variables were found which maximized unit density, bulk density, tapped density, and durability while minimizing pellet moisture content and specific energy consumption. The time and computational resources required for the optimization were dramatically decreased using the hybrid genetic algorithm when compared to MATLAB's native evolutionary optimization tool.

  3. Exploring social influence on evolutionary prisoner’s dilemma games in networks

    Science.gov (United States)

    Zong, Hengshan; Jia, Guozhu; Cheng, Yang

    2015-11-01

    Though numerous studies demonstrate the importance of social influence in deciding individual decision-making process in networks, little has been done to explore its impact on players’ behavioral patterns in evolutionary prisoner’s dilemma games (PDGs). This study investigates how social influenced strategy updating rules may affect the final equilibrium of game dynamics. The results show that weak social influence usually inhibits cooperation, while strong social influence has a mediating effect. The impacts of network structure and the existence of rebels in social influence scenarios are also tested. The paper provides a comprehensive interpretation on social influence effects on evolutionary PDGs in networks.

  4. Electron currents in field reversed mirror dynamics: Theory and hybrid simulation

    International Nuclear Information System (INIS)

    Stark, R.A.

    1987-01-01

    To model the dynamics of the Field-Reversed Mirror (FRM) as a whole we have developed a 1-D radical hybrid code which also incorporates the above electron null current model. This code, named FROST, models the plasma as azimuthally symmetric with no axial dependence. A multi-group method in energy and canonical angular momentum describes the large-orbit ions from the beam. Massless fluid equations describe electrons and low energy ions. Since a fluid treatment for electrons is invalid near a field null, the null region electron current model discussed above has been included for this region, a unique feature. Results of simulation of neutral beam start-up in a 2XIIB-like plasma is discussed. There FROST predicts that electron currents will retard, but not prevent reversal of the magnetic field at the plasma center. These results are optimistic when compared to actual reversal experiments in 2XIIB, because there finite axial length effects and micro-instabilities substantially deteriorated the ion confinement. Nevertheless, because of the importance of the electron current in a low field region in the FRM, FROST represents a valuable intermediate step toward a more complete description of FRM dynamics. 54 refs., 50 figs., 3 tabs

  5. A new hybrid evolutionary algorithm based on new fuzzy adaptive PSO and NM algorithms for Distribution Feeder Reconfiguration

    International Nuclear Information System (INIS)

    Niknam, Taher; Azadfarsani, Ehsan; Jabbari, Masoud

    2012-01-01

    Highlights: ► Network reconfiguration is a very important way to save the electrical energy. ► This paper proposes a new algorithm to solve the DFR. ► The algorithm combines NFAPSO with NM. ► The proposed algorithm is tested on two distribution test feeders. - Abstract: Network reconfiguration for loss reduction in distribution system is a very important way to save the electrical energy. This paper proposes a new hybrid evolutionary algorithm to solve the Distribution Feeder Reconfiguration problem (DFR). The algorithm is based on combination of a New Fuzzy Adaptive Particle Swarm Optimization (NFAPSO) and Nelder–Mead simplex search method (NM) called NFAPSO–NM. In the proposed algorithm, a new fuzzy adaptive particle swarm optimization includes two parts. The first part is Fuzzy Adaptive Binary Particle Swarm Optimization (FABPSO) that determines the status of tie switches (open or close) and second part is Fuzzy Adaptive Discrete Particle Swarm Optimization (FADPSO) that determines the sectionalizing switch number. In other side, due to the results of binary PSO(BPSO) and discrete PSO(DPSO) algorithms highly depends on the values of their parameters such as the inertia weight and learning factors, a fuzzy system is employed to adaptively adjust the parameters during the search process. Moreover, the Nelder–Mead simplex search method is combined with the NFAPSO algorithm to improve its performance. Finally, the proposed algorithm is tested on two distribution test feeders. The results of simulation show that the proposed method is very powerful and guarantees to obtain the global optimization.

  6. Hybridization dynamics between Colorado's native cutthroat trout and introduced rainbow trout.

    Science.gov (United States)

    Metcalf, Jessica L; Siegle, Matthew R; Martin, Andrew P

    2008-01-01

    Newly formed hybrid populations provide an opportunity to examine the initial consequences of secondary contact between species and identify genetic patterns that may be important early in the evolution of hybrid inviability. Widespread introductions of rainbow trout (Oncorhynchus mykiss) into watersheds with native cutthroat trout (Oncorhynchus clarkii) have resulted in hybridization. These introductions have contributed to the decline of native cutthroat trout populations. Here, we examine the pattern of hybridization between introduced rainbow trout and 2 populations of cutthroat trout native to Colorado. For this study, we utilized 7 diagnostic, codominant nuclear markers and a diagnostic mitochondrial marker to investigate hybridization in a population of greenback cutthroat trout (Oncorhynchus clarkii stomias) and a population of Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus). We infer that cutthroat-rainbow trout hybrid swarms have formed in both populations. Although a mixture of hybrid genotypes was present, not all genotype combinations were detected at expected frequencies. We found evidence that mitochondrial DNA introgression in hybrids is asymmetric and more likely from rainbow trout than from cutthroat trout. A difference in spawning time of the 2 species or differences in the fitness between the reciprocal crosses may explain the asymmetry. Additionally, the presence of intraspecific cytonuclear associations found in both populations is concordant with current hypotheses regarding coevolution of mitochondrial and nuclear genomes.

  7. Evolutionary analysis of Pinus densata Masters, a putative Tertiary hybrid : 1. Allozyme variation.

    Science.gov (United States)

    Wang, X R; Szmidt, A E; Lewandowski, A; Wang, Z R

    1990-11-01

    Allozyme differentiation at 13 loci was studied in populations of Pinus tabulaeformis, P. densata, and P. yunnanensis from China. It was previously suggested that P. densata represents a Tertiary hybrid between P. tabulaeformis and P. yunnanensis. The observed levels of allozyme variation within and among the investigated species were comparable to those of other conifers. P. tabulaeformis differed markedly from P. yunnanensis with respect to allozyme frequencies, while P. densata was intermediate between the two putative parents. There was evidence of homozygote excess in embryos from all investigated species, as compared to Hardy-Weinberg expectations. The observed allozyme composition of P. densata conformed to earlier morphological and molecular evidence indicating hybrid origin of this taxon. It was proposed that fusion of gene pools from P. tabulaeformis and P. yunnanensis has led to adaptive evolution of a new species, P. densata.

  8. Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Analysis of local bifurcations via the hybrid Poincaré map

    International Nuclear Information System (INIS)

    Gritli, Hassène; Belghith, Safya

    2017-01-01

    Highlights: • We study the passive walking dynamics of the compass-gait model under OGY-based state-feedback control. • We analyze local bifurcations via a hybrid Poincaré map. • We show exhibition of the super(sub)-critical flip bifurcation, the saddle-node(saddle) bifurcation and a saddle-flip bifurcation. • An analysis via a two-parameter bifurcation diagram is presented. • Some new hidden attractors in the controlled passive walking dynamics are displayed. - Abstract: In our previous work, we have analyzed the passive dynamic walking of the compass-gait biped model under the OGY-based state-feedback control using the impulsive hybrid nonlinear dynamics. Such study was carried out through bifurcation diagrams. It was shown that the controlled bipedal gait exhibits attractive nonlinear phenomena such as the cyclic-fold (saddle-node) bifurcation, the period-doubling (flip) bifurcation and chaos. Moreover, we revealed that, using the controlled continuous-time dynamics, we encountered a problem in finding, identifying and hence following branches of (un)stable solutions in order to characterize local bifurcations. The present paper solves such problem and then provides a further investigation of the controlled bipedal walking dynamics using the developed analytical expression of the controlled hybrid Poincaré map. Thus, we show that analysis via such Poincaré map allows to follow branches of both stable and unstable fixed points in bifurcation diagrams and hence to explore the complete dynamics of the controlled compass-gait biped model. We demonstrate the generation, other than the conventional local bifurcations in bipedal walking, i.e. the flip bifurcation and the saddle-node bifurcation, of a saddle-saddle bifurcation, a subcritical flip bifurcation and a new type of a local bifurcation, the saddle-flip bifurcation. In addition, to further understand the occurrence of the local bifurcations, we present an analysis with a two-parameter bifurcation

  9. Hybridization between Yellowstone cutthroat trout and rainbow trout alters the expression of muscle growth-related genes and their relationships with growth patterns

    Science.gov (United States)

    Ostberg, Carl O.; Chase, Dorothy M.; Hauser, Lorenz

    2015-01-01

    Hybridization creates novel gene combinations that may generate important evolutionary novelty, but may also reduce existing adaptation by interrupting inherent biological processes, such as genotype-environment interactions. Hybridization often causes substantial change in patterns of gene expression, which, in turn, may cause phenotypic change. Rainbow trout (Oncorhynchus mykiss) and cutthroat trout (O. clarkii) produce viable hybrids in the wild, and introgressive hybridization with introduced rainbow trout is a major conservation concern for native cutthroat trout. The two species differ in body shape, which is likely an evolutionary adaptation to their native environments, and their hybrids tend to show intermediate morphology. The characterization of gene expression patterns may provide insights on the genetic basis of hybrid and parental morphologies, as well as on the ecological performance of hybrids in the wild. Here, we evaluated the expression of eight growth-related genes (MSTN-1a, MSTN-1b, MyoD1a, MyoD1b, MRF-4, IGF-1, IGF-2, and CAST-L) and the relationship of these genes with growth traits (length, weight, and condition factor) in six line crosses: both parental species, both reciprocal F1 hybrids, and both first-generation backcrosses (F1 x rainbow trout and F1 x cutthroat trout). Four of these genes were differentially expressed among rainbow, cutthroat, and their hybrids. Transcript abundance was significantly correlated with growth traits across the parent species, but not across hybrids. Our findings suggest that rainbow and cutthroat trout exhibit differences in muscle growth regulation, that transcriptional networks may be modified by hybridization, and that hybridization disrupts intrinsic relationships between gene expression and growth patterns that may be functionally important for phenotypic adaptations.

  10. Climatic and evolutionary drivers of phase shifts in the plague epidemics of colonial India.

    Science.gov (United States)

    Lewnard, Joseph A; Townsend, Jeffrey P

    2016-12-20

    Immune heterogeneity in wild host populations indicates that disease-mediated selection is common in nature. However, the underlying dynamic feedbacks involving the ecology of disease transmission, evolutionary processes, and their interaction with environmental drivers have proven challenging to characterize. Plague presents an optimal system for interrogating such couplings: Yersinia pestis transmission exerts intense selective pressure driving the local persistence of disease resistance among its wildlife hosts in endemic areas. Investigations undertaken in colonial India after the introduction of plague in 1896 suggest that, only a decade after plague arrived, a heritable, plague-resistant phenotype had become prevalent among commensal rats of cities undergoing severe plague epidemics. To understand the possible evolutionary basis of these observations, we developed a mathematical model coupling environmentally forced plague dynamics with evolutionary selection of rats, capitalizing on extensive archival data from Indian Plague Commission investigations. Incorporating increased plague resistance among rats as a consequence of intense natural selection permits the model to reproduce observed changes in seasonal epidemic patterns in several cities and capture experimentally observed associations between climate and flea population dynamics in India. Our model results substantiate Victorian era claims of host evolution based on experimental observations of plague resistance and reveal the buffering effect of such evolution against environmental drivers of transmission. Our analysis shows that historical datasets can yield powerful insights into the transmission dynamics of reemerging disease agents with which we have limited contemporary experience to guide quantitative modeling and inference.

  11. Recent advances in evolutionary multi-objective optimization

    CERN Document Server

    Datta, Rituparna; Gupta, Abhishek

    2017-01-01

    This book covers the most recent advances in the field of evolutionary multiobjective optimization. With the aim of drawing the attention of up-andcoming scientists towards exciting prospects at the forefront of computational intelligence, the authors have made an effort to ensure that the ideas conveyed herein are accessible to the widest audience. The book begins with a summary of the basic concepts in multi-objective optimization. This is followed by brief discussions on various algorithms that have been proposed over the years for solving such problems, ranging from classical (mathematical) approaches to sophisticated evolutionary ones that are capable of seamlessly tackling practical challenges such as non-convexity, multi-modality, the presence of multiple constraints, etc. Thereafter, some of the key emerging aspects that are likely to shape future research directions in the field are presented. These include:< optimization in dynamic environments, multi-objective bilevel programming, handling high ...

  12. Research on Information Sharing Mechanism of Network Organization Based on Evolutionary Game

    Science.gov (United States)

    Wang, Lin; Liu, Gaozhi

    2018-02-01

    This article first elaborates the concept and effect of network organization, and the ability to share information is analyzed, secondly introduces the evolutionary game theory, network organization for information sharing all kinds of limitations, establishes the evolutionary game model, analyzes the dynamic evolution of network organization of information sharing, through reasoning and evolution. The network information sharing by the initial state and two sides of the game payoff matrix of excess profits and information is the information sharing of cost and risk sharing are the influence of network organization node information sharing decision.

  13. Dynamic Measurement of Tumor Vascular Permeability and Perfusion using a Hybrid System for Simultaneous Magnetic Resonance and Fluorescence Imaging.

    Science.gov (United States)

    Ren, Wuwei; Elmer, Andreas; Buehlmann, David; Augath, Mark-Aurel; Vats, Divya; Ripoll, Jorge; Rudin, Markus

    2016-04-01

    Assessing tumor vascular features including permeability and perfusion is essential for diagnostic and therapeutic purposes. The aim of this study was to compare fluorescence and magnetic resonance imaging (MRI)-based vascular readouts in subcutaneously implanted tumors in mice by simultaneous dynamic measurement of tracer uptake using a hybrid fluorescence molecular tomography (FMT)/MRI system. Vascular permeability was measured using a mixture of extravascular imaging agents, GdDOTA and the dye Cy5.5, and perfusion using a mixture of intravascular agents, Endorem and a fluorescent probe (Angiosense). Dynamic fluorescence reflectance imaging (dFRI) was integrated into the hybrid system for high temporal resolution. Excellent correspondence between uptake curves of Cy5.5/GdDOTA and Endorem/Angiosense has been found with correlation coefficients R > 0.98. The two modalities revealed good agreement regarding permeability coefficients and centers-of-gravity of the imaging agent distribution. The FMT/dFRI protocol presented is able to accurately map physiological processes and poses an attractive alternative to MRI for characterizing tumor neoangiogenesis.

  14. Dynamic modeling of hybrid renewable energy systems for off-grid applications

    Science.gov (United States)

    Hasemeyer, Mark David

    The volatile prices of fossil fuels and their contribution to global warming have caused many people to turn to renewable energy systems. Many developing communities are forced to use these systems as they are too far from electrical distribution. As a result, numerous software models have been developed to simulate hybrid renewable energy systems. However almost, if not all, implementations are static in design. A static design limits the ability of the model to account for changes over time. Dynamic modeling can be used to fill the gaps where other modeling techniques fall short. This modeling practice allows the user to account for the effects of technological and economic factors over time. These factors can include changes in energy demand, energy production, and income level. Dynamic modeling can be particularly useful for developing communities who are off-grid and developing at rapid rates. In this study, a dynamic model was used to evaluate a real world system. A non-governmental organization interested in improving their current infrastructure was selected. Five different scenarios were analyzed and compared in order to discover which factors the model is most sensitive to. In four of the scenarios, a new energy system was purchased in order to account for the opening of a restaurant that would be used as a source of local income generation. These scenarios were then compared to a base case in which a new system was not purchased, and the restaurant was not opened. Finally, the results were used to determine which variables had the greatest impact on the various outputs of the simulation.

  15. Hybrid computing - Generalities and bibliography

    International Nuclear Information System (INIS)

    Neel, Daniele

    1970-01-01

    This note presents the content of a research thesis. It describes the evolution of hybrid computing systems, discusses the benefits and shortcomings of analogue or hybrid systems, discusses the building up of an hybrid system (requires properties), comments different possible uses, addresses the issues of language and programming, discusses analysis methods and scopes of application. An appendix proposes a bibliography on these issues and notably the different scopes of application (simulation, fluid dynamics, biology, chemistry, electronics, energy, errors, space, programming languages, hardware, mechanics, and optimisation of equations or processes, physics) [fr

  16. Vibration and Operational Characteristics of a Composite-Steel (Hybrid) Gear

    Science.gov (United States)

    Handschuh, Robert F.; LaBerge, Kelsen E.; DeLuca, Samuel; Pelagalli, Ryan

    2014-01-01

    Hybrid gears have been tested consisting of metallic gear teeth and shafting connected by composite web. Both free vibration and dynamic operation tests were completed at the NASA Glenn Spur Gear Fatigue Test Facility, comparing these hybrid gears to their steel counterparts. The free vibration tests indicated that the natural frequency of the hybrid gear was approximately 800 Hz lower than the steel test gear. The dynamic vibration tests were conducted at five different rotational speeds and three levels of torque in a four square test configuration. The hybrid gears were tested both as fabricated (machined, composite layup, then composite cure) and after regrinding the gear teeth to the required aerospace tolerance. The dynamic vibration tests indicated that the level of vibration for either type of gearing was sensitive to the level of load and rotational speed.

  17. Multi types DG expansion dynamic planning in distribution system under stochastic conditions using Covariance Matrix Adaptation Evolutionary Strategy and Monte-Carlo simulation

    International Nuclear Information System (INIS)

    Sadeghi, Mahmood; Kalantar, Mohsen

    2014-01-01

    Highlights: • Defining a DG dynamic planning problem. • Applying a new evolutionary algorithm called “CMAES” in planning process. • Considering electricity price and fuel price variation stochastic conditions. • Scenario generation and reduction with MCS and backward reduction programs. • Considering approximately all of the costs of the distribution system. - Abstract: This paper presents a dynamic DG planning problem considering uncertainties related to the intermittent nature of the DG technologies such as wind turbines and solar units in addition to the stochastic economic conditions. The stochastic economic situation includes the uncertainties related to the fuel and electricity price of each year. The Monte Carlo simulation is used to generate the possible scenarios of uncertain situations and the produced scenarios are reduced through backward reduction program. The aim of this paper is to maximize the revenue of the distribution system through the benefit cost analysis alongside the encouraging and punishment functions. In order to close to reality, the different growth rates for the planning period are selected. In this paper the Covariance Matrix Adaptation Evolutionary Strategy is introduced and is used to find the best planning scheme of the DG units. The different DG types are considered in the planning problem. The main assumption of this paper is that the DISCO is the owner of the distribution system and the DG units. The proposed method is tested on a 9 bus test distribution system and the results are compared with the known genetic algorithm and PSO methods to show the applicability of the CMAES method in this problem

  18. Hybrid male sterility in Mimulus (Phrymaceae) is associated with a geographically restricted mitochondrial rearrangement.

    Science.gov (United States)

    Case, Andrea L; Willis, John H

    2008-05-01

    Cytoplasmic male sterility (CMS) and nuclear fertility restoration (Rf) involves intergenomic coevolution. Although male-sterile phenotypes are rarely expressed in natural populations of angiosperms, CMS genes are thought to be common. The evolutionary dynamics of CMS/Rf systems are poorly understood, leaving gaps in our understanding of mechanisms and consequences of cytonuclear interactions. We characterized the molecular basis and geographic distribution of a CMS gene in Mimulus guttatus. We used outcrossing M. guttatus (with CMS and Rf) to self-fertilizing M. nasutus (lacking CMS and Rf) to generate hybrids segregating for CMS. Mitochondrial transcripts containing an essential gene (nad6) were perfectly associated with male sterility. The CMS mitotype was completely absent in M. nasutus, present in all genotypes collected from the original collection site, but in only two individuals from 34 other M. guttatus populations. This pattern suggests that the CMS likely originated at a single locality, spread to fixation within the population, but has not spread to other populations, indicating possible ecological or genetic constraints on dispersal of this CMS mitotype between populations. Extreme localization may be characteristic of CMS in hermaphroditic species, in contrast to geographically widespread mitotypes commonly found in gynodioecious species, and could directly contribute to hybrid incompatibilities in nature.

  19. Hybrid incompatibility arises in a sequence-based bioenergetic model of transcription factor binding.

    Science.gov (United States)

    Tulchinsky, Alexander Y; Johnson, Norman A; Watt, Ward B; Porter, Adam H

    2014-11-01

    Postzygotic isolation between incipient species results from the accumulation of incompatibilities that arise as a consequence of genetic divergence. When phenotypes are determined by regulatory interactions, hybrid incompatibility can evolve even as a consequence of parallel adaptation in parental populations because interacting genes can produce the same phenotype through incompatible allelic combinations. We explore the evolutionary conditions that promote and constrain hybrid incompatibility in regulatory networks using a bioenergetic model (combining thermodynamics and kinetics) of transcriptional regulation, considering the bioenergetic basis of molecular interactions between transcription factors (TFs) and their binding sites. The bioenergetic parameters consider the free energy of formation of the bond between the TF and its binding site and the availability of TFs in the intracellular environment. Together these determine fractional occupancy of the TF on the promoter site, the degree of subsequent gene expression and in diploids, and the degree of dominance among allelic interactions. This results in a sigmoid genotype-phenotype map and fitness landscape, with the details of the shape determining the degree of bioenergetic evolutionary constraint on hybrid incompatibility. Using individual-based simulations, we subjected two allopatric populations to parallel directional or stabilizing selection. Misregulation of hybrid gene expression occurred under either type of selection, although it evolved faster under directional selection. Under directional selection, the extent of hybrid incompatibility increased with the slope of the genotype-phenotype map near the derived parental expression level. Under stabilizing selection, hybrid incompatibility arose from compensatory mutations and was greater when the bioenergetic properties of the interaction caused the space of nearly neutral genotypes around the stable expression level to be wide. F2's showed higher

  20. A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting

    International Nuclear Information System (INIS)

    Wang, Bo; Tai, Neng-ling; Zhai, Hai-qing; Ye, Jian; Zhu, Jia-dong; Qi, Liang-bo

    2008-01-01

    In this paper, a new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting is proposed. Auto-regressive (AR) and moving average (MA) with exogenous variables (ARMAX) has been widely applied in the load forecasting area. Because of the nonlinear characteristics of the power system loads, the forecasting function has many local optimal points. The traditional method based on gradient searching may be trapped in local optimal points and lead to high error. While, the hybrid method based on evolutionary algorithm and particle swarm optimization can solve this problem more efficiently than the traditional ways. It takes advantage of evolutionary strategy to speed up the convergence of particle swarm optimization (PSO), and applies the crossover operation of genetic algorithm to enhance the global search ability. The new ARMAX model for short-term load forecasting has been tested based on the load data of Eastern China location market, and the results indicate that the proposed approach has achieved good accuracy. (author)