WorldWideScience

Sample records for dynamic dislocation mechanisms

  1. Mechanical properties of nano and bulk Fe pillars using molecular dynamics and dislocation dynamics simulation

    Directory of Open Access Journals (Sweden)

    S. K. Deb Nath

    2017-10-01

    Full Text Available Using molecular dynamics simulation, tension and bending tests of a Fe nanopillar are carried out to obtain its Young’s modulus and yield strength. Then the comparative study of Young’s modulus and yield strength of a Fe nanopillar under bending and tension are carried out varying its diameter in the range of diameter 1-15nm. We find out the reasons why bending Young’s modulus and yield strength of a Fe nanopillar are higher than those of tension Young’s modulus and yield strength of a Fe nanopillar. Using the mobility parameters of bulk Fe from the experimental study [N. Urabe and J. Weertman, Materials Science and Engineering 18, 41 (1975], its temperature dependent stress-strain relationship, yield strength and strain hardening modulus are obtained from the dislocation dynamics simulations. Strain rate dependent yield strength and strain hardening modulus of bulk Fe pillars under tension are studied. Temperature dependent creep behaviors of bulk Fe pillars under tension are also studied. To verify the soundness of the present dislocation dynamics studies of the mechanical properties of bulk Fe pillars under tension, the stress vs. strain relationship and dislocation density vs. strain of bulk Fe pillars obtained by us are compared with the published results obtained by S. Queyreau, G. Monnet, and B. Devincre, International Journal of Plasticity 25, 361 (2009.

  2. Dislocation mechanism of void growth at twin boundary of nanotwinned nickel based on molecular dynamics simulation

    International Nuclear Information System (INIS)

    Zhang, Yanqiu; Jiang, Shuyong; Zhu, Xiaoming; Zhao, Yanan

    2016-01-01

    Molecular dynamics simulation was performed to investigate dislocation mechanism of void growth at twin boundary (TB) of nanotwinned nickel. Simulation results show that the deformation of nanotwinned nickel containing a void at TB is dominated by the slip involving both leading and trailing partials, where the trailing partials are the dissociation products of stair-rod dislocations formed by the leading partials. The growth of a void at TB is attributed to the successive emission of the leading partials followed by trailing partials as well as the escape of these partial dislocations from the void surface. - Highlights: • Dislocation mechanism of void growth at TB of nanotwinned nickel is investigated. • Deformation of the nanotwinned nickel is dominated by leading and trailing partials. • Growth of void at TB is caused by successive emission and escape of these partials.

  3. Dislocation climb models from atomistic scheme to dislocation dynamics

    OpenAIRE

    Niu, Xiaohua; Luo, Tao; Lu, Jianfeng; Xiang, Yang

    2016-01-01

    We develop a mesoscopic dislocation dynamics model for vacancy-assisted dislocation climb by upscalings from a stochastic model on the atomistic scale. Our models incorporate microscopic mechanisms of (i) bulk diffusion of vacancies, (ii) vacancy exchange dynamics between bulk and dislocation core, (iii) vacancy pipe diffusion along the dislocation core, and (iv) vacancy attachment-detachment kinetics at jogs leading to the motion of jogs. Our mesoscopic model consists of the vacancy bulk dif...

  4. Dislocation-dynamics method

    International Nuclear Information System (INIS)

    Van Brutzel, L.

    2015-01-01

    Dislocation-Dynamics (DD) technique is identified as the method able to model the evolution of material plastic properties as a function of the microstructural transformation predicted at the atomic scale. Indeed, it is the only simulation method capable of taking into account the collective behaviour of a large number of dislocations inside a realistic microstructure. DD simulations are based on the elastic dislocation theory following rules inherent to the dislocation core structure often call 'local rules'. All the data necessary to establish the local rules for DD have to come directly from experiment or alternatively from simulations carried out at the atomic scale such as molecular dynamics or ab initio calculations. However, no precise information on the interaction between two dislocations or between dislocations and defects induced by irradiation are available for nuclear fuels. Therefore, in this article the DD technique will be presented and some examples are given of what can be achieved with it. (author)

  5. Dislocation Dynamics During Plastic Deformation

    CERN Document Server

    Messerschmidt, Ulrich

    2010-01-01

    The book gives an overview of the dynamic behavior of dislocations and its relation to plastic deformation. It introduces the general properties of dislocations and treats the dislocation dynamics in some detail. Finally, examples are described of the processes in different classes of materials, i.e. semiconductors, ceramics, metals, intermetallic materials, and quasicrystals. The processes are illustrated by many electron micrographs of dislocations under stress and by video clips taken during in situ straining experiments in a high-voltage electron microscope showing moving dislocations. Thus, the users of the book also obtain an immediate impression and understanding of dislocation dynamics.

  6. Molecular dynamics study on the evolution of interfacial dislocation network and mechanical properties of Ni-based single crystal superalloys

    Science.gov (United States)

    Li, Nan-Lin; Wu, Wen-Ping; Nie, Kai

    2018-05-01

    The evolution of misfit dislocation network at γ /γ‧ phase interface and tensile mechanical properties of Ni-based single crystal superalloys at various temperatures and strain rates are studied by using molecular dynamics (MD) simulations. From the simulations, it is found that with the increase of loading, the dislocation network effectively inhibits dislocations emitted in the γ matrix cutting into the γ‧ phase and absorbs the matrix dislocations to strengthen itself which increases the stability of structure. Under the influence of the temperature, the initial mosaic structure of dislocation network gradually becomes irregular, and the initial misfit stress and the elastic modulus slowly decline as temperature increasing. On the other hand, with the increase of the strain rate, it almost has no effect on the elastic modulus and the way of evolution of dislocation network, but contributes to the increases of the yield stress and tensile strength. Moreover, tension-compression asymmetry of Ni-based single crystal superalloys is also presented based on MD simulations.

  7. Dynamic mechanical behaviour and dislocation substructure evolution of Inconel 718 over wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woei-Shyan, E-mail: wslee@mail.ncku.edu.tw [Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Chi-Feng [National Center for High-Performance Computing, Hsin-Shi Tainan County 744, Taiwan (China); Chen, Tao-Hsing [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan (China); Chen, Hong-Wei [Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2011-07-25

    A compressive split-Hopkinson pressure bar and transmission electron microscope (TEM) are used to investigate the mechanical behaviour and microstructural evolution of Inconel 718 at strain rates ranging from 1000 to 5000 s{sup -1} and temperatures between -150 and 550 deg. C. The results show that the flow stress increases with an increasing strain rate or a reducing temperature. The strain rate effect is particularly pronounced at strain rates greater than 3000 s{sup -1} and a deformation temperature of -150 deg. C. A significant thermal softening effect occurs at temperatures between -150 and 25 deg. C. The microstructural observations reveal that the strengthening effect in deformed Inconel 718 alloy is a result primarily of dislocation multiplication. The dislocation density increases with increasing strain rate, but decreases with increasing temperature. By contrast, the dislocation cell size decreases with increasing strain rate, but increases with increasing temperature. It is shown that the correlation between the flow stress, the dislocation density and the dislocation cell size is well described by the Bailey-Hirsch constitutive equations.

  8. Ultrasonic Study of Dislocation Dynamics in Lithium -

    Science.gov (United States)

    Han, Myeong-Deok

    1987-09-01

    Experimental studies of dislocation dynamics in LiF single crystals, using ultrasonic techniques combined with dynamic loading, were performed to investigate the time evolution of the plastic deformation process under a short stress pulse at room temperature, and the temperature dependence of the dislocation damping mechanism in the temperature range 25 - 300(DEGREES)K. From the former, the time dependence of the ultrasonic attenuation was understood as resulting from dislocation multiplication followed by the evolution of mobile dislocations to immobile ones under large stress. From the latter, the temperature dependence of the ultrasonic attenuation was interpreted as due to the motion of the dislocation loops overcoming the periodic Peierls potential barrier in a manner analogous to the motion of a thermalized sine-Gordon chain under a small stress. The Peierls stress obtained from the experimental results by application of Seeger's relaxation model with exponential dislocation length distribution was 4.26MPa, which is consistent with the lowest stress for the linear relation between the dislocation velocity and stress observed by Flinn and Tinder.

  9. Dislocation-cavity interaction in Fe: a comparison between molecular dynamics and dislocation dynamics

    International Nuclear Information System (INIS)

    Hafez Haghighat, S.M.; Schaeublin, R.; Fivel, M.C.

    2007-01-01

    Full text of publication follows: multi-scale modeling, including molecular dynamics (MD) and discrete dislocation dynamics (DDD) methods, appears as a significant tool for the description of plasticity and mechanical properties of materials. This research is on the investigation of the subsequence effects of irradiation on the plasticity of pure Fe and focuses on the interaction of a single dislocation and a spherical cavity, as void or He bubble. Extensive MD simulations of the interaction under imposed strain rate [1, 2] have shown that various temperatures and cavity sizes result in different release stresses depending on dislocation bow out. It appears that a temperature increase and cavity size decrease reduce the cavity strength. MD simulation shows that the elastic field around the cavity is largely anisotropic. This anisotropy may influence the way the dislocation unpins from the cavity. Following the MD simulations, the interaction of a single dislocation and a spherical cavity is now simulated using a DDD discrete dislocation dynamics model. The simulation accounts for the non-Schmidt effect induced by the bcc structure of Fe through local rules derived from MD simulations [3]. The cavity is introduced in the simulation by computing the image forces using a finite element technique. The effective stress applied on the dislocation is then obtained as the superimposition of the applied stress field, the image stress field and the internal stresses. Note that such a model only uses elasticity theory and no core effect of dislocations is taken into account. One of the objectives of this work is to check whether elasticity is responsible of the behaviour observed by MD. Several cases are tested. First an edge dislocation in a (110) plane is pushed against the cavity under a pure shear loading. The local reaction of the dislocations and the cavity are compared to the MD simulations. Then, the case of a screw dislocation is studied. Finally, other loading

  10. Mechanism of Strain Rate Effect Based on Dislocation Theory

    International Nuclear Information System (INIS)

    Kun, Qin; Shi-Sheng, Hu; Li-Ming, Yang

    2009-01-01

    Based on dislocation theory, we investigate the mechanism of strain rate effect. Strain rate effect and dislocation motion are bridged by Orowan's relationship, and the stress dependence of dislocation velocity is considered as the dynamics relationship of dislocation motion. The mechanism of strain rate effect is then investigated qualitatively by using these two relationships although the kinematics relationship of dislocation motion is absent due to complicated styles of dislocation motion. The process of strain rate effect is interpreted and some details of strain rate effect are adequately discussed. The present analyses agree with the existing experimental results. Based on the analyses, we propose that strain rate criteria rather than stress criteria should be satisfied when a metal is fully yielded at a given strain rate. (condensed matter: structure, mechanical and thermal properties)

  11. Rate controlling mechanisms during hot deformation of Mg–3Gd–1Zn magnesium alloy: Dislocation glide and climb, dynamic recrystallization, and mechanical twinning

    International Nuclear Information System (INIS)

    Mirzadeh, H.; Roostaei, M.; Parsa, M.H.; Mahmudi, R.

    2015-01-01

    Highlights: • Hot deformation behavior and dynamic recrystallization of GZ31 magnesium alloy. • Deducing the operative deformation mechanisms by constitutive analysis. • Viscous glide as the rate controlling step during hot working of GZ31 alloy. • Characterization of the effect of mechanical twinning on constitutive relations. - Abstract: The flow behavior of the Mg–3Gd–1Zn (GZ31) magnesium alloy during hot working was critically analyzed and dislocation glide in the form of a viscous drag process (viscous glide) was identified as the rate controlling mechanism due to interaction of rare earth Gd atoms with the moving dislocations. Mechanical twinning was shown to significantly affect the level of flow stress at high Zener–Hollomon parameters, i.e. low forming temperatures and high strain rates. Moreover, dynamic recrystallization (DRX) was found to be another responsible phenomenon for deviation of constitutive equations from the theoretical ones, namely the deformation activation energy based on diffusivity and the pre-defined Garofalo’s type hyperbolic sine power, during high-temperature thermomechanical processing of this creep resistant light alloy

  12. Atomic-scale dislocation dynamics in radiation damage environment

    International Nuclear Information System (INIS)

    Osetsky, Y.; Stoller, R.; Bacon, D.J.

    2007-01-01

    Full text of publication follows: The dynamics behavior of dislocations determines mechanical properties of crystalline materials. Long-range interactions between a moving dislocation and other defects can be treated within a continuum approach via interaction of their stress and strain fields. However, a vast contribution to mechanical properties depends on the direct interaction between dislocations and other defects and depends very much on the particular atomic scale structure of the both moving dislocation core and the obstacle. In this work we review recent progress in large-scale modeling of dislocation dynamics in metals at the atomic level by molecular dynamics and statics. We review the modem techniques used to simulate dynamics of dislocations in different lattice structures, the dependence on temperature, strain rate and obstacle size. Examples are given for bcc, fcc and hcp metals where edge and screw dislocations interact with vacancy (loops, voids, stacking fault tetrahedra, etc), self-interstitial clusters and secondary phase precipitates. Attention is paid to interpretation of atomistic results from the point of view of parameterization of continuum models. The latter is vitally necessary for further application in 3-dimensional dislocation dynamics within the multi-scale materials modeling approach. Research sponsored by the Division of Materials Sciences and Engineering and the Office of Fusion Energy Sciences, U.S. Department of Energy, under contract DE-AC0S-00OR22725 with UT-Battelle, LLC. (authors)

  13. Dynamic aspects of dislocation motion: atomistic simulations

    International Nuclear Information System (INIS)

    Bitzek, Erik; Gumbsch, Peter

    2005-01-01

    Atomistic simulations of accelerating edge and screw dislocations were carried out to study the dynamics of dislocations in a face centered cubic metal. Using two different embedded atom potentials for nickel and a simple slab geometry, the Peierls stress, the effective mass, the line tension and the drag coefficient were determined. A dislocation intersecting an array of voids is used to study dynamic effects in dislocation-obstacle interactions. A pronounced effect caused by inertial overshooting is found. A dynamic line tension model is developed which reproduces the simulation results. The model can be used to easily estimate the magnitude of inertial effects in the interaction of dislocations with localized obstacles for different obstacle strengths, -spacings and temperatures

  14. Interaction of 〈1 0 0〉 dislocation loops with dislocations studied by dislocation dynamics in α-iron

    Energy Technology Data Exchange (ETDEWEB)

    Shi, X.J.; Dupuy, L. [CEA, DEN, SRMA, F-91191 Gif-sur-Yvette (France); Devincre, B. [Laboratoire d’Etude des Microstructures, CNRS-ONERA, 29 av. de la Division Leclerc, 92322 Châtillon Cedex (France); Terentyev, D. [SCK–CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Vincent, L. [CEA, DEN, SRMA, F-91191 Gif-sur-Yvette (France)

    2015-05-15

    Highlights: • Interactions between edge dislocations and radiation-induced loops were studied by dislocation dynamics. • Dislocation dynamics results are directly compared to molecular dynamics results. • The complex elementary reactions are successfully reproduced. • The critical shear stress to overcome individual loops if reproduced quantitatively. - Abstract: Interstitial dislocation loops with Burgers vector of 〈1 0 0〉 type are formed in α-iron under neutron or heavy ion irradiation. As the density and size of these loops increase with radiation dose and temperature, these defects are thought to play a key role in hardening and subsequent embrittlement of iron-based steels. The aim of the present work is to study the pinning strength of the loops on mobile dislocations. Prior to run massive Dislocation Dynamics (DD) simulations involving experimentally representative array of radiation defects and dislocations, the DD code and its parameterization are validated by comparing the individual loop–dislocation reactions with those obtained from direct atomistic Molecular Dynamics (MD) simulations. Several loop–dislocation reaction mechanisms are successfully reproduced as well as the values of the unpinning stress to detach mobile dislocations from the defects.

  15. Quasicontinuum analysis of dislocation-coherent twin boundary interaction to provide local rules to discrete dislocation dynamics

    Science.gov (United States)

    Tran, H.-S.; Tummala, H.; Duchene, L.; Pardoen, T.; Fivel, M.; Habraken, A. M.

    2017-10-01

    The interaction of a pure screw dislocation with a Coherent Twin Boundary Σ3 in copper was studied using the Quasicontinuum method. Coherent Twin Boundary behaves as a strong barrier to dislocation glide and prohibits slip transmission across the boundary. Dislocation pileup modifies the stress field at its intersection with the Grain Boundary (GB). A methodology to estimate the strength of the barrier for a dislocation to slip across CTB is proposed. A screw dislocation approaching the boundary from one side either propagates into the adjacent twin grain by cutting through the twin boundary or is stopped and increases the dislocation pileup amplitude at the GB. Quantitative estimation of the critical stress for transmission was performed using the virial stress computed by Quasicontinuum method. The transmission mechanism and critical stress are in line with the literature. Such information can be used as input for dislocation dynamic simulations for a better modeling of grain boundaries.

  16. Generalized dynamics of moving dislocations in quasicrystals

    International Nuclear Information System (INIS)

    Agiasofitou, Eleni; Lazar, Markus; Kirchner, Helmut

    2010-01-01

    A theoretical framework for dislocation dynamics in quasicrystals is provided according to the continuum theory of dislocations. Firstly, we present the fundamental theory for moving dislocations in quasicrystals giving the dislocation density tensors and introducing the dislocation current tensors for the phonon and phason fields, including the Bianchi identities. Next, we give the equations of motion for the incompatible elastodynamics as well as for the incompatible elasto-hydrodynamics of quasicrystals. We continue with the derivation of the balance law of pseudomomentum thereby obtaining the generalized forms of the Eshelby stress tensor, the pseudomomentum vector, the dynamical Peach-Koehler force density and the Cherepanov force density for quasicrystals. The form of the dynamical Peach-Koehler force for a straight dislocation is obtained as well. Moreover, we deduce the balance law of energy that gives rise to the generalized forms of the field intensity vector and the elastic power density of quasicrystals. The above balance laws are produced for both models. The differences between the two models and their consequences are revealed. The influences of the phason fields as well as of the dynamical terms are also discussed.

  17. A discrete dislocation dynamics model of creeping single crystals

    Science.gov (United States)

    Rajaguru, M.; Keralavarma, S. M.

    2018-04-01

    Failure by creep is a design limiting issue for metallic materials used in several high temperature applications. Current theoretical models of creep are phenomenological with little connection to the underlying microscopic mechanisms. In this paper, a bottom-up simulation framework based on the discrete dislocation dynamics method is presented for dislocation creep aided by the diffusion of vacancies, known to be the rate controlling mechanism at high temperature and stress levels. The time evolution of the creep strain and the dislocation microstructure in a periodic unit cell of a nominally infinite single crystal is simulated using the kinetic Monte Carlo method, together with approximate constitutive laws formulated for the rates of thermal activation of dislocations over local pinning obstacles. The deformation of the crystal due to dislocation glide between individual thermal activation events is simulated using a standard dislocation dynamics algorithm, extended to account for constant stress periodic boundary conditions. Steady state creep conditions are obtained in the simulations with the predicted creep rates as a function of stress and temperature in good agreement with experimentally reported values. Arrhenius scaling of the creep rates as a function of temperature and power-law scaling with the applied stress are also reproduced, with the values of the power-law exponents in the high stress regime in good agreement with experiments.

  18. Atomistic simulation of hydrogen dynamics near dislocations in vanadium hydrides

    International Nuclear Information System (INIS)

    Ogawa, Hiroshi

    2015-01-01

    Highlights: • Hydrogen–dislocation interaction was simulated by molecular dynamics method. • Different distribution of H atoms were observed at edge and screw dislocation. • Planner distribution of hydrogen may be caused by partialized edge dislocation. • Hydrogen diffusivity was reduced in both edge and screw dislocation models. • Pipe diffusion was observed for edge dislocation but not for screw dislocation. - Abstract: Kinetics of interstitial hydrogen atoms near dislocation cores were analyzed by atomistic simulation. Classical molecular dynamics method was applied to model structures of edge and screw dislocations in α-phase vanadium hydride. Simulation showed that hydrogen atoms aggregate near dislocation cores. The spatial distribution of hydrogen has a planner shape at edge dislocation due to dislocation partialization, and a cylindrical shape at screw dislocation. Simulated self-diffusion coefficients of hydrogen atoms in dislocation models were a half- to one-order lower than that of dislocation-free model. Arrhenius plot of self-diffusivity showed slightly different activation energies for edge and screw dislocations. Directional dependency of hydrogen diffusion near dislocation showed high and low diffusivity along edge and screw dislocation lines, respectively, hence so called ‘pipe diffusion’ possibly occur at edge dislocation but does not at screw dislocation

  19. A complete absorption mechanism of stacking fault tetrahedron by screw dislocation in copper

    International Nuclear Information System (INIS)

    Fan, Haidong; Wang, Qingyuan

    2013-01-01

    It was frequently observed in experiments that stacking fault tetrahedron (SFT) can be completely absorbed by dislocation and generate defect-free channels in irradiated materials, but the mechanism is still open. In this paper, molecular dynamics (MD) was used to explore the dislocation mechanism of reaction between SFT and screw dislocation in copper. Our computational results reveal that, at high temperature, the SFT is completely absorbed by screw dislocation with the help of Lomer–Cottrell (LC) lock transforming into Lomer dislocation. This complete absorption mechanism is very helpful to understand the defect-free channels in irradiated materials

  20. Strengthening mechanisms and dislocation processes in <111> textured nanotwinned copper

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xing [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Tieu, Anh Kiet; Pei, Linqing; Zhang, Liang; Cheng, Kuiyu [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Huang, Minghui [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China)

    2016-10-31

    We use molecular dynamics simulations to elucidate the deformation mechanisms of <111> textured nanotwinned materials under tensile loading parallel to the twin boundary (TB). Our simulations reveal that the tensile strength of nanotwinned Cu increases monotonically as the twin spacing decreases. The strengthening effect mainly results from TB restricting the transmission of dislocations across the TB. Throughout the simulations the transmissions of dislocations across the TBs dominate the plastic deformation. Both direct and indirect transmissions are identified at atomic level. Direct transmission involves either successive transmission of the leading and trailing partials as in the Fleischer cross-slip model or absorption and desorption of the extended dislocation as in the Friedel-Escaig cross-slip mechanism. In contrast, indirect transmission involves the formation of special superjogs. The persistent slip transfer leaves zigzag slip traces on the cross-sectional view and the inhomogeneous deformation leads to the formation of intersecting slip bands on the plane view.

  1. Dislocation evolution and properties enhancement of GH2036 by laser shock processing: Dislocation dynamics simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X.D., E-mail: renxd@mail.ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, W.F.; Ren, Y.P.; Xu, S.D.; Liu, F.F. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yuan, S.Q. [Research Center of Fluid Machinery Engineering and Technical, Jiangsu University, Zhenjiang 212013 (China); Ren, N.F.; Huang, J.J. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2016-01-27

    This paper systematically investigated the effect of laser shock processing (LSP) on dislocation evolution and microstructure configuration of GH2036 alloy. Surface topography and roughness were tested by Axio CSM 700 microscope. The dislocation configurations were characterized by transmission electron microscope (TEM) and simulated by multi-scale discrete dislocation dynamics (DD) method. The results have confirmed that LSP had a beneficial effect on micro-hardness, which could be increased by 16%, and the surface topography exhibited excellent stability even after thermal cycle. The dislocation density and stress–strain response have strong dependence on laser power intensity. Reasonable agreement between DD simulation and experiments is achieved. The results showed that complex random microstructures can be observed in the shocked surface. The grain refinement mechanism of LSP GH2036 involves dislocation segmentation and twin intersections.

  2. Dislocation dynamics simulations in a cylinder

    International Nuclear Information System (INIS)

    Weinberger, Christopher R; Aubry, Sylvie; Cai, Wei; Lee, Seok-Woo

    2009-01-01

    In this work we describe how to perform dislocation dynamics simulations in a cylindrical geometry. An algorithm for computing the image stress is given in detail including methods for handling the singularity. Additional remesh rules address the problems of the cylindrical geometry and the required self consistency with mobility laws. Numerical studies benchmark the accuracy of the algorithms and the importance of handling the singularity correctly.

  3. Riemann–Cartan Geometry of Nonlinear Dislocation Mechanics

    KAUST Repository

    Yavari, Arash; Goriely, Alain

    2012-01-01

    but vanishing non-metricity. Torsion of the material manifold is identified with the dislocation density tensor of nonlinear dislocation mechanics. Using Cartan's moving frames we construct the material manifold for several examples of bodies with distributed

  4. High temperature dislocation processes in precipitation hardened crystals investigated by a 3D discrete dislocation dynamics

    Czech Academy of Sciences Publication Activity Database

    Záležák, Tomáš; Svoboda, Jiří; Dlouhý, Antonín

    2017-01-01

    Roč. 97, OCT (2017), s. 1-23 ISSN 0749-6419 R&D Projects: GA ČR(CZ) GA14-22834S; GA ČR(CZ) GA202/09/2073; GA ČR(CZ) GD106/09/H035; GA MŠk(CZ) EE2.3.20.0214; GA MŠk OC 162 EU Projects: European Commission(XE) 309916 - Z-ULTRA Institutional support: RVO:68081723 Keywords : 3D discrete dislocation dynamics * Dislocations * Strengthening mechanisms * Low angle grain boundaries * Particulate reinforced material Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 5.702, year: 2016

  5. Molecular dynamics simulation of dislocation intersections in aluminum

    International Nuclear Information System (INIS)

    Li, M.; Chu, W.Y.; Qian, C.F.; Gao, K.W.; Qiao, L.J.

    2003-01-01

    The molecular dynamics method is used to simulate dislocation intersection in aluminum containing 1.6x10 6 atoms using embedded atom method (EAM) potential. The results show that after intersection between two right-hand screw dislocations of opposite sign there are an extended jog corresponding to a row of 1/3 vacancies in the intersected dislocation, and a trail of vacancies behind the moving dislocation. After intersection between screw dislocations of same sign, there are an extended jog corresponding to a row of 1/3 interstitials in the intersected dislocation, and a trail of interstitials behind the moving dislocation. After intersection between screw and edge dislocations with different Burgers vector, there are a constriction corresponding to one 1/3 vacancy in the edge dislocation, and no point-defects behind the screw dislocation. When a moving screw dislocation intersects an edge dislocation with the same Burgers vector, the point of intersection will split into two constrictions corresponding to one 1/3 vacancy and 1/3 interstitial, respectively. The moving screw dislocation can pass the edge dislocation only after the two constrictions, which can move along the line of intersection of the two slip planes, meet and annihilate

  6. Riemann–Cartan Geometry of Nonlinear Dislocation Mechanics

    KAUST Repository

    Yavari, Arash

    2012-03-09

    We present a geometric theory of nonlinear solids with distributed dislocations. In this theory the material manifold-where the body is stress free-is a Weitzenböck manifold, that is, a manifold with a flat affine connection with torsion but vanishing non-metricity. Torsion of the material manifold is identified with the dislocation density tensor of nonlinear dislocation mechanics. Using Cartan\\'s moving frames we construct the material manifold for several examples of bodies with distributed dislocations. We also present non-trivial examples of zero-stress dislocation distributions. More importantly, in this geometric framework we are able to calculate the residual stress fields, assuming that the nonlinear elastic body is incompressible. We derive the governing equations of nonlinear dislocation mechanics covariantly using balance of energy and its covariance. © 2012 Springer-Verlag.

  7. A three dimensional discrete dislocation dynamics modelling of the early cycles of fatigue in an austenitic stainless steel 316L: dislocation microstructure and damage analysis

    International Nuclear Information System (INIS)

    Depres, Ch.

    2005-01-01

    A numerical code modelling the collective behaviour of dislocations at a mesoscopic scale (Discrete Dislocation Dynamics code) is used to analyse the cyclic plasticity that occurs in surface grains of an AISI 316L stainless steel, in order to understand the plastic mechanism involved in crack initiation in fatigue. Firstly, the analyses of both the formation and the evolution of the dislocation microstructures show the crucial role of cross-slip played in the strain localization in the form of slip bands. As the cycling proceeds, the slip bands exhibit well-organized dislocation arrangements that substitute to dislocation tangles, involving specific interaction mechanisms between primary and deviate systems. Secondly, both the surface displacements generated by plastic slip and the distortion energy induced by the dislocation microstructure have been analysed. We find that an irreversible surface relief in the form of extrusion/intrusion can be induced by cyclic slip of dislocations. The number of cycles for the crack initiation follows a Manson-Coffin type law. The analyses of the concentration of the distortion energy and its repartition in the slip bands show that beneficial energetic zones may be present at the very beginning of the cycling, and that mode-II crack propagation in the surface grains results from a succession of micro-crack initiations along primary slip plane, which is facilitated by various effects (stress concentration due to surface relief, environment effects...). Finally, a dislocation-based model for cyclic plasticity is proposed from Discrete Dislocation Dynamics results. (author)

  8. Dislocation dynamics of web type silicon ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Jr, O W; Tsai, C T; DeAngelis, R J

    1987-03-01

    Silicon ribbon grown by the dendritic web process passes through a rapidly changing thermal profile in the growth direction. This rapidly changing profile induces stresses which produce changes in the dislocation density in the ribbon. A viscoplastic material response function (Haasen-Sumino model) is used herein to calculate the stresses and the dislocation density at each point in the silicon ribbon. The residual stresses are also calculated.

  9. Plastic dislocation motion via nonequilibrium molecular and continuum dynamics

    International Nuclear Information System (INIS)

    Hoover, W.G.; Ladd, A.J.C.; Hoover, N.E.

    1980-01-01

    The classical two-dimensional close-packed triangular lattice, with nearest-neighbor spring forces, is a convenient standard material for the investigation of dislocation motion and plastic flow. Two kinds of calculations, based on this standard material, are described here: (1) Molecular Dynamics simulations, incorporating adiabatic strains described with the help of Doll's Tensor, and (2) Continuum Dynamics simulations, incorporating periodic boundaries and dislocation interaction through stress-field superposition

  10. Dislocation dynamics in Al-Li alloys: mean jump distance and activation length of moving dislocations

    International Nuclear Information System (INIS)

    De Hosson, J.Th.M.; Huis Int Veld, A.

    1984-01-01

    It is pointed out that aluminum-lithium based alloys offer considerable promise for structural applications, especially in the aerospace industry. This promise is related to the potential for high strength in combination with a density which is lower than that found in conventional aluminum alloys. In addition, the modulus of elasticity is higher than corresponding values in conventional aluminum alloys. A nuclear magnetic resonance study of the mechanism of dislocation motion in Al-2.2 wt pct Li is reported. Information about the effective mean jump distance of mobile dislocations is provided by in situ nuclear spin relaxation measurements. The activation length of mobile dislocations has been obtained from strain-rate change experiments on Al-2.2 wt pct Li. The considered study shows that pulsed nuclear magnetic resonance is a complementary new technique for the study of moving dislocations in Al-Li alloys. 28 references

  11. Molecular dynamics simulation of dislocations in uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Fossati, Paul [CEA, DEN, DPC, SCCME, F-91191 Gif-sur-Yvette Cedex (France); Van Brutzel, Laurent, E-mail: laurent.vanbrutzel@cea.fr [CEA, DEN, DPC, SCCME, F-91191 Gif-sur-Yvette Cedex (France); Devincre, Benoît [LEM, CNRS-ONERA, 29 avenue de la Division Leclerc, F-92322 Châtillon Cedex (France)

    2013-11-15

    The plasticity of the fluorite structure in UO{sub 2} is investigated with molecular dynamics simulation and empirical potential. The stacking fault energies and the dislocation core structures with Burgers vector a/2 〈110〉 are systematically calculated. All dislocation core structures show a significant increase of the oxygen sub-lattice disorder at temperatures higher than 1500 K. The threshold stress for dislocation glide is found to decrease with increasing temperature but its values is always very high, several GPa at 0 K and several hundred of MPa at 2000 K. A relation between the dislocation mobility dependence with temperature and the increase of the oxygen sub-lattice disorder in the dislocation cores is established.

  12. Modeling of dislocation dynamics in germanium Czochralski growth

    Science.gov (United States)

    Artemyev, V. V.; Smirnov, A. D.; Kalaev, V. V.; Mamedov, V. M.; Sidko, A. P.; Podkopaev, O. I.; Kravtsova, E. D.; Shimansky, A. F.

    2017-06-01

    Obtaining very high-purity germanium crystals with low dislocation density is a practically difficult problem, which requires knowledge and experience in growth processes. Dislocation density is one of the most important parameters defining the quality of germanium crystal. In this paper, we have performed experimental study of dislocation density during 4-in. germanium crystal growth using the Czochralski method and comprehensive unsteady modeling of the same crystal growth processes, taking into account global heat transfer, melt flow and melt/crystal interface shape evolution. Thermal stresses in the crystal and their relaxation with generation of dislocations within the Alexander-Haasen model have been calculated simultaneously with crystallization dynamics. Comparison to experimental data showed reasonable agreement for the temperature, interface shape and dislocation density in the crystal between calculation and experiment.

  13. A spectral approach for discrete dislocation dynamics simulations of nanoindentation

    Science.gov (United States)

    Bertin, Nicolas; Glavas, Vedran; Datta, Dibakar; Cai, Wei

    2018-07-01

    We present a spectral approach to perform nanoindentation simulations using three-dimensional nodal discrete dislocation dynamics. The method relies on a two step approach. First, the contact problem between an indenter of arbitrary shape and an isotropic elastic half-space is solved using a spectral iterative algorithm, and the contact pressure is fully determined on the half-space surface. The contact pressure is then used as a boundary condition of the spectral solver to determine the resulting stress field produced in the simulation volume. In both stages, the mechanical fields are decomposed into Fourier modes and are efficiently computed using fast Fourier transforms. To further improve the computational efficiency, the method is coupled with a subcycling integrator and a special approach is devised to approximate the displacement field associated with surface steps. As a benchmark, the method is used to compute the response of an elastic half-space using different types of indenter. An example of a dislocation dynamics nanoindentation simulation with complex initial microstructure is presented.

  14. Dislocation dynamics modelling of radiation damage in thin films

    International Nuclear Information System (INIS)

    Ferroni, Francesco; Tarleton, Edmund; Fitzgerald, Steven

    2014-01-01

    Transmission electron microscopy is a key tool for the extraction of information on radiation damage, the understanding of which is critical for materials development for nuclear fusion and fission reactors. Dislocations in TEM samples are subject to strong image forces, owing to the nanometric sample thicknesses, which may introduce artifacts in the damage analysis. Using dislocation dynamics, we elucidate the roles played by dislocation–surface interactions, dislocation–dislocation interactions and self-interactions due to climb for loop types observed in TEM. Comparisons with analytic solutions for a dislocation loop and an edge dislocation in a half-space are included, and the relationship between glide force and loop tilt examined. The parameters for convergence of the zero-traction boundary conditions are obtained, after which the evolution of dislocation structures in a thin film is studied. It is found that three main length scales govern the physical processes: the image force is governed by the distance of the loop from the surface and scales with the film thickness; the glide force is governed by the image stress as well as the loop–loop interaction stress which is in turn governed by the loop spacing L∼1/√ρ, where ρ is the loop density; finally, the climb force depends on the loop size. The three forces compete and their relative magnitudes define the evolution pathway of the dislocation structure. (paper)

  15. Dislocations

    Science.gov (United States)

    ... Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español First Aid: ... bones become separated. Dislocations are caused by falls and hard impacts, such as in sports injuries, and are more common in teens than ...

  16. Atomistically-informed dislocation dynamics in FCC crystals

    International Nuclear Information System (INIS)

    Martinez, E.; Marian, J.; Arsenlis, A.; Victoria, M.; Martinez, E.; Victoria, M.; Perlado, J.M.

    2008-01-01

    Full text of publication follows. We will present a nodal dislocation dynamics (DD) model to simulate plastic processes in fcc crystals. The model explicitly accounts for all slip systems and Burgers vectors observed in fcc systems, including stacking faults and partial dislocations. We derive simple conservation rules that describe all partial dislocation interactions rigorously and allow us to model and quantify cross-slip processes, the structure and strength of dislocation junctions, and the formation of fcc-specific structures such as stacking fault tetrahedra. The DD framework is built upon isotropic non-singular linear elasticity, and supports itself on information transmitted from the atomistic scale. In this fashion, connection between the meso and micro scales is attained self-consistently with core parameters fitted to atomistic data. We perform a series of targeted simulations to demonstrate the capabilities of the model, including dislocation reactions and dissociations and dislocation junction strength. Additionally we map the four-dimensional stress space relevant for cross-slip and relate our fundings to the plastic behaviour of' monocrystalline fcc metals. (authors)

  17. Molecular dynamics simulation of edge dislocation piled at cuboidal precipitate in Ni-based superalloy

    International Nuclear Information System (INIS)

    Yashiro, Kisaragi; Naito, Masato; Tomita, Yoshihiro

    2003-01-01

    In order to clarify the fundamental mechanism of dislocations in the γ/γ' microstructure of Ni-based superalloy, three molecular dynamics simulations are conducted on the behavior of edge dislocations nucleated from a free surface and proceeding in the pure Ni matrix (γ) toward cuboidal Ni 3 Al precipitates (γ') under shear force. One involves dislocations near the apices of two precipitates adjoining each other with the distance of 0.04 μm, as large as the width of the γ channel in real superalloys. Others simulate dislocations piled at the precipitates as well, however, the scale of the microstructure is smaller than that in real superalloys by one order of magnitude, and one of them have precipitates with atomistically sharp edge. Dislocations are pinned at precipitates and bowed-out in the γ channel, then they begin to penetrate into the precipitate at the edge in both the real-scale and smaller microstructures when the precipitates have blunt edges. On the other hand, an edge dislocation splits into a superpartial in the γ' precipitate and a misfit screw dislocation bridging between two adjacent precipitates at the atomistically sharp edge of γ' precipitates. It is also observed that two superpartials glide in the precipitate as a superdislocation with anti-phase boundary (APB), of which the width is evaluated to be about 4 nm. (author)

  18. A parallel algorithm for 3D dislocation dynamics

    International Nuclear Information System (INIS)

    Wang Zhiqiang; Ghoniem, Nasr; Swaminarayan, Sriram; LeSar, Richard

    2006-01-01

    Dislocation dynamics (DD), a discrete dynamic simulation method in which dislocations are the fundamental entities, is a powerful tool for investigation of plasticity, deformation and fracture of materials at the micron length scale. However, severe computational difficulties arising from complex, long-range interactions between these curvilinear line defects limit the application of DD in the study of large-scale plastic deformation. We present here the development of a parallel algorithm for accelerated computer simulations of DD. By representing dislocations as a 3D set of dislocation particles, we show here that the problem of an interacting ensemble of dislocations can be converted to a problem of a particle ensemble, interacting with a long-range force field. A grid using binary space partitioning is constructed to keep track of node connectivity across domains. We demonstrate the computational efficiency of the parallel micro-plasticity code and discuss how O(N) methods map naturally onto the parallel data structure. Finally, we present results from applications of the parallel code to deformation in single crystal fcc metals

  19. Simulations of dislocations dynamics at a mesoscopic scale: a study of plastic flow

    International Nuclear Information System (INIS)

    Devincre, Benoit

    1993-01-01

    This work is concerned with the numerical modelling of the plastic flow of crystalline materials. A new simulation technique is proposed to simulate dislocation dynamics in two and three dimensions, in an isotropic elastic continuum. The space and time scales used (≅10 -6 m and 10 -9 s) allow to take into account the elementary properties of dislocations, their short and long range interactions, their collective properties as well as the slip geometry. This original method is able to reproduce the inherent heterogeneity of plastic flow, the self-organization properties of the dislocation microstructures and the corresponding mechanical properties. In two dimensions, the simulations of cyclic deformation lead to the formation of periodic arrays of dipolar dislocation walls. These configurations are examined and discussed. A phenomenological model is proposed which predicts their characteristic wavelength as a function of the applied stress and dislocation density. A striking resemblance between the simulated behaviour and experimental data is emphasized. In three dimensions, the simulations are more realistic and can directly be compared with the experimental data. They are, however, restricted to small plastic strains, of the order of 10 -3 . The properties examined and discussed are concerned with the forest model, the internal stress, which is shown to contribute to about 20 pc of the flow stress and the mechanisms of strain hardening in relation with the models of Friedel-Saada and Kocks. The investigation of the dislocation microstructures focusses on two essential ingredients for the occurrence of self-organization, the internal stress and the intersections of non coplanar dislocations. These results suggest that, to understand the strain hardening properties as well as the formation of dislocation cells during multiple slip, one must take into account the influence of local internal stresses and cross-slip on the mechanisms of areal glide. (author) [fr

  20. Molecular dynamics simulation of mode-I-crack propagation and dislocation generation processes in α-Fe

    International Nuclear Information System (INIS)

    Wang Jianwei; Lu Guocai; Shang Xinchun

    2011-01-01

    The process of I-mode crack propagations in α-Fe for uniaxial tension experiments are simulated by molecular dynamics (MD) methods. The formation process of dislocation and fracture mechanisms in the crack growing under various temperatures were studied. The results show that the crack propagation is a process of successive emission of dislocation. The dislocation-free zone and the stacking faults were initially formed at crack tip. When the stress K I increased into 0. 566 MPam 1/2 , one layer of atoms near crack tip would be separated into two layers which produced a dislocation. The first dislocation was emitted when stress K I reached 0.669 MPam 1/2 . With the temperature increasing, the critical stress intensity factor decreased gradually and the dislocation emission correspondingly became faster as well. (authors)

  1. 3D Discrete Dislocation Dynamics Applied to Interactions between Dislocation Walls and Particles

    Czech Academy of Sciences Publication Activity Database

    Záležák, Tomáš; Dlouhý, Antonín

    2012-01-01

    Roč. 122, č. 3 (2012), s. 450-452 ISSN 0587-4246. [International Symposium on Physics of Materials /12./ - ISPMA 12. Prague, 04.09.2011-08.09.2011] R&D Projects: GA ČR GD106/09/H035; GA ČR GA202/09/2073; GA MŠk OC 162 Institutional research plan: CEZ:AV0Z20410507 Keywords : 3D discrete dislocation dynamics * tilt boundary * migration * diffusion * pecipitation hardening Subject RIV: JG - Metallurgy Impact factor: 0.531, year: 2012

  2. Dislocation pinning effects induced by nano-precipitates during warm laser shock peening: Dislocation dynamic simulation and experiments

    Science.gov (United States)

    Liao, Yiliang; Ye, Chang; Gao, Huang; Kim, Bong-Joong; Suslov, Sergey; Stach, Eric A.; Cheng, Gary J.

    2011-07-01

    Warm laser shock peening (WLSP) is a new high strain rate surface strengthening process that has been demonstrated to significantly improve the fatigue performance of metallic components. This improvement is mainly due to the interaction of dislocations with highly dense nanoscale precipitates, which are generated by dynamic precipitation during the WLSP process. In this paper, the dislocation pinning effects induced by the nanoscale precipitates during WLSP are systematically studied. Aluminum alloy 6061 and AISI 4140 steel are selected as the materials with which to conduct WLSP experiments. Multiscale discrete dislocation dynamics (MDDD) simulation is conducted in order to investigate the interaction of dislocations and precipitates during the shock wave propagation. The evolution of dislocation structures during the shock wave propagation is studied. The dislocation structures after WLSP are characterized via transmission electron microscopy and are compared with the results of the MDDD simulation. The results show that nano-precipitates facilitate the generation of highly dense and uniformly distributed dislocation structures. The dislocation pinning effect is strongly affected by the density, size, and space distribution of nano-precipitates.

  3. Microscopically derived free energy of dislocations

    NARCIS (Netherlands)

    Kooiman, M.; Hütter, M.; Geers, M.G.D.

    2015-01-01

    The dynamics of large amounts of dislocations is the governing mechanism in metal plasticity. The free energy of a continuous dislocation density profile plays a crucial role in the description of the dynamics of dislocations, as free energy derivatives act as the driving forces of dislocation

  4. Empirical potential and elasticity theory modelling of interstitial dislocation loops in UO2 for cluster dynamics application

    International Nuclear Information System (INIS)

    Le-Prioux, Arno

    2017-01-01

    During irradiation in reactor, the microstructure of UO 2 changes and deteriorates, causing modifications of its physical and mechanical properties. The kinetic models used to describe these changes such as cluster dynamics (CRESCENDO calculation code) consider the main microstructural elements that are cavities and interstitial dislocation loops, and provide a rather rough description of the loop thermodynamics. In order to tackle this issue, this work has led to the development of a thermodynamic model of interstitial dislocation loops based on empirical potential calculations. The model considers two types of interstitial dislocation loops on two different size domains: Type 1: Dislocation loops similar to Frank partials in F.C.C. materials which are stable in the smaller size domain. Type 2: Perfect dislocation loops of Burgers vector (a/2)(110) stable in the larger size domain. The analytical formula used to compute the interstitial dislocation loop formation energies is the one for circular loops which has been modified in order to take into account the effects of the dislocation core, which are significant at smaller sizes. The parameters have been determined by empirical potential calculations of the formation energies of prismatic pure edge dislocation loops. The effect of the habit plane reorientation on the formation energies of perfect dislocation loops has been taken into account by a simple interpolation method. All the different types of loops seen during TEM observations are thus accounted for by the model. (author) [fr

  5. Effect of collision cascades on dislocations in tungsten: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Fu, B.Q., E-mail: bqfu@scu.edu.cn [Key Laboratory for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065 (China); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Fitzgerald, S.P. [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Hou, Q.; Wang, J.; Li, M. [Key Laboratory for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065 (China)

    2017-02-15

    Highlights: • A cascde near a dislocation promotes climb motion. • Kinks induced by cascade facilitate the dipoles motion toward the cascade. • Shearing of dipole is dependent on PKA energy, position, direction, and dipole width. - Abstract: Tungsten (W) is the prime candidate material for the divertor and other plasma-facing components in DEMO. The point defects (i.e. vacancies and self-interstitials) produced in collision cascades caused by incident neutrons aggregate into dislocation loops (and voids), which strongly affect the mechanical properties. The point defects also interact with existing microstructural features, and understanding these processes is crucial for modelling the long term microstructural evolution of the material under fusion conditions. In this work, we performed molecular dynamics simulations of cascades interacting with initially straight edge dislocation dipoles. It was found that the residual vacancy number usually exceeds the residual interstitial number for cascades interacting with vacancy type dipoles, but for interstitial type dipoles these are close. We observed that a cascade near a dislocation promotes climb, i.e. it facilitates the movement of point defects along the climb direction. We also observed that the dislocations move easily along the glide direction, and that kinks are formed near the centre of the cascade, which then facilitate the movement of the dipoles. Some dipoles are sheared off by the cascade, and this is dependent on PKA energy, position, direction, and the width of dipole.

  6. Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films

    International Nuclear Information System (INIS)

    Amin-Ahmadi, Behnam; Connétable, Damien; Fivel, Marc; Tanguy, Döme; Delmelle, Renaud; Turner, Stuart; Malet, Loic; Godet, Stephane; Pardoen, Thomas; Proost, Joris; Schryvers, Dominique

    2016-01-01

    The nanoscale plasticity mechanisms activated during hydriding cycles in sputtered nanocrystalline Pd films have been investigated ex-situ using advanced transmission electron microscopy techniques. The internal stress developing within the films during hydriding has been monitored in-situ. Results showed that in Pd films hydrided to β-phase, local plasticity was mainly controlled by dislocation activity in spite of the small grain size. Changes of the grain size distribution and the crystallographic texture have not been observed. In contrast, significant microstructural changes were not observed in Pd films hydrided to α-phase. Moreover, the effect of hydrogen loading on the nature and density of dislocations has been investigated using aberration-corrected TEM. Surprisingly, a high density of shear type stacking faults has been observed after dehydriding, indicating a significant effect of hydrogen on the nucleation energy barriers of Shockley partial dislocations. Ab-initio calculations of the effect of hydrogen on the intrinsic stable and unstable stacking fault energies of palladium confirm the experimental observations.

  7. Mechanisms for decoration of dislocations by small dislocation loops under cascade damage conditions

    DEFF Research Database (Denmark)

    Trinkaus, H.; Singh, B.N.; Foreman, A.J.E.

    1997-01-01

    . This effect may arise as a result of either (a) migration and enhanced agglomeration of single SIAs in the form of loops in the strain field of the dislocation or (b) glide and trapping of SIA loops (produced directly in the cascades) in the strain field of the dislocation, In the present paper, both...... of these possibilities are examined. It is shown that the strain field of the dislocation causes a SIA depletion in the compressive as well as in the dilatational region resulting in a reduced rather than enhanced agglomeration of SIAs. (SIA depletion may, however, induce enhanced vacancy agglomeration near dislocations...

  8. The evolution mechanism of the dislocation loops in irradiated lanthanum doped cerium oxide

    International Nuclear Information System (INIS)

    Miao, Yinbin; Aidhy, Dilpuneet; Chen, Wei-Ying; Mo, Kun; Oaks, Aaron; Wolf, Dieter; Stubbins, James F.

    2014-01-01

    Cerium dioxide, a non-radioactive surrogate of uranium dioxide, is useful for simulating the radiation responses of uranium dioxide and mixed oxide fuel (MOX). Controlled additions of lanthanum can also be used to form various levels of lattice oxide or anion vacancies. In previous transmission electron microscopy (TEM) experimental studies, the growth rate of dislocation loops in irradiated lanthanum doped ceria was reported to vary with lanthanum concentration. This work reports findings of the evolution mechanisms of the dislocation loops in cerium oxide with and without lanthanum dopants based on a combination of molecular statics and molecular dynamics simulations. These dislocation loops are found to be b=1/3〈111〉 interstitial type Frank loops. Calculations of the defect energy profiles of the dislocation loops with different structural configurations and radii reveal the basis for preference of nucleation as well as the driving force of growth. Frenkel pair evolution simulations and displacement cascade overlaps simulations were conducted for a variety of lanthanum doping conditions. The nucleation and growth processes of the Frank loop were found to be controlled by the mobility of cation interstitials, which is significantly influenced by the lanthanum doping concentration. Competition mechanisms coupled with the mobility of cation point defects were discovered, and can be used to explain the lanthanum effects observed in experiments

  9. Study by dislocation dynamics simulations of radiation effects on the plasticity of ferrite at high temperature

    International Nuclear Information System (INIS)

    Shi, Xiangjun

    2014-01-01

    This study is a contribution to the multi-scale modeling of hardening and embrittlement of the vessel steel in Pressurized Water Reactors (PWR) under irradiation conditions. Dislocation Dynamics simulations (DD) were conducted to describe the plasticity of irradiated iron at grain scale. Quantitative information about the pinning strength of radiation-induced loops was extracted and can be transferred at crystal plasticity scale. Elementary interactions between an edge dislocation and different types of loops were first analyzed. A new model of DD was identified and validated, both qualitatively in terms of interaction mechanisms and quantitatively in terms of critical stress, using Molecular Dynamics results available in the literature. The influence of the size of the loops and of the strain rate was particularly studied. Elementary simulations involving a screw dislocation and the same radiation-induced defects were conducted and carefully compared to available MD results, extending the range of validity of our model. Finally, a set of massive simulations involving an edge dislocation and a large number of loops was performed and allowed a first estimation of the obstacle strength for this type of defects (α≅0.26). This value is in a good agreement with previous experimental and numerical studies, and gives us confidence in future work based on this new DD model. (author) [fr

  10. Dislocation-defect interactions and mechanical properties of crystals

    International Nuclear Information System (INIS)

    Granato, A.V.

    1975-01-01

    The influence of dislocation-defect interactions on mechanical properties of crystals is reviewed. Interactions are separated into those producing pinning and those producing viscous drag. Deformation behavior is classified according to the strength of the drag. For small drag, inertial effects become important. For intermediate drag, traditional theories resting on rate theory treatments become applicable. For large drag, viscoelastic behavior is obtained. Measurements are examined for information concerning the basic nature of different sources of short and long range pinning and of drag

  11. Mechanisms of dynamic deformation and dynamic failure in aluminum nitride

    International Nuclear Information System (INIS)

    Hu Guangli; Chen, C.Q.; Ramesh, K.T.; McCauley, J.W.

    2012-01-01

    Uniaxial quasi-static, uniaxial dynamic and confined dynamic compression experiments have been performed to characterize the failure and deformation mechanisms of a sintered polycrystalline aluminum nitride using a servohydraulic machine and a modified Kolsky bar. Scanning electron microscopy and transmission electron microscopy (TEM) are used to identify the fracture and deformation mechanisms under high rate and high pressure loading conditions. These results show that the fracture mechanisms are strong functions of confining stress and strain rate, with transgranular fracture becoming more common at high strain rates. Dynamic fracture mechanics and micromechanical models are used to analyze the observed fracture mechanisms. TEM characterization of fragments from the confined dynamic experiments shows that at higher pressures dislocation motion becomes a common dominant deformation mechanism in AlN. Prismatic slip is dominant, and pronounced microcrack–dislocation interactions are observed, suggesting that the dislocation plasticity affects the macroscopic fracture behavior in this material under high confining stresses.

  12. Dislocation Dynamics in Al-Li Alloys. Mean Jump Distance and Activation Length of Moving Dislocations

    NARCIS (Netherlands)

    Hosson, J.Th.M. De; Huis in 't Veld, A.; Tamler, H.; Kanert, O.

    1984-01-01

    Pulsed nuclear magnetic resonance proved to be a complementary new technique for the study of moving dislocations in Al-Li alloys. The NMR technique, in combination with transmission electron microscopy and strain-rate change experiments have been applied to study dislocation motion in Al-2.2 wt% Li

  13. Dislocation dynamics modelling of the ductile-brittle-transition

    International Nuclear Information System (INIS)

    Hennecke, Thomas; Haehner, Peter

    2009-01-01

    Many materials like silicon, tungsten or ferritic steels show a transition between high temperature ductile fracture with stable crack grow and high deformation energy absorption and low temperature brittle fracture in an unstable and low deformation mode, the ductile-brittle-transition. Especially in steels, the temperature transition is accompanied by a strong increase of the measured fracture toughness over a certain temperature range and strong scatter in the toughness data in this transition regime. The change in fracture modes is affected by dynamic interactions between dislocations and the inhomogeneous stress fields of notches and small cracks. In the present work a dislocation dynamics model for the ductile-brittle-transition is proposed, which takes those interactions into account. The model can explain an increase with temperature of apparent toughness in the quasi-brittle regime and different levels of scatter in the different temperature regimes. Furthermore it can predict changing failure sites in materials with heterogeneous microstructure. Based on the model, the effects of crack tip blunting, stress state, external strain rate and irradiation-induced changes in the plastic flow properties can be discussed.

  14. Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations

    International Nuclear Information System (INIS)

    Queyreau, Sylvain; Monnet, Ghiath; Devincre, Benoit

    2010-01-01

    Rule of mixtures are an essential feature of the modeling of plastic deformation in complex materials in which more than one strain-hardening mechanism is involved. In this work, use is made of dislocation dynamics simulations to characterize the individual and the superposed contributions of two major mechanisms of crystal plasticity, i.e. Orowan strengthening and forest hardening. Based on a formal description of each hardening mechanism, evidence is presented to show that a quadratic rule of mixtures has the ability to predict quantitatively the flow stress of complex materials such as reactor pressure vessel steel.

  15. Atomic-scale structure of dislocations revealed by scanning tunneling microscopy and molecular dynamics

    DEFF Research Database (Denmark)

    Christiansen, Jesper; Morgenstern, K.; Schiøtz, Jakob

    2002-01-01

    The intersection between dislocations and a Ag(111) surface has been studied using an interplay of scanning tunneling microscopy (STM) and molecular dynamics. Whereas the STM provides atomically resolved information about the surface structure and Burgers vectors of the dislocations, the simulati......The intersection between dislocations and a Ag(111) surface has been studied using an interplay of scanning tunneling microscopy (STM) and molecular dynamics. Whereas the STM provides atomically resolved information about the surface structure and Burgers vectors of the dislocations......, the simulations can be used to determine dislocation structure and orientation in the near-surface region. In a similar way, the subsurface structure of other extended defects can be studied. The simulations show dislocations to reorient the partials in the surface region leading to an increased splitting width...

  16. The coupling technique: A two-wave acoustic method for the study of dislocation dynamics

    Science.gov (United States)

    Gremaud, G.; Bujard, M.; Benoit, W.

    1987-03-01

    Progress in the study of dislocation dynamics has been achieved using a two-wave acoustic method, which has been called the coupling technique. In this method, the attenuation α and the velocity v of ultrasonic waves are measured in a sample submitted simultaneously to a harmonic stress σ of low frequency. Closed curves Δα(σ) and Δv/v(σ) are drawn during each cycle of the applied stress. The shapes of these curves and their evolution are characteristic of each dislocation motion mechanism which is activated by the low-frequency applied stress. For this reason, the closed curves Δα(σ) and Δv/v(σ) can be considered as signatures of the interaction mechanism which controls the low-frequency dislocation motion. In this paper, the concept of signature is presented and explained with some experimental examples. It will also be shown that theoretical models can be developed which explain very well the experimental results.

  17. Stress-dislocation interaction mechanism in low-temperature thermo-compression sintering of Ag NPs

    Science.gov (United States)

    Wang, Fuliang; Tang, Zikai; He, Hu

    2018-04-01

    The sintering of metal nanoparticles (NPs) has been widely studied in the field of nanotechnology, and low-temperature sintering has become the industry standard. In this study, a molecular dynamics (MD) model was established to study the sintering behaviour of silver NPs during low-temperature thermo-compression. Primarily, we studied the sintering process, in which the ratio of neck radius to particle radius (x/r) changes. Under a uniaxial pressure, the maximum ratio in the temperature range 420-425 K was 1. According to the change of x/r, the process can be broken down into three stages: the neck-formation stage, neck-growth stage, and neck-stability stage. In addition, the relationship between potential energy, internal stress, and dislocation density during sintering is discussed. The results showed that cycling internal stress played an important role in sintering. Under the uniaxial pressure, the stress-dislocation interaction was found to be the major mechanism for thermo-compression sintering because the plastic deformation product dislocation intensified the diffusion of atoms. Also, the displacement vector, the mean square displacement, and the changing crystal structure during sintering were studied.

  18. Low-temperature embrittlement and fracture of metals with different crystal lattices – Dislocation mechanisms

    Directory of Open Access Journals (Sweden)

    V.M. Chernov

    2016-12-01

    Full Text Available The state of a low-temperature embrittlement (cold brittleness and dislocation mechanisms for formation of the temperature of a ductile-brittle transition and brittle fracture of metals (mono- and polycrystals with various crystal lattices (BCC, FCC, HCP are considered. The conditions for their formation connected with a stress-deformed state and strength (low temperature yield strength as well as the fracture breaking stress and mobility of dislocations in the top of a crack of the fractured metal are determined. These conditions can be met for BCC and some HCP metals in the initial state (without irradiation and after a low-temperature damaging (neutron irradiation. These conditions are not met for FCC and many HCP metals. In the process of the damaging (neutron irradiation such conditions are not met also and the state of low-temperature embrittlement of metals is absent (suppressed due to arising various radiation dynamic processes, which increase the mobility of dislocations and worsen the strength characteristics.

  19. Stress-dislocation interaction mechanism in low-temperature thermo-compression sintering of Ag NPs

    Directory of Open Access Journals (Sweden)

    Fuliang Wang

    2018-04-01

    Full Text Available The sintering of metal nanoparticles (NPs has been widely studied in the field of nanotechnology, and low-temperature sintering has become the industry standard. In this study, a molecular dynamics (MD model was established to study the sintering behaviour of silver NPs during low-temperature thermo-compression. Primarily, we studied the sintering process, in which the ratio of neck radius to particle radius (x/r changes. Under a uniaxial pressure, the maximum ratio in the temperature range 420–425 K was 1. According to the change of x/r, the process can be broken down into three stages: the neck-formation stage, neck-growth stage, and neck-stability stage. In addition, the relationship between potential energy, internal stress, and dislocation density during sintering is discussed. The results showed that cycling internal stress played an important role in sintering. Under the uniaxial pressure, the stress-dislocation interaction was found to be the major mechanism for thermo-compression sintering because the plastic deformation product dislocation intensified the diffusion of atoms. Also, the displacement vector, the mean square displacement, and the changing crystal structure during sintering were studied.

  20. Positron-trapping mechanism at dislocations in Zn

    DEFF Research Database (Denmark)

    Hidalgo, Carlos; Linderoth, Søren; Diego, Nieves de

    1987-01-01

    the average lifetime and the intensity of the long component decrease with increasing temperature. The experimental results are very well described in terms of a generalized trapping model where it is assumed that positrons become trapped in deep traps (jogs) via shallow traps (dislocation lines......). The temperature dependence of the positron-lifetime spectra below 120 K is attributed to the temperature dependence of the trapping rate to the dislocation line. The experimental results have demonstrated that detrapping processes from the dislocation line take place above 120 K. The positron binding energy...

  1. Computational issues in the simulation of two-dimensional discrete dislocation mechanics

    Science.gov (United States)

    Segurado, J.; LLorca, J.; Romero, I.

    2007-06-01

    The effect of the integration time step and the introduction of a cut-off velocity for the dislocation motion was analysed in discrete dislocation dynamics (DD) simulations of a single crystal microbeam. Two loading modes, bending and uniaxial tension, were examined. It was found that a longer integration time step led to a progressive increment of the oscillations in the numerical solution, which would eventually diverge. This problem could be corrected in the simulations carried out in bending by introducing a cut-off velocity for the dislocation motion. This strategy (long integration times and a cut-off velocity for the dislocation motion) did not recover, however, the solution computed with very short time steps in uniaxial tension: the dislocation density was overestimated and the dislocation patterns modified. The different response to the same numerical algorithm was explained in terms of the nature of the dislocations generated in each case: geometrically necessary in bending and statistically stored in tension. The evolution of the dislocation density in the former was controlled by the plastic curvature of the beam and was independent of the details of the simulations. On the contrary, the steady-state dislocation density in tension was determined by the balance between nucleation of dislocations and those which are annihilated or which exit the beam. Changes in the DD imposed by the cut-off velocity altered this equilibrium and the solution. These results point to the need for detailed analyses of the accuracy and stability of the dislocation dynamic simulations to ensure that the results obtained are not fundamentally affected by the numerical strategies used to solve this complex problem.

  2. Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics.

    Science.gov (United States)

    Gurrutxaga-Lerma, Beñat; Balint, Daniel S; Dini, Daniele; Eakins, Daniel E; Sutton, Adrian P

    2015-05-01

    When a metal is subjected to extremely rapid compression, a shock wave is launched that generates dislocations as it propagates. The shock wave evolves into a characteristic two-wave structure, with an elastic wave preceding a plastic front. It has been known for more than six decades that the amplitude of the elastic wave decays the farther it travels into the metal: this is known as "the decay of the elastic precursor." The amplitude of the elastic precursor is a dynamic yield point because it marks the transition from elastic to plastic behavior. In this Letter we provide a full explanation of this attenuation using the first method of dislocation dynamics to treat the time dependence of the elastic fields of dislocations explicitly. We show that the decay of the elastic precursor is a result of the interference of the elastic shock wave with elastic waves emanating from dislocations nucleated in the shock front. Our simulations reproduce quantitatively recent experiments on the decay of the elastic precursor in aluminum and its dependence on strain rate.

  3. Acoustic emission generated by dislocation mechanisms during the deformation of metals

    Energy Technology Data Exchange (ETDEWEB)

    Heiple, C.R.

    1978-01-01

    Acoustic emission is a transient elastic wave generated by the rapid release of energy within a material. A wide variety of mechanisms have been proposed as possible sources of acoustic emission. Proposed mechanisms have included crack propagation, precipitate fracture, twin formation, martensite formation, dislocation motion and/or multiplication. This paper is concerned with acoustic emission generated by dislocation mechanisms operating during plastic deformation. Twinning and martensitic phase transformations are excluded even though dislocation motion is involved in the nucleation and growth of twins and the growth of martensite.

  4. Acoustic emission generated by dislocation mechanisms during the deformation of metals

    International Nuclear Information System (INIS)

    Heiple, C.R.

    1978-01-01

    Acoustic emission is a transient elastic wave generated by the rapid release of energy within a material. A wide variety of mechanisms have been proposed as possible sources of acoustic emission. Proposed mechanisms have included crack propagation, precipitate fracture, twin formation, martensite formation, dislocation motion and/or multiplication. This paper is concerned with acoustic emission generated by dislocation mechanisms operating during plastic deformation. Twinning and martensitic phase transformations are excluded even though dislocation motion is involved in the nucleation and growth of twins and the growth of martensite

  5. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals

    Science.gov (United States)

    Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.

    2017-11-01

    A framework for dislocation-based viscoplasticity and dynamic ductile failure has been developed to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. An averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Additionally, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in (Wilkerson and Ramesh, 2014), which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.

  6. Molecular dynamics simulation of cross-slip and the intersection of dislocations in copper

    CERN Document Server

    Li, Maozhen; Gao, K W; Qiao, L J

    2003-01-01

    The molecular dynamics method is used to simulate cross-slip by thermal activation at 30 K and the intersection of dislocations in copper containing 1.6 x 10 sup 6 atoms using the embedded atom method potential. The results show that an extended screw dislocation can recombine through thermal activation at 30 K into a constriction on the surface because of stress imbalance and the constriction will split again in the other slip plane. Removing the constriction along the extended dislocation results in a cross-slip of the screw dislocation at low temperature. After the intersection between a moving right-hand screw dislocation DC and a perpendicular left-hand dislocation BA, whose ends are fixed on the surfaces, an extended jog corresponding to a row of one-third vacancies forms in BA and a trail of vacancies behind DC. If the intersected dislocation is a right-hand screw dislocation AB, the jog formed in AB corresponds to a row of one-third interstitials and the point defects behind DC are interstitials. Afte...

  7. Uncovering the inertia of dislocation motion and negative mechanical response in crystals.

    Science.gov (United States)

    Tang, Yizhe

    2018-01-09

    Dislocations are linear defects in crystals and their motion controls crystals' mechanical behavior. The dissipative nature of dislocation propagation is generally accepted although the specific mechanisms are still not fully understood. The inertia, which is undoubtedly the nature of motion for particles with mass, seems much less convincing for configuration propagation. We utilize atomistic simulations in conditions that minimize dissipative effects to enable uncovering of the hidden nature of dislocation motion, in three typical model metals Mg, Cu and Ta. We find that, with less/no dissipation, dislocation motion is under-damped and explicitly inertial at both low and high velocities. The inertia of dislocation motion is intrinsic, and more fundamental than the dissipative nature. The inertia originates from the kinetic energy imparted from strain energy and stored in the moving core. Peculiar negative mechanical response associated with the inertia is also discovered. These findings shed light on the fundamental nature of dislocation motion, reveal the underlying physics, and provide a new physical explanation for phenomena relevant to high-velocity dislocations.

  8. Molecular dynamics simulations of the interaction between 60 deg. dislocation and self-interstitial cluster in silicon

    International Nuclear Information System (INIS)

    Jing Yuhang; Meng Qingyuan; Zhao Wei

    2009-01-01

    Molecular dynamics simulations are performed to investigate the interaction between 60 deg. shuffle dislocation and tetrainterstitial (I 4 ) cluster in silicon, using Stillinger-Weber (SW) potential to calculate the interatomic forces. Based on Parrinello-Rahman method, shear stress is exerted on the model to move the dislocation. Simulation results show that the I 4 cluster can bend the dislocation line and delay the dislocation movement. During the course of intersection the dislocation line sections relatively far away from the I 4 cluster accelerate first, and then decelerate. The critical shear stress unpinning the 60 deg. dislocation from the I 4 cluster decreases as the temperature increases in the models.

  9. Deformation induced dislocation boundaries: Alignment and effect on mechanical properties

    DEFF Research Database (Denmark)

    Winther, G.; Juul Jensen, D.

    1997-01-01

    The dislocation boundaries formed during cold-rolling of FCC metals have been reported to have a preferred macroscopic direction with respect to the sample axes. However, boundaries have also been reported to form on crystallographic slip planes. The directions of the boundaries formed on crystal...

  10. Molecular dynamics study on the interaction of a dislocation and radiation induced defect clusters in Fcc crystals

    International Nuclear Information System (INIS)

    Hideo, Kaburaki; Tomoko, Kadoyoshi; Futoshi, Shimizu; Hajime; Kimizuka; Shiro, Jitsukawa

    2003-01-01

    Irradiation of high-energy neutrons and charged particles into solids is known to cause a significant change in mechanical properties, in particular, hardening of metals. Hardening of solids arises as a result of interactions of dislocations with irradiation induced defect clusters. Molecular dynamics method combined with the visualization method has been used to elucidate these complex pinning structures in details. In particular, we have successfully observed the transient process for the formation of a super-jog from an edge dislocation and interstitial and vacancy clusters under irradiation cascade conditions. Parallel molecular dynamics programs, called as Parallel Molecular Dynamics Stencil (PMDS), have been developed in order to perform these large scale simulations for materials simulations. The contents of the program and its parallel performance are also reported. (authors)

  11. Recent Progress in Discrete Dislocation Dynamics and Its Applications to Micro Plasticity

    KAUST Repository

    Po, Giacomo; Mohamed, Mamdouh S.; Crosby, Tamer; Erel, Can; El-Azab, Anter; Ghoniem, Nasr

    2014-01-01

    We present a self-contained review of the discrete dislocation dynamics (DDD) method for the numerical investigation of plasticity in crystals, focusing on recent development and implementation progress. The review covers the theoretical foundations of DDD within the framework of incompatible elasticity, its numerical implementation via the nodal method, the extension of the method to finite domains and several implementation details. Applications of the method to current topics in micro-plasticity are presented, including the size effects in nano-indentation, the evolution of the dislocation microstructure in persistent slip bands, and the phenomenon of dislocation avalanches in micro-pillar compression.

  12. Recent Progress in Discrete Dislocation Dynamics and Its Applications to Micro Plasticity

    KAUST Repository

    Po, Giacomo

    2014-09-27

    We present a self-contained review of the discrete dislocation dynamics (DDD) method for the numerical investigation of plasticity in crystals, focusing on recent development and implementation progress. The review covers the theoretical foundations of DDD within the framework of incompatible elasticity, its numerical implementation via the nodal method, the extension of the method to finite domains and several implementation details. Applications of the method to current topics in micro-plasticity are presented, including the size effects in nano-indentation, the evolution of the dislocation microstructure in persistent slip bands, and the phenomenon of dislocation avalanches in micro-pillar compression.

  13. Effect of dislocations of forest on relaxation of mechanical stresses in irradiated zinc crystals

    International Nuclear Information System (INIS)

    Troitskij, O.A.; Kalymbetov, P.U.; Kusainov, S.G.; Shambulov, N.B.

    1988-01-01

    Effect of forest dislocations on the value of electron-plastic effect (EPE) in zinc crystals during their irradiation by accelerated electron packets is investigated. The following mechanical parameters are determined experimentally: total relaxation of voltages Δσ for 180s; change in reforming voltage Δσpl in single pulses of irradiation on the slope and bottom of relaxation curves. The results obtained testify to the effectiveness of forest dislocations as surmountable obstacles for the dislocations shiding in the basis plane

  14. Dislocation dynamics in non-convex domains using finite elements with embedded discontinuities

    Science.gov (United States)

    Romero, Ignacio; Segurado, Javier; LLorca, Javier

    2008-04-01

    The standard strategy developed by Van der Giessen and Needleman (1995 Modelling Simul. Mater. Sci. Eng. 3 689) to simulate dislocation dynamics in two-dimensional finite domains was modified to account for the effect of dislocations leaving the crystal through a free surface in the case of arbitrary non-convex domains. The new approach incorporates the displacement jumps across the slip segments of the dislocations that have exited the crystal within the finite element analysis carried out to compute the image stresses on the dislocations due to the finite boundaries. This is done in a simple computationally efficient way by embedding the discontinuities in the finite element solution, a strategy often used in the numerical simulation of crack propagation in solids. Two academic examples are presented to validate and demonstrate the extended model and its implementation within a finite element program is detailed in the appendix.

  15. Dislocation dynamics in non-convex domains using finite elements with embedded discontinuities

    International Nuclear Information System (INIS)

    Romero, Ignacio; Segurado, Javier; LLorca, Javier

    2008-01-01

    The standard strategy developed by Van der Giessen and Needleman (1995 Modelling Simul. Mater. Sci. Eng. 3 689) to simulate dislocation dynamics in two-dimensional finite domains was modified to account for the effect of dislocations leaving the crystal through a free surface in the case of arbitrary non-convex domains. The new approach incorporates the displacement jumps across the slip segments of the dislocations that have exited the crystal within the finite element analysis carried out to compute the image stresses on the dislocations due to the finite boundaries. This is done in a simple computationally efficient way by embedding the discontinuities in the finite element solution, a strategy often used in the numerical simulation of crack propagation in solids. Two academic examples are presented to validate and demonstrate the extended model and its implementation within a finite element program is detailed in the appendix

  16. A three dimensional discrete dislocation dynamics modelling of the early cycles of fatigue in an austenitic stainless steel 316L: dislocation microstructure and damage analysis; Modelisation physique des stades precurseurs de l'endommagement en fatigue dans l'acier inoxydable austenitique 316L

    Energy Technology Data Exchange (ETDEWEB)

    Depres, Ch

    2005-07-01

    A numerical code modelling the collective behaviour of dislocations at a mesoscopic scale (Discrete Dislocation Dynamics code) is used to analyse the cyclic plasticity that occurs in surface grains of an AISI 316L stainless steel, in order to understand the plastic mechanism involved in crack initiation in fatigue. Firstly, the analyses of both the formation and the evolution of the dislocation microstructures show the crucial role of cross-slip played in the strain localization in the form of slip bands. As the cycling proceeds, the slip bands exhibit well-organized dislocation arrangements that substitute to dislocation tangles, involving specific interaction mechanisms between primary and deviate systems. Secondly, both the surface displacements generated by plastic slip and the distortion energy induced by the dislocation microstructure have been analysed. We find that an irreversible surface relief in the form of extrusion/intrusion can be induced by cyclic slip of dislocations. The number of cycles for the crack initiation follows a Manson-Coffin type law. The analyses of the concentration of the distortion energy and its repartition in the slip bands show that beneficial energetic zones may be present at the very beginning of the cycling, and that mode-II crack propagation in the surface grains results from a succession of micro-crack initiations along primary slip plane, which is facilitated by various effects (stress concentration due to surface relief, environment effects...). Finally, a dislocation-based model for cyclic plasticity is proposed from Discrete Dislocation Dynamics results. (author)

  17. Influence of dynamic dislocation drag on amplitude dependences of damping decrement and modulus defect in lead

    International Nuclear Information System (INIS)

    Soifer, Y.M.; Golosovskii, M.A.; Kobelev, N.P.

    1981-01-01

    A study was made of the amplitude dependences of the damping decrement and the modulus defect in lead at low temperatures at frequencies of 100 kHz and 5 MHz. It was shown that in pure lead at high frequencies a change in the amplitude dependences of the damping decrement and the modulus defect under the superconducting transition is due mainly to the change in the losses caused by the dynamic drag of dislocations whereas in measurements at low frequencies the influence of the superconducting transition is due to the change in the conditions of dislocation unpinning from point defects. The influence of the dynamic dislocation drag on the amplitude dependences of the damping decrement and the modulus defect is calculated and a method is presented for experimental estimation of the contribution of dynamic effects to the amplitude-dependent internal friction

  18. Dislocation density and mechanical threshold stress in OFHC copper subjected to SHPB loading and plate impact

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiushi [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Zhao, Feng, E-mail: ifpzfeng@163.com [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Fu, Hua; Li, Kewu [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Liu, Fusheng [Key Laboratory of Advanced Technologies of Materials, Southwest Jiaotong University, Chengdu, Sichuan, 610031 (China)

    2017-05-17

    The dislocation density and mechanical threshold stress (MTS) of oxygen-free high-thermal-conductivity (OFHC) copper loaded at strain rates in the range of 10{sup 2} to 10{sup 6} s{sup −1} were measured. Moderate-strain-rate (10{sup 2} to 10{sup 4} s{sup −1}) experiments were performed using a Split Hopkinson Pressure Bar (SHPB). A steel collar was placed around each specimen to control the maximum loading strain. High-strain-rate (10{sup 5} to 10{sup 6} s{sup −1}) experiments were carried out using a 57-mm-bore single-stage gas gun. The radial release effect was eliminated using the momentum trapping technique. The loaded samples were recovered, and the dislocation characteristics and dislocation density were determined by X-ray diffraction profile analysis. The fraction of the screw dislocation was found to decrease with increasing loading strain and strain rate. The dislocation density was found to lie between 1.8×10{sup 14} and 2.2×10{sup 15} m{sup −2}. Quasi-static reload compression tests were performed on the recovered samples at room temperature. The mechanical threshold stress (or the flow stress at 0 K) was obtained by fitting the reload stress–strain data to the MTS model. The results of analysis of the equivalent strain, mechanical threshold stress, and dislocation density measurements suggest that the relation between the mechanical threshold stress and the dislocation density can be described well by the Taylor relationship.

  19. Dislocation glide in Ni-Al solid solutions from the atomic scale up: a molecular dynamics study

    International Nuclear Information System (INIS)

    Rodary, E.

    2003-01-01

    The glide of an edge dislocation in solid solutions is studied by molecular dynamics, at fixed temperature and imposed external stress. We have optimized an EAM potential for Ni(1 a 8% A1): it well reproduces the lattice expansion, local atomic order, stacking fault energy as a function of composition, as well as the elastic properties of the γ' phase with L1 2 structure. On increasing the stress, the dislocation is first immobile, then glides with a velocity proportional to the stress and the velocity saturates on reaching the transverse sound velocity. However, only beyond a static threshold stress, σ s , does the dislocation glide a distance large enough to allow macroscopic shear; the linear part of the velocity-stress curve extrapolates to zero at a dynamical threshold stress, σ d , The friction coefficient, and the threshold stresses (σ s and σ d ), increase with the A1 concentration and decrease with temperature (300 and 500 K). Close to the critical shear stress, σ s , the dislocation glide is analysed with a 'stop and go' model. The latter yields the flight velocity between obstacles, the mean obstacle density and the distribution of the waiting time on each obstacle as a function of stress, composition and temperature. The obstacle to the glide is proposed to be the strong repulsion between Al atoms brought into nearest neighbour position by the glide process, and not the dislocation-solute interaction. The microscopic parameters so defined are introduced into a micro-mechanical model, which well reproduces the known behaviour of nickel base solid solutions. (author)

  20. Mobile application MDDCS for modeling the expansion dynamics of a dislocation loop in FCC metals

    Science.gov (United States)

    Kirilyuk, Vasiliy; Petelin, Alexander; Eliseev, Andrey

    2017-11-01

    A mobile version of the software package Dynamic Dislocation of Crystallographic Slip (MDDCS) designed for modeling the expansion dynamics of dislocation loops and formation of a crystallographic slip zone in FCC-metals is examined. The paper describes the possibilities for using MDDCS, the application interface, and the database scheme. The software has a simple and intuitive interface and does not require special training. The user can set the initial parameters of the experiment, carry out computational experiments, export parameters and results of the experiment into separate text files, and display the experiment results on the device screen.

  1. Subtalar dislocation

    International Nuclear Information System (INIS)

    El-Khoury, G.Y.; Yousefzadeh, D.K.; Mulligan, G.M.; Moore, T.E.

    1982-01-01

    Over a period of three years we have seen nine patients with subtalar dislocation, all of whom sustained violent trauma to the region of the ankle and hind foot. All but one patient were males. Clinically a subtalar dislocation resembles a complicated fracture dislocation of the ankle but a definitive diagnosis can only be made radiographically. The mechanism of injury and radiographic features of this injury are discussed. (orig.)

  2. Static strain aging of Zircaloy-2: the effect of dislocation dynamics on yielding behaviour

    International Nuclear Information System (INIS)

    Thorpe, W.R.; Smith, I.O.

    1981-01-01

    The static strain-aging response of Zircaloy-2 was determined in the temperature range 293-723 K. A modified Hahn yielding model was found to provide a satisfactory description of the magnitude and shape of the yield points after aging, thereby providing information about the mobile dislocation density and the dislocation generation rate. For example, the characteristic double peak in the temperature dependence of strain aging was simplified to a single broad minimum in the mobile dislocation density over the temperature interval 500-700 K. The shape of the yield point was also found to be temperature dependent; the yield drop became less sharp at test temperatures above 648 K. This was ascribed to the inhibition of dislocation multiplication by dynamic strain aging. A kinetic law was developed by applying Snoek ordering kinetics to the process of dislocation locking and the resultant change in mobile dislocation density was then used to predict the strain-aging response as a function of aging time. The stress dependence of strain aging at 573 K was investigated at aging stresses of between 0.07 and 0.975 of the flow stress sigmasub(f). The strain-aging response increased for aging at stresses between 0.07sigmassub(f) and 0.8sigmasub(f), whereafter it declined steeply to the limit of zero at the flow stress. (Auth.)

  3. A 3D dislocation dynamics analysis of the size effect on the strength of [1 1 1] LiF micropillars at 300K and 600K

    International Nuclear Information System (INIS)

    Chang, Hyung-Jun; Segurado, Javier; Molina-Aldareguía, Jon M; Soler, Rafael

    2016-01-01

    The mechanical behavior in compression of [1 1 1] LiF micropillars with diameters in the range 0.5 μm to 2.0 μm was analyzed by means of discrete dislocation dynamics at ambient and elevated temperature. The dislocation velocity was obtained from the Peach–Koehler force acting on the dislocation segments from a thermally-activated model that accounted for the influence of temperature on the lattice resistance. A size effect of the type ‘smaller is stronger’ was predicted by the simulations, which was in quantitative agreement with previous experimental results by the authors [1]. The contribution of the different physical deformation mechanisms to the size effect (namely, nucleation of dislocations, dislocation exhaustion and forest hardening) could be ascertained from the simulations and the dominant deformation mode could be assessed as a function of the specimen size and temperature. These results shed light into the complex interaction among size, lattice resistance and dislocation mobility in the mechanical behavior of μm-sized single crystals. (paper)

  4. A 3D dislocation dynamics analysis of the size effect on the strength of [1 1 1] LiF micropillars at 300K and 600K

    Science.gov (United States)

    Chang, Hyung-Jun; Segurado, Javier; Molina-Aldareguía, Jon M.; Soler, Rafael; LLorca, Javier

    2016-03-01

    The mechanical behavior in compression of [1 1 1] LiF micropillars with diameters in the range 0.5 μm to 2.0 μm was analyzed by means of discrete dislocation dynamics at ambient and elevated temperature. The dislocation velocity was obtained from the Peach-Koehler force acting on the dislocation segments from a thermally-activated model that accounted for the influence of temperature on the lattice resistance. A size effect of the type ‘smaller is stronger’ was predicted by the simulations, which was in quantitative agreement with previous experimental results by the authors [1]. The contribution of the different physical deformation mechanisms to the size effect (namely, nucleation of dislocations, dislocation exhaustion and forest hardening) could be ascertained from the simulations and the dominant deformation mode could be assessed as a function of the specimen size and temperature. These results shed light into the complex interaction among size, lattice resistance and dislocation mobility in the mechanical behavior of μm-sized single crystals.

  5. Estimation of flow stress of radiation induced F/M steels using molecular dynamics and discrete dislocation dynamics approach

    International Nuclear Information System (INIS)

    More, Ameya; Dutta, B.K.; Durgaprasad, P.V.; Arya, A.K.

    2012-01-01

    Fe-Cr based Ferritic/Martensitic (F/M) steels are the candidate structural materials for future fusion reactors. In this work, a multi-scale approach comprising atomistic Molecular Dynamics (MD) simulations and Discrete Dislocation Dynamics (DDD) simulations are used to model the effect of irradiation dose on the flow stress of F/M steels. At the atomic scale, molecular dynamics simulations are used to study the dislocation interaction with irradiation induced defects, i.e. voids and He bubbles. Whereas, the DDD simulations are used to estimate the change in flow stress of the material as a result of irradiation hardening. (author)

  6. Mechanisms operating during plastic deformation of metals under concurrent production of cascades and dislocations

    Energy Technology Data Exchange (ETDEWEB)

    Trinkaus, H. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich (Germany); Singh, B.N. [Technical Univ. of Denmark, Risoe National Laboratory for Sustainable Energy, Materials Research Dept., Roskilde (Denmark)

    2008-04-15

    Recent in-reactor tensile tests (IRTs) on pure copper have revealed a deformation behaviour which is significantly different from that observed in post-irradiation tensile tests (PITs). In IRTs, the material deforms uniformly and homogeneously without yield drop and plastic instability as commonly observed in PITs. An increase in the pre-yield dose results in an increase in the level of hardening over the whole test periods and a decrease in the uniform elongation suggesting that the materials 'remember' the impact of the pre-yield damage level. These features are modelled in terms of the decoration of dislocations with glissile dislocation loops. During pre-yield irradiation, dislocation decoration is due to the one-dimensional (1D) diffusion of cascade induced self-interstitial (SIA) clusters and their trapping in the stress field of the static grown-in dislocations. During post-yield irradiation and deformation, moving dislocations are decorated by the sweeping of matrix loops. The interaction of dislocations with loops and between loops is discussed as a function of the relevant parameters. On this basis, the kinetics of decoration is treated in terms of fluxes of loops to and reactions with each other in a conceived 2D space of decoration. In this space, loop coalescence, alignment and mutual blocking reactions are characterised by appropriate reaction cross sections. In the kinetic equations for 'dynamic decoration' under deformation, the evolution of the dislocation density is taken into account. Simple solutions of the kinetic equations are discussed. The apparent memory of the system for the pre-yield dose is identified as the result of simultaneous and closely parallel transient evolutions of the cascade damage and the dislocations up to the end of the IRTs. The contributions of dislocation decoration to yield and flow stresses are attributed to the interaction of dislocations with aligned loops temporarily or permanently immobilized

  7. Mechanisms operating during plastic deformation of metals under concurrent production of cascades and dislocations

    International Nuclear Information System (INIS)

    Trinkaus, H.; Singh, B.N.

    2008-04-01

    Recent in-reactor tensile tests (IRTs) on pure copper have revealed a deformation behaviour which is significantly different from that observed in post-irradiation tensile tests (PITs). In IRTs, the material deforms uniformly and homogeneously without yield drop and plastic instability as commonly observed in PITs. An increase in the pre-yield dose results in an increase in the level of hardening over the whole test periods and a decrease in the uniform elongation suggesting that the materials 'remember' the impact of the pre-yield damage level. These features are modelled in terms of the decoration of dislocations with glissile dislocation loops. During pre-yield irradiation, dislocation decoration is due to the one-dimensional (1D) diffusion of cascade induced self-interstitial (SIA) clusters and their trapping in the stress field of the static grown-in dislocations. During post-yield irradiation and deformation, moving dislocations are decorated by the sweeping of matrix loops. The interaction of dislocations with loops and between loops is discussed as a function of the relevant parameters. On this basis, the kinetics of decoration is treated in terms of fluxes of loops to and reactions with each other in a conceived 2D space of decoration. In this space, loop coalescence, alignment and mutual blocking reactions are characterised by appropriate reaction cross sections. In the kinetic equations for 'dynamic decoration' under deformation, the evolution of the dislocation density is taken into account. Simple solutions of the kinetic equations are discussed. The apparent memory of the system for the pre-yield dose is identified as the result of simultaneous and closely parallel transient evolutions of the cascade damage and the dislocations up to the end of the IRTs. The contributions of dislocation decoration to yield and flow stresses are attributed to the interaction of dislocations with aligned loops temporarily or permanently immobilized by other loops or

  8. Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations

    International Nuclear Information System (INIS)

    Rao, S.I.; Dimiduk, D.M.; Parthasarathy, T.A.; Uchic, M.D.; Tang, M.; Woodward, C.

    2008-01-01

    Recent experimental studies have revealed that micrometer-scale face-centered cubic (fcc) crystals show strong strengthening effects, even at high initial dislocation densities. We use large-scale three-dimensional discrete dislocation simulations (DDS) to explicitly model the deformation behavior of fcc Ni microcrystals in the size range of 0.5-20 μm. This study shows that two size-sensitive athermal hardening processes, beyond forest hardening, are sufficient to develop the dimensional scaling of the flow stress, stochastic stress variation, flow intermittency and high initial strain-hardening rates, similar to experimental observations for various materials. One mechanism, source-truncation hardening, is especially potent in micrometer-scale volumes. A second mechanism, termed exhaustion hardening, results from a breakdown of the mean-field conditions for forest hardening in small volumes, thus biasing the statistics of ordinary dislocation processes

  9. Dynamics of screw dislocations : a generalised minimising-movements scheme approach

    NARCIS (Netherlands)

    Bonaschi, G.A.; Meurs, van P.J.P.; Morandotti, M.

    2015-01-01

    The gradient flow structure of the model introduced in [CG99] for the dynamics of screw dislocations is investigated by means of a generalised minimising-movements scheme approach. The assumption of a finite number of available glide directions, together with the "maximal dissipation criterion" that

  10. Atomic-scale processes revealing dynamic twin boundary strengthening mechanisms in face-centered cubic materials

    International Nuclear Information System (INIS)

    Yang, Z.Q.; Chisholm, M.F.; He, L.L.; Pennycook, S.J.; Ye, H.Q.

    2012-01-01

    We report experimental investigations on interactions/reactions between dislocations and twin boundaries in Al. The absorption of screw dislocations via cross-slip and the production of stair-rods via reactions with non-screw dislocations were verified by atomic resolution imaging. Importantly, the resulting partial dislocations moving along twin boundaries can produce secondary sessile defects. These immobile defects act as obstacles to other dislocations and also serve to pin the twin boundaries. These findings show the atomic-level dynamics of the dislocation–twin boundary processes and the unique strengthening mechanism of twin boundaries in face-centered cubic metals.

  11. Computer simulation of migration atomic mechanism and substitutional impurity interaction with screw dislocation core in bcc lattice

    International Nuclear Information System (INIS)

    Klyavin, O.V.; Likhodedov, N.P.; Orlov, A.N.

    1986-01-01

    Distribution and migration of substitutional impurity atoms (He and C) in the screw dislocation core of the 1/2 type is studied in α-Fe. The atomic mechanism of impurity atom diffusion over screw dislocation core, consisting in the fact that impurity migration proceeds in a screw trajectory, is discovered and analyzed. It is shown that tubular He diffusion over screw dislocation may proceed at T <= 300 K

  12. Dislocation-mediated strain hardening in tungsten: Thermo-mechanical plasticity theory and experimental validation

    Science.gov (United States)

    Terentyev, Dmitry; Xiao, Xiazi; Dubinko, A.; Bakaeva, A.; Duan, Huiling

    2015-12-01

    A self-consistent thermo-mechanical model to study the strain-hardening behavior of polycrystalline tungsten was developed and validated by a dedicated experimental route. Dislocation-dislocation multiplication and storage, as well dislocation-grain boundary (GB) pinning were the major mechanisms underlying the evolution of plastic deformation, thus providing a link between the strain hardening behavior and material's microstructure. The microstructure of the polycrystalline tungsten samples has been thoroughly investigated by scanning and electron microscopy. The model was applied to compute stress-strain loading curves of commercial tungsten grades, in the as-received and as-annealed states, in the temperature range of 500-1000 °C. Fitting the model to the independent experimental results obtained using a single crystal and as-received polycrystalline tungsten, the model demonstrated its capability to predict the deformation behavior of as-annealed samples in a wide temperature range and applied strain. The relevance of the dislocation-mediated plasticity mechanisms used in the model have been validated using transmission electron microscopy examination of the samples deformed up to different amounts of strain. On the basis of the experimental validation, the limitations of the model are determined and discussed.

  13. Dislocation mechanisms for plastic flow of nickel in the temperature range 4.2-1200K

    International Nuclear Information System (INIS)

    Sastry, D.H.; Tangri, K.

    1975-01-01

    The temperature ranges of thermal and athermal deformation behaviour of nickel are identified by employing the temperature-dependence of flow-stress and strain-rate cycling data. The results are used to present a unified view of dislocation mechanisms of glide encompassing the two thermally activated and the intermediate athermal regimes of plastic flow. In the low-temperature thermally activated region (<250K) the strain rate is found to be controlled by the repulsive intersection of glide and forest dislocations, in accordance with current ideas. The athermal stress in this region can be attributed mainly to the presence of strong attractive junctions which are overcome by means of Orowan bowing, a small contribution also coming from the elastic interactions between dislocations. The values of activation area and activation energy obtained in the high-temperature region (<750K) negate the operation of a diffusion-controlled mechanism. Instead, the data support a thermal activation model involving unzipping of the attractive junctions. The internal (long-range) stress contribution here results solely from the elastic interactions between dislocations. This view concerning the high-temperature plastic flow is further supported by the observation that the Cottrell-Stokes law is obeyed over large strains in the range 750-1200K. (author)

  14. Significance of dislocations in the mechanism of Hadfield cast steel strengthening

    International Nuclear Information System (INIS)

    Stradomski, Z.; Morgiel, J.; Olszewski, J.

    1999-01-01

    The paper presents the results of microstructural examination of the adfield cast steel (L120G13 according to Polish Standards) strengthened by explosion method, which is an attractive alternative of the surface treatment of metal materials regarding its technological, economical and organizational aspects. The presented results have been obtained by means of qualitative and quantitative analysis of thin foils taken at different distances from the material surface being strengthened by single, double or triple detonation of 3 mm thick charges of explosive. The high pressure, order of 18 GPa, causes significant changes in dislocation structure of the austenite matrix. The strengthening of Hadfield cast steel during explosion is based on the increase of the dislocation density by several times as related to the supersaturated state and on the creation of dislocation bands consisting of short, densely tangled dislocations. Plastic deformation mechanisms i. e., slip lines and micro-twins, are definitively of minor importance. It has been also proved by means of the nuclear resonance method that the explosion do not cause changes in distribution of carbon atoms in the nearest neighbourhood of Fe atoms and that austenite is not transformed into the α-martensite or the hexagonal ε-phase. (author)

  15. Dislocation glide in Ni-Al solid solutions from the atomic scale up: a molecular dynamics study; Etude du glissement des dislocations dans la solution solide Ni-Al par simulation a l'echelle atomique

    Energy Technology Data Exchange (ETDEWEB)

    Rodary, E

    2003-01-01

    The glide of an edge dislocation in solid solutions is studied by molecular dynamics, at fixed temperature and imposed external stress. We have optimized an EAM potential for Ni(1 a 8% A1): it well reproduces the lattice expansion, local atomic order, stacking fault energy as a function of composition, as well as the elastic properties of the {gamma}' phase with L1{sub 2} structure. On increasing the stress, the dislocation is first immobile, then glides with a velocity proportional to the stress and the velocity saturates on reaching the transverse sound velocity. However, only beyond a static threshold stress, {sigma}{sub s}, does the dislocation glide a distance large enough to allow macroscopic shear; the linear part of the velocity-stress curve extrapolates to zero at a dynamical threshold stress, {sigma}{sub d}, The friction coefficient, and the threshold stresses ({sigma}{sub s} and {sigma}{sub d}), increase with the A1 concentration and decrease with temperature (300 and 500 K). Close to the critical shear stress, {sigma}{sub s}, the dislocation glide is analysed with a 'stop and go' model. The latter yields the flight velocity between obstacles, the mean obstacle density and the distribution of the waiting time on each obstacle as a function of stress, composition and temperature. The obstacle to the glide is proposed to be the strong repulsion between Al atoms brought into nearest neighbour position by the glide process, and not the dislocation-solute interaction. The microscopic parameters so defined are introduced into a micro-mechanical model, which well reproduces the known behaviour of nickel base solid solutions. (author)

  16. 3D Discrete Dislocation Dynamics: Influence of Segment Mobility on Critical Shear Stress

    Czech Academy of Sciences Publication Activity Database

    Záležák, Tomáš; Dlouhý, Antonín

    2015-01-01

    Roč. 128, č. 4 (2015), s. 654-656 ISSN 0587-4246. [ISPMA 13 - International Symposium on Physics of Materials /13./. Praha, 31.08.2014-04.09.2014] R&D Projects: GA MŠk(CZ) EE2.3.20.0214; GA ČR(CZ) GA14-22834S Institutional support: RVO:68081723 Keywords : metal matrix composites * discrete dislocation dynamics * high temperature creep Subject RIV: JG - Metallurgy Impact factor: 0.525, year: 2015

  17. Enabling microstructural changes of FCC/BCC alloys in 2D dislocation dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ilker Topuz, Ahmet, E-mail: aitopuz@gmail.com

    2015-03-11

    Dimension reduction procedure is the recipe to represent defects in two dimensional dislocation dynamics according to the changes in the geometrical properties of the defects triggered by different conditions such as radiation, high temperature, or pressure. In the present study, this procedure is extended to incorporate further features related to the presence of defects with a special focus on face-centered cubic/body-centered cubic alloys used for diverse engineering purposes. In order to reflect the microstructural state of the alloy on the computational cell of two dimensional dislocation dynamics, the distribution of the multi-type defects over slip lines is implemented by using corresponding strength and line spacing for each type of defect. Additionally, a simple recursive incremental relation is set to count the loop accumulation on the precipitates. In the case of continuous resistance against the motion of edge dislocations on the slip lines, an expression of friction is introduced to see its contribution on the yield strength. Each new property is applied independently on a different material by using experimental information about defect properties and grain sizes under the condition of plain strain deformation: both constant and dynamically increasing obstacle strength for precipitate coarsening in prime-aged and heat-treated copper-chromium-zirconium, internal friction in tantalum-2.5tungsten, and mixed hardening due to the presence of precipitates and prismatic loops in irradiated oxide dispersion strengthened EUROFER with 0.3% yttria.

  18. Tensile testing study of dynamic interactions between dislocations and precipitate in vanadium alloys

    International Nuclear Information System (INIS)

    Tougou, Kouichi; Nogiwa, Kimihiro; Tachikawa, Kazuhiro; Fukumoto, Ken-ichi

    2013-01-01

    To investigate the hardening of fine Ti(OCN) precipitate, we performed in situ transmission electron microscopy (TEM) observations during tensile testing of dislocations gliding through fine Ti(OCN) precipitates in thermally aged V–4Cr–4Ti alloys. The obstacle strength parameter was estimated from the critical bow-out angle, ϕ, of the dislocation lines from the microstructural change during tensile deformation observed in the TEM images. From image processing analysis of the dislocation motion, the value of the obstacle strength parameter of Ti(OCN) precipitates of 4-nm size was determined to be 0.30. The increase in yield stress calculated from the measured dislocation behavior pinned around precipitates was Δσ in situ = 43 MPa, and the increase in yield stress measured by the micro-Vickers hardness test was Δσ HV = 49.5 MPa. Data from in situ TEM observations during tensile testing and from micro-Vickers hardness tests were in good agreement; thus, the obstacle strength parameter of the Ti(OCN) precipitates of 4-nm size was successfully obtained experimentally. The obstacle strength parameter also was compared with data from a previous study, and there was also quite good agreement. Therefore, the obstacle strength parameter obtained from this study is measurable and is a reliable measure of mechanical property changes following precipitation in V–4Cr–4Ti alloys

  19. Deformation mechanisms in nanotwinned copper by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xing [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Tieu, Anh Kiet; Pei, Linqing; Zhang, Liang; Su, Lihong [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Zhan, Lihua [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China)

    2017-02-27

    Nanotwinned materials exhibit simultaneous ultrahigh strength and high ductility which is attributed to the interactions between dislocations and twin boundaries but the specific deformation mechanisms are rarely seen in experiments at the atomic level. Here we use large scale molecular dynamics simulations to explore this intricate interplay during the plastic deformation of nanotwinned Cu. We demonstrate that the dominant deformation mechanism transits dynamically from slip transfer to twin boundary migration to slip-twin interactions as the twin boundary orientation changes from horizontal to slant, and then to a vertical direction. Building on the fundamental physics of dislocation processes from computer simulations and combining the available experimental investigations, we unravel the underlying deformation mechanisms for nanotwinned Cu, incorporating all three distinct dislocation processes. Our results give insights into systematically engineering the nanoscale twins to fabricate nanotwinned metals or alloys that have high strength and considerable ductility.

  20. Mechanism and energetics of dislocation cross-slip in hcp metals

    Science.gov (United States)

    Wu, Zhaoxuan; Curtin, W. A.

    2016-10-01

    Hexagonal close-packed (hcp) metals such as Mg, Ti, and Zr are lightweight and/or durable metals with critical structural applications in the automotive (Mg), aerospace (Ti), and nuclear (Zr) industries. The hcp structure, however, brings significant complications in the mechanisms of plastic deformation, strengthening, and ductility, and these complications pose significant challenges in advancing the science and engineering of these metals. In hcp metals, generalized plasticity requires the activation of slip on pyramidal planes, but the structure, motion, and cross-slip of the associated dislocations are not well established even though they determine ductility and influence strengthening. Here, atomistic simulations in Mg reveal the unusual mechanism of dislocation cross-slip between pyramidal I and II planes, which occurs by cross-slip of the individual partial dislocations. The energy barrier is controlled by a fundamental step/jog energy and the near-core energy difference between pyramidal dislocations. The near-core energy difference can be changed by nonglide stresses, leading to tension-compression asymmetry and even a switch in absolute stability from one glide plane to the other, both features observed experimentally in Mg, Ti, and their alloys. The unique cross-slip mechanism is governed by common features of the generalized stacking fault energy surfaces of hcp pyramidal planes and is thus expected to be generic to all hcp metals. An analytical model is developed to predict the cross-slip barrier as a function of the near-core energy difference and applied stresses and quantifies the controlling features of cross-slip and pyramidal I/II stability across the family of hcp metals.

  1. Molecular dynamics simulations of thermally activated edge dislocation unpinning from voids in α -Fe

    Science.gov (United States)

    Byggmästar, J.; Granberg, F.; Nordlund, K.

    2017-10-01

    In this study, thermal unpinning of edge dislocations from voids in α -Fe is investigated by means of molecular dynamics simulations. The activation energy as a function of shear stress and temperature is systematically determined. Simulations with a constant applied stress are compared with dynamic simulations with a constant strain rate. We found that a constant applied stress results in a temperature-dependent activation energy. The temperature dependence is attributed to the elastic softening of iron. If the stress is normalized with the softening of the specific shear modulus, the activation energy is shown to be temperature-independent. From the dynamic simulations, the activation energy as a function of critical shear stress was determined using previously developed methods. The results from the dynamic simulations are in good agreement with the constant stress simulations, after the normalization. This indicates that the computationally more efficient dynamic method can be used to obtain the activation energy as a function of stress and temperature. The obtained relation between stress, temperature, and activation energy can be used to introduce a stochastic unpinning event in larger-scale simulation methods, such as discrete dislocation dynamics.

  2. Voltage from mechanical stress in type-II superconductors: Depinning of the magnetic flux by moving dislocations

    OpenAIRE

    Albert, Jaroslav; Chudnovsky, Eugene M.

    2008-01-01

    Mechanical stress causes motion of defects in solids. We show that in a type-II superconductor a moving dislocation generates a pattern of current that exerts the depinning force on the surrounding vortex lattice. Concentration of dislocations and the mechanical stress needed to produce critical depinning currents are shown to be within practical range. When external magnetic field and transport current are present this effect generates voltage across the superconductor. Thus a superconductor...

  3. Solute strengthening of both mobile and forest dislocations: The origin of dynamic strain aging in fcc metals

    International Nuclear Information System (INIS)

    Soare, M.A.; Curtin, W.A.

    2008-01-01

    A full rate-dependent constitutive theory for dynamic strain aging is developed based on two key ideas. The first idea is that both solute strengthening and forest strengthening must exist and must exhibit aging phenomena. The second idea is that a single physical aging mechanism, cross-core diffusion within a dislocation core, controls the aging of both the solute and forest strengthening mechanisms. All the material parameters in the model, apart from forest dislocation density evolution parameters, are derivable from atomistic-scale studies so that the theory contains essentially no adjustable parameters. The model predicts the steady-state stress/strain/strain-rate/temperature/concentration dependent material response for a variety of Al-Mg alloys, including negative strain-rate sensitivity, in qualitative and quantitative agreement with available experiments. The model also reveals the origin of non-additivity of solute and forest strengthening, and explains observed non-standard transient stress behavior in strain-rate jump tests

  4. On damping of screw dislocation bending vibrations in dissipative crystal: limiting cases

    Science.gov (United States)

    Dezhin, V. V.

    2018-03-01

    The expression for the generalized susceptibility of the dislocation obtained earlier was used. The electronic drag mechanism of dislocations is considered. The study of small dislocation oscillations was limited. The contribution of the attenuation of low-frequency bending screw dislocation vibrations to the overall coefficient of dynamic dislocation drag in the long-wave and short-wave limits is calculated. The damping of short-wave bending screw dislocation vibrations caused by an external action of an arbitrary frequency has been investigated. The contribution of long-wave bending screw dislocation vibrations damping in the total drag coefficient at an arbitrary frequency is found.

  5. Molecular dynamics study of dislocation cores in copper: structure and diffusion at high temperatures

    International Nuclear Information System (INIS)

    Huang, Jin

    1989-01-01

    The variation of the core structure of an easy glide dislocation with temperature and its influence on the stacking fault energy (γ) have been investigated for the first time by molecular-dynamics simulation in copper. The calculations have been performed at various temperatures, using an ab-initio pseudo-potential. Our results show that the core of the Shockley partials, into which the perfect edge dislocation dissociates, becomes increasingly extended as temperature increases. However their separation remains constant. The calculated energy values of the infinite extension stacking fault and the ribbon fault between the partials are quite different, but the evolution of the core structure does not affect the temperature dependence of the latter. We have found that a high disorder appears in the core region when temperature increases due to important anharmonicity effects of the atomic vibrations. The core structure remains solid-like for T m (T m : melting point of bulk) in spite of the high disorder. Above T m , the liquid nucleus germinates in the core region, and then propagates into the bulk. In addition we studied the mobility of vacancies and interstitials trapped on the partials. Although fast diffusion is thought to occur exclusively in a pipe surrounding the dislocation core, in the present study a quasi two-dimensional diffusion is observed for both defects not only in the cores but also in the stacking fault ribbon. On the opposite of current assumptions, the activation energy for diffusion is found to be identical for both defects, which may therefore comparably contribute to mass transport along the dislocations. (author) [fr

  6. Crystallographic fatigue crack growth in a polycrystal: simulations based on FEM and discrete dislocation dynamics

    International Nuclear Information System (INIS)

    Bertolino, G.; Sauzay, M.; Bertolino, G.; Doquet, V.

    2003-01-01

    An attempt to model the variability of short cracks development in high-cycle fatigue is made by coupling finite element calculations of the stresses ahead of a microcrack in a polycrystal with simulations of crack growth along slip planes based on discrete dislocations dynamics. The model predicts a large scatter in growth rates related to the roughness of the crack path. It also describes the influence of the mean grain size and the fact that overloads may suppress the endurance limit by allowing arrested cracks to cross the grain boundaries. (authors)

  7. Probing deformation substructure by synchrotron X-ray diffraction and dislocation dynamics modelling.

    Science.gov (United States)

    Korsunsky, Alexander M; Hofmann, Felix; Song, Xu; Eve, Sophie; Collins, Steve P

    2010-09-01

    Materials characterization at the nano-scale is motivated by the desire to resolve the structural aspects and deformation behavior at length scales relevant to those mechanisms that define the novel and unusual properties of nano-structured materials. A range of novel techniques has recently become accessible with the help of synchrotron X-ray beams that can be focused down to spot sizes of less than a few microns on the sample. The unique combination of tunability (energy selection), parallelism and brightness of synchrotron X-ray beams allows their use for high resolution diffraction (determination of crystal structure and transformations, analysis of dislocation sub-structures, orientation and texture analysis, strain mapping); small angle X-ray scattering (analysis of nano-scale voids and defects; orientation analysis) and imaging (radiography and tomography). After a brief review of the state-of-the-art capabilities for monochromatic and white beam synchrotron diffraction, we consider the usefulness of these techniques for the task of bridging the gap between experiment and modeling. Namely, we discuss how the experiments can be configured to provide information relevant to the validation and improvement of modeling approaches, and also how the results of various simulations can be post-processed to improve the possibility of (more or less) direct comparison with experiments. Using the example of some recent experiments carried out on beamline 116 at Diamond Light Source near Oxford, we discuss how such experimental results can be interpreted in view and in conjunction with numerical deformation models, particularly those incorporating dislocation effects, e.g., finite-element based pseudo-continuum strain gradient formulations, and discrete dislocation simulations. Post-processing of FE and discrete dislocation simulations is described, illustrating the kind of information that can be extracted from comparisons between modeling and experimental data.

  8. Mechanical properties of irradiated nanowires – A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Emilio [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago (Chile); Departamento de Física, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800002 (Chile); Tramontina, Diego [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza (Argentina); Instituto de Bioingeniería, Universidad de Mendoza, 5500 Mendoza (Argentina); Gutiérrez, Gonzalo, E-mail: gonzalo@fisica.ciencias.uchile.cl [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago (Chile); Bringa, Eduardo [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza (Argentina)

    2015-12-15

    In this work we study, by means of molecular dynamics simulation, the change in the mechanical properties of a gold nanowire with pre-existing radiation damage. The gold nanowire is used as a simple model for a nanofoam, made of connected nanowires. Radiation damage by keV ions leads to the formation of a stacking fault tetrahedron (SFT), and this defect leads to a reduced plastic threshold, as expected, when the nanowire is subjected to tension. We quantify dislocation and twin density during the deformation, and find that the early activation of the SFT as a dislocation source leads to reduced dislocation densities compared to the case without radiation damage. In addition, we observed a total destruction of the SFT, as opposed to a recent simulation study where it was postulated that SFTs might act as self-generating dislocation sources. The flow stress at large deformation is also found to be slightly larger for the irradiated case, in agreement with recent experiments. - Highlights: • Stacking Fault Tetrahedra (SFT) formation proceeds by cascades, containing typically a vacancy cluster and interstitials. • Applied tension leads to the destruction of the SFT, in contrast to a recently reported case of a SFT which soften the NW. • After the initial dislocation activity, strength is controlled by a few surviving dislocations.

  9. Influence of competition between intragranular dislocation nucleation and intergranular slip transfer on mechanical properties of ultrafine-grained metals

    International Nuclear Information System (INIS)

    Tsuru, Tomohito; Kaji, Yoshiyuki; Aoyagi, Yoshiteru; Shimokawa, Tomotsugu

    2013-01-01

    Huge-scale atomistic simulations of shear deformation tests to the aluminum polycrystalline thin film containing the Frank-Read source are performed to elucidate the relationship between the inter- and intragranular plastic deformation processes and the mechanical properties of ultrafine-grained metals. Two-types of polycrystalline models, which consist of several grain boundaries reproducing easy and hard slip transfer, respectively, are prepared to investigate the effect of grain boundary on flow stress. While the first plastic deformation occurs by the dislocation bow-out motion within the grain region for both models, the subsequent plastic deformation is strongly influenced by the resistance of the slip transfer by dislocation transmission through grain boundaries. The influence of the competition between the intragranular dislocation nucleation and intergranular slip transfer on the material strength is considered. The nanostructured material's strength depending on local defect structures associated with grain size and dislocation source length is assessed quantitatively. (author)

  10. Perilunate Dislocation

    Directory of Open Access Journals (Sweden)

    John Jiao

    2016-09-01

    Full Text Available History of present illness: A 25-year-old female presented to the emergency department with left wrist pain following a fall off a skateboard. The patient fell on her outstretched left wrist with the wrist dorsiflexed and reported immediate sharp pain to her left wrist that was worse with movement. She denied other trauma. Significant findings: In the left lateral wrist x-ray, the lunate (outlined in blue is dislocated from the rest of the wrist bones (yellow line but still articulates with the radius (red line. The capitate (yellow line does not sit within the distal articulation of the lunate and is displaced dorsally. Additionally, a line drawn through the radius and lunate (green line fails to intersect with the capitate. This is consistent with a perilunate dislocation. This is compared to a lunate dislocation, where the lunate itself is displaced and turned ventrally (spilled teacup and the proximal aspect does not articulate with the radius. Discussion: A perilunate dislocation is a significant closed wrist injury that is easily missed on standard anterior-posterior imaging. These dislocations are relatively rare, involving only 7% of all carpal injuries and are associated with high-energy trauma onto a hyperextended wrist, such as falls from a height, motor vehicle accidents, and sports injuries.1 An untreated perilunate dislocation is associated with high risk of chronic carpal instability and post-traumatic arthritis. If the mechanism of injury is sufficient to suspect perilunate dislocation, multiple radiographic views of the wrist should be ordered. Patients should receive prompt orthopedic consultation for open reduction and ligamentous repair. Even after successful identification and subsequent surgical repair, median nerve neuropathy and post-traumatic arthritis are frequent.2-3

  11. Dynamically Assisted Schwinger Mechanism

    International Nuclear Information System (INIS)

    Schuetzhold, Ralf; Gies, Holger; Dunne, Gerald

    2008-01-01

    We study electron-positron pair creation from the Dirac vacuum induced by a strong and slowly varying electric field (Schwinger effect) which is superimposed by a weak and rapidly changing electromagnetic field (dynamical pair creation). In the subcritical regime where both mechanisms separately are strongly suppressed, their combined impact yields a pair creation rate which is dramatically enhanced. Intuitively speaking, the strong electric field lowers the threshold for dynamical particle creation--or, alternatively, the fast electromagnetic field generates additional seeds for the Schwinger mechanism. These findings could be relevant for planned ultrahigh intensity lasers

  12. Tailoring dislocation structures and mechanical properties of nanostructured metals produced by plastic deformation

    DEFF Research Database (Denmark)

    Huang, Xiaoxu

    2009-01-01

    The presence of a dislocation structure associated with low-angle dislocation boundaries and interior dislocations is a common and characteristic feature in nanostructured metals produced by plastic deformation, and plays an important role in determining both the strength and ductility...

  13. Coarse-grained elastodynamics of fast moving dislocations

    International Nuclear Information System (INIS)

    Xiong, Liming; Rigelesaiyin, Ji; Chen, Xiang; Xu, Shuozhi; McDowell, David L.; Chen, Youping

    2016-01-01

    The fundamental mechanism of dynamic plasticity in metallic materials subjected to shock loading remains unclear because it is difficult to obtain the precise information of individual fast moving dislocations in metals from the state-of-the-art experiments. In this work, the dynamics of sonic dislocations in anisotropic crystalline materials is explored through a concurrent atomistic-continuum modeling method. We make a first attempt to characterize the complexity of nonuniformly moving dislocations in anisotropic crystals from atomistic to microscale, including the energy intensities as well as the wavelengths of acoustic phonons emitted from sonic dislocations, and the velocity-dependent stress fluctuations around the core of nonuniformly moving dislocations. Instantaneous dislocation velocities and phonon drag effects on the dislocation motions are quantified and analyzed. Mach cones in a V-shaped pattern of the phonon wave-fronts are observed in the wake of the sonic dislocations. Analysis of simulation results based on a wavelet transform show that the faster a dislocation is moving, the longer the emitted phonon wavelength. The dislocation velocity drops dramatically with the occurrence of the interactions between dislocations and phonon waves reflected from the boundaries of specimens. The concurrent atomistic-continuum modeling framework is demonstrated to be the first multiscale method that explicitly treats the strong coupling between the long-range elastic fields away from the dislocation core, the highly nonlinear time-dependent stress field within the core, and the evolutions of the atomic-scale dislocation core structures. As such, it is shown that this method is capable in predicting elastodynamics of dislocations in the presence of inertia effects associated with sonic dislocations in micron-sized anisotropic crystalline materials from the atomic level, which is not directly accessible to the recent elastodynamic discrete dislocation model.

  14. Impact of screw and edge dislocations on the thermal conductivity of individual nanowires and bulk GaN: a molecular dynamics study.

    Science.gov (United States)

    Termentzidis, Konstantinos; Isaiev, Mykola; Salnikova, Anastasiia; Belabbas, Imad; Lacroix, David; Kioseoglou, Joseph

    2018-02-14

    We report the thermal transport properties of wurtzite GaN in the presence of dislocations using molecular dynamics simulations. A variety of isolated dislocations in a nanowire configuration are analyzed and found to considerably reduce the thermal conductivity while impacting its temperature dependence in a different manner. Isolated screw dislocations reduce the thermal conductivity by a factor of two, while the influence of edge dislocations is less pronounced. The relative reduction of thermal conductivity is correlated with the strain energy of each of the five studied types of dislocations and the nature of the bonds around the dislocation core. The temperature dependence of the thermal conductivity follows a physical law described by a T -1 variation in combination with an exponent factor that depends on the material's nature, type and the structural characteristics of the dislocation core. Furthermore, the impact of the dislocation density on the thermal conductivity of bulk GaN is examined. The variation and absolute values of the total thermal conductivity as a function of the dislocation density are similar for defected systems with both screw and edge dislocations. Nevertheless, we reveal that the thermal conductivity tensors along the parallel and perpendicular directions to the dislocation lines are different. The discrepancy of the anisotropy of the thermal conductivity grows with increasing density of dislocations and it is more pronounced for the systems with edge dislocations. Besides the fundamental insights of the presented results, these could also be used for the identification of the type of dislocations when one experimentally obtains the evolution of thermal conductivity with temperature since each type of dislocation has a different signature, or one could extract the density of dislocations with a simple measurement of thermal anisotropy.

  15. Kinetics exoelectron emission phenomena confirmed mechanism of vacancy diffusion through dislocation

    International Nuclear Information System (INIS)

    Dus-Sitek, M.; Szymura, S.; Pisarek, J.

    1998-01-01

    On the basis on the data obtained during experiments regarding the kinetics of exoelectron emission phenomenon in deformed metal, a hypothesis concerning the dislocation mechanism of vacancies transport was confirmed. The nature and character of the exoelectron emission phenomenon accompanying a plastic deformation of thermally or mechanically prepared metals showed distinct relations between the exoelectron emission phenomenon and the defects of a crystalline structure produced during processing. On the basic of the result obtained for the Ni and stainless steels has been concluded that exoelectron emission intensity accompanying an uniaxial deformation appears at the yield strain ε 0 on the stress-strain curve, and that the sharp 'destruction' emission peak is associated with the sample failure strain ε f

  16. Complex Interaction Mechanisms between Dislocations and Point Defects Studied in Pure Aluminium by a Two-Wave Acoustic Coupling Technique

    Science.gov (United States)

    Bremnes, O.; Progin, O.; Gremaud, G.; Benoit, W.

    1997-04-01

    Ultrasonic experiments using a two-wave coupling technique were performed on 99.999% pure Al in order to study the interaction mechanisms occurring between dislocations and point defects. The coupling technique consists in measuring the attenuation of ultrasonic waves during low-frequency stress cycles (t). One obtains closed curves () called signatures whose shape and evolution are characteristic of the interaction mechanism controlling the low-frequency dislocation motion. The signatures observed were attributed to the interaction of the dislocations with extrinsic point defects. A new interpretation of the evolution of the signatures measured below 200 K with respect to temperature and stress frequency had to be established: they are linked to depinning of immobile point defects, whereas a thermally activated depinning mechanism does not fit the observations. The signatures measured between 200 and 370 K were interpreted as dragging and depinning of extrinsic point defects which are increasingly mobile with temperature.

  17. Internal stress evolution in Fe laths deformed at low temperature analysed by dislocation dynamics simulations

    International Nuclear Information System (INIS)

    Chaussidon, Julien; Fivel, Marc; Robertson, Christian; Marini, Bernard

    2010-01-01

    Stress evolution in Fe laths undergoing plastic deformation is investigated using three-dimensional dislocation dynamics simulations adapted to body centred cubic crystals, in the ductile to brittle transition temperature range. The selected boundary conditions, applied stress tensor and initial dislocation structures account for the realistic microstructure observed in bainitic steels. The effective stress field projected in the three different {1 0 0}cleavage planes is calculated for two different temperatures (50 and 200 K) and presented quantitatively, in the form of stress/frequency diagrams. It is shown that plastic activity tends to relax the stress acting in certain cleavage planes (the (0 1 0) and (0 0 1) planes) while, at the same time, amplifying the stress acting in other cleavage planes (the (1 0 0) planes). The selective stress amplification in the latter planes depends on the applied load direction, in combination with the limited set of available slip systems and the lath geometry. In the examined configuration, this selection effect is more pronounced with decreasing temperature, emphasizing the role of thermally activated plasticity on deformation-induced stress concentrations

  18. Prediction of Precipitation Strengthening in the Commercial Mg Alloy AZ91 Using Dislocation Dynamics

    Science.gov (United States)

    Aagesen, L. K.; Miao, J.; Allison, J. E.; Aubry, S.; Arsenlis, A.

    2018-03-01

    Dislocation dynamics simulations were used to predict the strengthening of a commercial magnesium alloy, AZ91, due to β-Mg17Al12 formed in the continuous precipitation mode. The precipitate distributions used in simulations were determined based on experimental characterization of the sizes, shapes, and number densities of the precipitates for 10-hour aging and 50-hour aging. For dislocations gliding on the basal plane, which is expected to be the dominant contributor to plastic deformation at room temperature, the critical resolved shear stress to bypass the precipitate distribution was 3.5 MPa for the 10-hour aged sample and 16.0 MPa for the 50-hour aged sample. The simulation results were compared to an analytical model of strengthening in this alloy, and the analytical model was found to predict critical resolved shear stresses that were approximately 30 pct lower. A model for the total yield strength was developed and compared with experiment for the 50-hour aged sample. The predicted yield strength, which included the precipitate strengthening contribution from the DD simulations, was 132.0 MPa, in good agreement with the measured yield strength of 141 MPa.

  19. Mechanism and patterns of cervical spine fractures-dislocations in vertebral artery injury

    Directory of Open Access Journals (Sweden)

    Pankaj Gupta

    2012-01-01

    Full Text Available Purpose: To identify the fracture patterns and mechanism of injury, based on subaxial cervical spine injury classification system (SLIC, on non-contrast computed tomography (NCCT of cervical spine predictive of vertebral artery injury (VAI. Patients and Methods: We retrospectively analyzed cervical spine magnetic resonance imaging (MRI of 320 patients who were admitted with cervical spine injury in our level I regional trauma center over a period of two years (April 2010 to April 2012. Diagnosis of VAI was based on hyperintensity replacing the flow void on a T2-weighted axial image. NCCT images of the selected 43 patients with MRI diagnosis of VAI were then assessed for the pattern of injury. The cervical spinal injuries were classified into those involving the C1 and C2 and subaxial spine. For the latter, SLIC was used. Results: A total of 47 VAI were analyzed in 43 patients. Only one patient with VAI on MRI had no detectable abnormality on NCCT. C1 and C2 injuries were found in one and six patients respectively. In subaxial injuries, the most common mechanism of injury was distraction (37.5% with facet dislocation with or without fracture representing the most common pattern of injury (55%. C5 was the single most common affected vertebral level. Extension to foramen transversarium was present in 20 (42.5% cases. Conclusion: CT represents a robust screening tool for patients with VAI. VAI should be suspected in patients with facet dislocation with or without fractures, foramina transversarium fractures and C1-C3 fractures, especially type III odontoid fractures and distraction mechanism of injury.

  20. Transition pathways in the unfaulting of dislocation loops

    International Nuclear Information System (INIS)

    Kubota, Alison; Wolfer, W.G.

    2005-01-01

    In order to study the dynamic mechanism of loop unfaulting, we performed large-scale classical molecular dynamics simulations involving computational cells with several millions of atoms. To induce dislocation loop unfaulting, we launched 1 ps duration traction stress pulses at a free surface of the computational box. In many cases, we observe unfaulting to involve both intuitive and complex dislocation processes with multiple Shockley partial dislocations. However, in some instances, we observe unfaulting to occur by a sudden instability of the stacking fault without clear traces of dislocation reactions

  1. Atomic structure of screw dislocations intersecting the Au(111) surface: A combined scanning tunneling microscopy and molecular dynamics study

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Schiøtz, Jakob; Dahl-Madsen, Bjarke

    2006-01-01

    The atomic-scale structure of naturally occurring screw dislocations intersecting a Au(111) surface has been investigated both experimentally by scanning tunneling microscopy (STM) and theoretically using molecular dynamics (MD) simulations. The step profiles of 166 dislocations were measured using...... STM. Many of them exhibit noninteger step-height plateaus with different widths. Clear evidence was found for the existence of two different populations at the surface with distinct (narrowed or widened) partial-splitting widths. All findings are fully confirmed by the MD simulations. The MD...... simulations extend the STM-, i.e., surface-, investigation to the subsurface region. Due to this additional insight, we can explain the different partial-splitting widths as the result of the interaction between the partial dislocations and the surface....

  2. A dissociation mechanism for the [a+c] dislocation in GaN

    International Nuclear Information System (INIS)

    Nellist, P D; Hirsch, P B; Lozano, J G; Rhode, S; Zhang, S; Kappers, M J; Humphreys, C J; Horton, M K; Moram, M A; Yasuhara, A; Okunishi, E; Sahonta, S-L

    2014-01-01

    Mixed-type [a+c] dislocations can be identified in atomic-resolution high-angle annular dark-field scanning transmission electron microscope images of GaN viewed along [0001] by use of a Burgers loop analysis and by observation of the depth-dependent displacements associated with the Eshelby twist. These dislocations are found to be able to dissociate resulting in a fault that lies perpendicular to the dislocation glide plane. Consideration of the bonding that occurs in such a fault allows the dissociation reaction to be proposed, and the proposed fault agrees with the experimental images when kinks are incorporated into the model

  3. Dislocation structures and mechanical behaviour of Ge single crystals deformed by compression

    International Nuclear Information System (INIS)

    Nyilas, K.; Dupas, C.; Kruml, T.; Zsoldos, L.; Ungar, T.; Martin, J.L.

    2004-01-01

    Stress-strain curves of germanium interrupted by dip tests reveal that the internal stresses ascend parallel to the applied stress in a strain-rate dependent way. To understand this peculiar behaviour, the dislocation microstructure has been characterized. Transmission electron microscopy images show that regions of high dislocation activity along the primary slip system are separated by dislocation-free zones. X-ray microdiffraction reveals that the dislocation density is fluctuating on a 100 μm scale. X-ray reciprocal-space mapping, together with scanning microdiffraction, shows that misoriented mosaic blocks are forming owing to the boundary conditions in the compression test. These preliminary results reveal deformation heterogeneity both at macroscopic and mesoscopic scales

  4. Technical Report on Atomistic and Dislocation Dynamic Modeling of Plasticity in Polycrystalline Metals

    National Research Council Canada - National Science Library

    Espinosa, Horacio D; Hyde, Brian; Agrawal, Ravi

    2005-01-01

    .... Twin boundaries were introduced and were found not to be favored as sites for defect nucleation but do lead to deformation hardening as they are efficient obstacles against dislocation propagation...

  5. Dislocational Rock Mechanisms As a Basis for Seismic Methods in the Search for Hydrocarbons La géomécanique de dislocation en tant que base des méthodes sismiques de la recherche des hydrocarbures

    Directory of Open Access Journals (Sweden)

    Pissetski V. B.

    2006-11-01

    Full Text Available The analysis of the geological and geophysical data points out the inadequacy of the classical concept of a stratified continuous sedimentary medium on one hand. In the second hand it helps to introduce a serie of key physical concepts. The general formulation of the proposed concept can be presented as follows :(a The discrete character clearly observed during the sedimentation process ensures that changes of sedimentary cycles (hiatuses are marked by fine layers or surfaces which correspond to regular structures of strength defects later. (b The changes in gravity or tectonic load induce a destruction mechanism which regular growth changes a stratified continuous medium with defects into a dicrete medium. This destruction mechanism is a final process : each discrete element is limited in space by horizontal and vertical surfaces of disruption (dislocations. The final medium is a critical piling of elements which reacts easily to any change of the mechanical stress field. From this point of view, if we analyse outcrops and well data one notices a strong correspondance between the actual cracks and the main sedimentary limits. The main feature of the destruction mechanism is well reproduced in the laboratory by physical models built layer by layer with cristallisation pauses between layers. The theoretical analysis of the stress field of discrete media shows the predominance of vertical displacements and consequently the block aspect of the stress distribution within a compensation scheme. Thus, the key element in such a discrete medium model is the dislocation structure and the associated stress or pressure distribution. It becomes obvious that the main parameters of the fluid behaviour are determined by the density of dislocations and the value of the general pressure over the volume of the formation. The general pressure is defined as the sum of geostatic pressure and the anornafic pressure linked to the characteristic variability of the

  6. Towards a quantification of stress corrosion mechanisms: numerical simulations of hydrogen-dislocations at the very crack tip

    International Nuclear Information System (INIS)

    Chateau, J.P.

    1999-01-01

    We discuss the respective roles played by anodic dissolution and hydrogen in SCC mechanisms of f.c.c. materials, by studying the fracture of copper in nitrite for which we compare the results with that previously obtained in 316L steel in hot chloride. It is surprising to note that even the crystallographies at the scale of the micron are different, the macroscopic inclination of the fracture surfaces are the same. In the case of 316L steel, the formation of strong pile-ups in the presence of hydrogen leads to a zigzag fracture along alternated slip planes in the most general case. In the absence of hydrogen, as in copper, this mechanism effectively disappears. Furthermore, numerical simulations of crack shielding by dislocations emitted on one plane predict the macroscopic inclination. It shows that it is due to the mere dissolution which confines slip activity at the very crack tip in f.c.c. materials. In order to quantify the mechanism involved in 316L steel, we developed simulations which numerically solve the coupled diffusion and elasticity equations for hydrogen in the presence of a crack and shielding dislocations. They reproduce the mechanisms of hydrogen segregation on edge dislocations and of a localised softening effect by decreasing pair interactions. These mechanisms lead to i) a localisation of hydrogen embrittlement along the activated slip planes, ii) an increase of the dislocation density in pile-ups, and iii) a decrease of the cross slip probability. These three factors enhance micro-fracture at the head of a pile-up, which is responsible of the zigzag fracture. Introducing the free surface effects for hydrogen, we point out a new mechanism: the inhibition of dislocation sources at the crack tip, which is relevant with the brittle fracture surfaces observed in some cases in 316L steel. The quantification of these different mechanisms allows to give a relation between the local fracture possibility and the macroscopic parameters. A general law for

  7. Evaluation of the mechanism and principles of management of temporomandibular joint dislocation. Systematic review of literature and a proposed new classification of temporomandibular joint dislocation.

    Science.gov (United States)

    Akinbami, Babatunde O

    2011-06-15

    Virtually all the articles in literature addressed only a specific type of dislocation. The aim of this review was to project a comprehensive understanding of the pathologic processes and management of all types of dislodgement of the head of the mandibular condyle from its normal position in the glenoid fossa. In addition, a new classification of temporomandibular joint dislocation was also proposed. A thorough computer literature search was done using the Medline, Cochrane library and Embase database. Key words like temporo-mandibular joint dislocation were used for the search. Additional manual search was done by going through published home-based and foreign articles. Case reports/series, and original articles that documented the type of dislocation, number of cases treated in the series and original articles. Treatment done and outcome of treatment were included in the study. A total of 128 articles were reviewed out which 79 were found relevant. Of these, 26 were case reports, 17 were case series and 36 were original articles. 79 cases were acute dislocations, 35 cases were chronic protracted TMJ dislocations and 311 cases were chronic recurrent TMJ dislocations. Etiology was predominantly trauma in 60% of cases and other causes contributed about 40%. Of all the cases reviewed, only 4 were unilateral dislocation. Various treatment modalities are outlined in this report as indicated for each type of dislocation. The more complex and invasive method of treatment may not necessarily offer the best option and outcome of treatment, therefore conservative approaches should be exhausted and utilized appropriately before adopting the more invasive surgical techniques.

  8. Evaluation of the mechanism and principles of management of temporomandibular joint dislocation. Systematic review of literature and a proposed new classification of temporomandibular joint dislocation

    Directory of Open Access Journals (Sweden)

    Akinbami Babatunde O

    2011-06-01

    Full Text Available Abstract Background Virtually all the articles in literature addressed only a specific type of dislocation. The aim of this review was to project a comprehensive understanding of the pathologic processes and management of all types of dislodgement of the head of the mandibular condyle from its normal position in the glenoid fossa. In addition, a new classification of temporomandibular joint dislocation was also proposed. Method and materials A thorough computer literature search was done using the Medline, Cochrane library and Embase database. Key words like temporo-mandibular joint dislocation were used for the search. Additional manual search was done by going through published home-based and foreign articles. Case reports/series, and original articles that documented the type of dislocation, number of cases treated in the series and original articles. Treatment done and outcome of treatment were included in the study. Result A total of 128 articles were reviewed out which 79 were found relevant. Of these, 26 were case reports, 17 were case series and 36 were original articles. 79 cases were acute dislocations, 35 cases were chronic protracted TMJ dislocations and 311 cases were chronic recurrent TMJ dislocations. Etiology was predominantly trauma in 60% of cases and other causes contributed about 40%. Of all the cases reviewed, only 4 were unilateral dislocation. Various treatment modalities are outlined in this report as indicated for each type of dislocation. Conclusion The more complex and invasive method of treatment may not necessarily offer the best option and outcome of treatment, therefore conservative approaches should be exhausted and utilized appropriately before adopting the more invasive surgical techniques.

  9. Dislocation-based plasticity and strengthening mechanisms in sub-20 nm lamellar structures in pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Godfrey, Andrew

    2016-01-01

    The tensile properties and the deformation microstructure of pearlitic steel (0.8 wt % C) have been quantified in wires drawn to strains in the range from 3.7 to 5.4, having a flow stress in the range from 3.5 to 4.5 GPa. With increasing strain the interlamellar spacing (ILS) decreases from about...... mechanism in the wire and three strengthening mechanisms are applied: boundary strengthening, dislocation strengthening and solid solution hardening with their relative contributions to the total flow stress which change as the strain is increased. Based on linear additivity good correspondence between...

  10. Dynamical systems in classical mechanics

    CERN Document Server

    Kozlov, V V

    1995-01-01

    This book shows that the phenomenon of integrability is related not only to Hamiltonian systems, but also to a wider variety of systems having invariant measures that often arise in nonholonomic mechanics. Each paper presents unique ideas and original approaches to various mathematical problems related to integrability, stability, and chaos in classical dynamics. Topics include… the inverse Lyapunov theorem on stability of equilibria geometrical aspects of Hamiltonian mechanics from a hydrodynamic perspective current unsolved problems in the dynamical systems approach to classical mechanics

  11. High-resolution He beam scattering as a tool for the investigation of the structural and dynamical properties of surface soliton dislocations

    International Nuclear Information System (INIS)

    El-Batanouny, M.; Martini, K.M.

    1986-01-01

    We discuss the applicability of high-resolution-He-beam/surface scattering to the investigation of the structural and dynamic properties of soliton-like surface misfit dislocations and associated phase transitions. We present evidence, based on recent He diffraction measurements, for the existence of double-sine-Gordon soliton-like dislocations on the reconstructed Au(111) surface. 18 refs., 3 figs., 1 tab

  12. Mechanisms operating during plastic deformation of metals under concurrent production of cascades and dislocations

    DEFF Research Database (Denmark)

    Trinkaus, H.; Singh, Bachu Narain

    Recent in-reactor tensile tests (IRTs) on pure copper have revealed a deformation behaviour which is significantly different from that observed in post-irradiation tensile tests (PITs). In IRTs, the material deforms uniformly and homogeneously without yield drop and plastic instability as commonly...... observed in PITs. An increase in the pre-yield dose results in an increase in the level of hardening over the whole test periods and a decrease in the uniform elongation suggesting that the materials “remember” the impact of the pre-yield damage level. These features are modelled in terms of the decoration...... and deformation, moving dislocations are decorated by the sweeping of matrix loops. The interaction of dislocations with loops and between loops is discussed as a function of the relevant parameters. On this basis, the kinetics of decoration is treated in terms of fluxes of loops to and reactions with each other...

  13. The glide of screw dislocations in bcc Fe: Atomistic static and dynamic simulations

    International Nuclear Information System (INIS)

    Chaussidon, Julien; Fivel, Marc; Rodney, David

    2006-01-01

    We present atomic-scale simulations of screw dislocation glide in bcc iron. Using two interatomic potentials that, respectively, predict degenerate and non-degenerate core structures, we compute the static 0 K dependence of the screw dislocation Peierls stress on crystal orientation and show strong boundary condition effects related to the generation of non-glide stress components. At finite temperatures we show that, with a non-degenerate core, glide by nucleation/propagation of kink-pairs in a {1 1 0} glide plane is obtained at low temperatures. A transition in the twinning region, towards an average {1 1 2} glide plane, with the formation of debris loops is observed at higher temperatures

  14. A novel unified dislocation density-based model for hot deformation behavior of a nickel-based superalloy under dynamic recrystallization conditions

    International Nuclear Information System (INIS)

    Lin, Y.C.; Wen, Dong-Xu; Chen, Xiao-Min; Chen, Ming-Song

    2016-01-01

    In this study, a novel unified dislocation density-based model is presented for characterizing hot deformation behaviors in a nickel-based superalloy under dynamic recrystallization (DRX) conditions. In the Kocks-Mecking model, a new softening item is proposed to represent the impacts of DRX behavior on dislocation density evolution. The grain size evolution and DRX kinetics are incorporated into the developed model. Material parameters of the developed model are calibrated by a derivative-free method of MATLAB software. Comparisons between experimental and predicted results confirm that the developed unified dislocation density-based model can nicely reproduce hot deformation behavior, DRX kinetics, and grain size evolution in wide scope of initial grain size, strain rate, and deformation temperature. Moreover, the developed unified dislocation density-based model is well employed to analyze the time-variant forming processes of the studied superalloy. (orig.)

  15. A novel unified dislocation density-based model for hot deformation behavior of a nickel-based superalloy under dynamic recrystallization conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.C. [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); Light Alloy Research Institute of Central South University, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China); Wen, Dong-Xu; Chen, Xiao-Min [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); Chen, Ming-Song [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China)

    2016-09-15

    In this study, a novel unified dislocation density-based model is presented for characterizing hot deformation behaviors in a nickel-based superalloy under dynamic recrystallization (DRX) conditions. In the Kocks-Mecking model, a new softening item is proposed to represent the impacts of DRX behavior on dislocation density evolution. The grain size evolution and DRX kinetics are incorporated into the developed model. Material parameters of the developed model are calibrated by a derivative-free method of MATLAB software. Comparisons between experimental and predicted results confirm that the developed unified dislocation density-based model can nicely reproduce hot deformation behavior, DRX kinetics, and grain size evolution in wide scope of initial grain size, strain rate, and deformation temperature. Moreover, the developed unified dislocation density-based model is well employed to analyze the time-variant forming processes of the studied superalloy. (orig.)

  16. Modeling of dislocation generation and interaction during high-speed deformation of metals

    DEFF Research Database (Denmark)

    Schiøtz, J.; Leffers, T.; Singh, B.N.

    2002-01-01

    Recent experiments by Kiritani et al. [1] have revealed a surprisingly high rate of vacancy production during highspeed deformation of thin foils of fcc metals. Virtually no dislocations are seen after the deformation. This is interpreted as evidence for a dislocation-free deformation mechanism...... at very high strain rates. We have used molecular-dynamics simulations to investigate high-speed deformation of copper crystals. Even though no pre-existing dislocation sources are present in the initial system, dislocations are quickly nucleated and a very high dislocation density is reached during...... the deformation. Due to the high density of dislocations, many inelastic interactions occur between dislocations, resulting in the generation of vacancies. After the deformation, a very high density of vacancies is observed, in agreement with the experimental observations. The processes responsible...

  17. [Elbow dislocation].

    Science.gov (United States)

    de Pablo Márquez, B; Castillón Bernal, P; Bernaus Johnson, M C; Ibañez Aparicio, N M

    Elbow dislocation is the most frequent dislocation in the upper limb after shoulder dislocation. Closed reduction is feasible in outpatient care when there is no associated fracture. A review is presented of the different reduction procedures. Copyright © 2017 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel

    International Nuclear Information System (INIS)

    Wang, Shenglong; Zhang, Mingxian; Wu, Huanchun; Yang, Bin

    2016-01-01

    In this study, the dynamic recrystallization behaviors of a nuclear grade 316LN austenitic stainless steel were researched through hot compression experiment performed on a Gleeble-1500 simulator at temperatures of 900–1250 °C and strain rates of 0.01–1 s −1 . By multiple linear regressions of the flow stress-strain data, the dynamic recrystallization mathematical models of this steel as functions of strain rate, strain and temperature were developed. Then these models were verified in a real experiment. Furthermore, the dynamic recrystallization mechanism of the steel was determined. The results indicated that the subgrains in this steel are formed through dislocations polygonization and then grow up through subgrain boundaries migration towards high density dislocation areas and subgrain coalescence mechanism. Dynamic recrystallization nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism. The nuclei grow up through high angle grain boundaries migration. - Highlights: •Establish the DRX mathematical models of nuclear grade 316LN stainless steel •Determine the DRX mechanism of this steel •Subgrains are formed through dislocations polygonization. •Subgrains grow up through subgrain boundaries migration and coalescence mechanism. •DRX nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism.

  19. Nonlinear Dynamic Phenomena in Mechanics

    CERN Document Server

    Warminski, Jerzy; Cartmell, Matthew P

    2012-01-01

    Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinear

  20. Electronic properties of dislocations introduced mechanically at room temperature on a single crystal silicon surface

    International Nuclear Information System (INIS)

    Ogawa, Masatoshi; Kamiya, Shoji; Izumi, Hayato; Tokuda, Yutaka

    2012-01-01

    This paper focuses on the effects of temperature and environment on the electronic properties of dislocations in n-type single crystal silicon near the surface. Deep level transient spectroscopy (DLTS) analyses were carried out with Schottky electrodes and p + -n junctions. The trap level, originally found at E C -0.50 eV (as commonly reported), shifted to a shallower level at E C -0.23 eV after a heat treatment at 350 K in an inert environment. The same heat treatment in lab air, however, did not cause any shift. The trap level shifted by the heat treatment in an inert environment was found to revert back to the original level when the specimens were exposed to lab air again. Therefore, the intrinsic trap level is expected to occur at E C -0.23 eV and shift sensitively with gas adsorption in air.

  1. Mechanisms of defect production and atomic mixing in high energy displacement cascades: A molecular dynamics study

    International Nuclear Information System (INIS)

    Diaz de la Rubia, T.; Guinan, M.W.

    1991-01-01

    We have performed molecular dynamics computer simulation studies of displacement cascades in Cu at low temperature. For 25 keV recoils we observe the splitting of a cascade into subcascades and show that cascades in Cu may lead to the formation of vacancy and interstitial dislocation loops. We discuss a new mechanism of defect production based on the observation of interstitial prismatic dislocation loop punching from cascades at 10 K. We also show that below the subcascade threshold, atomic mixing in the cascade is recoil-energy dependent and obtain a mixing efficiency that scales as the square root of the primary recoil energy. 44 refs., 12 figs

  2. Towards a quantification of stress corrosion mechanisms: numerical simulations of hydrogen-dislocations at the very crack tip; Vers une quantification des mecanismes de corrosion sous contrainte: simulations numeriques des interactions hydrogene-dislocations en pointe de fissure

    Energy Technology Data Exchange (ETDEWEB)

    Chateau, J.P

    1999-01-05

    We discuss the respective roles played by anodic dissolution and hydrogen in SCC mechanisms of f.c.c. materials, by studying the fracture of copper in nitrite for which we compare the results with that previously obtained in 316L steel in hot chloride. It is surprising to note that even the crystallographies at the scale of the micron are different, the macroscopic inclination of the fracture surfaces are the same. In the case of 316L steel, the formation of strong pile-ups in the presence of hydrogen leads to a zigzag fracture along alternated slip planes in the most general case. In the absence of hydrogen, as in copper, this mechanism effectively disappears. Furthermore, numerical simulations of crack shielding by dislocations emitted on one plane predict the macroscopic inclination. It shows that it is due to the mere dissolution which confines slip activity at the very crack tip in f.c.c. materials. In order to quantify the mechanism involved in 316L steel, we developed simulations which numerically solve the coupled diffusion and elasticity equations for hydrogen in the presence of a crack and shielding dislocations. They reproduce the mechanisms of hydrogen segregation on edge dislocations and of a localised softening effect by decreasing pair interactions. These mechanisms lead to i) a localisation of hydrogen embrittlement along the activated slip planes, ii) an increase of the dislocation density in pile-ups, and iii) a decrease of the cross slip probability. These three factors enhance micro-fracture at the head of a pile-up, which is responsible of thezigzag fracture. Introducing the free surface effects for hydrogen, we point out a new mechanism: the inhibition of dislocation sources at the crack tip, which is relevant with the brittle fracture surfaces observed in some cases in 316L steel. The quantification of these different mechanisms allows to give a relation between the local fracture possibility and the macroscopic parameters. A general law for

  3. Dynamic plantar pressure distribution, strength capacity and postural control after Lisfranc fracture-dislocation

    DEFF Research Database (Denmark)

    Mehlhorn, Alexander T; Walther, Markus; Yilmaz, Tayfun

    2017-01-01

    of life. 17 consecutive patients suffering from a Lisfranc fracture dislocation were registered, underwent open reduction and internal fixation and were followed-up for 50.5±25.7months (Mean±SDM). Biomechanical analysis of muscle strength capacities, postural control and plantar pressure distribution......Substantial progress has been made in the operative treatment of Lisfranc fractures, however, the prognosis remains poor. We hypothesized that Lisfranc injuries change the postural control and muscle strength of the lower limb. Both are suggested to correlate with the clinical outcome and quality...... correlated well with clinical outcome. Altered postural control was evident by a significant reduction in unilateral stance time, from which we calculated a strong correlation between stance time and the isokinetic strength measurement. Plantar pressure measurements revealed a significant reduction in peak...

  4. System dynamics for mechanical engineers

    CERN Document Server

    Davies, Matthew

    2015-01-01

    This textbook is ideal for mechanical engineering students preparing to enter the workforce during a time of rapidly accelerating technology, where they will be challenged to join interdisciplinary teams. It explains system dynamics using analogies familiar to the mechanical engineer while introducing new content in an intuitive fashion. The fundamentals provided in this book prepare the mechanical engineer to adapt to continuous technological advances with topics outside traditional mechanical engineering curricula by preparing them to apply basic principles and established approaches to new problems. This book also: ·         Reinforces the connection between the subject matter and engineering reality ·         Includes an instructor pack with the online publication that describes in-class experiments with minimal preparation requirements ·         Provides content dedicated to the modeling of modern interdisciplinary technological subjects, including opto-mechanical systems, high...

  5. Rigid body dynamics of mechanisms

    CERN Document Server

    Hahn, Hubert

    2003-01-01

    The second volume of Rigid Body Dynamics of Mechanisms covers applications via a systematic method for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume that introduces the theoretical mechanical aspects of mechatronic systems. Here the focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, plus active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of mechanical systems, i.e. robotics, mechatronics, vehicles, and machine tools. The examples included are a likely source from which to choose models for university lectures.

  6. Role of quaternary additions on dislocated martensite, retain austenite and mechanical properties of Fe/Cr/C structural steels

    International Nuclear Information System (INIS)

    Rao, B.V.N.

    1978-02-01

    The influence of quaternary alloy additions of Mn and Ni to Fe/Cr/C steels which have been designed to provide superior mechanical properties has been investigated. Transmission electron microscopy and x-ray analysis revealed increasing amounts of retained austenite with Mn up to 2 w/o and with 5 w/o Ni additions after quenching from 1100 0 C. This is accompanied by a corresponding improvement in toughness properties of the quaternary alloys. In addition, the generally attractive combinations of strength and toughness in these quaternary alloys is attributed to the production of dislocated lath martensite from a homogeneous austenite phase free from undissolved alloy carbides. Grain-refining resulted in a further increase in the amount of retained austenite

  7. Tailoring Superconductivity with Quantum Dislocations.

    Science.gov (United States)

    Li, Mingda; Song, Qichen; Liu, Te-Huan; Meroueh, Laureen; Mahan, Gerald D; Dresselhaus, Mildred S; Chen, Gang

    2017-08-09

    Despite the established knowledge that crystal dislocations can affect a material's superconducting properties, the exact mechanism of the electron-dislocation interaction in a dislocated superconductor has long been missing. Being a type of defect, dislocations are expected to decrease a material's superconducting transition temperature (T c ) by breaking the coherence. Yet experimentally, even in isotropic type I superconductors, dislocations can either decrease, increase, or have little influence on T c . These experimental findings have yet to be understood. Although the anisotropic pairing in dirty superconductors has explained impurity-induced T c reduction, no quantitative agreement has been reached in the case a dislocation given its complexity. In this study, by generalizing the one-dimensional quantized dislocation field to three dimensions, we reveal that there are indeed two distinct types of electron-dislocation interactions. Besides the usual electron-dislocation potential scattering, there is another interaction driving an effective attraction between electrons that is caused by dislons, which are quantized modes of a dislocation. The role of dislocations to superconductivity is thus clarified as the competition between the classical and quantum effects, showing excellent agreement with existing experimental data. In particular, the existence of both classical and quantum effects provides a plausible explanation for the illusive origin of dislocation-induced superconductivity in semiconducting PbS/PbTe superlattice nanostructures. A quantitative criterion has been derived, in which a dislocated superconductor with low elastic moduli and small electron effective mass and in a confined environment is inclined to enhance T c . This provides a new pathway for engineering a material's superconducting properties by using dislocations as an additional degree of freedom.

  8. On the dynamic mechanical property and deformation mechanism of as-extruded Mg-Sn-Ca alloys under tension

    International Nuclear Information System (INIS)

    Huang, Qiuyan; Pan, Hucheng; Tang, Aitao; Ren, Yuping; Song, Bo; Qin, Gaowu; Zhang, Mingxing; Pan, Fusheng

    2016-01-01

    To further understand the deformation mechanism of magnesium alloys and expand their applications under dynamic conditions, the newly developed Mg-2Sn-1Ca alloy (TX21) is selected as the representative sample and tested under wide loading rate ranging from quasi-static to dynamic level (10"−"3–500/s). Both ultimate tensile strength and elongation of the as-extruded TX21 alloys increase with strain rate. Although twinning is accompanied due to the enhanced activity at higher strain rate, the preferential activation of dislocations is readily clarified and confirmed as the dominant deformation modes. Active interactions of pyramidal dislocations result in the higher strain hardening ability and could be correlated to the obviously positive strain-rate sensitivity for mechanical properties. Moreover, it is observed that the larger grain size and higher content of solute atoms dissolved in matrix would lead to the more active dislocations and twinning formations. The present results would provide insight into further understanding the deformation mechanism under dynamic rate loading and designing Mg alloy suitable for impact conditions.

  9. On the dynamic mechanical property and deformation mechanism of as-extruded Mg-Sn-Ca alloys under tension

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiuyan [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Hucheng [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Tang, Aitao, E-mail: tat@cqu.edu.cn [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Ren, Yuping [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Song, Bo [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Qin, Gaowu, E-mail: qingw@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Zhang, Mingxing [School of Mechanical and Mining Engineering, University of Queensland, St Lucia, QLD 4072 (Australia); Pan, Fusheng [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2016-05-10

    To further understand the deformation mechanism of magnesium alloys and expand their applications under dynamic conditions, the newly developed Mg-2Sn-1Ca alloy (TX21) is selected as the representative sample and tested under wide loading rate ranging from quasi-static to dynamic level (10{sup −3}–500/s). Both ultimate tensile strength and elongation of the as-extruded TX21 alloys increase with strain rate. Although twinning is accompanied due to the enhanced activity at higher strain rate, the preferential activation of dislocations is readily clarified and confirmed as the dominant deformation modes. Active interactions of pyramidal dislocations result in the higher strain hardening ability and could be correlated to the obviously positive strain-rate sensitivity for mechanical properties. Moreover, it is observed that the larger grain size and higher content of solute atoms dissolved in matrix would lead to the more active dislocations and twinning formations. The present results would provide insight into further understanding the deformation mechanism under dynamic rate loading and designing Mg alloy suitable for impact conditions.

  10. Dislocations and vacancies in two-dimensional mixed crystals of spheres and dimers

    KAUST Repository

    Gerbode, Sharon J.; Ong, Desmond C.; Liddell, Chekesha M.; Cohen, Itai

    2010-01-01

    In colloidal crystals of spheres, dislocation motion is unrestricted. On the other hand, recent studies of relaxation in crystals of colloidal dimer particles have demonstrated that the dislocation dynamics in such crystals are reminiscent of glassy systems. The observed glassy dynamics arise as a result of dislocation cages formed by certain dimer orientations. In the current study, we use experiments and simulations to investigate the transition that arises when a pure sphere crystal is doped with an increasing concentration of dimers. Specifically, we focus on both dislocation caging and vacancy motion. Interestingly, we find that any nonzero fraction of dimers introduces finite dislocation cages, suggesting that glassy dynamics are present for any mixed crystal. However, we have also identified a vacancy-mediated uncaging mechanism for releasing dislocations from their cages. This mechanism is dependent on vacancy diffusion, which slows by orders of magnitude as the dimer concentration is increased. We propose that in mixed crystals with low dimer concentrations vacancy diffusion is fast enough to uncage dislocations and delay the onset of glassy dislocation dynamics. © 2010 The American Physical Society.

  11. Dislocations and vacancies in two-dimensional mixed crystals of spheres and dimers

    KAUST Repository

    Gerbode, Sharon J.

    2010-10-15

    In colloidal crystals of spheres, dislocation motion is unrestricted. On the other hand, recent studies of relaxation in crystals of colloidal dimer particles have demonstrated that the dislocation dynamics in such crystals are reminiscent of glassy systems. The observed glassy dynamics arise as a result of dislocation cages formed by certain dimer orientations. In the current study, we use experiments and simulations to investigate the transition that arises when a pure sphere crystal is doped with an increasing concentration of dimers. Specifically, we focus on both dislocation caging and vacancy motion. Interestingly, we find that any nonzero fraction of dimers introduces finite dislocation cages, suggesting that glassy dynamics are present for any mixed crystal. However, we have also identified a vacancy-mediated uncaging mechanism for releasing dislocations from their cages. This mechanism is dependent on vacancy diffusion, which slows by orders of magnitude as the dimer concentration is increased. We propose that in mixed crystals with low dimer concentrations vacancy diffusion is fast enough to uncage dislocations and delay the onset of glassy dislocation dynamics. © 2010 The American Physical Society.

  12. Formation of disorientations in dislocation structures during plastic deformation

    DEFF Research Database (Denmark)

    Pantleon, W.

    2002-01-01

    Disorientations developing during plastic deformation in dislocation structures are investigated. Based on expected mechanisms for the formation of different types of dislocation boundaries (statistical trapping of dislocations or differently activated slip systems) the formation of the disorient...

  13. Dislocation structure evolution and characterization in the compression deformed Mn-Cu alloy

    International Nuclear Information System (INIS)

    Zhong, Y.; Yin, F.; Sakaguchi, T.; Nagai, K.; Yang, K.

    2007-01-01

    Dislocation densities and dislocation structure arrangements in cold compressed polycrystalline commercial M2052 (Mn-20Cu-5Ni-2Fe) high damping alloy with various strains were determined in scanning mode by X-ray peak profile analysis and electron backscatter diffraction (EBSD). The results indicate that the Mn-Cu-Ni-Fe alloy has an evolution behavior quite similar to the dislocation structure in copper. The dislocation arrangement parameter shows a local minimum in the transition range between stages III and IV that can be related to the transformation of the dislocation arrangement in the cell walls from a polarized dipole wall (PDW) into a polarized tile wall (PTW) structure. This evolution is further confirmed by the results of local misorientation determined by EBSD. In addition, during deformation, the multiplication of dislocation densities in the MnCu alloy is significantly slower than that in copper, and the transition of the dislocation structure is strongly retarded in the MnCu alloy compared with copper. These results can be explained by the mechanism of elastic anisotropy on the dislocation dynamics, as the elastic anisotropy in the MnCu alloy is larger than that in copper, which can strongly retard the multiplication of the dislocation population and the transformation of the dislocation structure. These results are important for research into the plastic working behavior of Mn-Cu-Ni-Fe high damping alloy

  14. Dislocation of jaws

    International Nuclear Information System (INIS)

    Katzberg, R.W.; Hayakawa, K.; Anderson, Q.N.; Manzione, J.V.; Helms, C.A.; Tallents, R.

    1984-01-01

    Pluri-directional tomographic and arthrotomographic findings are described in six patients with dislocation of the jaw severe enough to require medical assistance. A grooved defect along the posterior aspect of the condylar head was noted in two of the six patients. The arthrotomographic findings that were obtained in one patient that was dislocated at the time of the arthrogram did not suggest a meniscocondyle incoordination as a mechanism. However, arthrotomographic findings in the six reported cases suggest that significant intra-articular soft tissue damage may result. (orig.)

  15. Study of the dislocation mechanism responsible for the Bordoni relaxation in aluminum by the two-wave acoustic coupling method

    Science.gov (United States)

    Bujard, M.; Gremaud, G.; Benoit, W.

    1987-10-01

    The most realistic model for the interpretation of the Bordoni relaxation observed by internal friction experiments is the mechanism of kink pair formation (KPF) on the dislocations. However, according to this model, high values of the critical resolved shear stress should also be measured at low temperature in face-centered-cubic (fcc) metals, but this has never been observed. Using the newly developed two-wave acoustic coupling method, we have studied the reality of the KPF model as an explanation for the Bordoni relaxation in aluminum. The results are in very good agreement with the predictions of the KPF model and thus confirm this model. On the other hand, experimental evidence that the kink mobility is very high in aluminum have been found. Therefore, the diffusion time of the kinks is negligibly small for the KPF process in fcc metals. Values of the internal stress field in cold-worked samples have also been obtained using the two-wave acoustic coupling approach. A description of the experimental method and the theoretical approach for the interpretation of the results will also be given in this paper.

  16. The movement of screw dislocations in tungsten

    International Nuclear Information System (INIS)

    Tian Xiaogeng; Woo Chungho

    2004-01-01

    Using Acland potential for tungsten, the movement of 1/2a screw dislocation under shear stress was investigated by molecular dynamics simulation. Equilibrated core structure was obtained by relaxation of screw dislocation with proper boundary conditions. We found that the equilibrium dislocation core has three-fold symmetry and spread out in three direction on {1 1 0} planes. The screw dislocation core could not keep the original shape when the shear stress applied. The dislocation could not move until the shear stress became large enough. The dislocation moved in zigzag when the shear stress neared the Peierls stress. When the shear stress became larger, the dislocation moved in zigzag at the beginning and than moved almost in straight line in [2-bar11] direction. The large shear stress applied, the long distance moved before the dislocation stilled in z-direction and the large velocity in y-direction

  17. A continuum theory of edge dislocations

    Science.gov (United States)

    Berdichevsky, V. L.

    2017-09-01

    dislocation phase space is strikingly simple. Dislocation phase space is split in a family of subspaces corresponding to constant values of dislocation polarizations; in each equipolarization subspace there are many local minima of energy; for zero external stresses the system is stuck in a local minimum of energy; for non-zero slowly changing external stress, dislocation polarization evolves, while the system moves over local energy minima of equipolarization subspaces. Such a simple picture of dislocation dynamics is due to the presence of two time scales, slow evolution of dislocation polarization and fast motion of the system over local minima of energy. The existence of two time scales is justified for a neutral system of edge dislocations.

  18. Two-dimensional discrete dislocation models of deformation in polycrystalline thin metal films on substrates

    International Nuclear Information System (INIS)

    Hartmaier, Alexander; Buehler, Markus J.; Gao, Huajian

    2005-01-01

    The time-dependent irreversible deformation of polycrystalline thin metal films on substrates is investigated using two-dimensional discrete dislocation dynamics models incorporating essential parameters determined from atomistic studies. The work is focused on the mechanical properties of uncapped films, where diffusive processes play an important role. The simulations incorporate dislocation climb along the grain boundary as well as conservative glide. Despite of severe limitations of the two-dimensional dislocation models, the simulation results are found to largely corroborate experimental findings on different dominant deformation mechanisms at different film thicknesses

  19. Relaxation strain measurements in cellular dislocation structures

    International Nuclear Information System (INIS)

    Tsai, C.Y.; Quesnel, D.J.

    1984-01-01

    The conventional picture of what happens during a stress relaxation usually involves imagining the response of a single dislocation to a steadily decreasing stress. The velocity of this dislocation decreases with decreasing stress in such a way that we can measure the stress dependence of the dislocation velocity. Analysis of the data from a different viewpoint enables us to calculate the apparent activation volume for the motion of the dislocation under the assumption of thermally activated glie. Conventional thinking about stress relaxation, however, does not consider the eventual fate of this dislocation. If the stress relaxes to a low enough level, it is clear that the dislocation must stop. This is consistent with the idea that we can determine the stress dependence of the dislocation velocity from relaxation data only for those cases where the dislocation's velocity is allowed to approach zero asymptotically, in short, for those cases where the dislocation never stops. This conflict poses a dilemma for the experimentalist. In real crystals, however, obstacles impede the dislocation's progress so that those dislocations which are stopped at a given stress will probably never resume motion under the influence of the steadily declining stress present during relaxation. Thus one could envision stress relaxation as a process of exhaustion of mobile dislocations, rather than a process of decreasing dislocation velocity. Clearly both points of view have merit and in reality both mechanisms contribute to the phenomena

  20. Modeling of dislocation channel width evolution in irradiated metals

    Science.gov (United States)

    Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.

    2018-02-01

    Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. Based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopy (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Further, examinations of the effect of the so-called "source-broadening" mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel

  1. Smectic meniscus and dislocations

    International Nuclear Information System (INIS)

    Geminard, J.C.; Oswald, P.; Holyst, R.

    1998-01-01

    In ordinary liquids the size of a meniscus and its shape is set by a competition between surface tension and gravity. The thermodynamical process of its creation can be reversible. On the contrary, in smectic liquid crystals the formation of the meniscus is always an irreversible thermodynamic process since it involves the creation of dislocations (therefore it involves friction). Also the meniscus is usually small in experiments with smectics in comparison to the capillary length and therefore the gravity does not play any role in determining the meniscus shape. Here we discuss the relation between dislocations and meniscus in smectics. The theoretical predictions are supported by a recent experiment performed on freely suspended films of smectic liquid crystals. In this experiment the measurement of the meniscus radius of curvature gives the pressure difference, Δp, according to the Laplace law. From the measurements of the growth dynamics of a dislocation loop (governed by Δp) we find the line tension (∼8 x 10 -8 dyn) and the mobility of an elementary edge dislocation (∼4 x 10 - 7 cm 2 s/g). (author)

  2. {311} Defects in ion-implanted silicon: The cause of transient diffusion, and a mechanism for dislocation formation

    International Nuclear Information System (INIS)

    Eaglesham, D.J.; Stolk, P.A.; Cheng, J.Y.; Gossmann, H.J.; Poate, J.M.; Haynes, T.E.

    1995-04-01

    Ion implantation is used at several critical stages of Si integrated circuit manufacturing. The authors show how {311} defects arising after implantation are responsible for both enhanced dopant diffusion during annealing, and stable dislocations post-anneal. They observe {311} defects in the earliest stages of an anneal. They subsequently undergo rapid Ostwald ripening and evaporation. At low implant doses evaporation dominates, and they can quantitatively relate the interstitials emitted from these defects to the transient enhancement in diffusivity of dopants such as B and P. At higher doses Ostwald ripening is significant, and they observe the defects to undergo a series of unfaulting reactions to form both Frank loops and perfect dislocations. They demonstrate the ability to control both diffusion and dislocations by the addition of small amounts of carbon impurities

  3. Convoluted dislocation loops induced by helium irradiation in reduced-activation martensitic steel and their impact on mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yao, Z. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada K7L 3N6 (Canada); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wen, Yongming [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2014-06-01

    Helium irradiation induced dislocation loops in reduced-activation martensitic steels were investigated using transmission electron microscopy. The specimens were irradiated with 100 keV helium ions to 0.8 dpa at 350 °C. Unexpectedly, very large dislocation loops were found, significantly larger than that induced by other types of irradiations under the same dose. Moreover, the large loops were convoluted and formed interesting flower-like shape. The large loops were determined as interstitial type. Loops with the Burgers vectors of b=〈100〉 were only observed. Furthermore, irradiation induced hardening caused by these large loops was observed using the nano-indentation technique.

  4. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    International Nuclear Information System (INIS)

    Xu Yuhua; Zhou Wuneng; Fang Jianan

    2009-01-01

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  5. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China)], E-mail: yuhuaxu2004@163.com; Zhou Wuneng [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)], E-mail: wnzhou@163.com; Fang Jianan [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)

    2009-11-15

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  6. Nucleation of dislocations from [0 0 1] bicrystal interfaces in aluminum

    International Nuclear Information System (INIS)

    Spearot, Douglas E.; Jacob, Karl I.; McDowell, David L.

    2005-01-01

    It is well established from molecular dynamics simulations that grain boundaries in nanocrystalline samples serve as sources of dislocations. In this work, we use molecular dynamics simulations to study the mechanisms associated with dislocation nucleation from bicrystal [0 0 1] interfaces in aluminum. Three interface misorientations are studied, including the Σ5 (3 1 0) boundary, which has a high density of coincident atomic sites. Molecular dynamics simulations show that full dislocation loops are nucleated from each interface during uniaxial tension. After the second partial dislocation is emitted, a ledge remains within the interface at the intersection of the slip plane and the bicrystal boundary. A disclination dipole model is proposed for the structure of the distorted interface accounting for local lattice rotations and the ledge at the nucleation site

  7. Multi-scale approach of plasticity mechanisms in irradiated austenitic steels

    International Nuclear Information System (INIS)

    Nogaret, Th.

    2007-12-01

    The plasticity in irradiated metals is characterized by the localization of the deformation in clear bands, defect free, formed by the dislocation passage. We investigated the clear band formation thanks to a multi-scale approach. Molecular dynamics simulations show that screw dislocations mainly un-fault and absorb the defects as helical turns, are strongly pinned by the helical turns and are remitted in new glide planes when they unpin whereas edge dislocations mainly shear the defects for moderate stresses and can drag the helical turns. The interaction mechanisms were implemented into the discrete dislocation dynamics code in order to study the clear band formation at the micron scale. As dislocations are issued from grain boundaries, we consider a dislocation source located on a box border that emits dislocations when the dislocation nucleation stress is reached. The hardening was seen mainly due to the screw dislocations that are strongly pinned by helical turns. Edge dislocations are less pinned and glide on long distances, letting long screw dislocation segments. As more dislocations are emitted, screw dislocation pile-ups form and this permits the unpinning of screw dislocations. They unpin by activating dislocation segments in new glide planes, which broadens the clear band. When the segments activate, they create edge parts that sweep the screw dislocation lines by dragging away the super-jogs towards the box borders where they accumulate, which clears the band. (author)

  8. Prediction of intragranular strains in metallic polycrystals with a two-level homogenisation approach: Influence of dislocation microstructure on the mechanical behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Gloaguen, D. [GeM, Institut de Recherche en Genie Civil et Mecanique, Universite de Nantes, Ecole Centrale de Nantes, CNRS UMR 6183, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire (France); Francois, M. [Laboratoire des Systemes Mecaniques et d' Ingenierie Simultanee (LASMIS FRE CNRS 2719), Universite de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes cedex (France)

    2006-06-15

    A two-level homogenisation approach is applied to the micro-mechanical modelling of the elasto-plasticity of polycrystalline materials during various strain-path changes. The model is tested by simulating the development of intragranular strains during different complex loads. Mechanical tests measurements are used as a reference in order to validate the model. The anisotropy of plastic deformation in relation to the evolution of the dislocation structure is analysed. The results demonstrate the relevance of this approach for FCC polycrystals. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Annihilation of interstitial-type dislocation loops in α-Fe during He irradiation

    International Nuclear Information System (INIS)

    Xu, Q.; Wang, Y.X.; Katakabe, Y.; Iwakiri, H.; Yoshida, N.; Sato, K.; Yoshiie, T.

    2011-01-01

    Interstitial-type dislocation loops were formed in Fe-9Cr alloys on irradiation with 1-MeV He ions at 673 K. However, with increasing irradiation dose, the dislocation loops shrunk. A molecular dynamics simulation was used to elucidate the mechanism of this unexpected phenomenon. The simulation shows that, although the binding energy of a self-interstitial atom to a dislocation loop is normally greater than that of a vacancy, the energy hierarchy is reversed when He atoms decorate the loop. This may indicates preferential absorption of vacancies, causing loop shrinkage at high doses, consistent with experimental observation.

  10. Annihilation of interstitial-type dislocation loops in {alpha}-Fe during He irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q., E-mail: xu@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Wang, Y.X. [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Katakabe, Y. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580 (Japan); Iwakiri, H. [Faculty of Education, University of the Ryukyus, Okinawa 903-0213 (Japan); Yoshida, N. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580 (Japan); Sato, K.; Yoshiie, T. [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan)

    2011-10-01

    Interstitial-type dislocation loops were formed in Fe-9Cr alloys on irradiation with 1-MeV He ions at 673 K. However, with increasing irradiation dose, the dislocation loops shrunk. A molecular dynamics simulation was used to elucidate the mechanism of this unexpected phenomenon. The simulation shows that, although the binding energy of a self-interstitial atom to a dislocation loop is normally greater than that of a vacancy, the energy hierarchy is reversed when He atoms decorate the loop. This may indicates preferential absorption of vacancies, causing loop shrinkage at high doses, consistent with experimental observation.

  11. An MD simulation of interactions between self-interstitial atoms and edge dislocation in bcc transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, H. (Aomori Public College, 153-4 Yamazaki, Goushi-zawa, Aomori 030-01 (Japan)); Rafii-Tabar, H. (Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980 (Japan)); Kawazoe, Y. (Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980 (Japan)); Matsui, H. (Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980 (Japan))

    1994-09-01

    According to our model on the mechanism of dislocation bias reduction based on the interaction of dumbbell self-interstitial atoms (SIAs) with dislocation, the bias is significantly different depending on the dumbbell configuration in the dislocation strain field. A large-scale molecular dynamics (MD) simulation is performed to reveal the stability and the mechanism of diffusion of dumbbell SIAs near the edge dislocation core in bcc iron. Most SIAs take the crowdion configuration parallel to the Burgers vector in the expansion side of the dislocation. Such crowdions are stable in the temperature range of this simulation, i.e. between 373 and 473 K, making one-dimensional random to-and-fro motion parallel to the dislocation Burgers vector staying at several atomic layers below'' the dislocation core. This means that the SIA does not approach the dislocation core. These results suggest that the stable configuration of SIAs is seriously affected by the dislocation resulting in a reduction of bias factor. ((orig.))

  12. An MD simulation of interactions between self-interstitial atoms and edge dislocation in bcc transition metals

    International Nuclear Information System (INIS)

    Kamiyama, H.; Rafii-Tabar, H.; Kawazoe, Y.; Matsui, H.

    1994-01-01

    According to our model on the mechanism of dislocation bias reduction based on the interaction of dumbbell self-interstitial atoms (SIAs) with dislocation, the bias is significantly different depending on the dumbbell configuration in the dislocation strain field. A large-scale molecular dynamics (MD) simulation is performed to reveal the stability and the mechanism of diffusion of dumbbell SIAs near the edge dislocation core in bcc iron. Most SIAs take the crowdion configuration parallel to the Burgers vector in the expansion side of the dislocation. Such crowdions are stable in the temperature range of this simulation, i.e. between 373 and 473 K, making one-dimensional random to-and-fro motion parallel to the dislocation Burgers vector staying at several atomic layers ''below'' the dislocation core. This means that the SIA does not approach the dislocation core. These results suggest that the stable configuration of SIAs is seriously affected by the dislocation resulting in a reduction of bias factor. ((orig.))

  13. Theory of interacting dislocations on cylinders.

    Science.gov (United States)

    Amir, Ariel; Paulose, Jayson; Nelson, David R

    2013-04-01

    We study the mechanics and statistical physics of dislocations interacting on cylinders, motivated by the elongation of rod-shaped bacterial cell walls and cylindrical assemblies of colloidal particles subject to external stresses. The interaction energy and forces between dislocations are solved analytically, and analyzed asymptotically. The results of continuum elastic theory agree well with numerical simulations on finite lattices even for relatively small systems. Isolated dislocations on a cylinder act like grain boundaries. With colloidal crystals in mind, we show that saddle points are created by a Peach-Koehler force on the dislocations in the circumferential direction, causing dislocation pairs to unbind. The thermal nucleation rate of dislocation unbinding is calculated, for an arbitrary mobility tensor and external stress, including the case of a twist-induced Peach-Koehler force along the cylinder axis. Surprisingly rich phenomena arise for dislocations on cylinders, despite their vanishing Gaussian curvature.

  14. Dynamic mechanical behaviors of Fangshan marble

    Directory of Open Access Journals (Sweden)

    Wei Yao

    2017-10-01

    Full Text Available Dynamic strength parameters are extensively used in mining engineering and rock mechanics. However, there are no widely accepted dynamic failure models for rocks. In this study, the dynamic punching shear strength, uniaxial compressive strength (UCS and tensile strength of fine-grained Fangshan marble (FM are first measured by using a split Hopkinson pressure bar (SHPB system. The pulse-shaping technique is then implemented to maintain the dynamic force balance in SHPB tests. Experimental results show that the dynamic punching shear strength, UCS and tensile strength increase with the loading rate. A recently developed dynamic Mohr-Coulomb theory is then used to interpret the testing data. In this model, the angle of internal friction ϕ is assumed to be independent of loading rate and is obtained using the static strength values. According to the dynamic Mohr-Coulomb theory, the dynamic UCS and the dynamic tensile strength are predicted from the dynamic punching shear strength. Furthermore, based on this dynamic theory, the dynamic UCS is predicted from the dynamic tensile strength. The consistency between the predicted and measured dynamic strengths demonstrates that the dynamic Mohr-Coulomb theory is applicable to FM.

  15. Multiscale mechanics of dynamical metamaterials

    NARCIS (Netherlands)

    Geers, M.G.D.; Kouznetsova, V.; Sridhar, A.; Krushynska, A.; Kleiber, M.; Burczynski, T.; Wilde, K.; Gorski, J.; Winkelmann, K.; Smakosz, L.

    2016-01-01

    This contribution focuses on the computational multi-scale solution of wave propagation phenomena in dynamic metamaterials. Taking the Bloch-Floquet solution for the standard elastic case as a point of departure, an extended scheme is presented to solve for heterogeneous visco-elastic materials. The

  16. Epitaxial strain relaxation by provoking edge dislocation dipoles

    Science.gov (United States)

    Soufi, A.; El-Hami, K.

    2018-02-01

    Thin solid films have been used in various devices and engineering systems such as rapid development of highly integrated electronic circuits, the use of surface coatings to protect structural materials in high temperature environments, and thin films are integral parts of many micro-electro-mechanical systems designed to serve as sensors, actuators. Among techniques of ultra-thin films deposition, the heteroepitaxial method becomes the most useful at nanoscale level to obtain performed materials in various applications areas. On the other hand, stresses that appeared during the elaboration of thin films could rise deformations and fractures in materials. The key solution to solve this problem at the nanoscale level is the nucleation of interface dislocations from free surfaces. By provoking edge dislocation dipoles we obtained a strain relaxation in thin films. Moreover, the dynamic of nucleation in edge dislocations from free lateral surfaces was also studied.

  17. Molecular Dynamics Simulation Connections and Mechanical Properties of Cu/Al Explosion Shock Interface

    Directory of Open Access Journals (Sweden)

    ZHANG Yan

    2017-10-01

    Full Text Available Based on the molecular dynamics (MD method, transient explosive welding process of Cu/Al junction point was revealed from the microscopic aspect, and mechanical properties and machinability of the Cu/Al nano-weldment were studied. The results show that kinetic energy is converted into internal energy in the system after the collision. The heterogeneous atoms penetrate into each other and the diffusion effect of copper atoms is better than aluminium atoms. The elastic modulus of the nano-weldment is 64.56 GPa, which is between copper's and aluminium's; however, its yield strength is less than those of the two monocrystals. Interactions between dislocations and disordered lattices cause the stress strengthening in the plastic deformation stage, which causes that the stress values of the weldment is larger than those of the two monocrystals. This strengthening mechanism is also reflected in the cutting process, and the weldment has the highest average cutting force 117.80 nN. A mass of dislocations nucleate in the disordered lattice areas of the weldment, and they spread at 45¯ to the cutting direction. However, dislocations pile up when their propagation is hindered by the disordered lattices and interface, which leads to the work hardening effect.

  18. Dynamics of mechanical systems with variable mass

    CERN Document Server

    Belyaev, Alexander

    2014-01-01

    The book presents up-to-date and unifying formulations for treating dynamics of different types of mechanical systems with variable mass. The starting point is overview of the continuum mechanics relations of balance and jump for open systems from which extended Lagrange and Hamiltonian formulations are derived. Corresponding approaches are stated at the level of analytical mechanics with emphasis on systems with a position-dependent mass and at the level of structural mechanics. Special emphasis is laid upon axially moving structures like belts and chains, and on pipes with an axial flow of fluid. Constitutive relations in the dynamics of systems with variable mass are studied with particular reference to modeling of multi-component mixtures. The dynamics of machines with a variable mass are treated in detail and conservation laws and the stability of motion will be analyzed. Novel finite element formulations for open systems in coupled fluid and structural dynamics are presented.

  19. Emerging Dynamic Design Techniques for Mechanical and ...

    Indian Academy of Sciences (India)

    Emerging Dynamic Design Techniques for Mechanical ... through this school to bring about an awareness of the state-of-art of the software and ... those mentioned above, cannot be ensured on the basis of approaches involving numerical.

  20. Energy flow around a moving dislocation

    International Nuclear Information System (INIS)

    Koizumi, H; Kirchner, H O K

    2009-01-01

    A dislocation moving in a lattice emits lattice waves. We study the energy flow accompanying the lattice wave emission in a molecular dynamics situation. About two thirds of the static free energy are emitted as lattice waves from the moving dislocation. Work done by the region around the dislocation helps to initiate the motion from the unstable equilibrium state under a small applied stress, or to compensate the energy emitted as lattice waves when the dislocation makes a long distance motion under a larger stress.

  1. Mechanical Cushion Design Influence on Cylinder Dynamics

    DEFF Research Database (Denmark)

    Borghi, Massimo; Milani, Massimo; Conrad, Finn

    2005-01-01

    The paper deals with the simulation and the experimental verification of the dynamic behaviour of a linear actuator equipped with different configurations of mechanical cushion. A numerical model, developed and tailored to describe the influence of different modulation of the discharged flow....... experimental comparison, involving the piston velocity and the cylinder chambers pressure. After, with the aim of highlighting the effect of mechanical cushions design on a two effect linear actuator dynamic performances, the characteristics modulation of four alternative cushioning systems are determined...

  2. Dynamical parasupersymmetries in quantum mechanics

    International Nuclear Information System (INIS)

    Durand, S.; Vinet, L.

    1990-01-01

    This paper reports on supersymmetric field theories that have the distinctive feature of being invariant under transformations that mix bosonic and fermionic variables. Reduction to 0 + 1 dimensions yields mechanical models with an analogous invariance. In this case, the Grassmannian variables are interpreted as describing (classically) the spin degrees of freedom of the particles involved. After canonical quantization, the corresponding quantities obey the standard anticommutation relations of fermionic creation and annihilation operators. It is known that paraquantitization offers alternative to the usual quantization scheme. In this framework, one can expect that it is possible to construct parasupersymmetric theories, that is, theories which are invariant under transformations between bosonic and parafermionic variables. As a matter of fact, Rubakov and Spiridonov has recently shown how the parasupersymmetric generalization of supersymmetric Quantum Mechanics proceeds. In this case, the fermionic creation and annihilation operators obey paracommutation relations. The applications of supersymmetric Quantum Mechanics are many. One might hope that its parasupersymmetric generalization will be as useful. The elaboration of parasupersymmeric Quantum Mechanics moreover has led to new mathematical constructs; indeed, the symmetry generators realize algebras involving products of degree higher than 2

  3. Mechanical and dynamic mechanical behaviour of novel glass ...

    Indian Academy of Sciences (India)

    M Rajesh

    the intra-ply woven fabric hybridization enhances impact and damping properties of the composite ... Keywords. Intra-ply hybrid; natural fibre; mechanical properties; dynamic mechanical analysis; vibration; .... analysis test is conducted in nitrogen environment over a ..... Mnson J A and Jolliet O 2001 Life cycle assessment of.

  4. Numerical methods in dynamic fracture mechanics

    International Nuclear Information System (INIS)

    Beskos, D.E.

    1987-01-01

    A review of numerical methods for the solution of dynamic problems of fracture mechanics is presented. Finite difference, finite element and boundary element methods as applied to linear elastic or viscoelastic and non-linear elastoplastic or elastoviscoplastic dynamic fracture mechanics problems are described and critically evaluated. Both cases of stationary cracks and rapidly propagating cracks of simple I, II, III or mixed modes are considered. Harmonically varying with time or general transient dynamic disturbances in the form of external loading or incident waves are taken into account. Determination of the dynamic stress intensity factor for stationary cracks or moving cracks with known velocity history as well as determination of the crack-tip propagation history for given dynamic fracture toughness versus crack velocity relation are described and illustrated by means of certain representative examples. Finally, a brief assessment of the present state of knowledge is made and research needs are identified

  5. Dynamics of micromechanisms controlling the mechanical ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Nickel base superalloys are meant for applications requiring high strength and high temper- .... To enter this channel the matrix mobile dislocation ..... Thesis,. Paris Ecole Sup`erieure des Mines, Paris. Benyoucef M, Clement N, Coujou A 1995 ...

  6. Influence of grain size on the mechanical properties of nano-crystalline copper; insights from molecular dynamics simulation

    Science.gov (United States)

    Rida, A.; Makke, A.; Rouhaud, E.; Micoulaut, M.

    2017-10-01

    We use molecular dynamics simulations to study the mechanical properties of a columnar nanocrystalline copper with a mean grain size between 8.91 nm and 24 nm. The used samples were generated by using a melting cooling method. These samples were submitted to uniaxial tensile test. The results reveal the presence of a critical mean grain size between 16 and 20 nm, where there is an inversion in the conventional Hall-Petch tendency. This inversion is illustrated by the increase of flow stress with the increase of the mean grain size. This transition is caused by shifting of the deformation mechanism from dislocations to a combination of grain boundaries sliding and dislocations. Moreover, the effect of temperature on the mechanical properties of nanocrystalline copper has been investigated. The results show a decrease of the flow stress and Young's modulus when the temperature increases.

  7. Atraumatic Anterior Dislocation of the Hip Joint

    Directory of Open Access Journals (Sweden)

    Tadahiko Ohtsuru

    2015-01-01

    Full Text Available Dislocation of the hip joint in adults is usually caused by high-energy trauma such as road traffic accidents or falls from heights. Posterior dislocation is observed in most cases. However, atraumatic anterior dislocation of the hip joint is extremely rare. We present a case of atraumatic anterior dislocation of the hip joint that was induced by an activity of daily living. The possible causes of this dislocation were anterior capsule insufficiency due to developmental dysplasia of the hip, posterior pelvic tilt following thoracolumbar kyphosis due to vertebral fracture, and acetabular anterior coverage changes by postural factor. Acetabular anterior coverage changes in the sagittal plane were measured using a tomosynthesis imaging system. This system was useful for elucidation of the dislocation mechanism in the present case.

  8. "Conjugate channeling" effect in dislocation core diffusion: carbon transport in dislocated BCC iron.

    Science.gov (United States)

    Ishii, Akio; Li, Ju; Ogata, Shigenobu

    2013-01-01

    Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction ξ, but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. c is a function of the Burgers vector b, but not ξ, thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility.

  9. Quantitative analysis of CTEM images of small dislocation loops in Al and stacking fault tetrahedra in Cu generated by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Schaeublin, R.; Almazouzi, A.; Dai, Y.; Osetsky, Yu.N.; Victoria, M.

    2000-01-01

    The visibility of conventional transmission electron microscopy (CTEM) images of small crystalline defects generated by molecular dynamics (MD) simulation is investigated. Faulted interstitial dislocation loops in Al smaller than 2 nm in diameter and stacking fault tetrahedra (SFT) in Cu smaller than 4 nm in side are assessed. A recent approach allowing to simulate the CTEM images of computer generated samples described by their atomic positions is applied to obtain bright field and weak beam images. For the dislocation loop-like cluster it appears that the simulated image is comparable to experimental images. The contrast of the g(3.1g) near weak beam image decreases with decreasing size of the cluster but is still 20% of the background intensity for a 2 interstitial cluster. This indicates a visibility at the limit of the experimental background noise. In addition, the cluster image size, which is here always larger than the real size, saturates at about 1 nm when the cluster real size decreases below 1 nm, which corresponds to a cluster of 8 interstitials. For the SFT in Cu the g(6.1g) weak beam image is comparable to experimental images. It appears that the image size is larger than the real size by 20%. A large loss of the contrast features that allows to identify an SFT is observed on the image of the smallest SFT (21 vacancies)

  10. Epidemiology of Isolated Acromioclavicular Joint Dislocation

    Directory of Open Access Journals (Sweden)

    Claudio Chillemi

    2013-01-01

    Full Text Available Background. Acromioclavicular (AC joint dislocation is a common shoulder problem. However, information about the basic epidemiological features of this condition is scarce. The aim of this study is to analyze the epidemiology of isolated AC dislocation in an urban population. Materials and Methods. A retrospective database search was performed to identify all patients with an AC dislocation over a 5-year period. Gender, age, affected side and traumatic mechanism were taken into account. X-rays were reviewed by two of the authors and dislocations were classified according to the Rockwood’s criteria. Results. A total of 108 patients, with a mean age of 37.5 years were diagnosed with AC dislocation. 105 (97.2% had an isolated AC dislocation, and 3 (2.8% were associated with a clavicle fracture. The estimated incidence was 1.8 per 10000 inhabitants per year and the male-female ratio was 8.5 : 1. 50.5% of all dislocations occurred in individuals between the ages of 20 and 39 years. The most common traumatic mechanism was sport injury and the most common type of dislocation was Rockwood type III. Conclusions. Age between 20 and 39 years and male sex represent significant demographic risk factors for AC dislocation.

  11. Canonical Quantization of Crystal Dislocation and Electron-Dislocation Scattering in an Isotropic Media

    Science.gov (United States)

    Li, Mingda; Cui, Wenping; Dresselhaus, M. S.; Chen, Gang; MIT Team; Boston College Team

    Crystal dislocations govern the plastic mechanical properties of materials but also affect the electrical and optical properties. However, a fundamental and decent quantum-mechanical theory of dislocation remains undiscovered for decades. Here we present an exact and manageable Hamiltonian theory for both edge and screw dislocation line in an isotropic media, where the effective Hamiltonian of a single dislocation line can be written in a harmonic-oscillator-like form, with closed-form quantized 1D phonon-like excitation. Moreover a closed-form, position dependent electron-dislocation coupling strength is obtained, from which we obtained good agreement of relaxation time when comparing with classical results. This Hamiltonian provides a platform to study the effect of dislocation to materials' non-mechanical properties from a fundamental Hamiltonian level.

  12. Estimation of dislocations density and distribution of dislocations during ECAP-Conform process

    Science.gov (United States)

    Derakhshan, Jaber Fakhimi; Parsa, Mohammad Habibi; Ayati, Vahid; Jafarian, Hamidreza

    2018-01-01

    Dislocation density of coarse grain aluminum AA1100 alloy (140 µm) that was severely deformed by Equal Channel Angular Pressing-Conform (ECAP-Conform) are studied at various stages of the process by electron backscattering diffraction (EBSD) method. The geometrically necessary dislocations (GNDs) density and statistically stored dislocations (SSDs) densities were estimate. Then the total dislocations densities are calculated and the dislocation distributions are presented as the contour maps. Estimated average dislocations density for annealed of about 2×1012 m-2 increases to 4×1013 m-2 at the middle of the groove (135° from the entrance), and they reach to 6.4×1013 m-2 at the end of groove just before ECAP region. Calculated average dislocations density for one pass severely deformed Al sample reached to 6.2×1014 m-2. At micrometer scale the behavior of metals especially mechanical properties largely depend on the dislocation density and dislocation distribution. So, yield stresses at different conditions were estimated based on the calculated dislocation densities. Then estimated yield stresses were compared with experimental results and good agreements were found. Although grain size of material did not clearly change, yield stress shown intensive increase due to the development of cell structure. A considerable increase in dislocations density in this process is a good justification for forming subgrains and cell structures during process which it can be reason of increasing in yield stress.

  13. Accumulation of dislocation loops in the α phase of Zr Excel alloy under heavy ion irradiation

    Science.gov (United States)

    Yu, Hongbing; Yao, Zhongwen; Idrees, Yasir; Zhang, He K.; Kirk, Mark A.; Daymond, Mark R.

    2017-08-01

    In-situ heavy ion irradiations were performed on the high Sn content Zr alloy 'Excel', measuring type dislocation loop accumulation up to irradiation damage doses of 10 dpa at a range of temperatures. The high content of Sn, which diffuses slowly, and the thin foil geometry of the sample provide a unique opportunity to study an extreme case where displacement cascades dominate the loop formation and evolution. The dynamic observation of dislocation loop evolution under irradiation at 200 °C reveals that type dislocation loops can form at very low dose (0.0025 dpa). The size of the dislocation loops increases slightly with irradiation damage dose. The mechanism controlling loop growth in this study is different from that in neutron irradiation; in this study, larger dislocation loops can condense directly from the interaction of displacement cascades and the high concentration of point defects in the matrix. The size of the dislocation loop is dependent on the point defect concentration in the matrix. A negative correlation between the irradiation temperature and the dislocation loop size was observed. A comparison between cascade dominated loop evolution (this study), diffusion dominated loop evolution (electron irradiation) and neutron irradiation suggests that heavy ion irradiation alone may not be enough to accurately reproduce neutron irradiation induced loop structures. An alternative method is proposed in this paper. The effects of Sn on the displacement cascades, defect yield, and the diffusion behavior of point defects are established.

  14. Dislocation morphology in deformed and irradiated niobium

    International Nuclear Information System (INIS)

    Chang, C.P.

    1977-06-01

    Niobium foils of moderate purity were examined for the morphology of dislocations or defect clusters in the deformed or neutron-irradiated state by transmission electron microscopy. New evidence has been found for the dissociation of screw dislocations into partials on the (211) slip plane according to the Crussard mechanism: (a/2) [111] → (a/3) [111] + (a/6) [111

  15. Quantum mechanics and dynamics in phase space

    International Nuclear Information System (INIS)

    Zlatev, I.S.

    1979-01-01

    Attention is paid to formal similarity of quantum mechanics and classical statistical physics. It is supposed that quantum mechanics can be reformulated by means of the quasiprobabilistic distributions (QPD). The procedure of finding a possible dynamics of representative points in a phase space is described. This procedure would lead to an equation of the Liouville type for the given QPD. It is shown that there is always a dynamics for which the phase volume is preserved and there is another dynamics for which the equations of motion are ''canonical''. It follows from the paper that in terms of the QPD the quantum mechanics is analogous to the classical statistical mechanics and it can be interpreted as statistics of phase points, their motion obeying the canonical equations. The difference consists in the fact that in the classical statistical physics constructed is statistics of points in a phase space which depict real, existing, observable states of the system under consideration. In the quantum mechanics constructed is statistics of points in a phase space which correspond to the ''substrate'' of quantum-mechanical objects which have no any physical sense and cannot be observed separately

  16. TEM study of β′ precipitate interaction mechanisms with dislocations and β′ interfaces with the aluminium matrix in Al–Mg–Si alloys

    International Nuclear Information System (INIS)

    Teichmann, Katharina; Marioara, Calin D.; Andersen, Sigmund J.; Marthinsen, Knut

    2013-01-01

    The interaction mechanisms between dislocations and semi-coherent, needle-shaped β′ precipitates in Al–Mg–Si alloys have been studied by High Resolution Transmission Electron Microscopy (HRTEM). Dislocation loops appearing as broad contrast rings around the precipitate cross-sections were identified in the Al matrix. A size dependency of the interaction mechanism was observed; the precipitates were sheared when the longest dimension of their cross-section was shorter than approximately 15 nm, and looped otherwise. A more narrow ring located between the Al matrix and bulk β′ indicates the presence of a transition interface layer. Together with the bulk β′ structure, this was further investigated by High Angle Annular Dark Field Scanning TEM (HAADF-STEM). In the bulk β′ a higher intensity could be correlated with a third of the Si-columns, as predicted from the published structure. The transition layer incorporates Si columns in the same arrangement as in bulk β′, although it is structurally distinct from it. The Z-contrast information and arrangement of these Si-columns demonstrate that they are an extension of the Si-network known to structurally connect all the precipitate phases in the Al–Mg–Si(–Cu) system. The width of the interface layer was estimated to about 1 nm. - Highlights: ► β′ is found to be looped at sizes larger than 15 nm (cross section diameter). ► β′ is found to be sheared at sizes smaller than 15 nm (cross section diameter). ► The recently determined crystal structure of β′ is confirmed by HAADF-STEM. ► Between β′ and the Al-matrix a transition layer of about 1 nm is existent. ► The β′/matrix layer is structurally distinct from bulk β′ and the aluminium matrix.

  17. Zeno dynamics in quantum statistical mechanics

    International Nuclear Information System (INIS)

    Schmidt, Andreas U

    2003-01-01

    We study the quantum Zeno effect in quantum statistical mechanics within the operator algebraic framework. We formulate a condition for the appearance of the effect in W*-dynamical systems, in terms of the short-time behaviour of the dynamics. Examples of quantum spin systems show that this condition can be effectively applied to quantum statistical mechanical models. Furthermore, we derive an explicit form of the Zeno generator, and use it to construct Gibbs equilibrium states for the Zeno dynamics. As a concrete example, we consider the X-Y model, for which we show that a frequent measurement at a microscopic level, e.g. a single lattice site, can produce a macroscopic effect in changing the global equilibrium

  18. Rules for Forest Interactions between Dislocations

    International Nuclear Information System (INIS)

    Wickham, L. K.; Schwarz, K. W.; Stoelken, J. S.

    1999-01-01

    The dynamical interactions of dislocations existing on intersecting glide planes have been investigated using numerical simulations based on isotropic linear elastic theory. It is found that such dislocations either repel, attract and form growing junctions, or attract and form bound crossed states. Which of these occurs can be predicted from a surprisingly simple analysis of the initial configurations. The outcome is determined primarily by the angles which the dislocations initially make with the glide-plane intersection edge, and is largely independent of the initial distance between the dislocations, their initial curvature, or ambient applied stresses. The results provide a rule for dealing with forest interactions within the context of large multiple-dislocation computations. (c) 1999 The American Physical Society

  19. Dynamic mechanical properties of buffer material

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Taniguchi, Wataru

    1999-11-01

    The buffer material is expected to maintain its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above. Among the kinds of natural clay, bentonite when compacted is superior because (i) it has exceptionally low water permeability and properties to control the movement of water in buffer, (ii) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (iii) it has the ability to exchange cations and to adsorb cationic radioelements. In order to confirm these functions for the purpose of safety assessment, it is necessary to evaluate buffer properties through laboratory tests and engineering-scale tests, and to make assessments based on the ranges in the data obtained. This report describes the procedures, test conditions, results and examinations on the buffer material of dynamic triaxial tests, measurement of elastic wave velocity and liquefaction tests that aim at getting hold of dynamic mechanical properties. We can get hold of dependency on the shearing strain of the shearing modulus and hysteresis damping constant, the application for the mechanical model etc. by dynamic triaxial tests, the acceptability of maximum shearing modulus obtained from dynamic triaxial tests etc. by measurement of elastic wave velocity and dynamic strength caused by cyclic stress etc. by liquefaction tests. (author)

  20. Ab initio modeling of interactions between screw dislocations and interstitial solutes in body-centered cubic transition metals

    International Nuclear Information System (INIS)

    Luthi, Berengere

    2017-01-01

    In order to improve our understanding of alloy plasticity, it is important to describe at the atomic scale the dislocation-solute interactions and their effect on the dislocation mobility. This work focuses on the body-centered cubic (BCC) transition metals in presence of interstitial solute atoms, in particular the Fe-C system. Using Density Functional Theory (DFT) calculations, the core structure of the screw dislocation of Burgers vector b=1/2<111> was investigated in iron in presence of boron, carbon, nitrogen and oxygen solute atoms, and in BCC metals from group 5 (V, Nb, Ta) and 6 (Mo, W) in presence of carbon solutes. A core reconstruction is evidenced in iron and group 6 metals, along with a strong attractive dislocation-solute interaction energy: the dislocation goes from easy to hard configuration where the solute atoms are at the center of trigonal prisms along the dislocation line. A different behavior is observed in group 5 metals, for which the most stable configuration for the carbon atom is an octahedral site in the vicinity of the dislocation, without any core reconstruction. This group tendency is linked to the structure of mono-carbides. Consequences of the strongly attractive dislocation-solute interactions in Fe(C) were then investigated. First the equilibrium segregation close to the dislocation core was studied using a mean-field model and Monte Carlo simulations. Over a wide temperature range, from 200 to 700 K, a strong segregation is predicted with every other prismatic site occupied by a carbon atom. Then, the mobility of the dislocation in presence of carbon atoms was investigated by modeling the double-kink mechanism with DFT, in relation with experimental data obtained with transmission electron microscopy. The activation energy obtained for this atomic scale mechanism is in good agreement with experimental values for the dynamic strain aging. (author) [fr

  1. Internal stresses, dislocation mobility and ductility

    Science.gov (United States)

    Saada, G.

    1991-06-01

    The description of plastic deformation must take into account individual mechanisms and heterogeneity of plastic strain. Influence of dislocation interaction with forest dislocations and of cross slip are connected with the organization of dipole walls. The latter are described and their development is explained as a consequence of edge effects. Applications are discussed. La description de la déformation plastique doit prendre en compte les interactions individuelles des dislocations et l'hétérogénéité à grande échelle de la déformation plastique. Les interactions des dislocations mobiles avec la forêt de dislocations, le glissement dévié, ont pour effet la création de parois dipolaires. Celles-ci sont décrites et leur développement est appliqué à partir des effets de bord.

  2. Dislocation motion in tungsten: Atomistic input to discrete dislocation simulations

    Czech Academy of Sciences Publication Activity Database

    Srivastava, K.; Gröger, Roman; Weygand, D.; Gumbsch, P.

    2013-01-01

    Roč. 47, AUG (2013), s. 126-142 ISSN 0749-6419 R&D Projects: GA ČR GAP204/10/0255; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : body -centered cubic * non-Schmid effects * anomalous slip * discrete dislocation dynamics Subject RIV: BM - Solid Matter Physics ; Magnetism; BM - Solid Matter Physics ; Magnetism (UFM-A) Impact factor: 5.971, year: 2013

  3. Mechanical Cushion Design Influence on Cylinder Dynamics

    DEFF Research Database (Denmark)

    Borghi, Massimo; Milani, Massimo; Conrad, Finn

    2005-01-01

    . experimental comparison, involving the piston velocity and the cylinder chambers pressure. After, with the aim of highlighting the effect of mechanical cushions design on a two effect linear actuator dynamic performances, the characteristics modulation of four alternative cushioning systems are determined......The paper deals with the simulation and the experimental verification of the dynamic behaviour of a linear actuator equipped with different configurations of mechanical cushion. A numerical model, developed and tailored to describe the influence of different modulation of the discharged flow......-rate (and of the correspondent discharging orifice design) on the cushioning characteristics variation is firstly introduced. Then, with respect to the case of the cylindrical cushioning engagement, both the reliability and the limits of the numerical approach are highlighted through a numerical vs...

  4. Dynamic mechanical properties of toughened polyamide composites

    International Nuclear Information System (INIS)

    Alsewailem, Fares D.

    2008-01-01

    The effect of incorporating thermoplastic rubber on the dynamic mechanical properties, storage and loss moduli, of virgin and recycled glass-fiber-reinforced polyamide 66 has been investigated in this study. Styrene-Ethylene-Styrene and Ethylene-Propylene grafted with maleic anhydride were used as elastomers for toughening. Dynamic mechanical properties of the composites were examined by the rotational rhometry. Shear storage and loss moduli of recycled and virgin materials were measured against frequency. Also the variation of storage modulus of the virgin composites was measured against temperatures by conducting a series of torsion tests. Both dynamic storage and loss moduli of the composites were found to increase with increasing glass fiber and rubber contents. Recycled composites had lower values of dynamic modulus compared that of virgin composites; however by proper combining of fiber and rubber into the recycled material, its modulus fairly matches that of the virgin material. Addition of rubber to virgin composites causes a reduction in G' as temperature increases. Rubber, which acts as a stress concentrator, had a major effect on minimizing the overall modulus of the composites. The in G' versus temperature has been observed for all composites: however the temperature at which the transition G' occurs decreases with increasing rubber content. (author)

  5. Statistics of dislocation pinning at localized obstacles

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A. [S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700098 (India); Bhattacharya, M., E-mail: mishreyee@vecc.gov.in; Barat, P. [Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700064 (India)

    2014-10-14

    Pinning of dislocations at nanosized obstacles like precipitates, voids, and bubbles is a crucial mechanism in the context of phenomena like hardening and creep. The interaction between such an obstacle and a dislocation is often studied at fundamental level by means of analytical tools, atomistic simulations, and finite element methods. Nevertheless, the information extracted from such studies cannot be utilized to its maximum extent on account of insufficient information about the underlying statistics of this process comprising a large number of dislocations and obstacles in a system. Here, we propose a new statistical approach, where the statistics of pinning of dislocations by idealized spherical obstacles is explored by taking into account the generalized size-distribution of the obstacles along with the dislocation density within a three-dimensional framework. Starting with a minimal set of material parameters, the framework employs the method of geometrical statistics with a few simple assumptions compatible with the real physical scenario. The application of this approach, in combination with the knowledge of fundamental dislocation-obstacle interactions, has successfully been demonstrated for dislocation pinning at nanovoids in neutron irradiated type 316-stainless steel in regard to the non-conservative motion of dislocations. An interesting phenomenon of transition from rare pinning to multiple pinning regimes with increasing irradiation temperature is revealed.

  6. Nanoscale dislocation shear loops at static equilibrium and finite temperature

    Science.gov (United States)

    Dang, Khanh; Capolungo, Laurent; Spearot, Douglas E.

    2017-12-01

    Atomistic simulations are used to determine the resolved shear stress necessary for equilibrium and the resulting geometry of nanoscale dislocation shear loops in Al. Dislocation loops with different sizes and shapes are created via superposition of elemental triangular dislocation displacement fields in the presence of an externally imposed shear stress. First, a bisection algorithm is developed to determine systematically the resolved shear stress necessary for equilibrium at 0 K. This approach allows for the identification of dislocation core structure and a correlation between dislocation loop size, shape and the computed shear stress for equilibrium. It is found, in agreement with predictions made by Scattergood and Bacon, that the equilibrium shape of a dislocation loop becomes more circular with increasing loop size. Second, the bisection algorithm is extended to study the influence of temperature on the resolved shear stress necessary for stability. An approach is presented to compute the effective lattice friction stress, including temperature dependence, for dislocation loops in Al. The temperature dependence of the effective lattice friction stress can be reliably computed for dislocation loops larger than 16.2 nm. However, for dislocation loops smaller than this threshold, the effective lattice friction stress shows a dislocation loop size dependence caused by significant overlap of the stress fields on the interior of the dislocation loops. Combined, static and finite temperature atomistic simulations provide essential data to parameterize discrete dislocation dynamics simulations.

  7. Steps and dislocations in cubic lyotropic crystals

    International Nuclear Information System (INIS)

    Leroy, S; Pieranski, P

    2006-01-01

    It has been shown recently that lyotropic systems are convenient for studies of faceting, growth or anisotropic surface melting of crystals. All these phenomena imply the active contribution of surface steps and bulk dislocations. We show here that steps can be observed in situ and in real time by means of a new method combining hygroscopy with phase contrast. First results raise interesting issues about the consequences of bicontinuous topology on the structure and dynamical behaviour of steps and dislocations

  8. Nonsmooth mechanics models, dynamics and control

    CERN Document Server

    Brogliato, Bernard

    2016-01-01

    Now in its third edition, this standard reference is a comprehensive treatment of nonsmooth mechanical systems refocused to give more prominence to control and modelling. It covers Lagrangian and Newton–Euler systems, detailing mathematical tools such as convex analysis and complementarity theory. The ways in which nonsmooth mechanics influence and are influenced by well-posedness analysis, numerical analysis and simulation, modelling and control are explained. Contact/impact laws, stability theory and trajectory-tracking control are given in-depth exposition connected by a framework formed from complementarity systems and measure-differential inclusions. Links are established with electrical circuits with set-valued nonsmooth elements and with other nonsmooth dynamical systems like impulsive and piecewise linear systems. Nonsmooth Mechanics (third edition) has been substantially rewritten, edited and updated to account for the significant body of results that have emerged in the twenty-first century—incl...

  9. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.

    Science.gov (United States)

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-11-10

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.

  10. Dislocations and elementary processes of plasticity in FCC metals: atomic scale simulations

    International Nuclear Information System (INIS)

    Rodney, D.

    2000-01-01

    We present atomic-scale simulations of two elementary processes of FCC crystal plasticity. The first study consists in the simulation by molecular dynamics, in a nickel crystal, of the interactions between an edge dislocation and glissile interstitial loops of the type that form under irradiation in displacement cascades. The simulations show various atomic-scale interaction processes leading to the absorption and drag of the loops by the dislocation. These reactions certainly contribute to the formation of the 'clear bands' observed in deformed irradiated materials. The simulations also allow to study quantitatively the role of the glissile loops in irradiation hardening. In particular, dislocation unpinning stresses for certain pinning mechanisms are evaluated from the simulations. The second study consists first in the generalization in three dimensions of the quasi-continuum method (QCM), a multi-scale simulation method which couples atomistic techniques and the finite element method. In the QCM, regions close to dislocation cores are simulated at the atomic-scale while the rest of the crystal is simulated with a lower resolution by means of a discretization of the displacement fields using the finite element method. The QCM is then tested on the simulation of the formation and breaking of dislocation junctions in an aluminum crystal. Comparison of the simulations with an elastic model of dislocation junctions shows that the structure and strength of the junctions are dominated by elastic line tension effects, as is assumed in classical theories. (author)

  11. Primary traumatic patellar dislocation

    Directory of Open Access Journals (Sweden)

    Tsai Chun-Hao

    2012-06-01

    Full Text Available Abstract Acute traumatic patellar dislocation is a common injury in the active and young adult populations. MRI of the knee is recommended in all patients who present with acute patellar dislocation. Numerous operative and non-operative methods have been described to treat the injuries; however, the ideal management of the acute traumatic patellar dislocation in young adults is still in debate. This article is intended to review the studies to the subjects of epidemiology, initial examination and management.

  12. Dislocation mediated alignment during metal nanoparticle coalescence

    International Nuclear Information System (INIS)

    Lange, A.P.; Samanta, A.; Majidi, H.; Mahajan, S.; Ging, J.; Olson, T.Y.; Benthem, K. van; Elhadj, S.

    2016-01-01

    Dislocation mediated alignment processes during gold nanoparticle coalescence were studied at low and high temperatures using molecular dynamics simulations and transmission electron microscopy. Particles underwent rigid body rotations immediately following attachment in both low temperature (500 K) simulated coalescence events and low temperature (∼315 K) transmission electron microscopy beam heating experiments. In many low temperature simulations, some degree of misorientation between particles remained after rigid body rotations, which was accommodated by grain boundary dislocation nodes. These dislocations were either sessile and remained at the interface for the duration of the simulation or dissociated and cross-slipped through the adjacent particles, leading to improved co-alignment. Minimal rigid body rotations were observed during or immediately following attachment in high temperature (1100 K) simulations, which is attributed to enhanced diffusion at the particles' interface. However, rotation was eventually induced by {111} slip on planes parallel to the neck groove. These deformation modes led to the formation of single and multi-fold twins whose structures depended on the initial orientation of the particles. The driving force for {111} slip is attributed to high surface stresses near the intersection of low energy {111} facets in the neck region. The details of this twinning process were examined in detail using simulated trajectories, and the results reveal possible mechanisms for the nucleation and propagation of Shockley partials on consecutive planes. Deformation twinning was also observed in-situ using transmission electron microscopy, which resulted in the co-alignment of a set of the particles' {111} planes across their grain boundary and an increase in their dihedral angle. This constitutes the first detailed experimental observation of deformation twinning during nanoparticle coalescence, validating simulation results presented here and

  13. Scattering of phonons by dislocations

    International Nuclear Information System (INIS)

    Anderson, A.C.

    1979-01-01

    By 1950, an explicit effort had been launched to use lattice thermal conductivity measurements in the investigation of defect structures in solids. This technique has been highly successful, especially when combined with the measurements of other properties such as optical absorption. One exception has been the study of dislocations. Although dislocations have a profound effect on the phonon thermal conductivity, the mechanisms of the phonon-dislocation interaction are poorly understood. The most basic questions are still debated in the literature. It therefore is pointless to attempt a quantitative comparison between an extensive accumulation of experimental data on the one hand, and the numerous theoretical models on the other. Instead, this chapter will attempt to glean a few qualitative conclusions from the existing experimental data. These results will then be compared with two general models which incorporate, in a qualitative manner, most of the proposed theories of the phonon-dislocation interaction. Until very recently, measurement of thermal conductivity was the only means available to probe the interaction between phonons and defects at phonon frequencies above the standard ultrasonic range of approx. = 10 9 Hz. The introductory paragraphs provide a brief review of the thermal-conductivity technique and the problems which are encountered in practice. There is also a brief presentation of the theoretical models and the complications that may occur in more realistic situations

  14. Nambu mechanics for stochastic magnetization dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Thibaudeau, Pascal, E-mail: pascal.thibaudeau@cea.fr [CEA DAM/Le Ripault, BP 16, F-37260 Monts (France); Nussle, Thomas, E-mail: thomas.nussle@cea.fr [CEA DAM/Le Ripault, BP 16, F-37260 Monts (France); CNRS-Laboratoire de Mathématiques et Physique Théorique (UMR 7350), Fédération de Recherche “Denis Poisson” (FR2964), Département de Physique, Université de Tours, Parc de Grandmont, F-37200 Tours (France); Nicolis, Stam, E-mail: stam.nicolis@lmpt.univ-tours.fr [CNRS-Laboratoire de Mathématiques et Physique Théorique (UMR 7350), Fédération de Recherche “Denis Poisson” (FR2964), Département de Physique, Université de Tours, Parc de Grandmont, F-37200 Tours (France)

    2017-06-15

    Highlights: • The LLG equation can be formulated in the framework of dissipative Nambu mechanics. • A master equation is derived for the spin dynamics for additive/multiplicative noises. • The derived stochastic equations are compared to moment equations obtained by closures. - Abstract: The Landau–Lifshitz–Gilbert (LLG) equation describes the dynamics of a damped magnetization vector that can be understood as a generalization of Larmor spin precession. The LLG equation cannot be deduced from the Hamiltonian framework, by introducing a coupling to a usual bath, but requires the introduction of additional constraints. It is shown that these constraints can be formulated elegantly and consistently in the framework of dissipative Nambu mechanics. This has many consequences for both the variational principle and for topological aspects of hidden symmetries that control conserved quantities. We particularly study how the damping terms of dissipative Nambu mechanics affect the consistent interaction of magnetic systems with stochastic reservoirs and derive a master equation for the magnetization. The proposals are supported by numerical studies using symplectic integrators that preserve the topological structure of Nambu equations. These results are compared to computations performed by direct sampling of the stochastic equations and by using closure assumptions for the moment equations, deduced from the master equation.

  15. Gas Bubble Dynamics under Mechanical Vibrations

    Science.gov (United States)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  16. Multiphase Flow Dynamics 2 Mechanical Interactions

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present second volume the methods for describing the mechanical interactions in multiphase dynamics are provided. This fourth edition includes various updates, extensions, improvements and corrections.   "The literature in the field of multiphase flows is numerous. Therefore, it i...

  17. Dynamical mechanism of the liquid film motor

    Science.gov (United States)

    Liu, Zhong-Qiang; Li, Ying-Jun; Zhang, Guang-Cai; Jiang, Su-Rong

    2011-02-01

    The paper presents a simple dynamical model to systemically explain the rotation mechanism of the liquid film motor reported by experiments. The field-induced-plasticity effect of the liquid film is introduced into our model, in which the liquid film in crossed electric fields is considered as a Bingham plastic fluid with equivalent electric dipole moment. Several analytic results involving the torque of rotation, the scaling relation of the threshold fields, and the dynamics equation of a square film and its solution are obtained. We find that the rotation of the liquid film motor originates from the continuous competition between the destruction and the reestablishment of the polarization equilibrium maintained by the external electric field, which is free from the boundary effects. Most experimental phenomena observed in direct current electric fields are interpreted well.

  18. Thermodynamic theory of dislocation-enabled plasticity

    International Nuclear Information System (INIS)

    Langer, J. S.

    2017-01-01

    The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hypotheses. The first of these is that a system of dislocations, driven by external forces and irreversibly exchanging heat with its environment, must be characterized by a thermodynamically defined effective temperature that is not the same as the ordinary temperature. The second hypothesis is that the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated depinning of entangled pairs of dislocations. This paper consists of a systematic reformulation of this theory followed by examples of its use in analyses of experimentally observed phenomena including strain hardening, grain-size (Hall-Petch) effects, yielding transitions, and adiabatic shear banding.

  19. Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification

    Science.gov (United States)

    Tiwary, C. S.; Chakraborty, S.; Mahapatra, D. R.; Chattopadhyay, K.

    2014-05-01

    This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.

  20. Dynamical phase transitions in quantum mechanics

    International Nuclear Information System (INIS)

    Rotter, Ingrid

    2012-01-01

    1936 Niels Bohr: In the atom and in the nucleus we have indeed to do with two extreme cases of mechanical many-body problems for which a procedure of approximation resting on a combination of one-body problems, so effective in the former case, loses any validity in the latter where we, from the very beginning, have to do with essential collective aspects of the interplay between the constituent particles. 1963: Maria Goeppert-Mayer and J. Hans D. Jensen received the Nobel Prize in Physics for their discoveries concerning nuclear shell structure. State of the art 2011: - The nucleus is an open quantum system described by a non-Hermitian Hamilton operator with complex eigenvalues. The eigenvalues may cross in the complex plane ('exceptional points'), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By this, a dynamical phase transition occurs in the many-level system. The dynamical phase transition starts at a critical value of the level density. Hence the properties of he low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr for compound nucleus states at high level density is not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different systems, including PT-symmetric ones, by varying one or more parameters

  1. Dynamic tensile behaviour and deformational mechanism of C5191 phosphor bronze under high strain rates deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dao-chun [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Taizhou Vocational & Technical College, Taizhou 318000 (China); Chen, Ming-he, E-mail: meemhchen@nuaa.edu.cn [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Lei; Cheng, Hu [College of Mechanical Engineering, Taizhou University, Taizhou 318000 (China)

    2016-01-01

    High speed stamping process is used to high strength and high electrical conductivity phosphor bronze with extremely high strain rates more than 10{sup 3} s{sup −1}. This study on the dynamic tensile behaviour and deformational mechanism is to optimise the high speed stamping processes and improve geometrical precision in finished products. Thus, the tensile properties and deformation behaviour of C5191 phosphor bronze under quasi-static tensile condition at a strain rate of 0.001 s{sup −1} by electronic universal testing machine, and dynamic tensile condition at strain rate of 500, 1000 and 1500 s{sup −1} by split Hopkinson tensile bar (SHTB) apparatus were studied. The effects of strain rate and the deformation mechanism were investigated by means of SEM and TEM. The results showed that the yield strength and tensile strength of C5191 phosphor bronze under high strain rates deformation increased by 32.77% and 11.07% respectively compared with quasi-static condition, the strain hardening index increases from 0.075 to 0.251, and the strength of the material strain rates sensitivity index change from 0.005 to 0.022, which presented a clear sensitive to strain rates. Therefore, it is claimed that the dominant deformation mechanism was changed by the dislocation motion under different strain rates, and the ability of plastic deformation of C5191 phosphor bronze increased due to the number of movable dislocations increased significantly, started multi-line slip, and the soft effect of adiabatic temperature rise at the strain rate ranging from 500 to 1500 s{sup −1}.

  2. Transscaphoid, transcapitate, perilunate fracture dislocation (Scaphocapitate syndrome)

    International Nuclear Information System (INIS)

    Resnik, C.S.; Resnick, D.; Gelberman, R.H.

    1983-01-01

    Five cases of transscaphoid, transcapitate, perilunate fracture dislocation have been presented with a discussion of the radiologic findings, mechanism of injury, and the method of treatment. Although a total of only 23 cases have now been reported in the literature, this type of injury is probably not rare as we have seen two cases within a span of six months. It is important to recognize the radiologic features of this fracture dislocation so appropriate therapy may be instituted. (orig.)

  3. Mechanisms of shock-induced dynamic friction

    International Nuclear Information System (INIS)

    Winter, R E; Ball, G J; Keightley, P T

    2006-01-01

    The mechanism of shock-induced dynamic friction has been explored through an integrated programme of experiments and numerical simulations. A novel experimental technique has been developed for observing the sub-surface deformation in aluminium when sliding against a steel anvil at high velocity and pressure. The experimental observations suggest that slight differences in conditions at the interface between the metals affect frictional behaviour even at the very high-velocity, high-pressure regime studied here. However, a clear finding from the experimental work is the presence of two distinct modes of deformation termed deep and shallow. The deep deformation is observed in a region of the aluminium specimen where the interfacial velocity is relatively low and the shallow deformation is observed in a region where the interfacial velocity is higher. A 1D numerical treatment is presented which predicts the existence of two mechanisms for dynamic friction termed 'asymptotic melting' and 'slide-then-lock'. In both modes there is a warm-up phase in which the interface temperature is increased by frictional heating. For high initial sliding velocity, this is followed by the onset of the asymptotic melting state, in which the temperature is almost constant and melting is approached asymptotically. This mechanism produces low late-time frictional stress and shallow deformation. For lower initial sliding velocity, the warm-up terminates in a violent work hardening event that locks the interface and launches a strong plastic shear wave into the weaker material. This slide-then-lock mechanism is characterized by sustained high frictional stress and deep plastic deformation. These predicted mechanisms offer a plausible and consistent explanation for the abrupt transitions in the depth of sub-surface deformation observed in the experiments. A key conclusion arising from the current work is that the frictional stress does not vary smoothly with pressure or sliding velocity

  4. Dynamics of tunneling ionization using Bohmian mechanics

    Science.gov (United States)

    Douguet, Nicolas; Bartschat, Klaus

    2018-01-01

    Recent attoclock experiments and theoretical studies regarding the strong-field ionization of atoms by few-cycle infrared pulses revealed features that have attracted much attention. Here we investigate tunneling ionization and the dynamics of the electron probability using Bohmian mechanics. We consider a one-dimensional problem to illustrate the underlying mechanisms of the ionization process. It is revealed that in the major part of the below-the-barrier ionization regime, in an intense and short infrared pulse, the electron does not tunnel through the entire barrier, but rather starts already from the classically forbidden region. Moreover, we highlight the correspondence between the probability of locating the electron at a particular initial position and its asymptotic momentum. Bohmian mechanics also provides a natural definition of mean tunneling time and exit position, taking account of the time dependence of the barrier. Finally, we find that the electron can exit the barrier with significant kinetic energy, thereby corroborating the results of a recent study [N. Camus et al., Phys. Rev. Lett. 119, 023201 (2017), 10.1103/PhysRevLett.119.023201].

  5. The surface energy, thermal vibrations of dislocation lines and the critical crack extension force

    International Nuclear Information System (INIS)

    Chiang, Chien.

    1979-09-01

    The connections between atomic structure and mechanical properties of metals are interested by many physicist and mechanists recently. The authors of this paper try to connect the fracture of materials with the surface energy and dislocation properties, which may be treated with lattice dynamics and electron theory of solids. It shows that to combine the knowledge of solid state physics and fracture mechanics is quite important. (author)

  6. Simulation of misfit dislocation loops at the Ag/Cu(111) interface

    International Nuclear Information System (INIS)

    Rasmussen, Torben

    2000-01-01

    Molecular dynamics simulations combined with the nudged elastic band method for finding transition states and corresponding activation energies are used to study mechanisms of nucleation, growth, and motion of misfit dislocation loops at the Ag/Cu(111) interface. A variety of mechanisms involving concerted motion of several atoms are identified. Nucleation has the highest activation energy, ∼1eV. Growth and motion of the loops have activation energies in the range 0.3--0.7eV

  7. Dynamic aspects of the tubuloglomerular feedback mechanism

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H

    1992-01-01

    Tubuloglomerular feedback (TGF) is an important intrarenal regulatory mechanism, which acts to stabilize renal blood flow, GFR, and the tubular flow rate. The anatomical basis for this negative feedback system is the Juxtaglomerular Apparatus (JGA). This is located at the point of contact between...... of the TGF, and to use this knowledge in elucidating the role of the TGF system in the autoregulation of renal blood flow. Further, by comparing the dynamic characteristics of TGF between hypertensive and normotensive rats, to identify possible alterations in renal function that could play a role...... in the etiology and pathogenesis of hypertension. Anesthesia and surgery are unavoidable complications in experimental work in animals. It is shown that the anesthetics commonly used in micropuncture experiments in rats have different effects on various aspects of renal function, e.g. GFR, sodium excretion...

  8. A dynamical mechanism for the hairpin diagram

    International Nuclear Information System (INIS)

    Chang Chaohsi; Guo Xinheng; Li Xueqian.

    1989-09-01

    Based on the non-valence quark-antiquark and gluon constituent structure of mesons we give a reasonable dynamical mechanism which can induce the hairpin diagram without violating the well-observed OZI rule. We calculate the hairpin amplitudes of D deg. → K-bar deg.η and K-bar deg.η' normalized by D deg. → K-bar deg.π deg. and have found that the hairpin diagram can give rise to substantial contribution to the decays where a meson with a SU(3) flavor singlet component is involved in the final state. In this scenario, we also obtain the branching ratio of D deg. → K-bar deg. φ as 0.55% in comparison with the experimental data of 0.83%. (autor). 33 refs, 3 figs

  9. A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding

    International Nuclear Information System (INIS)

    Li, Jia; Fang, Qihong; Liu, Youwen; Zhang, Liangchi

    2014-01-01

    This paper investigates the mechanisms of subsurface damage and material removal of monocrystalline copper when it is under a nanoscale high speed grinding of a diamond tip. The analysis was carried out with the aid of three-dimensional molecular dynamics simulations. The key factors that would influence the deformation of the material were carefully explored by analyzing the chip, dislocation movement, and workpiece deformation, which include grinding speed, depth of cut, grid tip radius, crystal orientation and machining angle of copper. An analytical model was also established to predict the emission of partial dislocations during the nanoscale high speed grinding. The investigation showed that a higher grinding velocity, a larger tip radius or a larger depth of cut would result in a larger chipping volume and a greater temperature rise in the copper workpiece. A lower grinding velocity would produce more intrinsic stacking faults. It was also found that the transition of deformation mechanisms depends on the competition between the dislocations and deformation twinning. There is a critical machining angle, at which a higher velocity, a smaller tip radius, or a smaller depth of cut will reduce the subsurface damage and improve the smoothness of a ground surface. The established analytical model showed that the Shockley dislocation emission is most likely to occur with the crystal orientations of (0 0 1)[1 0 0] at 45° angle.

  10. Creep Deformation by Dislocation Movement in Waspaloy.

    Science.gov (United States)

    Whittaker, Mark; Harrison, Will; Deen, Christopher; Rae, Cathie; Williams, Steve

    2017-01-12

    Creep tests of the polycrystalline nickel alloy Waspaloy have been conducted at Swansea University, for varying stress conditions at 700 °C. Investigation through use of Transmission Electron Microscopy at Cambridge University has examined the dislocation networks formed under these conditions, with particular attention paid to comparing tests performed above and below the yield stress. This paper highlights how the dislocation structures vary throughout creep and proposes a dislocation mechanism theory for creep in Waspaloy. Activation energies are calculated through approaches developed in the use of the recently formulated Wilshire Equations, and are found to differ above and below the yield stress. Low activation energies are found to be related to dislocation interaction with γ' precipitates below the yield stress. However, significantly increased dislocation densities at stresses above yield cause an increase in the activation energy values as forest hardening becomes the primary mechanism controlling dislocation movement. It is proposed that the activation energy change is related to the stress increment provided by work hardening, as can be observed from Ti, Ni and steel results.

  11. Consideration of the oxide particle-dislocation interaction in 9Cr-ODS steel

    Science.gov (United States)

    Ijiri, Yuta; Oono, N.; Ukai, S.; Yu, Hao; Ohtsuka, S.; Abe, Y.; Matsukawa, Y.

    2017-05-01

    The interaction between oxide particles and dislocations in a 9Cr-ODS ferritic steel is investigated by both static and in situ TEM observation under dynamic straining conditions and room temperature. The measured obstacle strength (?) of the oxide particles was no greater than 0.80 and the average was 0.63. The dislocation loops around some coarsened particles were also observed. The calculated obstacle strength by a stress formula of the Orowan interaction is nearly equaled to the average experimental value. Not only cross-slip system but also the Orowan interaction should be considered as the main interaction mechanism between oxide particles and dislocation in 9CrODS ferritic steel.

  12. Dynamical chaos: systems of classical mechanics

    International Nuclear Information System (INIS)

    Loskutov, A Yu

    2007-01-01

    This article is a methodological manual for those who are interested in chaotic dynamics. An exposition is given on the foundations of the theory of deterministic chaos that originates in classical mechanics systems. Fundamental results obtained in this area are presented, such as elements of the theory of nonlinear resonance and the Kolmogorov-Arnol'd-Moser theory, the Poincare-Birkhoff fixed-point theorem, and the Mel'nikov method. Particular attention is given to the analysis of the phenomena underlying the self-similarity and nature of chaos: splitting of separatrices and homoclinic and heteroclinic tangles. Important properties of chaotic systems - unpredictability, irreversibility, and decay of temporal correlations - are described. Models of classical statistical mechanics with chaotic properties, which have become popular in recent years - billiards with oscillating boundaries - are considered. It is shown that if a billiard has the property of well-developed chaos, then perturbations of its boundaries result in Fermi acceleration. But in nearly-integrable billiard systems, excitations of the boundaries lead to a new phenomenon in the ensemble of particles, separation of particles in accordance their velocities. If the initial velocity of the particles exceeds a certain critical value characteristic of the given billiard geometry, the particles accelerate; otherwise, they decelerate. (methodological notes)

  13. Dislocation: First Aid

    Science.gov (United States)

    ... or a collision during contact or high-speed sports. Dislocation usually involves the body's larger joints. In adults, the most common site of the injury is the shoulder. In children, it's the elbow. ...

  14. Broken or dislocated jaw

    Science.gov (United States)

    ... broken or dislocated jaw requires prompt medical attention. Emergency symptoms include difficulty breathing or heavy bleeding. ... safety equipment, such as a helmet when playing football, or using ... can prevent or minimize some injuries to the face or jaw.

  15. Discrete dislocation plasticity modeling of short cracks in single crystals

    NARCIS (Netherlands)

    Deshpande, VS; Needleman, A; Van der Giessen, E

    2003-01-01

    The mode-I crack growth behavior of geometrically similar edge-cracked single crystal specimens of varying size subject to both monotonic and cyclic axial loading is analyzed using discrete dislocation dynamics. Plastic deformation is modeled through the motion of edge dislocations in an elastic

  16. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    International Nuclear Information System (INIS)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing

    2015-01-01

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  17. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing [Beihang University, Beijing (Korea, Republic of)

    2015-02-15

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  18. The dynamic and quasi-static mechanical response of three aluminum armor alloys: 5059, 5083 and 7039

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Bergquist, Sara J., E-mail: sara.perezbergquist@gmail.com [Materials Science and Technology Division, Los Alamos National Laboratory, NM 87545 (United States); Gray, G.T.; Cerreta, Ellen K.; Trujillo, Carl P.; Perez-Bergquist, Alex [Materials Science and Technology Division, Los Alamos National Laboratory, NM 87545 (United States)

    2011-11-15

    Highlights: {yields} Aluminum alloys for use in armor applications. {yields} Mechanical response in dynamic and quasi-static regimes with temperature dependence. {yields} Shear localization with evidence of early stages of dynamic recrystallization. - Abstract: The mechanical response and microstructural evolution of aluminum alloys 5083, 5059 and 7039 was examined in compression and shear in both the quasi-static (0.001 s{sup -1}) and dynamic ({approx}2000 s{sup -1}) strain rate regimes. Electron Back Scattered Diffraction was utilized for detailed post-mortem analysis of the specimens following loading. The mechanical responses in shear were found to be strain-rate sensitive. At the slowest strain rates, all of the alloys had relatively large volumes of highly deformed material with 5083 and 5059 having the largest shear affected volumes. The dynamic strain rate test samples all formed highly compact shear localized volumes across the sheared zone with 7039 consistently displaying the narrowest shear regions. The morphology of these shear bands, along with the limited hardening during deformation, indicate a mechanism change at the higher strain rates. Higher resolution orientation image mapping has shown that between the three alloys there are varying degrees of crystallographic order within the shear bands. Transmission electron microscopy revealed various stages of dynamic recrystallization were present suggesting that while low strain rate deformation is controlled by dislocation multiplication and glide, high strain and strain-rate deformation is influenced in part due to mechanical recrystallization.

  19. Atomistic study of the hardening of ferritic iron by Ni-Cr decorated dislocation loops

    Science.gov (United States)

    Bonny, G.; Bakaev, A.; Terentyev, D.; Zhurkin, E.; Posselt, M.

    2018-01-01

    The exact nature of the radiation defects causing hardening in reactor structural steels consists of several components that are not yet clearly determined. While generally, the hardening is attributed to dislocation loops, voids and secondary phases (radiation-induced precipitates), recent advanced experimental and computational studies point to the importance of solute-rich clusters (SRCs). Depending on the exact composition of the steel, SRCs may contain Mn, Ni and Cu (e.g. in reactor pressure vessel steels) or Ni, Cr, Si, Mn (e.g. in high-chromium steels for generation IV and fusion applications). One of the hypotheses currently implied to explain their formation is the process of radiation-induced diffusion and segregation of these elements to small dislocation loops (heterogeneous nucleation), so that the distinction between SRCs and loops becomes somewhat blurred. In this work, we perform an atomistic study to investigate the enrichment of loops by Ni and Cr solutes and their interaction with an edge dislocation. The dislocation loops decorated with Ni and Cr solutes are obtained by Monte Carlo simulations, while the effect of solute segregation on the loop's strength and interaction mechanism is then addressed by large scale molecular dynamics simulations. The synergy of the Cr-Ni interaction and their competition to occupy positions in the dislocation loop core are specifically clarified.

  20. Non-basal dislocations should be accounted for in simulating ice mass flow

    Science.gov (United States)

    Chauve, T.; Montagnat, M.; Piazolo, S.; Journaux, B.; Wheeler, J.; Barou, F.; Mainprice, D.; Tommasi, A.

    2017-09-01

    Prediction of ice mass flow and associated dynamics is pivotal at a time of climate change. Ice flow is dominantly accommodated by the motion of crystal defects - the dislocations. In the specific case of ice, their observation is not always accessible by means of the classical tools such as X-ray diffraction or transmission electron microscopy (TEM). Part of the dislocation population, the geometrically necessary dislocations (GNDs) can nevertheless be constrained using crystal orientation measurements via electron backscattering diffraction (EBSD) associated with appropriate analyses based on the Nye (1950) approach. The present study uses the Weighted Burgers Vectors, a reduced formulation of the Nye theory that enables the characterization of GNDs. Applied to ice, this method documents, for the first time, the presence of dislocations with non-basal [ c ] or Burgers vectors. These [ c ] or dislocations represent up to 35% of the GNDs observed in laboratory-deformed ice samples. Our findings offer a more complex and comprehensive picture of the key plasticity processes responsible for polycrystalline ice creep and provide better constraints on the constitutive mechanical laws implemented in ice sheet flow models used to predict the response of Earth ice masses to climate change.

  1. Quantum mechanical aspects of dynamical neutron polarization

    International Nuclear Information System (INIS)

    Betz, T.; Badurek, G.; Jericha, E.

    2007-01-01

    Dynamic Neutron Polarization (DNP) is a concept which allows to achieve complete polarization of slow neutrons, virtually without any loss of intensity. There the neutrons pass through a combination of a static and a rotating magnetic field in resonance, like in a standard NMR apparatus. Depending on their initial spin state, they end up with different kinetic energies and therefore different velocity. In a succeeding magnetic precession field this distinction causes a different total precession angle. Tuning the field strength can lead to a final state where two original anti-parallel spin states are aligned parallel and hence to polarization. The goal of this work is to describe the quantum mechanical aspects of DNP and to work out the differences to the semi-classical treatment. We show by quantum mechanical means, that the concept works and DNP is feasible, indeed. Therefore, we have to take a closer look to the behavior of neutron wave functions in magnetic fields. In the first Section we consider a monochromatic continuous beam. The more realistic case of a pulsed, polychromatic beam requires a time-dependent field configuration and will be treated in the second Section. In particular the spatial separation of the spin up- and down-states is considered, because it causes an effect of polarization damping so that one cannot achieve a fully polarized final state. This effect is not predicted by the semi-classical treatment of DNP. However, this reduction of polarization is very small and can be neglected in realistic DNP-setups

  2. Dislocation dipole annihilation in diamond and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Rabier, J; Pizzagalli, L, E-mail: jacques.rabier@univ-poitiers.fr [Institut PPRIMME, Departement de Physique et Mecanique des Materiaux - UPR 3346 CNRS, Universite de Poitiers, ENSMA - SP2MI, BP 30179, F-86962 Chasseneuil Futuroscope Cedex (France)

    2011-02-01

    The mechanism of dislocation dipole annihilation has been investigated in C and Si using atomistic calculations with the aim of studying their annihilation by-products. It is shown, in C as well as in Si, that dipole annihilation yields debris that can be depicted as a cluster of vacancies, or alternately by two internal free surfaces. These defects have no strain field and can hardly be seen using usual TEM techniques. This suggests that the brown colouration of diamond could be due to microstructures resulting from deformation mechanisms associated with dipole formation and their annihilation rather than to a climb mechanism and vacancy aggregation. In silicon where a number of dipoles have been evidenced by TEM when dislocation trails are found, such debris could be the missing link responsible for the observation of strong chemical reactivity and electrical activity in the wake of moving dislocations.

  3. Small-scale dislocation plasticity in strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Stukowski, Alexander; Javaid, Farhan; Durst, Karsten; Albe, Karsten [Technische Universitaet Darmstadt (Germany)

    2016-07-01

    Strontium titanate (STO) is an optically transparent perovskite oxide ceramic material. In contrast to other ceramics, single crystal STO plastically deforms under ambient condition, without showing a phase transition or early fracture. This remarkable ductility makes it a prime candidate for different technological applications. However, while the mechanical behavior of bulk STO has been studied extensively using uniaxial compression testing techniques, little is known about the local, small-scale behavior and the details of dislocation-based nanoplasticity in this perovskite material. In this contribution we compare results obtained from new nanoindentation experiments and corresponding large-scale molecular dynamics simulations. The evolution of the plastic zone and dislocation structures that form underneath the indenter is investigated using etch-pit methods in experiments and a novel three-dimensional defect identification technique in atomistic computer models. The latter allows tracing the evolution of the complete dislocation line network as function of indentation depth, quantifying the activity of different slip systems, and correlating this information with the recorded load-displacement curves and hardness data.

  4. Pharmaceutical applications of dynamic mechanical thermal analysis.

    Science.gov (United States)

    Jones, David S; Tian, Yiwei; Abu-Diak, Osama; Andrews, Gavin P

    2012-04-01

    The successful development of polymeric drug delivery and biomedical devices requires a comprehensive understanding of the viscoleastic properties of polymers as these have been shown to directly affect clinical efficacy. Dynamic mechanical thermal analysis (DMTA) is an accessible and versatile analytical technique in which an oscillating stress or strain is applied to a sample as a function of oscillatory frequency and temperature. Through cyclic application of a non-destructive stress or strain, a comprehensive understanding of the viscoelastic properties of polymers may be obtained. In this review, we provide a concise overview of the theory of DMTA and the basic instrumental/operating principles. Moreover, the application of DMTA for the characterization of solid pharmaceutical and biomedical systems has been discussed in detail. In particular we have described the potential of DMTA to measure and understand relaxation transitions and miscibility in binary and higher-order systems and describe the more recent applications of the technique for this purpose. © 2011 Elsevier B.V. All rights reserved.

  5. Dislocations and elementary processes of plasticity in FCC metals: atomic scale simulations; Dislocations et processus elementaires de la plasticite dans les metaux CFC: apports des simulations a l'echelle atomique

    Energy Technology Data Exchange (ETDEWEB)

    Rodney, D

    2000-07-01

    We present atomic-scale simulations of two elementary processes of FCC crystal plasticity. The first study consists in the simulation by molecular dynamics, in a nickel crystal, of the interactions between an edge dislocation and glissile interstitial loops of the type that form under irradiation in displacement cascades. The simulations show various atomic-scale interaction processes leading to the absorption and drag of the loops by the dislocation. These reactions certainly contribute to the formation of the 'clear bands' observed in deformed irradiated materials. The simulations also allow to study quantitatively the role of the glissile loops in irradiation hardening. In particular, dislocation unpinning stresses for certain pinning mechanisms are evaluated from the simulations. The second study consists first in the generalization in three dimensions of the quasi-continuum method (QCM), a multi-scale simulation method which couples atomistic techniques and the finite element method. In the QCM, regions close to dislocation cores are simulated at the atomic-scale while the rest of the crystal is simulated with a lower resolution by means of a discretization of the displacement fields using the finite element method. The QCM is then tested on the simulation of the formation and breaking of dislocation junctions in an aluminum crystal. Comparison of the simulations with an elastic model of dislocation junctions shows that the structure and strength of the junctions are dominated by elastic line tension effects, as is assumed in classical theories. (author)

  6. Mechanical properties of irradiated materials

    International Nuclear Information System (INIS)

    Robertson, I.M.; Robach, J.; Wirth, B.

    2001-01-01

    The effect of irradiation on the mechanical properties of metals is considered with particular attention being paid to the development of defect-free channels following uniaxial tensile loading. The in situ transmission electron microscope deformation technique is coupled with dislocation dynamic computer simulations to reveal the fundamental processes governing the elimination of defects by glissile dislocations. The observations of preliminary experiments are reported.(author)

  7. Fabrication of mesoscopic floating Si wires by introducing dislocations

    International Nuclear Information System (INIS)

    Motohashi, Mitsuya; Shimizu, Kazuya; Niwa, Masaaki; Suzuki, Toshiaki

    2014-01-01

    We fabricated a mesoscopic Si wire by introducing dislocations in a silicon wafer before HF anodization. The dislocations formed along the (111) crystal plane. The outline of the dislocation line was an inverted triangle. The resulting wire floated on a bridge girder and had a hybrid structure consisting of a porous layer and crystalline Si. The cross section of the wire had an inverted triangle shape. The wire formation mechanism is discussed in terms of carrier transport, crystal structure, and dislocation formation during anodization. (paper)

  8. Fabrication of mesoscopic floating Si wires by introducing dislocations

    Science.gov (United States)

    Motohashi, Mitsuya; Shimizu, Kazuya; Suzuki, Toshiaki; Niwa, Masaaki

    2014-12-01

    We fabricated a mesoscopic Si wire by introducing dislocations in a silicon wafer before HF anodization. The dislocations formed along the (111) crystal plane. The outline of the dislocation line was an inverted triangle. The resulting wire floated on a bridge girder and had a hybrid structure consisting of a porous layer and crystalline Si. The cross section of the wire had an inverted triangle shape. The wire formation mechanism is discussed in terms of carrier transport, crystal structure, and dislocation formation during anodization.

  9. 3D DD modelling of the prismatic loops and dislocations interaction in pure iron

    International Nuclear Information System (INIS)

    Novokshanov, R.; Roberts, S.

    2007-01-01

    Full text of publication follows: Neutron irradiation can increase the yield stress and reduce the ductility of metals. These effects are mainly caused by the interaction of dislocations with damage produced during irradiation. In iron irradiated with fast neutrons the damage takes the form of 1/2 and 1/2 prismatic dislocation loops (the size of the loops varies from 2 nm to 20 nm depending on the dose of irradiation). The interaction between such loops and dislocations is the subject of this research. 3D dislocation dynamics simulations have been carried out to model the interaction between prismatic loops and dis- locations in pure iron subject to uniaxial loading conditions. The primary goal was to understand the mechanism of interaction of a a/2 loop and a mobile dislocation. The simulations have shown a complicated 3D interaction resulting in either bowing around an obstacle (prismatic loop, Orowan mechanism) or cutting it through, carrying part of the loop away and leaving the other part behind. Cross-slip can be important, in a manner depending on the type of mobile dislocation, size, type and orientation of prismatic loop. The secondary goal was to investigate the dependence of the critical stress needed for dislocations to overcome the obstacles as a function of: size of loops, initial separation between loops, the direction of motion of the mobile dislocation and its type (pure edge or screw), and type of a loop (interstitial or vacancy). Many different configurations have been simulated. The size of the loops was varied from 10 nm to 100 nm; the separation between the loops in a row was varied from one to four loop diameters; the distance between the glide plane and the loop plane was varied from 0 to 20 nm. The glide plane of the mobile dislocation was either perpendicular to and or inclined to the loop plane. The results show a strong dependence of the critical stress on the size of the loops and the initial configuration. (authors)

  10. Dynamic Analysis of Hammer Mechanism "Twin Hammer" of Impact Wrench

    Science.gov (United States)

    Konečný, M.; Slavík, J.

    This paper describes function of the hammer mechanism "Twin hammer" the impact wrench, calculation of dynamic forces exerted on the mechanism and determining the contact pressures between the parts of the mechanism. The modelling of parts was performed in system Pro ENGINEER—standard. The simulation and finding dynamic forces was performed in advanced module Pro ENGINEER—mechanism design and finding contacts pressures in modul Pro ENGENEER—mechanica.

  11. A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK

    International Nuclear Information System (INIS)

    Sun, Hui-Yong; Ji, Feng-Qin

    2012-01-01

    Highlights: ► The study revealed the detailed resistance mechanism of the non-active mutation C1156Y in ALK. ► C1156Y leads to crizotinib displacement and conformational changes in the binding cavity. ► The conformations cause a decline in the vdW and electrostatic energy between crizotinib and ALK. -- Abstract: Crizotinib is an anaplastic lymphoma kinase (ALK) inhibitor that has recently been approved in the US for the treatment of non-small cell lung carcinoma (NSCLC). Despite its outstanding safety and efficacy, several resistant mutations against crizotinib have been detected in the treatment of NSCLC. However, in contrast to the widely accepted mechanism of steric hindrance by mutations at the active site, the mechanism by which the C1156Y non-active site mutation confers resistance against crizotinib remains unclear. In the present study, the resistance mechanism of C1156Y in ALK was investigated using molecular dynamics simulations. The results suggest that despite the non-active site mutation, C1156Y causes the dislocation of crizotinib as well as the indirect conformational changes in the binding cavity, which results in a marked decrease in the van der Waals and electrostatic interactions between crizotinib and ALK. The obtained results provide a detailed explanation of the resistance caused by C1156Y and may give a vital clue for the design of drugs to combat crizotinib resistance.

  12. A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hui-Yong [Shandong University of Technology, Zibo 255049 (China); Ji, Feng-Qin, E-mail: fengqinji@mail.hzau.edu.cn [National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Center for Bioinformatics, Huazhong Agricultural University, Wuhan 430070 (China)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The study revealed the detailed resistance mechanism of the non-active mutation C1156Y in ALK. Black-Right-Pointing-Pointer C1156Y leads to crizotinib displacement and conformational changes in the binding cavity. Black-Right-Pointing-Pointer The conformations cause a decline in the vdW and electrostatic energy between crizotinib and ALK. -- Abstract: Crizotinib is an anaplastic lymphoma kinase (ALK) inhibitor that has recently been approved in the US for the treatment of non-small cell lung carcinoma (NSCLC). Despite its outstanding safety and efficacy, several resistant mutations against crizotinib have been detected in the treatment of NSCLC. However, in contrast to the widely accepted mechanism of steric hindrance by mutations at the active site, the mechanism by which the C1156Y non-active site mutation confers resistance against crizotinib remains unclear. In the present study, the resistance mechanism of C1156Y in ALK was investigated using molecular dynamics simulations. The results suggest that despite the non-active site mutation, C1156Y causes the dislocation of crizotinib as well as the indirect conformational changes in the binding cavity, which results in a marked decrease in the van der Waals and electrostatic interactions between crizotinib and ALK. The obtained results provide a detailed explanation of the resistance caused by C1156Y and may give a vital clue for the design of drugs to combat crizotinib resistance.

  13. Disclinations, dislocations, and continuous defects: A reappraisal

    Science.gov (United States)

    Kleman, M.; Friedel, J.

    2008-01-01

    Disclinations were first observed in mesomorphic phases. They were later found relevant to a number of ill-ordered condensed-matter media involving continuous symmetries or frustrated order. Disclinations also appear in polycrystals at the edges of grain boundaries; but they are of limited interest in solid single crystals, where they can move only by diffusion climb and, owing to their large elastic stresses, mostly appear in close pairs of opposite signs. The relaxation mechanisms associated with a disclination in its creation, motion, and change of shape involve an interplay with continuous or quantized dislocations and/or continuous disclinations. These are attached to the disclinations or are akin to Nye’s dislocation densities, which are particularly well suited for consideration here. The notion of an extended Volterra process is introduced, which takes these relaxation processes into account and covers different situations where this interplay takes place. These concepts are illustrated by a variety of applications in amorphous solids, mesomorphic phases, and frustrated media in their curved habit space. These often involve disclination networks with specific node conditions. The powerful topological theory of line defects considers only defects stable against any change of boundary conditions or relaxation processes compatible with the structure considered. It can be seen as a simplified case of the approach considered here, particularly suited for media of high plasticity or/and complex structures. It cannot analyze the dynamical properties of defects nor the elastic constants involved in their static properties; topological stability cannot guarantee energetic stability, and sometimes cannot distinguish finer details of the structure of defects.

  14. Dynamics and control of hybrid mechanical systems

    NARCIS (Netherlands)

    Leonov, G.A.; Nijmeijer, H.; Pogromski, A.Y.; Fradkov, A.L.

    2010-01-01

    The papers in this edited volume aim to provide a better understanding of the dynamics and control of a large class of hybrid dynamical systems that are described by different models in different state space domains. They not only cover important aspects and tools for hybrid systems analysis and

  15. MECHANICS OF DYNAMIC POWDER COMPACTION PROCESS

    OpenAIRE

    Nurettin YAVUZ

    1996-01-01

    In recent years, interest in dynamic compaction methods of metal powders has increased due to the need to improve compaction properties and to increase production rates of compacts. In this paper, review of dynamic and explosive compaction of metal powders are given. An attempt is made to get a better understanding of the compaction process with the mechanicis of powder compaction.

  16. Growth and instability of charged dislocation loops under irradiation in ceramic materials

    CERN Document Server

    Ryazanov, A I; Kinoshita, C; Klaptsov, A V

    2002-01-01

    We have investigated the physical mechanisms of the growth and stability of charged dislocation loops in ceramic materials with very strong different mass of atoms (stabilized cubic zirconia) under different energies and types of irradiation conditions: 100-1000 keV electrons, 100 keV He sup + and 300 keV O sup + ions. The anomalous formation of extended defect clusters (charged dislocation loops) has been observed by TEM under electron irradiation subsequent to ion irradiation. It is demonstrated that very strong strain field (contrast) near charged dislocation loops is formed. The dislocation loops grow up to a critical size and after then become unstable. The instability of the charged dislocation loop leads to the multiplication of dislocation loops and the formation of dislocation network near the charged dislocation loops. A theoretical model is suggested for the explanation of the growth and stability of the charged dislocation loop, taking the charge state of point defects. The calculated distribution...

  17. Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model

    DEFF Research Database (Denmark)

    Tarp, Jens M.; Angheluta, Luiza; Mathiesen, Joachim

    2014-01-01

    Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations...... propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate....

  18. Proximal tibiofibular dislocation: a case report and review of literature

    NARCIS (Netherlands)

    Nieuwe Weme, R. A.; Somford, M. P.; Schepers, T.

    2014-01-01

    An isolated dislocation of the proximal tibiofibular joint is uncommon. The mechanism of this injury is usually sports related. We present a case where initial X-rays did not show the tibiofibular joint dislocation conclusively. It was diagnosed after comparative bilateral AP X-rays of the knees

  19. Aspects of dislocation substructures associated with the deformation stages of stainless steel AISI 304 at high temperatures

    International Nuclear Information System (INIS)

    Oliveira, J.L.L.; Reis Filho, J.A.B.S.; Almeida, L.H. de; Monteiro, S.N.

    1978-07-01

    The development of dislocation substrutures in type 304 austenitic stainless steel at high temperatures has been associated with the deformation stages through log dσ/d epsilon x log epsilon plots, which show the transition point independently. The mechanisms responsible for the Dynamic Strain Aging particulary the Portevin-LeChatelier effect were related to the appearence of the stages. The results indicate that the deformation stages can be divided into two distinct regions. Each one of these region show particular characteristics with respect to the stress level, transition point, developed substructure and type of crystalline defects interaction with dislocations. (Author) [pt

  20. System dynamics an introduction for mechanical engineers

    CERN Document Server

    Seeler, Karl A

    2014-01-01

    This essential textbook takes the student from the initial steps in modeling a dynamic system through development of the mathematical models needed for feedback control.  The generously-illustrated, student-friendly text focuses on fundamental theoretical development rather than the application of commercial software.  Practical details of machine design are included to motivate the non-mathematically inclined student. This book also: Emphasizes the linear graph method for modeling dynamic systems Offers a systematic approach for creating an engineering model, extracting information, and formulating mathematical analyses Adopts a unifying theme of power flow as the dynamic agent that eases analysis of hybrid systems, such as machinery Presents differential equations as dynamic operators and stresses input/output relationships Introduces Mathcad and programming in MATLAB Allows for use of Open Source Computational Software (R or C) Features over 1000 illustrations

  1. A molecular dynamics investigation into the mechanisms of alectinib resistance of three ALK mutants.

    Science.gov (United States)

    He, Muyang; Li, Weikang; Zheng, Qingchuan; Zhang, Hongxing

    2018-01-11

    Alectinib, a highly selective next-genetation anaplastic lymphoma kinase (ALK) inhibitor, has demonstrated promising antitumor activity in patients with ALK-positive non-small cell lung carcinomas (NSCLC). However, the therapeutic benefits of alectinib is inescapably hampered by the development of acquired resistant mutations in ALK. Despite the availability of ample experimental mutagenesis data, the molecular origin and the structural motifs under alectinib binding affinity deficiencies are still ambiguous. Here, molecular dynamics (MD) simulations and molecular mechanics generalized born surface area (MM-GBSA) calculation approaches were employed to elucidate the mechanisms of alectinib resistance induced by the mutations I1171N, V1180L, and L1198F. The MD results reveal that the studied mutations could trigger the dislocation of alectinib as well as conformational changes at the inhibitor binding site, thus induce the interactional changes between alectinib and mutants. The most influenced regions are the ligand binding entrance and the hinge region, which are considered to be the dominant binding motifs accounting for the binding affinity loss in mutants. The "key and lock mechanism" between the ethyl group at position 9 of alectinib and a recognition cavity in the hinge region of ALK is presented to illustrate the major molecular origin of drug resistance. Our results provide mechanistic insight into the effect of ALK mutations resistant to alectinib, which could contribute to further rational design of inhibitors to combat the acquired resistance. © 2018 Wiley Periodicals, Inc.

  2. An atomic string model for a screw dislocation in iron: Implications for the development of interatomic potentials

    International Nuclear Information System (INIS)

    Gilbert, M.R.; Dudarev, S.L.; Chiesa, S.; Derlet, P.M.

    2009-01-01

    Thermally activated motion of screw dislocations is the rate-determining mechanism for plastic deformation and fracture of body centred cubic (bcc) metals and alloys. Recent experimental observations by S.G. Roberts' group at Oxford showed that ductile-brittle behaviour of bcc vanadium, tungsten, pure iron, and iron-chromium alloys is controlled by an Arrhenius process in which the energy for thermal activation is proportional to the formation energy for a double kink on a b= 1/2 screw dislocation, where b is the Burgers vector of the dislocation. Interpreting these experimental observations and extending the analysis to the case of irradiated materials requires developing a full quantitative treatment for perfect and kinked screw dislocations. Modelling screw dislocations also presents a challenge for the development of interatomic potentials. Recent density functional theory (DFT) calculations have revealed that the ground-state structure of the core of screw dislocations in all the bcc transition metals is non-degenerate and symmetric, whereas inter-atomic potentials used in molecular dynamics simulations for these metals often predict a degenerate, symmetry-broken core-structure. In this work we show how, by treating the structure of a screw dislocation within a multistring Frenkel-Kontorova model, we can develop a criterion that guarantees the correct symmetric core of the dislocation. Extending this treatment, we find a systematic recipe for constructing Finnis-Sinclair-type potentials that are able, as a matter of routine, produce non-degenerate core structures of 1/2 screw dislocations. Modelling thermally activated mobility of screw dislocations also requires that the transition pathway between stable core positions of a dislocation is accurately reproduced. DFT data indicates that the shape of the 'Peierls energy barrier' is a single-hump curve, including transitional configurations close to the so-called 'hard' structure. Interatomic potentials have, up

  3. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening

    Energy Technology Data Exchange (ETDEWEB)

    Ye Chang [School of Industrial Engineering, Purdue University, West Lafayette, IN 47906 (United States); Suslov, Sergey; Kim, Bong Joong; Stach, Eric A. [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN (United States); Cheng, Gary J., E-mail: gjcheng@purdue.edu [School of Industrial Engineering, Purdue University, West Lafayette, IN 47906 (United States)

    2011-02-15

    Warm laser shock peening (WLSP) is a thermomechanical treatment technique combining the advantages of laser shock peening and dynamic strain aging (DSA). Through DSA, WLSP of steel increases the dislocation density and stabilizes the dislocation structure by pinning of mobile dislocations by carbon atoms. In addition, WLSP generates nanoscale carbide precipitates through strain-induced precipitation. The carbide precipitates stabilize the microstructure by dislocation pinning. This results in higher stability of the dislocation structure and thus improves the stability of the compressive residual stress. In this study the mechanism of fatigue performance improvement in AISI 4140 steel by WLSP is investigated. It is found that microstructures formed after WLSP lead to a higher stability of dislocation structures and residual stress, which are beneficial for fatigue performance.

  4. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening

    International Nuclear Information System (INIS)

    Ye Chang; Suslov, Sergey; Kim, Bong Joong; Stach, Eric A.; Cheng, Gary J.

    2011-01-01

    Warm laser shock peening (WLSP) is a thermomechanical treatment technique combining the advantages of laser shock peening and dynamic strain aging (DSA). Through DSA, WLSP of steel increases the dislocation density and stabilizes the dislocation structure by pinning of mobile dislocations by carbon atoms. In addition, WLSP generates nanoscale carbide precipitates through strain-induced precipitation. The carbide precipitates stabilize the microstructure by dislocation pinning. This results in higher stability of the dislocation structure and thus improves the stability of the compressive residual stress. In this study the mechanism of fatigue performance improvement in AISI 4140 steel by WLSP is investigated. It is found that microstructures formed after WLSP lead to a higher stability of dislocation structures and residual stress, which are beneficial for fatigue performance.

  5. Dislocated Worker Project.

    Science.gov (United States)

    1988

    Due to the severe economic decline in the automobile manufacturing industry in southeastern Michigan, a Dislocated Workers Program has been developed through the partnership of the Flint Area Chamber of Commerce, three community colleges, the National Center for Research in Vocational Education, the Michigan State Department of Education, the…

  6. Dislocated Shoulder: Symptoms and Causes

    Science.gov (United States)

    ... caused by: Sports injuries. Shoulder dislocation is a common injury in contact sports, such as football and hockey, and in sports that may involve falls, such as downhill skiing, gymnastics and volleyball. ... is a common source of dislocation. Falls. You may dislocate your ...

  7. Modulation of neuronal dynamic range using two different adaptation mechanisms

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-01-01

    Full Text Available The capability of neurons to discriminate between intensity of external stimulus is measured by its dynamic range. A larger dynamic range indicates a greater probability of neuronal survival. In this study, the potential roles of adaptation mechanisms (ion currents in modulating neuronal dynamic range were numerically investigated. Based on the adaptive exponential integrate-and-fire model, which includes two different adaptation mechanisms, i.e. subthreshold and suprathreshold (spike-triggered adaptation, our results reveal that the two adaptation mechanisms exhibit rather different roles in regulating neuronal dynamic range. Specifically, subthreshold adaptation acts as a negative factor that observably decreases the neuronal dynamic range, while suprathreshold adaptation has little influence on the neuronal dynamic range. Moreover, when stochastic noise was introduced into the adaptation mechanisms, the dynamic range was apparently enhanced, regardless of what state the neuron was in, e.g. adaptive or non-adaptive. Our model results suggested that the neuronal dynamic range can be differentially modulated by different adaptation mechanisms. Additionally, noise was a non-ignorable factor, which could effectively modulate the neuronal dynamic range.

  8. Femoral head fracture without hip dislocation

    Directory of Open Access Journals (Sweden)

    Aggarwal Aditya K

    2013-10-01

    Full Text Available 【Abstract】Femoral head fractures without dislocation or subluxation are extremely rare injuries. We report a neglected case of isolated comminuted fracture of femoral head without hip dislocation or subluxation of one year duration in a 36-year-old patient who sustained a high en- ergy trauma due to road traffic accident. He presented with painful right hip and inability to bear full weight on right lower limb with Harris hip score of 39. He received cementless total hip replacement. At latest follow-up of 2.3 years, functional outcome was excellent with Harris hip score of 95. Such isolated injuries have been described only once in the literature and have not been classified till now. The purpose of this report is to highlight the extreme rarity, possible mechanism involved and a novel classification system to classify such injuries. Key words: Femur head; Hip dislocation; Classification; Arthroplasty, replacement, hip

  9. Self-force on dislocation segments in anisotropic crystals

    International Nuclear Information System (INIS)

    Fitzgerald, S P; Aubry, S

    2010-01-01

    A dislocation segment in a crystal experiences a 'self-force', by virtue of the orientation dependence of its elastic energy. If the crystal is elastically isotropic, this force is manifested as a couple acting to rotate the segment toward the lower energy of the pure screw orientation (i.e. acting to align the dislocation line with its Burgers vector). If the crystal is anisotropic, there are additional contributions to the couple, arising from the more complex energy landscape of the lattice itself. These effects can strongly influence the dynamic evolution of dislocation networks, and via their governing role in dislocation multiplication phenomena, control plastic flow in metals. In this paper we develop a model for dislocation self-forces in a general anisotropic crystal, and briefly consider the technologically important example of α-iron, which becomes increasingly anisotropic as the temperature approaches that of the α-γ phase transition at 912 0 C.

  10. [New varieties of lateral metatarsophalangeal dislocations of the great toe].

    Science.gov (United States)

    Bousselmame, N; Rachid, K; Lazrak, K; Galuia, F; Taobane, H; Moulay, I

    2001-04-01

    We report seven cases of traumatic dislocation of the great toe, detailing the anatomy, the mechanism of injury and the radiographic diagnosis. We propose an additional classification based on three hereto unreported cases. Between october 1994 and october 1997, we treated seven patients with traumatic dislocation of the first metatarso-phalangeal joint of the great toe. There were six men and one woman, mean age 35 years (range 24 - 44 years). Dislocation was caused by motor vehicle accidents in four cases and by falls in three. Diagnosis was made on anteroposterior, lateral and medial oblique radiographs. According to Jahss' classification, there was one type I and three type IIB dislocations. There was also one open lateral dislocation and two dorsomedial dislocations. Only these dorsomedial dislocations required open reduction, done via a dorsal approach. Mean follow-up was 17.5 months (range 9 - 24 months) in six cases. One patient was lost to follow-up. The outcome was good in six cases and poor in one (dorsomedial dislocation). Dislocation of the first metatarso-phalangeal joint of the great toe is an uncommon injury. In 1980, Jahss reported two cases and reviewed three others described in the literature. He proposed three types of dislocation based on the feasibility of closed reduction (type I, II and IIB). In 1991, Copeland and Kanat reported a unique case in which there was an association of IIA and IIB lesions. They proposed an addition to the classification (type IIC). In 1994, Garcia Mata et al. reported another case which had not been described by Jahss and proposed another addition. All dislocations reported to date have been sagittal dislocations. Pathological alteration of the collateral ligaments has not been previously reported. In our experience, we have seen one case of open lateral dislocation due, at surgical exploration, to medial ligament rupture and two cases of dorsomedial dislocation due, at surgical exploration, to lateral ligament

  11. Kinetic Interaction of Uranium Vacancies and Dislocations in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Uberuaga, Blas P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goyal, Anuj [Univ. of Florida, Gainesville, FL (United States); Subramanian, Gopinath [Univ. of South Mississippi, Hattiesburg, MS (United States); Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-25

    Understanding how point defects and defect clusters interact with dislocations in urania is important for a number of phenomena. For example, dislocations are one (of many) trap sites in the fuel where fission gases may accumulate and ultimately nucleate fission gas bubbles. Further, some creep mechanisms are governed by the flow of point defects to dislocations. Thus, for a variety of reasons, it is important to examine how dislocations attract and accelerate the kinetics of point defects.

  12. Atomistic simulation of the influence of Cr on the mobility of the edge dislocation in Fe(Cr) alloys

    International Nuclear Information System (INIS)

    Hafez Haghighat, S.M.; Terentyev, D.; Schaeublin, R.

    2011-01-01

    In this work Fe-Cr compounds, as model alloys for the ferritic base steels that are considered as main candidates for the structural materials of the future fusion reactors, are studied using molecular dynamics simulations. The Cr or so-called α' precipitates, which are obstacles to dislocations, affect mechanical properties, leading to hardening and loss of ductility. The flow stress to move an edge dislocation in a Cr solid solution in pure Fe is studied as a function of Cr content. The strength of a nanometric Cr precipitate as obstacle to an edge dislocation in pure Fe is investigated as a function of its Cr content. Results show that with increasing Cr content the precipitate obstacle strength increases, with a strong sensitivity to the local atomic order. Temperature induces a monotonic decrease of the flow stress of the Cr solid solution and of the Cr precipitate obstacle strength.

  13. Thermal activation of dislocations in large scale obstacle bypass

    Science.gov (United States)

    Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; Martinez, Enrique

    2017-08-01

    Dislocation dynamics simulations have been used extensively to predict hardening caused by dislocation-obstacle interactions, including irradiation defect hardening in the athermal case. Incorporating the role of thermal energy on these interactions is possible with a framework provided by harmonic transition state theory (HTST) enabling direct access to thermally activated reaction rates using the Arrhenius equation, including rates of dislocation-obstacle bypass processes. Moving beyond unit dislocation-defect reactions to a representative environment containing a large number of defects requires coarse-graining the activation energy barriers of a population of obstacles into an effective energy barrier that accurately represents the large scale collective process. The work presented here investigates the relationship between unit dislocation-defect bypass processes and the distribution of activation energy barriers calculated for ensemble bypass processes. A significant difference between these cases is observed, which is attributed to the inherent cooperative nature of dislocation bypass processes. In addition to the dislocation-defect interaction, the morphology of the dislocation segments pinned to the defects play an important role on the activation energies for bypass. A phenomenological model for activation energy stress dependence is shown to describe well the effect of a distribution of activation energies, and a probabilistic activation energy model incorporating the stress distribution in a material is presented.

  14. Synchronization and chaotic dynamics of coupled mechanical metronomes

    Science.gov (United States)

    Ulrichs, Henning; Mann, Andreas; Parlitz, Ulrich

    2009-12-01

    Synchronization scenarios of coupled mechanical metronomes are studied by means of numerical simulations showing the onset of synchronization for two, three, and 100 globally coupled metronomes in terms of Arnol'd tongues in parameter space and a Kuramoto transition as a function of coupling strength. Furthermore, we study the dynamics of metronomes where overturning is possible. In this case hyperchaotic dynamics associated with some diffusion process in configuration space is observed, indicating the potential complexity of metronome dynamics.

  15. Conformation analysis of trehalose. Molecular dynamics simulation and molecular mechanics

    International Nuclear Information System (INIS)

    Donnamaira, M.C.; Howard, E.I.; Grigera, J.R.

    1992-09-01

    Conformational analysis of the disaccharide trehalose is done by molecular dynamics and molecular mechanics. In spite of the different force fields used in each case, comparison between the molecular dynamics trajectories of the torsional angles of glycosidic linkage and energy conformational map shows a good agreement between both methods. By molecular dynamics it is observed a moderate mobility of the glycosidic linkage. The demands of computer time is comparable in both cases. (author). 6 refs, 4 figs

  16. Neglected isolated scaphoid dislocation

    Directory of Open Access Journals (Sweden)

    Jong-Ryoon Baek

    2016-01-01

    Full Text Available The authors present a case of isolated scaphoid dislocation in a 40-year-old male that was undiagnosed for 2 months. The patient was treated by open reduction, Kirschner wire fixation, interosseous ligament repair using a suture anchor and Blatt's dorsal capsulodesis. At 6 years followup, his radiographs of wrist showed a normal carpal alignment with a scapholunate gap of 3 mm and no evidence of avascular necrosis (AVN of the scaphoid.

  17. Dynamic response analysis as a tool for investigating transport mechanisms

    International Nuclear Information System (INIS)

    Dudok de Wit, Th.; Joye, B.; Lister, J.B.; Moret, J.M.

    1990-01-01

    Dynamic response analysis provides an attractive method for studying transport mechanisms in tokamak plasmas. The analysis of the radial response has already been widely used for heat and particle transport studies. The frequency dependence of the dynamic response, which is often omitted, reveals further properties of the dominant transport mechanisms. Extended measurements of the soft X-ray emission were carried out on the TCA tokamak in order to determine the underlying transport processes. (author) 5 refs., 2 figs

  18. Features wear nodes mechanization wing aircraft operating under dynamic loads

    Directory of Open Access Journals (Sweden)

    А.М. Хімко

    2009-03-01

    Full Text Available  The conducted researches of titanic alloy ВТ-22 at dynamic loading with cycled sliding and dynamic loading in conditions of rolling with slipping. It is established that roller jamming in the carriage increases wear of rod of mechanization of a wing to twenty times. The optimum covering for strengthening wearied sites and restoration of working surfaces of wing’s mechanization rod is defined.

  19. Molecular dynamics and Monte Carlo calculations in statistical mechanics

    International Nuclear Information System (INIS)

    Wood, W.W.; Erpenbeck, J.J.

    1976-01-01

    Monte Carlo and molecular dynamics calculations on statistical mechanical systems is reviewed giving some of the more significant recent developments. It is noted that the term molecular dynamics refers to the time-averaging technique for hard-core and square-well interactions and for continuous force-law interactions. Ergodic questions, methodology, quantum mechanical, Lorentz, and one-dimensional, hard-core, and square and triangular-well systems, short-range soft potentials, and other systems are included. 268 references

  20. Broken dynamical symmetries in quantum mechanics and phase transition phenomena

    International Nuclear Information System (INIS)

    Guenther, N.J.

    1979-12-01

    This thesis describes applications of dynamical symmetries to problems in quantum mechanics and many-body physics where the latter is formulated as a Euclidean scalar field theory in d-space dimensions. By invoking the concept of a dynamical symmetry group a unified understanding of apparently disparate results is achieved. (author)

  1. Dynamics formulas and problems : engineering mechanics 3

    CERN Document Server

    Gross, Dietmar; Wriggers, Peter; Schröder, Jörg; Müller, Ralf

    2017-01-01

    This book contains the most important formulas and more than 190 completely solved problems from Kinetics and Hydrodynamics. It provides engineering students material to improve their skills and helps to gain experience in solving engineering problems. Particular emphasis is placed on finding the solution path and formulating the basic equations. Topics include: - Kinematics of a Point - Kinetics of a Point Mass- Dynamics of a System of Point Masses - Kinematics of Rigid Bodies - Kinetics of Rigid Bodies - Impact - Vibrations - Non-Inertial Reference Frames - Hydrodynamics .

  2. Dechanneling by dislocation loops

    International Nuclear Information System (INIS)

    Chalant, Gerard.

    1976-09-01

    Ion implantation always induces the creation of dislocation loops. When the damage profile is determined by a backscattering technique, the dechanneling by these loops is implicitely at the origin of these measurements. The dechanneling of alpha particles by dislocation loops produced by the coalescence of quenched-in vacancies in aluminium is studied. The dechanneling and the concentration of loops were determined simultaneously. The dechanneling width around dislocation was found equal to lambda=6A, both for perfect and imperfect loops having a mean diameter d=250A. In the latter case, a dechanneling probability chi=0.34 was determined for the stacking fault, in good agreement with previous determination in gold. A general formula is proposed which takes into account the variation of lambda with the curvature (or the diameter d) of the loops. Finally, by a series of isothermal anneals, the self-diffusion energy ΔH of aluminium was measured. The value obtained ΔH=1.32+-0.10eV is in good agreement with the values obtained by other methods [fr

  3. High-temperature discrete dislocation plasticity

    Science.gov (United States)

    Keralavarma, S. M.; Benzerga, A. A.

    2015-09-01

    A framework for solving problems of dislocation-mediated plasticity coupled with point-defect diffusion is presented. The dislocations are modeled as line singularities embedded in a linear elastic medium while the point defects are represented by a concentration field as in continuum diffusion theory. Plastic flow arises due to the collective motion of a large number of dislocations. Both conservative (glide) and nonconservative (diffusion-mediated climb) motions are accounted for. Time scale separation is contingent upon the existence of quasi-equilibrium dislocation configurations. A variational principle is used to derive the coupled governing equations for point-defect diffusion and dislocation climb. Superposition is used to obtain the mechanical fields in terms of the infinite-medium discrete dislocation fields and an image field that enforces the boundary conditions while the point-defect concentration is obtained by solving the stress-dependent diffusion equations on the same finite-element grid. Core-level boundary conditions for the concentration field are avoided by invoking an approximate, yet robust kinetic law. Aspects of the formulation are general but its implementation in a simple plane strain model enables the modeling of high-temperature phenomena such as creep, recovery and relaxation in crystalline materials. With emphasis laid on lattice vacancies, the creep response of planar single crystals in simple tension emerges as a natural outcome in the simulations. A large number of boundary-value problem solutions are obtained which depict transitions from diffusional to power-law creep, in keeping with long-standing phenomenological theories of creep. In addition, some unique experimental aspects of creep in small scale specimens are also reproduced in the simulations.

  4. Influence of strain on dislocation core in silicon

    Science.gov (United States)

    Pizzagalli, L.; Godet, J.; Brochard, S.

    2018-05-01

    First principles, density functional-based tight binding and semi-empirical interatomic potentials calculations are performed to analyse the influence of large strains on the structure and stability of a 60? dislocation in silicon. Such strains typically arise during the mechanical testing of nanostructures like nanopillars or nanoparticles. We focus on bi-axial strains in the plane normal to the dislocation line. Our calculations surprisingly reveal that the dislocation core structure largely depends on the applied strain, for strain levels of about 5%. In the particular case of bi-axial compression, the transformation of the dislocation to a locally disordered configuration occurs for similar strain magnitudes. The formation of an opening, however, requires larger strains, of about 7.5%. Furthermore, our results suggest that electronic structure methods should be favoured to model dislocation cores in case of large strains whenever possible.

  5. Dislocation of primary total hip arthroplasty and the risk of redislocation.

    LENUS (Irish Health Repository)

    Brennan, Stephen A

    2012-09-01

    6554 primary total hip arthroplasties were reviewed. Risk factors for dislocation were analysed to assess which were important in terms of predicting recurrent instability. The patients risk of having a second dislocation was independently associated with the surgical approach adopted (p = 0.03) and the time to first dislocation from the primary hip replacement (p = 0.002). Early dislocators whose surgery was performed through an anterolateral approach had less recurrence than late dislocators through a posterior or transtrochanteric approach. None of the other risk factors including head size (p = 0.59), modularity (p = 0.54), mechanism of dislocation (p = 0.23), leg length discrepancy (p = 0.69) and acetabular inclination (p = 0.31) were influential. The use of an abduction brace was not useful in preventing a further dislocation with 69.2% of those braced re-dislocating compared to 68.5% who were not braced (p = 0.96).

  6. Nonlinear structural mechanics theory, dynamical phenomena and modeling

    CERN Document Server

    Lacarbonara, Walter

    2013-01-01

    Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling offers a concise, coherent presentation of the theoretical framework of nonlinear structural mechanics, computational methods, applications, parametric investigations of nonlinear phenomena and their mechanical interpretation towards design. The theoretical and computational tools that enable the formulation, solution, and interpretation of nonlinear structures are presented in a systematic fashion so as to gradually attain an increasing level of complexity of structural behaviors, under the prevailing assumptions on the geometry of deformation, the constitutive aspects and the loading scenarios. Readers will find a treatment of the foundations of nonlinear structural mechanics towards advanced reduced models, unified with modern computational tools in the framework of the prominent nonlinear structural dynamic phenomena while tackling both the mathematical and applied sciences. Nonlinear Structural Mechanics: Theory, Dynamical Phenomena...

  7. Atomistic simulations of the formation of -component dislocation loops in α-zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Cong, E-mail: dai.cong@queensu.ca; Balogh, Levente; Yao, Zhongwen; Daymond, Mark R., E-mail: mark.daymond@queensu.ca

    2016-09-15

    The formation of -component dislocation loops in α-Zr is believed to be responsible for the breakaway irradiation growth experimentally observed under high irradiation fluences. However, while -loop growth is well described by existing models, the atomic mechanisms responsible for the nucleation of -component dislocation loops are still not clear. In the present work, both interstitial and vacancy -type dislocation loops are initially equilibrated at different temperatures. Cascades simulations in the vicinity of the -type loops are then performed by selecting an atom as the primary knock-on atoms (PKAs) with different kinetic energies, using molecular dynamics simulations. No -component dislocation loop was formed in cascades simulations with a 10 keV PKA, but -component interstitial loops were observed after the interaction between discontinuous 50 keV PKAs and pre-existing -type interstitial loops. The comparisons of cascades simulations in volumes having pre-existing -type interstitial and vacancy loops suggest that the reaction between the PKAs and -type interstitial loops is responsible for the formation of -component interstitial loops.

  8. Calculations of the electron-damping force on moving-edge dislocations

    International Nuclear Information System (INIS)

    Mohri, T.

    1982-11-01

    Dynamic effect of a moving dislocation has been recognized as one of essential features of deformation behavior at very low temperatures. Damping mechanisms are the central problems in this field. Based on the free-electron-gas model, the electron-damping force (friction force) on a moving-edge dislocation in a normal state is estimated. By applying classical MacKenzie-Sondheimer's procedures, the electrical resistivity caused by a moving dislocation is first estimated, and the damping force is calculated as a Joule-heat-energy dissipation. The calculated values are 3.63x10 - 6 , 7.62x10 - 7 and 1.00x10 - 6 [dyn sec/cm - 2 ] for Al, Cu and Pb, respectively. These values show fairly good agreements as compared with experimental results. Also, numerical calculations are carried out to estimate magnetic effects caused by a moving dislocation. The results are negative and any magnetic effects are not expected. In order to treat deformation behavior at very low temperatures, a unification of three important deformation problems is attempted and a fundamental equation is derived

  9. Modelling the motion of {112-bar 2} twinning dislocations in the HCP metals

    International Nuclear Information System (INIS)

    Serra, A.; Bacon, D.J.

    2005-01-01

    Deformation twinning is important for plasticity of the hcp metals, but little is known about the dynamics of the mechanisms that control twin boundary motion. With the exception of the {112-bar 1} twin, atomic shuffles are required for glide of twinning dislocations and hence boundary movement is temperature-dependent. A computer method has been developed to simulate a step with dislocation character in a boundary with full periodicity in the boundary plane, i.e. along both the direction of the line of the defect and its direction of motion. It may be used to investigate the properties of such interfaces as the defects in them move over large distances. We explain the nature of the method and apply it to study the motion of twinning dislocations in the {112-bar 2} boundary as a function of applied stress and temperature. A new reaction at the boundary leading to the creation of a (c+a) crystal dislocation and a {112-bar 1} micro-twin is described

  10. Multiscale modeling of dislocation processes in BCC tantalum: bridging atomistic and mesoscale simulations

    International Nuclear Information System (INIS)

    Yang, L H; Tang, M; Moriarty, J A

    2001-01-01

    Plastic deformation in bcc metals at low temperatures and high-strain rates is controlled by the motion of a/2 screw dislocations, and understanding the fundamental atomistic processes of this motion is essential to develop predictive multiscale models of crystal plasticity. The multiscale modeling approach presented here for bcc Ta is based on information passing, where results of simulations at the atomic scale are used in simulations of plastic deformation at mesoscopic length scales via dislocation dynamics (DD). The relevant core properties of a/2 screw dislocations in Ta have been obtained using quantum-based interatomic potentials derived from model generalized pseudopotential theory and an ab-initio data base together with an accurate Green's-function simulation method that implements flexible boundary conditions. In particular, the stress-dependent activation enthalpy for the lowest-energy kink-pair mechanism has been calculated and fitted to a revealing analytic form. This is the critical quantity determining dislocation mobility in the DD simulations, and the present activation enthalpy is found to be in good agreement with the previous empirical form used to explain the temperature dependence of the yield stress

  11. Colloquium: Mechanical formalisms for tissue dynamics.

    Science.gov (United States)

    Tlili, Sham; Gay, Cyprien; Graner, François; Marcq, Philippe; Molino, François; Saramito, Pierre

    2015-05-01

    The understanding of morphogenesis in living organisms has been renewed by tremendous progress in experimental techniques that provide access to cell scale, quantitative information both on the shapes of cells within tissues and on the genes being expressed. This information suggests that our understanding of the respective contributions of gene expression and mechanics, and of their crucial entanglement, will soon leap forward. Biomechanics increasingly benefits from models, which assist the design and interpretation of experiments, point out the main ingredients and assumptions, and ultimately lead to predictions. The newly accessible local information thus calls for a reflection on how to select suitable classes of mechanical models. We review both mechanical ingredients suggested by the current knowledge of tissue behaviour, and modelling methods that can help generate a rheological diagram or a constitutive equation. We distinguish cell scale ("intra-cell") and tissue scale ("inter-cell") contributions. We recall the mathematical framework developed for continuum materials and explain how to transform a constitutive equation into a set of partial differential equations amenable to numerical resolution. We show that when plastic behaviour is relevant, the dissipation function formalism appears appropriate to generate constitutive equations; its variational nature facilitates numerical implementation, and we discuss adaptations needed in the case of large deformations. The present article gathers theoretical methods that can readily enhance the significance of the data to be extracted from recent or future high throughput biomechanical experiments.

  12. Simulation of dislocation glide in dilute Fe-Cu alloys

    International Nuclear Information System (INIS)

    Tapasa, K.; Bacon, D.J.; Osetsky, Yu.N.

    2005-01-01

    The effects on dislocation glide of the substitutional element copper in solution in α-iron are being investigated by computer simulation. In the first phase, the critical stress for a 1/2 {110} edge dislocation to overcome configurations of either a single or two nearest-neighbour solute atoms is simulated. Molecular statics and dynamics methods are used to simulate effects at temperature equal to and greater than 0K, respectively. Single copper atoms and nearest-neighbour pairs in the first atomic plane below the glide plane give the strongest barrier to dislocation glide, in partial agreement with elasticity theory. In addition to temperature, obstacle-spacing effects are considered

  13. Strain fields and line energies of dislocations in uranium dioxide

    International Nuclear Information System (INIS)

    Parfitt, David C; Bishop, Clare L; Wenman, Mark R; Grimes, Robin W

    2010-01-01

    Computer simulations are used to investigate the stability of typical dislocations in uranium dioxide. We explain in detail the methods used to produce the dislocation configurations and calculate the line energy and Peierls barrier for pure edge and screw dislocations with the shortest Burgers vector 1/2 . The easiest slip system is found to be the {100}(110) system for stoichiometric UO 2 , in agreement with experimental observations. We also examine the different strain fields associated with these line defects and the close agreement between the strain field predicted by atomic scale models and the application of elastic theory. Molecular dynamics simulations are used to investigate the processes of slip that may occur for the three different edge dislocation geometries and nudged elastic band calculations are used to establish a value for the Peierls barrier, showing the possible utility of the method in investigating both thermodynamic average behaviour and dynamic processes such as creep and plastic deformation.

  14. Efficacy of Blunt Force Trauma, a Novel Mechanical Cervical Dislocation Device, and a Non-Penetrating Captive Bolt Device for On-Farm Euthanasia of Pre-Weaned Kits, Growers, and Adult Commercial Meat Rabbits.

    Science.gov (United States)

    Walsh, Jessica L; Percival, Aaron; Turner, Patricia V

    2017-12-15

    The commercial meat rabbit industry is without validated on-farm euthanasia methods, potentially resulting in inadequate euthanasia protocols. We evaluated blunt force trauma (BFT), a mechanical cervical dislocation device (MCD), and a non-penetrating captive bolt device (NPCB) for euthanasia of pre-weaned kits, growers, and adult rabbits. Trials were conducted on three commercial meat rabbit farms using 170 cull rabbits. Insensibility was assessed by evaluating absence of brainstem and spinal reflexes, rhythmic breathing, and vocalizations. Survey radiographs on a subsample of rabbits ( n = 12) confirmed tissue damage prior to gross dissection and microscopic evaluation. All 63 rabbits euthanized by the NPCB device were rendered immediately and irreversibly insensible. The MCD device was effective in 46 of 49 (94%) rabbits. Method failure was highest for BFT with euthanasia failures in 13 of 58 (22%) rabbits. Microscopically, brain sections from rabbits killed with the NPCB device had significantly more damage than those from rabbits killed with BFT ( p = 0.001). We conclude that BFT is neither consistently humane nor effective as a euthanasia method. MCD is an accurate and reliable euthanasia method generally causing clean dislocation and immediate and irreversible insensibility, and the NPCB device was 100% effective and reliable in rabbits >150 g.

  15. Efficacy of Blunt Force Trauma, a Novel Mechanical Cervical Dislocation Device, and a Non-Penetrating Captive Bolt Device for On-Farm Euthanasia of Pre-Weaned Kits, Growers, and Adult Commercial Meat Rabbits

    Directory of Open Access Journals (Sweden)

    Jessica L. Walsh

    2017-12-01

    Full Text Available The commercial meat rabbit industry is without validated on-farm euthanasia methods, potentially resulting in inadequate euthanasia protocols. We evaluated blunt force trauma (BFT, a mechanical cervical dislocation device (MCD, and a non-penetrating captive bolt device (NPCB for euthanasia of pre-weaned kits, growers, and adult rabbits. Trials were conducted on three commercial meat rabbit farms using 170 cull rabbits. Insensibility was assessed by evaluating absence of brainstem and spinal reflexes, rhythmic breathing, and vocalizations. Survey radiographs on a subsample of rabbits (n = 12 confirmed tissue damage prior to gross dissection and microscopic evaluation. All 63 rabbits euthanized by the NPCB device were rendered immediately and irreversibly insensible. The MCD device was effective in 46 of 49 (94% rabbits. Method failure was highest for BFT with euthanasia failures in 13 of 58 (22% rabbits. Microscopically, brain sections from rabbits killed with the NPCB device had significantly more damage than those from rabbits killed with BFT (p = 0.001. We conclude that BFT is neither consistently humane nor effective as a euthanasia method. MCD is an accurate and reliable euthanasia method generally causing clean dislocation and immediate and irreversible insensibility, and the NPCB device was 100% effective and reliable in rabbits >150 g.

  16. Dynamic compressive mechanical response of a soft polymer material

    NARCIS (Netherlands)

    Fan, J.T.; Weerheijm, J.; Sluys, L.J.

    2015-01-01

    The dynamic mechanical behaviour of a soft polymer material (Clear Flex 75) was studied using a split Hopkinson pressure bar (SHPB) apparatus. Mechanical properties have been determined at moderate to high strain rates. Real time deformation and fracture were recorded using a high-speed camera.

  17. Study on dynamic lifting characteristics of control rod drive mechanism

    International Nuclear Information System (INIS)

    Shen Xiaoyao

    2012-01-01

    Based on the equations of the electric circuit and the magnetic circuit and analysis of the dynamic lifting process for the control rod drive mechanism (CRDM), coupled magnetic-electric-mechanical equations both for the static status and the dynamic status are derived. The analytical method is utilized to obtain the current and the time when the lift starts. The numerical simulation method of dynamic analysis recommended by ASME Code is utilized to simulate the dynamic lifting process of CRDM, and the dynamic features of the system with different design gaps are studied. Conclusions are drawn as: (1) the lifting-start time increases with the design gap, and the time for the lifting process is longer with larger gaps; (2) the lifting velocity increases with time; (3) the lifting acceleration increases with time, and with smaller gaps, the impact acceleration is larger. (author)

  18. Dynamic Matching Markets and the Deferred Acceptance Mechanism

    DEFF Research Database (Denmark)

    Kennes, John; Monte, Daniel; Tumennasan, Norovsambuu

    In many dynamic matching markets, priorities depend on previous allocations. In such environments, agents on the proposing side can manipulate the period-by-period deferred acceptance (DA) mechanism. We show that the fraction of agents with incentives to manipulate the DA mechanism approaches zero...... as the market size increases. In addition, we provide a novel al- gorithm to calculate the percentage of markets that can be manipulated. Based on randomly generated data, we find that the DA becomes approximately non-manipulable when the schools capacity reaches 20. Our theoretical and simulation results...... together justify the implementation of the period-by-period DA mechanism in dynamic markets....

  19. Dynamic wormholes with particle creation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Supriya; Chakraborty, Subenoy [Jadavpur University, Department of Mathematics, Kolkata (India)

    2015-01-01

    The present work deals with a spherically symmetric space-time which is asymptotically (at spatial infinity) FRW space-time and represents wormhole configuration: The matter component is divided into two parts - (a) dissipative but homogeneous and isotropic fluid, and (b) an inhomogeneous and anisotropic barotropic fluid. Evolving wormhole solutions are obtained when isotropic fluid is phantom in nature and there is a big rip singularity at the end. Here the dissipative phenomena is due to the particle creation mechanism in non-equilibrium thermodynamics. Using the process to be adiabatic, the dissipative pressure is expressed linearly to the particle creation rate. For two choices of the particle creation rate as a function of the Hubble parameter, the equation of state parameter of the isotropic fluid is constrained to be in the phantom domain, except in one choice, it is possible to have wormhole configuration with normal isotropic fluid. (orig.)

  20. Dynamic restoration mechanism and physically based constitutive model of 2050 Al–Li alloy during hot compression

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ruihua; Liu, Qing [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Jinfeng, E-mail: lijinfeng@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Xiang, Sheng [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Chen, Yonglai; Zhang, Xuhu [Aerospace Research Institute of Materials and Processing Technology, Beijing 100076 (China)

    2015-11-25

    Dynamic restoration mechanism of 2050 Al–Li alloy and its constitutive model were investigated by means of hot compression simulation in the deformation temperature ranging from 340 to 500 °C and at strain rates of 0.001–10 s{sup −1}. The microstructures of the compressed samples were observed using optical microscopy and transmission electron microscopy. On the base of dislocation density theory and Avrami kinetics, a physically based constitutive model was established. The results show that dynamic recovery (DRV) and dynamic recrystallization (DRX) are co-responsible for the dynamic restoration during the hot compression process under all compression conditions. The dynamic precipitation (DPN) of T1 and σ phases was observed after the deformation at 340 °C. This is the first experimental evidence for the DPN of σ phase in Al–Cu–Li alloys. The particle stimulated nucleation of DRX (PSN-DRX) due to the large Al–Cu–Mn particle was also observed. The error analysis suggests that the established constitutive model can adequately describe the flow stress dependence on strain rate, temperature and strain during the hot deformation process. - Highlights: • The experimental evidence for the DPN of σ phase in Al–Cu–Li alloys was found. • The PSN-DRX due to the large Al–Cu–Mn particle was observed. • A novel method was proposed to calculated the stress multiplier α.

  1. Dynamical observations on the crack tip zone and stress corrosion of two-dimensional MoS2

    KAUST Repository

    Ly, Thuc Hue; Zhao, Jiong; Cichocka, Magdalena Ola; Li, Lain-Jong; Lee, Young Hee

    2017-01-01

    Whether and how fracture mechanics needs to be modified for small length scales and in systems of reduced dimensionality remains an open debate. Here, employing in situ transmission electron microscopy, atomic structures and dislocation dynamics

  2. Mechanism of Dynamic Recrystallization and Evolution of Texture in the Hot Working Domains of the Processing Map for Mg-4Al-2Ba-2Ca Alloy

    Directory of Open Access Journals (Sweden)

    Kalidass Suresh

    2017-12-01

    Full Text Available The occurrence of dynamic recrystallization (DRX and its effect on the evolution of texture during uniaxial compression of a creep-resistant cast Mg-4Al-2Ba-2Ca alloy in the temperature range of 260–500 °C and strain rate range of 0.0003–10 s−1 has been studied using transmission electron microscopy and electron backscatter diffraction techniques with a view to understand its mechanism. For this purpose, a processing map has been developed for this alloy, which revealed two domains of DRX in the temperature and strain rate ranges of: (1 300–390 °C/0.0003–0.001 s−1 and (2 400–500 °C/0.0003–0.5 s−1. In Domain 1, DRX occurs by basal slip and recovery by dislocation climb, as indicated by the presence of planar slip bands and high dislocation density leading to tilt boundary formation and a low-intensity basal texture. On the other hand, DRX in Domain 2 occurs by second order pyramidal slip and recovery by cross-slip since the microstructure revealed tangled dislocation structure with twist boundaries and randomized texture. The high volume content of intermetallic phases Mg21Al3Ba2 and (Al,Mg2Ca eutectic phase is considered to be responsible for the observed hot deformation behavior.

  3. Dynamic Mechanical Behavior of Dry and Water Saturated Igneous Rock with Acoustic Emission Monitoring

    Directory of Open Access Journals (Sweden)

    Jun Guo

    2018-01-01

    Full Text Available The uniaxial cyclic loading tests have been conducted to study the mechanical behavior of dry and water saturated igneous rock with acoustic emission (AE monitoring. The igneous rock samples are dried, naturally immersed, and boiled to get specimens with different water contents for the testing. The mineral compositions and the microstructures of the dry and water saturated igneous rock are also presented. The dry specimens present higher strength, fewer strains, and rapid increase of AE count subjected to the cyclic loading, which reflects the hard and brittle behavior and strong burst proneness of igneous rock. The water saturated specimens have lower peak strength, more accumulated strains, and increase of AE count during the cyclic loading. The damage of the igneous rocks with different water contents has been identified by the Felicity Ratio Analysis. The cyclic loading and unloading increase the dislocation between the mineral aggregates and the water-rock interactions further break the adhesion of the clay minerals, which jointly promote the inner damage of the igneous rock. The results suggest that the groundwater can reduce the burst proneness of the igneous rock but increase the potential support failure of the surrounding rock in igneous invading area. In addition, the results inspire the fact that the water injection method is feasible for softening the igneous rock and for preventing the dynamic disasters within the roadways and working faces located in the igneous intrusion area.

  4. Dislocation defect interaction in irradiated Cu

    International Nuclear Information System (INIS)

    Schaeublin, R.; Yao, Z.; Spaetig, P.; Victoria, M.

    2005-01-01

    Pure Cu single crystals irradiated at room temperature to low doses with 590 MeV protons have been deformed in situ in a transmission electron microscope in order to identify the basic mechanisms at the origin of hardening. Cu irradiated to 10 -4 dpa shows at room temperature a yield shear stress of 13.7 MPa to be compared to the 8.8 MPa of the unirradiated Cu. Irradiation induced damage consists at 90% of 2 nm stacking fault tetrahedra, the remaining being dislocation loops and unidentified defects. In-situ deformation reveals that dislocation-defect interaction can take several forms. Usually, dislocations pinned by defects bow out under the applied stress and escape without leaving any visible defect. From the escape angles obtained at 183 K, an average critical stress of 100 MPa is deduced. In some cases, the pinning of dislocations leads to debris that are about 20 nm long, which formation could be recorded during the in situ experiment

  5. Dislocation Interactions in Olivine Revealed by HR-EBSD

    Science.gov (United States)

    Wallis, David; Hansen, Lars N.; Britton, T. Ben; Wilkinson, Angus J.

    2017-10-01

    Interactions between dislocations potentially provide a control on strain rates produced by dislocation motion during creep of rocks at high temperatures. However, it has been difficult to establish the dominant types of interactions and their influence on the rheological properties of creeping rocks due to a lack of suitable observational techniques. We apply high-angular resolution electron backscatter diffraction to map geometrically necessary dislocation (GND) density, elastic strain, and residual stress in experimentally deformed single crystals of olivine. Short-range interactions are revealed by cross correlation of GND density maps. Spatial correlations between dislocation types indicate that noncollinear interactions may impede motion of proximal dislocations at temperatures of 1000°C and 1200°C. Long-range interactions are revealed by autocorrelation of GND density maps. These analyses reveal periodic variations in GND density and sign, with characteristic length scales on the order of 1-10 μm. These structures are spatially associated with variations in elastic strain and residual stress on the order of 10-3 and 100 MPa, respectively. Therefore, short-range interactions generate local accumulations of dislocations, leading to heterogeneous internal stress fields that influence dislocation motion over longer length scales. The impacts of these short- and/or long-range interactions on dislocation velocities may therefore influence the strain rate of the bulk material and are an important consideration for future models of dislocation-mediated deformation mechanisms in olivine. Establishing the types and impacts of dislocation interactions that occur across a range of laboratory and natural deformation conditions will help to establish the reliability of extrapolating laboratory-derived flow laws to real Earth conditions.

  6. Slip systems, dislocation boundaries and lattice rotations in deformed metals

    DEFF Research Database (Denmark)

    Winther, Grethe

    2009-01-01

    Metals are polycrystals and consist of grains, which are subdivided on a finer scale upon plastic deformation due to formation of dislocation boundaries. The crystallographic alignment of planar dislocation boundaries in face centred cubic metals, like aluminium and copper, deformed to moderate...... of the mechanical anisotropy of rolled sheets. The rotation of the crystallographic lattice in each grain during deformation also exhibits grain orientation dependence, originating from the slip systems. A combined analysis of dislocation boundaries and lattice rotations concludes that the two phenomena are coupled...

  7. Characterisation of Dynamic Mechanical Properties of Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2005-01-01

    characterizing the dynamic mechanical characteristics of resistance welding machines is suggested, and a test set-up is designed determining the basic, independent machine parameters required in the model. The model is verified by performing a series of mechanical tests as well as real projection welds.......The dynamic mechanical properties of a resistance welding machine have significant influence on weld quality, which must be considered when simulating the welding process numerically. However, due to the complexity of the machine structure and the mutual coupling of components of the machine system......, it is very difficult to measure or calculate the basic, independent machine parameters required in a mathematical model of the machine dynamics, and no test method has so far been presented in literature, which can be applied directly in an industrial environment. In this paper, a mathematical model...

  8. Dynamic balancing of planar mechanisms using toric geometry

    OpenAIRE

    Moore, Brian; Schicho, Josef; Gosselin, Clement M.

    2007-01-01

    In this paper, a new method to determine the complete set of dynamically balanced planar four-bar mechanims is presented. Using complex variables to model the kinematics of the mechanism, the dynamic balancing constraints are written as algebraic equations over complex variables and joint angular velocities. After elimination of the joint angular velocity variables, the problem is formulated as a problem of factorization of Laurent polynomials. Using toric polynomial division, necessary and s...

  9. Determining dislocation densities from the extinction effect (review)

    International Nuclear Information System (INIS)

    Ivanov, A.N.; Polyakov, A.M.; Skakov, Yu.A.

    1987-01-01

    Much attention is being given to dynamic x-ray scattering in crystals containing defects. As general diffraction theory for crystals with defects does not at present extend beyond formal expressions and there is no rigorous theory of diffraction by crystals containing dislocations, one describes extinction in a nonideal crystal via phenomenological theories. In this paper, the authors review the various methods of analyzing the dislocation structure from the integral intensities which are based on three extinction models: Darwin's extinction theory; mosaic-crystal scattering theory; and the transport equations method proposed by Stephan for Bragg geometry and Laue geometry. The most rigorous method in a theoretical respect of those covered in this review is based on Kato's extinction theory. The authors consider it necessary to devise a general theory of x-ray scattering for crystals with any type of long-range order in the displacement pattern, although this paper has dealt with some of the applications of quantum mechanics and statistical physics in describing diffraction

  10. Motion of dislocation kinks in a simple model crystal

    International Nuclear Information System (INIS)

    Koizumi, H.; Suzuki, T.

    2005-01-01

    To investigate the effects of lattice periodicity on kink motion, a molecular-dynamic simulation for a kink in a screw dislocation has been performed in a simple model lattice of diamond type. The Stillinger-Weber potential is assumed to act between atoms. Under applied stresses larger than 0.0027G, a long distance motion of a kink is possible, where G is the shear modulus. A moving kink emits lattice waves and loses its kinetic energy, which is compensated by the applied stress. The kink attains a terminal velocity after moving a few atomic distances. The kink velocity is not proportional to the applied stress, and exceeds the shear wave velocity when the applied stress is larger than 0.026G. The energy loss of the moving kink is one order of magnitude smaller than that of a moving straight dislocation and is about the same order of magnitude as the theoretical value of phonon-scattering mechanisms at room temperature

  11. Dislocation-stacking fault tetrahedron interaction: what can we learn from atomic-scale modelling

    International Nuclear Information System (INIS)

    Osetsky, Yu.N.; Stoller, R.E.; Matsukawa, Y.

    2004-01-01

    The high number density of stacking fault tetrahedra (SFTs) observed in irradiated fcc metals suggests that they should contribute to radiation-induced hardening and, therefore, taken into account when estimating mechanical properties changes of irradiated materials. The central issue is describing the individual interaction between a moving dislocation and an SFT, which is characterized by a very fine size scale, ∼100 nm. This scale is amenable to both in situ TEM experiments and large-scale atomic modelling. In this paper we present results of an atomistic simulation of dislocation-SFT interactions using molecular dynamics (MD). The results are compared with observations from in situ deformation experiments. It is demonstrated that in some cases the simulations and experimental observations are quite similar, suggesting a reasonable interpretation of experimental observations

  12. Mechanics and dynamics of triglyceride-phospholipid model membranes

    DEFF Research Database (Denmark)

    Pakkanen, Kirsi I.; Duelund, Lars; Qvortrup, Klaus

    2011-01-01

    We demonstrate here that triolein alters the mechanical properties of phospholipid membranes and induces extraordinary conformational dynamics. Triolein containing membranes exhibit fluctuations up to size range of 100µm and with the help of these are e.g. able to squeeze through narrow passages...... with larger lamellar distances observed in the TOPOPC membranes. These findings suggest repulsion between adjacent membranes. We provide a comprehensive discussion on the possible explanations for the observed mechanics and dynamics in the TOPOPC system and on their potential cellular implications....

  13. Nature of Dislocations in Silicon

    DEFF Research Database (Denmark)

    Hansen, Lars Bruno; Stokbro, Kurt; Lundqvist, Bengt

    1995-01-01

    Interaction between two partial 90 degrees edge dislocations is studied with atomic-scale simulations using the effective-medium tight-binding method. A large separation between the two dislocations (up to 30 Angstrom), comparable to experimental values, is achieved with a solution of the tight-b...

  14. Traumatic hip dislocations in children

    International Nuclear Information System (INIS)

    Minhas, M.S.

    2010-01-01

    Objectives: To evaluate clinical features, treatment and relationship to the time period between dislocation, reduction and early complications of traumatic dislocation of hip in children. Methods: Case series conducted at Jinnah Post Graduate Medical Centre Karachi from July 2005 to August 2009. Children with traumatic hip dislocation up to fifteen years of age who presented in last four years were included in this study. Their clinical information, etiology, associated injuries, duration, method of reduction and early complications are evaluated through emergency room proforma and indoor record. Follow up of patient was updated in outpatient department. Results: We had eight patients, six boys and two girls. Youngest 2.4 years and eldest was 12 years with mean age of 6.2 +- 3.8 years. All presented with posterior hip dislocation. Etiology was road traffic accident in two and history of fall in remaining six patients. Average duration of time between dislocation and reduction was 19 hours range 3-72 hours. Dislocated hips were reduced under General Anaesthesia in two patients and under sedation analgesia in six patients. No complications were noted in eight cases with mean 18.75 +- 13.23 months follows up. Conclusion: Traumatic hip dislocation in children is not rare. Slight trauma causes dislocation in younger age and immediate closed reduction and Immobilization reduces complications. (author

  15. Environmental/dynamic mechanical equipment qualification and dynamic electrical equipment qualification program (EDQP)

    International Nuclear Information System (INIS)

    Hunter, J.A.

    1984-01-01

    Equipment qualification research is being conducted to investigate acceptable criteria, requirements, and methodologies for the dynamic (including seismic) and environmental qualification of mechanical equipment and for the dynamic (including seismic) qualification of electrical equipment. The program is organized into three elements: (1) General Research, (2) Environmental Research, and (3) Dynamic Research. This paper presents the highlights of the results to date in these three elements of the program

  16. Irreducible lateral dislocation of the elbow.

    Directory of Open Access Journals (Sweden)

    Chhaparwal M

    1997-01-01

    Full Text Available A rare case of an irreducible post-traumatic lateral dislocation of elbow is presented. The mechanism of injury was fall on a flexed elbow with trauma on its medial aspect resulting in pronation of the forearm. At open reduction, the brachialis muscle was in the form of a tight band which prevented reduction. The ulnar nerve was entrapped in the joint.

  17. Dislocation Concepts in Friction and Wear.

    Science.gov (United States)

    1980-12-01

    geometrica considerations, and other basic facts concerning plastic Drover ties of crystalline materials, a numiber of qualitative and quanI titative... correct but, in connection with cell walls, it is generally erroneous as indicated. Fig. 27 demonstrates this clearly: The dislocation cells make the...is certainly promising. If it is then assumed that it is basically correct , one may be impressed with the underlying simplicity of the mechanisms

  18. Mathematica for Theoretical Physics Classical Mechanics and Nonlinear Dynamics

    CERN Document Server

    Baumann, Gerd

    2005-01-01

    Mathematica for Theoretical Physics: Classical Mechanics and Nonlinear Dynamics This second edition of Baumann's Mathematica® in Theoretical Physics shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Each example and calculation can be evaluated by the reader, and the reader can change the example calculations and adopt the given code to related or similar problems. The second edition has been completely revised and expanded into two volumes: The first volume covers classical mechanics and nonlinear dynamics. Both topics are the basis of a regular mechanics course. The second volume covers electrodynamics, quantum mechanics, relativity, and fractals and fractional calculus. New examples have been added and the representation has been reworked to provide a more interactive problem-solving presentation. This book can be used as a textbook or as a reference work, by students and researchers alike. A...

  19. On verification of a theory in dislocation plasticity

    International Nuclear Information System (INIS)

    Ng, D.H.Y.; Lee, L.H.N.

    1981-01-01

    In the past twenty years, many attempts to unify the theories of macroplasticity and microplasticity in polycrystalline materials have been made. Several major approaches have been suggested namely: the geometrical approach, the analytical approach, the phenomenological approach and the internal variables approach. To verify the plasticity theory based on any one of the above models, detail experimental data including microstructural quantities such as dislocation density, dislocation speed, etc. are required. Unfortunately, there were some difficulties in evaluating dislocation speed and dealing with the term 'mobile fraction' of dislocation density. Therefore, an experimental verification of such plasticity theory has not been made. A dislocation velocity equation based on a thermally activated model is used. A set of plastic strain rate equations for polycrystalline materials formulated by analyzing dislocation dynamics in a statistical approach are presented. In order to evaluate the activation free energy, Gibbs' modified tetragonal distortion model is used together with some measurements obtained from electron micrographs. Experimental results on the dynamic yielding and fracture of 6061-T6 aluminum alloy tubings under biaxial loadings obtained by Ng, Delich and Lee are used. In dealing with 'mobile fraction', Gilman's suggestion is adopted. (orig./HP)

  20. 3-D Spherical Convection Modeling Applied to Mercury: Dislocation Versus Diffusion Rheology

    Science.gov (United States)

    Robertson, S. D.; King, S. D.

    2016-12-01

    Mercury is the smallest among the terrestrial planets and, prior to NASA's MESSENGER mission was thought to be the least tectonically and volcanically active body. Gravity and moment of inertia from MESSENGER constrain Mercury to have a thin silicate mantle shell of approximately 400 km over a massive iron core. This mantle is thinner than previously thought and the smallest end-member in comparison with the other terrestrial planets. Although Mercury currently has a stagnant lid and the present day mantle is likely not convecting, a significant proportion of Mercury's surface features could have been derived from convection in the viscous mantle. Given Mercury's small size, the amount of volcanism and tectonic activity was a surprise. We investigate the effect of dislocation creep rheology in olivine on the dynamics of Mercury. At the pressures and temperatures of Mercury's mantle, laboratory creep studies indicate that olivine deforms by dislocation creep. Previous studies using diffusion creep rheology find that the thin mantle shell of Mercury quickly becomes diffusive and, this is difficult to reconcile with the surface observations. We use the three-dimensional spherical code, CitcomS, to compare numerical models with both dislocation and diffusion creep. We compare gravity, topography, and mantle temperature as a function of time from the models with constraints on the timing of volcanic and tectonic activity on Mercury. The results show that with the dislocation creep mechanism, there is potential for convective flow in the mantle over billions of years. In contrast, models with the diffusion creep mechanism start with a convecting mantle that transitions to global diffusive cooling within 500 Myrs. Diffusion creep rheology does not adequately produce a dynamic interior that is consistent with the historical volcanic and tectonic evolution of the planet. This research is the result of participation in GLADE, a nine-week summer REU program directed by Dave

  1. Influence of the dislocation core on the glide of the 1/2 < 111 >{110} edge dislocation in bcc-iron: An embedded atom method study

    Czech Academy of Sciences Publication Activity Database

    Haghighat, S.M.H.; von Pezold, J.; Race, C. P.; Kormann, F.; Friák, Martin; Neugebauer, J.; Raabe, D.

    2014-01-01

    Roč. 87, MAY (2014), s. 274-282 ISSN 0927-0256 Institutional support: RVO:68081723 Keywords : Molecular dynamics * Edge dislocation * Core structure * Dislocation glide * Iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.131, year: 2014

  2. Positive Nonlinear Dynamical Group Uniting Quantum Mechanics and Thermodynamics

    OpenAIRE

    Beretta, Gian Paolo

    2006-01-01

    We discuss and motivate the form of the generator of a nonlinear quantum dynamical group 'designed' so as to accomplish a unification of quantum mechanics (QM) and thermodynamics. We call this nonrelativistic theory Quantum Thermodynamics (QT). Its conceptual foundations differ from those of (von Neumann) quantum statistical mechanics (QSM) and (Jaynes) quantum information theory (QIT), but for thermodynamic equilibrium (TE) states it reduces to the same mathematics, and for zero entropy stat...

  3. MATHEMATICAL MODEL FOR ESTIMATION OF MECHANICAL SYSTEM CONDITION IN DYNAMICS

    Directory of Open Access Journals (Sweden)

    D. N. Mironov

    2011-01-01

    Full Text Available The paper considers an estimation of a complicated mechanical system condition in dynamics with due account of material degradation and accumulation of micro-damages. An element of continuous medium has been simulated and described with the help of a discrete element. The paper contains description of a model for determination of mechanical system longevity in accordance with number of cycles and operational period.

  4. Classical mechanics systems of particles and Hamiltonian dynamics

    CERN Document Server

    Greiner, Walter

    2010-01-01

    This textbook Classical Mechanics provides a complete survey on all aspects of classical mechanics in theoretical physics. An enormous number of worked examples and problems show students how to apply the abstract principles to realistic problems. The textbook covers Newtonian mechanics in rotating coordinate systems, mechanics of systems of point particles, vibrating systems and mechanics of rigid bodies. It thoroughly introduces and explains the Lagrange and Hamilton equations and the Hamilton-Jacobi theory. A large section on nonlinear dynamics and chaotic behavior of systems takes Classical Mechanics to newest development in physics. The new edition is completely revised and updated. New exercises and new sections in canonical transformation and Hamiltonian theory have been added.

  5. Transmission electron microscopy in situ investigation of dislocation mobility in semiconductors

    CERN Document Server

    Vanderschaeve, G; Insa, P D T; Caillard, D

    2000-01-01

    TEM in situ straining experiments provide a unique way to investigate in real time the behaviour of individual dislocations under applied stress. The results obtained on a variety of semiconductors are presented: numerous dislocation sources are observed which makes it possible to measure the dislocation velocity as a function of different physical parameters (local shear stress, temperature, dislocation character, length of the moving dislocation, ...). The experimental results are consistent with a dislocation glide governed by the Peierls mechanism, even for II-VI compounds which have a significant degree of ionic character. For compounds, a linear dependence of the dislocation velocity on the length of the moving segment is noticed, whereas for elemental semiconductors a transition between a length-dependent and a length-independent velocity regime is observed. Analysed in the framework of the kink diffusion model (Hirth and Lothe theory), these results allow an estimation of the kink formation and migrat...

  6. Hydration Control of the Mechanical and Dynamical Properties of Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Petridis, Loukas; O’Neill, Hugh M.; Johnsen, Mariah [Ripon College, Ripon, Wisconsin 54971, United States; Fan, Bingxin [Department; Schulz, Roland [Department; Mamontov, Eugene; Maranas, Janna [Department; Langan, Paul [Department; Smith, Jeremy C. [Department

    2014-10-13

    The mechanical and dynamical properties of cellulose, the most abundant biomolecule on earth, are essential for its function in plant cell walls and advanced biomaterials. Cellulose is almost always found in a hydrated state, and it is therefore important to understand how hydration influences its dynamics and mechanics. Here, the nanosecond-time scale dynamics of cellulose is characterized using dynamic neutron scattering experiments and molecular dynamics (MD) simulation. The experiments reveal that hydrated samples exhibit a higher average mean-square displacement above ~240 K. The MD simulation reveals that the fluctuations of the surface hydroxymethyl atoms determine the experimental temperature and hydration dependence. The increase in the conformational disorder of the surface hydroxymethyl groups with temperature follows the cellulose persistence length, suggesting a coupling between structural and mechanical properties of the biopolymer. In the MD simulation, 20% hydrated cellulose is more rigid than the dry form, due to more closely packed cellulose chains and water molecules bridging cellulose monomers with hydrogen bonds. This finding may have implications for understanding the origin of strength and rigidity of secondary plant cell walls. The detailed characterization obtained here describes how hydration-dependent increased fluctuations and hydroxymethyl disorder at the cellulose surface lead to enhancement of the rigidity of this important biomolecule.

  7. Measuring Clearance Mechanics Based on Dynamic Leg Length

    Science.gov (United States)

    Khamis, Sam; Danino, Barry; Hayek, Shlomo; Carmeli, Eli

    2018-01-01

    The aim of this study was to quantify clearance mechanics during gait. Seventeen children diagnosed with hemiplegic cerebral palsy underwent a three-dimensional gait analysis evaluation. Dynamic leg lengths were measured from the hip joint center to the heel, to the ankle joint center and to the forefoot throughout the gait cycle. Significant…

  8. Geometry and topology in hamiltonian dynamics and statistical mechanics

    CERN Document Server

    Pettini, Marco

    2007-01-01

    Explores the foundations of hamiltonian dynamical systems and statistical mechanics, in particular phase transitions, from the point of view of geometry and topology. This book provides an overview of the research in the area. Using geometrical thinking to solve fundamental problems in these areas could be highly productive

  9. Visualization in mechanics: the dynamics of an unbalanced roller

    Science.gov (United States)

    Cumber, Peter S.

    2017-04-01

    It is well known that mechanical engineering students often find mechanics a difficult area to grasp. This article describes a system of equations describing the motion of a balanced and an unbalanced roller constrained by a pivot arm. A wide range of dynamics can be simulated with the model. The equations of motion are embedded in a graphical user interface for its numerical solution in MATLAB. This allows a student's focus to be on the influence of different parameters on the system dynamics. The simulation tool can be used as a dynamics demonstrator in a lecture or as an educational tool driven by the imagination of the student. By way of demonstration the simulation tool has been applied to a range of roller-pivot arm configurations. In addition, approximations to the equations of motion are explored and a second-order model is shown to be accurate for a limited range of parameters.

  10. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    Science.gov (United States)

    Mathiazhagan, S.; Anup, S.

    2016-08-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.

  11. A Dynamic Market Mechanism for Markets with Shiftable Demand Response

    DEFF Research Database (Denmark)

    Hansen, Jacob; Knudsen, Jesper Viese; Kiani, Arman

    2014-01-01

    renewables, this mechanism accommodates both consumers with a shiftable Demand Response and an adjustable Demand Response. The overall market mechanism is evaluated in a Day Ahead Market and is shown in a numerical example to result in a reduction of the cost of electricity for the consumer, as well......In this paper, we propose a dynamic market mechanism that converges to the desired market equilibrium. Both locational marginal prices and the schedules for generation and consumption are determined through a negotiation process between the key market players. In addition to incorporating...

  12. Vibrational mechanics nonlinear dynamic effects, general approach, applications

    CERN Document Server

    Blekhman, Iliya I

    2000-01-01

    This important book deals with vibrational mechanics - the new, intensively developing section of nonlinear dynamics and the theory of nonlinear oscillations. It offers a general approach to the study of the effect of vibration on nonlinear mechanical systems.The book presents the mathematical apparatus of vibrational mechanics which is used to describe such nonlinear effects as the disappearance and appearance under vibration of stable positions of equilibrium and motions (i.e. attractors), the change of the rheological properties of the media, self-synchronization, self-balancing, the vibrat

  13. Dislocation following total knee arthroplasty: A report of six cases

    Directory of Open Access Journals (Sweden)

    Villanueva Manuel

    2010-01-01

    Full Text Available Background: Dislocation following total knee arthroplasty (TKA is the worst form of instability. The incidence is from 0.15 to 0.5%. We report six cases of TKA dislocation and analyze the patterns of dislocation and the factors related to each of them. Materials and Methods: Six patients with dislocation of knee following TKA are reported. The causes for the dislocations were an imbalance of the flexion gap (n=4, an inadequate selection of implants (n=1, malrotation of components (n=1 leading to incompetence of the extensor mechanism, or rupture of the medial collateral ligament (MCC. The patients presented complained of pain, giving way episodes, joint effusion and difficulty in climbing stairs. Five patients suffered posterior dislocation while one anterior dislocation. An urgent closed reduction of dislocation was performed under general anaesthesia in all patients. All patients were operated for residual instability by revision arthroplasty after a period of conservative treatment. Results: One patient had deep infection and knee was arthrodesed. Two patients have a minimal residual lag for active extension, including a patient with a previous patellectomy. Result was considered excellent or good in four cases and fair in one, without residual instability. Five out of six patients in our series had a cruciate retaining (CR TKA designs: four were revised to a posterior stabilized (PS TKA and one to a rotating hinge design because of the presence of a ruptured MCL. Conclusion: Further episodes of dislocation or instability will be prevented by identifying and treating major causes of instability. The increase in the level of constraint and correction of previous technical mistakes is mandatory.

  14. Dynamical mechanism of atrial fibrillation: A topological approach

    Science.gov (United States)

    Marcotte, Christopher D.; Grigoriev, Roman O.

    2017-09-01

    While spiral wave breakup has been implicated in the emergence of atrial fibrillation, its role in maintaining this complex type of cardiac arrhythmia is less clear. We used the Karma model of cardiac excitation to investigate the dynamical mechanisms that sustain atrial fibrillation once it has been established. The results of our numerical study show that spatiotemporally chaotic dynamics in this regime can be described as a dynamical equilibrium between topologically distinct types of transitions that increase or decrease the number of wavelets, in general agreement with the multiple wavelets' hypothesis. Surprisingly, we found that the process of continuous excitation waves breaking up into discontinuous pieces plays no role whatsoever in maintaining spatiotemporal complexity. Instead, this complexity is maintained as a dynamical balance between wave coalescence—a unique, previously unidentified, topological process that increases the number of wavelets—and wave collapse—a different topological process that decreases their number.

  15. Design and Dynamic Modeling of Flexible Rehabilitation Mechanical Glove

    Science.gov (United States)

    Lin, M. X.; Ma, G. Y.; Liu, F. Q.; Sun, Q. S.; Song, A. Q.

    2018-03-01

    Rehabilitation gloves are equipment that helps rehabilitation doctors perform finger rehabilitation training, which can greatly reduce the labour intensity of rehabilitation doctors and make more people receive finger rehabilitation training. In the light of the defects of the existing rehabilitation gloves such as complicated structure and stiff movement, a rehabilitation mechanical glove is designed, which provides driving force by using the air cylinder and adopts a rope-spring mechanism to ensure the flexibility of the movement. In order to fit the size of different hands, the bandage ring which can adjust size is used to make the mechanism fixed. In the interest of solve the complex problem of dynamic equation, dynamic simulation is carried out by using Adams to obtain the motion curve, which is easy to optimize the structure of ring position.

  16. Fluid mechanics and heat transfer advances in nonlinear dynamics modeling

    CERN Document Server

    Asli, Kaveh Hariri

    2015-01-01

    This valuable new book focuses on new methods and techniques in fluid mechanics and heat transfer in mechanical engineering. The book includes the research of the authors on the development of optimal mathematical models and also uses modern computer technology and mathematical methods for the analysis of nonlinear dynamic processes. It covers technologies applicable to both fluid mechanics and heat transfer problems, which include a combination of physical, mechanical, and thermal techniques. The authors develop a new method for the calculation of mathematical models by computer technology, using parametric modeling techniques and multiple analyses for mechanical system. The information in this book is intended to help reduce the risk of system damage or failure. Included are sidebar discussions, which contain information and facts about each subject area that help to emphasize important points to remember.

  17. Deformation mechanism study of a hot rolled Zr-2.5Nb alloy by transmission electron microscopy. I. Dislocation microstructures in as-received state and at different plastic strains

    Energy Technology Data Exchange (ETDEWEB)

    Long, Fei; Daymond, Mark R., E-mail: mark.daymond@queensu.ca; Yao, Zhongwen [Department of Mechanical and Materials Engineering, Queen' s University Kingston, Ontario K7L 3N6 (Canada)

    2015-03-07

    Thin foil dog bone samples prepared from a hot rolled Zr-2.5Nb alloy have been deformed by tensile deformation to different plastic strains. The development of slip traces during loading was observed in situ through SEM, revealing that deformation starts preferentially in certain sets of grains during the elastic-plastic transition region. TEM characterization showed that sub-grain boundaries formed during hot rolling consisted of screw 〈a〉 dislocations or screw 〈c〉 and 〈a〉 dislocations. Prismatic 〈a〉 dislocations with large screw or edge components have been identified from the sample with 0.5% plastic strain. Basal 〈a〉 and pyramidal 〈c + a〉 dislocations were found in the sample that had been deformed with 1.5% plastic strain, implying that these dislocations require larger stresses to be activated.

  18. Contribution of dislocation creep to the radiational creep of materials

    International Nuclear Information System (INIS)

    Borodin, V.A.; Ryazanov, A.I.

    1986-01-01

    The authors propose a model of the orientational dependences of the preferences of discrete linear dislocations in which the influence of the external load on the step concentration at the dislocations is taken into account. The use of this model, taking into account the mechanism of stress-induced anisotropy of the elastic interaction between point defects and dislocations, not only permits a correct qualitative explanation of the dependence of the rate of radiational creep on the basic irradiation parameters (dose, stress, temperature) but also allows approximate quantitative agreement with experimental results to be obtained. At sufficiently high stress, the theory predicts conditions of the formation of an ensemble of dislocational loops with a specific direction of the Burgers vector

  19. Irradiation deformation due to SIPA induced dislocation anisotropy

    International Nuclear Information System (INIS)

    Woo, CH.

    1980-02-01

    A contribution to irradiation deformation resulting from the stress-induced preferred adsorption (SIPA) effect is considered. SIPA causes a variation of the growth rates of irradiation-generated dislocation loops, according to the alignment of their Burgers vectors with respect to the applied stress. A prolinged period under an applied stress then creates an anisotropic dislocation structure in which the majority of dislocations have their Burgers vectors in alignment with the stress. In the presence of 'neutral' sinks, the resulting anisotropic dislocation structure causes plastic deformation similar to the way in which irradiation growth occurs in zirconium. This mechanism is called SIPA-induced growth (SIG). We have shown that SIG is very significant in comparison to SIPA, except when little or no loop growth has occurred during the period the stress is applied. This report contains the detailed formulation and derivation of the formulae for the evaluation of the contribution due to SIG. (auth)

  20. Cognitive mechanisms for explaining dynamics of aesthetic appreciation

    Science.gov (United States)

    Carbon, Claus-Christian

    2011-01-01

    For many domains aesthetic appreciation has proven to be highly reliable. Evaluations of facial attractiveness, for instance, show high internal consistencies and impressively high inter-rater reliabilities, even across cultures. This indicates general mechanisms underlying such evaluations. It is, however, also obvious that our taste for specific objects is not always stable—in some realms such stability is hardly conceivable at all since aesthetic domains such as fashion, design, or art are inherently very dynamic. Gaining insights into the cognitive mechanisms that trigger and enable corresponding changes of aesthetic appreciation is of particular interest for psychologists as this will probably reveal essential mechanisms of aesthetic evaluations per se. The present paper develops a two-step model, dynamically adapting itself, which accounts for typical dynamics of aesthetic appreciation found in different research areas such as art history, philosophy, and psychology. The first step assumes singular creative sources creating and establishing innovative material towards which, in a second step, people adapt by integrating it into their visual habits. This inherently leads to dynamic changes of the beholders— aesthetic appreciation. PMID:23145254

  1. Uncertainty propagation through dynamic models of assemblies of mechanical structures

    International Nuclear Information System (INIS)

    Daouk, Sami

    2016-01-01

    When studying the behaviour of mechanical systems, mathematical models and structural parameters are usually considered deterministic. Return on experience shows however that these elements are uncertain in most cases, due to natural variability or lack of knowledge. Therefore, quantifying the quality and reliability of the numerical model of an industrial assembly remains a major question in low-frequency dynamics. The purpose of this thesis is to improve the vibratory design of bolted assemblies through setting up a dynamic connector model that takes account of different types and sources of uncertainty on stiffness parameters, in a simple, efficient and exploitable in industrial context. This work has been carried out in the framework of the SICODYN project, led by EDF R and D, that aims to characterise and quantify, numerically and experimentally, the uncertainties in the dynamic behaviour of bolted industrial assemblies. Comparative studies of several numerical methods of uncertainty propagation demonstrate the advantage of using the Lack-Of-Knowledge theory. An experimental characterisation of uncertainties in bolted structures is performed on a dynamic test rig and on an industrial assembly. The propagation of many small and large uncertainties through different dynamic models of mechanical assemblies leads to the assessment of the efficiency of the Lack-Of-Knowledge theory and its applicability in an industrial environment. (author)

  2. Dislocation Starvation and Exhaustion Hardening in Mo-alloy Nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Claire [University of California, Berkeley & LBNL; Bei, Hongbin [ORNL; Lowry, M. B. [University of California, Berkeley; Oh, Jason [Hysitron, Inc., MN; Asif, S.A. Syed [Hysitron, Inc., MN; Warren, O. [Hysitron, Inc., MN; Shan, Zhiwei [Xi' an Jiaotong University, China & Hysitron, Inc., MN; George, Easo P [ORNL; Minor, Andrew [University of California, Berkeley & LBNL

    2012-01-01

    The evolution of defects in Mo alloy nanofibers with initial dislocation densities ranging from 0 to 1.6 1014 m2 were studied using an in situ push-to-pull device in conjunction with a nanoindenter in a transmission electron microscope. Digital image correlation was used to determine stress and strain in local areas of deformation. When they had no initial dislocations the Mo alloy nanofibers suffered sudden catastrophic elongation following elastic deformation to ultrahigh stresses. At the other extreme fibers with a high dislocation density underwent sustained homogeneous deformation after yielding at much lower stresses. Between these two extremes nanofibers with intermediate dislocation densities demonstrated a clear exhaustion hardening behavior, where the progressive exhaustion of dislocations and dislocation sources increases the stress required to drive plasticity. This is consistent with the idea that mechanical size effects ( smaller is stronger ) are due to the fact that nanostructures usually have fewer defects that can operate at lower stresses. By monitoring the evolution of stress locally we find that exhaustion hardening causes the stress in the nanofibers to surpass the critical stress predicted for self-multiplication, supporting a plasticity mechanism that has been hypothesized to account for the rapid strain softening observed in nanoscale bcc materials at high stresses.

  3. Dynamic balancing of mechanisms and synthesizing of parallel robots

    CERN Document Server

    Wei, Bin

    2016-01-01

    This book covers the state-of-the-art technologies in dynamic balancing of mechanisms with minimum increase of mass and inertia. The synthesis of parallel robots based on the Decomposition and Integration concept is also covered in detail. The latest advances are described, including different balancing principles, design of reactionless mechanisms with minimum increase of mass and inertia, and synthesizing parallel robots. This is an ideal book for mechanical engineering students and researchers who are interested in the dynamic balancing of mechanisms and synthesizing of parallel robots. This book also: ·       Broadens reader understanding of the synthesis of parallel robots based on the Decomposition and Integration concept ·       Reinforces basic principles with detailed coverage of different balancing principles, including input torque balancing mechanisms ·       Reviews exhaustively the key recent research into the design of reactionless mechanisms with minimum increase of mass a...

  4. Dynamic mechanical analysis of carbon nanotube-reinforced nanocomposites.

    Science.gov (United States)

    Her, Shiuh-Chuan; Lin, Kuan-Yu

    2017-06-16

    To predict the mechanical properties of multiwalled carbon nanotube (MWCNT)-reinforced polymers, it is necessary to understand the role of the nanotube-polymer interface with regard to load transfer and the formation of the interphase region. The main objective of this study was to explore and attempt to clarify the reinforcement mechanisms of MWCNTs in epoxy matrix. Nanocomposites were fabricated by adding different amounts of MWCNTs to epoxy resin. Tensile test and dynamic mechanical analysis (DMA) were conducted to investigate the effect of MWCNT contents on the mechanical properties and thermal stability of nanocomposites. Compared with the neat epoxy, nanocomposite reinforced with 1 wt% of MWCNTs exhibited an increase of 152% and 54% in Young's modulus and tensile strength, respectively. Dynamic mechanical analysis demonstrates that both the storage modulus and glass transition temperature tend to increase with the addition of MWCNTs. Scanning electron microscopy (SEM) observations reveal that uniform dispersion and strong interfacial adhesion between the MWCNTs and epoxy are achieved, resulting in the improvement of mechanical properties and thermal stability as compared with neat epoxy.

  5. Coupling functions: Universal insights into dynamical interaction mechanisms

    Science.gov (United States)

    Stankovski, Tomislav; Pereira, Tiago; McClintock, Peter V. E.; Stefanovska, Aneta

    2017-10-01

    The dynamical systems found in nature are rarely isolated. Instead they interact and influence each other. The coupling functions that connect them contain detailed information about the functional mechanisms underlying the interactions and prescribe the physical rule specifying how an interaction occurs. A coherent and comprehensive review is presented encompassing the rapid progress made recently in the analysis, understanding, and applications of coupling functions. The basic concepts and characteristics of coupling functions are presented through demonstrative examples of different domains, revealing the mechanisms and emphasizing their multivariate nature. The theory of coupling functions is discussed through gradually increasing complexity from strong and weak interactions to globally coupled systems and networks. A variety of methods that have been developed for the detection and reconstruction of coupling functions from measured data is described. These methods are based on different statistical techniques for dynamical inference. Stemming from physics, such methods are being applied in diverse areas of science and technology, including chemistry, biology, physiology, neuroscience, social sciences, mechanics, and secure communications. This breadth of application illustrates the universality of coupling functions for studying the interaction mechanisms of coupled dynamical systems.

  6. DECREASING OF MECHANISMS DYNAMIC LOADING AT THE TRANSIENT STATE

    Directory of Open Access Journals (Sweden)

    V. S. Loveikin

    2015-11-01

    Full Text Available Purpose. It is necessary to select modes of motion to reduce the dynamic loads in the mechanisms. This choice should be made on optimization basis. The purpose of research is to study methods of synthesis regimes of mechanisms and machines motion that provide optimal modes of movement for terminal and integral criteria. Methodology. For research the one-mass dynamic model of the mechanism has been used. As optimization criteria the terminal and comprehensive integral criteria were used. The stated optimization problem has been solved using dynamic programming and variational calculation. The direct variation method, which allowed finding only approximate solution of the original problem of optimal control, has been used as well. Findings. The ways of ensuring the absolute minimum of terminal criterion have been set for each method of problem solving. The stated characteristics show softness changes of kinematic functions during braking of mechanism. They point to the absolute minimum of adopted terminal criterion in the calculation. Originality. It is necessary to introduce new variables in the system equations during the solving of optimal control problems using dynamic programming to achieve an absolute minimum of terminal criteria. In general, to achieve a minimum of n-order terminal criterion an optimization problem should find relatively (n+1-th order function. When optimization problems is solving by variational calculation in order to ensure a minimization of n-th order terminal criterion by selecting the appropriate boundary conditions, it is necessary to solve the Euler-Poisson 2(n+1-th order equation (subject to symmetric setting boundary conditions. It is a necessary condition for an extremum of the functional with the (n+1-th order integrant. Practical value. Minimizing of adopted terminal criterion in the calculation allows eliminate the brunt in kinematic gearing of mechanisms, which increases their operational life. In addition

  7. Study of the dislocation contribution to the internal friction background of gold

    Science.gov (United States)

    Baur, J.; Benoit, W.

    1987-04-01

    The dislocation contribution to the internal friction (IF) background is studied in annealed gold samples containing various dilute concentrations of platinum impurities. The measurements are performed in the kHz frequency range in order to determine the loss mechanism responsible for the high IF background observed at these low frequencies. To this end, the IF background was systematically measured as a function of frequency, vibration amplitude, temperature, and impurity concentration. The experimental results show that the high dislocation contribution observed in annealed samples is strain-amplitude independent for amplitudes in the range 10-7 to 2×10-6, but rapidly decreases for amplitudes smaller than 10-7. In particular, the dislocation contribution tends to zero when the strain amplitude tends to zero. Furthermore, this contribution is frequency independent. These observations demonstrate that the dislocation contribution cannot be explained by relaxations. In particular, this contribution cannot be attributed to a viscous damping of the dislocation motion. On the contrary, the experiments show that the IF background due to dislocations must be explained by hysteretic and athermal motions of dislocations interacting with point defects. However, these hysteretic motions are not due to breakaway of dislocations from pinning points distributed along their length. The experimental results can be explained by the presence of point defects close to the dislocations, but not on them. The mechanical energy loss is attributed to hysteretic motions of dislocations between potential minima created by point defects.

  8. Effect of ion irradiation-produced defects on the mobility of dislocations in 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Briceno, M.; Fenske, J. [Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801 (United States); Dadfarnia, M.; Sofronis, P. [Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801 (United States); Robertson, I.M., E-mail: ian.robertson@tcd.ie [Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801 (United States)

    2011-02-01

    The impact of heavy-ion produced defects on the mobility of dislocations, dislocation sources and newly generated dislocations in 304 stainless steel are discovered by performing irradiation and deformation experiments in real time in the transmission electron microscope. Dislocations mobile prior to the irradiation are effectively locked in position by the irradiation, but the irradiation has no discernible impact on the ability of a source to generate dislocations. The motion and mobility of a dislocation is altered by the irradiation. It becomes irregular and jerky and the mobility increases slowly with time as the radiation-produced defects are annihilated locally. Channels created by dislocations ejected from grain boundary dislocation sources were found to have a natural width, as the emission sites within the boundary were spaced close together. Finally, the distribution of dislocations, basically, an inverse dislocation pile-up, within a cleared channel suggests a new mechanism for generating high local levels of stress at grain boundaries. The impact of these observations on the mechanical properties of irradiated materials is discussed briefly.

  9. Effect of ion irradiation-produced defects on the mobility of dislocations in 304 stainless steel

    International Nuclear Information System (INIS)

    Briceno, M.; Fenske, J.; Dadfarnia, M.; Sofronis, P.; Robertson, I.M.

    2011-01-01

    The impact of heavy-ion produced defects on the mobility of dislocations, dislocation sources and newly generated dislocations in 304 stainless steel are discovered by performing irradiation and deformation experiments in real time in the transmission electron microscope. Dislocations mobile prior to the irradiation are effectively locked in position by the irradiation, but the irradiation has no discernible impact on the ability of a source to generate dislocations. The motion and mobility of a dislocation is altered by the irradiation. It becomes irregular and jerky and the mobility increases slowly with time as the radiation-produced defects are annihilated locally. Channels created by dislocations ejected from grain boundary dislocation sources were found to have a natural width, as the emission sites within the boundary were spaced close together. Finally, the distribution of dislocations, basically, an inverse dislocation pile-up, within a cleared channel suggests a new mechanism for generating high local levels of stress at grain boundaries. The impact of these observations on the mechanical properties of irradiated materials is discussed briefly.

  10. Discrete dislocation modelling of submicron indentation

    NARCIS (Netherlands)

    Widjaja, A; Van der Giessen, E; Needleman, A

    2005-01-01

    Indentation of a planar single crystal by a circular rigid indenter is analyzed using discrete dislocation plasticity. The crystal has three slip systems and is initially dislocation-free, but edge dislocations can nucleate from point sources inside the crystal. The lattice resistance to dislocation

  11. Neglected locked vertical patellar dislocation

    Science.gov (United States)

    Gupta, Rakesh Kumar; Gupta, Vinay; Sangwan, Sukhbir Singh; Kamboj, Pradeep

    2012-01-01

    Patellar dislocations occurring about the vertical and horizontal axis are rare and irreducible. The neglected patellar dislocation is still rarer. We describe the clinical presentation and management of a case of neglected vertical patellar dislocation in a 6 year-old boy who sustained an external rotational strain with a laterally directed force to his knee. Initially the diagnosis was missed and 2 months later open reduction was done. The increased tension generated by the rotation of the lateral extensor retinaculum kept the patella locked in the lateral gutter even with the knee in full extension. Traumatic patellar dislocation with rotation around a vertical axis has been described earlier, but no such neglected case has been reported to the best of our knowledge. PMID:23162154

  12. Neglected locked vertical patellar dislocation

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Gupta

    2012-01-01

    Full Text Available Patellar dislocations occurring about the vertical and horizontal axis are rare and irreducible. The neglected patellar dislocation is still rarer. We describe the clinical presentation and management of a case of neglected vertical patellar dislocation in a 6 year-old boy who sustained an external rotational strain with a laterally directed force to his knee. Initially the diagnosis was missed and 2 months later open reduction was done. The increased tension generated by the rotation of the lateral extensor retinaculum kept the patella locked in the lateral gutter even with the knee in full extension. Traumatic patellar dislocation with rotation around a vertical axis has been described earlier, but no such neglected case has been reported to the best of our knowledge.

  13. Self-organization of voids, gas bubbles and dislocation patterns under irradiation

    International Nuclear Information System (INIS)

    Dubinko, V.I.; Turkin, A.A.

    1993-01-01

    In the present paper three examples of self-organization in solids under irradiation are considered on the basis of original mechanisms, namely, the ordering of voids in void lattices under high temperature irradiation, the alignment of gas bubbles in bubble lattices under low-temperature gas atom implantation, and the formation of superdislocations (one-dimensional pile-ups of dislocation loops) and other dislocation patterns in the regimes of medium and high temperature irradiation. The ordering of cavities (i.e.voids or gas bubbles) is shown to arise due to a dissipative interaction between cavities induced by the interstitial dislocation loop absorption and punching, respectively, which represent anisotropic mechanisms of atomic transport. The dislocation patterning is shown to be driven by the dependence of dislocation bias for absorption of self-interstitial atoms on the dislocation arrangement. (author). 57 refs., 1 tab., 12 figs

  14. Dynamic load-balancing-extended gradient mechanism: Graphic representation

    Energy Technology Data Exchange (ETDEWEB)

    Muniz, Francisco J., E-mail: muniz@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Load-balancing methods are quite well described in the open literature (hundreds of articles can be found about this subject). In particularly, about the Dynamic Load-balancing mechanism Extended Gradient (EG), several articles of the author are available. Even though, there are some overlap, each one of them is focused on a particular aspect of the mechanism, in a complementary way. In this article, a graphic representation of the Extended Gradient mechanism is done: this representation way had not yet been explored. However, for an in-depth knowledge of the Extended Gradient mechanism, at least, some other articles should to be read. In the CDTN, Clusters are used, mainly, in deterministic methods (CFD) and non-deterministic methods (Monte Carlo). (author)

  15. Dynamic load-balancing-extended gradient mechanism: Graphic representation

    International Nuclear Information System (INIS)

    Muniz, Francisco J.

    2017-01-01

    Load-balancing methods are quite well described in the open literature (hundreds of articles can be found about this subject). In particularly, about the Dynamic Load-balancing mechanism Extended Gradient (EG), several articles of the author are available. Even though, there are some overlap, each one of them is focused on a particular aspect of the mechanism, in a complementary way. In this article, a graphic representation of the Extended Gradient mechanism is done: this representation way had not yet been explored. However, for an in-depth knowledge of the Extended Gradient mechanism, at least, some other articles should to be read. In the CDTN, Clusters are used, mainly, in deterministic methods (CFD) and non-deterministic methods (Monte Carlo). (author)

  16. Dynamics of ligand exchange mechanism at Cu(II) in water: An ab initio quantum mechanical charge field molecular dynamics study with extended quantum mechanical region

    International Nuclear Information System (INIS)

    Moin, Syed Tarique; Hofer, Thomas S.; Weiss, Alexander K. H.; Rode, Bernd M.

    2013-01-01

    Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) were successfully applied to Cu(II) embedded in water to elucidate structure and to understand dynamics of ligand exchange mechanism. From the simulation studies, it was found that using an extended large quantum mechanical region including two shells of hydration is required for a better description of the dynamics of exchanging water molecules. The structural features characterized by radial distribution function, angular distribution function and other analytical parameters were consistent with experimental data. The major outcome of this study was the dynamics of exchange mechanism and reactions in the first hydration shell that could not be studied so far. The dynamical data such as mean residence time of the first shell water molecules and other relevant data from the simulations are close to the results determined experimentally. Another major characteristic of hydrated Cu(II) is the Jahn-Teller distortion which was also successfully reproduced, leading to the final conclusion that the dominating aqua complex is a 6-coordinated species. The ab initio QMCF-MD formalism proved again its capabilities of unraveling even ambiguous properties of hydrated species that are far difficult to explore by any conventional quantum mechanics/molecular mechanics (QM/MM) approach or experiment

  17. Dynamics of ligand exchange mechanism at Cu(II) in water: an ab initio quantum mechanical charge field molecular dynamics study with extended quantum mechanical region.

    Science.gov (United States)

    Moin, Syed Tarique; Hofer, Thomas S; Weiss, Alexander K H; Rode, Bernd M

    2013-07-07

    Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) were successfully applied to Cu(II) embedded in water to elucidate structure and to understand dynamics of ligand exchange mechanism. From the simulation studies, it was found that using an extended large quantum mechanical region including two shells of hydration is required for a better description of the dynamics of exchanging water molecules. The structural features characterized by radial distribution function, angular distribution function and other analytical parameters were consistent with experimental data. The major outcome of this study was the dynamics of exchange mechanism and reactions in the first hydration shell that could not be studied so far. The dynamical data such as mean residence time of the first shell water molecules and other relevant data from the simulations are close to the results determined experimentally. Another major characteristic of hydrated Cu(II) is the Jahn-Teller distortion which was also successfully reproduced, leading to the final conclusion that the dominating aqua complex is a 6-coordinated species. The ab initio QMCF-MD formalism proved again its capabilities of unraveling even ambiguous properties of hydrated species that are far difficult to explore by any conventional quantum mechanics/molecular mechanics (QM/MM) approach or experiment.

  18. Flavor cosmology. Dynamical Yukawas in the Froggatt-Nielsen mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Baldes, Iason; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Servant, Geraldine [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2016-12-02

    Can the cosmological dynamics responsible for settling down the present values of the Cabibbo-Kobayashi-Maskawa matrix be related to electroweak symmetry breaking? If the Standard Model Yukawa couplings varied in the early universe and started with order one values before electroweak symmetry breaking, the CP violation associated with the CKM matrix could be the origin of the matter-antimatter asymmetry. The large effective Yukawa couplings which lead to the enhanced CP violation can also help in achieving a strong first-order electroweak phase transition. We study in detail the feasibility of this idea by implementing dynamical Yukawa couplings in the context of the Froggatt-Nielsen mechanism. We discuss two main realizations of such a mechanism, related phenomenology, cosmological and collider bounds, and provide an estimate of the baryonic yield. A generic prediction is that this scenario always features a new scalar field below the electroweak scale. We point out ways to get around this conclusion.

  19. Flavor cosmology: dynamical yukawas in the Froggatt-Nielsen mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Baldes, Iason; Konstandin, Thomas [DESY,Notkestraße 85, Hamburg, D-22607 (Germany); Servant, Géraldine [DESY,Notkestraße 85, Hamburg, D-22607 (Germany); II. Institute for Theoretical Physics, University of Hamburg,Luruper Chaussee 149, Hamburg, D-22761 (Germany)

    2016-12-15

    Can the cosmological dynamics responsible for settling down the present values of the Cabibbo-Kobayashi-Maskawa matrix be related to electroweak symmetry breaking? If the Standard Model Yukawa couplings varied in the early universe and started with order one values before electroweak symmetry breaking, the CP violation associated with the CKM matrix could be the origin of the matter-antimatter asymmetry. The large effective Yukawa couplings which lead to the enhanced CP violation can also help in achieving a strong first-order electroweak phase transition. We study in detail the feasibility of this idea by implementing dynamical Yukawa couplings in the context of the Froggatt-Nielsen mechanism. We discuss two main realizations of such a mechanism, related phenomenology, cosmological and collider bounds, and provide an estimate of the baryonic yield. A generic prediction is that this scenario always features a new scalar field below the electroweak scale. We point out ways to get around this conclusion.

  20. Dynamic Mechanical Behaviors of 6082-T6 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Peng Yibo

    2013-01-01

    Full Text Available The structural components of high speed trains are usually made of aluminum alloys, for example, 6082. The dynamic mechanical behavior of the material is one of key factors considered in structural design and safety assessment. In this paper, dynamic mechanical experiments were conducted with strain rate ranging from 0.001 s−1 to 100 s−1 using Instron tensile testing machine. The true stress-strain curves were fitted based on experimental data. Johnson-Cook model of 6082-T6 aluminum alloy was built to investigate the effect of strain and strain rate on flow stress. It has shown that the flow stress was sensitive to the strain rate. Yield strength and tensile strength increased with a high strain rate, which showed strain rate effect to some extent. Fracture analysis was carried out by using Backscattered Electron imaging (BSE. As strain rate increased, more precipitates were generated in fracture.

  1. A dynamic allocation mechanism of delivering capacity in coupled networks

    International Nuclear Information System (INIS)

    Du, Wen-Bo; Zhou, Xing-Lian; Zhu, Yan-Bo; Zheng, Zheng

    2015-01-01

    Traffic process is ubiquitous in many critical infrastructures. In this paper, we introduce a mechanism to dynamically allocate the delivering capacity into the data-packet traffic model on the coupled Internet autonomous-system-level network of South Korea and Japan, and focus on its effect on the transport efficiency. In this mechanism, the total delivering capacity is constant and the lowest-load node will give one unit delivering capacity to the highest-load node at each time step. It is found that the delivering capacity of busy nodes and non-busy nodes can be well balanced and the effective betweenness of busy nodes with interconnections is significantly reduced. Consequently, the transport efficiency such as average traveling time and packet arrival rate is remarkably improved. Our work may shed some light on the traffic dynamics in coupled networks.

  2. Molecular dynamics simulation of nanocrystalline nickel: structure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Swygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Caro, A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1997-09-01

    Molecular dynamics computer simulations of low temperature elastic and plastic deformation of Ni nanophase samples (3-7 nm) are performed. The samples are polycrystals nucleated from different seeds, with random locations and orientations. Bulk and Young`s modulus, onset of plastic deformation and mechanism responsible for the plastic behaviour are studied and compared with the behaviour of coarse grained samples. (author) 1 fig., 3 refs.

  3. Molecular dynamics simulation of nanocrystalline nickel: structure and mechanical properties

    International Nuclear Information System (INIS)

    Swygenhoven, H. van; Caro, A.

    1997-01-01

    Molecular dynamics computer simulations of low temperature elastic and plastic deformation of Ni nanophase samples (3-7 nm) are performed. The samples are polycrystals nucleated from different seeds, with random locations and orientations. Bulk and Young's modulus, onset of plastic deformation and mechanism responsible for the plastic behaviour are studied and compared with the behaviour of coarse grained samples. (author) 1 fig., 3 refs

  4. Injurious mechanical ventilation in the normal lung causes a progressive pathologic change in dynamic alveolar mechanics

    OpenAIRE

    Pavone, Lucio A; Albert, Scott; Carney, David; Gatto, Louis A; Halter, Jeffrey M; Nieman, Gary F

    2007-01-01

    Introduction Acute respiratory distress syndrome causes a heterogeneous lung injury, and without protective mechanical ventilation a secondary ventilator-induced lung injury can occur. To ventilate noncompliant lung regions, high inflation pressures are required to 'pop open' the injured alveoli. The temporal impact, however, of these elevated pressures on normal alveolar mechanics (that is, the dynamic change in alveolar size and shape during ventilation) is unknown. In the present study we ...

  5. Trans-triquetral Perilunate fracture dislocation

    OpenAIRE

    John-Henry Rhind; Abhinav Gulihar; Andrew Smith

    2018-01-01

    Perilunate dislocations and perilunate fracture dislocations are rare and serious injuries. Perilunate dislocations represent less than 10% of all carpal injuries of which 61% represent transcaphoid fractures. Because of their rarity, up to 25% of perilunate dislocations are initially missed on first assessment. We present the case of a 66-year-old-gentleman who sustained an isolated trans-triquetral perilunate fracture dislocation while walking his dog. This was diagnosed in the emergency de...

  6. HRTEM studies of dislocations in cubic BN

    International Nuclear Information System (INIS)

    Nistor, L.C.; Tendeloo, G. van; Dinca, G.

    2004-01-01

    The atomic structure of dislocations in cubic boron nitride has been investigated by high resolution transmission electron microscopy. Most of the perfect dislocations, screw and 60 edge, are dissociated. A 60 dislocation which was undissociated has been analysed. Computer simulation is performed in an attempt to characterise the core structure. Twinning dislocations and dislocations resulting from the intersection of stacking faults are also revealed. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. HRTEM studies of dislocations in cubic BN

    Energy Technology Data Exchange (ETDEWEB)

    Nistor, L.C. [National Institute for Materials Physics, P.O. Box MG-7 Magurele, 077125 Bucharest (Romania); Tendeloo, G. van [University of Antwerp, EMAT, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Dinca, G. [Dacia Synthetic Diamond Factory, Timisoara av. 5, P.O. Box 58-52, 077350 Bucharest (Romania)

    2004-09-01

    The atomic structure of dislocations in cubic boron nitride has been investigated by high resolution transmission electron microscopy. Most of the perfect dislocations, screw and 60 edge, are dissociated. A 60 dislocation which was undissociated has been analysed. Computer simulation is performed in an attempt to characterise the core structure. Twinning dislocations and dislocations resulting from the intersection of stacking faults are also revealed. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Origins and implications of temperature-dependent activation energy barriers for dislocation nucleation in face-centered cubic metals

    International Nuclear Information System (INIS)

    Warner, D.H.; Curtin, W.A.

    2009-01-01

    The linking of atomistic simulations of stress-driven processes to experimentally observed mechanical behavior via the computation of activation energy barriers is a topic of intense current research. Using dislocation nucleation from a crack tip as the reaction process, long-time multiscale molecular dynamics simulations show that the activation barrier can exhibit significant temperature dependence. Using an analytic model for the nucleation process and computing the relevant material properties (elastic constants and stacking fault energies), the temperature dependence is shown to arise primarily from the temperature dependence of the material parameters for both Al and Ni. After thermally activated emission of the first partial dislocation, there is then a competition between two other thermally activated processes: twinning and full dislocation emission. Because the activation barriers depend on temperature, this transition is more complex than usually envisioned. Simulations in Al reveal that a transition from twinning to full dislocation emission back to twinning occurs with increasing temperature, which is counter to traditional metallurgical wisdom. Temperature-dependent activation energies are thus essential to accurate understanding and prediction of those phenomena that control fracture and deformation in metals at realistic loading rates.

  9. Radiation-induced strengthening and absorption of dislocation loops in ferritic Fe–Cr alloys: the role of Cr segregation

    International Nuclear Information System (INIS)

    Terentyev, D; Bakaev, A

    2013-01-01

    The understanding of radiation-induced strengthening in ferritic FeCr-based steels remains an essential issue in the assessment of materials for fusion and fission reactors. Both early and recent experimental works on Fe–Cr alloys reveal Cr segregation on radiation-induced nanostructural features (mainly dislocation loops), whose impact on the modification of the mechanical response of the material might be key for explaining quantitatively the radiation-induced strengthening in these alloys. In this work, we use molecular dynamics to study systematically the interaction of dislocations with 1/2〈111〉 and 〈100〉 loops in all possible orientations, both enriched by Cr atoms and undecorated, for different temperatures, loop sizes and dislocation velocities. The configurations of the enriched loops have been obtained using a non-rigid lattice Monte Carlo method. The study reveals that Cr segregation influences the interaction mechanisms with both 1/2〈111〉 and 〈100〉 loops. The overall effect of Cr enrichment is to penalize the mobility of intrinsically glissile 1/2〈111〉 loops, modifying the reaction mechanisms as a result. The following three most important effects associated with Cr enrichment have been revealed: (i) absence of dynamic drag; (ii) suppression of complete absorption; (iii) enhanced strength of small dislocation loops (2 nm and smaller). Overall the effect of the Cr enrichment is therefore to increase the unpinning stress, so experimentally ‘invisible’ nanostructural features may also contribute to radiation-induced strengthening. The reasons for the modification of the mechanisms are explained and the impact of the loading conditions is discussed. (paper)

  10. Dynamic mechanical oscillations during metamorphosis of the monarch butterfly

    Science.gov (United States)

    Pelling, Andrew E; Wilkinson, Paul R; Stringer, Richard; Gimzewski, James K

    2008-01-01

    The mechanical oscillation of the heart is fundamental during insect metamorphosis, but it is unclear how morphological changes affect its mechanical dynamics. Here, the micromechanical heartbeat with the monarch chrysalis (Danaus plexippus) during metamorphosis is compared with the structural changes observed through in vivo magnetic resonance imaging (MRI). We employ a novel ultra-sensitive detection approach, optical beam deflection, in order to measure the microscale motions of the pupae during the course of metamorphosis. We observed very distinct mechanical contractions occurring at regular intervals, which we ascribe to the mechanical function of the heart organ. Motion was observed to occur in approximately 15 min bursts of activity with frequencies in the 0.4–1.0 Hz range separated by periods of quiescence during the first 83 per cent of development. In the final stages, the beating was found to be uninterrupted until the adult monarch butterfly emerged. Distinct stages of development were characterized by changes in frequency, amplitude, mechanical quality factor and de/repolarization times of the mechanical pulsing. The MRI revealed that the heart organ remains functionally intact throughout metamorphosis but undergoes morphological changes that are reflected in the mechanical oscillation. PMID:18682363

  11. Interstitial impurity interactions and dislocation microdynamics in Mo crystals

    International Nuclear Information System (INIS)

    Kwok, D.N.

    1975-05-01

    The effects of interstitial impurities on the mechanical properties of molybdenum are explored by comparing results obtained for crystals of various interstitial contents controlled by ultra-high vacuum outgassing. Results show a modulus reduction for as-grown samples and for outgassed specimens at low applied stresses. As a function of plastic microstrain, the values of modulus defect for both as-grown and outgassed specimens saturate at the same value. Interstitial impurities act as pinning agents to dislocation bowing, but when all the easy dislocation loops have broken away from local interstitial pins, the modulus defect reaches a constant saturation value. Etch pitting techniques were used to correlate microstrain observations with dislocation generation and motion. It has been found that edge dislocation generation and movement are active in the microstrain region while screw dislocations are relatively inactive until the macrostrain region is reached. Dislocation velocities range from 10 -6 to 10 -3 cm/s and the average distance between interstitial impurity pinning points is found to be approximately 8 x 10 -4 cm. (U.S.)

  12. Geometry, mechanics, and dynamics the legacy of Jerry Marsden

    CERN Document Server

    Holm, Darryl; Patrick, George; Ratiu, Tudor

    2015-01-01

    This book illustrates the broad range of Jerry Marsden’s mathematical legacy in areas of geometry, mechanics, and dynamics, from very pure mathematics to very applied, but always with a geometric perspective. Each contribution develops its material from the viewpoint of geometric mechanics beginning at the very foundations, introducing readers to modern issues via illustrations in a wide range of topics. The twenty refereed papers contained in this volume are based on lectures and research performed during the month of July 2012 at the Fields Institute for Research in Mathematical Sciences, in a program in honor of Marsden's legacy. The unified treatment of the wide breadth of topics treated in this book will be of interest to both experts and novices in geometric mechanics. Experts will recognize applications of their own familiar concepts and methods in a wide variety of fields, some of which they may never have approached from a geometric viewpoint. Novices may choose topics that interest them among the ...

  13. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mathiazhagan, S., E-mail: smathi.research@gmail.com; Anup, S., E-mail: anupiist@gmail.com

    2016-08-19

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models. - Highlights: • The deformation behaviour of staggered nanocomposites is studied. • Stair-wise staggered model has high stiffness and strength, but low toughness. • Rapid crack growth in overlap region causes this low toughness. • Toughness could be enhanced by arresting interfacial crack in the overlap.

  14. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    International Nuclear Information System (INIS)

    Mathiazhagan, S.; Anup, S.

    2016-01-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models. - Highlights: • The deformation behaviour of staggered nanocomposites is studied. • Stair-wise staggered model has high stiffness and strength, but low toughness. • Rapid crack growth in overlap region causes this low toughness. • Toughness could be enhanced by arresting interfacial crack in the overlap.

  15. A Novel Method of Mechanical Oxidation of CNT for Polymer Nanocomposite Application: Evaluation of Mechanical, Dynamic Mechanical, and Rheological Properties

    Directory of Open Access Journals (Sweden)

    Priyanka Pandey

    2014-01-01

    Full Text Available A new approach of oxidation of carbon nanotubes has been used to oxidize the CNTs. A comparative aspect of the mechanical oxidation and acid oxidation process has been established. FTIR analysis and titration method have shown the higher feasibility of the mechanical oxidation method to oxidize the CNTs. Comparatively less damage to the CNTs has been observed in case of mechanically oxidized as compared to acid oxidized CNTs. The mechanical properties of the nanocomposites reinforced with the acid oxidized CNT (ACNT and mechanically oxidized CNTs (McCNT were analyzed and relatively higher properties in the nanocomposites reinforced with McCNT were noticed. The less degree of entanglement in the McCNTs was noticed as compared to ACNTs. The dynamic mechanical analysis of the nanocomposites revealed much improved load transfer capability in the McCNT reinforced composites. Further, the rheological properties of the nanocomposites revealed the higher performance of McCNT reinforced composites.

  16. Separating grain boundary migration mechanisms in molecular dynamics simulations

    International Nuclear Information System (INIS)

    Ulomek, Felix; Mohles, Volker

    2016-01-01

    In molecular dynamics (MD) simulations of grain boundary (GB) migration it is quite common to find a temperature dependence of GB mobility that deviates strongly from an Arrhenius-type dependence. This usually indicates that more than one mechanism is actually active. With the goal to separate different GB migration mechanisms we investigate a Σ7 <111> 38.2° GB by MD using an EAM potential for aluminium. To drive the GB with a well-known and adjustable force, the energy conserving orientational driving force (ECO DF) is used that had been introduced recently. The magnitude of the DF and the temperature are varied. This yielded a high and a low temperature range for the GB velocity, with a transition temperature that depends on the magnitude of the DF. A method is introduced which allows both a visual and a statistical characterization of GB motion on a per atom basis. These analyses reveal that two mechanisms are active in this GB, a shuffling mechanism and its initiation. These mechanisms operate in a sequential, coupled manner. Based on this, a simple model is introduced that describes all simulated GB velocities (and hence the mobility) very well, including the transition between the dominating mechanisms.

  17. Deformation mechanisms in Ti/TiN multilayer under compressive loading

    International Nuclear Information System (INIS)

    Yang, Wei; Ayoub, Georges; Salehinia, Iman; Mansoor, Bilal; Zbib, Hussein

    2017-01-01

    The promising mechanical, physical and chemical properties of nano-scale metal/ceramic multilayers (MCMs) are of high interest for extreme environment applications. Understanding the plastic deformation mechanisms and the variables affecting those properties is therefore essential. The interface characteristics and the plastic deformation mechanisms under compressive loading in a Ti/TiN multilayer with a semi-coherent interface are numerically investigated. The interface structure of the Ti/TiN interface and the interface misfit dislocation were characterized using molecular dynamic simulations combined with atomically informed Frank-Bilby method. Three possible atomic stacking interface structures are identified according to the crystallographic analysis of the interface. Upon relaxation, large interface areas are occupied with the energetically stable configuration. Furthermore, the higher energy stacking are transformed into misfit dislocations or dislocation nodes. The molecular dynamic compressive stress strain response of the Ti/TiN multilayers exhibited three distinctive peaks. The first peak was generated by the dislocation dissociation of perfect dislocation into pairs of partials dislocation around extended nodes region at the interface. Upon further compression the second peak, identified as the first yielding, resulted from the activation of pyramidal slip planes in the Ti layer. Finally, a third peak identified as the second yielding, occurred when dislocation nucleated/transmitted in/into the TiN layer.

  18. Dynamics and control of mechanical systems in offshore engineering

    CERN Document Server

    He, Wei; How, Bernard Voon Ee; Choo, Yoo Sang

    2014-01-01

    Dynamics and Control of Mechanical Systems in Offshore Engineering is a comprehensive treatment of marine mechanical systems (MMS) involved in processes of great importance such as oil drilling and mineral recovery. Ranging from nonlinear dynamic modeling and stability analysis of flexible riser systems, through advanced control design for an installation system with a single rigid payload attached by thrusters, to robust adaptive control for mooring systems, it is an authoritative reference on the dynamics and control of MMS. Readers will gain not only a complete picture of MMS at the system level, but also a better understanding of the technical considerations involved and solutions to problems that commonly arise from dealing with them. The text provides:                                                                                                                                 ...

  19. Atomic-scale investigation of point defects and hydrogen-solute atmospheres on the edge dislocation mobility in alpha iron

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, M. A.; Solanki, K. N., E-mail: kiran.solanki@asu.edu [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Groh, S. [Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Freiberg 09556 (Germany)

    2014-08-14

    In this study, we present atomistic mechanisms of 1/2 [111](11{sup ¯}0) edge dislocation interactions with point defects (hydrogen and vacancies) and hydrogen solute atmospheres in body centered cubic (bcc) iron. In metals such as iron, increases in hydrogen concentration can increase dislocation mobility and/or cleavage-type decohesion. Here, we first investigate the dislocation mobility in the presence of various point defects, i.e., change in the frictional stress as the edge dislocation interacts with (a) vacancy, (b) substitutional hydrogen, (c) one substitutional and one interstitial hydrogen, (d) interstitial hydrogen, (e) vacancy and interstitial hydrogen, and (f) two interstitial hydrogen. Second, we examine the role of a hydrogen-solute atmosphere on the rate of local dislocation velocity. The edge dislocation simulation with a vacancy in the compression side of the dislocation and an interstitial hydrogen atom at the tension side exhibit the strongest mechanical response, suggesting a higher potential barrier and hence, the higher frictional stress (i.e., ∼83% higher than the pure iron Peierls stress). In the case of a dislocation interacting with a vacancy on the compressive side, the vacancy binds with the edge dislocation, resulting in an increase in the friction stress of about 28% when compared with the Peierls stress of an edge dislocation in pure iron. Furthermore, as the applied strain increases, the vacancy migrates through a dislocation transportation mechanism by attaining a velocity of the same order as the dislocation velocity. For the case of the edge dislocation interacting with interstitial hydrogen on the tension side, the hydrogen atom jumps through one layer perpendicular to the glide plane during the pinning-unpinning process. Finally, our simulation of dislocation interactions with hydrogen show first an increase in the local dislocation velocity followed by a pinning of the dislocation core in the atmosphere, resulting in

  20. Inhomogenous Dislocation Nucleation Based on Atom Potential in Hexagonal Noncentrosymmetric Crystal Sheet

    International Nuclear Information System (INIS)

    Xue-Chuan, Zhao; Xiao-Ming, Liu; Zhuo, Zhuang; Zhan-Li, Liu; Yuan, Gao

    2010-01-01

    By introducing internal degree, the deformation of hexagonal noncentrosymmetric crystal sheet can be described by the revised Cauchy–Born rule based on atomic potential. The instability criterion is deduced to investigate the inhomogeneous dislocation nucleation behavior of the crystal sheet under simple loading. The anisotropic characters of dislocation nucleation under uniaxial tension are studied by using the continuum method associated with the instability criterion. The results show a strong relationship between yield stress and crystal sheet chirality. The results also indicate that the instability criterion has sufficient ability to capture the dislocation nucleation site and expansion. To observe the internal dislocation phenomenon, the prediction of the dislocation nucleation site and expansion domain is illustrated by MD simulations. The developed method is another way to explain the dislocation nucleation phenomenon. (condensed matter: structure, mechanical and thermal properties)

  1. Structures of glide-set 90 deg. partial dislocation cores in diamond cubic semiconductors

    International Nuclear Information System (INIS)

    Beckman, S.P.; Chrzan, D.C.

    2003-01-01

    Two core reconstructions of the 90 deg. partial dislocations in diamond cubic semiconductors, the so-called single- and double-period structures, are often found to be nearly degenerate in energy. This near degeneracy suggests the possibility that both core reconstructions may be present simultaneously along the same dislocation core, with the domain sizes of the competing reconstructions dependent on temperature and the local stress state. To explore this dependence, a simple statistical mechanics-based model of the dislocation core reconstructions is developed and analyzed. Predictions for the temperature-dependent structure of the dislocation core are presented

  2. Dynamic Mechanical Properties of PMN/CNFs/EP Composites

    International Nuclear Information System (INIS)

    Shi Minxian; Huang Zhixiong; Qin Yan

    2011-01-01

    In this research, piezoelectric ceramic PMN(lead magnesium niobate-lead zirconate-lead titanate)/carbon nano-fibers(CNFs)/epoxy resin(EP) ccomposites were prepared and the dynamic mechanical properties and damping mechanism of PMN/CNFs/EP composites were investigated. The addition of CNFs into PMN/EP composite results in decrease of volume resistivity of the composite. When the concentration of CNFs is 0.6% weight of epoxy resin the volume resistivity of PMN/CNFs/EP composite is about 10 8 Ω·m. Dynamic mechanical analysis indicates that the loss factor, loss area, and damping temperature range of PMN/CNFs/EP composites increase with the CNFs content increasing till to 0.6% of weight of epoxy resin. When the CNFs content is more than 0.6% the damping properties of composites decrease oppositely. In PMN/CNFs/EP composites, the CNFs content 0.6% and the volume resistivity of PMN/CNFs/EP composites about 10 8 Ω·m just satisfy the practicing condition of piezo-damping, so the composites show optimal damping property.

  3. Tracking the mechanical dynamics of human embryonic stem cell chromatin

    Directory of Open Access Journals (Sweden)

    Hinde Elizabeth

    2012-12-01

    Full Text Available Abstract Background A plastic chromatin structure has emerged as fundamental to the self-renewal and pluripotent capacity of embryonic stem (ES cells. Direct measurement of chromatin dynamics in vivo is, however, challenging as high spatiotemporal resolution is required. Here, we present a new tracking-based method which can detect high frequency chromatin movement and quantify the mechanical dynamics of chromatin in live cells. Results We use this method to study how the mechanical properties of chromatin movement in human embryonic stem cells (hESCs are modulated spatiotemporally during differentiation into cardiomyocytes (CM. Notably, we find that pluripotency is associated with a highly discrete, energy-dependent frequency of chromatin movement that we refer to as a ‘breathing’ state. We find that this ‘breathing’ state is strictly dependent on the metabolic state of the cell and is progressively silenced during differentiation. Conclusions We thus propose that the measured chromatin high frequency movements in hESCs may represent a hallmark of pluripotency and serve as a mechanism to maintain the genome in a transcriptionally accessible state. This is a result that could not have been observed without the high spatial and temporal resolution provided by this novel tracking method.

  4. Dislocations and other topological oddities

    Science.gov (United States)

    Pieranski, Pawel

    2016-03-01

    We will show that the book Dislocations by Jacques Friedel, published half a century ago, can still be recommended, in agreement with the author's intention, as a textbook ;for research students at University and for students at engineering schools as well as for research engineers;. Indeed, today dislocations are known to occur not only in solid crystals but also in many other systems discovered more recently such as colloidal crystals or liquid crystals having periodic structures. Moreover, the concept of dislocations is an excellent starting point for lectures on topological defects occurring in systems equipped with order parameters resulting from broken symmetries: disclinations in nematic or hexatic liquid crystals, dispirations in chiral smectics or disorientations in lyotropic liquid crystals. The discussion of dislocations in Blue Phases will give us an opportunity to call on mind Sir Charles Frank, friend of Jacques Friedel since his Bristol years, who called these ephemeral mesophases ;topological oddities;. Being made of networks of disclinations, Blue Phases are similar to Twist Grain Boundary (TGB) smectic phases, which are made of networks of screw dislocations and whose existence was predicted by de Gennes in 1972 on the basis of the analogy between smectics and superconductors. We will stress that the book by Jacques Friedel contains seeds of this analogy.

  5. Basic Coandă MAV Fluid Dynamics and Flight Mechanics

    Science.gov (United States)

    Djojodihardjo, H.; Ahmed, RI

    2017-04-01

    Capitalizing on the basic fundamental principles, the Fluid Dynamics and Flight Mechanics of a semi-spherical Coandă MAV configurations are revisited and analyzed as a baseline. A mathematical model for a spherical Coandă MAV in hover and translatory motion is developed and analyzed from first physical principles. To gain further insight into the prevailing flow field around a Coandă MAV, as well as to verify the theoretical prediction presented in the work, a computational fluid dynamic CFD simulations for a Coandă MAV generic model are elaborated. The mathematical model and derived performance measures are shown to be capable in describing the physical phenomena of the flow field of the semi-spherical Coandă MAV. The relationships between the relevant parameters of the mathematical model of the Coandă MAV to the forces acting on it are elaborated subsequently.

  6. Particle spin dynamics as the grassmann variant of classical mechanics

    International Nuclear Information System (INIS)

    Berezin, F.A.; Marinov, M.S.

    1976-01-01

    A generalization of the calssical mechanics is presented. The dynamical variables are assumed to be elements of an algebra with anticommuting generators (The Grassmann algebra). The action functional and the Poisson brackets are defined. The equations of motion are deduced from the variational principle. The dynamics is described also by means of the Liouville equation for the phase-space distribution. The canonical quantization lead phase-space path integral approach to the quantum theory is also formulated. The theory is applied to describe the particle spin. Classical description of the spin precession and of the spin-orbital forces is given. The phase-space distribution and the interaction with an external field are also considered

  7. Toward interplay between substructure evolution, dislocation configuration, and yield strength in a microalloyed steel

    International Nuclear Information System (INIS)

    Venkatsurya, P.K.C.; Misra, R.D.K.; Mulholland, M.D.; Manohar, M.; Hartmann, J.E.

    2014-01-01

    We focus our attention here on the directional dependence of yield strength in high strength microalloyed steel using transmission electron microscopy and x-ray diffraction. The primary objective is to study the interplay between substructural evolution, notably cell size, dense dislocation walls (DDWs), dislocation tangle zones (DTZs), lamellar boundaries, crystallographic texture, and yield strength. The study elucidates for the first time the strong impact of thermo-mechanical deformation-induced dislocation and lamellar structures, which are likely to modify the slip pattern, leading to directional dependence of yield strength. Majority of the dislocations tend to pile along the {110} slip planes as dense dislocation walls. At low strains, grains are first divided into cell blocks that are nearly dislocation-free. At higher strains and with progress in thermo-mechanical processing dislocation tangled zones and lamellar boundaries develop. It is hypothesized that the differences in dislocation configurations, dislocations cells and cell blocks, and lamellar boundaries synergistically contribute to directional dependence of the yield strength in the high strength ferrous alloy. The presumption is envisaged on the basis of observations that the microstructural constituents were similar in the entire plane of the hot rolled strip and the crystallographic texture was weak

  8. Dynamic crack propagation through nanoporous media

    Science.gov (United States)

    Nguyen, Thao; Wilkerson, Justin

    2015-06-01

    The deformation and failure of nanoporous metals may be considerably different than that of more traditional bulk porous metals. The length scales in traditional bulk porous metals are typically large enough for classic plasticity and buckling to be operative. However, the extremely small length scales associated with nanoporous metals may inhibit classic plasticity mechanisms. Here, we motivate an alternative nanovoid growth mechanism mediated by dislocation emission. Following an approach similar to Lubarda and co-workers, we make use of stability arguments applied to the analytic solutions of the elastic interactions of dislocations and voids to derive a simple stress-based criterion for emission activation. We then propose a dynamic nanovoid growth law that is motivated by the kinetics of dislocation emission. The resulting failure model is implemented into a commercial finite element software to simulate dynamic crack growth. The simulations reveal that crack propagation through a nanoporous media proceeds at somewhat faster velocities than through the more traditional bulk porous metal.

  9. Dynamic Analysis of Rotor Systems Considering Ball Bearing Contact Mechanism

    International Nuclear Information System (INIS)

    Kim, Youngjin; Lee, Jongmahn; Oh, Dongho

    2013-01-01

    We propose a finite element modeling method considering the ball bearing contact mechanism, and the developed method was verified through experimental and analytical results of inner and outer race-type rotor systems. A comparison of the proposed method with conventional method reveals that there is little difference in the results of the inner race-type rotor system, but there are considerable differences in the results of the outer race-type rotor system such that predictions of greater accuracy can be made. Therefore, the proposed method can be used for accurately predicting the dynamic characteristics of an outer race-type rotary machine

  10. The Dynamical Mechanisms of the Cell Cycle Size Checkpoint

    International Nuclear Information System (INIS)

    Feng Shi-Fu; Yang Ling; Yan Jie; Liu Zeng-Rong

    2012-01-01

    Cell division must be tightly coupled to cell growth in order to maintain cell size, whereas the mechanisms of how initialization of mitosis is regulated by cell size remain to be elucidated. We develop a mathematical model of the cell cycle, which incorporates cell growth to investigate the dynamical properties of the size checkpoint in embryos of Xenopus laevis. We show that the size checkpoint is naturally raised from a saddle-node bifurcation, and in a mutant case, the cell loses its size control ability due to the loss of this saddle-node point

  11. Prediction of dislocation boundary characteristics

    DEFF Research Database (Denmark)

    Winther, Grethe

    Plastic deformation of both fcc and bcc metals of medium to high stacking fault energy is known to result in dislocation patterning in the form of cells and extended planar dislocation boundaries. The latter align with specific crystallographic planes, which depend on the crystallographic......) and it is found that to a large extent the dislocations screen each other’s elastic stress fields [3]. The present contribution aims at advancing the previous theoretical analysis of a boundary on a known crystallographic plane to actual prediction of this plane as well as other boundary characteristics....... Crystal plasticity calculations combined with the hypothesis that these boundaries separate domains with local differences in the slip system activity are introduced to address precise prediction of the experimentally observed boundaries. The presentation will focus on two cases from fcc metals...

  12. Hip dislocations after 2,734 elective unilateral fast-track total hip arthroplasties

    DEFF Research Database (Denmark)

    Jørgensen, Christoffer Calov; Kjærsgaard-Andersen, Per; Kehlet, Henrik

    2014-01-01

    STUDY DESIGN: Retrospective review of prospectively collected data. OBJECTIVE: To investigate the incidence of hip dislocation 90 days after total hip arthroplasty in relation to time after surgery, mechanism of dislocation and predisposing factors. METHODS: Prospective data on preoperative patient.......31-3.40)] but not hospital stay of hip...

  13. Determination of the extinction factor in function of the density of dislocations

    International Nuclear Information System (INIS)

    Macias B, L.R.

    1991-12-01

    There are exist three basic types of crystalline lattice defects: point, line (or dislocations) and surface defects. Such defects may be incorporated intentionally to produce desired mechanical and physical properties. This report presents a FORTRAN language program to calculate the extinction factor in samples of polycrystalline copper as function of the dislocations density. (Author)

  14. On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Simon, T.; Kröger, A.; Somsen, Ch.; Dlouhý, Antonín; Eggeler, G.

    2010-01-01

    Roč. 58, č. 5 (2010), s. 1850-1860 ISSN 1359-6454 R&D Projects: GA ČR GA106/09/1913 Institutional research plan: CEZ:AV0Z20410507 Keywords : NiTi * Martensitic transformations * Dislocation multiplication mechanism * Martensite variants * Dislocations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.781, year: 2010

  15. Pitfall in quantum mechanical/molecular mechanical molecular dynamics simulation of small solutes in solution.

    Science.gov (United States)

    Hu, Hao; Liu, Haiyan

    2013-05-30

    Developments in computing hardware and algorithms have made direct molecular dynamics simulation with the combined quantum mechanical/molecular mechanical methods affordable for small solute molecules in solution, in which much improved accuracy can be obtained via the quantum mechanical treatment of the solute molecule and even sometimes water molecules in the first solvation shell. However, unlike the conventional molecular mechanical simulations of large molecules, e.g., proteins, in solutions, special care must be taken in the technical details of the simulation, including the thermostat of the solute/solvent system, so that the conformational space of the solute molecules can be properly sampled. We show here that the common setup for classical molecular mechanical molecular dynamics simulations, such as the Berendsen or single Nose-Hoover thermostat, and/or rigid water models could lead to pathological sampling of the solutes' conformation. In the extreme example of a methanol molecule in aqueous solution, improper and sluggish setups could generate two peaks in the distribution of the O-H bond length. We discuss the factors responsible for this somewhat unexpected result and evoke a simple and ancient technical fix-up to resolve this problem.

  16. Video Analysis of Primary Shoulder Dislocations in Rugby Tackles.

    Science.gov (United States)

    Maki, Nobukazu; Kawasaki, Takayuki; Mochizuki, Tomoyuki; Ota, Chihiro; Yoneda, Takeshi; Urayama, Shingo; Kaneko, Kazuo

    2017-06-01

    Characteristics of rugby tackles that lead to primary anterior shoulder dislocation remain unclear. To clarify the characteristics of tackling that lead to shoulder dislocation and to assess the correlation between the mechanism of injury and morphological damage of the glenoid. Case series; Level of evidence, 4. Eleven elite rugby players who sustained primary anterior shoulder dislocation due to one-on-one tackling between 2001 and 2014 were included. Using an assessment system, the tackler's movement, posture, and shoulder and head position were evaluated in each phase of tackling. Based on 3-dimensional computed tomography, the glenoid of the affected shoulder was classified into 3 types: intact, erosion, and bone defect. Orientation of the glenoid defect and presence of Hill-Sachs lesion were also evaluated. Eleven tackles that led to primary shoulder dislocation were divided into hand, arm, and shoulder tackle types based on the site at which the tackler contacted the ball carrier initially. In hand and arm tackles, the tackler's shoulder joint was forcibly moved to horizontal abduction by the impact of his upper limb, which appeared to result from an inappropriate approach to the ball carrier. In shoulder tackles, the tackler's head was lowered and was in front of the ball carrier at impact. There was no significant correlation between tackle types and the characteristics of bony lesions of the shoulder. Although the precise mechanism of primary anterior shoulder dislocation could not be estimated from this single-view analysis, failure of individual tackling leading to injury is not uniform and can be caused by 2 main factors: failure of approach followed by an extended arm position or inappropriate posture of the tackler at impact, such as a lowered head in front of the opponent. These findings indicate that injury mechanisms should be assessed for each type of tackle, as it is unknown whether external force to the glenoid is different in each mechanism

  17. Irreducible Traumatic Posterior Shoulder Dislocation

    Directory of Open Access Journals (Sweden)

    Blake Collier

    2017-01-01

    Full Text Available History of present illness: A 22-year-old male presented to the Emergency Department complaining of right shoulder pain after a motocross accident. He was traveling at approximately 10 mph around a turn when he lost control and was thrown over the handlebars, landing directly on his right shoulder. On arrival, he was holding his arm in adduction and internal rotation. An area of swelling was noted over his anterior shoulder. He was unable to abduct his shoulder. No humeral gapping was noted. He had normal neuro-vascular status distal to the injury. Significant findings: Radiographs demonstrated posterior displacement of the humeral head on the “Y” view (see white arrow and widening of the glenohumeral joint space on anterior-posterior view (see red arrow. The findings were consistent with posterior dislocation and a Hill-Sachs type deformity. Sedation was performed and reduction was attempted using external rotation, traction counter-traction. An immediate “pop” was felt during the procedure. Post-procedure radiographs revealed a persistent posterior subluxation with interlocking at posterior glenoid. CT revealed posterior dislocation with acute depressed impaction deformity medial to the biceps groove with the humeral head perched on the posterior glenoid, interlocked at reverse Hill-Sachs deformity (see blue arrow. Discussion: Posterior shoulder dislocations are rare and represent only 2% of all shoulder dislocations. Posterior shoulder dislocations are missed on initial diagnosis in more than 60% of cases.1 Posterior shoulder dislocations result from axial loading of the adducted and internally rotated shoulder, violent muscle contractions (resulting from seizures or electrocution, a direct posterior force applied to the anterior shoulder.1 Physical findings include decreased anterior prominence of the humeral head, increased palpable posterior prominence of the humeral head below the acromion, increased palpable prominence of the

  18. Bipolar dislocation of the clavicle

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2012-01-01

    Full Text Available Bipolar dislocation of the clavicle at acromioclavicular and sternoclavicular joint is an uncommon traumatic injury. The conservative treatments adopted in the past is associated with redislocation dysfunction and deformity. A 41 years old lady with bipolar dislocation of right shoulder is treated surgically by open reduction and internal fixation by oblique T-plate at sternoclavicular joint and Kirschner wire stabilization at acromioclavicular joint. The patient showed satisfactory recovery with full range of motion of the right shoulder and normal muscular strength. The case reported in view of rarity and at 2 years followup.

  19. Transitional grain boundary structures and the influence on thermal, mechanical and energy properties from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Burbery, N.J.; Das, R.; Ferguson, W.G.

    2016-01-01

    The thermo-kinetic characteristics that dictate the activation of atomistic crystal defects significantly influence the mechanical properties of crystalline materials. Grain boundaries (GBs) primarily influence the plastic deformation of FCC metals through their interaction with mobile dislocation defects. The activation thresholds and atomic mechanisms that dictate the thermo-kinetic properties of grain boundaries have been difficult to study due to complex and highly variable GB structure. This paper presents a new approach for modelling GBs which is based on a systematic structural analysis of metastable and stable GBs. GB structural transformation accommodates defect interactions at the interface. The activation energy for such structural transformations was evaluated with nudged elastic band analysis of bi-crystals with several metastable 0 K grain boundary structures in pure FCC Aluminium (Al). The resultant activation energy was used to evaluate the thermal stability of the metastable grain boundary structures, with predictions of transition time based on transition state theory. The predictions are in very good agreement with the minimum time for irreversible structure transformation at 300 K obtained with molecular dynamics simulations. Analytical methods were used to evaluate the activation volume, which in turn was used to predict and explain the influence of stress and strain rate on the thermal and mechanical properties. Results of molecular dynamics simulations show that the GB structure is more closely related to the elastic strength at 0 K than the GB energy. Furthermore, the thermal instability of the GB structure directly influences the relationship between bi-crystal strength, temperature and strain rate. Hence, theoretically consistent models are established on the basis of activation criteria, and used to make predictions of temperature-dependent yield stress at a low strain rate, in agreement with experimental results.

  20. Dynamics in microbial communities: Unraveling mechanisms to identify principles

    Energy Technology Data Exchange (ETDEWEB)

    Konopka, Allan; Lindemann, Stephen R.; Fredrickson, Jim K.

    2015-07-01

    Diversity begets higher order properties such as functional stability and robustness in microbial communities, but principles that inform conceptual (and eventually predictive) models of community dynamics are lacking. Recent work has shown that selection as well as dispersal and drift shape communities, but the mechanistic bases for assembly of communities and the forces that maintain their function in the face of environmental perturbation are not well understood. Conceptually, some interactions among community members could generate endogenous dynamics in composition, even in the absence of environmental changes. These endogenous dynamics are further perturbed by exogenous forcing factors to produce a richer network of community interactions, and it is this “system” that is the basis for higher order community properties. Elucidation of principles that follow from this conceptual model requires identifying the mechanisms that (a) optimize diversity within a community and (b) impart community stability. The network of interactions between organisms can be an important element by providing a buffer against disturbance beyond the effect of functional redundancy, as alternative pathways with different combinations of microbes can be recruited to fulfill specific functions.

  1. Respiratory mechanics and fluid dynamics after lung resection surgery.

    Science.gov (United States)

    Miserocchi, Giuseppe; Beretta, Egidio; Rivolta, Ilaria

    2010-08-01

    Thoracic surgery that requires resection of a portion of lung or of a whole lung profoundly alters the mechanical and fluid dynamic setting of the lung-chest wall coupling, as well as the water balance in the pleural space and in the remaining lung. The most frequent postoperative complications are of a respiratory nature, and their incidence increases the more the preoperative respiratory condition seems compromised. There is an obvious need to identify risk factors concerning mainly the respiratory function, without neglecting the importance of other comorbidities, such as coronary disease. At present, however, a satisfactory predictor of postoperative cardiopulmonary complications is lacking; postoperative morbidity and mortality have remained unchanged in the last 10 years. The aim of this review is to provide a pathophysiologic interpretation of the main respiratory complications of a respiratory nature by relying on new concepts relating to lung fluid dynamics and mechanics. New parameters are proposed to improve evaluation of respiratory function from pre- to the early postoperative period when most of the complications occur. Published by Elsevier Inc.

  2. A concept of dynamic permission mechanism on android

    Science.gov (United States)

    Aron, Lukas; Hanacek, Petr

    2016-02-01

    This paper discuss the main security topic in mobile security area and this topic is protect user against the leakage of data. This work primarily contains the proposal of concept of dynamic permission mechanism for Android operating system. This mechanism deals with assignment or enforcement permissions to the application according to files that the application works with. Application has set of permissions that can use, but if the user opens confident files the application permissions should change its permission set and there should not be possible leakage of this secret data. The permissions set should be stricter according to opened confidential file or more open (without restriction) if the file is not secret file. The concept proposes the solution for protecting this data leakage. Idea covers rule that user should be avoided of change this permissions himself, but this behavior should be dynamic, automatic and independent. This proposal is mainly aimed to Android operating system, but the concept can be applied to other mobile platforms with some implementation changes.

  3. Dynamic Financial Constraints: Distinguishing Mechanism Design from Exogenously Incomplete Regimes.

    Science.gov (United States)

    Karaivanov, Alexander; Townsend, Robert M

    2014-05-01

    We formulate and solve a range of dynamic models of constrained credit/insurance that allow for moral hazard and limited commitment. We compare them to full insurance and exogenously incomplete financial regimes (autarky, saving only, borrowing and lending in a single asset). We develop computational methods based on mechanism design, linear programming, and maximum likelihood to estimate, compare, and statistically test these alternative dynamic models with financial/information constraints. Our methods can use both cross-sectional and panel data and allow for measurement error and unobserved heterogeneity. We estimate the models using data on Thai households running small businesses from two separate samples. We find that in the rural sample, the exogenously incomplete saving only and borrowing regimes provide the best fit using data on consumption, business assets, investment, and income. Family and other networks help consumption smoothing there, as in a moral hazard constrained regime. In contrast, in urban areas, we find mechanism design financial/information regimes that are decidedly less constrained, with the moral hazard model fitting best combined business and consumption data. We perform numerous robustness checks in both the Thai data and in Monte Carlo simulations and compare our maximum likelihood criterion with results from other metrics and data not used in the estimation. A prototypical counterfactual policy evaluation exercise using the estimation results is also featured.

  4. Mechanical Models of the Dynamics of Vitreous Substitutes

    Directory of Open Access Journals (Sweden)

    Krystyna Isakova

    2014-01-01

    Full Text Available We discuss some aspects of the fluid dynamics of vitreous substitutes in the vitreous chamber, focussing on the flow induced by rotations of the eye bulb. We use simple, yet not trivial, theoretical models to highlight mechanical concepts that are relevant to understand the dynamics of vitreous substitutes and also to identify ideal properties for vitreous replacement fluids. We first recall results by previous authors, showing that the maximum shear stress on the retina grows with increasing viscosity of the fluid up to a saturation value. We then investigate how the wall shear stress changes if a thin layer of aqueous humour is present in the vitreous chamber, separating the retina from the vitreous replacement fluid. The theoretical predictions show that the existence of a thin layer of aqueous is sufficient to substantially decrease the shear stress on the retina. We finally discuss a theoretical model that predicts the stability conditions of the interface between the aqueous and a vitreous substitute. We discuss the implications of this model to understand the mechanisms leading to the formation of emulsion in the vitreous chamber, showing that instability of the interface is possible in a range of parameters relevant for the human eye.

  5. Trapping of hydrogen and helium at an {110}<111> edge dislocation in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hongxian, E-mail: hongxianxie@163.com [School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132 (China); Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Tianjin 300132 (China); Xu, Ke [School of Physics & Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Lu, Guang-Hong, E-mail: LGH@buaa.edu.cn [School of Physics & Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Yu, Tao [Central Iron and Steel Research Institute, Beijing 100081 (China); Yin, Fuxing [Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Tianjin 300132 (China); Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300132 (China)

    2017-02-15

    We have performed an atomistic simulation to investigate energetics and dynamic behaviour of hydrogen (H) and helium (He) at an {110}<111> edge dislocation in tungsten (W). The edge dislocation is shown to attract H/He at the tensile stress region according to the negative interaction energy of H/He at the tensile stress region, which implies that the dislocation is energetically beneficial to accommodate both H and He. Dynamically both H and He are easy to diffuse into the dislocation core, indicating the ‘down-hill’ diffusion due to the presence of the dislocation serving as a trapping center for both H and He. Further, He exhibits much lower interaction energy and much faster diffusion into the dislocation core region as compared with H owing to the close shell electronic structure of He. The results suggest the edge dislocation as a trapping center facilitates the H/He accumulation, contributing to the understanding the role of the dislocation on the H/He accumulation and bubble formation in W.

  6. Growth rate effects on the formation of dislocation loops around deep helium bubbles in Tungsten

    International Nuclear Information System (INIS)

    Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; Voter, Arthur Ford

    2016-01-01

    Here, the growth process of spherical helium bubbles located 6 nm below a (100) surface is studied using molecular dynamics and parallel replica dynamics simulations, over growth rates from 10"6 to 10"1"2 helium atoms per second. Slower growth rates lead to a release of pressure and lower helium content as compared with fast growth cases. In addition, at slower growth rates, helium bubbles are not decorated by multiple dislocation loops, as these tend to merge or emit given sufficient time. At faster rates, dislocation loops nucleate faster than they can emit, leading to a more complicated dislocation structure around the bubble.

  7. Spatio-temporal Dynamics and Mechanisms of Stress Granule Assembly.

    Directory of Open Access Journals (Sweden)

    Daisuke Ohshima

    2015-06-01

    Full Text Available Stress granules (SGs are non-membranous cytoplasmic aggregates of mRNAs and related proteins, assembled in response to environmental stresses such as heat shock, hypoxia, endoplasmic reticulum (ER stress, chemicals (e.g. arsenite, and viral infections. SGs are hypothesized as a loci of mRNA triage and/or maintenance of proper translation capacity ratio to the pool of mRNAs. In brain ischemia, hippocampal CA3 neurons, which are resilient to ischemia, assemble SGs. In contrast, CA1 neurons, which are vulnerable to ischemia, do not assemble SGs. These results suggest a critical role SG plays in regards to cell fate decisions. Thus SG assembly along with its dynamics should determine the cell fate. However, the process that exactly determines the SG assembly dynamics is largely unknown. In this paper, analyses of experimental data and computer simulations were used to approach this problem. SGs were assembled as a result of applying arsenite to HeLa cells. The number of SGs increased after a short latent period, reached a maximum, then decreased during the application of arsenite. At the same time, the size of SGs grew larger and became localized at the perinuclear region. A minimal mathematical model was constructed, and stochastic simulations were run to test the modeling. Since SGs are discrete entities as there are only several tens of them in a cell, commonly used deterministic simulations could not be employed. The stochastic simulations replicated observed dynamics of SG assembly. In addition, these stochastic simulations predicted a gamma distribution relative to the size of SGs. This same distribution was also found in our experimental data suggesting the existence of multiple fusion steps in the SG assembly. Furthermore, we found that the initial steps in the SG assembly process and microtubules were critical to the dynamics. Thus our experiments and stochastic simulations presented a possible mechanism regulating SG assembly.

  8. A Practical Quantum Mechanics Molecular Mechanics Method for the Dynamical Study of Reactions in Biomolecules.

    Science.gov (United States)

    Mendieta-Moreno, Jesús I; Marcos-Alcalde, Iñigo; Trabada, Daniel G; Gómez-Puertas, Paulino; Ortega, José; Mendieta, Jesús

    2015-01-01

    Quantum mechanics/molecular mechanics (QM/MM) methods are excellent tools for the modeling of biomolecular reactions. Recently, we have implemented a new QM/MM method (Fireball/Amber), which combines an efficient density functional theory method (Fireball) and a well-recognized molecular dynamics package (Amber), offering an excellent balance between accuracy and sampling capabilities. Here, we present a detailed explanation of the Fireball method and Fireball/Amber implementation. We also discuss how this tool can be used to analyze reactions in biomolecules using steered molecular dynamics simulations. The potential of this approach is shown by the analysis of a reaction catalyzed by the enzyme triose-phosphate isomerase (TIM). The conformational space and energetic landscape for this reaction are analyzed without a priori assumptions about the protonation states of the different residues during the reaction. The results offer a detailed description of the reaction and reveal some new features of the catalytic mechanism. In particular, we find a new reaction mechanism that is characterized by the intramolecular proton transfer from O1 to O2 and the simultaneous proton transfer from Glu 165 to C2. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Posterior Dislocation of the Hip

    African Journals Online (AJOL)

    than 24 hours, and 13 more than 48 hours after injury. (Table II). TABLE If. RESULTS PLOITED AGAINST DELAY IN. REDUCTION OF THE DISLOCATION. Time from injury. (h). Excellent. Poor and fair. Total. 48. 7. 6. 13. Reduction, as a rule, was effected under general anaes-.

  10. Atomistically determined phase-field modeling of dislocation dissociation, stacking fault formation, dislocation slip, and reactions in fcc systems

    Science.gov (United States)

    Rezaei Mianroodi, Jaber; Svendsen, Bob

    2015-04-01

    The purpose of the current work is the development of a phase field model for dislocation dissociation, slip and stacking fault formation in single crystals amenable to determination via atomistic or ab initio methods in the spirit of computational material design. The current approach is based in particular on periodic microelasticity (Wang and Jin, 2001; Bulatov and Cai, 2006; Wang and Li, 2010) to model the strongly non-local elastic interaction of dislocation lines via their (residual) strain fields. These strain fields depend in turn on phase fields which are used to parameterize the energy stored in dislocation lines and stacking faults. This energy storage is modeled here with the help of the "interface" energy concept and model of Cahn and Hilliard (1958) (see also Allen and Cahn, 1979; Wang and Li, 2010). In particular, the "homogeneous" part of this energy is related to the "rigid" (i.e., purely translational) part of the displacement of atoms across the slip plane, while the "gradient" part accounts for energy storage in those regions near the slip plane where atomic displacements deviate from being rigid, e.g., in the dislocation core. Via the attendant global energy scaling, the interface energy model facilitates an atomistic determination of the entire phase field energy as an optimal approximation of the (exact) atomistic energy; no adjustable parameters remain. For simplicity, an interatomic potential and molecular statics are employed for this purpose here; alternatively, ab initio (i.e., DFT-based) methods can be used. To illustrate the current approach, it is applied to determine the phase field free energy for fcc aluminum and copper. The identified models are then applied to modeling of dislocation dissociation, stacking fault formation, glide and dislocation reactions in these materials. As well, the tensile loading of a dislocation loop is considered. In the process, the current thermodynamic picture is compared with the classical mechanical

  11. Multiscale simulations in face-centered cubic metals: A method coupling quantum mechanics and molecular mechanics

    International Nuclear Information System (INIS)

    Yu Xiao-Xiang; Wang Chong-Yu

    2013-01-01

    An effective multiscale simulation which concurrently couples the quantum-mechanical and molecular-mechanical calculations based on the position continuity of atoms is presented. By an iterative procedure, the structure of the dislocation core in face-centered cubic metal is obtained by first-principles calculation and the long-range stress is released by molecular dynamics relaxation. Compared to earlier multiscale methods, the present work couples the long-range strain to the local displacements of the dislocation core in a simpler way with the same accuracy. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Static and Dynamic Amplification Using Strong Mechanical Coupling

    KAUST Repository

    Ilyas, Saad

    2016-07-28

    Amplifying the signal-to-noise ratio of resonant sensors is vital toward the effort to miniaturize devices into the sub-micro and nano regimes. In this paper, we demonstrate theoretically and experimentally, amplification through mechanically coupled microbeams. The device is composed of two identical clamped-clamped beams, made of polyimide, connected at their middle through a third beam, which acts as a mechanical coupler. Each of the clamped-clamped microbeams and the coupler are designed to be actuated separately, hence providing various possibilities of actuation and sensing. The coupled resonator is driven into resonance near its first resonance mode and its dynamic behavior is explored via frequency sweeps. The results show significant amplification in the resonator amplitude when the signal is measured at the midpoint of the coupler compared with the response of the individual uncoupled beams. The static pull-in characteristics of the resonator are also studied. It is shown that the compliant mechanical coupler can serve as a low-power radio frequency switch actuated at low voltage loads. [2016-0100

  13. Multivariable Dynamic Ankle Mechanical Impedance With Active Muscles

    Science.gov (United States)

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2015-01-01

    Multivariable dynamic ankle mechanical impedance in two coupled degrees-of-freedom (DOFs) was quantified when muscles were active. Measurements were performed at five different target activation levels of tibialis anterior and soleus, from 10% to 30% of maximum voluntary contraction (MVC) with increments of 5% MVC. Interestingly, several ankle behaviors characterized in our previous study of the relaxed ankle were observed with muscles active: ankle mechanical impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness; stiffness was greater in the sagittal plane than in the frontal plane at all activation conditions for all subjects; and the coupling between dorsiflexion–plantarflexion and inversion–eversion was small—the two DOF measurements were well explained by a strictly diagonal impedance matrix. In general, ankle stiffness increased linearly with muscle activation in all directions in the 2-D space formed by the sagittal and frontal planes, but more in the sagittal than in the frontal plane, resulting in an accentuated “peanut shape.” This characterization of young healthy subjects’ ankle mechanical impedance with active muscles will serve as a baseline to investigate pathophysiological ankle behaviors of biomechanically and/or neurologically impaired patients. PMID:25203497

  14. Formation of dislocation dipoles in irradiated graphite

    International Nuclear Information System (INIS)

    Niwase, Keisuke

    2005-01-01

    Recently, we have proposed a dislocation dipole accumulation model to explain the irradiation-induced amorphization of graphite. However, the structure of dislocation dipole in the hexagonal networks is still an open question at the atomic-level. In this paper, we propose a possible formation process of the dislocation dipole

  15. Medial subtalar dislocation: Case report

    Directory of Open Access Journals (Sweden)

    Manojlović Radovan

    2010-01-01

    Full Text Available Introduction. Subtalar dislocation (SI is a term that refers to an injury in which there is dislocation of the talonavicular and talocalcanear joint, although the tibiotalar joint is intact. Case Outline. A case of medial subtalar dislocation as a result of basketball injury, so-called 'basketball foot', is presented. Closed reposition in i.v. anaesthesia was performed with the patient in supine position and a knee flexed at 90 degrees. Longitudinal manual traction in line of deformity was carried out in plantar flexion. The reposition continued with abduction and eversion simultaneously increasing dorsiflexion. It was made in the first attempt and completed instantly. Rehabilitation was initiated after 5 weeks of immobilization. One year after the injury, the functional outcome was excellent with full range of motion and the patient was symptom-free. For better interpretation of roentgenogram, bone model of subtalar dislocation was made using the cadaver bone. Conclusion. Although the treatment of such injury is usually successful, diagnosis can be difficult because it is a rare injury, and moreover, X-ray of the injury can be confusing due to superposition of bones. Radiograms revealed superposition of the calcaneus, tarsal and metatarsal bones which was radiographically visualized in the anterior-posterior projection as one osseous block inward from the talus, and on the lateral view as in an osteal block below the tibial bone. Prompt recognition of these injuries followed by proper, delicately closed reduction under anaesthesia is crucial for achieving a good functional result in case of medial subtalar dislocation.

  16. [Classification and Treatment of Sacroiliac Joint Dislocation].

    Science.gov (United States)

    Tan, Zhen; Huang, Zhong; Li, Liang; Meng, Wei-Kun; Liu, Lei; Zhang, Hui; Wang, Guang-Lin; Huang, Fu-Guo

    2017-09-01

    To develop a renewed classification and treatment regimen for sacroiliac joint dislocation. According to the direction of dislocation of sacroiliac joint,combined iliac,sacral fractures,and fracture morphology,sacroiliac joint dislocation was classified into 4 types. Type Ⅰ (sacroiliac anterior dislocation): main fracture fragments of posterior iliac wing dislocated in front of sacroiliac joint. Type Ⅱ (sacroiliac posterior dislocation): main fracture fragments of posterior iliac wing dislocated in posterior of sacroiliac joint. Type Ⅲ (Crescent fracturedislocation of the sacroiliac joint): upward dislocation of posterior iliac wing with oblique fracture through posterior iliac wing. Type ⅢA: a large crescent fragment and dislocation comprises no more than onethird of sacroiliac joint,which is typically inferior. Type ⅢB: intermediatesize crescent fragment and dislocation comprises between one and twothirds of joint. Type ⅢC: a small crescent fragment where dislocation comprises most,but not the entire joint. Different treatment regimens were selected for different types of fractures. Treatment for type Ⅰ sacroiliac joint dislocation: anterior iliac fossa approach pry stripping reset; sacroiliac joint fixed with sacroiliac screw through percutaneous. Treatment for type Ⅱ sacroiliac joint dislocation: posterior sacroiliac joint posterior approach; sacroiliac joint fixed with sacroiliac screw under computer guidance. Treatment for type ⅢA and ⅢB sacroiliac joint dislocation: posterior sacroiliac joint approach; sacroiliac joint fixed with reconstruction plate. Treatment for type ⅢC sacroiliac joint dislocation: sacroiliac joint closed reduction; sacroiliac joint fixed with sacroiliac screw through percutaneous. Treatment for type Ⅳ sacroiliac joint dislocation: posterior approach; sacroiliac joint fixed with spinal pelvic fixation. Results of 24 to 72 months patient follow-up (mean 34.5 months): 100% survival,100% wound healing,and 100

  17. Medial peritalar fracture dislocation of the talar body

    Directory of Open Access Journals (Sweden)

    Jacob B. Stirton

    2015-04-01

    Full Text Available Peritalar fracture dislocations typically involve the talar neck and are classified according to Hawkins. To our knowledge, peritalar fracture dislocation involving the talar body has not been formally reported. In this article, we describe a case of peritalar fracture dislocation of the talar body. Keywords: Peritalar dislocation, Talus fracture, Talar body fracture dislocation, Medial subtalar dislocation

  18. Short-term mechanisms influencing volumetric brain dynamics

    Directory of Open Access Journals (Sweden)

    Nikki Dieleman

    2017-01-01

    Full Text Available With the use of magnetic resonance imaging (MRI and brain analysis tools, it has become possible to measure brain volume changes up to around 0.5%. Besides long-term brain changes caused by atrophy in aging or neurodegenerative disease, short-term mechanisms that influence brain volume may exist. When we focus on short-term changes of the brain, changes may be either physiological or pathological. As such determining the cause of volumetric dynamics of the brain is essential. Additionally for an accurate interpretation of longitudinal brain volume measures by means of neurodegeneration, knowledge about the short-term changes is needed. Therefore, in this review, we discuss the possible mechanisms influencing brain volumes on a short-term basis and set-out a framework of MRI techniques to be used for volumetric changes as well as the used analysis tools. 3D T1-weighted images are the images of choice when it comes to MRI of brain volume. These images are excellent to determine brain volume and can be used together with an analysis tool to determine the degree of volume change. Mechanisms that decrease global brain volume are: fluid restriction, evening MRI measurements, corticosteroids, antipsychotics and short-term effects of pathological processes like Alzheimer's disease, hypertension and Diabetes mellitus type II. Mechanisms increasing the brain volume include fluid intake, morning MRI measurements, surgical revascularization and probably medications like anti-inflammatory drugs and anti-hypertensive medication. Exercise was found to have no effect on brain volume on a short-term basis, which may imply that dehydration caused by exercise differs from dehydration by fluid restriction. In the upcoming years, attention should be directed towards studies investigating physiological short-term changes within the light of long-term pathological changes. Ultimately this may lead to a better understanding of the physiological short-term effects of

  19. Scale relativity: from quantum mechanics to chaotic dynamics.

    Science.gov (United States)

    Nottale, L.

    Scale relativity is a new approach to the problem of the origin of fundamental scales and of scaling laws in physics, which consists in generalizing Einstein's principle of relativity to the case of scale transformations of resolutions. We recall here how it leads one to the concept of fractal space-time, and to introduce a new complex time derivative operator which allows to recover the Schrödinger equation, then to generalize it. In high energy quantum physics, it leads to the introduction of a Lorentzian renormalization group, in which the Planck length is reinterpreted as a lowest, unpassable scale, invariant under dilatations. These methods are successively applied to two problems: in quantum mechanics, that of the mass spectrum of elementary particles; in chaotic dynamics, that of the distribution of planets in the Solar System.

  20. Modeling and stochastic analysis of dynamic mechanisms of the perception

    Science.gov (United States)

    Pisarchik, A.; Bashkirtseva, I.; Ryashko, L.

    2017-10-01

    Modern studies in physiology and cognitive neuroscience consider a noise as an important constructive factor of the brain functionality. Under the adequate noise, the brain can rapidly access different ordered states, and provide decision-making by preventing deadlocks. Bistable dynamic models are often used for the study of the underlying mechanisms of the visual perception. In the present paper, we consider a bistable energy model subject to both additive and parametric noise. Using the catastrophe theory formalism and stochastic sensitivity functions technique, we analyze a response of the equilibria to noise, and study noise-induced transitions between equilibria. We demonstrate and analyse the effect of hysteresis squeezing when the intensity of noise is increased. Stochastic bifurcations connected with the suppression of oscillations by parametric noises are discussed.

  1. Accelerated Testing of Polymeric Composites Using the Dynamic Mechanical Analyzer

    Science.gov (United States)

    Abdel-Magid, Becky M.; Gates, Thomas S.

    2000-01-01

    Creep properties of IM7/K3B composite material were obtained using three accelerated test methods at elevated temperatures. Results of flexural creep tests using the dynamic mechanical analyzer (DMA) were compared with results of conventional tensile and compression creep tests. The procedures of the three test methods are described and the results are presented. Despite minor differences in the time shift factor of the creep compliance curves, the DMA results compared favorably with the results from the tensile and compressive creep tests. Some insight is given into establishing correlations between creep compliance in flexure and creep compliance in tension and compression. It is shown that with careful consideration of the limitations of flexure creep, a viable and reliable accelerated test procedure can be developed using the DMA to obtain the viscoelastic properties of composites in extreme environments.

  2. Free energy change of a dislocation due to a Cottrell atmosphere

    Science.gov (United States)

    Sills, R. B.; Cai, W.

    2018-06-01

    The free energy reduction of a dislocation due to a Cottrell atmosphere of solutes is computed using a continuum model. We show that the free energy change is composed of near-core and far-field components. The far-field component can be computed analytically using the linearized theory of solid solutions. Near the core the linearized theory is inaccurate, and the near-core component must be computed numerically. The influence of interactions between solutes in neighbouring lattice sites is also examined using the continuum model. We show that this model is able to reproduce atomistic calculations of the nickel-hydrogen system, predicting hydride formation on dislocations. The formation of these hydrides leads to dramatic reductions in the free energy. Finally, the influence of the free energy change on a dislocation's line tension is examined by computing the equilibrium shape of a dislocation shear loop and the activation stress for a Frank-Read source using discrete dislocation dynamics.

  3. Characterizing short-range vs. long-range spatial correlations in dislocation distributions

    Energy Technology Data Exchange (ETDEWEB)

    Chevy, Juliette, E-mail: juliette.chevy@gmail.com [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)] [Laboratoire Science et Ingenierie des Materiaux et Procedes, Grenoble INP-CNRS-UJF, BP 75, 38402 St. Martin d' Heres Cedex (France); Fressengeas, Claude; Lebyodkin, Mikhail; Taupin, Vincent [Laboratoire de Physique et Mecanique des Materiaux, Universite Paul Verlaine-Metz/CNRS, Ile du Saulcy, 57045 Metz Cedex (France); Bastie, Pierre [Laboratoire de Spectrometrie Physique, BP 87, 38402 St. Martin d' Heres Cedex (France)] [Institut Laue Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Duval, Paul [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)

    2010-03-15

    Hard X-ray diffraction experiments have provided evidence of a strongly heterogeneous distribution of dislocation densities along the axis of cylindrical ice single crystals oriented for basal slip in torsion creep. The dislocation arrangements showed a complex scale-invariant character, which was analyzed by means of statistical and multifractal techniques. A trend to decreasing autocorrelation of the dislocation distribution was observed as deformation proceeds. At low strain levels, long-range spatial correlations control the distribution, but short-range correlations in relation with cross-slip progressively prevail when strain increases. This trend was reproduced by a model based on field dislocation dynamics, a theory accounting for both long-range elastic interactions and short-range interactions through transport of dislocation densities.

  4. Characterizing short-range vs. long-range spatial correlations in dislocation distributions

    International Nuclear Information System (INIS)

    Chevy, Juliette; Fressengeas, Claude; Lebyodkin, Mikhail; Taupin, Vincent; Bastie, Pierre; Duval, Paul

    2010-01-01

    Hard X-ray diffraction experiments have provided evidence of a strongly heterogeneous distribution of dislocation densities along the axis of cylindrical ice single crystals oriented for basal slip in torsion creep. The dislocation arrangements showed a complex scale-invariant character, which was analyzed by means of statistical and multifractal techniques. A trend to decreasing autocorrelation of the dislocation distribution was observed as deformation proceeds. At low strain levels, long-range spatial correlations control the distribution, but short-range correlations in relation with cross-slip progressively prevail when strain increases. This trend was reproduced by a model based on field dislocation dynamics, a theory accounting for both long-range elastic interactions and short-range interactions through transport of dislocation densities.

  5. Atomistic simulation of the pinning of edge dislocations in Ni by Ni3Al precipitates

    International Nuclear Information System (INIS)

    Kohler, Christopher; Kizler, Peter; Schmauder, Siegfried

    2005-01-01

    Classical molecular dynamics simulations of the interaction of edge dislocations in Ni with chains of spherical Ni 3 Al precipitates are performed using EAM potentials. The order hardening is investigated at temperature T=0 -bar K by determining the critical resolved shear stresses (CRSSs) for a superdislocation that is dissociated into four partial dislocations. The CRSS is computed as a function of the radius and the distance of the precipitates. It is found that for precipitates with a diameter smaller than the dissociation width of perfect edge dislocation in Ni, the CRSS of the trailing dislocation of the superdislocation is a fraction of about 0.4 of the CRSS of the leading dislocation

  6. Reconstructing a nonlinear dynamical framework for testing quantum mechanics

    International Nuclear Information System (INIS)

    Jordan, T.F.

    1993-01-01

    The nonlinear generalization of quantum dynamics constructed by Weinberg as a basis for experimental tests is reconstructed in terms of density-matrix elements to allow independent dynamics for subsystems. Dynamics is generated with a Lie bracket and a nonlinear Hamiltonian function. It takes density matrices to density matrices and pure states to pure states. Each density matrix has a Hamiltonian operator that makes its evolution for an infinitesimal time, but the Hamiltonian operator may be different for different density matrices and may change in time as the density matrix changes. A Hamiltonian function for a subsystem serves also for the entire system. Independence of separate subsystems is confirmed by seeing that brackets are zero for functions from different subsystems and by looking at the Hamiltonian operator for each density matrix. Scaling properties of Hamiltonian functions are found to be important in connection with locality. An example of all this is obtained from every one of the local nonlinear Schroedinger equations described by Bialynicki-Birula and Mycielski. Examples are worked out for spins coupled together or to fields, demonstrating Hamiltonian functions and equations of motion written directly in terms of physical mean values. Observables and states are taken to be the same as in ordinary quantum mechanics. An attempt to find nonlinear representations of observables by characterizing propositions as functions equal to their squares yields a negative result. Sharper interpretation of mixed states is proposed. In a mixture of parts that are prepared separately, time dependence must be calculated separately for each part so different mixtures that yield the same density matrix can be distinguished. No criticism has shown that a consistent interpretation cannot be made this way. Thus, nonlinearity remains a viable hypothesis for experimental tests. 16 refs

  7. Excito-oscillatory dynamics as a mechanism of ventricular fibrillation.

    Science.gov (United States)

    Gray, Richard A; Huelsing, Delilah J

    2008-04-01

    The instabilities associated with reentrant spiral waves are of paramount importance to the initiation and maintenance of tachyarrhythmias, especially ventricular fibrillation (VF). In addition to tissue heterogeneities, there are only a few basic purported mechanisms of spiral wave breakup, most notably restitution. We test the hypothesis that oscillatory membrane properties act to destabilize spiral waves. We recorded transmembrane potential (V(m)) from isolated rabbit myocytes using a constant current stimulation protocol. We developed a mathematical model that included both the stable excitable equilibrium point at resting V(m) (-80 mV) and the unstable oscillatory equilibrium point at elevated V(m) (-10 mV). Spiral wave dynamics were studied in 2-dimensional grids using variants of the model. All models showed restitution and reproduced the experimental values of transmembrane resistance at rest and during the action potential plateau. Stable spiral waves were observed when the model showed only 1 equilibrium point. However, spatio-temporal complexity was observed if the model showed both excitable and oscillatory equilibrium points (i.e., excito-oscillatory models). The initial wave breaks resulted from oscillatory waves expanding in all directions; after a few beats, the patterns were characterized by a combination of unstable spiral waves and target patterns consistent with the patterns observed on the heart surface during VF. In our model, this VF-like activity only occurred when the single cell period of V(m) oscillations was within a specific range. The VF-like patterns observed in our excito-oscillatory models could not be explained by the existing proposed instability mechanisms. Our results introduce the important suggestion that membrane dynamics responsible for V(m) oscillations at elevated V(m) levels can destabilize spiral waves and thus may be a novel therapeutic target for preventing VF.

  8. Symmetry realization via a dynamical inverse Higgs mechanism

    Science.gov (United States)

    Rothstein, Ira Z.; Shrivastava, Prashant

    2018-05-01

    The Ward identities associated with spontaneously broken symmetries can be saturated by Goldstone bosons. However, when space-time symmetries are broken, the number of Goldstone bosons necessary to non-linearly realize the symmetry can be less than the number of broken generators. The loss of Goldstones may be due to a redundancy or the generation of a gap. In either case the associated Goldstone may be removed from the spectrum. This phenomena is called an Inverse Higgs Mechanism (IHM) and its appearance has a well defined mathematical condition. However, there are cases when a Goldstone boson associated with a broken generator does not appear in the low energy theory despite the lack of the existence of an associated IHM. In this paper we will show that in such cases the relevant broken symmetry can be realized, without the aid of an associated Goldstone, if there exists a proper set of operator constraints, which we call a Dynamical Inverse Higgs Mechanism (DIHM). We consider the spontaneous breaking of boosts, rotations and conformal transformations in the context of Fermi liquids, finding three possible paths to symmetry realization: pure Goldstones, no Goldstones and DIHM, or some mixture thereof. We show that in the two dimensional degenerate electron system the DIHM route is the only consistent way to realize spontaneously broken boosts and dilatations, while in three dimensions these symmetries could just as well be realized via the inclusion of non-derivatively coupled Goldstone bosons. We present the action, including the leading order non-linearities, for the rotational Goldstone (angulon), and discuss the constraint associated with the possible DIHM that would need to be imposed to remove it from the spectrum. Finally we discuss the conditions under which Goldstone bosons are non-derivatively coupled, a necessary condition for the existence of a Dynamical Inverse Higgs Constraint (DIHC), generalizing the results for Vishwanath and Wantanabe.

  9. Growth kinetics of dislocation loops in irradiated ceramic materials

    International Nuclear Information System (INIS)

    Ryazanov, A.I.; Kinoshita, C.

    2002-01-01

    Ceramic materials are expected to be applied in the future fusion reactor as radio frequency (RF) windows, toroidal insulating breaks and diagnostic probes. The radiation resistance of ceramic materials, degradation of the electrical properties and radiation induced conductivity of these materials under neutron irradiation are determined by the kinetics of the accumulation of point defects in the matrix and point defect cluster formation (dislocation loops, voids, etc.). Under irradiation, due to the ionization process, excitation of electronic subsystem and covalent type of interaction between atoms the point defects in ceramic materials are characterized by the charge state (e.g. an F + center, an oxygen vacancy with a single trapped electron) and the effective charge. For the investigation of radiation resistance of ceramic materials for future fusion applications it is very important to understand the physical mechanisms of formation and growth of dislocation loops and voids under irradiation taking into account in this system the effective charge of point defects. In the present paper the physical mechanisms of dislocation loop growth in ceramic material are investigated. For this aim a theoretical model is suggested for the description of the kinetics of point defect accumulation in the matrix taking into account the charge state of the point defects and the effect of an electric field on diffusion migration process of charged point defects. A self-consistent system of kinetic equations describing the generation of electrical fields near dislocation loops and diffusion migration of charged point defects in elastic and electrical fields is formulated. The solution of the kinetic equations allows to find the growth rate of dislocation loops in ceramic materials under irradiation taking into account the charge state of the point defects and the effect of electric and elastic stress fields near dislocation loop on the diffusion processes

  10. Atomistic simulations of dislocation processes in copper

    DEFF Research Database (Denmark)

    Vegge, T.; Jacobsen, K.W.

    2002-01-01

    We discuss atomistic simulations of dislocation processes in copper based on effective medium theory interatomic potentials. Results on screw dislocation structures and processes are reviewed with particular focus on point defect mobilities and processes involving cross slip. For example......, the stability of screw dislocation dipoles is discussed. We show that the presence of jogs will strongly influence cross slip barriers and dipole stability. We furthermore present some new results on jogged edge dislocations and edge dislocation dipoles. The jogs are found to be extended, and simulations...

  11. An experimental study of dislocation loop nucleation

    International Nuclear Information System (INIS)

    Bounaud, J.Y.; Leteurtre, J.

    1975-01-01

    The nucleation of dislocation loops is experimentally studied by observing the demixion of the Burgers vectors of dislocation loops nucleated in copper whiskers irradiated in flexion by fission fragments at room temperature. The demixion of Burgers vectors is observed by the dimensional effects of dislocation loops: after irradiation, the applied stress is removed; the whisker shows a residual strain that is due to loops because, after an annealing treatment to evaporate dislocation loops, each whisker recovers its initial straight shape. Everywhere along the whisker, the radius of curvature is measured and plotted vs the max. applied stress. Estimations of the interstitial and vacancy dislocation loop nuclei are derived [fr

  12. Motion of 1/3<111> dislocations on Σ3 (112) twin boundaries in nanotwinned copper

    Energy Technology Data Exchange (ETDEWEB)

    Lu, N.; Du, K., E-mail: kuidu@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Beijing National Center for Electron Microscopy, Tsinghua University, Beijing 100084 (China); Lu, L.; Ye, H. Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2014-01-14

    The atomic structure of Σ3 (112) ITBs in nanotwinned Cu is investigated by using aberration-corrected high resolution transmission electron microscopy (HRTEM) and in situ HRTEM observations. The Σ3 (112) ITBs are consisted of periodically repeated three partial dislocations. The in situ HRTEM results show that 1/3[111] partial dislocation moves on the Σ3 (112) incoherent twin boundary (ITB), which was accompanied by a migration of the ITB. A dislocation reaction mechanism is proposed for the motion of 1/3[111] Frank partial dislocation, in which the 1/3[111] partial dislocation exchanges its position with twin boundary dislocations in sequence. In this way, the 1/3[111] dislocation can move on the incoherent twin boundary in metals with low stacking fault energy. Meanwhile, the ITB will migrate in its normal direction accordingly. These results provide insight into the reaction mechanism of 1/3[111] dislocations and ITBs and the associated migration of ITBs.

  13. Influence of temperature upon dislocation mobility and elastic limit of single crystal HgI2

    International Nuclear Information System (INIS)

    Milstein, F.; Farber, B.; Kim, K.; van den Berg, L.; Schnepple, W.

    1982-01-01

    The practical importance of studying mechanical properties and dislocation structure of HgI 2 is reviewed briefly. Specifically, the performance of single crystal HgI 2 radiation detectors is evidently sensitive to crystalline imperfections; the dislocation structure, in turn, can be altered during detector fabrication, depending upon the mechanical properties of the crystal and the stresses to which the crystal is subjected. The influence of temperature upon dislocation mobility and plasticity in vapor-grown crystals of mercuric iodide is examined. Dislocation mobiity is determined by measuring the lengths of the longest arms of dislocation etch pit rosettes on (001) surfaces following microhardness indentation and chemical etch. Measurements were made in the range from room temperature to the phase transition temperature of 127 0 C. Dislocation mobility was found to be an increasing function of temperature, with the effect accelerating as the phase transition is approached. Increasing temperature was also found to lower the critical resolved shear stress for plastic deformation on slip on (001) planes. In these contexts, the vapor-grown crystals are clearly softer at their elevated growth temperatures. The results are discussed in terms of a dislocation model involving soft and hard glide dislocations

  14. Dynamic Self-Healing Mechanism for Transactional Business Process

    Directory of Open Access Journals (Sweden)

    Yuhai Zhao

    2015-01-01

    Full Text Available It is clear that transactional behavior consistency is a prerequisite and basis for construction of a reliable services-based business application. However, in previous works, maintaining transactional consistency during exception handling was ignored. Maintaining transactional consistency requires functionality for rolling back some operations and revoking uploaded data. Replacing only the failed service will eventually lead to overall business application failure. In this study, we take fully into account the behavioral consistency of transactional services and propose two effective self-healing mechanisms for service-based applications. If a service enters into potential failure condition, a rescheduling mechanism is triggered to maintain consistent transactional behavior and to ensure reliable execution; if a service fails during execution, the compensation operation is triggered and the system will take action to ensure transactional behavior consistency. Meanwhile, cost-benefit analysis with compensation support is proposed to minimize the dynamic reselection cost. Finally, the experimental analysis shows that the proposed strategies can effectively guarantee the reliability of Web-based applications system.

  15. Energetics of dislocation nucleation under a nanoindenter

    International Nuclear Information System (INIS)

    Zhang Chuanli; Xu Guanshui

    2005-01-01

    We present an analysis of dislocation nucleation under an idealized nanoindenter based on the variational boundary integral formulation of the Peierls-Nabarro dislocation model. By solving the embryonic dislocation profiles, corresponding to the relative displacements between the two adjacent atomic layers along the slip plane, we have determined the critical conditions for athermal dislocation nucleation as well as the activation energies required to thermally activate embryonic dislocations from their stable to unstable saddle point configurations. The effect of the size of the indenter on the energetics of dislocation nucleation is quantitatively characterized. The result is compared with a simplified analysis based on the application of the Rice model for dislocation nucleation at a crack tip

  16. Energetics of dislocation nucleation under a nanoindenter

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chuanli [College of Mechanical Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States); Xu Guanshui [Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States)]. E-mail: guanshui.xu@ucr.edu

    2005-07-25

    We present an analysis of dislocation nucleation under an idealized nanoindenter based on the variational boundary integral formulation of the Peierls-Nabarro dislocation model. By solving the embryonic dislocation profiles, corresponding to the relative displacements between the two adjacent atomic layers along the slip plane, we have determined the critical conditions for athermal dislocation nucleation as well as the activation energies required to thermally activate embryonic dislocations from their stable to unstable saddle point configurations. The effect of the size of the indenter on the energetics of dislocation nucleation is quantitatively characterized. The result is compared with a simplified analysis based on the application of the Rice model for dislocation nucleation at a crack tip.

  17. Trends in nanoscale mechanics mechanics of carbon nanotubes, graphene, nanocomposites and molecular dynamics

    CERN Document Server

    2014-01-01

    This book contains a collection of the state-of-the-art reviews written by the leading researchers in the areas of nanoscale mechanics, molecular dynamics, nanoscale modeling of nanocomposites and mechanics of carbon nanotubes. No other book has reviews of the recent discoveries such as a nanoscale analog of the Pauli’s principle, i.e., effect of the spatial exclusion of electrons or the SEE effect, a new Registry Matrix Analysis for the nanoscale interfacial sliding and new data on the effective viscosity of interfacial electrons in nanoscale stiction at the interfaces. This volume is also an exceptional resource on the well tested nanoscale modeling of carbon nanotubes and nanocomposites, new nanoscale effects, unique evaluations of the effective thickness of carbon nanotubes under different loads, new data on which size of carbon nanotubes is safer and many other topics. Extensive bibliography concerning all these topics is included along with the lucid short reviews. Numerous illustrations are provided...

  18. Mechanical energy losses in plastically deformed and electron plus neutron irradiated high purity single crystalline molybdenum at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zelada, Griselda I. [Laboratorio de Materiales, Escuela de Ingenieria Electrica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avda. Pellegrini 250, 2000 Rosario (Argentina); Lambri, Osvaldo Agustin [Laboratorio de Materiales, Escuela de Ingenieria Electrica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avda. Pellegrini 250, 2000 Rosario (Argentina); Instituto de Fisica Rosario - CONICET, Member of the CONICET& #x27; s Research Staff, Avda. Pellegrini 250, 2000 Rosario (Argentina); Bozzano, Patricia B. [Laboratorio de Microscopia Electronica, Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avda. Gral. Paz 1499, 1650 San Martin (Argentina); Garcia, Jose Angel [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain)

    2012-10-15

    Mechanical spectroscopy (MS) and transmission electron microscopy (TEM) studies have been performed in plastically deformed and electron plus neutron irradiated high purity single crystalline molybdenum, oriented for single slip, in order to study the dislocation dynamics in the temperature range within one third of the melting temperature. A damping peak related to the interaction of dislocation lines with both prismatic loops and tangles of dislocations was found. The peak temperature ranges between 900 and 1050 K, for an oscillating frequency of about 1 Hz. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Arthroscopic treatment of acromioclavicular dislocation

    Directory of Open Access Journals (Sweden)

    Mihai T. Gavrilă

    2017-11-01

    Full Text Available A thorough understanding of biomechanical function of both acromioclavicular (AC and coracoclavicular (CC ligaments, stimulated surgeons to repair high-grade AC dislocation using arthroscopic technique. This technique necessitates a clear understanding of shoulder anatomy, especially of the structures in proximity to the clavicle and coracoid process and experiences in arthroscopic surgery. The follow case describes an arthroscopic technique used to treat AC dislocation in young man 30 years old, who suffered an injury at right shoulder. Results were similar to those obtained using open surgery and this encouraged us to continue utilization of this method. As a conclusion, arthroscopic treatment of AC separation is one of the best options as surgical treatment. Early results suggested that immediate anatomic reduction of an acute AC separation usually provides satisfactory clinical results at intermediate-term follow-up.

  20. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels

    Science.gov (United States)

    Liu, Jiabin; Jin, Yongbin; Fang, Xiaoyang; Chen, Chenxu; Feng, Qiong; Liu, Xiaowei; Chen, Yuzeng; Suo, Tao; Zhao, Feng; Huang, Tianlin; Wang, Hongtao; Wang, Xi; Fang, Youtong; Wei, Yujie; Meng, Liang; Lu, Jian; Yang, Wei

    2016-10-01

    Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations.

  1. Dislocation confinement in the growth of Na flux GaN on metalorganic chemical vapor deposition-GaN

    International Nuclear Information System (INIS)

    Takeuchi, S.; Asazu, H.; Nakamura, Y.; Sakai, A.; Imanishi, M.; Imade, M.; Mori, Y.

    2015-01-01

    We have demonstrated a GaN growth technique in the Na flux method to confine c-, (a+c)-, and a-type dislocations around the interface between a Na flux GaN crystal and a GaN layer grown by metalorganic chemical vapor deposition (MOCVD) on a (0001) sapphire substrate. Transmission electron microscopy (TEM) clearly revealed detailed interface structures and dislocation behaviors that reduced the density of vertically aligned dislocations threading to the Na flux GaN surface. Submicron-scale voids were formed at the interface above the dislocations with a c component in MOCVD-GaN, while no such voids were formed above the a-type dislocations. The penetration of the dislocations with a c component into Na flux GaN was, in most cases, effectively blocked by the presence of the voids. Although some dislocations with a c component in the MOCVD-GaN penetrated into the Na flux GaN, their propagation direction changed laterally through the voids. On the other hand, the a-type dislocations propagated laterally and collectively near the interface, when these dislocations in the MOCVD-GaN penetrated into the Na flux GaN. These results indicated that the dislocation propagation behavior was highly sensitive to the type of dislocation, but all types of dislocations were confined to within several micrometers region of the Na flux GaN from the interface. The cause of void formation, the role of voids in controlling the dislocation behavior, and the mechanism of lateral and collective dislocation propagation are discussed on the basis of TEM results

  2. X-ray microbeam measurements of individual dislocation cell elastic strains in deformed single-crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Lyle E. [National Institute of Standards and Technology (NIST); Larson, Ben C [ORNL; Yang, Wenge [Carnegie Institution of Washington; Kassner, Michael E. [University of Southern California; Tischler, Jonathan Zachary [ORNL; Delos-Reyes, Michael A. [University of Southern California; Fields, Richard J. [National Institute of Standards and Technology (NIST); Liu, Wenjun [Argonne National Laboratory (ANL)

    2006-01-01

    The distribution of elastic strains (and thus stresses) at the sub-micrometer length scale within deformed metal single crystals has surprisingly broad implications for our understanding of important physical phenomena. These include the evolution of the complex dislocation structures that govern mechanical behavior within individual grains [1-4], the transport of dislocations through such structures [5-7], changes in mechanical properties that occur during reverse loading [8-10] (e.g. sheet metal forming), and the analyses of diffraction line profiles for microstructural studies of these phenomena [11-17]. We present the first direct, spatially-resolved measurements of the elastic strains within individual dislocation cells in copper single crystals deformed in tension and compression along <100> axes. Broad distributions of elastic strains are found, with profound implications for theories of dislocation structure evolution [4,18], dislocation transport [5-7], and the extraction of dislocation parameters from X-ray line profiles [11-17,19].

  3. Damage buildup and edge dislocation mobility in equiatomic multicomponent alloys

    Energy Technology Data Exchange (ETDEWEB)

    Granberg, F., E-mail: fredric.granberg@helsinki.fi [Department of Physics, P.O. Box 43, FIN-00014 University of Helsinki (Finland); Djurabekova, F. [Department of Physics, P.O. Box 43, FIN-00014 University of Helsinki (Finland); Helsinki Institute of Physics, P.O. Box 43, FIN-00014 University of Helsinki (Finland); Levo, E.; Nordlund, K. [Department of Physics, P.O. Box 43, FIN-00014 University of Helsinki (Finland)

    2017-02-15

    Highlights: • We studied the damage buildup in equiatomic multicomponent alloys by MD simulations. • Edge dislocation mobility was lower in the studied alloys compared to elemental Ni. • Damage buildup in alloys saturated at lower levels than in elemental Ni. • Initial damage buildup is faster in alloys compared to elemental Ni. - Abstract: A new class of single phase metal alloys of equal atomic concentrations has shown very promising mechanical properties and good corrosion resistance. Moreover, a significant reduction in damage accumulation during prolonged irradiation has also been observed in these equiatomic multicomponent alloys. A comparison of elemental Ni with the two component NiFe- and the three component NiCoCr-alloy showed a substantial reduction in damage in both alloys, and an even larger difference was seen if only larger clusters were considered. One of the factors limiting the damage build-up in the alloys compared to the elemental material was seen to be dislocation mobility (Granberg et al., 2016). In this Article, we focus on a more thorough investigation of the mobility of edge dislocations in different cases of the Ni-, NiFe- and NiCoCr-samples. We find that even though the saturated amount of defects in the alloys is lower than in elemental Ni, the defect buildup in the early stages is faster in the alloys. We also find that the dislocation mobility in NiFe is lower than in Ni, at low stresses, and that the onset stress in NiFe is higher than in Ni. The same phenomenon was seen in comparison between NiFe and NiCoCr, since the three component alloy had lower dislocation mobility and higher onset stress. The dislocation velocity in elemental Ni plateaued out just under the forbidden velocity, whereas the alloys showed a more complex behaviour.

  4. Femoral neuropathy due to patellar dislocation in a theatrical and jazz dancer: a case report.

    Science.gov (United States)

    Shin, Chris S; Davis, Brian A

    2005-06-01

    This case report describes a teenage female, high-level modern dancer who suffered multiple left patellar dislocations. Her history is atypical in that after her fifth dislocation, her recovery was hindered secondary to persistent weakness and atrophy of her quadriceps out of proportion to disuse alone. Electrodiagnostic studies and magnetic resonance imaging showed evidence of a subacute femoral neuropathy correlating chronologically with her most recent patellar dislocation. This case suggests that further diagnostic study may be warranted in patients with persistent quadriceps weakness or atrophy after a patellar dislocation, because this may suggest the presence of a femoral neuropathy. This is important because the strength training goals and precautions differ in disuse atrophy and a neuropathy. We believe this is the first reported case of a femoral neuropathy associated with the mechanism of a patellar dislocation.

  5. Unusual inferior dislocation of shoulder: reduction by two-step maneuver: a case report

    Directory of Open Access Journals (Sweden)

    Patro Dilip K

    2009-11-01

    Full Text Available Abstract Dislocation of the shoulder is the commonest of all large joint dislocations. Inferior dislocation constitutes 0.5% of all shoulder dislocations. It characteristically presents with overhead abduction of the arm, the humerus being parallel to the spine of scapula. We present an unusual case of recurrent luxatio erecta in which the arm transformed later into an adducted position resembling the more common anterior shoulder dislocation. Such a case has not been described before in English literature. Closed reduction by the two-step maneuver was successful with a single attempt. MRI revealed posterior labral tear and a Hill-Sachs variant lesion on the superolateral aspect of humeral head. Immobilisation in a chest-arm bandage followed by physiotherapy yielded excellent results. The case is first of its kind; the unusual mechanism, unique radiological findings and alternate method of treatment are discussed.

  6. Dislocation analysis of die-cast Mg-Al-Ca alloy after creep deformation

    International Nuclear Information System (INIS)

    Terada, Yoshihiro; Itoh, Daigo; Sato, Tatsuo

    2009-01-01

    Tensile creep tests were combined with detailed transmission electron microscopy in order to characterize the dislocation movements during creep and to explain the creep properties of the Mg-Al-Ca AX52 die-cast alloy at 473 K and stresses from 15 to 70 MPa. TEM observations indicate that dislocations are generated within the primary α-Mg grain in the die-casting process, which consist of both the basal and non-basal segments. The basal segments of dislocations are able to bow out and glide on the basal planes under the influence of a stress, and the jogs follow the basal segments with the help of climb during creep. The creep mechanism for the alloy is deduced as dislocation climb due to the formation of sub-boundaries during creep, while the easy glide of the basal segments of dislocations is controlling the creep rates immediately after the stress application of creep tests.

  7. Determination of dislocation densities in InN

    Energy Technology Data Exchange (ETDEWEB)

    Ardali, Sukru; Tiras, Engin [Department of Physics, Faculty of Science, Anadolu University, Yunus Emre Campus, Eskisehir 26470 (Turkey); Gunes, Mustafa; Balkan, Naci [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Ajagunna, Adebowale Olufunso; Iliopoulos, Eleftherios; Georgakilas, Alexandros [Microelectronics Research Group, IESL, FORTH and Physics Department, University of Crete, P.O. Box 1385, 71110 Heraklion-Crete (Greece)

    2012-03-15

    The magneto-transport measurements, carried out at magnetic fields up to 11 T and in the temperature range between 1.8 K and 300 K, are used to investigate the scattering mechanisms in GaN/InN/AlN double heterojunctions. Theoretical modeling is based on a variational approach to solving Boltzmann transport equation. It is found that dislocation scattering is the dominant scattering mechanisms at low temperatures because of the large lattice mismatch with the substrate and hence the high density of dislocations in these material systems. Nevertheless, InN epilayers are characterized by a high background carrier density, probably associated with unwanted impurities. Therefore, we also included in our calculations the ionized impurity scattering. However, the effect of ionized impurity scattering as well as the acoustic phonon scattering, remote- background-ionized impurity scattering, and interface roughness scattering on electron mobility are much smaller than that of dislocation scattering. The dislocation densities, in samples with InN thicknesses of 0.4, 0.6 and 0.8 {mu}m, are then determined from the best fit to the experimental data for the low-temperature transport mobility (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Plastic deformation of tubular crystals by dislocation glide.

    Science.gov (United States)

    Beller, Daniel A; Nelson, David R

    2016-09-01

    Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.

  9. A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films

    International Nuclear Information System (INIS)

    Miller, Ronald E.; Shilkrot, L.E.; Curtin, William A.

    2004-01-01

    The phenomenon of 2D nanoindentation of circular 'Brinell' indenter into a single crystal metal thin film bonded to a rigid substrate is investigated. The simulation method is the coupled atomistics and discrete dislocation (CADD) model recently developed by the authors. The CADD model couples a continuum region containing any number of discrete dislocations to an atomistic region, and permits accurate, automatic detection and passing of dislocations between the atomistic and continuum regions. The CADD model allows for a detailed study of nanoindentation to large penetration depths (up to 60 A here) using only a small region of atoms just underneath the indenter where dislocation nucleation, cross-slip, and annihilation occur. Indentation of a model hexagonal aluminum crystal shows: (i) the onset of homogeneous dislocation nucleation at points away from the points of maximum resolved shear stress; (ii) size-dependence of the material hardness, (iii) the role of dislocation dissociation on deformation; (iv) reverse plasticity, including nucleation of dislocations on unloading and annihilation; (v) permanent deformation, including surface uplift, after full unloading; (vi) the effects of film thickness on the load-displacement response; and (vii) the differences between displacement and force controlled loading. This application demonstrates the power of the CADD method in capturing both long-range dislocation plasticity and short-range atomistic phenomena. The use of CADD permits for a clear study of the physical and mechanical influence of both complex plastic flow and non-continuum atomistic-level processes on the macroscopic response of material under indentation loading

  10. Diffraction contrast STEM of dislocations: Imaging and simulations

    International Nuclear Information System (INIS)

    Phillips, P.J.; Brandes, M.C.; Mills, M.J.; De Graef, M.

    2011-01-01

    The application of scanning transmission electron microscopy (STEM) to crystalline defect analysis has been extended to dislocations. The present contribution highlights the use of STEM on two oppositely signed sets of near-screw dislocations in hcp α-Ti with 6 wt% Al in solid solution. In addition to common systematic row diffraction conditions, other configurations such as zone axis and 3g imaging are explored, and appear to be very useful not only for defect analysis, but for general defect observation. It is demonstrated that conventional TEM rules for diffraction contrast such as g.b and g.R are applicable in STEM. Experimental and computational micrographs of dislocations imaged in the aforementioned modes are presented. -- Highlights: → STEM defect analysis has been extended to include dislocations. → Systematic row, zone axis and 3g diffraction conditions are all found to be useful for general defect observations in STEM mode. → Conventional contrast visibility rules for diffraction contrast are found to remain valid for STEM observations. → Multi-beam dynamical scattering matrix simulations provide excellent agreement with experimental images.

  11. Dynamical mechanical analysis of photocrosslinked hyperbranched urethane acrylates

    Directory of Open Access Journals (Sweden)

    BRANKO DUNJIC

    2004-06-01

    Full Text Available A series of acrylate functionalized samples based on hyperbranched hydroxy-terminated polyesters with different molecular weights and different degrees of acrylation were synthesized. The obtained urethane acrylates were slightly yellow viscose liquids. Their composition was characterized by FTIR and 1H-NMR spectroscopy and their molecular weights were measured by GPC. All the synthesized samples were diluted with 25 wt.% 1,4-butanediol dimethacrylate (BDDM. The rheological properties of the uncured samples and the dynamic mechanical properties of the UV cured samples were examined. All the samples exhibit Newtonian behavior, which indicates the absence of physical entanglements in these polymers. The viscosity increases with increasing number of acrylic groups per molecule. The glass transition temperature of the UV cured samples increases with increasing the number of acrylic groups per molecule. The value of the storage modulus in the rubber-elastic plateau and the cross-link density increase with increasing number of acrylic groups per molecule. The formed networks are inhomogeneous and the residual unsaturation is the highest in the samples with the largest number of acrylic groups per molecule.

  12. Dynamic environmental control mechanisms for pneumatic foil constructions

    Science.gov (United States)

    Flor, Jan-Frederik; Wu, Yupeng; Beccarelli, Paolo; Chilton, John

    2017-11-01

    Membrane and foil structures have become over the last decades an attractive alternative to conventional materials and building systems with increasing implementation in different typologies and scale. The development of transparent, light, flexible and resistant materials like Ethylene Tetrafluoroethylene (ETFE) has triggered a rethinking of the building envelope in the building industry towards lightweight systems. ETFE foil cushions have proven to fulfil the design requirements in terms of structural efficiency and aesthetic values. But the strategies to satisfy increasing demands of energy efficiency and comfort conditions are still under development. The prediction and manipulation of the thermo-optical behaviour of ETFE foil cushion structures currently remain as one of the main challenges for designers and manufacturers. This paper reviews ongoing research regarding the control of the thermo-optical performance of ETFE cushion structures and highlights challenges and possible improvements. An overview of different dynamic and responsive environmental control mechanisms for multilayer foil constructions is provided and the state of the art in building application outlined by the discussion of case studies.

  13. Probalistic Finite Elements (PFEM) structural dynamics and fracture mechanics

    Science.gov (United States)

    Liu, Wing-Kam; Belytschko, Ted; Mani, A.; Besterfield, G.

    1989-01-01

    The purpose of this work is to develop computationally efficient methodologies for assessing the effects of randomness in loads, material properties, and other aspects of a problem by a finite element analysis. The resulting group of methods is called probabilistic finite elements (PFEM). The overall objective of this work is to develop methodologies whereby the lifetime of a component can be predicted, accounting for the variability in the material and geometry of the component, the loads, and other aspects of the environment; and the range of response expected in a particular scenario can be presented to the analyst in addition to the response itself. Emphasis has been placed on methods which are not statistical in character; that is, they do not involve Monte Carlo simulations. The reason for this choice of direction is that Monte Carlo simulations of complex nonlinear response require a tremendous amount of computation. The focus of efforts so far has been on nonlinear structural dynamics. However, in the continuation of this project, emphasis will be shifted to probabilistic fracture mechanics so that the effect of randomness in crack geometry and material properties can be studied interactively with the effect of random load and environment.

  14. Identifying mechanisms for superdiffusive dynamics in cell trajectories

    Science.gov (United States)

    Passucci, Giuseppe; Brasch, Megan; Henderson, James; Manning, M. Lisa

    Self-propelled particle (SPP) models have been used to explore features of active matter such as motility-induced phase separation, jamming, and flocking, and are often used to model biological cells. However, many cells exhibit super-diffusive trajectories, where displacements scale faster than t 1 / 2 in all directions, and these are not captured by traditional SPP models. We extract cell trajectories from image stacks of mouse fibroblast cells moving on 2D substrates and find super-diffusive mean-squared displacements in all directions across varying densities. Two SPP model modifications have been proposed to capture super-diffusive dynamics: Levy walks and heterogeneous motility parameters. In mouse fibroblast cells displacement probability distributions collapse when time is rescaled by a power greater than 1/2, which is consistent with Levy walks. We show that a simple SPP model with heterogeneous rotational noise can also generate a similar collapse. Furthermore, a close examination of statistics extracted directly from cell trajectories is consistent with a heterogeneous mobility SPP model and inconsistent with a Levy walk model. Our work demonstrates that a simple set of analyses can distinguish between mechanisms for anomalous diffusion in active matter.

  15. Breakaway frictions of dynamic O-rings in mechanical seals

    Science.gov (United States)

    Lai, Tom; Kay, Peter

    1993-05-01

    Breakaway friction of a dynamic O-ring affects the mechanical seal's response to large axial shaft movement and face wear. However, little data exist to help designers. Therefore, a test rig was developed to measure breakaway friction. The research quantitatively shows the effects of lubrication with silicone grease and a change of surface finish. By using the Taguchi statistical experimental design method, the significance of test parameters was evaluated with a minimum number of tests. It was found that fluid pressure, dwell time, and O-ring percentage squeeze affect O-ring breakaway friction more than the O-ring cross sectional diameter and axial sliding speed within the range of values tested. The authors showed that breakaway friction increased linearly with pressure. However, O-rings made of different materials had significantly different increase rates, even if they had nominally the same durometer hardness. Breakaway friction also increased with logarithm of dwell time. Again, the increase rate depended strongly on the specific O-ring material tested. These observations led the authors to believe that the typical approach of generalizing data based on generic polymer type and durometer was inappropriate.

  16. The 2017 Nonlinear Mechanics and Dynamics Research Institute.

    Energy Technology Data Exchange (ETDEWEB)

    Kuether, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Allensworth, Brooke Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peebles, Diane E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The 2017 Nonlinear Mechanics and Dynamics (NOMAD) Research Institute was successfully held from June 19 to July 28, 2017. NOMAD seeks to bring together participants with diverse tec hnical backgrounds to work in small teams to utilize an interactive approach to cultivate new ideas and approaches in engineering . NOMAD provides an opportunity for researchers - especially early career researchers - to develop lasting collaborations that go beyond what can be established from the limited interactions at their institutions or at annual conferences. A total of 17 students from around the world came to Albuquerque, New Mexico to participate in the six - week long program held at the University of New Mexico campus. The students collaborated on one of six research projects that were developed by various mentors from Sandia National Laboratories, academia, and other government laboratories. In addition to the research activities, the students atte nded weekly technical seminars, toured the National Museum of Nuclear Science & History, and socialized at various off - hour events including an Albuquerque Isotopes baseball game. At the end of the summer, the students gave a final technical presentation o n their research findings that was broadcast via Skype. Many of the research discoveries made at NOMAD are published as proceedings at t echnical conference s and have direct alignment with the critical mission work performed at Sandia.

  17. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks.

    Science.gov (United States)

    Shen, Lin; Yang, Weitao

    2018-03-13

    Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in a complex environment but also very time-consuming. The computational cost of QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive idea. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler [ Behler Int. J. Quantum Chem. 2015 , 115 , 1032 ; Behler Angew. Chem., Int. Ed. 2017 , 56 , 12828 ] was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of

  18. Theory of electron-phonon-dislon interacting system—toward a quantized theory of dislocations

    Science.gov (United States)

    Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; Andrejevic, Nina; Zhu, Yimei; Mahan, Gerald D.; Chen, Gang

    2018-02-01

    We provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a ‘dislon’. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron-dislocation and phonon-dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories are derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron-phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation’s long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials’ functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.

  19. Minimum energy path for the nucleation of misfit dislocations in Ge/Si(0 0 1) heteroepitaxy

    International Nuclear Information System (INIS)

    Trushin, O; Maras, E; Jónsson, H; Ala-Nissila, T; Stukowski, A; Granato, E; Ying, S C

    2016-01-01

    A possible mechanism for the formation of a 90° misfit dislocation at the Ge/Si(0 0 1) interface through homogeneous nucleation is identified from atomic scale calculations where a minimum energy path connecting the coherent epitaxial state and a final state with a 90° misfit dislocation is found using the nudged elastic band method. The initial path is generated using a repulsive bias activation procedure in a model system including 75 000 atoms. The energy along the path exhibits two maxima in the energy. The first maximum occurs as a 60° dislocation nucleates. The intermediate minimum corresponds to an extended 60° dislocation. The subsequent energy maximum occurs as a second 60° dislocation nucleates in a complementary, mirror glide plane, simultaneously starting from the surface and from the first 60° dislocation. The activation energy of the nucleation of the second dislocation is 30% lower than that of the first one showing that the formation of the second 60° dislocation is aided by the presence of the first one. The simulations represent a step towards unraveling the formation mechanism of 90° dislocations, an important issue in the design of growth procedures for strain released Ge overlayers on Si(1 0 0) surfaces, and more generally illustrate an approach that can be used to gain insight into the mechanism of complex nucleation paths of extended defects in solids. (paper)

  20. Carpal ligamentous laxity with bilateral perilunate dislocation in Marfan syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Pennes, D R; Braunstein, E M; Shirazi, K K

    1985-01-01

    A case of persistent bilateral perilunate dislocation unrelated to trauma in a patient with Marfan syndrome is discussed. This finding is believed to be a manifestation of the generalized ligamentous laxity occurring in this disorder. Radiographs of eight additional Marfan syndrome patients failed to demonstrate similar carpal instability. Because some carpal derangements are dynamic events, stress views or wrist fluoroscopy may be necessary to demonstrate unsuspected carpal instability in Marfan patients.

  1. Carpal ligamentous laxity with bilateral perilunate dislocation in Marfan syndrome

    International Nuclear Information System (INIS)

    Pennes, D.R.; Braunstein, E.M.; Shirazi, K.K.

    1985-01-01

    A case of persistent bilateral perilunate dislocation unrelated to trauma in a patient with Marfan syndrome is discussed. This finding is believed to be a manifestation of the generalized ligamentous laxity occurring in this disorder. Radiographs of eight additional Marfan syndrome patients failed to demonstrate similar carpal instability. Because some carpal derangements are dynamic events, stress views or wrist fluoroscopy may be necessary to demonstrate unsuspected carpal instability in Marfan patients. (orig.)

  2. Probing the limits of metal plasticity with molecular dynamics simulations

    Science.gov (United States)

    Zepeda-Ruiz, Luis A.; Stukowski, Alexander; Oppelstrup, Tomas; Bulatov, Vasily V.

    2017-10-01

    Ordinarily, the strength and plasticity properties of a metal are defined by dislocations--line defects in the crystal lattice whose motion results in material slippage along lattice planes. Dislocation dynamics models are usually used as mesoscale proxies for true atomistic dynamics, which are computationally expensive to perform routinely. However, atomistic simulations accurately capture every possible mechanism of material response, resolving every ``jiggle and wiggle'' of atomic motion, whereas dislocation dynamics models do not. Here we present fully dynamic atomistic simulations of bulk single-crystal plasticity in the body-centred-cubic metal tantalum. Our goal is to quantify the conditions under which the limits of dislocation-mediated plasticity are reached and to understand what happens to the metal beyond any such limit. In our simulations, the metal is compressed at ultrahigh strain rates along its [001] crystal axis under conditions of constant pressure, temperature and strain rate. To address the complexity of crystal plasticity processes on the length scales (85-340 nm) and timescales (1 ns-1μs) that we examine, we use recently developed methods of in situ computational microscopy to recast the enormous amount of transient trajectory data generated in our simulations into a form that can be analysed by a human. Our simulations predict that, on reaching certain limiting conditions of strain, dislocations alone can no longer relieve mechanical loads; instead, another mechanism, known as deformation twinning (the sudden re-orientation of the crystal lattice), takes over as the dominant mode of dynamic response. Below this limit, the metal assumes a strain-path-independent steady state of plastic flow in which the flow stress and the dislocation density remain constant as long as the conditions of straining thereafter remain unchanged. In this distinct state, tantalum flows like a viscous fluid while retaining its crystal lattice and remaining a strong

  3. Traumatic hip dislocation: early MRI findings

    International Nuclear Information System (INIS)

    Laorr, A.; Greenspan, A.; Anderson, M.W.; Moehring, H.D.; McKinley, T.

    1995-01-01

    Objective of this study was to present the spectrum of early magnetic resonance imaging (MRI) findings following traumatic dislocation of the femoral head, and to identify any associated injuries. Prospective MRI of both hips was performed on 18 patients within 5 weeks of a traumatic femoral head dislocation. The interval between the time of injury and the imaging studies ranged from 2 to 35 days. Posterior dislocation was present in 14 patients and anterior dislocation in 4 patients. In the majority of cases, we performed axial T1, coronal T1, and coronal T2 * (MPGR) sequences. MRI can effectively identify and quantify the muscle injury and joint effusion that invariably accompany traumatic hip dislocations. It is also useful for demonstrating trabecular bone contusion (trabecular injury) and iliofemoral ligament injury, which occur commonly with acute hip dislocation. (orig./VHE)

  4. Effects of dislocations on electron channeling

    International Nuclear Information System (INIS)

    George, Juby; Pathak, A P

    2009-01-01

    The phenomenon of electron channeling in a crystal affected by dislocations is considered. Earlier we had considered the quantum aspects of the positron channeling in a crystal bent by dislocations where the effects of longitudinal motion of the particle were also considered along with the transverse motion. In this paper, the effective potential for the electron case is found for the two regions of dislocation-affected channel. There is considerable shift in the potential minima due to dislocations. The frequency and the corresponding spectrum of the channeling radiation due to electrons channeling through the perfect channel and the two regions of dislocation-affected channels are calculated. The spectral distribution of radiation intensity changes with the parameters of dislocation. The continuity of wavefunctions and their derivatives is used at the three boundaries and the reflection and transmission coefficients are found using these boundary conditions in the same way as in the positron case.

  5. On dislocation inhomogeneity of electroerosion crater zone in molybdenum single crystals

    International Nuclear Information System (INIS)

    Larikov, L.N.; Dubovitskaya, N.V.; Zakharov, S.M.

    1979-01-01

    Methods of diffraction electron microscopy, X-ray analysis and microhardness measurements have been applied to study the inhomogeneity of dislocation structure of the electroerosion crater zone in molybdenum single crystals. Microhardness inhomogeneous distribution in this zone is established, conditioned by changes in dislocation structure as a result of the development of thermally activated processes of the plastic deformation and dynamic recovery. Dislocationless channels are detected in predeformed crystals

  6. Microstructure, quantification and control of dislocations in bast-type plant fibres

    DEFF Research Database (Denmark)

    Madsen, Bo; Lester, Catherine L.; Mortensen, Ulrich Andreas

    2016-01-01

    Bast-type plant fibres are increasingly being used for structural composite applications where high quality fibres with good mechanical properties are required. A central aspect for this application is the existence of dislocations in the cell wall of plant fibres, i.e. regions of misaligned...... cellulose microfibrils, which are believed to form weak points leading to reduced mechanical properties. In the present study, microstructural observations of dislocations are made using high-magnification scanning electron microscopy. An experimental protocol using polarized optical microscopy and image...... that this leads to a reduction in the content of dislocations. This is indicating that dislocations in the cell wall of plant fibres are changeable structures. Preliminary work is presented where plant fibres are exposed to physical treatments involving moisture and mechanical straining in order to change...

  7. Rare Inferior Shoulder Dislocation (Luxatio Erecta)

    OpenAIRE

    Cift, Hakan; Soylemez, Salih; Demiroglu, Murat; Ozkan, Korhan; Ozden, Vahit Emre; Ozkut, Afsar T.

    2015-01-01

    Although shoulder dislocations have been seen very frequently, inferior dislocation of shoulder constitutes only 0.5% of all shoulder dislocations. We share our 4 patients with luxatio erecta and present their last clinical control. 2 male and 2 female Caucasian patients were diagnosed as luxatio erecta. Patients’ ages were 78, 62, 65, and 76. All patients’ reduction was done by traction-abduction and contour traction maneuver in the operating room. The patients had no symptoms and no limitat...

  8. Dislocation density changes in nickel under creep

    International Nuclear Information System (INIS)

    Moiseeva, I.V.; Okrainets, P.N.; Pishchak, V.K.

    1984-01-01

    Variation in dislocation density was studied in the process of nickel creep p at t=900 deg c and σ=2 kgf/mm 2 . The dislocation structure was studied independently by the X-ray technique and transmission electron-microscopy. The e two methods show good conformity of results by comparison. It is concluded that independent determination of dislocation density under creep is possible us sing the X-ray technique

  9. Piles of dislocation loops in real crystals

    International Nuclear Information System (INIS)

    Dubinko, V.I.; Turkin, A.A.; Yanovskij, V.V.

    1985-01-01

    Behaviour of piles of dislocation loops in crystals was studied in order to define metal swelling under irradiation. Energy of pile interaction with point defects and intrinsic pile energy are studied in the framework of the linear elasticity theory. Preference of dislocation pile calculated in the paper decreases with radiation dose hence, material swelling rate also decreases. Creation of conditions, which assume an existence of piles of dislocation loops being stable under irradiation, is of particular interest

  10. Imaging findings of anterior hip dislocations

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Kyle [Mallinckrodt Institute of Radiology, Department of Radiology, St. Louis, MO (United States); Leslie, Michael [Yale School of Medicine, Department of Orthopedics and Rehabilitation, New Haven, CT (United States); Menn, Kirsten; Haims, Andrew [Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT (United States)

    2017-06-15

    Anterior hip dislocations are rare orthopedic emergencies resulting from high-energy trauma and have unique imaging characteristics on radiography, computed tomography (CT), and magnetic resonance imaging (MRI). Imaging findings on CT and MRI allow for the prompt recognition and classification of anterior hip dislocations, which guides patient management and reduces complications. The purpose of this article is to review imaging findings of anterior hip dislocations, specifically focusing on CT and MRI. (orig.)

  11. Structure of the Dislocation in Sapphire

    DEFF Research Database (Denmark)

    Bilde-Sørensen, Jørgen; Thölen, A. R.; Gooch, D. J.

    1976-01-01

    Experimental evidence of the existence of 01 0 dislocations in the {2 0} prism planes in sapphire has been obtained by transmission electron microscopy. By the weak-beam technique it has been shown that the 01 0 dislocations may dissociate into three partials. The partials all have a Burgers vector...... of ⅓ 01 0 and are separated by two identical faults. The distance between two partials is in the range 75-135 Å, corresponding to a fault energy of 320±60 mJ/m2. Perfect 01 0 dislocations have also been observed. These dislocations exhibited either one or two peaks when imaged in the (03 0) reflection...

  12. Dynamic mechanical properties of straight titanium alloy arch wires.

    Science.gov (United States)

    Kusy, R P; Wilson, T W

    1990-10-01

    Eight straight-wire materials were studied: an orthodontic titanium-molybdenum (Ti-Mo) product, TMA; three orthodontic nickel-titanium (Ni-Ti) products, Nitinol, Titanal, and Orthonol; three prototype alloys, a martensitic, an austenitic, and a biphasic alloy; and a hybrid shape-memory-effect product, Biometal. Each wire was prepared with a length-to-cross-sectional area of at least 3600 cm-1. With an Autovibron Model DDV-II-C used in the tensile mode, each sample was scanned from -120 to +200 degrees C at 2 degrees C/min. From the data base, plots of the log storage modulus, log tan delta, and percent change in length vs. temperature were generated. Results showed that the dynamic mechanical properties of the alloys within this TI system are quite different. The Ti-Mo alloy, TMA, was invariant with temperature, having a modulus of 7.30 x 10(11) dyne/cm2 (10.6 x 10(6) psi). The three cold-worked alloys--Nitinol, Titanal, and Orthonol--appeared to be similar, having a modulus of 5.74 x 10(11) dyne/cm2 (8.32 x 10(6) psi). The biphasic shape-memory alloy displayed a phase transformation near ambient temperature; whereas the hybrid shape-memory product, Biometal, underwent a 3-5% change in length during its transformation between 95 and 125 degrees C. Among the Ni-Ti wires tested, several different types of alloys were represented by this intermetallic material.

  13. Stability mechanisms of a thermophilic laccase probed by molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Niels J Christensen

    Full Text Available Laccases are highly stable, industrially important enzymes capable of oxidizing a large range of substrates. Causes for their stability are, as for other proteins, poorly understood. In this work, multiple-seed molecular dynamics (MD was applied to a Trametes versicolor laccase in response to variable ionic strengths, temperatures, and glycosylation status. Near-physiological conditions provided excellent agreement with the crystal structure (average RMSD ∼0.92 Å and residual agreement with experimental B-factors. The persistence of backbone hydrogen bonds was identified as a key descriptor of structural response to environment, whereas solvent-accessibility, radius of gyration, and fluctuations were only locally relevant. Backbone hydrogen bonds decreased systematically with temperature in all simulations (∼9 per 50 K, probing structural changes associated with enthalpy-entropy compensation. Approaching T opt (∼350 K from 300 K, this change correlated with a beginning "unzipping" of critical β-sheets. 0 M ionic strength triggered partial denucleation of the C-terminal (known experimentally to be sensitive at 400 K, suggesting a general salt stabilization effect. In contrast, F(- (but not Cl(- specifically impaired secondary structure by formation of strong hydrogen bonds with backbone NH, providing a mechanism for experimentally observed small anion destabilization, potentially remedied by site-directed mutagenesis at critical intrusion sites. N-glycosylation was found to support structural integrity by increasing persistent backbone hydrogen bonds by ∼4 across simulations, mainly via prevention of F(- intrusion. Hydrogen-bond loss in distinct loop regions and ends of critical β-sheets suggest potential strategies for laboratory optimization of these industrially important enzymes.

  14. Dynamics and mechanics of bed-load tracer particles

    Directory of Open Access Journals (Sweden)

    C. B. Phillips

    2014-12-01

    Full Text Available Understanding the mechanics of bed load at the flood scale is necessary to link hydrology to landscape evolution. Here we report on observations of the transport of coarse sediment tracer particles in a cobble-bedded alluvial river and a step-pool bedrock tributary, at the individual flood and multi-annual timescales. Tracer particle data for each survey are composed of measured displacement lengths for individual particles, and the number of tagged particles mobilized. For single floods we find that measured tracer particle displacement lengths are exponentially distributed; the number of mobile particles increases linearly with peak flood Shields stress, indicating partial bed load transport for all observed floods; and modal displacement distances scale linearly with excess shear velocity. These findings provide quantitative field support for a recently proposed modeling framework based on momentum conservation at the grain scale. Tracer displacement is weakly negatively correlated with particle size at the individual flood scale; however cumulative travel distance begins to show a stronger inverse relation to grain size when measured over many transport events. The observed spatial sorting of tracers approaches that of the river bed, and is consistent with size-selective deposition models and laboratory experiments. Tracer displacement data for the bedrock and alluvial channels collapse onto a single curve – despite more than an order of magnitude difference in channel slope – when variations of critical Shields stress and flow resistance between the two are accounted for. Results show how bed load dynamics may be predicted from a record of river stage, providing a direct link between climate and sediment transport.

  15. Precipitation Dynamics and Feedback mechanisms of the Arabian Desert

    Science.gov (United States)

    Burger, Roelof; Kucera, Paul; Piketh, Stuart; Axisa, Duncan; Chapman, Michael; Krauss, Terry; Ghulam, Ayman

    2010-05-01

    , radar and satellite data are used to explore these dynamics and the associated feedback mechanisms of precipitation over the Arabian desert.

  16. Dynamic zebrafish interactome reveals transcriptional mechanisms of dioxin toxicity.

    Directory of Open Access Journals (Sweden)

    Andrey Alexeyenko

    2010-05-01

    Full Text Available In order to generate hypotheses regarding the mechanisms by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin causes toxicity, we analyzed global gene expression changes in developing zebrafish embryos exposed to this potent toxicant in the context of a dynamic gene network. For this purpose, we also computationally inferred a zebrafish (Danio rerio interactome based on orthologs and interaction data from other eukaryotes.Using novel computational tools to analyze this interactome, we distinguished between dioxin-dependent and dioxin-independent interactions between proteins, and tracked the temporal propagation of dioxin-dependent transcriptional changes from a few genes that were altered initially, to large groups of biologically coherent genes at later times. The most notable processes altered at later developmental stages were calcium and iron metabolism, embryonic morphogenesis including neuronal and retinal development, a variety of mitochondria-related functions, and generalized stress response (not including induction of antioxidant genes. Within the interactome, many of these responses were connected to cytochrome P4501A (cyp1a as well as other genes that were dioxin-regulated one day after exposure. This suggests that cyp1a may play a key role initiating the toxic dysregulation of those processes, rather than serving simply as a passive marker of dioxin exposure, as suggested by earlier research.Thus, a powerful microarray experiment coupled with a flexible interactome and multi-pronged interactome tools (which are now made publicly available for microarray analysis and related work suggest the hypothesis that dioxin, best known in fish as a potent cardioteratogen, has many other targets. Many of these types of toxicity have been observed in mammalian species and are potentially caused by alterations to cyp1a.

  17. The influence of anisotropy on the core structure of Shockley partial dislocations within FCC materials

    Science.gov (United States)

    Szajewski, B. A.; Hunter, A.; Luscher, D. J.; Beyerlein, I. J.

    2018-01-01

    two disparate dislocation length scales which describe the core structure; (i) the equilibrium stacking fault width between two Shockley partial dislocations, R eq and (ii) the maximum slip gradient, χ, of each Shockley partial dislocation. We demonstrate excellent agreement between our own analytic predictions, numerical calculations, and R eq computed directly by both ab-initio and molecular statics methods found elsewhere within the literature. The results suggest that understanding of various plastic mechanisms, e.g., cross-slip and nucleation may be augmented with the inclusion of elastic anisotropy.

  18. Dislocation-limited electron transport in InSb grown on GaAs(0 0 1)

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T. [Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)]. E-mail: taku-s@jaist.ac.jp; Suzuki, T. [Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Tomiya, S. [Materials Analysis Laboratory, Sony Corporation, 4-16-1 Okata, Atugi, Kanagawa 243-0021 (Japan); Yamada, S. [Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2006-04-01

    We investigated dislocations and electrical properties in InSb thin films with various thickness grown on GaAs(0 0 1). It is found that both the threading dislocation density and the local donor concentration decrease in proportion to the inverse of the distance from the InSb/GaAs interface, which indicates that the former is the origin of the latter. This behavior is well explained by pair annihilation mechanism of the threading dislocations. The electron mobility is limited by ionized donor scattering, i.e. charged dislocation scattering.

  19. Luxación facetaria unilateral lumbosacra postraumática. [ Post-traumatic lumbosacral unilateral facet dislocation].

    Directory of Open Access Journals (Sweden)

    Manuel González Murillo

    2016-08-01

    Full Text Available In the literature have been reported around fifty cases of lumbosacral dislocations; treated most bilateral facet dislocations. We report the case of a female 42 year old with unilateral lumbosacral facet dislocation of one month duration after accident. Circumferential instrumented fusion L5-S1 with interbody cage and pedicle screws L5-S1 was performed.   The lumbosacral dislocation is a rare injury that occurs due to the combination of a high-energy mechanism predisposing anatomical factors. Recent publications advocate the surgical reduction and stabilization with instrumentation as standard treatment.

  20. Metal working and dislocation structures

    DEFF Research Database (Denmark)

    Hansen, Niels

    2007-01-01

    Microstructural observations are presented for different metals deformed from low to high strain by both traditional and new metal working processes. It is shown that deformation induced dislocation structures can be interpreted and analyzed within a common framework of grain subdivision on a finer...... and finer scale down to the nanometer dimension, which can be reached at ultrahigh strains. It is demonstrated that classical materials science and engineering principles apply from the largest to the smallest structural scale but also that new and unexpected structures and properties characterize metals...

  1. Effect of addition of organo clay on mechanical properties and dynamic-mechanical based TPV

    International Nuclear Information System (INIS)

    Honorato, Luciana R.; Silva, Adriana A.; Soares, Bluma G.; Soares, Ketly P.

    2011-01-01

    The effect of organophilic clay on the mechanical and dynamical-mechanical properties of thermoplastic elastomers based on polypropylene (PP) and nitrile rubber (NBR) was investigated. The addition of clay was performed from a master batch prepared by a solution intercalation of NBR inside the clay galleries. Since the PP/NBR blend is highly incompatible, PP functionalized with maleic anhydride (PP-g-MA) and carboxylated NBR (XNBR) were employed as compatibilizing system together with triethylene-tetramine (TETA) used as coupling agent. The addition of Clay inside the elastomeric phase of the TPV resulted in a significant decrease of the elongation at break without changes on the tensile strength. The presence of clay also promoted a slight increase of the storage modulus and the glass transition temperature. The small angle X ray scattering confirmed the high dispersion of clay inside the TPV. Analysis of light scattering small angle (SAXS) confirmed the high dispersion of clay in the matrix of the TPV. (author)

  2. Modified technique of the treatment for proximal tibiofibular joint dislocation

    Directory of Open Access Journals (Sweden)

    Gvozdenović Nemanja

    2017-01-01

    Full Text Available Introduction. Dislocation of the proximal tibiofibular joint (PTFJ is a rare injury. The diagnosis requires an accurate history of the mechanism and symptoms of the injury, and adequate clinical and radiographic evaluation of both knees. In the literature there is no larger series, only several cases of PTFJ dislocation treated by different methods have been published so far. The aim of the study was to present a modified technique for the treatment of the unstable PTFJ that results in faster recovery of the patient. Case report. A 24-year-old football player was injured at the beginning of training; when tackling the ball he felt a sharp pain in his right knee. He was immediately brought to the Emergency Center of Vojvodina and diagnosed with anterolateral dislocation of the PTFJ. Close reduction in general anesthesia was tried but we failed and then open reduction and internal fixation (ORIF were performed with a single three cortical screw. We preferred not to immobilise the knee after the procedure and immediately employed passive and active exercises in the knee, without bearing weight to the injured leg. After 6 weeks we removed the screw and gave full weight support to the leg and continued physical treatment. Conclusion. In case of acute PTFJ dislocation, the first method of choice is closed reduction in sedation or general anesthesia. If closed reduction fails, ORIF must be performed. ORIF without immobilization and early start of physical therapy lead to the rapid return to sports activities

  3. Dynamic mechanical assessment of muscle hyperalgesia in humans: The dynamic algometer

    Science.gov (United States)

    Finocchietti, Sara; Graven-Nielsen, Thomas; Arendt-Nielsen, Lars

    2015-01-01

    BACKGROUND: Musculoskeletal pain is often associated with a nonhomogeneous distribution of mechanical hyperalgesia. Consequently, new methods able to detect this distribution are needed. OBJECTIVE: To develop and test a new method for assessing muscle hyperalgesia with high temporal and spatial resolution that provides complementary information compared with information obtained by traditional static pressure algometry. METHODS: The dynamic pressure algometer was tested bilaterally on the tibialis anterior muscle in 15 healthy subjects and compared with static pressure algometry. The device consisted of a wheel that was rolled over the muscle tissue with a fixed velocity and different predefined forces. The pain threshold force was determined and pain intensity to a fixed-force stimulation was continuously rated on a visual analogue scale while the wheel was rolling over the muscle. The pressure pain sensitivity was evaluated before, during, and after muscle pain and hyperalgesia induced unilaterally by either injection of hypertonic saline (0.5 mL, 6%) into the tibialis anterior or eccentric exercise evoking delayed-onset muscle soreness (DOMS). RESULTS: The intraclass correlation coefficient was >0.88 for the dynamic thresholds; thus, the method was reliable. Compared with baseline, both techniques detected hyperalgesia at the saline injection site and during DOMS (Palgometer also detected the widespread, patchy distribution of sensitive loci during DOMS, which was difficult to evaluate using static pressure algometry. DISCUSSION AND CONCLUSION: The present study showed that dynamic pressure algometry is a reliable tool for evaluating muscle hyperalgesia (threshold and pain rating) with high temporal and spatial resolution. It can be applied as a simple clinical bed-side test and as a quantitative tool in pharmacological profiling studies. PMID:25664539

  4. Dislocations in single hemp fibres-investigations into the relationship of structural distortions and tensile properties at the cell wall level

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Eder, M.; Burgert, I.

    2007-01-01

    The relationship between dislocations and mechanical properties of single hemp fibres (Cannabis sativa L. var. Felina) was studied using a microtensile testing setup in a 2-fold approach. In a first investigation the percentage of dislocations was quantified using polarized light microscopy (PLM......) prior to microtensile testing of the fibres. In a second approach PLM was used to monitor the dislocations while straining single fibres. The first part of the study comprised 53 hemp fibres with up to 20% of their cell wall consisting of dislocations. For this data set the percentage of dislocations...

  5. Cyclic softening in annealed Zircaloy-2: Role of edge dislocation dipoles and vacancies

    Science.gov (United States)

    Sudhakar Rao, G.; Singh, S. R.; Krsjak, Vladimir; Singh, Vakil

    2018-04-01

    The mechanism of cyclic softening in annealed Zircaloy-2 at low strain amplitudes under strain controlled fatigue at room temperature is rationalized. The unusual softening due to continuous decrease in the phenomenological friction stress is found to be associated with decrease in the resistance against movement of dislocations because of the formation and easy glide of pure edge dislocation dipoles and consequent decrease in friction stress from reduction in the shear modulus. Positron annihilation spectroscopy data strongly support the increase in edge dislocation density containing jogs, from increased positron trapping and increase in annihilation lifetime.

  6. How mechanical context and feedback jointly determine the use of mechanical variables in length perception by dynamic touch

    NARCIS (Netherlands)

    Menger, Rudmer; Withagen, Rob

    Earlier studies have revealed that both mechanical context and feedback determine what mechanical invariant is used to perceive length by dynamic touch. In the present article, the authors examined how these two factors jointly constrain the informational variable that is relied upon. Participants

  7. How mechanical context and feedback jointly determine the use of mechanical variables in length perception by dynamic touch

    NARCIS (Netherlands)

    Menger, Rudmer; Withagen, Rob

    2009-01-01

    Earlier studies have revealed that both mechanical context and feedback determine what mechanical invariant is used to perceive length by dynamic touch. In the present article, the authors examined how these two factors jointly constrain the informational variable that is relied upon. Participants

  8. Dynamic mechanical analysis of compatibilizer effect on the mechanical properties of wood flour/high-density polyethylene composites

    Science.gov (United States)

    Mehdi Behzad; Medhi Tajvidi; Ghanbar Ehrahimi; Robert H. Falk

    2004-01-01

    In this study, effect of MAPE (maleic anhydride polyethylene) as the compatibilizer on the mechanical properties of wood-flour polyethylene composites has been investigated by using Dynamic Mechanical Analysis (DMA). Composites were made at 25% and 50% by weight fiber contents and 1% and 2% compatibilizer respectively. Controls were also made at the same fiber contents...

  9. Comparative analysis for low-mass and low-inertia dynamic balancing of mechanisms

    NARCIS (Netherlands)

    van der Wijk, V.; Demeulenaere, B.; Gosselin, C.M.; Herder, Justus Laurens

    2012-01-01

    Dynamic balance is an important feature of high speed mechanisms and robotics that need to minimize vibrations of the base. The main disadvantage of dynamic balancing, however, is that it is accompanied with a considerable increase in mass and inertia. Aiming at low-mass and low-inertia dynamic

  10. A screw-based dynamic balancing approach, applied to a 5-bar mechanism

    NARCIS (Netherlands)

    de Jong, Jan Johannes; van Dijk, Johannes; Herder, Justus Laurens; Lenarcic, Jadran; Merlet, Jean-Pierre

    2016-01-01

    Dynamic balancing aims to reduce or eliminate the shaking base reaction forces and moments of mechanisms, in order to minimize vibration and wear. The derivation of the dynamic balance conditions requires significant algebraic effort, even for simple mechanisms. In this study, a screw-based

  11. On a possible mechanism of the brain for responding to dynamical features extracted from input signals

    International Nuclear Information System (INIS)

    Liu Zengrong; Chen Guanrong

    2003-01-01

    Based on the general theory of nonlinear dynamical systems, a possible mechanism for responding to some dynamical features extracted from input signals in brain activities is described and discussed. This mechanism is first converted to a nonlinear dynamical configuration--a generalized synchronization of complex dynamical systems. Then, some general conditions for achieving such synchronizations are derived. It is shown that dynamical systems have potentials of producing different responses for different features extracted from various input signals, which may be used to describe brain activities. For illustration, some numerical examples are given with simulation figures

  12. A comparative study on dynamic mechanical performance of concrete and rock

    Directory of Open Access Journals (Sweden)

    Xia Zhengbing

    2015-10-01

    Full Text Available of underground cavities and field-leveling excavation. Dynamic mechanical performance of rocks has been gradually attached importance both in China and abroad. Concrete and rock are two kinds of the most frequently used engineering materials and also frequently used as experimental objects currently. To compare dynamic mechanical performance of these two materials, this study performed dynamic compression test with five different strain rates on concrete and rock using Split Hopkinson Pressure Bar (SHPB to obtain basic dynamic mechanical parameters of them and then summarized the relationship of dynamic compressive strength, peak strain and strain rate of two materials. Moreover, specific energy absorption is introduced to confirm dynamic damage mechanisms of concrete and rock materials. This work can not only help to improve working efficiency to the largest extent but also ensure the smooth development of engineering, providing rich theoretical guidance for development of related engineering in the future

  13. Damage buildup and edge dislocation mobility in equiatomic multicomponent alloys

    Science.gov (United States)

    Granberg, F.; Djurabekova, F.; Levo, E.; Nordlund, K.

    2017-02-01

    A new class of single phase metal alloys of equal atomic concentrations has shown very promising mechanical properties and good corrosion resistance. Moreover, a significant reduction in damage accumulation during prolonged irradiation has also been observed in these equiatomic multicomponent alloys. A comparison of elemental Ni with the two component NiFe- and the three component NiCoCr-alloy showed a substantial reduction in damage in both alloys, and an even larger difference was seen if only larger clusters were considered. One of the factors limiting the damage build-up in the alloys compared to the elemental material was seen to be dislocation mobility (Granberg et al., 2016). In this Article, we focus on a more thorough investigation of the mobility of edge dislocations in different cases of the Ni-, NiFe- and NiCoCr-samples. We find that even though the saturated amount of defects in the alloys is lower than in elemental Ni, the defect buildup in the early stages is faster in the alloys. We also find that the dislocation mobility in NiFe is lower than in Ni, at low stresses, and that the onset stress in NiFe is higher than in Ni. The same phenomenon was seen in comparison between NiFe and NiCoCr, since the three component alloy had lower dislocation mobility and higher onset stress. The dislocation velocity in elemental Ni plateaued out just under the forbidden velocity, whereas the alloys showed a more complex behaviour.

  14. Dislocation-free zone model of fracture comparison with experiments

    International Nuclear Information System (INIS)

    Ohr, S.M.; Chang, S.

    1982-01-01

    The dislocation-free zone (DFZ) model of fracture has been extended to study the relationship between the stress intensity factor, extent of plastic deformation, and crack tip geometry of an elastic-plastic crack as a function of applied stress. The results show that the stress intensity factor K decreases from the elastic value at first slowly, then goes rapidly to zero as the number of dislocations in the plastic zone increases. The crack with a zero stress intensity factor has its crack tip stress field completely relaxed by plastic deformation and hence is called a plastic crack. Between the elastic and plastic cracks, a wide range of elastic-plastic cracks having both a stress singularity and a plastic zone are possible. These elastic-plastic cracks with a DFZ are predicted if there is a critical stress intensity factor K/sub g/ required for the generation of dislocations at the crack tip. The expression for K/sub g/ is obtained from the crack tip dislocation nucleation model of Rice and Thomson. In most metals, the magnitude of K/sub g/ is less than the critical stress intensity factor for brittle fracture K/sub c/. The values of K are determined from electron microscope fracture experiments for various metals and they are found to be in good agreement with the K/sub g/ predicted from the model. It is concluded that for most ductile and semibrittle metals, the mechanism of dislocation generation is more important than the fracture surface energy in determining the stress intensity factor at the crack tip

  15. Palmar dislocation of scaphoid and lunate

    Directory of Open Access Journals (Sweden)

    Khalid Koulali Idrissi

    2011-11-01

    Full Text Available A palmar dislocation of scaphoid and lunate is uncommon. We have found only 19 reported cases in the literature. We reported a simultaneous, divergent dislocation. The closed reduction followed by percutaneous pinning has given a good result without avascular necrosis of any carpal bone.

  16. Interactions between Dislocations and Grain Boundaries

    NARCIS (Netherlands)

    Soer, Wouter Anthon

    2006-01-01

    Dislocations (line defects) and grain boundaries (planar defects) are two types of lattice defects that are crucial to the deformation behavior of metals. Permanent deformation of a crystalline material is microscopically associated with the nucleation and propagation of dislocations, and extensive

  17. Dislocations in materials with mixed covalent and metallic bonding

    International Nuclear Information System (INIS)

    Nguyen-Manh, D.; Cawkwell, M.J.; Groeger, R.; Mrovec, M.; Porizek, R.; Pettifor, D.G.; Vitek, V.

    2005-01-01

    Environment-dependent bond-order potentials have been developed for L1 0 TiAl, bcc Mo and fcc Ir. They comprise both the angular character of bonding and the screening effect of nearly free electrons. These potentials have been employed in atomistic studies of screw dislocations that revealed the non-planar character of their cores. It is argued that both covalent as well as metallic character of bonding govern these structures, which in turn control the mechanical behaviour

  18. Cellular dislocations patterns in monolike silicon: Influence of stress, time under stress and impurity doping

    Science.gov (United States)

    Oliveira, V. A.; Rocha, M.; Lantreibecq, A.; Tsoutsouva, M. G.; Tran-Thi, T. N.; Baruchel, J.; Camel, D.

    2018-05-01

    Besides the well-known local sub-grain boundaries (SGBs) defects, monolike Si ingots grown by Directional Solidification present distributed background cellular dislocation structures. In the present work, the influence of stress level, time under stress, and doping by O and Ge, on the formation of dislocation cells in monolike silicon, is analysed. This is achieved by performing a comparative study of the dislocation structures respectively obtained during crystallisation of pilot scale monolike ingots on Czochralski (CZ) and monolike seeds, during annealing of Float Zone (FZ), CZ, and 1 × 1020 at/cm3 Ge-doped CZ (GCZ) samples, and during 4-point bending of FZ and GCZ samples at 1300 °C under resolved stresses of 0.3, 0.7 and 1.9 MPa during 1-20 h. Synchrotron X-ray White-beam Topography and Rocking Curve Imaging (RCI) are applied to visualize the dislocation arrangements and to quantify the spatial distribution of the associated lattice distortions. Annealed samples and samples bent under 0.3 MPa present dislocation structures corresponding to transient creep stages where dislocations generated from surface defects are propagating and multiplying in the bulk. The addition of the hardening element Ge is found to block the propagation of dislocations from these surface sources during the annealing test, and to retard dislocation multiplication during bending under 0.3 MPa. On the opposite, cellular structures corresponding to the final stationary creep stage are obtained both in the non-molten seeds and grown part of monolike ingots and in samples bent under 0.7 and 1.9 MPa. A comparative discussion is made of the dynamics of formation of these final dislocation structures during deformation at high temperature and monolike growth.

  19. Dynamical symmetry breaking as an alternative for Higg's mechanics

    International Nuclear Information System (INIS)

    Shellard, R.C.

    1979-01-01

    The effective action of a theory where dynamical symmetry breaking occurs is expanded in terms of loops, producing a Ginzburg-Landau-like Lagrangian reproducing fenomenologically the Higg's potencial. (L.C.) [pt

  20. An investigation of fracture toughness and dynamic mechanical ...

    African Journals Online (AJOL)

    ATHARVA

    International Journal of Engineering, Science and Technology. Vol. 10, No. ..... Dynamic response of fly ash reinforced functionally graded rubber composite sandwiches - ... Handbook of Epoxy Resins, 1stEdition, McGraw-Hill: New York, USA.