WorldWideScience

Sample records for dynamic deformation processes

  1. Recrystallization kinetics of nanostructured copper processed by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Lin, Fengxiang; Zhang, Yubin; Pantleon, Wolfgang;

    2012-01-01

    The recrystallization kinetics of nanostructured copper samples processed by dynamic plastic deformation was investigated by electron backscatter diffraction. It was found that the evolution of the recrystallized volume fraction as a function of annealing time has a very low slope (n=0.37) when...

  2. Simulation of sub-barrier fusion process including dynamical deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hata, Kentaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-05-01

    Four reactions ({sup 40}Ca+{sup 40}Ca, {sup 58}Ni+{sup 58}Ni, {sup 64}Ni+{sup 64}Ni and {sup 74}Ge+{sup 74}Ge) were simulated as examples of spherical nuclei, {sup 40}Ca and {sup 58}Ni and dynamical deformation, {sup 64}Ni and {sup 74}Ge. The experimental excited functions of sub-barrier fusion reaction were reproduced with high accuracy without free parameters. The sub-barrier fusion process had supposed to pass one-dimensional fusion process estimated by the principle of least action on the potential surface with a freedom of nuclear deformation. (S.Y.)

  3. Analysis of dynamic deformation processes with adaptive KALMAN-filtering

    Science.gov (United States)

    Eichhorn, Andreas

    2007-05-01

    In this paper the approach of a full system analysis is shown quantifying a dynamic structural ("white-box"-) model for the calculation of thermal deformations of bar-shaped machine elements. The task was motivated from mechanical engineering searching new methods for the precise prediction and computational compensation of thermal influences in the heating and cooling phases of machine tools (i.e. robot arms, etc.). The quantification of thermal deformations under variable dynamic loads requires the modelling of the non-stationary spatial temperature distribution inside the object. Based upon FOURIERS law of heat flow the high-grade non-linear temperature gradient is represented by a system of partial differential equations within the framework of a dynamic Finite Element topology. It is shown that adaptive KALMAN-filtering is suitable to quantify relevant disturbance influences and to identify thermal parameters (i.e. thermal diffusivity) with a deviation of only 0,2%. As result an identified (and verified) parametric model for the realistic prediction respectively simulation of dynamic temperature processes is presented. Classifying the thermal bend as the main deformation quantity of bar-shaped machine tools, the temperature model is extended to a temperature deformation model. In lab tests thermal load steps are applied to an aluminum column. Independent control measurements show that the identified model can be used to predict the columns bend with a mean deviation (r.m.s.) smaller than 10 mgon. These results show that the deformation model is a precise predictor and suitable for realistic simulations of thermal deformations. Experiments with modified heat sources will be necessary to verify the model in further frequency spectra of dynamic thermal loads.

  4. New Algorithm Model for Processing Generalized Dynamic Nonlinear Data Derived from Deformation Monitoring Network

    Institute of Scientific and Technical Information of China (English)

    LIN Xiangguo; LIANG Yong

    2005-01-01

    The processing of nonlinear data was one of hot topics in surveying and mapping field in recent years.As a result, many linear methods and nonlinear methods have been developed.But the methods for processing generalized nonlinear surveying and mapping data, especially for different data types and including unknown parameters with random or nonrandom, are seldom noticed.A new algorithm model is presented in this paper for processing nonlinear dynamic multiple-period and multiple-accuracy data derived from deformation monitoring network.

  5. High purity ultrafine-grained nickel processed by dynamic plastic deformation: microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Farbaniec, Lukasz; Dirras, Guy [Universite Paris 13, Sorbonne Paris Cite LSPM-CNRS, 99, Avenue J. B. Clement, 93430 Villetaneuse (France); Abdul-Latif, Akrum [Laboratoire d' Ingenierie des Systemes Mecaniques et des Materiaux 3, Rue Fernand Hainaut, 93407 St. Ouen Cedex (France); Gubicza, Jeno [Department of Materials Physics, Eoetvoes Lorand University Budapest, P.O. Box 32, H-1518 (Hungary)

    2012-11-15

    Bulk ultrafine-grained samples are processed by dynamic plastic deformation at an average strain rate of 3.3 x 10{sup 2} s{sup -1} from bulk coarse-grained nickel with purity higher than 98.4 wt.%. The obtained microstructure is investigated by electron backscattering diffraction, transmission electron microscopy and X-ray line profile analysis. After dynamic deformation the microstructure evolves into submicron-size lamellar and subgrain structures. Evaluation of average grain size shows a heterogeneous microstructure along both the diameter and the thickness of the sample. X-ray line profile analysis reveals high dislocation density of about 13 {+-} 2 x 10{sup 14} m{sup -2} in the impacted material. The mechanical properties are investigated by means of uniaxial quasi-static compression tests conducted at room temperature. The stress-strain behavior of the impacted Ni depends on the location in the impacted disk and on the orientation of the compression axis relative to the impact direction. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Microstructure characterization of high-purity aluminum processed by dynamic severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Dirras, Guy; Chauveau, Thierry; Ramtani, Salah; Bui, Quang-Hien [LPMTM, CNRS, UPR 9001, Universite Paris 13, 99 avenue J. B. Clement, 93430 Villetaneuse (France); Abdul-Latif, Akrum [Laboratoire d' Ingenierie des Systemes Mecaniques et des Materiaux, 3 rue Fernand Hainaut, 93407 St Ouen Cedex (France)

    2010-10-15

    Fine-grained aluminum (700-1000 nm) was processed by dynamic severe plastic deformation of coarse-grained (3 mm) pure aluminum (99.999 wt.%). The resulting microstructure was characterized by transmission electron microscopy (TEM) and X-ray profile analyses. It is observed that the grain size determined by TEM departs from measurements made by X-ray profile analysis. In the latter case, the average crystallite size determined over the global crystallographic or on the deformation-induced texture components, namely {l_brace}123{r_brace} left angle 751 right angle, {l_brace}100{r_brace} left angle 011 right angle, and {l_brace}223{r_brace} left angle 154 right angle, yields similar values ({proportional_to}225 nm). By contrast, the dislocation density determined on these texture components is about two times higher than the one measured on the global texture. The difference might be related to the specificities of the induced crystallographic texture. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Dynamic Recrystallization: The Dynamic Deformation Regime

    Science.gov (United States)

    Murr, L. E.; Pizaña, C.

    2007-11-01

    Severe plastic deformation (PD), especially involving high strain rates (>103 s 1), occurs through solid-state flow, which is accommodated by dynamic recrystallization (DRX), either in a continuous or discontinuous mode. This flow can be localized in shear instability zones (or adiabatic shear bands (ASBs)) with dimensions smaller than 5 μ, or can include large volumes with flow zone dimensions exceeding centimeters. This article illustrates these microstructural features using optical and electron metallography to examine a host of dynamic deformation examples: shaped charge jet formation, high-velocity and hypervelocity impact crater formation, rod penetration into thick targets (which includes rod and target DRX flow and mixing), large projectile-induced target plug formation and failure, explosive welding, and friction-stir welding and processing. The DRX is shown to be a universal mechanism that accommodates solid-state flow in extreme (or severe) PD regimes.

  8. Nonlinear Deformable-body Dynamics

    CERN Document Server

    Luo, Albert C J

    2010-01-01

    "Nonlinear Deformable-body Dynamics" mainly consists in a mathematical treatise of approximate theories for thin deformable bodies, including cables, beams, rods, webs, membranes, plates, and shells. The intent of the book is to stimulate more research in the area of nonlinear deformable-body dynamics not only because of the unsolved theoretical puzzles it presents but also because of its wide spectrum of applications. For instance, the theories for soft webs and rod-reinforced soft structures can be applied to biomechanics for DNA and living tissues, and the nonlinear theory of deformable bodies, based on the Kirchhoff assumptions, is a special case discussed. This book can serve as a reference work for researchers and a textbook for senior and postgraduate students in physics, mathematics, engineering and biophysics. Dr. Albert C.J. Luo is a Professor of Mechanical Engineering at Southern Illinois University, Edwardsville, IL, USA. Professor Luo is an internationally recognized scientist in the field of non...

  9. Uncovering deformation processes from surface displacements

    Science.gov (United States)

    Stramondo, Salvatore; Trasatti, Elisa; Albano, Matteo; Moro, Marco; Chini, Marco; Bignami, Christian; Polcari, Marco; Saroli, Michele

    2016-12-01

    Today, satellite remote sensing has reached a key role in Earth Sciences. In particular, Synthetic Aperture Radar (SAR) sensors and SAR Interferometry (InSAR) techniques are widely used for the study of dynamic processes occurring inside our living planet. Over the past 3 decades, InSAR has been applied for mapping topography and deformation at the Earth's surface. These maps are widely used in tectonics, seismology, geomorphology, and volcanology, in order to investigate the kinematics and dynamics of crustal faulting, the causes of postseismic and interseismic displacements, the dynamics of gravity driven slope failures, and the deformation associated with subsurface movement of water, hydrocarbons or magmatic fluids.

  10. Processing, Dynamic Deformation and Fragmentation of Heterogeneous Materials (Aluminum-Tungsten Composites and Aluminum-Nickel Laminates)

    Science.gov (United States)

    Chiu, Po-Hsun

    Two types of heterogeneous reactive materials, Aluminum-Tungsten composites and Aluminum-Nickel laminates were investigated. The current interest in these materials is their ability to combine the high strength and energy output under critical condition of the mechanical deformation which may include their fragmentation. Mesoscale properties of reactive materials are very important for the generation of local hot spots to ignite reactions and generate critical size of debris suitable for fast oxidation kinetics. Samples with different mesostructures (e.g., coarse vs. fine W particles, bonded vs. non-bonded Al particles, W particles vs. W wires and concentric vs. corrugated Al-Ni laminates) were prepared by Cold Isostatic Pressing, Hot Isostatic Pressing and Swaging. Several dynamic tests were utilized including Split Hopkinson Pressure Bar, Drop Weight Test, Explosively Driven Fragmentation Test, and Thick-Walled Cylinder Method. A high speed camera was used to record images of the in situ behavior of materials under dynamic loading. Pre- and post-experiment analyses and characterization were done using Optical Microscopy, Scanning Electron Microscopy, X-ray Powder Diffraction, and Laser Diffraction. The numerical simulations were conducted to monitor the in situ dynamic behavior of materials and elucidate the mesoscale mechanisms of the plastic strain accommodation under high-strain, high-strain-rate conditions in investigated heterogeneous m aterials. Several interesting results should be specifically mentioned. They include observation that the fracture and dynamic properties of the Al-W composites are sensitive to porosity of samples, particles sizes of rigid inclusions (W particles or wires), and bonding strength between Al particles in the matrix. Soft Al particles were heavily deformed between the rigid W particles/wires during dynamic tests. Three plastic strain accommodation mechanisms are observed in Al-Ni laminates. They depend on the initial

  11. An extension of dynamic droplet deformation models to secondary atomization

    NARCIS (Netherlands)

    Bartz, F.O.; Schmehl, R.; Koch, R.; Bauer, H.J.

    2010-01-01

    A detailed model for secondary atomization of liquid droplets by aerodynamic forces is presented. As an empirical extension of dynamic droplet deformation models, it accounts for temporal variations of the relative velocity between droplet and gas phase during the deformation and breakup process and

  12. Dynamic deformation of Seguam Island, Alaska, 1992--2008, from multi-interferogram InSAR processing

    Science.gov (United States)

    Lee, Chang-Wook; Lu, Zhong; Won, Joong-Sun; Jung, Hyung-Sup; Dzurisin, Daniel

    2013-01-01

    We generated a time-series of ERS-1/2 and ENVISAT interferometric synthetic aperture radar (InSAR) images to study ground surface deformation at Seguam Island from 1992 to 2008. We used the small baseline subset (SBAS) technique to reduce artifacts associated with baseline uncertainties and atmospheric delay anomalies, and processed images from two adjacent tracks to validate our results. Seguam Island comprises the remnants of two late Quaternary calderas, one in the western caldera of the island and one in the eastern part of the island. The western caldera subsided at a constant rate of ~ 1.6 cm/yr throughout the study period, while the eastern caldera experienced alternating periods of subsidence and uplift: ~ 5 cm/year uplift during January 1993–October 1993 (stage 1), ~ 1.6 cm/year subsidence during October 1993–November 1998 (stage 2), ~ 2.0 cm/year uplift during November 1998–September 2000 (stage 3), ~ 1.4 cm/year subsidence during September 2000–November 2005 (stage 4), and ~ 0.8 cm/year uplift during November 2005– July 2007 (stage 5). Source modeling indicates a deflationary source less than 2 km below sea level (BSL) beneath the western caldera and two sources beneath the eastern caldera: an inflationary source 2.5–6.0 km BSL and a deflationary source less than 2 km BSL. We suggest that uplift of the eastern caldera is driven by episodic intrusions of basaltic magma into a poroelastic reservoir 2.5–6.0 km BSL beneath the caldera. Cooling and degassing of the reservoir between intrusions results in steady subsidence of the overlying surface. Although we found no evidence of magma intrusion beneath the western caldera during the study period, it is the site (Pyre Peak) of all historical eruptions on the island and therefore cooling and degassing of intrusions presumably contributes to subsidence there as well. Another likely subsidence mechanism in the western caldera is thermoelastic contraction of lava flows emplaced near Pyre Peak during

  13. Uncovering deformation processes from surface displacements

    Science.gov (United States)

    Stramondo, Salvatore

    2013-04-01

    The aim of this talk is to provide an overview about the most recent outcomes in Earth Sciences, describe the role of satellite remote sensing, together with GPS, ground measurement and further data, for geophysical parameter retrieval in well known case studies where the combined approach dealing with the use of two or more techniques/datasets have demonstrated their effectiveness. The Earth Sciences have today a wide availability of instruments and sensors able to provide scientists with an unprecedented capability to study the physical processes driving earthquakes, volcanic eruptions, landslides, and other dynamic Earth systems. Indeed measurements from satellites allow systematic observation of the Earth surface covering large areas, over a long time period and characterized by growing sample intervals. Interferometric Synthetic Aperture Radar (InSAR) technique has demonstrated its effectiveness to investigate processes responsible for crustal faulting stemming from the detection of surface deformation patterns. Indeed using satellite data along ascending and descending orbits, as well as different incident angles, it is possible in principle to retrieve the full 3D character of the ground motion. To such aim the use of GPS stations providing 3D displacement components is a reliable complementary instrument. Finally, offset tracking techniques and Multiple Aperture Interferometry (MAI) may provide a contribution to the analysis of horizontal and NS deformation vectors. The estimation of geophysical parameters using InSAR has been widely discussed in seismology and volcanology, and also applied to deformation associated with groundwater and other subsurface fluids. These applications often involve the solution of an inverse problem, which means the retrieval of optimal source parameters at depth for volcanoes and earthquakes, from the knowledge of surface deformation from InSAR. In recent years, InSAR measurements combined with traditional seismological and

  14. Analysis of Vertical-Horizontal Coupling Vibration Characteristics of Rolling Mill Rolls Based on Strip Dynamic Deformation Process

    Directory of Open Access Journals (Sweden)

    Dongxiao Hou

    2014-01-01

    Full Text Available Nonlinear dynamic rolling forces in the vertical and horizontal directions are, respectively, established, considering the impact of vertical and horizontal directions vibration of rolls. Then a vertical-horizontal coupling nonlinear vibration dynamic model of rolling mill rolls is proposed, based on the interactions between this dynamic rolling force and mill structure. The amplitude-frequency equations of the main resonance and inner resonance are carried out by using multiple-scale method. The characteristics of amplitude frequency under nonlinear stiffness, damping, and amplitude of the disturbance are obtained by adopting the actual parameters of 1780 rolling mills. Finally, the bifurcation behavior of the system is studied, and it is found that many dynamic behaviors such as period, period-3 motion, and chaos exist in rolling mill, and this behavior could be restrained effectively by choosing proper system parameters.

  15. Partial Dynamical Symmetry in Deformed Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    1996-07-01

    We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei. {copyright} {ital 1996 The American Physical Society.}

  16. Partial dynamical symmetry in deformed nuclei

    CERN Document Server

    Leviatan, A

    1996-01-01

    We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei.

  17. Dynamic Processes

    Science.gov (United States)

    Klingshirn, C.

    . Phys. Lett. 92:211105, 2008). For this point, recall Figs. 6.16 and 6.33. Since the polarisation amplitude is gone in any case after the recombination process, there is an upper limit for T 2 given by T 2 ≤ 2 T1. The factor of two comes from the fact that T 2 describes the decay of an amplitude and T 1 the decay of a population, which is proportional to the amplitude squared. Sometimes T 2 is subdivided in a term due to recombination described by T 1 and another called 'pure dephasing' called T 2 ∗ with the relation 1 / T 2 = 1 / 2 T 1 + 1 / T2 ∗. The quantity T 2 ∗ can considerably exceed 2 T 1. In the part on relaxation processes that is on processes contributing to T 3, we give also examples for the capture of excitons into bound, localized, or deep states. For more details on dynamics in semiconductors in general see for example, the (text-) books [Klingshirn, Semiconductor Optics, 3rd edn. (Springer, Berlin, 2006); Haug and Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th edn. (World Scientific, Singapore, 2004); Haug and Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer Series in Solid State Sciences vol. 123 (Springer, Berlin, 1996); J. Shah, Ultrafast Spectroscopy of Semiconductors and of Semiconductor Nanostructures, Springer Series in Solid State Sciences vol. 115 (Springer, Berlin, 1996); Schafer and Wegener, Semiconductor Optics and Transport Phenomena (Springer, Berlin, 2002)]. We present selected data for free, bound and localized excitons, biexcitons and electron-hole pairs in an EHP and examples for bulk materials, epilayers, quantum wells, nano rods and nano crystals with the restriction that - to the knowledge of the author - data are not available for all these systems, density ranges and temperatures. Therefore, we subdivide the topic below only according to the three time constants T 2, T 3 and T 1.

  18. Dynamic Risk Analysis of Permanent Deformation of Sea Embankment

    Institute of Scientific and Technical Information of China (English)

    高玉峰; 刘汉龙; 余湘娟

    2001-01-01

    For evaluation of the permanent deformation of a sea embankment under stochastic earthquake excitation, a robust dynamic risk analytical method is presented based on conventional permanent deformation analysis and stochastic seismic response analysis. This method can predict not only the mean value of maximum permanent deformation but also the reliability corresponding to different deformation control standards. The earthquake motion is modelled as a stationary Gaussian filtered white noise random process. The predicted average maximum horizontal permanent displacement is in agreement with the conventional result. Further studied are the reliability of permanent deformation due to stochastic wave details at one seismic motion level and the risk of permanent deformation due to stochastic seismic strength, i. e., the maximum acceleration in a long period. Therefore, it is possible to make the optimal design in terms of safety and economy according to the importance of a sea embankment. It is suggested that the improved stochastic seismic model that can catch the behavior of the non-stationary random process for sea embankments should be further studied in future.

  19. Dynamic tensile behaviour and deformational mechanism of C5191 phosphor bronze under high strain rates deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dao-chun [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Taizhou Vocational & Technical College, Taizhou 318000 (China); Chen, Ming-he, E-mail: meemhchen@nuaa.edu.cn [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Lei; Cheng, Hu [College of Mechanical Engineering, Taizhou University, Taizhou 318000 (China)

    2016-01-01

    High speed stamping process is used to high strength and high electrical conductivity phosphor bronze with extremely high strain rates more than 10{sup 3} s{sup −1}. This study on the dynamic tensile behaviour and deformational mechanism is to optimise the high speed stamping processes and improve geometrical precision in finished products. Thus, the tensile properties and deformation behaviour of C5191 phosphor bronze under quasi-static tensile condition at a strain rate of 0.001 s{sup −1} by electronic universal testing machine, and dynamic tensile condition at strain rate of 500, 1000 and 1500 s{sup −1} by split Hopkinson tensile bar (SHTB) apparatus were studied. The effects of strain rate and the deformation mechanism were investigated by means of SEM and TEM. The results showed that the yield strength and tensile strength of C5191 phosphor bronze under high strain rates deformation increased by 32.77% and 11.07% respectively compared with quasi-static condition, the strain hardening index increases from 0.075 to 0.251, and the strength of the material strain rates sensitivity index change from 0.005 to 0.022, which presented a clear sensitive to strain rates. Therefore, it is claimed that the dominant deformation mechanism was changed by the dislocation motion under different strain rates, and the ability of plastic deformation of C5191 phosphor bronze increased due to the number of movable dislocations increased significantly, started multi-line slip, and the soft effect of adiabatic temperature rise at the strain rate ranging from 500 to 1500 s{sup −1}.

  20. The Finite Deformation Dynamic Sphere Test Problem

    Energy Technology Data Exchange (ETDEWEB)

    Versino, Daniele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brock, Jerry Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    In this manuscript we describe test cases for the dynamic sphere problem in presence of finite deformations. The spherical shell in exam is made of a homogeneous, isotropic or transverse isotropic material and elastic and elastic-plastic material behaviors are considered. Twenty cases, (a) to (t), are thus defined combining material types and boundary conditions. The inner surface radius, the outer surface radius and the material's density are kept constant for all the considered test cases and their values are ri = 10mm, ro = 20mm and p = 1000Kg/m3 respectively.

  1. Dynamic control of knee axial deformities

    Directory of Open Access Journals (Sweden)

    E. E. Malyshev

    2013-01-01

    Full Text Available The authors have evaluated the clinical examination of the patients with axial malalignments in the knee by the original method and device which was named varovalgometer. The measurements were conducted by tension of the cord through the spina iliaca anterior superior and the middle of the lower pole of patella. The deviation of the center of the ankle estimated by metal ruler which was positioned perpendicular to the lower leg axis on the level of the ankle joint line. The results of comparison of our method and computer navigation in 53 patients during the TKA show no statistically significant varieties but they differ by average 5° of valgus in clinical examination in comparison with mechanical axis which was identified by computer navigation. The dynamic control of axial malalignment can be used in clinical practice for estimation of the results of treatment of pathology with axial deformities in the knee; for the control of reduction and secondary displacement of the fractures around the knee; for assessment of instability; in planning of correctional osteotomies and intraoperative control of deformity correction; for estimation of Q angle in subluxation and recurrent dislocation of patella; in planning of TKA; during the growth of child it allows to assess the progression of deformity.

  2. 2012 ROCK DEFORMATION: FEEDBACK PROCESSES IN ROCK DEFORMATION GORDON RESEARCH CONFERENCE, AUGUST 19-24, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Kelemen, Peter

    2012-08-24

    Topics covered include: Failure At High Confining Pressure; Fluid-assisted Slip, Earthquakes & Fracture; Reaction-driven Cracking; Fluid Transport, Deformation And Reaction; Localized Fluid Transport And Deformation; Earthquake Mechanisms; Subduction Zone Dynamics And Crustal Growth.

  3. Optical dynamic deformation measurements at translucent materials.

    Science.gov (United States)

    Philipp, Katrin; Koukourakis, Nektarios; Kuschmierz, Robert; Leithold, Christoph; Fischer, Andreas; Czarske, Jürgen

    2015-02-15

    Due to their high stiffness-to-weight ratio, glass fiber-reinforced polymers are an attractive material for rotors, e.g., in the aerospace industry. A fundamental understanding of the material behavior requires non-contact, in-situ dynamic deformation measurements. The high surface speeds and particularly the translucence of the material limit the usability of conventional optical measurement techniques. We demonstrate that the laser Doppler distance sensor provides a powerful and reliable tool for monitoring radial expansion at fast rotating translucent materials. We find that backscattering in material volume does not lead to secondary signals as surface scattering results in degradation of the measurement volume inside the translucent medium. This ensures that the acquired signal contains information of the rotor surface only, as long as the sample surface is rough enough. Dynamic deformation measurements of fast-rotating fiber-reinforced polymer composite rotors with surface speeds of more than 300 m/s underline the potential of the laser Doppler sensor.

  4. Analysis of drop deformation dynamics in turbulent flow

    Institute of Scientific and Technical Information of China (English)

    Stephanie Nachtigall; Daniel Zedel; Matthias Kraume

    2016-01-01

    Drop breakage and coalescence influence the particle formation in liquid–liquid dispersions. In order to reduce the influencing factors of the whole dispersion process, single drops where coalescence processes can be neglected were analyzed in this work. Drops passing the turbulent vicinity of a single stirrer blade were investi-gated by high-speed imaging. In order to gain a statistical y relevant amount of drops passing the area of interest and corresponding breakage events, at least 1600 droplets were considered for each parameter set of this work. A specially developed fully automatic image analysis based on Matlab® was used for the evaluation of the resulting high amount of image data. This al owed the elimination of the time-consuming manual analysis and further-more, al owed the objective evaluation of the drops' behavior. Different deformation parameters were consid-ered in order to describe the drop deformation dynamics properly. Regarding the ratio of both main particle axes (θaxes), which was therefore approximated through an el ipse, al owed the determination of very small de-viations from the spherical shape. The perimeter of the particle (θperi) was used for the description of highly de-formed shapes. In this work the results of a higher viscosity paraffin oil (ηd=127 mPa·s) and a low viscosity solvent (petroleum,ηd=1.7 mPa·s) are presented with and without the addition of SDS to the continuous water phase. All results show that the experimental y determined oscil ation but also deformation times underlie a wide spreading. Drop deformations significantly increased not only with increasing droplet viscosity, but also with decreasing interfacial tension. Highly deformed particles of one droplet species were more likely to break than more or less spherical particles. As droplet fragmentation results from a variety of different macro-scale de-formed particles, it is not assumed that a critical deformation value must be reached for the

  5. Characteristics of Multipath Effects in GPS Dynamic Deformation Monitoring

    Institute of Scientific and Technical Information of China (English)

    HUANG Shengxiang; JIN Xiangsheng; YANG Baocen

    2006-01-01

    The multipath has long been considered a major error source in GPS applications. The characteristics of the GPS signal multipath effects are analyzed, based on which an experiment that considers the characteristics of dynamic deformation monitoring has been carried out. The solution results of observation data in two successive days are processed by a method, which combines the wavelet filtering and the differential correction between two successive days. The research demonstrates that the multipath errors have stronger repeatability on successive days; after significantly mitigating the influence of multipath effects, the accuracy of three-dimensional positioning for GPS dynamic deformation monitoring can attain the mm level, an obvious accuracy improving particularly in vertical component. The characteristics of GPS signal multipath, the experimental scheme and the qualitative and quantitative analysis of results are detailed.

  6. Hot deformation behavior of delta-processed superalloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y., E-mail: wangyanhit@yahoo.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); School of Aeronautics and Astronautics, Central South University, Changsha 410083 (China); Shao, W.Z.; Zhen, L.; Zhang, B.Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2011-03-25

    Research highlights: {yields} The peak stress for hot deformation can be described by the Z parameter. {yields} The grain size of DRX was inversely proportional to the Z parameter. {yields} The dissolution of {delta} phases was greatly accelerated under hot deformation. {yields}The {delta} phase stimulated nucleation can serve as the main DRX mechanism. - Abstract: Flow stress behavior and microstructures during hot compression of delta-processed superalloy 718 at temperatures from 950 to 1100 deg. C with strain rates of 10{sup -3} to 1 s{sup -1} were investigated by optical microscopy (OM), electron backscatter diffraction (EBSD) technique and transmission electron microscopy (TEM). The relationship between the peak stress and the deformation conditions can be expressed by a hyperbolic-sine type equation. The activation energy for the delta-processed superalloy 718 is determined to be 467 kJ/mol. The change of the dominant deformation mechanisms leads to the decrease of stress exponent and the increase of activation energy with increasing temperature. The dynamically recrystallized grain size is inversely proportional to the Zener-Hollomon (Z) parameter. It is found that the dissolution rate of {delta} phases under hot deformation conditions is much faster than that under static conditions. Dislocation, vacancy and curvature play important roles in the dissolution of {delta} phases. The main nucleation mechanisms of dynamic recrystallization (DRX) for the delta-processed superalloy 718 include the bulging of original grain boundaries and the {delta} phase stimulated DRX nucleation, which is closely related to the dissolution behavior of {delta} phases under certain deformation conditions.

  7. Validation of Continuously Tagged MRI for the Measurement of Dynamic 3D Skeletal Muscle Tissue Deformation

    CERN Document Server

    Moerman, Kevin M; Simms, Ciaran K; Lamerichs, Rolf M; Stoker, Jaap; Nederveen, Aart J

    2016-01-01

    A SPAMM tagged MRI methodology is presented allowing continuous (3.3-3.6 Hz) sampling of 3D dynamic soft tissue deformation using non-segmented 3D acquisitions. The 3D deformation is reconstructed by the combination of 3 mutually orthogonal tagging directions, thus requiring only 3 repeated motion cycles. In addition a fully automatic post-processing framework is presented employing Gabor scale-space and filter-bank analysis for tag extrema segmentation and triangulated surface fitting aided by Gabor filter bank derived surface normals. Deformation is derived following tracking of tag surface triplet triangle intersections. The dynamic deformation measurements were validated using indentation tests (~20 mm deep at 12 mm/s) on a silicone gel soft tissue phantom containing contrasting markers which provide a reference measure of deformation. In addition, the techniques were evaluated in-vivo for dynamic skeletal muscle tissue deformation measurement during indentation of the biceps region of the upper arm in a ...

  8. Dynamics of Brownian motors in deformable medium

    Science.gov (United States)

    Woulaché, Rosalie Laure; Kepnang Pebeu, Fabrice Maxime; Kofané, Timoléon C.

    2016-10-01

    The directed transport in a one-dimensional overdamped, Brownian motor subjected to a travelling wave potential with variable shape and exposed to an external bias is studied numerically. We focus our attention on the class of Remoissenet-Peyrard parametrized on-site potentials with slight modification, whose shape can be varied as a function of a parameter s, recovering the sine-Gordon shape as the special case. We demonstrate that in the presence of the travelling wave potential the observed dynamical properties of the Brownian motor which crucially depends on the travelling wave speed, the intensity of the noise and the external load is significantly influenced also by the geometry of the system. In particular, we notice that systems with sharp wells and broad barriers favour the transport under the influence of an applied load. The efficiency of transport of Brownian motors in deformable systems remains equal to 1 (in the absence of an applied load) up to a critical value of the travelling wave speed greater than that of the pure sine-Gordon shape.

  9. Dynamic shear deformation in high purity Fe

    Energy Technology Data Exchange (ETDEWEB)

    Cerreta, Ellen K [Los Alamos National Laboratory; Bingert, John F [Los Alamos National Laboratory; Trujillo, Carl P [Los Alamos National Laboratory; Lopez, Mike F [Los Alamos National Laboratory; Gray, George T [Los Alamos National Laboratory

    2009-01-01

    The forced shear test specimen, first developed by Meyer et al. [Meyer L. et al., Critical Adiabatic Shear Strength of Low Alloyed Steel Under Compressive Loading, Metallurgical Applications of Shock Wave and High Strain Rate Phenomena (Marcel Decker, 1986), 657; Hartmann K. et al., Metallurgical Effects on Impact Loaded Materials, Shock Waves and High Strain rate Phenomena in Metals (Plenum, 1981), 325-337.], has been utilized in a number of studies. While the geometry of this specimen does not allow for the microstructure to exactly define the location of shear band formation and the overall mechanical response of a specimen is highly sensitive to the geometry utilized, the forced shear specimen is useful for characterizing the influence of parameters such as strain rate, temperature, strain, and load on the microstructural evolution within a shear band. Additionally, many studies have utilized this geometry to advance the understanding of shear band development. In this study, by varying the geometry, specifically the ratio of the inner hole to the outer hat diameter, the dynamic shear localization response of high purity Fe was examined. Post mortem characterization was performed to quantify the width of the localizations and examine the microstructural and textural evolution of shear deformation in a bcc metal. Increased instability in mechanical response is strongly linked with development of enhanced intergranular misorientations, high angle boundaries, and classical shear textures characterized through orientation distribution functions.

  10. Transient transport processes in deformable porous media

    Institute of Scientific and Technical Information of China (English)

    Cs. Mészáros; (A). Bálint

    2011-01-01

    The basic partial differential equations relevant for convection-diffusion and convection-diffusion-wave phenomena are presented and solved analytically by using the MAPLE symbolic computer algebra system.The possible general nonlinear character of the constitutive equation of the convection-discussion process is replaced by a direct posteriori stochastic refinement of its solution represented for Dirichlet-type boundary conditions.A thermodynamic analysis is performed for connecting the relaxation time constants and Jacobi-determinants of deformations at transient transport processes.Finally,a new procedure for general description of coupled transport processes on the basis of the formalism originally developed for convection-free phenomena is presented by matrix analysis methods in the Fourier space.

  11. Nucleation and thickening of shear bands in nano-scale twin/matrix lamellae of a Cu-Al alloy processed by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Hong, C.S.; Tao, N.R.; Huang, Xiaoxu;

    2010-01-01

    to be a two-stage process, namely a nucleation stage resulting in a narrow band composed of nano-sized (sub)grains intersecting the T/M lamellae, followed by a thickening stage of the narrow band into adjacent T/M lamellae regions. The nucleation stage occurred within a narrow region of an almost constant...... thickness (100–200 nm thick, referred to as “core” region) and consisted of three steps: (1) initiation of localized deformation (bending, necking, and detwinning) against the T/M lamellae, (2) evolution of a dislocation structure within the detwinned band, and (3) transformation of the detwinned...... dislocation structure (DDS) into a nano-sized (sub)grain structure (NGS). On the two sides of a core region, two transition layers (TRLs) exist where the T/M lamellae experienced much less shear strain. The interface boundaries separating the core region and the TRLs are characterized by very large shear...

  12. Molecular dynamics simulations of uniaxial deformation of thermoplastic polyimides.

    Science.gov (United States)

    Nazarychev, V M; Lyulin, A V; Larin, S V; Gurtovenko, A A; Kenny, J M; Lyulin, S V

    2016-05-07

    The results of atomistic molecular-dynamics simulations of mechanical properties of heterocyclic polymer subjected to uniaxial deformation are reported. A new amorphous thermoplastic polyimide R-BAPO with a repeat unit consisting of dianhydride 1,3-bis-(3',4,-dicarboxyphenoxy)diphenyl (dianhydride R) and diamine 4,4'-bis-(4''-aminophenoxy)diphenyloxide (diamine BAPO) was chosen for the simulations. Our primary goal was to establish the impact of various factors (sample preparation method, molecular mass, and cooling and deformation rates) on the elasticity modulus. In particular, we found that the elasticity modulus was only slightly affected by the degree of equilibration, the molecular mass and the size of the simulation box. This is most likely due to the fact that the main contribution to the elasticity modulus is from processes on scales smaller than the entanglement length. Essentially, our simulations reproduce the logarithmic dependence of the elasticity modulus on cooling and deformation rates, which is normally observed in experiments. With the use of the temperature dependence analysis of the elasticity modulus we determined the flow temperature of R-BAPO to be 580 K in line with the experimental data available. Furthermore, we found that the application of high external pressure to the polymer sample during uniaxial deformation can improve the mechanical properties of the polyimide. Overall, the results of our simulations clearly demonstrate that atomistic molecular-dynamics simulations represent a powerful and accurate tool for studying the mechanical properties of heterocyclic polymers and can therefore be useful for the virtual design of new materials, thereby supporting cost-effective synthesis and experimental research.

  13. Soft-impact dynamics of deformable bodies

    Science.gov (United States)

    Andreaus, Ugo; Chiaia, Bernardino; Placidi, Luca

    2013-03-01

    Systems constituted by impacting beams and rods of non-negligible mass are often encountered in many applications of engineering practice. The impact between two rigid bodies is an intrinsically indeterminate problem due to the arbitrariness of the velocities after the instantaneous impact and implicates an infinite value of the contact force. The arbitrariness of after-impact velocities is solved by releasing the impenetrability condition as an internal constraint of the bodies and by allowing for elastic deformations at contact during an impact of finite duration. In this paper, the latter goal is achieved by interposing a concentrate spring between a beam and a rod at their contact point, simulating the deformability of impacting bodies at the interaction zones. A reliable and convenient method for determining impact forces is also presented. An example of engineering interest is carried out: a flexible beam that impacts on an axially deformable strut. The solution of motion under a harmonic excitation of the beam built-in base is found in terms of transverse and axial displacements of the beam and rod, respectively, by superimposition of a finite number of modal contributions. Numerical investigations are performed in order to examine the influence of the rigidity of the contact spring and of the ratio between the first natural frequencies of the beam and the rod, respectively, on the system response, namely impact velocity, maximum displacement, spring stretching and contact force. Impact velocity diagrams, nonlinear resonance curves and phase portraits are presented to determine regions of periodic motion with impacts and the appearance of chaotic solutions, and parameter ranges where the functionality of the non-structural element is at risk.

  14. A dynamic stall model for airfoils with deformable trailing edges

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Dan Christian

    2007-01-01

    on an airfoil section undergoing arbitrary motion in heave, lead-lag, pitch, Trailing Edge (TE) flapping. In the linear region, the model reduces to the inviscid model of Gaunaa [4], which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed......The present work contains an extension of the Beddoes-Leishman (B-L) type dynamic stall model, as described by Hansen et al. [7]. In this work a Deformable Trailing Edge Geometry (DTEG) has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments...

  15. Large-deformation modal coordinates for nonrigid vehicle dynamics

    Science.gov (United States)

    Likins, P. W.; Fleischer, G. E.

    1972-01-01

    The derivation of minimum-dimension sets of discrete-coordinate and hybrid-coordinate equations of motion of a system consisting of an arbitrary number of hinge-connected rigid bodies assembled in tree topology is presented. These equations are useful for the simulation of dynamical systems that can be idealized as tree-like arrangements of substructures, with each substructure consisting of either a rigid body or a collection of elastically interconnected rigid bodies restricted to small relative rotations at each connection. Thus, some of the substructures represent elastic bodies subjected to small strains or local deformations, but possibly large gross deformations, in the hybrid formulation, distributed coordinates referred to herein as large-deformation modal coordinates, are used for the deformations of these substructures. The equations are in a form suitable for incorporation into one or more computer programs to be used as multipurpose tools in the simulation of spacecraft and other complex electromechanical systems.

  16. Two-step spacetime deformation-induced dynamical torsion

    Energy Technology Data Exchange (ETDEWEB)

    Ter-Kazarian, G, E-mail: gago-50@yahoo.com [Byurakan Astrophysical Observatory, Byurakan 378433, Aragatsotn District (Armenia)

    2011-03-07

    We extend the geometrical ideas of the spacetime deformations to study the physical foundation of the post-Riemannian geometry. To this aim, we construct the theory of two-step spacetime deformation as a guiding principle. We address the theory of teleparallel gravity and construct a consistent Einstein-Cartan (EC) theory with the dynamical torsion. We show that the equations of the standard EC theory, in which the equation defining torsion is the algebraic type and, in fact, no propagation of torsion is allowed, can be equivalently replaced by the set of modified EC equations in which the torsion, in general, is dynamical. The special physical constraint imposed upon the spacetime deformations yields the short-range propagating spin-spin interaction.

  17. Two-step spacetime deformation induced dynamical torsion

    CERN Document Server

    Ter-Kazarian, G

    2011-01-01

    We extend the geometrical ideas of the spacetime deformations to study the physical foundation of the post-Riemannian geometry. To this aim, we construct the theory of 'two-step spacetime deformation' as a guiding principle. We address the theory of teleparallel gravity and construct a consistent Einstein-Cartan (EC) theory with the 'dynamical torsion'. We show that the equations of the standard EC theory, in which the equation defining torsion is the algebraic type and, in fact, no propagation of torsion is allowed, can be equivalently replaced by the set of 'modified EC equations' in which the torsion, in general, is dynamical. The special physical constraint imposed upon the spacetime deformations yields the short-range propagating spin-spin interaction.

  18. Qubit dynamics in a q-deformed oscillators environment

    CERN Document Server

    L'Innocente, S; Mancini, S

    2009-01-01

    We study the dynamics of one and two qubits plunged in a q-deformed oscillators environment. Specifically we evaluate the decay of quantum coherence and entanglement in time when passing from bosonic to fermionic environments. Slowing down of decoherence in the fermionic case is found. The effect only manifests at finite temperature.

  19. A decomposition approach to distributed control of dynamic deformable mirrors

    NARCIS (Netherlands)

    Fraanje, P.R.; Massioni, P.; Verhaegen, M.

    2010-01-01

    Deformable mirrors with spatially invariant dynamic response can be considered as part of the class of decomposable systems. Such systems can be thought of as the interconnection of a number of identical subsystems, and they can be used to model certain classes of large scale systems. We show in thi

  20. Dynamical laser spike processing

    CERN Document Server

    Shastri, Bhavin J; Tait, Alexander N; Rodriguez, Alejandro W; Wu, Ben; Prucnal, Paul R

    2015-01-01

    Novel materials and devices in photonics have the potential to revolutionize optical information processing, beyond conventional binary-logic approaches. Laser systems offer a rich repertoire of useful dynamical behaviors, including the excitable dynamics also found in the time-resolved "spiking" of neurons. Spiking reconciles the expressiveness and efficiency of analog processing with the robustness and scalability of digital processing. We demonstrate that graphene-coupled laser systems offer a unified low-level spike optical processing paradigm that goes well beyond previously studied laser dynamics. We show that this platform can simultaneously exhibit logic-level restoration, cascadability and input-output isolation---fundamental challenges in optical information processing. We also implement low-level spike-processing tasks that are critical for higher level processing: temporal pattern detection and stable recurrent memory. We study these properties in the context of a fiber laser system, but the addit...

  1. Using Helium as a Tracer of Dynamic Rock Deformation

    Science.gov (United States)

    Gardner, W. P.; Bauer, S. J.

    2016-12-01

    We present models of noble gas release from rocks undergoing triaxial deformation and eventual macroscopic failure. Using a newly developed analytical capability, we have shown that accumulated helium in immobile porosity and mineral grains is released during deformation. We observe that increases in gas release are evident before macroscopic failure of the specimen, with a sharp increase in gas release during macroscopic failure. Here, we develop dynamic dual permeability models which simulate dynamic permeability generation and fracture-matrix surface area creation during deformation. These models are then used to interpret our new signal, and explore the sensitivity of the signal to rock deformation characteristics. The gas release signal is a combination of dynamic permeability creation and an increase in surface area for matrix diffusion as new microcracks intersect gas laden intra and inter crystalline pores. Gas release during dilation and rock failure is controlled by permeability increases. The sharp increase in gas release during failure is the result of permeability creation during fracturing. Fracture surface area creation is responsible for higher helium release rates after fracturing and controls the long term helium release signal. Our results indicate that radiogenic noble release can be used to monitor and trace mechanical deformation of rocks. This new signal can be used to provide information on the characteristics of deformation, including fracture permeability and surface area. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7445 A

  2. Dynamic Deformation of Thermosetting Polymers---All Atomistic Simulations

    Science.gov (United States)

    Tsige, Mesfin; Shenogina, Natalia; Mukhopadhyay, Sharmila; Patnaik, Soumya

    2013-03-01

    We are using all-atom molecular dynamics simulations to investigate the interconnection between structural and mechanical properties of highly cross-linked polymer networks. In this study we focused on the widely used resin-hardener system composed of DGEBA epoxy oligomers and aromatic amine hardener DETDA. Accurate cross-linked models were developed using the effective cross-linking procedure that enables to generate thermoset structures with realistic structural characteristics. These models were used to examine the elastic properties of thermosetting networks with various degrees of curing and length of resin strands both in glassy and rubbery states. In our recent study we employed static deformation approach to estimate potential energy contribution to the mechanical response. In the present work we are using dynamic deformation approach which takes into account both potential energy and thermal motions in the structure. Uniaxial, volumetric and shear dynamic deformation modes were used to obtain Young's, bulk, shear moduli and Poisson's ratio directly. We also calculated elastic constants using formulae of linear elasticity and analyzed the results obtained by direct deformation and interconversion methods. The elastic properties determined from these two approaches are in good agreement with each other and also with experimental data.

  3. Soap film dynamics and topological jumps under continuous deformation

    Science.gov (United States)

    Moffatt, Keith

    2015-11-01

    Consider the dynamics of a soap-film bounded by a flexible wire (or wires) which can be continuously and slowly deformed. At each instant the soap-film relaxes in quasi-static manner to a minimum-area (i.e. minimum-energy) state compatible with the boundary configuration. This can however pass through a critical configuration at which a topological jump is inevitable. We have studied an interesting example of this behaviour: the jump of a one-sided (Möbius strip) soap-film to a two-sided film as the boundary is unfolded and untwisted from the double cover of a circle. The nature of this jump will be demonstrated and explained. More generally, dynamical systems have a natural tendency to relax through dissipative processes to a minimum-energy state, subject to any relevant constraints. An example is provided by the relaxation of a magnetic field in a perfectly conducting but viscous fluid, subject to the constraint that the magnetic field lines are frozen in the fluid. One may infer the existence of magnetostatic equilibria (and analogous steady Euler flows) of arbitrary field-line topology. In general, discontinuities (current sheets) appear during this relaxation process, and this is where reconnection of field-lines (with associated change of topology) can occur. Just as for the soap film, slow change of boundary conditions can lead to critical conditions in which such topological jumps are inevitable. (Work in collaboration with Ray Goldstein, Adriana Pesci, Renzo Ricca and Gareth Alexander.) This work was supported by Engineering and Physical Sciences Research Council Grant EP/I036060/1.

  4. Aeroelastic Deformation and Buckling of Inflatable Wings under Dynamic Loads

    Science.gov (United States)

    Simpson, Andrew; Smith, Suzanne; Jacob, Jamey

    2006-11-01

    Inflatable wings have recently been used to control a vehicle in flight via wing warping. Internal pressure is required to maintain wing shape and externally mounted mechanical actuators are used to asynchronously deform the wing semi-spans for control. Since the rigidity of the inflatable wing varies as a function of inflation pressure, there is a need to relate the wing shape with aerodynamic loads. Via wind tunnel tests, span-wise deformations, twist and flutter have been observed under certain dynamic loading conditions. Photogrammetry techniques are used to measure the static aeroelastic deformation of the wings and videogrammetry is used to examine the dynamic shape changes (flutter). The resulting shapes can be used to determine corresponding aerodynamic characteristics. For particular inflation pressures, buckling can be induced at sufficiently high dynamic loads either through high dynamic pressure or large angle of attack. This results in a set of critical loading parameters. An inflatable winged vehicle would require operation within these limits. The focus of the presentation will be on defining and exploring the unsuitable operating conditions and the effects these conditions have on the operation of the wing.

  5. Deformation and Damage Accumulation in a Ceramic Composite under Dynamic Loading

    Science.gov (United States)

    Korobenkov, M. V.; Kulkov, S. N.; Naymark, O. B.; Khorechko, U. V.; Ruchina, A. V.

    2016-01-01

    Methods of computer modelling were used to investigate the processes of deformation and microdamage formation in ceramic composite materials under intense dynamic loading. It was shown that there was no damage caused by dynamic compression in the vicinity of phase borders of a nanostructured aluminum oxide matrix and reinforcing particles of tetragonal zirconium dioxide. Also, the local origination of microdamages occurs only in the zones close to micropores.

  6. Dynamic recrystallization of electroformed copper liners of shaped charges in high—strain—rate plastic deformation

    Institute of Scientific and Technical Information of China (English)

    WenhuaiTian; QiSun; 等

    2002-01-01

    The microstructures in the electroformed copper liners of shaped charges after high-strain-rate plastic deformation were in vestigated by transmission microscopy(TEM).Meanwhile,the orientation distribution of the grains in the recovered slug was examined by the electron backscattering Kikuchi pattern(EBSP) technique.EBSP analysis illustrated that unlike the as-formed electroformed copper liners of shaped charges the grain orientations in the recovered slug are distributed along randomly all the directions after undergoing heavily strain deformation at high-strain rate.Optical microscopy shows a typical recrystallization structure,and TEM examination reveals dislocation cells existed in the thin foil specimen.These results indicate that dynamic recovery and recrystallization occur during this plastic deformation process,and the associated deformation temperature is considered to be higher than 0.6 times the melting point of copper.

  7. Dynamic recrystallization of electroformed copper liners of shaped charges in high-strain-rate plastic deformation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The microstructures in the electroformed copper liners of shaped charges after high-strain-rate plastic deformation were investigated by transmission electron microscopy (TEM). Meanwhile, the orientation distribution of the grains in the recovered slug was examined by the electron backscattering Kikuchi pattern (EBSP) technique. EBSP analysis illustrated that unlike the as-formed electroformed copper linersof shaped charges the grain orientations in the recovered slug are distributed along randomly all the directions after undergoing heavily strain deformation at high-strain rate. Optical microscopy shows a typical recrystallization structure, and TEM examination reveals dislocation cells existed in the thin foil specimen. These results indicate that dynamic recovery and recrystallization occur during this plastic deformation process, and the associated deformation temperature is considered to be higher than 0.6 times the melting point of copper.

  8. Detailing of deformation processes in polymeric crystals

    Science.gov (United States)

    Slutsker, A. I.; Vettegren', V. I.; Kulik, V. B.; Hilarov, V. L.; Polikarpov, Yu. I.; Karov, D. D.

    2015-11-01

    Structural changes in polymer crystals (polyethylene, polyimide, and others) have been studied using the X-ray diffraction and Raman spectroscopy methods under different influences: tensile loading along the chain molecule axis and heating from 90 to 350 K. An increase in the molecule axial length under loading and a decrease in the molecule axial length upon heating have been identified and measured using X-ray diffraction. A decrease in the skeletal vibration frequency during loading and heating has been identified and measured using Raman spectroscopy, which indicates an increase in the molecule contour length in both cases. A technique for determining the change in the polyethylene molecule contour length in the crystal from the measured change in the skeletal vibration frequency has been justified. The contributions of two components, namely, skeletal (carbon-carbon) bond stretching and the change (an increase during stretching and a decrease during heating) in the angle between skeletal bonds, to the longitudinal deformation of polyethylene crystals, have been quantitatively estimated. It has been shown that the negative thermal expansion (contraction) of the polymer crystal is caused by the dominant contribution of the decrease in the bond angle.

  9. Finite element modelling of manufacturing processes for plastic deformation

    Directory of Open Access Journals (Sweden)

    Fernando Mejía Umaña

    2010-04-01

    Full Text Available The object of the Mechanical and Electrical Engineering Departament's computational mechanics of solids section is to offer industry solutions to problems requiring deeper knowledge regarding the mechanincs of solids and how they can be numerically modelled. This article summarises the foundations of plastic deformation, together with the results obtained during the experimental phase and from modelling two applications of plastic deformation processes being studied as part of mechanical engineering students' undergraduate projects.

  10. Modeling of Dynamic Deformation of The Earth Crust: A Tool For Evaluation of Future Earthquakes Parameters

    Science.gov (United States)

    Ovcharenko, A.; Sokolov, V.; Loh, C.-H.; Wen, K.-L.

    The method for evaluation of seismic and geodynamic hazard, which is based on the models of dynamic deformation of the Earth' crust, is proposed. The 4D-model of deformation (x, y, z, t - geographic coordinates, depth, time) is constructed on the basis the geophysical data: Global Positioning System (GPS) network, Persistent Sea Water Level (PSWL) monitoring and seismic catalogues. It is possible to utilize also other indirect geophysical data that reflect the dynamic process of the Earth' crust deformation. The process of deformation is considered in the form of interaction of slow-propagating waves of deformation, the moving velocities of which vary from 0.05 per year up to 300 km per year, and the effective widths of which are about sev- eral tens of kilometers. The main goal of the modeling is to determine characteristics of these waves (fronts) of dynamic deformation on the basis of observed data. The possible seismic events (earthquakes), on the one hand, could be revealed by analysis of distribution of deformation inside the Earth' crust. The recent 1999 Chi-Chi, Tai- wan, earthquake (M=7.6) is used as an example. On the other hand, it is proposed to consider seismic events as the peculiar points of the field of dynamic deformation - the moments of interaction of four and more fronts of deformation. The 5D-model (ge- ographic coordinates, depth, time, magnitude), which describes the seismic process statistically, is used for evaluation of the earthquakes magnitude. The 4D/5D-models are applied jointly for compilation of theoretical seismic catalogue for the nearest tens and hundreds years (future and past) that, in turn, is used for purposes of seismic zona- tion and hazard assessment. The process and results of the modeling are described for the case of Taiwan region. When comparing the real and modeled seismic catalogues, it has been shown that the standard errors of determination of the earthquake param- eters do not exceed 5-10 km by coordinates, 0

  11. Deforming mechanism of non-mandrel drawing process of circular aluminium tube by simulation

    Institute of Scientific and Technical Information of China (English)

    QUAN Guo-zheng; ZHOU Jie; WANG Meng-han; QUAN Guo-hui; TONG Ying

    2006-01-01

    The aluminium tubes with high strength and smooth outer-surface can be produced by non-mandrel drawing process. It is an effective method to study forming mechanism of drawing process by simulation, based on which the relevant dies with reasonable dimensions can be designed to ensure tube precision. The dynamic model and elasto-plastic finite element model of the forming process were established based on FEM software Deform-3D, then the simulation was performed. The expressions about drawing load were deduced, and the influence of friction coefficient on drawing load was computed by the expressions and software respectively. Based on simulation results the deformation mechanism of drawing process without plug was expounded. According to flowing speed vector graph the law of material flowing was summarized, by which the deformation regions were partitioned.Furthermore, some potential problems of drawing process such as diameter shrinking, thickness varying were forecast and analyzed quantificationally.

  12. Local deformation and processing maps of Ti-24Al-17Nb-0.5Mo alloy

    Institute of Scientific and Technical Information of China (English)

    Yong WANG; Bin LU; Rui YANG; Xiaodong HAN; Ping REN

    2012-01-01

    The processing maps were used to identify the optimal forging parameters of Ti-24Al-17Nb-0.5Mo alloy by evaluating the flow data according to the DMM model.The actual local strain rate and strain distribution in the samples were obtained by finite element calculations.The local microstructures of the deformed samples were related to the local deformation parameters and correlated with the processing maps at 0.3,0.4,0.5 and 0.6 of logarithmic strain.Flow regimes predicted by DMM analysis were then correlated with the local microstructural observations.Five domains of efficient coefficient could be distinguished.Unstable regions were microstructurally related to shear band formation within the α2+B2 phase deformation field,and to flow localization at grain boundaries of B2 phase in the near B2 phase deformation field.Stable flow regimes were shown to be associated with dynamic globularization of the platelike α2 in the α2+B2 phase deformation zone,and with dynamic recrystallization of B2 in the near B2 phase deformation zone.

  13. Modelling the deformation process of flexible stamps for nanoimprint lithography

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard

    The present thesis is devoted to numerical modelling of the deformation process of flexible stamps for nanoimprint lithography (NIL). The purpose of those models is to be able to predict the deformation and stretch of the flexixble stamps in order to take that into account when designing the plan...... 2D silicon master used in the NIL process. Two different manufacturing processes are investigated; (i) Embossing of an electroplated nickel foil into a hydrogen silsesquioxane (HSQ) polymer resist on a double-curved surface, (ii) NIL of a flexible polytetrafluoroethylene (PTFE) stamps...... into a polymethyl methacrylate (PMMA) resist. Challenges comprise several non-linear phenomena. First of all geometrical non-linearities arising from the inherent large strains and deformations during the process are modelled. Then, the constitutive behaviors of the nickel foil and the PTFE polymer during...... deformation are addressed. This is achieved by a general elasto-plastic description for the nickel foil and a viscoelastic-viscoplastic model for the PTFE material, in which the material parameters are found. Last, the contact conditions between the deforming stamp and the injection moulding tool insert...

  14. Semantic modeling of the structural and process entities during plastic deformation of crystals and rocks

    Science.gov (United States)

    Babaie, Hassan; Davarpanah, Armita

    2016-04-01

    We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive

  15. Deformation processing of high-Tc superconducting oxides

    Science.gov (United States)

    Rajan, K.; German, R. M.; Knorr, D. B.; Maccrone, R. K.; Misiolek, W.; Wright, R. N.

    1989-04-01

    Plastic deformation and texture development in polycrystalline YBa2Cu3O7- δ has been studied to expedite the process development of high-critical-temperature (high-Tc) superconducting wires and tapes. It is anticipated that deformation texture will be a major processing consideration in terms of maximizing critical current density, assessing conductor-fabrication options in light of critical current density, and developing such mechanical properties as strength, toughness and thermal fatigue. The intrinsic texture development in YBa2Cu3O7- δ deformation processing should be highly beneficial, insofar as the c axes of the crystals tend to become oriented along the compression axis. This means that conducting tapes and wires formed by rolling, extrusion and drawing can develop textures with the c axis in the transverse or radial direction, thus maximizing the flow of current along the length of the conductor.

  16. Optical 3D shape measurement for dynamic process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    3D shape dynamic measurement is essential to the study of machine vision, hydromechanics, high-speed rotation, deformation of material, stress analysis, deformation in impact, explosion process and biomedicine. in recent years. In this paper,the results of our research, including the theoretical analysis, some feasible methods and relevant verifying experiment results, are compendiously reported. At present, these results have been used in our assembling instruments for 3D shape measurement of dynamic process.

  17. QuikForm: Intelligent deformation processing of structural alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, R.J.; Wellman, G.W.

    1994-09-01

    There currently exists a critical need for tools to enhance the industrial competitiveness and agility of US industries involved in deformation processing of structural alloys. In response to this need, Sandia National Laboratories has embarked upon the QuikForm Initiative. The goal of this program is the development of computer-based tools to facilitate the design of deformation processing operations. The authors are currently focusing their efforts on the definition/development of a comprehensive system for the design of sheet metal stamping operations. The overall structure of the proposed QuikForm system is presented, and the focus of their thrust in each technical area is discussed.

  18. Application of wavelet analysis to crustal deformation data processing

    Institute of Scientific and Technical Information of China (English)

    张燕; 吴云; 刘永启; 施顺英

    2004-01-01

    The time-frequency analysis and anomaly detection of wavelet transformation make the method irresistibly advantageous in non-stable signal processing. In the paper, the two characteristics are analyzed and demonstrated withsynthetic signal. By applying wavelet transformation to deformation data processing, we find that about 4 monthsbefore strong earthquakes, several deformation stations near the epicenter received at the same time the abnormalsignal with the same frequency and the period from several days to more than ten days. The GPS observation stations near the epicenter all received the abnormal signal whose period is from 3 months to half a year. These abnormal signals are possibly earthquake precursors.

  19. Study on Hot Deformation Behavior of 7085 Aluminum Alloy during Backward Extrusion Process

    Directory of Open Access Journals (Sweden)

    R. B. Mei

    2015-01-01

    Full Text Available Compression test was carried out and the true stress-strain curves were obtained from the hot compression of 7085 alloy. A numerical simulation on the deformation behavior of 7085 aluminum alloy during the backward extrusion was also performed by finite element method. The results show that dynamic recrystallization occurs in the hot compression of 7085 alloy and the peak stress reaches higher values as the strain rate increases and deformation temperature decreases. The backward extrusion processes include contact deformation, initial deformation, and steady deformation. Severe plastic deformation of shear and compression occurs when the metal flowed into the channel between fillet of punch and wall of die so that the grain size can be refined by backward extrusion. The deformation in the region of top of wall is too small to meet the mechanical properties of requirements and the metal usually needs to be trimmed. The experiments with the same parameters as simulation had been carried out and the experimental cup after extrusion has better quality.

  20. Modeling dynamic recrystallization of olivine aggregates deformed in simple shear

    Energy Technology Data Exchange (ETDEWEB)

    Wenk, H.-R. [Department of Geology and Geophysics, University of California, Berkeley (United States); Tome, C. N. [Materials, Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico (United States)

    1999-11-10

    Experiments by Zhang and Karato [1995] have shown that in simple shear dislocation creep of olivine at low strains, an asymmetric texture develops with a [100] maximum rotated away from the shear direction against the sense of shear. At large strain where recrystallization is pervasive, the texture pattern is symmetrical, and [100] is parallel to the shear direction. The deformation texture can be adequately modeled with a viscoplastic self-consistent polycrystal plasticity theory. This model can be expanded to include recrystallization, treating the process as a balance of boundary migration (growth of relatively underformed grains at the expense of highly deformed grains) and nucleation (strain-free nuclei replacing highly deformed grains). If nucleation dominates over growth, the model predicts a change from the asymmetric to the symmetric texture as recrystallization proceeds and stabilization in the ''easy slip'' orientation for the dominant (010)[100] slip system. This result is in accordance with the experiments and suggests that the most highly deformed orientation components dominate the recrystallization texture. The empirical model will be useful to simulate more adequately the development of anisotropy in the mantle where olivine is largely recrystallized. (c) 1999 American Geophysical Union.

  1. Dynamic measurement of deformation using Fourier transform digital holographic interferometry

    Science.gov (United States)

    Gao, Xinya; Wu, Sijin; Yang, Lianxiang

    2013-10-01

    Digital holographic interferometry (DHI) is a well-established optical technique for measurement of nano-scale deformations. It has become more and more important due to the rapid development of applications in aerospace engineering and biomedicine. Traditionally, phase shift technique is used to quantitatively measure the deformations in DHI. However, it cannot be applied in dynamic measurement. Fourier transform phase extraction method, which can determine the phase distribution from only a single hologram, becomes a promising method to extract transient phases in DHI. This paper introduces a digital holographic interferometric system based on 2D Fourier transform phase extraction method, with which deformations of objects can be measured quickly. In the optical setup, the object beam strikes a CCD via a lens and aperture, and the reference beam is projected on the CCD through a single-mode fiber. A small inclination angle between the diverging reference beam and optical axial is introduced in order to physically separate the Fourier components in frequency domain. Phase maps are then obtained by the utilization of Fourier transform and windowed inverse Fourier transform. The capability of the Fourier transform DHI is discussed by theoretical discussion as well as experiments.

  2. Deformation tests and failure process analysis of an anchorage structure

    Institute of Scientific and Technical Information of China (English)

    Zhao Tongbin; Yin Yanchun; Tan Yunliang; Song Yimin

    2015-01-01

    In order to study the failure process of an anchorage structure and the evolution law of the body’s defor-mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). The stress distribution of the anchorage interface was investigated using the particle flow numerical simulation method. The results indicate that there are three stages in the deformation and fail-ure process of an anchorage structure:elastic bonding stage, a de-bonding stage and a failure stage. The stress distribution in the interface controls the stability of the structure. In the elastic bonding stage, the shear stress peak point of the interface is close to the loading end, and the displacement field gradually develops into a ‘V’ shape. In the de-bonding stage, there is a shear stress plateau in the center of the anchorage section, and shear strain localization begins to form in the deformation field. In the failure stage, the bonding of the interface fails rapidly and the shear stress peak point moves to the anchorage free end. The anchorage structure moves integrally along the macro-crack. The de-bonding stage is a research focus in the deformation and failure process of an anchorage structure, and plays an important guiding role in roadway support design and prediction of the stability of the surrounding rock.

  3. Material deformation dynamics at ultrahigh pressures and strain rates

    Science.gov (United States)

    Remington, B. A.; Park, H. S.; Maddox, B. R.; May, M. J.; Pollaine, S. M.; Prisbrey, S. T.; Rudd, R. E.; Hawreliak, J. A.; Perry, T. S.; Comley, A. J.; Wark, J. S.; Meyers, M. A.

    2010-11-01

    Solid-state dynamics experiments at extreme pressures, up to 10 Mbar, and strain rates (1.e6 -1.e8 1/s) are being developed for the NIF laser. The experimental methods are being developed on the Omega laser facility. VISAR measurements establish the ramped, high-pressure conditions. Recovery experiments offer a look at the residual microstructure. Dynamic diffraction measurements allow phase, shear stress (strength), and possibly twin volume fraction and dislocation density to be inferred. Constitutive models for material strength at these conditions by comparing 2D simulations with experiments measuring the Rayleigh-Taylor instability evolution in solid-state samples of vanadium and tantalum. The material deformation likely falls into the phonon drag regime. We estimate of the (microscopic) phonon drag coefficient, by relating to the (macroscopic) effective lattice viscosity.

  4. Microstructure and annealing behavior of a modified 9Cr-1Mo steel after dynamic plastic deformation to different strains

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, N.R.;

    2015-01-01

    The microstructure, hardness and tensile properties of a modified 9Cr-1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level...... of strength can be achieved by DPD to a strain of 2.3, and that the microstructure at this strain contains a large fraction of high angle boundaries. The ductility of the DPD processed steel is however low. Considerable structural coarsening of the deformed microstructure without pronounced recrystallization...

  5. Numerical modeling of a large deformation thermoforming process

    Energy Technology Data Exchange (ETDEWEB)

    Schrank, M.G.

    1988-04-01

    A numerical solution, using finite element methods, is presented for the simulation of a blow-molding process used to form a thermoplastic polymer (polyethylene terephthalate). The constitutive relationship employed in the analysis is a modification of the creep power law, allowing both strain hardening and strain rate hardening of the material. Analytical results compare well with experimental data for both rate of deformation during the forming process and strain distribution in the final formed configuration. 15 figs.

  6. Process Fairness and Dynamic Consistency

    NARCIS (Netherlands)

    S.T. Trautmann (Stefan); P.P. Wakker (Peter)

    2010-01-01

    textabstractAbstract: When process fairness deviates from outcome fairness, dynamic inconsistencies can arise as in nonexpected utility. Resolute choice (Machina) can restore dynamic consistency under nonexpected utility without using Strotz's precommitment. It can similarly justify dynamically

  7. Integrated optical design for highly dynamic laser beam shaping with membrane deformable mirrors

    Science.gov (United States)

    Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter

    2017-02-01

    The utilization of membrane deformable mirrors has raised its importance in laser materials processing since they enable the generation of highly spatial and temporal dynamic intensity distributions for a wide field of applications. To take full advantage of these devices for beam shaping, the huge amount of degrees of freedom has to be considered and optimized already within the early stage of the optical design. Since the functionality of commercial available ray-tracing software has been mainly specialized on geometric dependencies and their optimization within constraints, the complex system characteristics of deformable mirrors cannot be sufficiently taken into account yet. The main reasons are the electromechanical interdependencies of electrostatic membrane deformable mirrors, namely saturation and mechanical clamping, that result in non-linear deformation. This motivates the development of an integrative design methodology. The functionality of the ray-tracing program ZEMAX is extended with a model of an electrostatic membrane mirror. This model is based on experimentally determined influence functions. Furthermore, software routines are derived and integrated that allow for the compilation of optimization criteria for the most relevant analytically describable beam shaping problems. In this way, internal optimization routines can be applied for computing the appropriate membrane deflection of the deformable mirror as well as for the parametrization of static optical components. The experimental verification of simulated intensity distributions demonstrates that the beam shaping properties can be predicted with a high degree of reliability and precision.

  8. Polymer deformation in Brownian ratchets: theory and molecular dynamics simulations.

    Science.gov (United States)

    Kenward, Martin; Slater, Gary W

    2008-11-01

    We examine polymers in the presence of an applied asymmetric sawtooth (ratchet) potential which is periodically switched on and off, using molecular dynamics (MD) simulations with an explicit Lennard-Jones solvent. We show that the distribution of the center of mass for a polymer in a ratchet is relatively wide for potential well depths U0 on the order of several kBT. The application of the ratchet potential also deforms the polymer chains. With increasing U0 the Flory exponent varies from that for a free three-dimensional (3D) chain, nu=35 (U0=0), to that corresponding to a 2D compressed (pancake-shaped) polymer with a value of nu=34 for moderate U0. This has the added effect of decreasing a polymer's diffusion coefficient from its 3D value D3D to that of a pancaked-shaped polymer moving parallel to its minor axis D2D. The result is that a polymer then has a time-dependent diffusion coefficient D(t) during the ratchet off time. We further show that this suggests a different method to operate a ratchet, where the off time of the ratchet, toff, is defined in terms of the relaxation time of the polymer, tauR. We also derive a modified version of the Bader ratchet model [Bader, Proc. Natl. Acad. Sci. U.S.A. 96, 13165 (1999)] which accounts for this deformation and we present a simple expression to describe the time dependent diffusion coefficient D(t). Using this model we then illustrate that polymer deformation can be used to modulate polymer migration in a ratchet potential.

  9. Dynamic tracking of a deformable tissue based on 3D-2D MR-US image registration

    Science.gov (United States)

    Marami, Bahram; Sirouspour, Shahin; Fenster, Aaron; Capson, David W.

    2014-03-01

    Real-time registration of pre-operative magnetic resonance (MR) or computed tomography (CT) images with intra-operative Ultrasound (US) images can be a valuable tool in image-guided therapies and interventions. This paper presents an automatic method for dynamically tracking the deformation of a soft tissue based on registering pre-operative three-dimensional (3D) MR images to intra-operative two-dimensional (2D) US images. The registration algorithm is based on concepts in state estimation where a dynamic finite element (FE)- based linear elastic deformation model correlates the imaging data in the spatial and temporal domains. A Kalman-like filtering process estimates the unknown deformation states of the soft tissue using the deformation model and a measure of error between the predicted and the observed intra-operative imaging data. The error is computed based on an intensity-based distance metric, namely, modality independent neighborhood descriptor (MIND), and no segmentation or feature extraction from images is required. The performance of the proposed method is evaluated by dynamically deforming 3D pre-operative MR images of a breast phantom tissue based on real-time 2D images obtained from an US probe. Experimental results on different registration scenarios showed that deformation tracking converges in a few iterations. The average target registration error on the plane of 2D US images for manually selected fiducial points was between 0.3 and 1.5 mm depending on the size of deformation.

  10. Pasta Elasticity: Molecular dynamics simulations of nuclear pasta deformations

    Science.gov (United States)

    Caplan, M. E.; Horowitz, C. J.; Berry, D. K.

    2015-04-01

    Nuclear pasta is expected in the inner crust of neutron stars at densities near the nuclear saturation density. In this work, the elastic properties of pasta are calculated from large scale molecular dynamics simulations by deforming the simulation volume. Our model uses a semi-classical two-nucleon potential that reproduces nuclear saturation. We report the shear modulus and breaking strain of a variety of pasta phases for different temperatures, densities, and proton fractions. The presence of pasta in neutron stars could have significant effects on crustal oscillations and could be inferred from observations of soft-gamma repeaters. Additionally, these elastic parameters will enable us to improve estimates of the maximum size and lifetime of ``mountains'' on the crust, which could efficiently radiate gravitational waves.

  11. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mathiazhagan, S., E-mail: smathi.research@gmail.com; Anup, S., E-mail: anupiist@gmail.com

    2016-08-19

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models. - Highlights: • The deformation behaviour of staggered nanocomposites is studied. • Stair-wise staggered model has high stiffness and strength, but low toughness. • Rapid crack growth in overlap region causes this low toughness. • Toughness could be enhanced by arresting interfacial crack in the overlap.

  12. Effects of oxidation on tensile deformation of iron nanowires: Insights from reactive molecular dynamics simulations

    Science.gov (United States)

    Aral, Gurcan; Wang, Yun-Jiang; Ogata, Shigenobu; van Duin, Adri C. T.

    2016-10-01

    The influence of oxidation on the mechanical properties of nanostructured metals is rarely explored and remains poorly understood. To address this knowledge gap, in this work, we systematically investigate the mechanical properties and changes in the metallic iron (Fe) nanowires (NWs) under various atmospheric conditions of ambient dry O2 and in a vacuum. More specifically, we focus on the effect of oxide shell layer thickness over Fe NW surfaces at room temperature. We use molecular dynamics (MD) simulations with the variable charge ReaxFF force field potential model that dynamically handles charge variation among atoms as well as breaking and forming of the chemical bonds associated with the oxidation reaction. The ReaxFF potential model allows us to study large length scale mechanical atomistic deformation processes under the tensile strain deformation process, coupled with quantum mechanically accurate descriptions of chemical reactions. To study the influence of an oxide layer, three oxide shell layer thicknesses of ˜4.81 Å, ˜5.33 Å, and ˜6.57 Å are formed on the pure Fe NW free surfaces. It is observed that the increase in the oxide layer thickness on the Fe NW surface reduces both the yield stress and the critical strain. We further note that the tensile mechanical deformation behaviors of Fe NWs are dependent on the presence of surface oxidation, which lowers the onset of plastic deformation. Our MD simulations show that twinning is of significant importance in the mechanical behavior of the pure and oxide-coated Fe NWs; however, twin nucleation occurs at a lower strain level when Fe NWs are coated with thicker oxide layers. The increase in the oxide shell layer thickness also reduces the external stress required to initiate plastic deformation.

  13. Hot Deformation Behavior and Processing Maps of 2099 Al-Li Alloy

    Science.gov (United States)

    Chen, Bin; Tian, Xiao-lin; Li, Xiao-ling; Lu, Chen

    2014-06-01

    Hot deformation behavior and processing maps of the 2099 Al-Li alloy are investigated by tensile test at the temperature range from 250 to 450 °C and the strain rate range from 0.001 to 5.0 s-1. The typical true stress-true strain curves show that the flow stress increases with increasing the strain rate and decreasing the deforming temperature. All curves exhibit rapid work hardening at an initial stage of strain followed by remarkable dynamic softening. Based on the flow stress behavior, the processing maps are calculated and analyzed according to the dynamic materials model (DMM). The processing maps exhibit an instability domain in the temperature and strain rate ranges: T = 250-260 °C and = 0.1-0.5 s-1. The maps also exhibit an optimum hot working condition in the stability domain that occurs in the temperature of 400 °C for a strain rate of 0.001 s-1 and having a maximum efficiency of 60%. The microstructural examinations exhibit the occurrence of dynamic recovery (DRV) during hot deformation of the 2099 alloy which is the dominant softening mechanism in the alloy. The fracture behavior changes from a brittle fracture to a ductile fracture as strain rate decreases and temperature increases.

  14. In Vivo Dynamic Deformation of Articular Cartilage in Intact Joints Loaded by Controlled Muscular Contractions

    OpenAIRE

    2016-01-01

    When synovial joints are loaded, the articular cartilage and the cells residing in it deform. Cartilage deformation has been related to structural tissue damage, and cell deformation has been associated with cell signalling and corresponding anabolic and catabolic responses. Despite the acknowledged importance of cartilage and cell deformation, there are no dynamic data on these measures from joints of live animals using muscular load application. Research in this area has typically been done...

  15. Dynamics of biomolecular processes

    Science.gov (United States)

    Behringer, Hans; Eichhorn, Ralf; Wallin, Stefan

    2013-05-01

    The last few years have seen enormous progress in the availability of computational resources, so that the size and complexity of physical systems that can be investigated numerically has increased substantially. The physical mechanisms behind the processes creating life, such as those in a living cell, are of foremost interest in biophysical research. A main challenge here is that complexity not only emerges from interactions of many macro-molecular compounds, but is already evident at the level of a single molecule. An exciting recent development in this context is, therefore, that detailed atomistic level characterization of large-scale dynamics of individual bio-macromolecules, such as proteins and DNA, is starting to become feasible in some cases. This has contributed to a better understanding of the molecular mechanisms of, e.g. protein folding and aggregation, as well as DNA dynamics. Nevertheless, simulations of the dynamical behaviour of complex multicomponent cellular processes at an all-atom level will remain beyond reach for the foreseeable future, and may not even be desirable. Ultimate understanding of many biological processes will require the development of methods targeting different time and length scales and, importantly, ways to bridge these in multiscale approaches. At the scientific programme Dynamics of biomolecular processes: from atomistic representations to coarse-grained models held between 27 February and 23 March 2012, and hosted by the Nordic Institute for Theoretical Physics, new modelling approaches and results for particular biological systems were presented and discussed. The programme was attended by around 30 scientists from the Nordic countries and elsewhere. It also included a PhD and postdoc 'winter school', where basic theoretical concepts and techniques of biomolecular modelling and simulations were presented. One to two decades ago, the biomolecular modelling field was dominated by two widely different and largely

  16. Equal channel angular deformation process and its neuro-simulation for fine-grained magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    LUO Peng(罗蓬); HU Qiao-dan(胡侨丹); WU Xiao-lin; XIA Ke-nong

    2004-01-01

    Fine-grained structure of as-cast magnesium AM60 alloy was obtained by means of equal channel angular deformation(ECAD) technique. Through analyzing the relationship between the load and the displacement under different working conditions, it is demonstrated that employment of back-pressure, multi-passages of deformation, and speed of deformation are the main factors representing ECAD working condition. As for ECAD process, a network composed of nonlinear neuro-element based on error back-propagation learning algorithm is launched to set up a processing mapping module for dynamic forecasting of load summit under different working conditions. The experimental results show that back-pressure, multi-passages and deforming speed have strong correlation with ECAD processing characteristics. On the metallographs of AM60 alloy after multi-passes ECAD, a morphology that inter-metallic compound Mg17 Al12 precipites on magnesium matrix without discrepancy, which evolves from coarse casting ingot microstructure, is observed. And the grains are refined significantly under accumulated severe shear strain.The study demonstrates feasibility of ECAD by using as-cast magnesium alloy directly, and launches an intelligent neuro-simulation module for quantitative analysis of its process.

  17. THE ROLE OF PORE PRESSURE IN DEFORMATION IN GEOLOGIC PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, T. N.; Houston, W. N.; Nur, A. M.

    1980-03-01

    A Penrose Conference entitled, "The Role of Pore Pressure in Deformation in Geologic Processes" was convened by the authors at San Diego, California between November 9 and 13, 1979. The conference was sponsored by the Geological Society of America. This report is a summary of the highlights of the issues discussed during the conference. In addition, this report also includes a topical reference list relating to the different subject areas relevant to pore pressure and deformation. The references were compiled from a list suggested by the participants and were available for consultation during the conference. Although the list is far from complete, it should prove to be a good starting point for one who is looking for key papers in the field.

  18. Numerical modelling of stresses and deformations in casting processes

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    1997-01-01

    Keywords: Stresses and deformations, casting, governing equations, thermal strain, control volume method......Keywords: Stresses and deformations, casting, governing equations, thermal strain, control volume method...

  19. Numerical modelling of stresses and deformations in casting processes

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    1997-01-01

    Keywords: Stresses and deformations, casting, governing equations, thermal strain, control volume method......Keywords: Stresses and deformations, casting, governing equations, thermal strain, control volume method...

  20. Fission dynamics within time-dependent Hartree-Fock: deformation-induced fission

    CERN Document Server

    Goddard, P M; Rios, A

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide $^{240}$Pu as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate non-adiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behaviour. Those beginning just beyond the ...

  1. In-situ studies of bulk deformation structures: Static properties under load and dynamics during deformation

    DEFF Research Database (Denmark)

    Jakobsen, Bo

    2006-01-01

    The main goal of the study presented in this thesis was to perform in-situ investigations on deformation structures in plastically deformed polycrystalline copper at low degrees of tensile deformation (metals. Anovel synchrotron...... grains in polycrystalline samples during tensile deformation. We have shown that the resulting 3D reciprocal space maps from tensile deformed copper comprise a pronounced structure, consisting of bright sharp peaks superimposed on a cloud of enhanced intensity. Based on the integrated intensity......, the width of the peaks, and spatial scanning experiments it is concluded that the individual peaks arise from individual dislocation-free regions (the subgrains) in the dislocation structure. The cloud is attributed to the dislocation rich walls. Samples deformed to 2% tensile strain were investigated under...

  2. High temperature deformation behavior and processing map for a nickel-titanium shape memory alloy

    Science.gov (United States)

    Yin, Xiang-Qian; Lee, Sang-Won; Li, Yan-Feng; Park, Chan-Hee; Mi, Xu-Jun; Yeom, Jong-Taek

    2017-09-01

    The hot deformation behavior of 49.2Ti-50.8Ni shape memory alloy was studied using hot compressive deformation testing in the temperature range of 1023-1323 K and at strain rates of 0.01-10 s-1. The work-hardening rate was induced to analyze the stress-strain curves, and the critical stress σc and the dynamic recovery saturation stress σsat were measured which can be specified approximately by the expressions: σsat-1.12σp and σc-0.86σp. An Arrhenius model was calculated to describe the relationship between peak stress and the Z parameter. The relationship between deformation activation energy, the deformation conditions and the effect of Ni component in a binary TiNi alloy on the activation energy were discussed in this work. With the help of electron backscattering diffraction, a connected mode dynamic recrystallization microstructure was confirmed in peak efficiency regimes (850 °C & 0.01 s-1 and 1050 °C & 10 s-1) of the processing map.

  3. Linear friction weld process monitoring of fixture cassette deformations using empirical mode decomposition

    Science.gov (United States)

    Bakker, O. J.; Gibson, C.; Wilson, P.; Lohse, N.; Popov, A. A.

    2015-10-01

    Due to its inherent advantages, linear friction welding is a solid-state joining process of increasing importance to the aerospace, automotive, medical and power generation equipment industries. Tangential oscillations and forge stroke during the burn-off phase of the joining process introduce essential dynamic forces, which can also be detrimental to the welding process. Since burn-off is a critical phase in the manufacturing stage, process monitoring is fundamental for quality and stability control purposes. This study aims to improve workholding stability through the analysis of fixture cassette deformations. Methods and procedures for process monitoring are developed and implemented in a fail-or-pass assessment system for fixture cassette deformations during the burn-off phase. Additionally, the de-noised signals are compared to results from previous production runs. The observed deformations as a consequence of the forces acting on the fixture cassette are measured directly during the welding process. Data on the linear friction-welding machine are acquired and de-noised using empirical mode decomposition, before the burn-off phase is extracted. This approach enables a direct, objective comparison of the signal features with trends from previous successful welds. The capacity of the whole process monitoring system is validated and demonstrated through the analysis of a large number of signals obtained from welding experiments.

  4. PREFACE: International Symposium on Dynamic Deformation and Fracture of Advanced Materials (D2FAM 2013)

    Science.gov (United States)

    Silberschmidt, Vadim V.

    2013-07-01

    Intensification of manufacturing processes and expansion of usability envelopes of modern components and structures in many cases result in dynamic loading regimes that cannot be resented adequately employing quasi-static formulations of respective problems of solid mechanics. Specific features of dynamic deformation, damage and fracture processes are linked to various factors, most important among them being: a transient character of load application; complex scenarios of propagation, attenuation and reflection of stress waves in real materials, components and structures; strain-rate sensitivity of materials properties; various thermo-mechanical regimes. All these factors make both experimental characterisation and theoretical (analytical and numerical) analysis of dynamic deformation and fracture rather challenging; for instance, besides dealing with a spatial realisation of these processes, their evolution with time should be also accounted for. To meet these challenges, an International Symposium on Dynamic Deformation and Fracture of Advanced Materials D2FAM 2013 was held on 9-11 September 2013 in Loughborough, UK. Its aim was to bring together specialists in mechanics of materials, applied mathematics, physics, continuum mechanics, materials science as well as various areas of engineering to discuss advances in experimental and theoretical analysis, and numerical simulations of dynamic mechanical phenomena. Some 50 papers presented at the Symposium by researchers from 12 countries covered various topics including: high-strain-rate loading and deformation; dynamic fracture; impact and blast loading; high-speed penetration; impact fatigue; damping properties of advanced materials; thermomechanics of dynamic loading; stress waves in micro-structured materials; simulation of failure mechanisms and damage accumulation; processes in materials under dynamic loading; a response of components and structures to harsh environment. The materials discussed at D2FAM 2013

  5. Multi-scale modeling of deformation and fracture of ceramic materials under dynamic loading

    Science.gov (United States)

    Skripnyak, Evgeniya; Skripnyak, Vladimir; Skripnyak, Vladimir; Vaganova, Irina; Skripnyak, Nataliya

    2013-06-01

    The multi-scale approach to dynamic analysis of deformation and fracture, taking place in structured condensed matter show a great promise in prediction of the mechanical response for new materials. In present work the results of two-level simulations on deformation and fracture mechanisms for brittle materials subjected to impulse and shock-wave loadings are demonstrated. The dynamic effects occurring in structured representative volumes of the ceramics and the processes relating to damage and fracture of the ceramic materials with porous structures, ceramic composites and nanocomposites were modeled using the SPH methods. The grain, phase and porous structures were simulated in an explicit form. The presence of dispersed inclusions, dislocation substructures, nano - and micro-voids at the lower structural level were taking into account in an implicit form. The two-level model allows taking into account different relaxation and fracturing characteristic times at the different structural levels. This approach suggest to describe the relaxation process at the higher structural level in terms of integrated effect of the lower level processes. It is found that clusters of nano-voids in ceramic materials are the centers of damage nucleation. The presence of the clusters of nano-voids in ceramic materials subjected to dynamic loadings results in decrease of the Hugoniot elastic limit value.

  6. Dynamic Stability of Viscoelastic Plates with Finite Deformation and Shear Effects

    Institute of Scientific and Technical Information of China (English)

    李晶晶; 程昌钧; 等

    2002-01-01

    Based on Reddy's theory of plates with higher-order shear deformations and the Boltzmann superposition principles,the governing equations were established for dynamic stability of viscoelastic plates with finite deformations taking account of shear effects,The Galerkin method was applied to simplify the set of equations.The numerical methods in nonlinear dynamics were used to solve the simplified system.It could e seen that there are plenty of dynamic properties for this kind of viscoelastic plates under transverse harmonic loads.The influences of the transverse shear deformations and material parameter on the dynamic behavior of nonlinear viscoelatic plates were investigated.

  7. Dynamic Grain Growth in Forsterite Aggregates Experimentally Deformed to High Strain

    Science.gov (United States)

    Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.; Drury, M.

    2004-12-01

    The dynamics of the outer Earth are largely controlled by olivine rheology. From previous work it has become clear that if olivine rocks are deformed to high strain, substantial weakening may occur before steady state mechanical behaviour is approached. This weakening appears directly related to progressive modification of the grain size distribution through competing effects of dynamic recrystallization and syn-deformational grain growth. However, most of our understanding of these processes in olivine comes from tests on coarse-grained materials that were reduced in grain size during straining by grain size insensitive (dislocation) creep mechanisms. The aim of the present study was to investigate microstructure evolution of fine-grained olivine rocks that coarsen in grain size while deforming by grain size sensitive (GSS) creep. We used fine-grained (~1 μ m) olivine aggregates (i.e., forsterite/Mg2SiO4), containing ~0.5 wt% water and 10 vol% enstatite (MgSiO3). Two types of experiments were carried out: 1) Hot isostatic pressing (HIP) followed by axial compression to varying strains up to a maximum of ~45%, at 600 MPa confining pressure and a temperature of 950°C, 2) HIP treatment without axial deformation. Microstructures were characterized by analyzing full grain size distributions and texture using SEM/EBSD. Our stress-strain curves showed continuous hardening. When samples were temporally unloaded for short time intervals, no difference in flow stress was observed before and after the interruption in straining. Strain rate sensitivity analysis showed a low value of ~1.5 for the stress exponent n. Measured grain sizes show an increase with strain up to a value twice that of the starting value. HIP-only samples showed only minor increase in grain size. A random LPO combined with the low n ~1.5 suggests dominant GSS creep controlled by grain boundary sliding. These results indicate that dynamic grain growth occurs in forsterite aggregates deforming by GSS

  8. High-rate Plastic Deformation of Nanocrystalline Tantalum to Large Strains: Molecular Dynamics Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, R E

    2009-02-05

    Recent advances in the ability to generate extremes of pressure and temperature in dynamic experiments and to probe the response of materials has motivated the need for special materials optimized for those conditions as well as a need for a much deeper understanding of the behavior of materials subjected to high pressure and/or temperature. Of particular importance is the understanding of rate effects at the extremely high rates encountered in those experiments, especially with the next generation of laser drives such as at the National Ignition Facility. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum to investigate the processes associated with plastic deformation for strains up to 100%. We use initial atomic configurations that were produced through simulations of solidification in the work of Streitz et al [Phys. Rev. Lett. 96, (2006) 225701]. These 3D polycrystalline systems have typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures.

  9. An Experimental Investigation of the Droplet Deformation Process Resulting from Binary Collisions of a Viscous Fluid

    Science.gov (United States)

    Willis, Keeney; Orme, Melissa

    1997-11-01

    An experimental investigation of the collisional dynamics of equal sized drops of a viscous, silicone based oil, DC 200, has been conducted for head-on impacts in a vacuum. Results show that the range of droplet Weber numbers necessary to describe the boundaries between permanent coalescence and what has been previously described as reflexive separation, is several orders of magnitude higher than has been reported in studies involving water and hydrocarbon fuel droplets. Energy dissipation during the deformation process has been measured, and the results show a wide discrepancy with available theory. Detailed observations of the post-impact deformation process reveals that in this case, the formation of multiple drops is due solely to the growth of Rayleigh instabilities on the extended fluid ligament.

  10. EFFECT OF UNEQUAL DEFORMATION IN DEVELOPMENT OF ADVANCED PLASTIC PROCESSING TECHNOLOGIES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An effect of unequal deformation in development of advanced plastic processing technologies is researched by studying an in-plane bending process of strip metal under unequal compressing. The research results show the following: If appropriately controlled, unequal plastic deformation can play an important role not only in the improvement of quality of parts obtained by plastic processing technologies, but also in the development of new processes for advanced plastic working technologies. A coordinated growth of unequal plastic deformation can develop the deformation potentiality of material to the full. The degree of unequal plastic deformation can be used as bases for optimization design of processes and dies of plastic forming.

  11. Molecular Dynamics Simulation of Structural Characterization of Elastic and Inelastic Deformation in ZrCu Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Shidong Feng

    2014-01-01

    Full Text Available The nanoscopic deformation behaviors in a ZrCu metallic glass model during loading-unloading process under uniaxial compression have been analyzed on the basis of the molecular dynamics (MD. The reversible degree of shear origin zones (SOZs is used as the structural indicator to distinguish the elastic deformation and inelastic deformation of ZrCu metallic glass at the atomic level. We find that the formation of SOZs is reversible at the elastic stage but irreversible at the inelastic stage during the loading and unloading processes. At the inelastic stage, the full-icosahedra fraction in SOZs is quickly reduced with increased strain and the decreasing process is also irreversible during the unloading processes.

  12. The Interdependence of Deformational and Thermal Processes in Mountain Belts

    Science.gov (United States)

    Huerta; Royden; Hodges

    1996-08-02

    Crustal temperatures within collisional orogens are anomalously high compared with temperatures at comparable depths in stable continents, which is evidence of thermal processes that are fundamental to orogenesis. These temperatures can be explained by the redistribution of crust enriched in heat-producing elements through the accretion of crust from the down-going plate to the upper plate and surface erosion. With the use of geologically reasonable rates, the model results predict high temperatures (over 600°C) and inverted upper-plate geotherms (about 100°C over 20 kilometers) at shallow depths (20 to 40 kilometers) by 25 to 35 million years after collision. This study emphasizes the interdependence of deformational, surficial, and thermal processes.

  13. Fast free-form deformation using graphics processing units.

    Science.gov (United States)

    Modat, Marc; Ridgway, Gerard R; Taylor, Zeike A; Lehmann, Manja; Barnes, Josephine; Hawkes, David J; Fox, Nick C; Ourselin, Sébastien

    2010-06-01

    A large number of algorithms have been developed to perform non-rigid registration and it is a tool commonly used in medical image analysis. The free-form deformation algorithm is a well-established technique, but is extremely time consuming. In this paper we present a parallel-friendly formulation of the algorithm suitable for graphics processing unit execution. Using our approach we perform registration of T1-weighted MR images in less than 1 min and show the same level of accuracy as a classical serial implementation when performing segmentation propagation. This technology could be of significant utility in time-critical applications such as image-guided interventions, or in the processing of large data sets. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  14. Multi-parameter numerical simulation of dynamic monitoring of rock deformation in deep mining

    Institute of Scientific and Technical Information of China (English)

    Li Juanjuan; Hu Mingshun; Ding Enjie; Kong Wei; Pan Dongming; Chen Shenen

    2016-01-01

    The level of deformation development of surrounding rocks is a vital predictor to evaluate impending coal mine disasters and it is important to establish accurate measurements of the deformed status to ensure coal mine safety. Traditional deformation monitoring methods are mostly based on single parameter, in this paper, multiple approaches are integrated: firstly, both electric and elastic models are established, from which electric field distribution and seismic wave recording are calculated and finally, the resistivity profiles and source position information are determined using inversion methods, from which then the deformation and failure of mine floor are evaluated. According to the inversion results of both electric and seismic field signals, multiple-parameter dynamic monitoring of surrounding rock deformation in deep mine can be performed. The methodology is validated using numerical simulation results which shows that the multi-parameter dynamic monitoring methods have better results for surrounding rock deformation in deep mine monitoring than single parameter methods.

  15. Measurement of dynamic deformations using a path unbalance Michelson interferometer based optical fiber sensing device

    OpenAIRE

    Lloret, S.; P. Rastogi; Thévenaz, Luc; Inaudi, D.

    2003-01-01

    A novel demodulation technique for performing dynamic deformation measurements using a path-unbalanced Michelson interferometer is reported, The method is based on the rf amplitude modulation of a low-coherence source, and demodulation Is achieved by tracking in the frequency domain the position of the minimum of the detected intensity. This technique is particularly suitable for deformation measurements in civil engineering structures where deformations of the order of few millimeters over t...

  16. Microstructure and Deformation Behavior of Ti-10V-2Fe-3Al Alloy during Hot Forming Process

    Institute of Scientific and Technical Information of China (English)

    GUAN Renguo; ZHAO Zhanyong; Choi KS; Lee CS

    2015-01-01

    The microstructure evolution and formability of Ti-10V-2Fe-3Al alloy related to the initial microstructures and processing variables were investigated during hot forming process. The experimental results show that theα-phase growth is controlled by solute diffusion during the heat treatment processes. Four different microstructures were established by combinations of several heat treatments, and Ti-10V-2Fe-3Al alloy shows excellent formability both above and below theβ transus temperature. The alloy possesses low deformation resistance and active restoration mechanism during the deformation. A constitutive equation describing the hot deformation behavior of Ti-10V-2Fe-3Al alloy was obtained. Higher lfow stress was observed for the acicular morphology ofαphase in microstructures with large aspect ratios as compared with that of small aspect ratios. Due to the dynamic recovery in softβphase, and the dynamic recrystallization and breakage of acicularα-phase, lfow softening occurred signiifcantly during deformation. Dynamic recrystallization also occurred especially in the severely deformed regions of forged parts.

  17. Influence of Heat Treatment Conditions on Microstructure and Mechanical Properties of Austempered Ductile Iron After Dynamic Deformation Test

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2014-10-01

    Full Text Available In this article, an attempt was made to determine the effect of dynamic load on the austempered ductile iron resistance obtained under different conditions of heat treatment. Tests were carried out on six types of cylindrical ductile iron samples austempered at 320, 370 and 400oC for 30 and 180 minutes. For each type of material, two samples were collected. As a next step in the investigations, the samples were subjected to a Taylor impact test. The samples after striking a non-deformable, rigid target were deformed on their front face. After Taylor test, a series of material tests was performed on these samples, noting a significant increase of hardness in the deformed part. This was particularly well visible in the ductile iron isothermally quenched at higher temperatures of 370 and 400oC. Inthezone of sample deformation, an increase in the content of ferromagnetic phase was also reported, thus indicating the occurrence of martensitic transformation in the microstructure containing mechanically unstable austenite. A significant amount of deformed graphite was also observed, which was a symptom of the deformation process taking place in samples. The ductile iron was characterized by high toughness and high resistance to the effect of dynamic loads, especially as regards the grade treated at a temperature of 370oC.

  18. Hot deformation behavior of an aluminum-matrix hybrid nanocomposite fabricated by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Khodabakhshi, F. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON (Canada); Gerlich, A.P. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON (Canada); Simchi, A., E-mail: simchi@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Kokabi, A.H. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of)

    2015-02-25

    A fine-grained aluminum-matrix hybrid nanocomposite reinforced with TiO{sub 2}, MgO and Al{sub 3}Ti nanoparticles was prepared via reactive friction stir processing (FSP) of an Al–Mg sheet with pre-placed TiO{sub 2} particles (50 nm; 3.1 vol%). The microstructure of the hybrid nanocomposite comprises high-angle grain boundaries (~90%) with an average size of 2 µm and hard inclusions with sizes in the range of 30–50 nm. Evaluation of the hot deformation behavior of the nanocomposite by uniaxial tensile testing at different temperatures (300–450 °C) and strain rates (0.001–0.1 s{sup −1}) shows that the deformation apparent activation energy of the nanocomposite is 137 kJ mol{sup −1} at ≤300 °C. The values of the activation energy for the Al–Mg alloy before and after FSP at this temperature range are about 105 and 135 kJ mol{sup −1}, respectively. This observation highlights the role of ultrafine hard particles and the structural changes induced by FSP on the deformation process. At the higher temperatures, the deformation activation energy for the aluminum alloy without and with the reinforcing particles is 303 and 456 kJ mol{sup −1}, respectively. Detailed microstructural analysis by electron back scattered diffraction and transmission electron microscopy suggests that dynamic recrystallization is responsible for the deformation behavior at the elevated temperatures. Meanwhile, the presence of the hard nanoparticles operates as a grain growth inhibitor improving the thermal stability of the fine-grained aluminum alloy.

  19. On the modelling of the dynamics of elastically deformable floating structures

    DEFF Research Database (Denmark)

    Seng, Sopheak; Malenica, Sime; Jensen, Jørgen Juncher;

    2015-01-01

    In this paper we are reexamining the dynamic equations of an elastically deformable floating structure to identify and evaluate the contribution from the inertia cross coupling terms which commonly have been neglected due to the assumption of small structural deformation. Numerical experiments...

  20. Dynamic lung modeling and tumor tracking using deformable image registration and geometric smoothing.

    Science.gov (United States)

    Zhang, Yongjie; Jing, Yiming; Liang, Xinghua; Xu, Guoliang; Dong, Lei

    2012-09-01

    A greyscale-based fully automatic deformable image registration algorithm, based on an optical flow method together with geometric smoothing, is developed for dynamic lung modeling and tumor tracking. In our computational processing pipeline, the input data is a set of 4D CT images with 10 phases. The triangle mesh of the lung model is directly extracted from the more stable exhale phase (Phase 5). In addition, we represent the lung surface model in 3D volumetric format by applying a signed distance function and then generate tetrahedral meshes. Our registration algorithm works for both triangle and tetrahedral meshes. In CT images, the intensity value reflects the local tissue density. For each grid point, we calculate the displacement from the static image (phase 5) to match with the moving image (other phases) by using merely intensity values of the CT images. The optical flow computation is followed by a regularization of the deformation field using geometric smoothing. Lung volume change and the maximum lung tissue movement are used to evaluate the accuracy of the application. Our testing results suggest that the application of deformable registration algorithm is an effective way for delineating and tracking tumor motion in image-guided radiotherapy.

  1. Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper.

    Science.gov (United States)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun

    2015-12-01

    Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.

  2. Model of coupled gas flow and deformation process in heterogeneous coal seams and its application

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-hui; ZHAO Quan-sheng; YU Yong-jiang

    2011-01-01

    The heterogeneity of coal was studied by mechanical tests. Probability plots of experimental data show that the mechanical parameters of heterogeneous coal follow a Weibull distribution. Based on elasto-plastic mechanics and gas dynamics, the model of coupled gas flow and deformation process of heterogeneous coal was presented and the effects of heterogeneity of coal on gas flow and failure of coal were investigated. Major findings include: The effect of the heterogeneity of coal on gas flow and mechanical failure of coal can be considered by the model in this paper. Failure of coal has a great effect on gas flow.

  3. Evolution of oxide nanoparticles during dynamic plastic deformation of ODS steel

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, Nairong;

    2014-01-01

    The microstructure as well as the deformation behavior of oxide nanoparticles has been analyzed in the ferritic ODS steel PM2000 after compression by dynamic plastic deformation (DPD) to different strains. A dislocation cell structure forms after deformation to a strain of 1.0. DPD to a strain of 2.......1 results in nanoscale lamellae with an average lamellar spacing of approximately 70 nm. During DPD oxide nanoparticles, identified as yttrium aluminum perovskite YAlO3, are found to deform differently depending on their size. Whereas particles with a size of less than 15 nm change their shape and aspect...

  4. Deformation-induced damage and recovery in model hydrogels - A molecular dynamics simulation

    Science.gov (United States)

    Zidek, Jan; Milchev, Andrey; Jancar, Josef; Vilgis, Thomas A.

    2016-09-01

    Using molecular dynamics simulation of a model hybrid cross-link hydrogel, we investigate the network damage evolution and the related structure transformations. We model the hydrogel structure as a network-connected assembly of crosslinked clusters whereby deformation-induced damage is considered along with network recovery. The two principal mechanisms involved in hydrogel recovery from deformation include segment hops of the building structure units (segments) between clusters and cluster shape modification. These mechanisms act either instantaneously, or with a certain time delay after the onset of deformation. By elucidating the conditions under which one of the mechanisms prevails, one may design hydrogel materials with a desired response to deformation.

  5. Study and Simulation of Deformation Mechanics Modeling of Flexible Workpiece Processing by Rayleigh-Ritz Method

    Directory of Open Access Journals (Sweden)

    Yaohua Deng

    2015-01-01

    Full Text Available This paper discusses the calculation problems of bending deformation of FWP processing. Take three axis CNC machining as an example, to establish mechanics model of flexible workpiece processing process. The flexible workpiece balance equation is a two-dimensional partial differential equation, to solve the problem of flexible workpiece bending deformation using Rayleigh-Ritz method and designing the test function of bending deformation of flexible workpiece. By satisfying the minimum potential energy condition of FWP processing to work out the approximate solution of bending deformation of flexible workpiece, find out the relationship between material properties of flexible piece, acting force Fz, and deformation value. Finally, the rectangle flexible workpiece which is made up of polyurethane sponge is selected as an experiment subject. The results show that the average relative deviation between theoretical value and observed value is only 5.51%. It is proved that the bending deformation test function satisfies the actual deformation calculation requirements.

  6. Deformation behavior and dynamic recrystallization of Mg-Y-Nd-Gd-Zr alloy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xin; ZHANG Kui; LI Xinggang; LI Yongjun; HE Qingbiao; SUN Jianfeng

    2008-01-01

    The characteristics of dynamic reerystallization (DRX) in Mg-Y-Nd-Gd-Zr-RE magnesium alloy were investigated by compres-sion tests at temperatures between 523 and 723 K and at strain rates ranging from 0.002 to 1 s-1 with maximum strain of 0.693. The strain-hardening rate can be obtained from true stress-true strain curves, plots of θ-σ,-(θ/ σ)-σ and lnθ-σ in different compression conditions were obtained by further study. The critical condition of the onset of DRX process was determined as ((/ σ)(-θ/ σ))=0. In the range of the above deformation temperature and strain rate, the ratio of critical stress (σc) to peak stress (am) and critical strain (εc) to the peak strain (εm) stood at σc/σm=0.62-0.89 and εc/εm=0.11-0.37, respectively. DRX could be observed during hot deformation process, microstructure evolution of the magnesium alloy at different temperatures and strain rates were studied with the aid of optical microscope(OM), and the average recrystal-lized grain size was measured by means of intercepts on photomicrographs. It was shown that the average dynamically recrystallized grain size (drec) changed with different deformation parameters, the natural logarithm of the average recrystallized grain size varied linearly with the natural logarithm of Zener-Hollomon parameter; the peak stress changed with the average recrystallized grain size, and the natural loga-rithm of the average recrystallized grain size varied linearly with the natural logarithm of the peak stress.

  7. Dynamic similarity in erosional processes

    Science.gov (United States)

    Scheidegger, A.E.

    1963-01-01

    A study is made of the dynamic similarity conditions obtaining in a variety of erosional processes. The pertinent equations for each type of process are written in dimensionless form; the similarity conditions can then easily be deduced. The processes treated are: raindrop action, slope evolution and river erosion. ?? 1963 Istituto Geofisico Italiano.

  8. Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien; Keall, Paul J., E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, University of Sydney, NSW 2006 (Australia); Booth, Jeremy T. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia)

    2014-06-15

    Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real time tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first

  9. Dynamic analysis of process reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shadle, L.J.; Lawson, L.O.; Noel, S.D.

    1995-06-01

    The approach and methodology of conducting a dynamic analysis is presented in this poster session in order to describe how this type of analysis can be used to evaluate the operation and control of process reactors. Dynamic analysis of the PyGas{trademark} gasification process is used to illustrate the utility of this approach. PyGas{trademark} is the gasifier being developed for the Gasification Product Improvement Facility (GPIF) by Jacobs-Siffine Engineering and Riley Stoker. In the first step of the analysis, process models are used to calculate the steady-state conditions and associated sensitivities for the process. For the PyGas{trademark} gasifier, the process models are non-linear mechanistic models of the jetting fluidized-bed pyrolyzer and the fixed-bed gasifier. These process sensitivities are key input, in the form of gain parameters or transfer functions, to the dynamic engineering models.

  10. Shepherd's Crook Deformity of Polyostotic Fibrous Dysplasia Treated with Corrective Osteotomy and Dynamic Hip Screw

    Directory of Open Access Journals (Sweden)

    Wei-Jen Chen

    2005-07-01

    Full Text Available Fibrous dysplasia, a condition in which the skeleton fails to develop normally, is characterized by fibroblastic stroma and immature bone. Bowing of the long bones occurs frequently in the polyostotic form, and stress fractures often result. Shepherd's crook deformity is a characteristic feature of fibrous dysplasia. The goal of its treatment is to obtain normal walking ability and relieve pain due to pathologic fracture secondary to the deformity; however, correction of the deformity is a surgical challenge. We present 2 cases of shepherd's crook deformity treated with corrective osteotomy and a dynamic hip screw. Both cases showed good bone healing and no recurrent deformity. The gross deformities were corrected, and both patients were pain-free after operation.

  11. Dynamic recrystallization and texture development during hot deformation of magnesium alloy AZ31

    Institute of Scientific and Technical Information of China (English)

    YANG Xu-yue; JI Ze-sheng; H. MIURA; T. SAKAI

    2009-01-01

    The dynamic recrystallization(DRX) and texture development, taking place during hot deformation of magnesium alloy AZ31 with a strong wire texture, were studied in compression at 673 K (0.73 Tm). Two kinds of samples were machined parallelly to the extruded and transverse directions of Mg alloy rods. New fine grains are evolved at original grain boundaries corrugated at low strains and develop rapidly in the medium range of strain, finally leading to a roughly full evolution of equiaxial fine grains. Kink bands are evolved at grain boundaries corrugated and also frequently in grain interiors at low strains. The boundary misorientations of kink band increase rapidly with increasing strain and approach a saturation value in high strain. The average size of the regions fragmented by kink band is almost the same as that of new grains evolved in high strain. These characteristics of new grain evolution process are not changed by the orientation of the samples, while the flow behaviors clearly depend on it. It is concluded that new grain evolution can be controlled by a deformation-induced continuous reaction, i.e. continuous dynamic recrystallization(DRX). The latter is discussed by comparing with conventional, i.e. discontinuous DRX.

  12. Dynamic recrystallization and texture development during hot deformation of a magnesium alloy AZ31

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.; Miura, H.; Sakai, T. [Univ. of Electro-Communications, Dept. of Mechanical Engineering and Intelligent Systems, Chofu, Tokyo (Japan)]. E-mail: Sakai@mce.uec.ac.jp

    2002-07-01

    Dynamic recrystallization (DRX) and texture development, taking place during hot deformation of a magnesium alloy AZ31 with a strong wire texture, was studied in compression at 673K (0.73T{sub m}). Two kinds of samples were machined parallel to the extruded and transverse direction of the Mg alloy rods. New fine grains are evolved at original grain boundaries corrugated at low strains and developed rapidly in the medium range of strain, finally leading to a roughly full evolution of equiaxial fine grains. Kink bands are evolved at grain boundaries corrugated and also frequently in grain interiors at low strains. The boundary misorientations of kink band increase rapidly with increasing strain and approach a saturation value in high strain. The average size of the regions fragmented by kink band is almost the same as that of new grains evolved in high strain. These characteristics of new grain evolution process are not changed by the orientation of the samples, while the flow behaviors clearly depend on it. It is concluded that new grain evolution can be controlled by a deformation-induced continuous reaction, i.e. continuous dynamic recrystallization (DRX). The latter is discussed comparing with conventional, i.e. discontinuous, DRX. (author)

  13. STUDY ON DYNAMIC CONSTITUTIVE RELATIONS FOR CONCRETE WITH FINITE DEFORMATION

    Institute of Scientific and Technical Information of China (English)

    陈书宇; 沈成康; 金吾根

    2004-01-01

    The differences between finite deformation and infinitesimal deformation are discussed. They are exercised on elasto-viscoplastic constitutive relations of concrete.Then, a rate-dependent mechanics model was presented on the basis of Ottosen' s fourparameter yield criterion, where different loading surface transferring laws were taken into account, when material was in hardening stage or in softening stage, respectively. The model is well established, so that it can be applied to simulate the response of concrete subject to impact loading. Green-Naghdi stress rate was introduced as objective stress rate.Appropriate hypothesis was postulated in accordance with many experimental results, which could reflect the mechanical behaviour of concrete with large deformation. Available thoughts as well as effective methods are also provided for the research on related engineering problems.

  14. Dynamics of evolving phase boundaries in deformable continua

    Directory of Open Access Journals (Sweden)

    Morton E. Gurtin

    1991-05-01

    Full Text Available Recent studies of Gurtin [8,9,10], Angenent and Gurtin [4], and Gurtin and Struthers [15] form an investigation whose goal is a nonequilibrium thermodynamics of two-phase continua in which the interface is sharp and endowed with energy, entropy and superficial force. In all of these studies except the last the crystal is rigid, an assumption that forms the basis for a large class of problems discussed by material scientists, but there are situations in which deformation is the paramount concern, examples being shock-ind of Gurtin and Struthers, who consider deformable crystal-crystal systems with coherent interfaced transformations and mechanical twinning. Here I discuss the results of Gurtin and Struthers, who consider deformable crystal-crystal systems with coherent interface.

  15. Powder metallurgy processing and deformation characteristics of bulk multimodal nickel

    Energy Technology Data Exchange (ETDEWEB)

    Farbaniec, L., E-mail: lfarban1@jhu.edu [Université Paris 13, Sorbonne Paris Cité, LSPM, CNRS, 99 Avenue J.B. Clément, 93430 Villetaneuse (France); Dirras, G., E-mail: dirras@univ-paris13.fr [Université Paris 13, Sorbonne Paris Cité, LSPM, CNRS, 99 Avenue J.B. Clément, 93430 Villetaneuse (France); Krawczynska, A.; Mompiou, F. [Université Paul Sabatier, CEMES, CNRS, 29 rue Jeanne Marvig 31055 Toulouse (France); Couque, H. [Nexter Munitions, 7 route de Guerry, 18200 Bourges (France); Naimi, F.; Bernard, F. [Institut Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne, BP 47870, 21078 Dijon (France); Tingaud, D. [Université Paris 13, Sorbonne Paris Cité, LSPM, CNRS, 99 Avenue J.B. Clément, 93430 Villetaneuse (France)

    2014-08-15

    Spark plasma sintering was used to process bulk nickel samples from a blend of three powder types. The resulting multimodal microstructure was made of coarse (average size ∼ 135 μm) spherical microcrystalline entities (the core) surrounded by a fine-grained matrix (average grain size ∼ 1.5 μm) or a thick rim (the shell) distinguishable from the matrix. Tensile tests revealed yield strength of ∼ 470 MPa that was accompanied by limited ductility (∼ 2.8% plastic strain). Microstructure observation after testing showed debonding at interfaces between the matrix and the coarse entities, but in many instances, shallow dimples within the rim were observed indicating local ductile events in the shell. Dislocation emission and annihilation at grain boundaries and twinning at crack tip were the main deformation mechanisms taking place within the fine-grained matrix as revealed by in-situ transmission electron microscopy. Estimation of the stress from loop's curvature and dislocation pile-up indicates that dislocation emission from grain boundaries and grain boundary overcoming largely contributes to the flow stress. - Highlights: • Bulk multi-modal Ni was processed by SPS from a powder blend. • Ultrafine-grained matrix or rim observed around spherical microcrystalline entities • Yield strength (470 MPa) and ductility (2.8% plastic strain) were measured. • Debonding was found at the matrix/microcrystalline entity interfaces. • In-situ TEM showed twinning, dislocation emission and annihilation at grain boundaries.

  16. A dynamic stall model for airfoils with deformable trailing edges

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Christian;

    2009-01-01

    , lead-lag, pitch, trailing-edge flapping. In the linear region, the model reduces to the inviscid model, which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed model can be considered a crossover between the work of Gaunaa...... for the attached flow region and Hansen et al. The model is compared qualitatively to wind tunnel measurements of a Riso/ B1-18 blade section equipped with deformable trailing-edge flap devices in the form of piezoelectric devices. Copyright © 2009 John Wiley & Sons, Ltd....

  17. Continuous Severe Plastic Deformation Processing of Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan Srinivasan (PI); Prabir K. Chaudhury; Balakrishna Cherukuri; Qingyou Han; David Swenson; Percy Gros

    2006-06-30

    Metals with grain sizes smaller than 1-micrometer have received much attention in the past decade. These materials have been classified as ultra fine grain (UFG) materials (grain sizes in the range of 100 to 1000-nm) and nano-materials (grain size <100-nm) depending on the grain size. This report addresses the production of bulk UFG metals through the use of severe plastic deformation processing, and their subsequent use as stock material for further thermomechanical processing, such as forging. A number of severe plastic deformation (SPD) methods for producing bulk UFG metals have been developed since the early 1990s. The most promising of these processes for producing large size stock that is suitable for forging is the equal channel angular extrusion or pressing (ECAE/P) process. This process involves introducing large shear strain in the work-piece by pushing it through a die that consists of two channels with the same cross-sectional shape that meet at an angle to each other. Since the cross-sections of the two channels are the same, the extruded product can be re-inserted into the entrance channel and pushed again through the die. Repeated extrusion through the ECAE/P die accumulates sufficient strain to breakdown the microstructure and produce ultra fine grain size. It is well known that metals with very fine grain sizes (< 10-micrometer) have higher strain rate sensitivity and greater elongation to failure at elevated temperature, exhibiting superplastic behavior. However, this superplastic behavior is usually manifest at high temperature (> half the melting temperature on the absolute scale) and very low strain rates (< 0.0001/s). UFG metals have been shown to exhibit superplastic characteristics at lower temperature and higher strain rates, making this phenomenon more practical for manufacturing. This enables part unitization and forging more complex and net shape parts. Laboratory studies have shown that this is particularly true for UFG metals produced

  18. Continuous Severe Plastic Deformation Processing of Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan Srinivasan (PI); Prabir K. Chaudhury; Balakrishna Cherukuri; Qingyou Han; David Swenson; Percy Gros

    2006-06-30

    Metals with grain sizes smaller than 1-micrometer have received much attention in the past decade. These materials have been classified as ultra fine grain (UFG) materials (grain sizes in the range of 100 to 1000-nm) and nano-materials (grain size <100-nm) depending on the grain size. This report addresses the production of bulk UFG metals through the use of severe plastic deformation processing, and their subsequent use as stock material for further thermomechanical processing, such as forging. A number of severe plastic deformation (SPD) methods for producing bulk UFG metals have been developed since the early 1990s. The most promising of these processes for producing large size stock that is suitable for forging is the equal channel angular extrusion or pressing (ECAE/P) process. This process involves introducing large shear strain in the work-piece by pushing it through a die that consists of two channels with the same cross-sectional shape that meet at an angle to each other. Since the cross-sections of the two channels are the same, the extruded product can be re-inserted into the entrance channel and pushed again through the die. Repeated extrusion through the ECAE/P die accumulates sufficient strain to breakdown the microstructure and produce ultra fine grain size. It is well known that metals with very fine grain sizes (< 10-micrometer) have higher strain rate sensitivity and greater elongation to failure at elevated temperature, exhibiting superplastic behavior. However, this superplastic behavior is usually manifest at high temperature (> half the melting temperature on the absolute scale) and very low strain rates (< 0.0001/s). UFG metals have been shown to exhibit superplastic characteristics at lower temperature and higher strain rates, making this phenomenon more practical for manufacturing. This enables part unitization and forging more complex and net shape parts. Laboratory studies have shown that this is particularly true for UFG metals produced

  19. The dynamics of stochastic processes

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas

    In the present thesis the dynamics of stochastic processes is studied with a special attention to the semimartingale property. This is mainly motivated by the fact that semimartingales provide the class of the processes for which it is possible to define a reasonable stochastic calculus due...... average processes, and when the driving process is a Lévy or a chaos process the semimartingale property is characterized in the filtration spanned by the driving process and in the natural filtration when the latter is a Brownian motion. To obtain some of the above results an integrability of seminorm...

  20. Microstructural characterization of nickel subjected to dynamic plastic deformation

    DEFF Research Database (Denmark)

    Luo, Z.P.; Mishin, Oleg; Zhang, Yubin;

    2012-01-01

    Average microstructural parameters and the extent of microstructural heterogeneity in nickel deformed at a high strain rate have been characterized quantitatively and compared to those after compression at a quasi-static strain rate. The microstructure in the high strain rate sample was found...

  1. Microstructural characterization of nickel subjected to dynamic plastic deformation

    DEFF Research Database (Denmark)

    Luo, Z.P.; Mishin, Oleg; Zhang, Yubin

    2012-01-01

    Average microstructural parameters and the extent of microstructural heterogeneity in nickel deformed at a high strain rate have been characterized quantitatively and compared to those after compression at a quasi-static strain rate. The microstructure in the high strain rate sample was found to ...

  2. Computer Modelling of Dynamic Processes

    Directory of Open Access Journals (Sweden)

    B. Rybakin

    2000-10-01

    Full Text Available Results of numerical modeling of dynamic problems are summed in the article up. These problems are characteristic for various areas of human activity, in particular for problem solving in ecology. The following problems are considered in the present work: computer modeling of dynamic effects on elastic-plastic bodies, calculation and determination of performances of gas streams in gas cleaning equipment, modeling of biogas formation processes.

  3. Dynamical Processes in Globular Clusters

    CERN Document Server

    McMillan, Stephen L W

    2014-01-01

    Globular clusters are among the most congested stellar systems in the Universe. Internal dynamical evolution drives them toward states of high central density, while simultaneously concentrating the most massive stars and binary systems in their cores. As a result, these clusters are expected to be sites of frequent close encounters and physical collisions between stars and binaries, making them efficient factories for the production of interesting and observable astrophysical exotica. I describe some elements of the competition among stellar dynamics, stellar evolution, and other processes that control globular cluster dynamics, with particular emphasis on pathways that may lead to the formation of blue stragglers.

  4. Investigation of Kinematics of the Portevin-Le Chatelier Deformation Bands with Dynamic Digital Speckle Pattern Interferometry

    Institute of Scientific and Technical Information of China (English)

    JIANG Hui-Feng; ZHANG Qing-Chuan; JIANG Zhen-Yu; CHEN Zhong-Jia; WU Xiao-Ping

    2005-01-01

    @@ The Portevin-Le Chatelier (PLC) effect with typical temporal instabilities in the recorded stress is closely associ ated with local inhomogeneities of deformation. By employing the dynamic digital speckle pattern interferometry technology, the characterizations for the PLC deformation bands of type A (continuous propagation along the specimen), type B ("hopping" propagation along the specimen) and type C (random nucleation in the sample) were distinctly clarified. The corresponding positions of deformation bands were traced throughout the whole tensile process. By systemic experiments, the range of the applied strain rates for each type of bands existing was investigated respectively. The evolution of the band velocity (for types A and B) was also statistically investigated and qualitatively interpreted.

  5. Dynamic rupture processes inferred from laboratory microearthquakes

    Science.gov (United States)

    Passelègue, François. X.; Schubnel, Alexandre; Nielsen, Stefan; Bhat, Harsha S.; Deldicque, Damien; Madariaga, Raúl

    2016-06-01

    We report macroscopic stick-slip events in saw-cut Westerly granite samples deformed under controlled upper crustal stress conditions in the laboratory. Experiments were conducted under triaxial loading (σ1>σ2=σ3) at confining pressures (σ3) ranging from 10 to 100 MPa. A high-frequency acoustic monitoring array recorded particle acceleration during macroscopic stick-slip events allowing us to estimate rupture speed. In addition, we record the stress drop dynamically and we show that the dynamic stress drop measured locally close to the fault plane is almost total in the breakdown zone (for normal stress >75 MPa), while the friction f recovers to values of f > 0.4 within only a few hundred microseconds. Enhanced dynamic weakening is observed to be linked to the melting of asperities which can be well explained by flash heating theory in agreement with our postmortem microstructural analysis. Relationships between initial state of stress, rupture velocities, stress drop, and energy budget suggest that at high normal stress (leading to supershear rupture velocities), the rupture processes are more dissipative. Our observations question the current dichotomy between the fracture energy and the frictional energy in terms of rupture processes. A power law scaling of the fracture energy with final slip is observed over 8 orders of magnitude in slip, from a few microns to tens of meters.

  6. Dynamic stability of deformable elements of one class of aeroelastic constructions

    Science.gov (United States)

    Velmisov, Petr A.; Ankilov, Andrey V.; Semenova, Elizaveta P.

    2016-12-01

    At designing of the constructions and the devices interacting with the flow of gas or liquid, it is necessary to solve the problems associated with the investigation of the stability required for their functioning and operational reliability. The definition of stability of an elastic body corresponds to the Lyapunov's concept of stability of dynamical system. A mathematical model of the device relating to the vibration technique, which is intended for intensification of technological processes, for example, the process of mixing, is considered. The action of these devices is based on the oscillations of elastic elements at the flowing around gas or liquid flow. The dynamic stability of the elastic element, located inside of the flow channel with the subsonic flow of gas or liquid (in an ideal model of a compressible environment) is investigated. The model is described by coupled system of partial differential equations for the unknown functions - the potential of the gas velocity and deformation of the elastic element. On the basis of the construction of functional, the sufficient conditions of the dynamical stability, imposing restrictions on the free-stream velocity of the gas, the flexural stiffness of the elastic element, and other parameters of the mechanical system are obtained. The examples of construction of the stability regions for particular parameters of the mechanical system are presented.

  7. The transformation of spinal curvature into spinal deformity: pathological processes and implications for treatment

    Directory of Open Access Journals (Sweden)

    Hawes Martha C

    2006-03-01

    Full Text Available Abstract Background This review summarizes what is known about the pathological processes (e.g. structural and functional changes, by which spinal curvatures develop and evolve into spinal deformities. Methods Comprehensive review of articles (English language only published on 'scoliosis,' whose content yielded data on the pathological changes associated with spinal curvatures. Medline, Science Citation Index and other searches yielded > 10,000 titles each of which was surveyed for content related to 'pathology' and related terms such as 'etiology,' 'inheritance,' 'pathomechanism,' 'signs and symptoms.' Additional resources included all books published on 'scoliosis' and available through the Arizona Health Sciences Library, Interlibrary Loan, or through direct contact with the authors or publishers. Results A lateral curvature of the spine–'scoliosis'–can develop in association with postural imbalance due to genetic defects and injury as well as pain and scarring from trauma or surgery. Irrespective of the factor that triggers its appearance, a sustained postural imbalance can result, over time, in establishment of a state of continuous asymmetric loading relative to the spinal axis. Recent studies support the longstanding hypothesis that spinal deformity results directly from such postural imbalance, irrespective of the primary trigger, because the dynamics of growth within vertebrae are altered by continuous asymmetric mechanical loading. These data suggest that, as long as growth potential remains, evolution of a spinal curvature into a spinal deformity can be prevented by reversing the state of continuous asymmetric loading. Conclusion Spinal curvatures can routinely be diagnosed in early stages, before pathological deformity of the vertebral elements is induced in response to asymmetric loading. Current clinical approaches involve 'watching and waiting' while mild reversible spinal curvatures develop into spinal deformities with

  8. Hot deformation of spray formed nickel-base superalloy using processing maps

    Institute of Scientific and Technical Information of China (English)

    KANG Fu-wei; ZHANG Guo-qing; LI Zhou; SUN Jian-fei

    2008-01-01

    The hot compression testing of hot isostatically pressed (HIPed) spray formed (SF) nickel-base superalloy was carried out by thermal mechanical simulator in the temperature range of 1050-1140℃ at strain rates of 0.01-10 S-1 and engineering strain of 50%. A processing map was developed on the basis of these data by using the principles of dynamic materials modeling. The microstructural evolution of deformed samples was also examined on the basis of optical and electron microscopic observations. The map exhibits two domains: the instability domain at the temperatures of 1050℃-1110℃ and strain rate of 0.01 S-1, the stability domain at the temperatures of 1110℃-1140℃ and strain rates of 1s-1-10 S-1, with a peak efficiency of about 40%. The dynamic recrystallization(DRX) is observed in the stability domain and the deformed specimens are no cracking or instabilities. However, there is no DRX in the instability domain and the alloy exhibits flow instability with cracks due to poor workability. The optimum hot working condition Was determined in the stability domain.

  9. Orientation-dependent recrystallization in an oxide dispersion strengthened steel after dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Tao, N.R.; Mishin, Oleg V.

    2015-01-01

    dynamic plastic deformation. Different boundary spacings and different stored energy densities for regions belonging to either of the two fibre texture components result in a quite heterogeneous deformation microstructure. Upon annealing, preferential recovery and preferential nucleation...... of recrystallization are found in the 〈111〉- oriented lamellae, which had a higher stored energy density in the as-deformed condition. In the course of recrystallization, the initial duplex fibre texture is replaced by a strong 〈111〉 fibre recrystallization texture....

  10. Effects of heterogeneity on recrystallization kinetics of nanocrystalline copper prepared by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Lin, Fengxiang; Zhang, Yubin; Tao, Nairong;

    2014-01-01

    Recrystallization and mechanical behavior of nanocrystalline copper prepared by dynamic plastic deformation (DPD) and DPD with additional cold-rolling (DPD+CR) were investigated, with an emphasis on the effects of heterogeneity within the deformation microstructure. The DPD sample was found...... than 1, which is explained using a two-stage kinetics model incorporating the heterogeneity. The heterogeneity of the DPD sample is largely reduced by applying additional rolling. This change in deformation path leads to a more random distribution of the recrystallized grains and more conventional...

  11. Molecular dynamics simulation on mechanical property of carbon nanotube torsional deformation

    Institute of Scientific and Technical Information of China (English)

    Chen Ming-Jun; Liang Ying-Chun; Li Hong-Zhu; Li Dan

    2006-01-01

    In this paper torsional deformation of the carbon nanotubes is simulated by molecular dynamics method. The Brenner potential is used to set up the simulation system. Simulation results show that the carbon nanotubes can bear larger torsional deformation, for the armchair type (10,10) single wall carbon nanotubes, with a yielding phenomenon taking place when the torsional angle is up to 63°(1.1rad). The influence of carbon nanotube helicity in torsional deformation is very small. The shear modulus of single wall carbon nanotubes should be several hundred GPa, not 1 GPa as others reports.

  12. Optimum Control for Nonlinear Dynamic Radial Deformation of Turbine Casing with Time-Varying LSSVM

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Fei

    2015-01-01

    Full Text Available With the development of the high performance and high reliability of aeroengine, the blade-tip radial running clearance (BTRRC of high pressure turbine seriously influences the reliability and performance of aeroengine, wherein the radial deformation control of turbine casing has to be concerned in BTRRC design. To improve BTRRC design, the optimum control-based probabilistic optimization of turbine casing radial deformation was implemented using time-varying least square support vector machine (T-LSSVM by considering nonlinear material properties and dynamic thermal load. First the T-LSSVM method was proposed and its mathematical model was established. And then the nonlinear dynamic optimal control model of casing radial deformation was constructed with T-LSSVM. Thirdly, through the numerical experiments, the T-LSSVM method is demonstrated to be a promising approach in reducing additional design samples and improving computational efficiency with acceptable computational precision. Through the optimum control-based probabilistic optimization for nonlinear dynamic radial turbine casing deformation, the optimum radial deformation is 7.865 × 10−4 m with acceptable reliability degree 0.995 6, which is reduced by 7.86 × 10−5 m relative to that before optimization. These results validate the effectiveness and feasibility of the proposed T-LSSVM method, which provides a useful insight into casing radial deformation, BTRRC control, and the development of gas turbine with high performance and high reliability.

  13. Property optimization of nanostructured ARB-processed Al by post-process deformation

    DEFF Research Database (Denmark)

    Huang, Xiaoxu; Kamikawa, Naoya; Hansen, Niels

    2008-01-01

    The effect of post-process deformation on the mechanical properties of nanostructured aluminum (99.2% purity) has been investigated by cold rolling of samples which have been processed by accumulative roll bonding (ARB) to a strain of epsilon(vM) = 4.8. Samples have been cold rolled to 10, 15......, and 50% reductions and ultimate tensile strength (UTS), yield stress and elongation have been determined by tensile testing at room temperature. The mechanical testing shows that cold rolling to low strains (10% and 15%) leads to softening and increase in elongation compared to the as-processed ARB...

  14. Dynamic nucleation of new grains in magnesium alloy during hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.; Miura, H.; Sakai, T. [Dept. of Mechanical Engineering and Intelligent Systems, Univ. of Electro-Communications, Chofu, Tokyo (Japan)

    2003-07-01

    Microstructure evolution under hot deformation was investigated in compression of a magnesium alloy AZ31 at 673 K (0.73T{sub m}). Two kinds of samples were machined along the parallel and transverse direction of the extruded rods. New fine grains are evolved at corrugated grain boundaries at low strains and developed rapidly in grain interiors in the medium range of strain, finally leading to a roughly full evolution of equiaxial fine grains. Kink bands are evolved at corrugated grain boundaries and in grain interiors at low strains. The boundary misorientation of kink band increases rapidly with increasing strain. These characteristics of new grain evolution process are not changed by the orientation of the samples, while the flow behaviors clearly depend on it. It is concluded that new grain evolution can be controlled by a deformation-induced continuous reaction resulting in grain fragmentation by kink bands, i.e. continuous dynamic recrystallization (DRX). The latter is discussed comparing with conventional, i.e. discontinuous, DRX. (orig.)

  15. Collective Absorption Dynamics and Enhancement in Deformed Targets

    OpenAIRE

    Ruhl, Hartmut; Mulser, Peter; Hain, Steffen; Cornolti, Fulvio; Macchi, Andrea

    1998-01-01

    The interaction of intense fs laser pulses with thin foils that have an imposed deformation is compared with thick targets that develop bow shocks. Both target types yield good absorption. Up to 80% absorption is obtained for a $0.2\\mu m$ thick, 15 times over-dense foil at $4 \\cdot 10^{18} W/cm^2$. A value of 50% is obtained for a $4 \\mu m$ thick, 2 times over-dense thick target at $10^{18} W/cm^2$. For comparable extension and curvature of the laser-plasma interfaces absorption levels in bot...

  16. Stored Energy of Plastic Deformation in Tube Bending Processes

    Science.gov (United States)

    Śloderbach, Z.; Pająk, J.

    2013-03-01

    The paper presents an aproximate analytic method for determination of the stored energy of plastic deformation during cold bending of metal tubes at bending machines. Calculations were performed for outer points of the tube layers subjected to tension and compression (the points of maximum strains). The percentage of stored energy related to the plastic strain work was determined and the results were presented in graphs. The influence and importance of the stored energy of plastic deformation on the service life of pipeline bends are discussed.

  17. Deformation and fracture in multilayer systems during calendering processes

    Science.gov (United States)

    Calcagno, Barbara O.

    This research uses both experimental and analytical mechanics approaches to understand the roles that stiffness, strength and interfacial adhesion play in the deformation and fracture of an inclusion material sandwiched between layers of dissimilar material. These results have application beyond the experimental calendering problem considered here, which include composite materials, geologic structures, food processing, paper finishing, fabric finishing, and some electronics applications. The objective is to establish the key factors in the fracture of the inclusion within a polymer/metal-alloy composite during calendering and enhance fundamental understanding of the process mechanics. We present the fracture patterns of NiTi and Ti inclusions sandwiched within several polymeric matrix of polycarbonate, polypropylene, or high density polyethylene, and we analyze the load transfer through the system. To properly describe the load transfer, we studied the rheological properties of the polymers as well as the adhesion between the metal and the matrices. We developed a detailed analytical description of the load transfer and used it to predict the pressure and velocity distribution as well as the surface shear force and tensile stress distribution in the metal. Analytical solutions were developed for both an incompressible Newtonian and power-law flows and the influence of several dimensionless parameters on the stress profiles was investigated. A system able to record in real-time the contact pressure on the interface between the sandwich sample composite and the rotating cylinders was used to validate the pressure profile obtained with the model. The model predicts closely the pressure profile on the sample in the nip gap between the rollers. The predicted maximum tensile stresses in the inclusion for the Newtonian and Power law models are within an order of magnitude as the ultimate strength of the metal. It was found that there is a logarithmic relation between the

  18. Static and dynamic tensile behaviour of aluminium processed by high pressure torsion

    NARCIS (Netherlands)

    Verleysen, P.; Oelbrandt, W.; Naghdy, S.; Kestens, L.

    2015-01-01

    High pressure torsion (HPT) is a severe plastic deformation technique in which a small, disk-like sample is subjected to a torsional deformation under a high hydrostatic pressure. In present study, the static and dynamic tensile behaviour of commercially pure aluminium (99.6 wt%) processed by HPT is

  19. Relationships between phase morphology and deformation mechanisms in polymer nanocomposite nanofibres prepared by an electrospinning process.

    Science.gov (United States)

    Kim, G M; Lach, R; Michler, G H; Pötschke, P; Albrecht, K

    2006-02-28

    Relationships between phase morphology and mechanical deformation processes in various electrospun polymer nanocomposite nanofibres (PNCNFs) containing different types of one-, two- and three-dimensional nanofiller have been investigated by transmission electron microscopy using in situ tensile techniques. From the study of the phase structure of electrospun PNCNFs, two morphological standard types are classified for the analysis of deformation mechanisms: the binary system (polymer matrix and nanofillers), and the ternary system (polymer matrix, nanofillers and nanopores on the fibres surface). According to these categories, deformation processes have been characterized, and different schematic models for these processes are proposed. The finding of importance in the present work is a brittle-to-ductile transition in polymer nanocomposite fibres during in situ tensile deformation processes. This unique feature in the deformation behaviour of electrospun PNCNFs provides an optimal balance of stiffness, strength and toughness for use as reinforcing elements in a polymer based composite of a new kind.

  20. Complicated Interaction of Dynamic Recrystallization and Precipitation During Hot Deformation of Ultrahigh-Strength Stainless Steel

    Science.gov (United States)

    Wang, Xiaohui; Liu, Zhenbao; Luo, Haiwen

    2016-12-01

    A new ultrahigh-strength stainless steel was compressed at the temperature range of 1273 K to 1423 K (1000 °C to 1150 °C) with a strain rate varying from 0.01 to 10 s-1 using a thermomechanical simulator. The microstructures quenched after hot deformation were examined. It was found that dynamic recrystallization (DRX) could occur in this heavily alloyed steel during the entire studied deformation condition. In contrast, dynamic precipitation only takes place at temperatures below 1373 K (1100 °C) and its influence on DRX depends on both deformation temperature and strain rate. The critical strain for the onset of DRX increases as usual with the decreasing temperature or the increasing strain rate; however, it decreases with the increase of strain rate from 1 to 10 s-1 at the temperatures of 1273 K and 1323 K (1000 °C and 1050 °C). This is attributed to the complicated interaction of DRX and dynamic precipitation when both can occur during deformation. On the one hand, dynamic precipitation could occur during deformation below 1373 K (1100 °C) and then suppress DRX due to the pinning of migrating boundaries. On the other hand, such a suppression shall decrease when not enough particles could dynamically precipitate during the short period of deformation at a high strain rate, which should facilitate DRX. Therefore, strain rate has a complicated influence on DRX kinetics. Finally, we developed quantitative models, which can successfully predict the critical strain for DRX, the recrystallized fraction, and grain sizes using the Zener-Holloman parameter as a mere input. Moreover, this model can also simulate the unusual acceleration of DRX at the high strain rate, resulting from the above-stated complicated interaction of dynamic precipitation and DRX.

  1. Dynamic recrystallization behavior of a γ′-hardened nickel-based superalloy during hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongbin; Zhang, Kaifeng [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Jiang, Shaosong, E-mail: jiangshaosong@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhou, Haiping [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhao, Changhong; Yang, Xiaoli [Fushun Special Steel Co. Ltd, Fushun 113000 (China)

    2015-02-25

    Highlights: • The relationship between the peak stress and stable DRX grain size has been expressed by a power law function. • The effect of CDRX characterized by progressive subgrain rotation became weaker with the increasing deformation temperature. • The effect of DDRX became stronger with the increasing strain for the alloy deformed at 1160 °C/0.1 s{sup −1}. • The fraction of twin boundaries is closely related to the deformation temperature and strain. - Abstract: The hot deformation behavior of a γ′-hardened nickel-based superalloy was investigated by means of isothermal compression tests in the temperature range of 1010–1210 °C with a strain rate of 0.1 s{sup −1}. The electron backscatter diffraction (EBSD) technique and transmission electron microscope (TEM) were employed to investigate the effect of deformation temperature and strain on the microstructure evolution and nucleation mechanisms of dynamic recrystallization (DRX). Microstructure observations revealed that the size and volume fraction of DRX grains increased with the increasing temperature. A power exponent relationship was obtained between the stable DRX grain size and the peak stress. Additionally, it was found that the effect of CDRX characterized by progressive subgrain rotation became weaker with the increasing deformation temperature, and DDRX was the operating nucleation mechanism of DRX at higher deformation temperature. On the other hand, the effect of DDRX became stronger with the increasing strain, and CDRX can only be considered as an assistant nucleation mechanism of DRX at the later stage of deformation for the alloy deformed at 1160 °C. Nucleation of DRX can also be activated by the twinning formation. Hence, particular attention was also paid to the evolution of twin boundaries during hot deformation.

  2. Developing the phenomenological equations triaxial deformation of concrete under dynamic loads

    Directory of Open Access Journals (Sweden)

    Berlinov Mikhail

    2017-01-01

    Full Text Available The basic assumptions and hypotheses construction of the computational model studies, taking into account the peculiarities of the work force imperfections of materials under dynamic loading, based on the phenomenological laws of nonlinear rheology and deformable elastic-creeping body. The values for the coefficient vibrocreep computational model under triaxial stress-strain state on the basis of the hypothesis of central symmetry of the hysteresis loop. The basic phenomenological equations allow the calculation of concrete elements in the conditions of triaxial stress-strain state under dynamic impacts and taking into account the non-linearity of the rheology of deformation.

  3. PLASTICITY OF SELECTED METALLIC MATERIALS IN DYNAMIC DEFORMATION CONDITIONS

    OpenAIRE

    2014-01-01

    Characteristics of a modernized flywheel machine has been presented in the paper. The laboratory stand enables to perform dynamic tensile tests and impact bending with a linear velocity of the enforcing element in the range of 5÷40 m/s. A new data acquisition system, based on the tensometric sensors, allows for significant qualitative improvement of registered signals. Some preliminary dynamic forming tests were performed for the selected group of metallic materials. Subsequent microstruct...

  4. Influence of thermally activated processes on the deformation behavior during low temperature ECAP

    Science.gov (United States)

    Fritsch, S.; Scholze, M.; F-X Wagner, M.

    2016-03-01

    High strength aluminum alloys are generally hard to deform. Therefore, the application of conventional severe plastic deformation methods to generate ultrafine-grained microstructures and to further increase strength is considerably limited. In this study, we consider low temperature deformation in a custom-built, cooled equal channel angular pressing (ECAP) tool (internal angle 90°) as an alternative approach to severely plastically deform a 7075 aluminum alloy. To document the maximum improvement of mechanical properties, these alloys are initially deformed from a solid solution heat-treated condition. We characterize the mechanical behavior and the microstructure of the coarse grained initial material at different low temperatures, and we analyze how a tendency for the PLC effect and the strain-hardening rate affect the formability during subsequent severe plastic deformation at low temperatures. We then discuss how the deformation temperature and velocity influence the occurrence of PLC effects and the homogeneity of the deformed ECAP billets. Besides the mechanical properties and these microstructural changes, we discuss technologically relevant processing parameters (such as pressing forces) and practical limitations, as well as changes in fracture behavior of the low temperature deformed materials as a function of deformation temperature.

  5. Dynamic strain ageing of deformed nitrogen-alloyed AISI 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Ehrnsten, U.; Toivonen, A. [Materials and Structural Integrity, VTT Technical Research Centre of Finland, Kemistintie 3, P.O. Box 1704, FIN-02044 VTT (Finland); Ivanchenko, M.; Nevdacha, V.; Yagozinskyy, Y.; Haenninen, H. [Department of Mechanical Engineering, Helsinki University of Technology Puumiehenkuja 3, P.O. Box 4200, FIN-02015 HUT (Finland)

    2004-07-01

    Intergranular stress corrosion cracking has occurred in BWR environment in non-sensitized, deformed austenitic stainless steel materials. The affecting parameters are so far not fully known, but deformation mechanisms may be decisive. The effect of deformation and nitrogen content on the behaviour of austenitic stainless steels was investigated. The materials were austenitic stainless steels of AISI 316L type with different amounts of nitrogen (0.03 - 0.18%) and they were mechanically deformed 0, 5 and 20%. The investigations are focused on the dynamic strain ageing (DSA) behaviour. A few crack growth rate measurements are performed on nuclear grade AISI 316NG material with different degrees of deformation (0, 5 and 20%). The effects of DSA on mechanical properties of these materials are evaluated based on peaks in ultimate tensile strength and strain hardening coefficient and minimum in ductility in the DSA temperature range. Additionally, internal friction measurements have been performed in the temperature range of -100 to 600 deg. C for determining nitrogen interactions with other alloying elements and dislocations (cold-worked samples). The results show an effect of nitrogen on the stainless steel behaviour, e.g. clear indications of dynamic strain ageing and changes in the internal friction peaks as a function of nitrogen content and amount of deformation. (authors)

  6. Ra and the average effective strain of surface asperities deformed in metal-working processes

    DEFF Research Database (Denmark)

    Bay, Niels; Wanheim, Tarras; Petersen, A. S

    1975-01-01

    Based upon a slip-line analysis of the plastic deformation of surface asperities, a theory is developed determining the Ra-value (c.l.a.) and the average effective strain in the surface layer when deforming asperities in metal-working processes. The ratio between Ra and Ra0, the Ra-value after...... and before deformation, is a function of the nominal normal pressure and the initial slope γ0 of the surface asperities. The last parameter does not influence Ra significantly. The average effective strain View the MathML sourcege in the deformed surface layer is a function of the nominal normal pressure...

  7. Dynamic Crystallization: An Influence on Degree of Prior Deformation and Mechanical Strength of 6063 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Gbenebor, O.P

    2012-09-01

    Full Text Available This research is aimed at investigating the influence dynamic solidification of melts on degree of mechanical deformation and mechanical strength of 6063 aluminum alloy. Cylindrical samples of 14mm diameter and 140mm long were die cast following two techniques – vibration and static. Prior deformation via forging was imposed on each solidified sample to achieve 7%, 14%, 21% and 28% thickness reductions respectively for each casting technique. Average deformation load, average hammer velocities and the average energy absorbed were recorded. Tensile properties of each sample were studied via the use of Monsanto tensometer. Mechanical agitation of mould and its content increased the machinability of the alloy even at higer pre deformation. This was justified by the failure of the 28% reduction sample cast on static floor during machining to a tensile piece. The energy absorbed during deformation influences the tensile strength of the material. This increases with increase in percentage deformation except for 28% reduction whose magnitude was lower than that subjected to 21% reduction; vibrated samples possessed superior properties. From results obtained, vibrating a sample and subjecting to 21% pre-deformation possessed the best tensile strength.

  8. Molecular dynamics simulations of the atom packing characteristics of three deformed silver nanoparticles at room temperature.

    Science.gov (United States)

    Zhang, Lin

    2016-03-14

    Deformation is of significance in controlling the shape of materials, but the key structural information of metal nanoparticles is still limited. Molecular dynamics simulations are performed to explore the microscopic details of atom packing differences in three deformed silver nanoparticles with one atom difference. Analytical tools are used to demonstrate the effects of external load and surface atoms of particles on the packing patterns in these deformed nanoparticles including internal energy per atom, pair numbers, and pair distribution functions as well as cross-sectional images. The simulation results show that under small compression, the particles present elastic behaviors. The increasing compression results in the sliding of the atoms in different parts of these particles, and some interfaces are formed between these parts. As the external load becomes large, these deformed particles are compressed into the thickness of several atomic layers. The unloaded particles present different behaviors.

  9. Hot Deformation Behavior and Dynamic Recrystallization of Medium Carbon LZ50 Steel

    Science.gov (United States)

    Du, Shiwen; Chen, Shuangmei; Song, Jianjun; Li, Yongtang

    2017-01-01

    Hot deformation and dynamic recrystallization behaviors of a medium carbon steel LZ50 were systematically investigated in the temperature range from 1143 K to 1443 K (870 °C to 1170 °C) at strain rates from 0.05 to 3s-1 using a Gleeble-3500 thermo-simulation machine. The flow stress constitutive equation for hot deformation of this steel was developed with the two-stage Laasraoui equation. The activation energy of the tested steel was 304.27 KJ/mol, which was in reasonable agreement with those reported previously. The flow stress of this steel in hot deformation was mainly controlled by dislocation climb during their intragranular motion. The effect of Zener-Hollomon parameter on the characteristic points of the flow curves was studied, and the dependence of critical strain on peak strain obeyed a linear equation. Dynamic recrystallization was the most important softening mechanism for the tested steel during hot deformation. Kinetic equation of this steel was also established based on the flow stress. The austenite grain size of complete dynamic recrystallization was a power law function of Zener-Hollomon parameter with an exponent of -0.2956. Moreover, the microstructures induced under different deformation conditions were analyzed.

  10. Hot Deformation Behavior and Dynamic Recrystallization of Medium Carbon LZ50 Steel

    Science.gov (United States)

    Du, Shiwen; Chen, Shuangmei; Song, Jianjun; Li, Yongtang

    2017-03-01

    Hot deformation and dynamic recrystallization behaviors of a medium carbon steel LZ50 were systematically investigated in the temperature range from 1143 K to 1443 K (870 °C to 1170 °C) at strain rates from 0.05 to 3s-1 using a Gleeble-3500 thermo-simulation machine. The flow stress constitutive equation for hot deformation of this steel was developed with the two-stage Laasraoui equation. The activation energy of the tested steel was 304.27 KJ/mol, which was in reasonable agreement with those reported previously. The flow stress of this steel in hot deformation was mainly controlled by dislocation climb during their intragranular motion. The effect of Zener-Hollomon parameter on the characteristic points of the flow curves was studied, and the dependence of critical strain on peak strain obeyed a linear equation. Dynamic recrystallization was the most important softening mechanism for the tested steel during hot deformation. Kinetic equation of this steel was also established based on the flow stress. The austenite grain size of complete dynamic recrystallization was a power law function of Zener-Hollomon parameter with an exponent of -0.2956. Moreover, the microstructures induced under different deformation conditions were analyzed.

  11. Role of molecular turnover in dynamic deformation of a three-dimensional cellular membrane.

    Science.gov (United States)

    Okuda, Satoru; Eiraku, Mototsugu

    2017-05-29

    In cells, the molecular constituents of membranes are dynamically turned over by transportation from one membrane to another. This molecular turnover causes the membrane to shrink or expand by sensing the stress state within the cell, changing its morphology. At present, little is known as to how this turnover regulates the dynamic deformation of cellular membranes. In this study, we propose a new physical model by which molecular turnover is coupled with three-dimensional membrane deformation to explore mechanosensing roles of turnover in cellular membrane deformations. In particular, as an example of microscopic machinery, based on a coarse-graining description, we suppose that molecular turnover depends on the local membrane strain. Using the proposed model, we demonstrate computational simulations of a single vesicle. The results show that molecular turnover adaptively facilitates vesicle deformation, owing to its stress dependence; while the vesicle drastically expands in the case with low bending rigidity, it shrinks in that with high bending rigidity. Moreover, localized active tension on the membrane causes cellular migration by driving the directional transport of molecules within the cell. These results illustrate the use of the proposed model as well as the role of turnover in the dynamic deformations of cellular membranes.

  12. PLASTICITY OF SELECTED METALLIC MATERIALS IN DYNAMIC DEFORMATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Jacek PAWLICKI

    2014-06-01

    Full Text Available Characteristics of a modernized flywheel machine has been presented in the paper. The laboratory stand enables to perform dynamic tensile tests and impact bending with a linear velocity of the enforcing element in the range of 5÷40 m/s. A new data acquisition system, based on the tensometric sensors, allows for significant qualitative improvement of registered signals. Some preliminary dynamic forming tests were performed for the selected group of metallic materials. Subsequent microstructural examinations and identification of the fracture type enabled to describe a correlation between strain rate, strain and microstructure.

  13. Odd-parity currents induced by dynamic deformations in graphene-like systems

    Science.gov (United States)

    Zhang, Kai; Zhang, Erhu; Chen, Huawei; Zhang, Shengli

    2016-11-01

    Reduced (3  +  1)-dimensional Dirac systems with inter-pseudo-spin and inter-valley scattering are employed to investigate current responses to (chiral) gauge fields in graphene-like systems. From (chiral) current—(chiral) current correlation functions, we derive the current responses. Except for electric currents induced by external gauge fields, we find the inter-valley scattering can break the topological nature of odd-parity currents. Given the proper conditions, this property can help us realize valley-polarized electric currents. Through the dynamic deformations generating the chiral gauge fields, we find the vortex-like currents while their profiles can be tuned by superposition of some deformations. In particular, we find a more manageable approach to realize the topological electric current by choosing a linear dynamic deformation.

  14. Dynamical Modes of Deformed Red Blood Cells and Lipid Vesicles in Flows

    Science.gov (United States)

    Noguchi, H.

    Red blood cells and lipid vesicles exhibit rich behaivor in flows.Their dynamics were studied using a particle-based hydrodynamic simulation method, multi-particle collision dynamics. Rupture of lipid vesicles in simple shear flow was simulated by meshless membrane model. Several shape transitions of lipid vesicles and red blood cells are induced by flows. Transition of a lipid vesicle from budded to prolate shapes with increasing shear rate and ordered alignments of deformed elastic vesicles in high density are presented.

  15. Dynamics of cross-bridge cycling, ATP hydrolysis, force generation, and deformation in cardiac muscle.

    Science.gov (United States)

    Tewari, Shivendra G; Bugenhagen, Scott M; Palmer, Bradley M; Beard, Daniel A

    2016-07-01

    Despite extensive study over the past six decades the coupling of chemical reaction and mechanical processes in muscle dynamics is not well understood. We lack a theoretical description of how chemical processes (metabolite binding, ATP hydrolysis) influence and are influenced by mechanical processes (deformation and force generation). To address this need, a mathematical model of the muscle cross-bridge (XB) cycle based on Huxley's sliding filament theory is developed that explicitly accounts for the chemical transformation events and the influence of strain on state transitions. The model is identified based on elastic and viscous moduli data from mouse and rat myocardial strips over a range of perturbation frequencies, and MgATP and inorganic phosphate (Pi) concentrations. Simulations of the identified model reproduce the observed effects of MgATP and MgADP on the rate of force development. Furthermore, simulations reveal that the rate of force re-development measured in slack-restretch experiments is not directly proportional to the rate of XB cycling. For these experiments, the model predicts that the observed increase in the rate of force generation with increased Pi concentration is due to inhibition of cycle turnover by Pi. Finally, the model captures the observed phenomena of force yielding suggesting that it is a result of rapid detachment of stretched attached myosin heads.

  16. Effect of dynamic plastic deformation on microstructure and annealing behaviour of modified 9Cr-1Mo steel

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg V.; Tao, N. R.;

    2015-01-01

    The effect of dynamic plastic deformation on the microstructure of a modified 9Cr - 1Mo steel has been investigated in comparison with the effect of quasi- static compression. It is found that the boundary spacing after dynamic plastic deformation is smaller and the hardness is higher than those ...

  17. Dynamic Stiffness Matrix for a Beam Element with Shear Deformation

    Directory of Open Access Journals (Sweden)

    Walter D. Pilkey

    1995-01-01

    Full Text Available A method for calculating the dynamic transfer and stiffness matrices for a straight Timoshenko shear beam is presented. The method is applicable to beams with arbitrarily shaped cross sections and places no restrictions on the orientation of the element coordinate system axes in the plane of the cross section. These new matrices are needed because, for a Timoshenko beam with an arbitrarily shaped cross section, deflections due to shear in the two perpendicular planes are coupled even when the coordinate axes are chosen to be parallel to the principal axes of inertia.

  18. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    Science.gov (United States)

    Mathiazhagan, S.; Anup, S.

    2016-08-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.

  19. In vivo dynamic deformation of the mitral valve annulus.

    Science.gov (United States)

    Eckert, Chad E; Zubiate, Brett; Vergnat, Mathieu; Gorman, Joseph H; Gorman, Robert C; Sacks, Michael S

    2009-09-01

    Though mitral valve (MV) repair surgical procedures have increased in the United States [Gammie, J. S., et al. Ann. Thorac. Surg. 87(5):1431-1437, 2009; Nowicki, E. R., et al. Am. Heart J. 145(6):1058-1062, 2003], studies suggest that altering MV stress states may have an effect on tissue homeostasis, which could impact the long-term outcome [Accola, K. D., et al. Ann. Thorac. Surg. 79(4):1276-1283, 2005; Fasol, R., et al. Ann. Thorac. Surg. 77(6):1985-1988, 2004; Flameng, W., P. Herijgers, and K. Bogaerts. Circulation 107(12):1609-1613, 2003; Gillinov, A. M., et al. Ann. Thorac. Surg. 69(3):717-721, 2000]. Improved computational modeling that incorporates structural and geometrical data as well as cellular components has the potential to predict such changes; however, the absence of important boundary condition information limits current efforts. In this study, novel high definition in vivo annular kinematic data collected from surgically implanted sonocrystals in sheep was fit to a contiguous 3D spline based on quintic-order hermite shape functions with C(2) continuity. From the interpolated displacements, the annular axial strain and strain rate, bending, and twist along the entire annulus were calculated over the cardiac cycle. Axial strain was shown to be regionally and temporally variant with minimum and maximum values of -10 and 4%, respectively, observed. Similarly, regionally and temporally variant strain rate values, up to 100%/s contraction and 120%/s elongation, were observed. Both annular bend and twist data showed little deviation from unity with limited regional variations, indicating that most of the energy for deformation was associated with annular axial strain. The regionally and temporally variant strain/strain rate behavior of the annulus are related to the varied fibrous-muscle structure and contractile behavior of the annulus and surrounding ventricular structures, although specific details are still unavailable. With the high resolution

  20. Dynamic Plastic Deformation (DPD): A Novel Technique for Synthesizing Bulk Nanostructured Metals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    While some superior properties of nanostructured materials (with structural scales below 100 nm) have attracted numerous interests of material scientists, technique development for synthesizing nanostructured metals and alloys in 3-dimensional (3D) bulk forms is still challenging despite of extensive investigations over decades.Here we report a novel synthesis technique for bulk nanostructured metals based on plastic deformation at high Zener-Hollomon parameters (high strain rates or low temperatures), i.e., dynamic plastic deformation (DPD).The basic concept behind this approach will be addressed together with a few examples to demonstrate the capability and characteristics of this method. Perspectives and future developments of this technique will be highlighted.

  1. Deformation behavior of metallic glass composites reinforced with shape memory nanowires studied via molecular dynamics simulations

    Science.gov (United States)

    Şopu, D.; Stoica, M.; Eckert, J.

    2015-05-01

    Molecular dynamics simulations indicate that the deformation behavior and mechanism of Cu64Zr36 composite structures reinforced with B2 CuZr nanowires are strongly influenced by the martensitic phase transformation and distribution of these crystalline precipitates. When nanowires are distributed in the glassy matrix along the deformation direction, a two-steps stress-induced martensitic phase transformation is observed. Since the martensitic transformation is driven by the elastic energy release, the strain localization behavior in the glassy matrix is strongly affected. Therefore, the composite materials reinforced with a crystalline phase, which shows stress-induced martensitic transformation, represent a route for controlling the properties of glassy materials.

  2. Controlling microstructure and texture in magnesium alloy sheet by shear-based deformation processing

    Science.gov (United States)

    Sagapuram, Dinakar

    Application of lightweight Mg sheet is limited by its low workability, both in production of sheet (typically by multistep hot and cold-rolling) and forming of sheet into components. Large strain extrusion machining (LSEM), a constrained chip formation process, is used to create Mg alloy AZ31B sheet in a single deformation step. The deformation in LSEM is shown to be intense simple shear that is confined to a narrow zone, which results in significant deformation-induced heating up to ~ 200°C and reduces the need for pre-heating to realize continuous sheet forms. This study focuses on the texture and microstructure development in the sheet processed by LSEM. Interestingly, deep, highly twinned steady-state layer develops in the workpiece subsurface due to the compressive field ahead of the shear zone. The shear deformation, in conjunction with this pre-deformed twinned layer, results in tilted-basal textures in the sheet with basal planes tilted well away from the surface. These textures are significantly different from those in rolled sheet, where basal planes are nearly parallel to the surface. By controlling the strain path, the basal plane inclination from the surface could be varied in the range of 32-53°. B-fiber (basal plane parallel to LSEM shear plane), associated with basal slip, is the major texture component in the sheet. An additional minor C2-fiber component appears above 250°C due to the thermal activation of pyramidal slip. Together with these textures, microstructure ranges from severely cold-worked to (dynamically) recrystallized type, with the corresponding grain sizes varying from ultrafine- (~ 200 nm) to fine- (2 mum) grained. Small-scale limiting dome height (LDH) confirmed enhanced formability (~ 50% increase in LDH) of LSEM sheet over the conventional rolled sheet. Premature, twinning-driven shear fractures are observed in the rolled sheet with the basal texture. In contrast, LSEM sheet with a tilted-basal texture favorably oriented for

  3. In situ observation of deformation processes in nanocrystalline face-centered cubic metals.

    Science.gov (United States)

    Kobler, Aaron; Brandl, Christian; Hahn, Horst; Kübel, Christian

    2016-01-01

    The atomistic mechanisms active during plastic deformation of nanocrystalline metals are still a subject of controversy. The recently developed approach of combining automated crystal orientation mapping (ACOM) and in situ straining inside a transmission electron microscope was applied to study the deformation of nanocrystalline Pd x Au1- x thin films. This combination enables direct imaging of simultaneously occurring plastic deformation processes in one experiment, such as grain boundary motion, twin activity and grain rotation. Large-angle grain rotations with ≈39° and ≈60° occur and can be related to twin formation, twin migration and twin-twin interaction as a result of partial dislocation activity. Furthermore, plastic deformation in nanocrystalline thin films was found to be partially reversible upon rupture of the film. In conclusion, conventional deformation mechanisms are still active in nanocrystalline metals but with different weighting as compared with conventional materials with coarser grains.

  4. Numerical Simulation of Deforming Manufacture Process for Automobile Bevel Gear Blank

    Institute of Scientific and Technical Information of China (English)

    WANG Zewu; ZENG Shuqin; YANG Xinhua; WANG Cheng

    2006-01-01

    Aiming at solving the difficulties of deforming manufacture of the automobile rear axle bevel gear blank, the paper presented to adopt the numerical simulation method to study the rolling process of the bevel gear blank instead of the traditional expensive trail-and-error method. A three-dimensional simulation model of the Φ500 bevel gear blank radial ring rolling machine was firstly created based on the general dynamic explicit finite element code ANSYS/LS-DYNA, and then realized the virtual simulation of the entire rolling process of the bevel gear blank within a producing cycle. The simulation results displayed the real-time blank enlarging and fleck generating as well as the stress, strain and displacement contours, which are in good agreements with the real ring rolling process. It is concluded that this numerical simulation method is feasible and can be used to guide the practical rolling process of the bevel gear blank as well as other profile-shaped annular blanks.

  5. Dynamic precipitation of nickel-based superalloys undergoing severe deformation below the solvus temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nowotnik, Andrzej; Rokicki, Pawel; Mrowka-Nowotnik, Grazyna; Sieniawski, Jan [Rzeszow Univ. of Technology (Poland). Dept. of Material Science

    2015-07-15

    The authors performed uniaxial compression tests of nickel-based superalloys: single crystal CMSX-4, also precipitation hardened; Inconel 718 and X750, at temperatures below the γ' solvus, in order to study the effect of temperature and strain rate on their flow stress and microstructural development. On the basis of the obtained flow stress values, the activation energy of a high-temperature deformation process was estimated. Microstructural observations of the deformed samples at high temperatures, previously solution heat treated and aged CMSX-4 and Inconel alloys revealed non-uniform deformation effects. Distribution of either molybdenum- or niobium-rich carbides was found to be affected by localized flow within the investigated strain range at relatively low deformation temperatures, 720-850 C. Microstructural examination of the alloys also showed that shear banding and cavity growth were responsible for the decrease in flow stress and a specimen fracture at larger strains.

  6. Rapid Finite Element Analysis of Bulk Metal Forming Process Based on Deformation Theory

    Institute of Scientific and Technical Information of China (English)

    WANG Peng; DONG Xiang-huai; FU Li-jun

    2009-01-01

    The one-step finite element method (FEM), based on plastic deformation theory, has been widely used to simulate sheet metal forming processes, but its application in bulk metal forming simulation has been seldom investigated, because of the complexity involved. Thus, a bulk metal forming process was analyzed using a rapid FEM based on deformation theory. The material was assumed to be rigid-plastic and strain-hardened. The constitutive relationship between stress and total strain was adopted, whereas the incompressible condition was enforced by penalty function. The geometrical non-linearity in large plastic deformation was taken into consideration. Furthermore, the force boundary condition was treated by a simplified equivalent approach, considering the contact history. Based on constraint variational principle, the deformation FEM was proposed. The one-step forward simulation of axisymmetric upsetting process was performed using this method. The results were compared with those obtained by the traditional incremental FEM to verify the feasibility of the proposed method.

  7. Dynamic characterization for tumor- and deformation-induced thermal contrasts on breast surface: a simulation study

    Science.gov (United States)

    Jiang, Li; Zhan, Wang; Loew, Murray H.

    2009-02-01

    Understanding the complex relationship between the thermal contrasts on the breast surface and the underlying physiological and pathological factors is important for thermogram-based breast cancer detection. Our previous work introduced a combined thermal-elastic modeling method with improved ability to simultaneously characterize both elastic-deformation-induced and tumor-induced thermal contrasts on the breast. In this paper, the technique is further extended to investigate the dynamic behaviors of the breast thermal contrasts during cold stress and thermal recovery procedures in the practice of dynamic thermal imaging. A finite-element method (FEM) has been developed for dynamic thermal and elastic modeling. It is combined with a technique to address the nonlinear elasticity of breast tissues, as would arise in the large deformations caused by gravity. Our simulation results indicate that different sources of the thermal contrasts, such as the presence of a tumor, and elastic deformation, have different transient time courses in dynamic thermal imaging with cold-stress and thermal-recovery. Using appropriate quantifications of the thermal contrasts, we find that the tumor- and deformation-induced thermal contrasts show opposite changes in the initial period of the dynamic courses, whereas the global maxima of the contrast curves are reached at different time points during a cold-stress or thermal-recovery procedure. Moreover, deeper tumors generally lead to smaller peaks but have larger lags in the thermal contrast time course. These findings suggest that dynamic thermal imaging could be useful to differentiate the sources of the thermal contrast on breast surface and hence to enhance tumor detectability.

  8. Sytematics of dynamic moment of inertia in super-deformed bands in Mass ~150 region

    CERN Document Server

    Roy, S

    2016-01-01

    An empirical semi-classical model have been proposed to investigate the nature of dynamic moment-of-inertia , of the super-deformed (SD) bands in nuclei of mass 150 region. The model incorporates an additional frequency dependent distortion, to the dynamic moment-of-inertia term akin to a vibrational component to explain the extreme spin structure of these bands. Using this model two separate components to the dynamic moment of inertia, $\\Im^{(2)}$ have been identified for the SD band structure for the mass 150 region. Three distinct nature of the moment-of-inertia, also have been identified using the two parameter model.

  9. Signature of magmatic processes in ground deformation signals from Phlegraean Fields (Italy)

    Science.gov (United States)

    Bagagli, Matteo; Montagna, Chiara Paola; Longo, Antonella; Papale, Paolo

    2016-04-01

    Ground deformation signals such as dilatometric and tiltmetric ones, are nowadays well studied from the vulcanological community all over the world. These signals can be used to retrieve information on volcanoes state and to study the magma dynamics in their plumbing system. We compared synthetic signals in the Very Long Period (VLP, 10-2 - 10-1 Hz) and Ultra Long Period (ULP, 10-4 - 10-2 Hz) bands obtained from the simulation of magma mixing in shallow reservoirs ([3],[4]) with real data obtained from the dilatometers and tiltmeters network situated in the Phlegraean Fields near Naples (Italy), in order to define and constrain the relationships between them. Analyses of data from the October 2006 seismic swarm in the area show that the frequency spectrum of the synthetics is remarkably similar to the transient present in the real signals. In depth studies with accurated techniques for spectral analysis (i.e wavelet transform) and application of this method to other time windows have identified in the bandwidth around 10-4Hz (between 1h30m and 2h45m) peaks that are fairly stable and independent from the processing carried out on the full-band signal. These peaks could be the signature of ongoing convection at depth. It is well known that re-injection of juvenile magmas can reactivate the eruption dynamics ([1],[2]), thus being able to define mixing markers and detect them in the ground deformation signals is a relevant topic in order to understand the dynamics of active and quiescent vulcanoes and to eventually improve early-warning methods for impending eruptions. [1] Arienzo, I. et al. (2010). "The feeding system of Agnano-Monte Spina eruption (Campi Flegrei, Italy): dragging the past into present activity and future scenarios". In: Chemical Geology 270.1, pp. 135-147. [2] Bachmann, Olivier and George Bergantz (2008). "The magma reservoirs that feed supereruptions". In: Elements 4.1, pp. 17-21. [3] Longo, Antonella et al. (2012). "Magma convection and mixing

  10. Dynamic tensile deformation and fracture of a highly particle-filled composite using SHPB and high-speed DIC method

    Directory of Open Access Journals (Sweden)

    Huang F.

    2012-08-01

    Full Text Available In this work, various tensile tests, including Brazilian disc test (BDT, flattened Brazilian disc (FBD test and semi-circular bending (SCB test, were carried out on a highly particle-filled composite by using a split Hopkinson pressure bar (SHPB. With the consideration of low strength and low wave impedance of the materials, a quartz crystal transducer was embedded in SHPB to measure the loading forces. A high-speed camera was used to capture the deformation and fracture process of materials. Digital image correlation (DIC method was used to process these digital images to obtain the dynamic deformation information. Based on the measured strain fields, the crack growth path was determined and the failure mechanism of samples was analyzed. Combining SHPB and DIC method, the indirect tensile stress strain plots of disc samples were obtained, and the dynamic fracture toughness of materials was measured using both FBD and SCB tests. The results show that the tensile failure strength and fracture toughness increases with the increase of strain rates, exhibiting strain rate dependence. The high-speed DIC method combined with SHPB is effective to study the dynamic tensile behaviour of brittle materials with low strengths.

  11. Dynamic tensile deformation and fracture of a highly particle-filled composite using SHPB and high-speed DIC method

    Science.gov (United States)

    Zhou, Z.; Chen, P.; Guo, B.; Huang, F.

    2012-08-01

    In this work, various tensile tests, including Brazilian disc test (BDT), flattened Brazilian disc (FBD) test and semi-circular bending (SCB) test, were carried out on a highly particle-filled composite by using a split Hopkinson pressure bar (SHPB). With the consideration of low strength and low wave impedance of the materials, a quartz crystal transducer was embedded in SHPB to measure the loading forces. A high-speed camera was used to capture the deformation and fracture process of materials. Digital image correlation (DIC) method was used to process these digital images to obtain the dynamic deformation information. Based on the measured strain fields, the crack growth path was determined and the failure mechanism of samples was analyzed. Combining SHPB and DIC method, the indirect tensile stress strain plots of disc samples were obtained, and the dynamic fracture toughness of materials was measured using both FBD and SCB tests. The results show that the tensile failure strength and fracture toughness increases with the increase of strain rates, exhibiting strain rate dependence. The high-speed DIC method combined with SHPB is effective to study the dynamic tensile behaviour of brittle materials with low strengths.

  12. In Vivo Dynamic Deformation of Articular Cartilage in Intact Joints Loaded by Controlled Muscular Contractions.

    Directory of Open Access Journals (Sweden)

    Ziad Abusara

    Full Text Available When synovial joints are loaded, the articular cartilage and the cells residing in it deform. Cartilage deformation has been related to structural tissue damage, and cell deformation has been associated with cell signalling and corresponding anabolic and catabolic responses. Despite the acknowledged importance of cartilage and cell deformation, there are no dynamic data on these measures from joints of live animals using muscular load application. Research in this area has typically been done using confined and unconfined loading configurations and indentation testing. These loading conditions can be well controlled and allow for accurate measurements of cartilage and cell deformations, but they have little to do with the contact mechanics occurring in a joint where non-congruent cartilage surfaces with different material and functional properties are pressed against each other by muscular forces. The aim of this study was to measure in vivo, real time articular cartilage deformations for precisely controlled static and dynamic muscular loading conditions in the knees of mice. Fifty and 80% of the maximal knee extensor muscular force (equivalent to approximately 0.4N and 0.6N produced average peak articular cartilage strains of 10.5±1.0% and 18.3±1.3% (Mean ± SD, respectively, during 8s contractions. A sequence of 15 repeat, isometric muscular contractions (0.5s on, 3.5s off of 50% and 80% of maximal muscular force produced cartilage strains of 3.0±1.1% and 9.6±1.5% (Mean ± SD on the femoral condyles of the mouse knee. Cartilage thickness recovery following mechanical compression was highly viscoelastic and took almost 50s following force removal in the static tests.

  13. In Vivo Dynamic Deformation of Articular Cartilage in Intact Joints Loaded by Controlled Muscular Contractions.

    Science.gov (United States)

    Abusara, Ziad; Von Kossel, Markus; Herzog, Walter

    2016-01-01

    When synovial joints are loaded, the articular cartilage and the cells residing in it deform. Cartilage deformation has been related to structural tissue damage, and cell deformation has been associated with cell signalling and corresponding anabolic and catabolic responses. Despite the acknowledged importance of cartilage and cell deformation, there are no dynamic data on these measures from joints of live animals using muscular load application. Research in this area has typically been done using confined and unconfined loading configurations and indentation testing. These loading conditions can be well controlled and allow for accurate measurements of cartilage and cell deformations, but they have little to do with the contact mechanics occurring in a joint where non-congruent cartilage surfaces with different material and functional properties are pressed against each other by muscular forces. The aim of this study was to measure in vivo, real time articular cartilage deformations for precisely controlled static and dynamic muscular loading conditions in the knees of mice. Fifty and 80% of the maximal knee extensor muscular force (equivalent to approximately 0.4N and 0.6N) produced average peak articular cartilage strains of 10.5±1.0% and 18.3±1.3% (Mean ± SD), respectively, during 8s contractions. A sequence of 15 repeat, isometric muscular contractions (0.5s on, 3.5s off) of 50% and 80% of maximal muscular force produced cartilage strains of 3.0±1.1% and 9.6±1.5% (Mean ± SD) on the femoral condyles of the mouse knee. Cartilage thickness recovery following mechanical compression was highly viscoelastic and took almost 50s following force removal in the static tests.

  14. Ongoing Active Deformation Processes at Fernandina Volcano (Galapagos) Detected via Multi-Orbit COSMO-SkyMed SAR Data Analysis

    Science.gov (United States)

    Pepe, Susi; Castaldo, Raffaele; De Luca, Claudio; Casu, Francesco; Tizzani, Pietro; Sansosti, Eugenio

    2014-05-01

    . Starting from these observations, we set up a 3D time dependent numerical model in a fluid dynamic context; in particular, we consider the creeping flow approximation in order to simulate the stress temporal evolution inside the volcano conduit. The preliminary results show that the stress is concentred in the areas corresponding to the circumferential eruptive fissures mentioned above. The COSMO-SkyMed data used in this study have been processed at IREA-CNR within the SAR4Volcanoes project under Italian Space Agency agreement n. I/034/11/0.

  15. Surface Dynamic Deformation Estimates From Seismicity Near the Itoiz Reservoir, Northern Spain

    CERN Document Server

    Santoyo, Miguel A; García-Jerez, Antonio; Luzón, Francisco

    2014-01-01

    We analyzed the ground motion time histories due to the local seismicity near the Itoiz reservoir, in order to estimate the surface 3D displacement-gradients and dynamic deformations. The seismic data were obtained by a semi-permanent broadband and accelerometric network installed by the University of Almeria during 2008 and 2009. Seismic sensors were located on surface and at underground sites in the vicinity of the dam. The dynamic deformation field was calculated by two different methods. On one hand, by the Seismo-Geodetic method using the data from a three-station micro-array. On the other hand, by Single-Station estimates of displacement gradients, assuming the incidence of body wave fields propagating through the recording site. The dynamic deformations obtained from both methods were compared and analyzed in the context of the local effects near the dam. The shallow 1D velocity structure was estimated from seismic data by modeling the body-wave travel times. After the comparison of the dynamic displac...

  16. Dynamic Recrystallization Kinetics and Microstructural Evolution for LZ50 Steel During Hot Deformation

    Science.gov (United States)

    Du, Shiwen; Chen, Shuangmei; Song, Jianjun

    2016-09-01

    The dynamic recrystallization (DRX) behavior of LZ50 steel was investigated using hot compression tests at a deformation temperature of 870-1170 °C and a strain rate of 0.05-3 s-1. The effects of deformation temperature, strain, strain rate, and initial austenite grain size on the microstructural evolution during DRX were studied in detail. The austenite grain size of DRX was refined with increasing strain rate and decreasing temperature, whereas the initial grain size had no influence on DRX grain size. A model based on the Avrami equation was proposed to estimate the kinetics of the DRX under different deformation conditions. A DRX map, which was derived from the DRX kinetics, the recrystallized microstructure, and the flow stress analysis, can be used to identify optimal deformation conditions. The initiation of DRX was lower than Z c (critical Zener-Hollomon parameter) and higher than ɛc (critical strain). The relationship between the DRX microstructure and the Z parameter was analyzed. Fine DRX grain sizes can be achieved with a moderate Z value, which can be used to identify suitable deformation parameters.

  17. Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study.

    Science.gov (United States)

    Zhong, C; Zhang, H; Cao, Q P; Wang, X D; Zhang, D X; Ramamurty, U; Jiang, J Z

    2016-08-02

    Molecular dynamics simulations were employed to investigate the plastic deformation within the shear bands in three different metallic glasses (MGs). To mimic shear bands, MG specimens were first deformed until flow localization occurs, and then the volume of the material within the localized regions was extracted and replicated. Homogeneous deformation that is independent of the size of the specimen was observed in specimens with shear band like structure, even at a temperature that is far below the glass transition temperature. Structural relaxation and rapid cooling were employed to examine the effect of free volume content on the deformation behavior. This was followed by detailed atomic structure analyses, employing the concepts of Voronoi polyhedra and "liquid-like" regions that contain high fraction of sub-atomic size open volumes. Results suggest that the total fraction of atoms in liquid-like regions is a key parameter that controls the plastic deformation in MGs. These are discussed in the context of reported experimental results and possible strategies for synthesizing monolithic amorphous materials that can accommodate large tensile plasticity are suggested.

  18. Hot Deformation Characteristics of 13Cr-4Ni Stainless Steel Using Constitutive Equation and Processing Map

    Science.gov (United States)

    Kishor, Brij; Chaudhari, G. P.; Nath, S. K.

    2016-07-01

    Hot compression tests were performed to study the hot deformation characteristics of 13Cr-4Ni stainless steel. The tests were performed in the strain rate range of 0.001-10 s-1 and temperature range of 900-1100 °C using Gleeble® 3800 simulator. A constitutive equation of Arrhenius type was established based on the experimental data to calculate the different material constants, and average value of apparent activation energy was found to be 444 kJ/mol. Zener-Hollomon parameter, Z, was estimated in order to characterize the flow stress behavior. Power dissipation and instability maps developed on the basis of dynamic materials model for true strain of 0.5 show optimum hot working conditions corresponding to peak efficiency range of about 28-32%. These lie in the temperature range of 950-1025 °C and corresponding strain rate range of 0.001-0.01 s-1 and in the temperature range of 1050-1100 °C and corresponding strain rate range of 0.01-0.1 s-1. The flow characteristics in these conditions show dynamic recrystallization behavior. The microstructures are correlated to the different stability domains indicated in the processing map.

  19. Dynamic security assessment processing system

    Science.gov (United States)

    Tang, Lei

    The architecture of dynamic security assessment processing system (DSAPS) is proposed to address online dynamic security assessment (DSA) with focus of the dissertation on low-probability, high-consequence events. DSAPS upgrades current online DSA functions and adds new functions to fit into the modern power grid. Trajectory sensitivity analysis is introduced and its applications in power system are reviewed. An index is presented to assess transient voltage dips quantitatively using trajectory sensitivities. Then the framework of anticipatory computing system (ACS) for cascading defense is presented as an important function of DSAPS. ACS addresses various security problems and the uncertainties in cascading outages. Corrective control design is automated to mitigate the system stress in cascading progressions. The corrective controls introduced in the dissertation include corrective security constrained optimal power flow, a two-stage load control for severe under-frequency conditions, and transient stability constrained optimal power flow for cascading outages. With state-of-the-art computing facilities to perform high-speed extended-term time-domain simulation and optimization for large-scale systems, DSAPS/ACS efficiently addresses online DSA for low-probability, high-consequence events, which are not addressed by today's industrial practice. Human interference is reduced in the computationally burdensome analysis.

  20. Formation and subdivision of deformation structures during plastic deformation

    DEFF Research Database (Denmark)

    Jakobsen, B.; Poulsen, H.F.; Lienert, U.;

    2006-01-01

    During plastic deformation of metals and alloys, dislocations arrange in ordered patterns. How and when these self-organization processes take place have remained elusive, because in situ observations have not been feasible. We present an x-ray diffraction method that provided data on the dynamics...... of individual, deeply embedded dislocation structures. During tensile deformation of pure copper, dislocation-free regions were identified. They showed an unexpected intermittent dynamics, for example, appearing and disappearing with proceeding deformation and even displaying transient splitting behavior....... Insight into these processes is relevant for an understanding of the strength and work-hardening of deformed materials....

  1. The role of the droplet deformations in the bouncing droplet dynamics

    Science.gov (United States)

    Terwagne, D.; Ludewig, F.; Vandewalle, N.; Dorbolo, S.

    2013-12-01

    Droplets bouncing on a vibrated liquid bath open ways to methods of manipulating droplets, creating double emulsion, and performing pilot wave model experiments. In this work, we focus on the role of the droplet deformations in the vertical bouncing dynamics by neglecting the deformation of the surface of the bath. To be under this favorable condition, low viscous oil droplets are dropped over a highly viscous oil bath that is vibrated. These droplets bounce vertically on the surface of the bath and exhibit many periodic trajectories and resonant modes when tuning the forcing parameters, i.e., the oscillation of the bath. This complex dynamics emphasizes the interplay between elastic energy storage and energy dissipation in droplets at each bounce. We propose to model droplets using a bouncing mass-spring-damper system that mimics a deformable droplet bouncing on a non-deformable liquid bath. From the experimental measurements, we constructed bifurcation diagrams of the bouncing trajectories and challenged our bouncing spring model. The agreement between experiment and the spring model reveals that this model can be used to rationalize and predict a variety of bouncing droplets behaviors involving multi-periodicities.

  2. Microstructure and annealing behavior of a modified 9Cr-1Mo steel after dynamic plastic deformation to different strains

    Science.gov (United States)

    Zhang, Z. B.; Mishin, O. V.; Tao, N. R.; Pantleon, W.

    2015-03-01

    The microstructure, hardness and tensile properties of a modified 9Cr-1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level of strength can be achieved by DPD to a strain of 2.3, and that the microstructure at this strain contains a large fraction of high angle boundaries. The ductility of the DPD processed steel is however low. Considerable structural coarsening of the deformed microstructure without pronounced recrystallization takes place during annealing of the low-strain and high-strain samples for 1 h at 650 °C and 600 °C, respectively. Both coarsening and partial recrystallization occur in the high-strain sample during annealing at 650 °C for 1 h. For this sample, it is found that whereas coarsening alone results in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength.

  3. Microstructure and annealing behavior of a modified 9Cr−1Mo steel after dynamic plastic deformation to different strains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.B.; Mishin, O.V. [Danish-Chinese Center for Nanometals, Section for Materials Science and Advanced Characterization, Department of Wind Energy, Technical University of Denmark, Risø Campus, 4000 Roskilde (Denmark); Sino-Danish Center for Education and Research (China); Sino-Danish Center for Education and Research (Denmark); Tao, N.R. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Sino-Danish Center for Education and Research (China); Sino-Danish Center for Education and Research (Denmark); Pantleon, W., E-mail: pawo@dtu.dk [Section for Materials and Surface Engineering, Department of Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Sino-Danish Center for Education and Research (China); Sino-Danish Center for Education and Research (Denmark)

    2015-03-15

    The microstructure, hardness and tensile properties of a modified 9Cr−1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level of strength can be achieved by DPD to a strain of 2.3, and that the microstructure at this strain contains a large fraction of high angle boundaries. The ductility of the DPD processed steel is however low. Considerable structural coarsening of the deformed microstructure without pronounced recrystallization takes place during annealing of the low-strain and high-strain samples for 1 h at 650 °C and 600 °C, respectively. Both coarsening and partial recrystallization occur in the high-strain sample during annealing at 650 °C for 1 h. For this sample, it is found that whereas coarsening alone results in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength.

  4. Deformation behaviour of {gamma}+{alpha}{sub 2} Ti aluminide processed through reaction synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.K., E-mail: rohitkumar_gupta@vssc.gov.in [Vikram Sarabhai Space Centre, ISRO, Trivandrum, Kerala 695 022 (India); Pant, Bhanu [Vikram Sarabhai Space Centre, ISRO, Trivandrum, Kerala 695 022 (India); Kumar, Vinod [SAIL-RDCIS, Ranchi (India); Agarwala, Vijaya [Indian Institute of Technology, Roorkee 247 667 (India); Sinha, P.P. [Vikram Sarabhai Space Centre, ISRO, Trivandrum, Kerala 695 022 (India)

    2013-01-01

    {gamma}+{alpha}{sub 2} titanium aluminide alloys made through reaction synthesis have been used for deformation study. Hot isothermal compression test is carried out to study the deformation characteristics of the alloys using Gleeble thermomechanical simulator. Three alloys based on Ti48Al2Cr2Nb0.1B (at%) are tested at different temperatures and at different strain rates. True stress-true strain plots are analyzed along with analysis of tested specimens. Tested specimens are observed under optical and electron microscopes. Presence of various deformation morphologies and phases were confirmed. Microhardness evaluation and transmission electron microscopic examination are used to confirm the presence of different phases. It is found that dynamic recrystallization is mainly playing role in deformation of these alloys. Presence of dynamically recrystallized (DRX) grains and lamellar microstructures is confirmed at the intergranular area and inside the grains, respectively. A nucleation model is suggested for DRX and lamellar grain nucleation during deformation. Attempt has been made to quantify the presence of various phases through optical microscopy. Hot workability map is also suggested on the basis of microstructural and visual observation of compression tested specimens.

  5. Characterization of Hot Deformation Behavior of a Fe-Cr-Ni-Mo-N Superaustenitic Stainless Steel Using Dynamic Materials Modeling

    Science.gov (United States)

    Pu, Enxiang; Zheng, Wenjie; Song, Zhigang; Feng, Han; Zhu, Yuliang

    2017-02-01

    Hot deformation behavior of a Fe-24Cr-22Ni-7Mo-0.5N superaustenitic stainless steel was investigated by hot compression tests in a wide temperature range of 950-1250 °C and strain rate range of 0.001-10 s-1. The flow curves show that the flow stress decreases as the deformation temperature increases or the strain rate decreases. The processing maps developed on the basis of the dynamic materials model and flow stress data were adopted to optimize the parameters of hot working. It was found that the strain higher than 0.2 has no significant effect on the processing maps. The optimum processing conditions were in the temperature range of 1125-1220 °C and strain rate range of 0.1-3 s-1. Comparing to other stable domains, microstructural observations in this domain revealed the complete dynamic recrystallization (DRX) with finer and more uniform grain size. Flow instability occurred in the domain of temperature lower than 1100 °C and strain rate higher than 0.1 s-1.

  6. Feedforward deformation control of a dielectric elastomer actuator based on a nonlinear dynamic model

    Science.gov (United States)

    Gu, Guo-Ying; Gupta, Ujjaval; Zhu, Jian; Zhu, Li-Min; Zhu, Xiang-Yang

    2015-07-01

    In the practical applications of actuators, the control of their deformation or driving force is a key issue. Most of recent studies on dielectric elastomer actuators (DEAs) focus on issues of mechanics, physics, and material science, whereas less importance is given to the control of these soft actuators. In this paper, we underline the importance of a nonlinear dynamic model as the basis for a feedforward deformation control approach of a rubber-based DEA. Experimental evidence shows the effectiveness of the feedforward controller. The present study confirms that a DEA's trajectory can be finely controlled with a solid nonlinear dynamic model despite the presence of material nonlinearities and electromechanical coupling. The effective control of DEAs may pave the way for extensive emerging applications to soft robots.

  7. Learning the dynamics and time-recursive boundary detection of deformable objects.

    Science.gov (United States)

    Sun, Walter; Cetin, Müjdat; Chan, Raymond; Willsky, Alan S

    2008-11-01

    We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as nonparametric belief propagation on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and the boundary estimation involves incorporating curve evolution into recursive state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. Although this paper focuses on left ventricle segmentation, the method generalizes to temporally segmenting any deformable object.

  8. Analysis of High Temperature Deformed Structure and Dynamic Precipitation in W9Mo3Cr4V Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With TEM、SEM, various high-temperature deformed structures inW9Mo3Cr4V steel were investigated. The sub-structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The relationship between recrystallized structures and dynamic precipitation was discussed. The results showed that the deformed structures in W9Mo3Cr4V steel are more complicated than those in low alloy steels. Because W9Mo3Cr4V steel is a high-speed steel, there are a large number of residual carbides on the matrix. Also, much dynamic precipitating carbides will precipitate during deformation at high temperature.

  9. Dynamic virtual fixture on the Euclidean group for admittance-type manipulator in deforming environments.

    Science.gov (United States)

    Zhang, Dongwen; Zhu, Qingsong; Xiong, Jing; Wang, Lei

    2014-04-27

    In a deforming anatomic environment, the motion of an instrument suffers from complex geometrical and dynamic constraints, robot assisted minimally invasive surgery therefore requires more sophisticated skills for surgeons. This paper proposes a novel dynamic virtual fixture (DVF) to enhance the surgical operation accuracy of admittance-type medical robotics in the deforming environment. A framework for DVF on the Euclidean Group SE(3) is presented, which unites rotation and translation in a compact form. First, we constructed the holonomic/non-holonomic constraints, and then searched for the corresponded reference to make a distinction between preferred and non-preferred directions. Second, different control strategies are employed to deal with the tasks along the distinguished directions. The desired spatial compliance matrix is synthesized from an allowable motion screw set to filter out the task unrelated components from manual input, the operator has complete control over the preferred directions; while the relative motion between the surgical instrument and the anatomy structures is actively tracked and cancelled, the deviation relative to the reference is compensated jointly by the operator and DVF controllers. The operator, haptic device, admittance-type proxy and virtual deforming environment are involved in a hardware-in-the-loop experiment, human-robot cooperation with the assistance of DVF controller is carried out on a deforming sphere to simulate beating heart surgery, performance of the proposed DVF on admittance-type proxy is evaluated, and both human factors and control parameters are analyzed. The DVF can improve the dynamic properties of human-robot cooperation in a low-frequency (0 ~ 40 rad/sec) deforming environment, and maintain synergy of orientation and translation during the operation. Statistical analysis reveals that the operator has intuitive control over the preferred directions, human and the DVF controller jointly control the

  10. R-symmetric axion/natural inflation in supergravity via deformed moduli dynamics

    Directory of Open Access Journals (Sweden)

    Keisuke Harigaya

    2014-12-01

    Full Text Available We construct a natural inflation model in supergravity where the inflaton is identified with a modulus field possessing a shift symmetry. The superpotential for the inflaton is generated by meson condensation due to strong dynamics with deformed moduli constraints. In contrast to models based on gaugino condensation, the inflaton potential is generated without R-symmetry breaking and hence does not depend on the gravitino mass. Thus, our model is compatible with low scale supersymmetry.

  11. Formal analysis of design process dynamics

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; Treur, J.

    2010-01-01

    This paper presents a formal analysis of design process dynamics. Such a formal analysis is a prerequisite to come to a formal theory of design and for the development of automated support for the dynamics of design processes. The analysis was geared toward the identification of dynamic design

  12. Formal analysis of design process dynamics

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; Treur, J.

    2010-01-01

    This paper presents a formal analysis of design process dynamics. Such a formal analysis is a prerequisite to come to a formal theory of design and for the development of automated support for the dynamics of design processes. The analysis was geared toward the identification of dynamic design prope

  13. Dynamic tensile deformation behavior of Zr-based amorphous alloy matrix composites reinforced with tungsten or tantalum fibers

    Science.gov (United States)

    Lee, Hyungsoo; Kim, Gyeong Su; Jeon, Changwoo; Sohn, Seok Su; Lee, Sang-Bok; Lee, Sang-Kwan; Kim, Hyoung Seop; Lee, Sunghak

    2016-07-01

    Zr-based amorphous alloy matrix composites reinforced with tungsten (W) or tantalum (Ta) continuous fibers were fabricated by liquid pressing process. Their dynamic tensile properties were investigated in relation with microstructures and deformation mechanisms by using a split Hopkinson tension bar. The dynamic tensile test results indicated that the maximum strength of the W-fiber-reinforced composite (757 MPa) was much lower than the quasi-statically measured strength, whereas the Ta-fiber-reinforced composite showed very high maximum strength (2129 MPa). In the W-fiber-reinforced composite, the fracture abruptly occurred in perpendicular to the tensile direction because W fibers did not play a role in blocking cracks propagated from the amorphous matrix, thereby resulting in abrupt fracture within elastic range and consequent low tensile strength. The very high dynamic tensile strength of the Ta-fiber-reinforced composite could be explained by the presence of ductile Ta fibers in terms of mechanisms such as (1) interrupted propagation of cracks initiated in the amorphous matrix, (2) formation of lots of cracks in the amorphous matrix, and (3) sharing of loads and severe deformation (necking) of Ta fibers in cracked regions.

  14. Analytical study on web deformation by tension in roll-to-roll printing process

    Science.gov (United States)

    Kang, Y. S.; Hong, M. S.; Lee, S. H.; Jeon, Y. H.; Kang, D.; Lee, N. K.; Lee, M. G.

    2017-08-01

    Recently, flexible devices have gained high intentions for flexible display, Radio Frequency Identification (RFID), bio-sensor and so on. For manufacturing of the flexible devices, roll-to-roll process is a good candidate because of its low production cost and high productivity. Flexible substrate has a non-uniform deformation distribution by tension. Because the roll-to-roll process carries out a number of overlay printing processes, the deformation affect overlay printing precision and printable areas. In this study, the deformation of flexible substrate was analyzed by using finite element analysis and it was verified through experiments. More deformation occurred in the middle region in the direction parallel to rolling of the flexible substrate. It is confirmed through experiments and analysis that deformation occurs less at the both ends than in the middle region. Based on these results, a hourglass roll is proposed as a mechanical design of the roll to compensate the non-uniform deformation of the flexible substrate. In the hourglass roll, high stiffness material is used in the core and low stiffness material such as an elastic material is wrapped. The diameter of the core roll was designed to be the minimum at the middle and the maximum at both ends. We tried to compensate the non-uniform deformation distribution of the flexible substrate by using the variation of the contact stiffness between the roll and the flexible substrate. Deformation distribution of flexible substrates was confirmed by finite element analysis by applying hourglass roll shape. In the analysis when using the hourglass roll, it is confirmed that the stress distribution is compensated by about 70% and the strain distribution is compensated by about 67% compared to the case using the hourglass roll. To verify the compensation of the non-uniform deformation distribution due to the tension, deformation measurement experiment when using the proposed hourglass roll was carried out

  15. Characterizing the Deformation of the Polydimethylsiloxane (PDMS Membrane for Microfluidic System through Image Processing

    Directory of Open Access Journals (Sweden)

    Xiang Qian

    2016-05-01

    Full Text Available Polydimethylsiloxane (PDMS membranes have been widely used in the microfluidic community to achieve various functions such as control, sensing, filter, etc. In this paper, an experimental process was proposed to directly characterize the deformation of the on-chip PDMS membrane at large deformation based on the image processing method. High precision pressures were applied on the surface of the PDMS membrane with fixed edges and a series deformation of the PDMS membrane were captured by the imaging system. The Chan and Vese (CV level set method was applied to segment the images of the deformed membrane. The volumes wrapped by the deformed membranes were obtained, and pressure-volumes relationships of the PDMS membranes with different geometry parameters were also calculated. Then the membrane capacitance can be derived by differentiating the curve of pressure-volumes. In addition, the theoretical estimation of the capacitance of the PDMS membrane at large deformation was also obtained through finite element simulation (FEM, which was in good agreement with the experimental results. These results are expected to be significant for designing and on-chip measuring of such PDMS membrane based microfluidic components in our future work.

  16. Hydrodynamic Interaction Between a Platelet and an Erythrocyte: Effect of Erythrocyte Deformability, Dynamics, and Wall Proximity

    OpenAIRE

    Vahidkhah, Koohyar; Diamond, Scott L.; Bagchi, Prosenjit

    2013-01-01

    We present three-dimensional numerical simulations of hydrodynamic interaction between a red blood cell (RBC) and a platelet in a wall-bounded shear flow. The dynamics and large deformation of the RBC are fully resolved in the simulations using a front-tracking method. The objective is to quantify the influence of tank treading and tumbling dynamics of the RBC, and the presence of a bounding wall on the deflection of platelet trajectories. We observe two types of interaction: A crossing event...

  17. Dynamic Optimization of UV Flash Processes

    DEFF Research Database (Denmark)

    Ritschel, Tobias Kasper Skovborg; Capolei, Andrea; Jørgensen, John Bagterp

    2017-01-01

    UV ash processes, also referred to as isoenergetic-isochoric ash processes, occur for dynamic simulation and optimization of vapor-liquid equilibrium processes. Dynamic optimization and nonlinear model predictive control of distillation columns, certain two-phase ow problems, as well as oil reser...... that the optimization solver, the compiler, and high-performance linear algebra software are all important for e_cient dynamic optimization of UV ash processes....

  18. The effect of tooling deformation on process control in multistage metal forming

    Science.gov (United States)

    Havinga, Jos; van den Boogaard, Ton

    2016-10-01

    Forming of high-strength steels leads to high loads within the production process. In multistage metal forming, the loads in different process stages are transferred to the other stages through elastic deformation of the stamping press. This leads to interactions between process steps, affecting the process forces in each stage and the final geometry of the product. When force measurements are used for control of the metal forming process, it is important to understand these interactions. In his work, interactions within an industrial multistage forming process are investigated. Cutting, deepdrawing, forging and bending steps are performed in the production process. Several test runs of a few thousand products each were performed to gather information about the process. Statistical methods are used to analyze the measurements. Based on the cross-correlation between the force measurements of different stages, it can be shown that the interactions between the process steps are caused by elastic deformation of the tooling and the stamping press.

  19. Hot Deformation and Processing Window Optimization of a 70MnSiCrMo Carbide-Free Bainitic Steel

    Science.gov (United States)

    Han, Ying; Sun, Yu; Zhang, Wei; Chen, Hua

    2017-01-01

    The hot deformation behavior of a high carbon carbide-free bainitic steel was studied through isothermal compression tests that were performed on a Gleeble-1500D thermal mechanical simulator at temperatures of 1223–1423 K and strain rates of 0.01–5 s−1. The flow behavior, constitutive equations, dynamic recrystallization (DRX) characteristics, and processing map were respectively analyzed in detail. It is found that the flow stress increases with increasing the strain rate and decreases with increasing the temperature, and the single-peak DRX can be easily observed at high temperatures and/or low strain rates. The internal relationship between the flow stress and processing parameters was built by the constitutive equations embracing a parameter of Z/A, where the activation energy for hot deformation is 351.539 kJ/mol and the stress exponent is 4.233. In addition, the DRX evolution and the critical conditions for starting DRX were discussed. Then the model of the DRX volume fraction was developed with satisfied predictability. Finally, the processing maps at different strains were constructed according to the dynamic material model. The safety domains and flow instability regions were identified. The best processing parameters of this steel are within the temperature range of 1323–1423 K and strain rate range of 0.06–1 s−1. PMID:28772678

  20. 3D video-based deformation measurement of the pelvis bone under dynamic cyclic loading

    Directory of Open Access Journals (Sweden)

    Freslier Marie

    2011-07-01

    Full Text Available Abstract Background Dynamic three-dimensional (3D deformation of the pelvic bones is a crucial factor in the successful design and longevity of complex orthopaedic oncological implants. The current solutions are often not very promising for the patient; thus it would be interesting to measure the dynamic 3D-deformation of the whole pelvic bone in order to get a more realistic dataset for a better implant design. Therefore we hypothesis if it would be possible to combine a material testing machine with a 3D video motion capturing system, used in clinical gait analysis, to measure the sub millimetre deformation of a whole pelvis specimen. Method A pelvis specimen was placed in a standing position on a material testing machine. Passive reflective markers, traceable by the 3D video motion capturing system, were fixed to the bony surface of the pelvis specimen. While applying a dynamic sinusoidal load the 3D-movement of the markers was recorded by the cameras and afterwards the 3D-deformation of the pelvis specimen was computed. The accuracy of the 3D-movement of the markers was verified with 3D-displacement curve with a step function using a manual driven 3D micro-motion-stage. Results The resulting accuracy of the measurement system depended on the number of cameras tracking a marker. The noise level for a marker seen by two cameras was during the stationary phase of the calibration procedure ± 0.036 mm, and ± 0.022 mm if tracked by 6 cameras. The detectable 3D-movement performed by the 3D-micro-motion-stage was smaller than the noise level of the 3D-video motion capturing system. Therefore the limiting factor of the setup was the noise level, which resulted in a measurement accuracy for the dynamic test setup of ± 0.036 mm. Conclusion This 3D test setup opens new possibilities in dynamic testing of wide range materials, like anatomical specimens, biomaterials, and its combinations. The resulting 3D-deformation dataset can be used for a better

  1. Heat treatment process optimization for face gearsbased on deformation and residual stress control

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-zhong; LAN Zhou‡; HOU Liang-wei; ZHAO Hong-pu; ZHONG Yang

    2015-01-01

    In this paper, based on the principle of heat transfer and thermal elastic-plastic theory, the heat treatment process optimization scheme for face gearsis proposed according to the structural characteristics oftheface gear and material properties of 12Cr2Ni4 steel.To simulate the effect of carburizing and quenching process on tooth deformation and residual stress distribution,aheat treatment analysis model of face gearsis established, and the microstructure, stress and deformation of face gear teeth changing with time are analyzed. The simulation results show that face gear tooth hardness increases, tooth surface residual compressive stress increases and tooth deformation decreases after heat treatment process optimization.It is beneficialto improvingthe fatigue strength and performance of face gears.

  2. Hot deformation and dynamic recrystallization behaviors of Mg–Gd–Y–Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, H.C. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Jiang, S.N., E-mail: shnjiang@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); School of Civil Engineering, Central South University, Changsha 410083 (China); Tang, B.; Hao, W.H.; Gao, Y.H.; Chen, Z.Y.; Liu, C.M. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2015-03-25

    Hot deformation and dynamic recrystallization (DRX) behaviors of Mg–8.3Gd–2.6Y–0.4Zr alloy were investigated by uniaxial compression tests conducted at temperatures ranging from 300 °C to 500 °C and strain rates varying from 0.001 s{sup −1} to 1 s{sup −1}. The results reveal that the alloy exhibits a high deformability due to the DRX softening when the temperature is >400 °C. Apart from the premature failure at relative low temperatures, the stress–strain curves exhibit typical features of DRX that the flow stress presents a peak and then gradually declines to a steady-state. Optical microscopy examinations exhibit that DRX takes place dominantly either at twin boundaries or initial grain boundaries depending on the deformation conditions. With increasing temperature or decreasing strain rate, the DRX sites would transfer from the twin boundaries to initial grain boundaries gradually. The analysis of transmission electron microscopy (TEM) images indicates that the deformation is controlled by basal slip and twinning in the temperature range of 300–350 °C, continuous DRX associated with the operation of multiple slips plays a dominant role when temperature is >400 °C.

  3. Coupling of local texture and microstructure evolution during restoration processes in aluminum deformed to large strains

    DEFF Research Database (Denmark)

    Hansen, Niels; Yu, Tianbo; Mishin, Oleg

    2013-01-01

    in the spatial distribution. The individual lamellae are separated by low and high angle boundaries and significant local differences are produced in the deformed microstructure both in terms of the stored energy and boundary mobility. These differences influence recovery and recrystallization processes......, resulting in significant local variations in mechanisms and kinetics of these processes. The observations suggest that the characterization of the local texture and microstructure both in the deformed state and after annealing is important in order to underpin the analysis of recovery and recrystallization...

  4. A finite element formulation for modeling dynamic wetting on flexible substrates and in deformable porous media.

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, Peter Randall; Cairncross, Richard A. (Drexel University, Philadelphia, PA); Madasu, S. (Drexel University, Philadelphia, PA)

    2004-03-01

    This report summarizes research advances pursued with award funding issued by the DOE to Drexel University through the Presidential Early Career Award (PECASE) program. Professor Rich Cairncross was the recipient of this award in 1997. With it he pursued two related research topics under Sandia's guidance that address the outstanding issue of fluid-structural interactions of liquids with deformable solid materials, focusing mainly on the ubiquitous dynamic wetting problem. The project focus in the first four years was aimed at deriving a predictive numerical modeling approach for the motion of the dynamic contact line on a deformable substrate. A formulation of physical model equations was derived in the context of the Galerkin finite element method in an arbitrary Lagrangian/Eulerian (ALE) frame of reference. The formulation was successfully integrated in Sandia's Goma finite element code and tested on several technologically important thin-film coating problems. The model equations, the finite-element implementation, and results from several applications are given in this report. In the last year of the five-year project the same physical concepts were extended towards the problem of capillary imbibition in deformable porous media. A synopsis of this preliminary modeling and experimental effort is also discussed.

  5. Earth's deformation due to the dynamical perturbations of the fluid outer core

    Institute of Scientific and Technical Information of China (English)

    徐建桥; 孙和平

    2002-01-01

    The elasto-gravitational deformation response of the Earth's solid parts to the perturbations of the pressure and gravity on the core-mantle boundary (CMB) and the solid inner core boundary (ICB), due to the dynamical behaviors of the fluid outer core (FOC), is discussed. The internal load Love numbers, which are formulized in a general form in this study, are employed to describe the Earth's deformation. The preliminary reference Earth model (PREM) is used as an example to calculate the internal load Love numbers on the Earth's surface, CMB and ICB, respectively. The characteristics of the Earth's deformation variation with the depth and the perturbation periods on the boundaries of the FOC are also investigated. The numerical results indicate that the internal load Love numbers decrease quickly with the increasing degree of the spherical harmonics of the displacement and depend strongly on the perturbation frequencies, especially on the high frequencies. The results, obtained in this work, can be used to construct the boundary conditions for the core dynamics of the long-period oscillations of the Earth's fluid outer core.

  6. Analysis of Deformation in Inconel 718 When the Stress Anomaly and Dynamic Strain Aging Coexist

    Science.gov (United States)

    Follansbee, Paul S.

    2016-09-01

    Deformation in Inconel 718 in the presence of combined effects of the stress anomaly and dynamic strain aging is analyzed according to an internal state variable model formulation. The analysis relies on the availability of experimental data in regimes of behavior where both the stress anomaly and dynamic strain aging are absent. A model that introduces two internal state variables—one characterizing interactions of dislocations with solute atoms and one characterizing interaction of dislocations with precipitates—is shown to adequately describe the temperature and strain-rate dependence of the yield stress in several superalloy systems. Strain hardening is then added with a third internal state variable to enable description of the full stress-strain curve. These equations are extrapolated into regimes where the stress anomaly and dynamic strain aging are present to identify signatures of their effects and to compare to similar analyses in a variety of metal systems. Dynamic strain aging in Inconel 718 follows similar trends to those observed previously. The magnitude of the stress anomaly tracks measurements of stress vs test temperature in pure Ni3Al. Several trends in the strain-rate sensitivity of elevated temperature deformation in superalloys are identified based on limited availability of measurements over a wide range of strain rates or tests using strain-rate changes.

  7. 考虑动态挠曲变形时的传递对准方法研究%Study on Transfer Alignment with Dynamic Flexure Deformation

    Institute of Scientific and Technical Information of China (English)

    董亮; 陈帅

    2015-01-01

    针对传递对准过程中存在的动态挠曲变形的问题,本文提出了一种“量测失准角+速度”匹配的快速传递对准方法。通过将动态挠曲变形模型的相关变量引入到传递对准状态方程中,从而降低动态挠曲变形对传递对准精度的影响。仿真结果表明,该方法有效降低了动态挠曲变形对传递对准精度的影响,满足传递对准的高精度和快速性要求。%In view of the problem that dynamic flexure deformation exists in the process of transfer a-lignment, a new “measurement misalignment angle +velocity” matching method is proposed in this pa-per .By adding the related variables of dynamic flexure deformation model to the transfer alignment equa -tion of state , the influence of dynamic flexure deformation on the transfer alignment accuracy can be re-duced.The simulation results show that the proposed method effectively reduces the influence of dynamic flexure deformation on the transfer alignment accuracy , and can meet the requirements of accuracy and fastness on the transfer alignment .

  8. Deformation processes in orogenic wedges: New methods and application to Northwestern Washington State

    Science.gov (United States)

    Thissen, Christopher J.

    Permanent deformation records aspects of how material moves through a tectonic environment. The methods required to measure deformation vary based on rock type, deformation process, and the geological question of interest. In this thesis we develop two new methods for measuring permanent deformation in rocks. The first method uses the autocorrelation function to measure the anisotropy present in two-dimensional photomicrographs and three-dimensional X-ray tomograms of rocks. The method returns very precise estimates for the deformation parameters and works best for materials where the deformation is recorded as a shape change of distinct fabric elements, such as grains. Our method also includes error estimates. Image analysis techniques can focus the method on specific fabric elements, such as quartz grains. The second method develops a statistical technique for measuring the symmetry in a distribution of crystal orientations, called a lattice-preferred orientation (LPO). We show that in many cases the symmetry of the LPO directly constrains the symmetry of the deformation, such axial flattening vs. pure shear vs. simple shear. In addition to quantifying the symmetry, the method uses the full crystal orientation to estimate symmetry rather than pole figures. Pole figure symmetry can often be misleading. This method works best for crystal orientations measured in samples deformed by dislocation creep, but otherwise can be used on any mineral without requiring information about slip systems. In Chapter 4 we show how deformation measurements can be used to inform regional tectonic and orogenic models in the Pacific Northwestern United States. A suite of measurements from the Olympic Mountains shows that uplift and deformation of the range is consistent with an orogenic wedge model driven by subduction of the Juan de Fuca plate, and not northward forearc migration of the Oregon block. The deformation measurements also show that deformation within the Olympic Mountains

  9. Measurement of Out-of-plane Dynamic Deformations by Digital Speckle Pattern Interferometry

    Directory of Open Access Journals (Sweden)

    Rajesh Kurnar

    2003-01-01

    Full Text Available In this paper, measurement of dynamic deformations in a rectangular plate fixed at one end, using digital speckle pattem interferometry (DSPI, has been prese,nted. To improve the measurement accuracy,a new filtering scheme has been developed. This scheme is based on the combination of average/ median filtering and Symlet wavelet filtering which enhances the signal-to-noise ratio in the speckleinterferogram obtained from the DSPI. Experimental results show that this filtering scheme is quite effective in improving signal-to-noise ratio of the speckle .interferogram. The measurements by DSPIand accelerometer are in good agreement. The DSPI technique can be implemented for measuring the large deformations as well.

  10. Temperature dependence of dynamic deformation in FCC metals, aluminum and invar

    Science.gov (United States)

    Chen, Laura; Swift, D. C.; Austin, R. A.; Florando, J. N.; Hawreliak, J.; Lazicki, A.; Saculla, M. D.; Eakins, D.; Bernier, J. V.; Kumar, M.

    2017-01-01

    Laser-driven shock experiments were performed on fcc metals, aluminum and invar, at a range of initial temperatures from approximately 120-800 K to explore the effect of initial temperature on dynamic strength properties at strain rates reaching up to 107 s-1. In aluminum, velocimetry data demonstrated an increase of peak stress of the elastic wave, σE, with initial temperature. Alternatively, for invar, σE exhibits little-to-no decrease over the same initial temperature range. Aluminum's unusual deformation behavior is found to primarily be due to anharmonic vibrational effects. Differences in the magnetic structure of aluminum and invar can account for discrepancies in high rate deformation behavior.

  11. Modeling and simulation of the deformation process of PTFE flexiblestamps for nanoimprint lithography on curved surfaces

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Smistrup, K.; Hannibal, Morten

    2015-01-01

    -viscoplastic. This behavior was described in a temperature dependent constitutive model consisting of a Zenerbody for the viscoelastic deformation and the Johnson-Cook model for the description of the viscoplastic deformation. The constitutive model was implemented in the general purpose finite element software ABAQUS...... through a user material subroutine. In order to take the large strains and deformations during the imprinting manufacturing process into account, non-linear geometry was applied in the simulations. The model was first verified through a series of experiments, where nanoimprint lithography on a curved tool...... with a maximum error of 0.5%, indicating that the model is able to capture the physics of this manufacturing process and can be used to give an insight into the nanoimprinting procedure on curved surfaces. (C) 2014 Elsevier B.V. All rights reserved....

  12. Fast crustal deformation computing method for multiple computations accelerated by a graphics processing unit cluster

    Science.gov (United States)

    Yamaguchi, Takuma; Ichimura, Tsuyoshi; Yagi, Yuji; Agata, Ryoichiro; Hori, Takane; Hori, Muneo

    2017-08-01

    As high-resolution observational data become more common, the demand for numerical simulations of crustal deformation using 3-D high-fidelity modelling is increasing. To increase the efficiency of performing numerical simulations with high computation costs, we developed a fast solver using heterogeneous computing, with graphics processing units (GPUs) and central processing units, and then used the solver in crustal deformation computations. The solver was based on an iterative solver and was devised so that a large proportion of the computation was calculated more quickly using GPUs. To confirm the utility of the proposed solver, we demonstrated a numerical simulation of the coseismic slip distribution estimation, which requires 360 000 crustal deformation computations with 82 196 106 degrees of freedom.

  13. Surface effects of Rayleigh-Taylor instability: Feedback between drip dynamics and crustal deformation

    Science.gov (United States)

    Wang, H.; Currie, C. A.

    2013-12-01

    For many continental plates, significant vertical motion of Earth's surface has occurred within the plate interior which can not be clearly linked to plate tectonic processes. For example, several craton areas exhibit anomalous basins, e.g., the Williston basin, Illinois basin and Michigan basin in North America. In orogenic belts, there are examples of local areas (~100 km wide) where the surface has undergone subsidence and then uplift of >1 km, such as the Arizaro basin (central Andes) and Wallowa Mountains (northeast Oregon). Given the near-circular shape of the surface deflection, it has been suggested that they may be related to gravitational foundering of dense lower lithosphere, i.e., Rayleigh-Taylor instability (or 'RT drip'). In order to investigate the surface effects of an RT drip, we use two methods: (1) 2D thermal-mechanical numerical models to study links between drip dynamics and crustal deformation and (2) a theoretical analysis of the crustal deformation induced by stresses from the RT drip. The numerical models consist of a continental lithosphere overlying a sublithospheric mantle. A high-density material is placed in the mantle lithosphere or lower crust to initiate a drip event, and a stress-free boundary condition allows the development of surface topography during model evolution. A reasonable range of crustal viscosity and thickness is tested to study the RT drip in different tectonic settings, from a cold craton to a hot orogen with thick crust. Four types of surface deflection are observed: (1) subsidence; (2) subsidence followed by uplift; (3) uplift; and (4) little deflection. When the crust is relatively strong or thin, the surface has a negative elevation, forming a basin. For a weak or thick crust, the RT drip induces crustal flow, leading to crustal thickening that can uplift the surface; an extremely weak crust decouples the surface and RT drip and the surface is unperturbed. Our theoretical analysis considers the surface

  14. Influence of Plastic Deformation Process on the Structure and Properties of Alloy WE43

    Directory of Open Access Journals (Sweden)

    Bednarczyk I.

    2016-03-01

    Full Text Available The paper describes the results of structure and properties tests of flat bars made of alloy WE43 obtained in the process of extrusion with the use of KOBO method. An analysis of structure changes was conducted both in initial state and after plastic deformation.

  15. EBSD Analysis of Deformed and Partially Recrystallized Microstructures in ECAE-Processed Copper

    DEFF Research Database (Denmark)

    Mishin, Oleg; Bowen, Jacob R.; Godfrey, A.

    2012-01-01

    -uniform distribution of strain imposed by processing. The through-thickness heterogeneity of the deformed microstructure resulted in a different extent of recrystallization in different layers during annealing. Recrystallized grains were also observed in samples that were not annealed, but stored at room temperature...

  16. The Use of the Analytic Hierarchy Process to Aid Decision Making in Acquired Equinovarus Deformity

    NARCIS (Netherlands)

    Til, van J.A.; Renzenbrink, G.J.; Dolan, J.G.; IJzerman, M.J.

    2008-01-01

    Objective: To increase the transparency of decision making about treatment in patients with equinovarus deformity poststroke. - Design: The analytic hierarchy process (AHP) was used as a structured methodology to study the subjective rationale behind choice of treatment. - Setting: An 8-hour meeting

  17. Analysis of a bubble deformation process in a microcapsule by shock waves for developing DDS

    Science.gov (United States)

    Tamagawa, Masaaki; Morimoto, Kenshi

    2012-09-01

    This paper describes development of DDS (drug delivery systems) microcapsule using underwater shock waves, especially (1) making polymer microcapsules including a bubble and analysis of a bubble deformation process in a polymer capsule by pressure wave, (2) making liposome microcapsules with different elastic membrane and disintegration tests by ultrasonic waves.

  18. Micro-scaled products development via microforming deformation behaviours, processes, tooling and its realization

    CERN Document Server

    Fu, Ming Wang

    2014-01-01

    ‘Micro-scaled Products Development via Microforming’ presents state-of-the-art research on microforming processes, and focuses on the development of micro-scaled metallic parts via microforming processes. Microforming refers to the fabrication of microparts via micro-scaled plastic deformation and  presents a promising micromanufacturing process. When compared to other  micromanufacturing processes, microforming offers advantages such as high productivity and good mechanical properties of the deformed microparts. This book provides extensive and informative illustrations, tables and photos in order to convey this information clearly and directly to readers. Although the knowledge of macroforming processes is abundant and widely used in industry, microparts cannot be developed by leveraging existing knowledge of macroforming because the size effect presents a barrier to this knowledge transfer. Therefore systematic knowledge of microforming needs to be developed. In tandem with product miniaturization, t...

  19. Dynamic behavior and microstructural evolution during moderate to high strain rate hot deformation of a Fe-Ni-Cr alloy (alloy 800H)

    Science.gov (United States)

    Cao, Yu; Di, Hongshuang; Zhang, Jiecen; Yang, Yaohua

    2015-01-01

    The objective of the study is to fundamentally understand the dynamic behavior of alloy 800H at moderate to high strain rate using hot compression tests and propose nucleation mechanism associated with dynamic crystallization (DRX). We firstly investigated the dynamic behavior of alloy 800H with industrial scale strain rates using hot compression tests and adiabatic correction was performed to correct as-measured flow curves. Secondly, a Johnson-Cook model was established by using the corrected data and could give a precise prediction of elevated temperature flow stress for the studied alloy. Finally, the nucleation mechanism of DRX grains at high strain rates was studied. The results showed that the predominant nucleation mechanism for DRX is the formation of "bulge" at parent grain boundary. Additionally, the fragmentation of original grain at low deformation temperatures and the twinning near the bulged regions at high deformation temperatures also accelerate the DRX process.

  20. Monitoring of Sea Floor Dynamics by the Application of Geodetic Deformation Analysis

    Science.gov (United States)

    Dorst, L.

    2003-04-01

    The hydrographic vessels of the Royal Netherlands Navy survey the Dutch part of the North Sea to ensure the navigation safety at sea, by e.g. the publication of those surveys in nautical charts. Those charts show the least expected depths at sea, reduced for tides and sea floor dynamics. The current bathymetric survey frequency depends e.g. on water depth and shipping intensity. The Hydrographic Service (HS) feels a need to include more detailed information about sea floor dynamics in future survey plannings, especially in areas where sand waves are present. Sand waves which have a wavelength of several hundred meters are present in many areas of the Southern North Sea [Hulscher and Van den Brink, 2001]. Areas with sand waves that grow in amplitude and areas showing other upward movements of the sea floor influence the charted depths, and therefore have to be surveyed more frequently. The HS is developing a method to extract those dynamics from their bathymetric archives. Scientists that study marine geomorphology can benefit from this method for many other applications as well. The approach is stochastic: bathymetric surveying, as all measurement processes, has some uncertainty by nature. Questions can be answered like: What conclusions on movements of the sea floor can be drawn safely from bathymetric data sets? How can these conclusions be drawn more accurately? What is the risk that the wrong conclusion is drawn, because of the stochastic influences? The proposed method needs a standard deviation of every sounding value in a survey. The values are selected (multibeam surveys), or interpolated (singlebeam surveys) into a regular grid by 'geostatistics' [Chilès and Delfiner, 1999]. Geostatistics consists of the determination of the spatial variability in a 'variogram', followed by the 'Kriging' interpolation technique. The result is a grid of depth values and their variances, which include both the sounding precision and the interpolation quality. The next phase

  1. Modeling static and dynamic thermography of the human breast under elastic deformation

    Science.gov (United States)

    Jiang, Li; Zhan, Wang; Loew, Murray H.

    2011-01-01

    An abnormal thermogram has been shown to be a reliable indicator of increased risk of breast cancer. Numerical modeling techniques for thermography are proposed to quantify the complex relationships between the breast thermal behaviors and the underlying physiological/pathological conditions. Previous thermal modeling techniques did not account for gravity-induced elastic deformation arising from various body postures, nor did they suggest that a dynamic thermal procedure may be used to enhance clinical diagnosis. In this paper, 3D finite element method (FEM)-based thermal and elastic modeling techniques are developed to characterize comprehensively both the thermal and elastic properties of normal and tumorous breast tissues during static and dynamic thermography. In the steady state, gravity-induced breast deformation is found to cause an upper-lower asymmetric surface temperature contrast for sitting/standing up body posture, even though all the thermal and elastic properties are assumed uniform. Additionally, the tumor-induced surface temperature alterations are found to be caused primarily by shallow tumors and to be less sensitive to tumor size than to tumor depth. In the dynamic state, the breast exhibits distinctive temporal patterns that are associated with distinct thermal events: cold stress and thermal recovery induced by changes in the ambient temperature. Specifically, the tumor-induced thermal contrast shows an opposite initial change and delayed peak as compared with the deformation-induced thermal contrast. These findings are expected to provide a stronger foundation for, and greater specificity and precision in, thermographic diagnosis, and treatment of breast cancer.

  2. Nucleation mechanisms of dynamic recrystallization in Inconel 625 superalloy deformed with different strain rates

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The effects of strain rates on the hot working characteristics and nucleation mechanisms of dynamic recrystallization (DRX) were studied by optical microscopy and electron backscatter diffraction (EBSD) technique. Hot compression tests were conducted using a Gleeble-1500 simulator at a true strain of 0.7 in the temperature range of 1000 to 1150 °C and strain rate range of 0.01 to 10.00 s-1. It is found that the size and volume fraction of the DRX grains in hot-deformed Inconel 625 superalloy firstly decreas...

  3. General framework for dynamic large deformation contact problems based on phantom-node X-FEM

    Science.gov (United States)

    Broumand, P.; Khoei, A. R.

    2017-08-01

    This paper presents a general framework for modeling dynamic large deformation contact-impact problems based on the phantom-node extended finite element method. The large sliding penalty contact formulation is presented based on a master-slave approach which is implemented within the phantom-node X-FEM and an explicit central difference scheme is used to model the inertial effects. The method is compared with conventional contact X-FEM; advantages, limitations and implementational aspects are also addressed. Several numerical examples are presented to show the robustness and accuracy of the proposed method.

  4. Nanostructures in a ferritic and an oxide dispersion strengthened steel induced by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo

    fission and fusion reactors. In this study, two candidate steels for nuclear reactors, namely a ferritic/martensitic steel (modified 9Cr-1Mo steel) and an oxide dispersion strengthened (ODS) ferritic steel (PM2000), were nanostructured by dynamic plastic deformation (DPD). The resulting microstructure...... place, when both steels after DPD are annealed. Both oriented nucleation and oriented growth of oriented lamellae are demonstrated to account for such an orientation dependence. The underlying mechanisms are discussed, including the differences in stored energy, structural variation, and recovery...

  5. Molecular Dynamics Simulation of Nanoindentation-induced Mechanical Deformation and Phase Transformation in Monocrystalline Silicon

    Directory of Open Access Journals (Sweden)

    Jian Sheng-Rui

    2008-01-01

    Full Text Available AbstractThis work presents the molecular dynamics approach toward mechanical deformation and phase transformation mechanisms of monocrystalline Si(100 subjected to nanoindentation. We demonstrate phase distributions during loading and unloading stages of both spherical and Berkovich nanoindentations. By searching the presence of the fifth neighboring atom within a non-bonding length, Si-III and Si-XII have been successfully distinguished from Si-I. Crystallinity of this mixed-phase was further identified by radial distribution functions.

  6. The resilience of river valleys to deformation in experiments: competition between tectonic advection and channel dynamics

    Science.gov (United States)

    Guerit, Laure; Dominguez, Stéphane; Castelltort, Sébastien; Malavielle, Jacques

    2015-04-01

    In oblique collision settings, parallel and perpendicular components of the relative plate motion can be partitioned into different structures of deformation and may be localized close to the plate boundary, or distributed on a wider region. In the Southern Alps of New Zealand, it has been proposed that two-third of the regional convergence was accommodated by the Alpine Fault, while the remaining motion was distributed in a broad area along the Southern Alps orogenic wedge. To better document and understand the regional dynamics of such systems, reliable markers of the horizontal tectonic motion over geological time scales are needed. In numerical models, it has been shown that river networks are able to record a large amount of distributed strain, and that they can thus be used to reconstruct the mode and rate of distribution away from major active structures (Castelltort et al, NGeo, 2012). In order to explore the controls on river resilience to deformation in a less constrained system, we developed an experimental model to investigate river pattern evolution over a doubly-vergent orogenic wedge growing in a context of oblique convergence. We use a rain-fall system to activate erosion, sediment transport and river development on the model surface. The evolution of the wedge is fully recorded through space and time so we are able to follow the drainage geometry deformation. These experiments confirm that rivers record the distribution of motion along the wedge. Image analysis of channel time-space evolution shows how the fault-parallel and fault-perpendicular components of motion decrease toward the fault and impose rotation to the main trunk valleys. However, the capacity of rivers to act as passive markers of deformation competes with the natural lateral channel dynamics and hillslope-channel couplings which both modify the valleys boundaries. In this sense rivers are dynamic markers, which write both a story of passive rotation imposed by the tectonic velocity

  7. Deformation characteristics of {delta} phase in the delta-processed Inconel 718 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.Y., E-mail: haiyanzhang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, S.H., E-mail: shzhang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Cheng, M. [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Z.X. [Beijing Institute of Aeronautica1 Materials, Beijing 100095 (China)

    2010-01-15

    The hot working characteristics of {delta} phase in the delta-processed Inconel 718 alloy during isothermal compression deformation at temperature of 950 deg. C and strain rate of 0.005 s{sup -1}, were studied by using optical microscope, scanning electron microscope and quantitative X-ray diffraction technique. The results showed that the dissolution of plate-like {delta} phase and the precipitation of spherical {delta} phase particles coexisted during the deformation, and the content of {delta} phase decreased from 7.05 wt.% to 5.14 wt.%. As a result of deformation breakage and dissolution breakage, the plate-like {delta} phase was spheroidized and transferred to spherical {delta} phase particles. In the center with largest strain, the plate-like {delta} phase disappeared and spherical {delta} phase appeared in the interior of grains and grain boundaries.

  8. Identification of Energy Distribution for Crash Deformational Processes of Road Vehicles

    Directory of Open Access Journals (Sweden)

    István Harmati

    2007-08-01

    Full Text Available Car body deformation modelling plays a very important role in crash accidentanalyses, as well as in safe car body design. The determination of the energy absorbed bythe deformation and the corresponding Energy Equivalent Speed can be of key importance;however their precise determination is a very difficult task. Although, using the results ofcrash tests, intelligent and soft methods offer an automatic way to model the crash processitself, as well as to determine the absorbed energy, the before-crash speed of the car, etc. Inthis paper a model is introduced which is able to describe the changing of the energydistribution during the whole deformational process and to analyze the strength of thedifferent parts without any human intervention thus significantly can contribute to theimprovement of the modelling, (automatic design, and safety of car bodies.

  9. Subglacial processes, glacier dynamics, and deglacial processes and patterns associated with the Cordilleran Ice Sheet around Okanagan Valley, British Columbia.

    OpenAIRE

    Lesemann, Jerome-Etienne

    2012-01-01

    This thesis explores subglacial processes, glacier dynamics, and deglacial processes and patterns associated with the Cordilleran Ice Sheet (CIS) in Okanagan Valley and the neighbouring Thompson Plateau in southern British Columbia. Reconstructions of subglacial processes in an area of streamlined bedforms (drumlins) on Thompson Plateau reveal that sediments within drumlins and in intervening areas record evidence of lodgement, deformation, poreflow, conduit flow, debris flows, and suspension...

  10. Hot-Deformation Behavior and Hot-Processing Maps of AISI 410 Martensitic Stainless Steel

    Science.gov (United States)

    Qi, Rong-Sheng; Jin, Miao; Guo, Bao-Feng; Liu, Xin-Gang; Chen, Lei

    2016-10-01

    The compressive deformation behaviors of 410 martensitic stainless steel were investigated on a Gleeble-1500 thermomechanical simulator, and the experimental stress-strain data were obtained. The measured flow stress was corrected for friction and temperature. A constitutive equation that accounts for the influence of strain was established, and the hot-processing maps at different strain were plotted. The microstructure evolution of the hot-deformation process was studied on the basis of microstructural observations at high temperatures. Phase-transformation experiments on 410 steel were conducted at high temperatures to elucidate the effects of temperature on the delta-ferrite content. The initial forging temperature and optimum process parameters were obtained on the basis of the processing map and the changes in the delta-ferrite content at high temperatures.

  11. Dynamics of the Balkans deformation : regional impact of the Western Hellenic subduction-collision transition

    Science.gov (United States)

    Métois, Marianne; D'Agostino, Nicola; Copley, Alex

    2016-04-01

    The increasing number of GPS measurements in the Balkan Peninsula over the last decades has brought new insights on the kinematic of the Eurasian plate there, revealing a significant ( 5 mm/yr) clockwise rotation motion of the entire region around the Scutari-Pec line in North Albania [Métois et al. 2015]. The focal mechanisms of recent earthquakes in this seismically active area are consistent with this deformation pattern. In this study, we use simple dynamic models based on the thin viscous sheet approximation to test the influence of realistic kinematic boundary conditions and gradients of gravitational potential energy on the predicted surface deformation in the region. In addition, we compare the surface velocity field with maps of azimuthal anisotropy at depth to assess whether mantle motions may drive part of the observed lithosphere deformation. We show that the observed shearing and rotation around Albania can be explained at the first order by kinematic boundary conditions applied on a viscous lithosphere (η ˜ 2.1021Pa.s), while GPE gradients may control the smaller-scale patterns of deformation. Our models appear to be very sensitive to the abrupt velocity-change imposed across the Kefalonia fault in northern Greece where the subduction to collision transition takes place. We propose that the large-scale shearing of the region observed in the GPS data results mainly from this lithospheric tearing, that is one of the most active structure in the area. This hypothesis implies that the slab tearing initiation would have been an important controlling factor on the tectonic history of the Balkans and that the current velocity gradient across the Kefalonia fault is probably sufficient to trigger a large scale shearing propagating up to central Serbia.

  12. A novel unified dislocation density-based model for hot deformation behavior of a nickel-based superalloy under dynamic recrystallization conditions

    Science.gov (United States)

    Lin, Y. C.; Wen, Dong-Xu; Chen, Ming-Song; Chen, Xiao-Min

    2016-09-01

    In this study, a novel unified dislocation density-based model is presented for characterizing hot deformation behaviors in a nickel-based superalloy under dynamic recrystallization (DRX) conditions. In the Kocks-Mecking model, a new softening item is proposed to represent the impacts of DRX behavior on dislocation density evolution. The grain size evolution and DRX kinetics are incorporated into the developed model. Material parameters of the developed model are calibrated by a derivative-free method of MATLAB software. Comparisons between experimental and predicted results confirm that the developed unified dislocation density-based model can nicely reproduce hot deformation behavior, DRX kinetics, and grain size evolution in wide scope of initial grain size, strain rate, and deformation temperature. Moreover, the developed unified dislocation density-based model is well employed to analyze the time-variant forming processes of the studied superalloy.

  13. Dynamic analysis of a rotating rigid-flexible coupled smart structure with large deformations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on Hamilton's principle, a new kind of fully coupled nonlinear dynamic model for a rotating rigid-flexible smart structure with a tip mass is proposed. The geometrically nonlinear effects of the axial, transverse displacement and rotation angle are considered by means of the first-order approximation coupling (FOAC) model theory, in which large deformations and the centrifugal stiffening effects are considered. Three kinds of systems are established respectively, which are a structure without piezoelectric layer, with piezoelectric layer in open circuit and closed circuit. Several simulations based on simplified models are presented to show the differences in characteristics between structures with and without the tip mass, between smart beams in closed and open circuit, and between the centrifugal effects in high speed rotating state or not. The last simulation calculates the dynamic response of the structure subjected to external electrical loading.

  14. Strain rate dependent deformation and failure behavior of laser welded DP780 steel joint under dynamic tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: liuyang@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Dong, Danyang, E-mail: dongdanyang@mail.neu.edu.cn [College of Science, Northeastern University, Shenyang 110819 (China); Wang, Lei, E-mail: wanglei@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Chu, Xi, E-mail: chuxi.ok@163.com [College of Science, Northeastern University, Shenyang 110819 (China); Wang, Pengfei, E-mail: wpf1963871400@163.com [College of Science, Northeastern University, Shenyang 110819 (China); Jin, Mengmeng, E-mail: 24401878@163.com [College of Science, Northeastern University, Shenyang 110819 (China)

    2015-03-11

    occurs at high strain rates. The diffuse necking of the DP780 WJ occurs earlier during the tensile deformation process at higher strain rates under dynamic loadings.

  15. Deformation processes at the down-dip limit of the seismogenic zone: The example of Shimanto accretionary complex

    Science.gov (United States)

    Palazzin, G.; Raimbourg, H.; Famin, V.; Jolivet, L.; Kusaba, Y.; Yamaguchi, A.

    2016-09-01

    In order to constrain deformation processes close to the brittle-ductile transition in seismogenic zone, we have carried out a microstructural study in the Shimanto accretionary complex (Japan), the fossil equivalent of modern Nankai accretionary prisms. The Hyuga Tectonic Mélange was sheared along the plate interface at mean temperatures of 245 °C ± 30 °C, as estimated by Raman spectroscopy of carbonaceous material (RSCM). It contains strongly elongated quartz ribbons, characterized by very high fluid inclusions density, as well as micro-veins of quartz. Both fluid inclusion planes and micro-veins are preferentially developed orthogonal to the stretching direction. Furthermore, crystallographic preferred orientation (CPO) of quartz c-axes in the ribbons has maxima parallel to the stretching direction. Recrystallization to a small grain size is restricted to rare deformation bands cutting across the ribbons. In such recrystallized quartz domains, CPO of quartz c-axes are orthogonal to foliation plane. The evolution of deformation micro-processes with increasing temperature can be further analyzed using the Foliated Morotsuka, a slightly higher-grade metamorphic unit (342 ± 30 °C by RSCM) from the Shimanto accretionary complex. In this unit, in contrast to Hyuga Tectonic Mélange, recrystallization of quartz veins is penetrative. CPO of quartz c-axes is concentrated perpendicularly to foliation plane. These variations in microstructures and quartz crystallographic fabric reflect a change in the dominant deformation mechanism with increasing temperatures: above ~ 300 °C, dislocation creep is dominant and results in intense quartz dynamic recrystallization. In contrast, below ~ 300 °C, quartz plasticity is not totally activated and pressure solution is the major deformation process responsible for quartz ribbons growth. In addition, the geometry of the quartz ribbons with respect to the phyllosilicate-rich shear zones shows that bulk rheology is controlled by

  16. Differential-algebraic approach to large deformation analysis of frame structures subjected to dynamic loads

    Institute of Scientific and Technical Information of China (English)

    HU Yu-jia; ZHU Yuan-yuan; CHENG Chang-jun

    2008-01-01

    A nonlinear mathematical model for the analysis of large deformation of frame structures with discontinuity conditions and initial displacements,subject to dynamic loads is formulated with arc-coordinates.The differential quadrature element method (DQEM)is then applied to discretize the nonlinear mathematical model in the spatial domain.An effective method is presented to deal with discontinuity conditions of multivariables in the application of DQEM.A set of DQEM discretization equations are obtained,which are a set of nonlinear differential-algebraic equations with singularity in the time domain.This paper also presents a method to solve nonlinear differential-algebra equations.As application,static and dynamical analyses of large deformation of frames and combined frame structures,subjected to concentrated and distributed forces,are presented.The obtained results are compared with those in the literatares.Numerical results show that the proposed method is general,and effective in dealing with discontinuity conditions of multi-variables and solving difierential-algebraic equations.It requires only a small number of nodes and has low computation complexity with high precision and a good convergence property.

  17. Mineral deformation and subglacial processes on ice-bedrock interface of Hailuogou Glacier

    Institute of Scientific and Technical Information of China (English)

    LIU GengNian; CHEN YiXin; ZHANG Yue; FU HaiRong

    2009-01-01

    Hailuogou Glacier is located in a warm and humid maritime environment. It is large and moves very fast.The bottom of the glacier slides intensively and the temperature at the bottom approaches the pressure melting point. Therefore,there are abundant melting water and debris which act as effective "grinding tools"for glacial abrasion. Polarizing microscope is used to observe the mineral deformation characteristics on the ice-bedrock interface. It is found that feldspar,quartz,hornblende and biotite are exposed to deformation,fracture and chemical alteration to various extents. Bending deformation is common for biotite,due to their lattice characteristics,and the bending orientations are mostly the same as the glacier flow. Bending deformation also occurs in a few hornblendes. High-angle tension fracture and low-angle shear fracture are common for quartz and feldspar,some of them are totally crushed (mylonizations) due to their rigidity. Thus,all the abrasion,quarrying,subglacial water action and subglacial dissolution processes at the bottom of the glacier are verified at the micro-scale level.Mineral deformation and fracture are the basic subglacial erosion mechanisms. The abrasion thickness is 30-90 μm for each time and the average is 50 μm. Most of the debris are silt produced by glacial abrasion. The extent of mineral deformation and fracture decreases drastically downwards beneath the bedrock surface. The estimated erosion rate is about 2.2-11.4 mm/a,which is similar to that of other maritime alpine glaciers,smaller than that of large-scale piedmont glaciers In Alaska (10-30 mm/a),and larger than that of continental glaciers (0.1-1.0 mm/a). The type and size of a glacier are the main factors that influence its erosion rate.

  18. Microstructure and strength of a deformation processed aluminum-20%tin metal-metal composite

    Science.gov (United States)

    Xu, Kai

    An Al-20vol.% Sn metal-metal composite was deformation processed by extrusion, swaging, and wire drawing to a total true strain of 7.4, resulting in a microstructure with Sn filaments in an Al matrix. Both the size and spacing of the Sn filaments decreased as deformation processing progressed. Immediately after deformation, the Sn second phase showed a convoluted, ribbon-shaped filamentary morphology, but the Sn filaments spheroidized during prolonged storage at room temperature. The driving force for spheroidization is chemical potential gradient due to curvature difference along Sn filaments. A critical wavelength of lambda crit = 2piR can be used to determine the spheroidization tendency of Sn cylinder. When lambda > 2piR, spheroidization is predicted to occur. The strength of these composites increased exponentially with the reduction in spacing of the Sn filaments. The relationship between UTS and deformation true strain is UTS = 72.6 exp(0.20eta). A Hall-Petch relationship between strength and filament spacing has been observed. Strengthening results from the filaments acting as barriers for dislocation motion. The primary shape instability modes are cylinderization of ribbons, boundary splitting, spheroidization of cylinders, and edge spheroidization of ribbons. The determining factors dictating which mechanism is active are grain boundary energy, interfacial energy, and ribbon cross section aspect ratio. The fiber texture was determined by orientation imaging microscopy to be for Al and for Sn. The 290 MPa ultimate tensile strength of the composite was greater than the rule-of-mixtures prediction. Comparisons are made with Al-Nb, Al-Ti and Al-Mg deformation processed metal metal composites and to various strengthening models for metal-metal composites.

  19. Socioeconomic transitions as common dynamic processes

    DEFF Research Database (Denmark)

    Gundlach, Erich; Paldam, Martin

    Long-run socioeconomic transitions can be observed as stylized facts across countries and over time. For instance, poor countries have more agriculture and less democracy than rich countries, and this pattern also holds within countries for transitions from a traditional to a modern society....... It is shown that the agricultural and the democratic transitions can be partly explained as the outcome of dynamic processes that are shared among countries. We identify the effects of common dynamic processes with panel estimators that allow for heterogeneous country effects and possible cross......-country spillovers. Common dynamic processes appear to be in line with alternative hypotheses on the causes of socioeconomic transitions....

  20. SIMULATION OF 3-D DEFORMATION AND MATERIAL FLOW DURING ROLL FORGING PROCESS USING SYSTEM OF OVAL-ROUND GROOVE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Basing on the analysis of the traits of the roll forging process, a system-model of computer simulation has been established. Three-dimensional rigid-plastic FEM has been used for the simulation of the deformation process in the oval and round pass rolling, including the entering, rolling, and separating stages. The analysis was conducted using the Deform-3D ver. 5.0 code.The important information concerned with the deformation area characteristic, material fiow, and velocity field has been presented. Otherwise, the location of the neutral plane in the deformation area was shown clearly.

  1. Chaos in classical string dynamics in $\\hat{\\gamma}$ deformed $AdS_5 \\times T^{1,1}$

    CERN Document Server

    Panigrahi, Kamal L

    2016-01-01

    We consider a circular string in $\\hat{\\gamma}$ deformed $AdS_5 \\times T^{1,1}$ which is localized in the center of $AdS_5$ and winds around the two circles of deformed $T^{1,1}$. We observe chaos in the phase space of the circular string implying non-integrability of string dynamics. The chaotic behaviour in phase space is controlled by energy as well as the deforming parameter $\\hat{\\gamma}$. We further show that the point like object exhibits non-chaotic behaviour. Finally we calculate the Lyapunov exponent for both extended and point like object in support of our first result.

  2. Process Modelling of Curing Process-Induced Internal Stress and Deformation of Composite Laminate Structure with Elastic and Viscoelastic Models

    Science.gov (United States)

    Li, Dongna; Li, Xudong; Dai, Jianfeng

    2017-08-01

    In this paper, two kinds of transient models, the viscoelastic model and the linear elastic model, are established to analyze the curing deformation of the thermosetting resin composites, and are calculated by COMSOL Multiphysics software. The two models consider the complicated coupling between physical and chemical changes during curing process of the composites and the time-variant characteristic of material performance parameters. Subsequently, the two proposed models are implemented respectively in a three-dimensional composite laminate structure, and a simple and convenient method of local coordinate system is used to calculate the development of residual stresses, curing shrinkage and curing deformation for the composite laminate. Researches show that the temperature, degree of curing (DOC) and residual stresses during curing process are consistent with the study in literature, so the curing shrinkage and curing deformation obtained on these basis have a certain referential value. Compared the differences between the two numerical results, it indicates that the residual stress and deformation calculated by the viscoelastic model are more close to the reference value than the linear elastic model.

  3. STUDY OF DYNAMIC RECRYSTALLIZATION OF LOW CARBON STEEL IN THIN SLAB CONTINUOUS ROLLING PROCESS

    Institute of Scientific and Technical Information of China (English)

    X.K. Liang; X.J. Sun; Q.Y. Liu; H. Dong

    2006-01-01

    Combined with the technological characteristics of thin slab continuous rolling process (TSCR),dynamic recrystallization of an extremely coarse austenite of low carbon steel is studied by Thermecmaster-Z hot simulator. By the analysis of true stress-strain curves and the observation of microstructures at different deformation stages, the critical stress and critical strain are determined under different deformation conditions. The effect of Z parameter on dynamic recrystallization of coarse austenite is studied. The microstructure evolution in real production is also discussed.

  4. Generated dynamics of Markov and quantum processes

    CERN Document Server

    Janßen, Martin

    2016-01-01

    This book presents Markov and quantum processes as two sides of a coin called generated stochastic processes. It deals with quantum processes as reversible stochastic processes generated by one-step unitary operators, while Markov processes are irreversible stochastic processes generated by one-step stochastic operators. The characteristic feature of quantum processes are oscillations, interference, lots of stationary states in bounded systems and possible asymptotic stationary scattering states in open systems, while the characteristic feature of Markov processes are relaxations to a single stationary state. Quantum processes apply to systems where all variables, that control reversibility, are taken as relevant variables, while Markov processes emerge when some of those variables cannot be followed and are thus irrelevant for the dynamic description. Their absence renders the dynamic irreversible. A further aim is to demonstrate that almost any subdiscipline of theoretical physics can conceptually be put in...

  5. Dynamic optics for ultrafast laser processing

    Directory of Open Access Journals (Sweden)

    Salter Patrick

    2013-11-01

    Full Text Available We present a range of dynamic optical methods to control focal fields for material processing using ultrafast lasers. Adaptive aberration correction maintains focal quality when focusing deep into materials. Dynamic parallelisation methods permit independent control of hundreds of fabrication spots. New adaptive methods for control of pulse front tilt are also presented.

  6. Dynamic process management for engineering environments

    NARCIS (Netherlands)

    Mentink, R.J.; Houten, van F.J.A.M.; Kals, H.J.J.

    2003-01-01

    The research presented in this paper proposes a concept for dynamic process management as part of an integrated approach to engineering process support. The theory of information management is the starting point for the development of a process management system based on evolution of information con

  7. Research on the expanding deformation of ring radius in cold profiled ring rolling process

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Cold profiled ring rolling is an advanced local plastic deformation technology widely used to precisely manufacture various complex seamless ring parts.It plays an important role in many industrial fields such as aeronautics,astronautics,automobile,bearings,etc.In the cold ring rolling process,the ring radius expands gradually with the increase of the feeding amount(i.e.rolling reduction),and the expanding deformation of the ring radius is closely related to the rolling reduction.It is very important to investigate the expanding deformation of ring radius for the precise control of ring dimensions and the design of feeding movement.In this paper,the relation between the expanding deformation of the ring radius and the rolling reduction in the stepped ring rolling process,a typical profiled ring rolling process,is analyzed by using analytical method.The results show that the growth amount of the filling depth of groove can’t exceed the rolling reduction,that in the inner stepped ring rolling process,the curves of the outer radius and big inner radius with the rolling reduction are monotonous,ascending and concave,i.e.,the outer radius and big inner radius expand faster and faster with the increase of the rolling reduction,and that in the outer stepped ring rolling process,the curves of the inner radius and small outer radius with the rolling reduction are also monotonous,ascending and concave,i.e.,the inner radius and small outer radius expand faster and faster with the increase of the roll reduction.

  8. The Correlation of Stir Zone Texture Development with Base Metal Texture and Tool-Induced Deformation in Friction Stir Processing of Severely Deformed Aluminum

    Science.gov (United States)

    Sarkari Khorrami, M.; Kazeminezhad, Mohsen; Miyashita, Y.; Kokabi, A. H.

    2017-01-01

    The texture development during friction stir processing (FSP) of 1050 aluminum severely deformed at the strain magnitude of 2.32 was comprehensively discussed. It was observed that the component bar{B} of the ideal shear texture along with the cube texture was developed in the severely deformed base metal. The effects of base metal texture on the texture development of stir zone, thermo-mechanically affected zone, and heat-affected zone during FSP were examined. Also, the developed texture components in the vicinity of the FSP tool and the stir zone were correlated to the deformation induced by the rotating tool which consisted of pin and shoulder. The observed texture components in the longitudinal section of the stir zone were found coincided with the ideal shear ones, but different from those observed in the severely deformed base metal. It could be responsible for the fact that the material beneath the FSP tool is predominantly deformed and stirred by the shoulder rather than the pin. The independency of texture development in the stir zone from pin-induced deformation was also consistent with the observation associated with the stir zone geometry which was independent of the pin geometry. Microstructural evolutions in the regions located ahead of the FSP tool manifested the incident of static recovery and recrystallization as a result of the stored strain in the severely deformed base metal. These led to the development of almost random texture and the deterioration of base metal texture in this region. This suggested the independency of texture development in the stir zone from the texture of severely deformed base metal.

  9. Friction and scale-dependent deformation processes of large experimental carbonate faults

    Science.gov (United States)

    Tesei, Telemaco; Carpenter, Brett M.; Giorgetti, Carolina; Scuderi, Marco M.; Sagy, Amir; Scarlato, Piergiorgio; Collettini, Cristiano

    2017-07-01

    We studied the frictional behaviour and deformation products of large (20 cm × 20 cm bare surfaces) experimental limestone faults. We sheared samples in a direct shear configuration, with an imposed normal force of 40-200 kN and shear velocity of 10 μm/s. The steady-state shearing of these surfaces yielded a coefficient of friction 0.7hold-slide tests, is null (Δμ≤0 upon re-shear). Moreover, sliding of these surfaces is accompanied by dilatation and production of grooves, gouge striations and fault mirrors. These products are entirely analogous to slip surface phenomena found on natural limestone-bearing faults at both the macroscale and at the microscale. We infer that high friction, accompanied by dilatant deformation, and null frictional healing are the macroscopic effect of brittle damage on the sliding surface, constrained by the strength of the rock and by fast healing processes in the gouge. Simultaneously to brittle failure, plastic deformation occurs on the sliding surface and inside the intact rock via nanoparticle formation (mirrors) and twinning at the micron scale. Because of the similarity between experimental and natural structures, we suggest that sliding of carbonate-bearing faults in the uppermost crust could be characterized by high friction, fast healing and strongly dilatant deformation, which would help to explain shallow seismicity frequently documented in carbonatic terrains such as the Northern Apennines of Italy.

  10. On the dynamic stability of shear deformable beams under a tensile load

    Science.gov (United States)

    Caddemi, S.; Caliò, I.; Cannizzaro, F.

    2016-07-01

    Loss of stability of beams in a linear static context due to the action of tensile loads has been disclosed only recently in the scientific literature. However, tensile instability in the dynamic regime has been only marginally covered. Several aspects concerning the role of shear deformation on the tensile dynamic instability on continuous and discontinuous beams are still to be addressed. It may appear as a paradox, but also for the case of the universally studied Timoshenko beam model, despite its old origin, frequency-axial load diagrams in the range of negative values of the load (i.e. tensile load) has never been brought to light. In this paper, for the first time, the influence of a conservative tensile axial loads on the dynamic behaviour of the Timoshenko model, according to the Haringx theory, is assessed. It is shown that, under increasing tensile loads, regions of positive/negative fundamental frequency variations can be distinguished. In addition, the beam undergoes eigen-mode changes, from symmetric to anti-symmetric shapes, until tensile instability of divergence type is reached. As a further original contribution on the subject, taking advantage of a new closed form solution, it is shown that the same peculiarities are recovered for an axially loaded Euler-Bernoulli vibrating beam with multiple elastic sliders. This latter model can be considered as the discrete counterpart of the Timoshenko beam-column in which the internal sliders concentrate the shear deformation that in the Timoshenko model is continuously distributed. Original aspects regarding the evolution of the vibration frequencies and the relevant mode shapes with the tensile load value are highlighted.

  11. Microstructure evolution of a multiphase superalloy processed by severe plastic deformation

    Science.gov (United States)

    Sauvage, Xavier; Mukhtarov, Shamil

    2014-08-01

    This paper presents an overview and some original results about the microstructure evolution of an Ultra Fine Grained (UFG) nickel-iron based alloy INCONEL 718 processed by Severe Plastic Deformation (SPD). The ultrafine grain structure of this alloy that contains a high density of γ" and γ' precipitates was characterized by Scanning Transmission Electron Microscopy (STEM). We propose a comparison between two SPD processes, High Pressure Torsion (HPT) and Multiple Forging (MF). The grain refinement is much more pronounced by HPT but intermetallic particles are partly dissolved during SPD. The UFG structure after MF is obviously very different and exhibits a much better thermal stability especially because second phase particles do not reprecipitate during post-deformation annealing.

  12. Two-Dimensional Self-Propelled Fish Motion in Medium:An Integrated Method for Deforming Body Dynamics and Unsteady Fluid Dynamics

    Institute of Scientific and Technical Information of China (English)

    YANG Yan; Wu Guan-Hao; YU Yong-Liang; TONG Bing-Gang

    2008-01-01

    We present(1)the dynamical equations of deforming body and(2)an integrated method for deforming body dynamics and unsteady fluid dynamics,to investigate a modelled freely serf-propelled fish.The theoretical model and practical method is applicable for studies on the general mechanics of animal locomotion such as flying in air and swimming in water,particularly of free self-propulsion.The present results behave more credibly than the previous numerical studies and are close to the experimental results,and the aligned vortices pattern is discovered in cruising swimming.

  13. Evaluation of Dynamic Deformation Behaviors in Metallic Materials under High Strain-Rates Using Taylor Bar Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyung Oh; Shin, Hyung Seop [Andong National Univ., Andong (Korea, Republic of)

    2016-09-15

    To ensure the reliability and safety of various mechanical systems in accordance with their high-speed usage, it is necessary to evaluate the dynamic deformation behavior of structural materials under impact load. However, it is not easy to understand the dynamic deformation behavior of the structural materials using experimental methods in the high strain-rate range exceeding 10{sup 4} s{sup -1}. In this study, the Taylor bar impact test was conducted to investigate the dynamic deformation behavior of metallic materials in the high strain-rate region, using a high-speed photography system. Numerical analysis of the Taylor bar impact test was performed using AUTODYN S/W. The results of the analysis were compared with the experimental results, and the material behavior in the high strain-rate region was discussed.

  14. Through-Thickness Variations of Deformed and Annealed Microstructures in ECAE-Processed Copper

    DEFF Research Database (Denmark)

    Mishin, Oleg; Bowen, Jacob R.

    2009-01-01

    Through-thickness variations of the microstructure in copper processed using equal channel angular extrusion (ECAE) to a strain of ~10 without rotations between passes have been investigated in deformed and partially recrystallized conditions. It is found that the through-thickness heterogeneity...... strain. Compared to other inspected layers the bottom part of the billet was less refined after ECAE and remained less recrystallized after annealing....

  15. [The processing of point clouds for brain deformation existing in image guided neurosurgery system].

    Science.gov (United States)

    Yao, Xufeng; Lin, Yixun; Song, Zhijian

    2008-08-01

    The finite element method (FEM) plays an important role in solving the brain deformation problem in the image guided neurosurgery system. The position of the brain cortex during the surgery provides the boundary condition for the FEM model. In this paper, the information of brain cortex is represented by the unstructured points and the boundary condition is achieved by the processing of unstructured points. The processing includes the mapping of texture, segmentation, simplification and denoising. The method of k-nearest clustering based on local surface properties is used to simplify and denoise the unstructured point clouds. The results of experiment prove the efficiency of point clouds processing.

  16. Geomorphology of the Burnt River, eastern Oregon, USA: Topographic adjustments to tectonic and dynamic deformation

    Science.gov (United States)

    Morriss, Matthew Connor; Wegmann, Karl W.

    2017-02-01

    Eastern Oregon contains the deepest gorge in North America, where the Snake River cuts vertically down 2300 m. This deep gorge is known as Hells Canyon. A landscape containing such a topographic feature is likely undergoing relatively recent deformation. Study of the Burnt River, a tributary to the Snake River at the upstream end of Hells Canyon, yields data on active river incision in eastern Oregon, indicating that Quaternary faults are a first order control on regional landscape development. Through 1:24,000-scale geologic mapping, a 500,000-year record of fluvial incision along the Burnt River was constructed and is chronologically anchored by optically stimulated luminescence dating and tephrochronology analyses. A conceptual model of fluvial terrace formation was developed using these ages and likely applies to other non-glaciated catchments in eastern Oregon. Mapped terraces, inferred to have formed during glacial-interglacial cycles, provide constraints on rates of incision of the Burnt River. Incision through these terraces indicates that the Burnt River is down-cutting at 0.15 to 0.57 m kyr- 1. This incision appears to reflect a combination of local base-level adjustments tied to movement along the newly mapped Durkee fault and regional base-level control imposed by the downcutting of the Snake River. Deformation of terraces as young as 38.7 ± 5.1 ka indicates Quaternary activity along the Durkee fault, and when combined with topographic metrics (slope, relief, hypsometry, and stream-steepness), reveals a landscape in disequilibrium. Longer wavelength lithospheric dynamics (delamination and crustal foundering) that initiated in the Miocene may also be responsible for continued regional deformation of the Earth's surface.

  17. Estimation of transient deformation on cGPS measurements at Taiwan region: Implications for tectonic and surface processes

    Science.gov (United States)

    Chen, K. H.; Chan, Y. C.

    2015-12-01

    Transient deformation on geodetic time series is usually caused by the tectonic or surface processes. Surface processes include multiple durations that could be trapped or ignored using general time series analysis. We first recognize overall transient signals in Taiwan region recorded by continuous GPS (cGPS) networks. Sparse estimation techniques and Bi-splines function are used to detect the signals on cGPS time series then estimate the parameters. Our study analyzes the transient deformation by using a multi-dataset of the cGPS, seismogram, digital terrain model (DTM), and rainfall gauges. We establish a systematic classification by weighting both the empirical trigger factors and regional criterion to classify the signals into seven types. Spatial and temporal characteristics of transient deformation show three major contributions in Taiwan region including the seismic-related, landslides-related, and slow-slip transients. The cGPS networks in Taiwan region show long-term transient deformation at rates 2-68 mm/yr, ~14%-75% of their tectonic interseismic velocities. Tectonic and surface processes involve ~38%-85% and ~15%-62%, respectively, in the transient deformation under different geological units of Taiwan region. The lack of consideration for the transient deformation in surface processes would underestimate their biases on tectonic interseismic velocity. Statistical linking between cGPS transient deformation, tectonic and surface processes of Taiwan indicate that earthquake, typhoon, and topography play important roles in the occurrence of transient deformation.

  18. Ranges of Cervical Intervertebral Disc Deformation during an In-Vivo Dynamic Flexion-Extension of the Neck.

    Science.gov (United States)

    Yu, Yan; Mao, Haiqing; Li, Jing-Sheng; Tsai, Tsung-Yuan; Cheng, Liming; Wood, Kirkham B; Li, Guoan; Cha, Thomas D

    2017-03-23

    While abnormal loading is widely believed to cause cervical spine disc diseases, in-vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in-vivo functional flexion-extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system and MRI based 3D modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6 and C6/7). Five points (anterior, center, posterior, left and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine.

  19. Thermal Hydraulic Computational Fluid Dynamics Simulations and Experimental Investigation of Deformed Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Mays, Brian [AREVA Federal Services, Lynchburg, VA (United States); Jackson, R. Brian [TerraPower, Bellevue, WA (United States)

    2017-03-08

    The project, Toward a Longer Life Core: Thermal Hydraulic CFD Simulations and Experimental Investigation of Deformed Fuel Assemblies, DOE Project code DE-NE0008321, was a verification and validation project for flow and heat transfer through wire wrapped simulated liquid metal fuel assemblies that included both experiments and computational fluid dynamics simulations of those experiments. This project was a two year collaboration between AREVA, TerraPower, Argonne National Laboratory and Texas A&M University. Experiments were performed by AREVA and Texas A&M University. Numerical simulations of these experiments were performed by TerraPower and Argonne National Lab. Project management was performed by AREVA Federal Services. The first of a kind project resulted in the production of both local point temperature measurements and local flow mixing experiment data paired with numerical simulation benchmarking of the experiments. The project experiments included the largest wire-wrapped pin assembly Mass Index of Refraction (MIR) experiment in the world, the first known wire-wrapped assembly experiment with deformed duct geometries and the largest numerical simulations ever produced for wire-wrapped bundles.

  20. Discontinuous Dynamic Recrystallization of Inconel 718 Superalloy During the Superplastic Deformation

    Science.gov (United States)

    Huang, Linjie; Qi, Feng; Hua, Peitao; Yu, Lianxu; Liu, Feng; Sun, Wenru; Hu, Zhuangqi

    2015-09-01

    The superplastic behavior of Inconel 718 superalloy with particular emphasis on the microstructural evolution has been systematically investigated through tensile tests at the strain rate of 10-3 s-1 and the temperatures ranging from 1223 K to 1253 K (950 °C to 980 °C). Its elongations exceeded 300 pct under all of the experimental conditions and peaked a maximum value of 520 pct at 1223 K (950 °C). Moreover, the stress reached the top value at the strain of 0.3, and then declined until the tensile failure. In addition, we have found that the grain size reduced after deformation while the δ phase precipitation increased. Microstructural evolution during the superplasticity was characterized via transmission electron microscope, and the randomly distributed dislocation, dislocation network, dislocation arrays, low-angled subgrains, and high-angled recrystallized new grains were observed in sequence. These new grains were found to nucleate at the triple junction, twin boundary, and near the δ phase. Based on these results, it is deemed that the discontinuous dynamic recrystallization occurred as the main mechanism for the superplastic deformation of Inconel 718 alloy.

  1. CHARACTERISTICS OF MOVEMENT OF SURFACE POINT IN DYNAMIC SUBSIDENCE BASIN AND ITS DEFORMATION CALCULATION

    Institute of Scientific and Technical Information of China (English)

    WANGShidao; HUANGPeizhu

    1995-01-01

    Along with underground mining, movement and deformation of overburden gradually extends in all directions and up to the ground surface and finally forms a surface subsidence basin. The surface movement progressively stabilizes until coal mining is completed and forms a stable movement basin. Two types of basins, i.e. static and dynamic subsidence basins are distinguished in the paper, a classification of the basins and a description of their characteristics are presented. Based on the analysis of measured data by Yanzhou Coal Mining Bureau, during mining operation, the movement characteristics of surface point, subsidence equation, subsidence rate equation and the law of distribution of movement parameters of surface point relative to principal section of movement basin are addressed in this paper. Moreover the calculating formula of the movement parameters for an arbitrary surface point and the expression for calculating the maximum subsidence rate are also proposed. On the basis of the findings, the movement deformation formula for an arbitrary surface point in any directions during mining operation is highlighted.

  2. Numerical Modeling of Earthquake-Induced Landslide Using an Improved Discontinuous Deformation Analysis Considering Dynamic Friction Degradation of Joints

    Science.gov (United States)

    Huang, Da; Song, Yixiang; Cen, Duofeng; Fu, Guoyang

    2016-12-01

    Discontinuous deformation analysis (DDA) as an efficient technique has been extensively applied in the dynamic simulation of discontinuous rock mass. In the original DDA (ODDA), the Mohr-Coulomb failure criterion is employed as the judgment principle of failure between contact blocks, and the friction coefficient is assumed to be constant in the whole calculation process. However, it has been confirmed by a host of shear tests that the dynamic friction of rock joints degrades. Therefore, the friction coefficient should be gradually reduced during the numerical simulation of an earthquake-induced rockslide. In this paper, based on the experimental results of cyclic shear tests on limestone joints, exponential regression formulas are fitted for dynamic friction degradation, which is a function of the relative velocity, the amplitude of cyclic shear displacement and the number of its cycles between blocks with an edge-to-edge contact. Then, an improved DDA (IDDA) is developed by implementing the fitting regression formulas and a modified removing technique of joint cohesion, in which the cohesion is removed once the `sliding' or `open' state between blocks appears for the first time, into the ODDA. The IDDA is first validated by comparing with the theoretical solutions of the kinematic behaviors of a sliding block on an inclined plane under dynamic loading. Then, the program is applied to model the Donghekou landslide triggered by the 2008 Wenchuan earthquake in China. The simulation results demonstrate that the dynamic friction degradation of joints has great influences on the runout and velocity of sliding mass. Moreover, the friction coefficient possesses higher impact than the cohesion of joints on the kinematic behaviors of the sliding mass.

  3. Evaluation of permanent deformation of CRM-reinforced SMA and its correlation with dynamic stiffness and dynamic creep.

    Science.gov (United States)

    Mashaan, Nuha Salim; Karim, Mohamed Rehan

    2013-01-01

    Today, rapid economic and industrial growth generates increasing amounts of waste materials such as waste tyre rubber. Attempts to inspire a green technology which is more environmentally friendly that can produce economic value are a major consideration in the utilization of waste materials. The aim of this study is to evaluate the effect of waste tyre rubber (crumb rubber modifier (CRM)), in stone mastic asphalt (SMA 20) performance. The virgin bitumen (80/100) penetration grade was used, modified with crumb rubber at four different modification levels, namely, 6%, 12%, 16%, and 20% by weight of the bitumen. The testing undertaken on the asphalt mix comprises the indirect tensile (dynamic stiffness), dynamic creep, and wheel tracking tests. By the experimentation, the appropriate amount of CRM was found to be 16% by weight of bitumen. The results show that the addition of CRM into the mixture has an obvious significant effect on the performance properties of SMA which could improve the mixture's resistance against permanent deformation. Further, higher correlation coefficient was obtained between the rut depth and permanent strain as compared to resilient modulus; thus dynamic creep test might be a more reliable test in evaluating the rut resistance of asphalt mixture.

  4. Evaluation of Permanent Deformation of CRM-Reinforced SMA and Its Correlation with Dynamic Stiffness and Dynamic Creep

    Directory of Open Access Journals (Sweden)

    Nuha Salim Mashaan

    2013-01-01

    Full Text Available Today, rapid economic and industrial growth generates increasing amounts of waste materials such as waste tyre rubber. Attempts to inspire a green technology which is more environmentally friendly that can produce economic value are a major consideration in the utilization of waste materials. The aim of this study is to evaluate the effect of waste tyre rubber (crumb rubber modifier (CRM, in stone mastic asphalt (SMA 20 performance. The virgin bitumen (80/100 penetration grade was used, modified with crumb rubber at four different modification levels, namely, 6%, 12%, 16%, and 20% by weight of the bitumen. The testing undertaken on the asphalt mix comprises the indirect tensile (dynamic stiffness, dynamic creep, and wheel tracking tests. By the experimentation, the appropriate amount of CRM was found to be 16% by weight of bitumen. The results show that the addition of CRM into the mixture has an obvious significant effect on the performance properties of SMA which could improve the mixture's resistance against permanent deformation. Further, higher correlation coefficient was obtained between the rut depth and permanent strain as compared to resilient modulus; thus dynamic creep test might be a more reliable test in evaluating the rut resistance of asphalt mixture.

  5. Normal dynamic deformation characteristics of non-consecutive jointed rock masses under impact loads

    Science.gov (United States)

    Zeng, Sheng; Jiang, Bowei; Sun, Bing

    2017-08-01

    In order to study deformation characteristics of non-consecutive single jointed rock masses under impact loads, we used the cement mortar materials to make simulative jointed rock mass samples, and tested the samples under impact loads by the drop hammer. Through analyzing the time-history signal of the force and the displacement, first we find that the dynamic compression displacement of the jointed rock mass is significantly larger than that of the intact jointless rock mass, the compression displacement is positively correlated with the joint length and the impact height. Secondly, the vertical compressive displacement of the jointed rock mass is mainly due to the closure of opening joints under small impact loads. Finally, the peak intensity of the intact rock mass is larger than that of the non-consecutive jointed rock mass and negatively correlated with the joint length under the same impact energy.

  6. Experiment of dynamic property and transient magnetic effects of coal during deformation and fracture

    Institute of Scientific and Technical Information of China (English)

    LI Cheng-wu; WEI Shan-yang; WANG Xue-ying; LIU Ji-kun; LEI Dong-ji

    2012-01-01

    Combining separated SHPB test device of φ50 mm with ZDKT-type 1 transient magnetic resonance test system,long drop bar of 400 mm was used to impact coal specimens at four different speeds:1.275,3.287,6.251,and 7.404 m/s.The change in waveform,the dynamic mechanical properties,and the generated effect of transient field during the coal deformation and fracture under the loads were discussed and analyzed.While magnetic signals during the coal fracture firstly needed EEMD,decomposition then had a FFT with Data Demon.The main results of the experiment are the following:the main frequency of magnetic signals was between 220 and 450 kHz and the instantaneous frequency during the damage of coal would have the instantaneous jump.

  7. Real-time characterization of the spatio-temporal dynamics of deformable mirrors

    Science.gov (United States)

    Kilpatrick, James; Apostol, Adela; Khizhnya, Anatoliy; Markov, Vladimir; Beresnev, Leonid

    2016-09-01

    Innovative technologies are needed to support and augment the development of various types of deformable mirrors (DM), such as Micro Electro Mechanical Systems (MEMS), segmented, bimorph and membrane types that are currently used in adaptive-optic (AO) systems. The paper discusses the results of initial studies that, could, potentially, be employed for full characterization of the dynamic behavior of adaptive optics mirrors. The experimental data were obtained from a typical bimorph mirror using both, a Shack-Hartman wavefront sensor (SHWFS) and an Imaging Laser Doppler Vibrometer (ILDV) developed exclusively by AS and T Inc. These two sensors were employed for quantitative measurement of both the spatial and temporal dynamics of the DM under broadband excitation via the piezo electric drive elements. The need to characterize the spatial and temporal dynamic response of current and future DM mirror designs is essential for optimizing their performance to a level adequate for high bandwidth AO systems, such as those employed for real-time compensation of wavefront perturbations.

  8. Non-Linear Dynamic Deformation of a Piezothermoelastic Laminate with Feedback Control System

    Directory of Open Access Journals (Sweden)

    Masayuki Ishihara

    2014-03-01

    Full Text Available We study the control of free vibration with large amplitude in a piezothermoelastic laminated beam subjected to a uniform temperature with a feedback control system. The analytical model is the symmetrically cross-ply laminated beam composed of the elastic and piezoelectric layers. On the basis of the von Kármán strain and the classical laminate theory, the governing equations for the dynamic behavior are derived. The dynamic behavior is detected by the electric current in the sensor layer through the direct piezoelectric effect. The electric voltage with the magnitude of the current multiplied by the gain is applied to the actuator layer to constitute a feedback control system. The governing equations are reduced by the Galerkin method to a Liénard equation with respect to the representative deflection, and the equation is found to be dependent on the gain and the configuration of the actuator. By introducing the Liénard's phase plane, the equation is analyzed geometrically, and the essential characteristics of the beam and stabilization of the dynamic deformation are demonstrated.

  9. Crustal deformation in the New Madrid seismic zone and the role of postseismic processes

    Science.gov (United States)

    Boyd, Oliver; Robert Smalley, Jr; Zeng, Yuehua

    2015-01-01

    Global Navigation Satellite System data across the New Madrid seismic zone (NMSZ) in the central United States over the period from 2000 through 2014 are analyzed and modeled with several deformation mechanisms including the following: (1) creep on subsurface dislocations, (2) postseismic frictional afterslip and viscoelastic relaxation from the 1811–1812 and 1450 earthquakes in the NMSZ, and (3) regional strain. In agreement with previous studies, a dislocation creeping at about 4 mm/yr between 12 and 20 km depth along the downdip extension of the Reelfoot fault reproduces the observations well. We find that a dynamic model of postseismic frictional afterslip from the 1450 and February 1812 Reelfoot fault events can explain this creep. Kinematic and dynamic models involving the Cottonwood Grove fault provide minimal predictive power. This is likely due to the smaller size of the December 1811 event on the Cottonwood Grove fault and a distribution of stations better suited to constrain localized strain across the Reelfoot fault. Regional compressive strain across the NMSZ is found to be less than 3 × 10−9/yr. If much of the present-day surface deformation results from afterslip, it is likely that many of the earthquakes we see today in the NMSZ are aftershocks from the 1811–1812 New Madrid earthquakes. Despite this conclusion, our results are consistent with observations and models of intraplate earthquake clustering. Given this and the recent paleoseismic history of the region, we suggest that seismic hazard is likely to remain significant.

  10. THE INFLUENCE OF GRAIN SIZE AND TEMPERATURE ON THE MECHANICAL DEFORMATION OF NANOCRYSTALLINE MATERIALS:MOLECULAR DYNAMICS SIMULATION

    Institute of Scientific and Technical Information of China (English)

    WEN YU-HUA; ZHOU FU-XIN; LIU YUE-WU

    2001-01-01

    Nanocrystalline (nc) materials are characterized by a typical grain size of 1-100nm. The uniaxial tensile deformation of computer-generated nc samples, with several average grain sizes ranging from 5.38 to 1.79nm, is simulated by using molecular dynamics with the Finnis-Sinclair potential. The influence of grain size and temperature on the mechanical deformation is studied in this paper. The simulated nc samples show a reverse Hall-Petch effect. Grain boundary sliding and motion, as well as grain rotation are mainly responsible for the plastic deformation. At low temperatures, partial dislocation activities play a minor role during the deformation. This role begins to occur at the strain of 5%, and is progressively remarkable with increasing average grain size. However, at elevated temperatures no dislocation activity is detected, and the diffusion of grain boundaries may come into play.

  11. Hydrodynamic interaction between a platelet and an erythrocyte: effect of erythrocyte deformability, dynamics, and wall proximity.

    Science.gov (United States)

    Vahidkhah, Koohyar; Diamond, Scott L; Bagchi, Prosenjit

    2013-05-01

    We present three-dimensional numerical simulations of hydrodynamic interaction between a red blood cell (RBC) and a platelet in a wall-bounded shear flow. The dynamics and large deformation of the RBC are fully resolved in the simulations using a front-tracking method. The objective is to quantify the influence of tank treading and tumbling dynamics of the RBC, and the presence of a bounding wall on the deflection of platelet trajectories. We observe two types of interaction: A crossing event in which the platelet comes in close proximity to the RBC, rolls over it, and continues to move in the same direction; and a turning event in which the platelet turns away before coming close to the RBC. The crossing events occur when the initial lateral separation between the cells is above a critical separation, and the turning events occur when it is below the critical separation. The critical lateral separation is found to be higher during the tumbling motion than that during the tank treading. When the RBC is flowing closer to the wall than the platelet, the critical separation increases by several fold, implying the turning events have higher probability to occur than the crossing events. On the contrary, if the platelet is flowing closer to the wall than the RBC, the critical separation decreases by several folds, implying the crossing events are likely to occur. Based on the numerical results, we propose a mechanism of continual platelet drift from the RBC-rich region of the vessel towards the wall by a succession of turning and crossing events. The trajectory deflection in the crossing events is found to depend nonmonotonically on the initial lateral separation, unlike the monotonic trend observed in tracer particle deflection and in deformable sphere-sphere collision. This nonmonotonic trend is shown to be a consequence of the deformation of the RBC caused by the platelet upon collision. An estimation of the platelet diffusion coefficient yields values that are

  12. Different deformation patterns using GPS in the volcanic process of El Hierro (Canary Island) 2011-2013

    Science.gov (United States)

    García-Cañada, Laura; José García-Arias, María; Pereda de Pablo, Jorge; Lamolda, Héctor; López, Carmen

    2014-05-01

    Ground deformation is one of the most important parameter in volcano monitoring. The detected deformations in volcanic areas can be precursors of a volcanic activity and contribute with useful information to study the evolution of an unrest, eruption or any volcanic process. GPS is the most common technique used to measure volcano deformations. It can be used to detect slow displacement rates or much larger and faster deformations associated with any volcanic process. In volcanoes the deformation is expected to be a mixed of nature; during periods of quiescence it will be slow or not present, while increased activity slow displacement rates can be detected or much larger and faster deformations can be measure due to magma intrusion, for example in the hours to days prior a eruption beginning. In response to the anomalous seismicity detected at El Hierro in July 2011, the Instituto Geográfico Nacional (IGN) improved its volcano monitoring network in the island with continuous GPS that had been used to measure the ground deformation associated with the precursory unrest since summer 2011, submarine eruption (October 2011-March 2012) and the following unrest periods (2012-2013). The continuous GPS time series, together with other techniques, had been used to evaluate the activity and to detect changes in the process. We investigate changes in the direction and module of the deformation obtained by GPS and they show different patterns in every unrest period, very close to the seismicity locations and migrations.

  13. Diffusion processes through social groups' dynamics

    CERN Document Server

    Apolloni, Andrea

    2011-01-01

    Axelrod's model describes the dissemination of a set of cultural traits in a society constituted by individual agents. In a social context, nevertheless, individual choices toward a specific attitude are also at the basis of the formation of communities, groups and parties. The membership in a group changes completely the behavior of single agents who start acting according to a social identity. Groups act and interact among them as single entities, but still conserve an internal dynamics. We show that, under certain conditions of social dynamics, the introduction of group dynamics in a cultural dissemination process avoids the flattening of the culture into a single entity and preserves the multiplicity of cultural attitudes. We also considered diffusion processes on this dynamical background, showing the conditions under which information as well as innovation can spread through the population in a scenario where the groups' choices determine the social structure.

  14. Numerical simulation of dynamic process of the Tangshan earthquake

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    In this paper, the new LDDA (Lagrangian Discontinuous Deformation Analysis) method is used in modeling the dynamic process of the MS=7.8 Tangshan earthquake on July 28, 1976 and obtain directly the dynamic and quasi-static dislocations, shear stress drops, fracture velocities of the Tangshan earthquake fault. The simulation shows that the slip history at each point of the fault is different. The displacement vectors at the concave side of the fault is greater than that of the convex side of the fault. The "over shoot" of the fault slip is greatest at the middle part of the fault and attenuates to its ends. The rupture velocities of the fault from the epicenter towards south-west and towards north-east are 3.08 m/s and 1.18 m/s, respectively, the average one is 2.13 m/s. The maximum dynamic and quasi-static dislocations are 7.1 m and 6.2 m respectively, the average quasi-static one on the fault is 4.5 m. The maximum dynamic and quasi-static shear stress drops are 8.1 MPa and 5.4 MPa, respectively, the average quasi-static shear stress drop is 3.9 MPa.We found that the rupture velocities and shear stress are related to the initial stress states of the fault.

  15. Microstructure and High Temperature Plastic Deformation Behavior of Al-12Si Based Alloy Fabricated by an Electromagnetic Casting and Stirring Process

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Kyung-Soo; Roh, Heung-Ryeol; Kim, Mok-Soon [Inha University, Incheon (Korea, Republic of); Kim, Jong-Ho; Park, Joon-Pyo [Research Institute of Industrial Science and Technology, Pohang (Korea, Republic of)

    2017-06-15

    An as-received EMC/S (electromagnetic casting and stirring)-processed Al-12Si based alloy billet was homogenized to examine its microstructure and high temperature plastic deformation behavior, using compressive tests over the temperature range from 623 to 743 K and a strain rate range from 1.0×10{sup -3} to 1.0×10{sup 0}s{sup -1}. The results were compared with samples processed by the direct chill casting (DC) method. The fraction of equiaxed structure for the as-received EMC/S billet(41%) was much higher than that of the as-received DC billet(6 %). All true stress – true strain curves acquired from the compressive tests exhibited a peak stress at the initial stage of plastic deformation. Flow stress showed a steady state region after the appearance of peak stress with increasing strain. The peak stress decreased with increasing temperature at a given strain rate and a decreasing strain rate at a given temperature. A constitutive equation was made for each alloy, which could be used to predict the peak stress. A recrystallized grain structure was observed in all the deformed specimens, indicating that dynamic recrystallization is the predominant mechanism during high temperature plastic deformation of both the homogenized EMC/S and DC-processed Al-12Si based alloys.

  16. Dynamics of persistent and acute deformed wing virus infections in honey bees, Apis mellifera.

    Science.gov (United States)

    Prisco, Gennaro Di; Zhang, Xuan; Pennacchio, Francesco; Caprio, Emilio; Li, Jilian; Evans, Jay D; Degrandi-Hoffman, Gloria; Hamilton, Michele; Chen, Yan Ping

    2011-12-01

    The dynamics of viruses are critical to our understanding of disease pathogenesis. Using honey bee Deformed wing virus (DWV) as a model, we conducted field and laboratory studies to investigate the roles of abiotic and biotic stress factors as well as host health conditions in dynamics of virus replication in honey bees. The results showed that temperature decline could lead to not only significant decrease in the rate for pupae to emerge as adult bees, but also an increased severity of the virus infection in emerged bees, partly explaining the high levels of winter losses of managed honey bees, Apis mellifera, around the world. By experimentally exposing adult bees with variable levels of parasitic mite Varroa destructor, we showed that the severity of DWV infection was positively correlated with the density and time period of Varroa mite infestation, confirming the role of Varroa mites in virus transmission and activation in honey bees. Further, we showed that host conditions have a significant impact on the outcome of DWV infection as bees that originate from strong colonies resist DWV infection and replication significantly better than bee originating from weak colonies. The information obtained from this study has important implications for enhancing our understanding of host‑pathogen interactions and can be used to develop effective disease control strategies for honey bees.

  17. Dynamics of Persistent and Acute Deformed Wing Virus Infections in Honey Bees, Apis mellifera

    Directory of Open Access Journals (Sweden)

    Jay D. Evans

    2011-12-01

    Full Text Available The dynamics of viruses are critical to our understanding of disease pathogenesis. Using honey bee Deformed wing virus (DWV as a model, we conducted field and laboratory studies to investigate the roles of abiotic and biotic stress factors as well as host health conditions in dynamics of virus replication in honey bees. The results showed that temperature decline could lead to not only significant decrease in the rate for pupae to emerge as adult bees, but also an increased severity of the virus infection in emerged bees, partly explaining the high levels of winter losses of managed honey bees, Apis mellifera, around the world. By experimentally exposing adult bees with variable levels of parasitic mite Varroa destructor, we showed that the severity of DWV infection was positively correlated with the density and time period of Varroa mite infestation, confirming the role of Varroa mites in virus transmission and activation in honey bees. Further, we showed that host conditions have a significant impact on the outcome of DWV infection as bees that originate from strong colonies resist DWV infection and replication significantly better than bee originating from weak colonies. The information obtained from this study has important implications for enhancing our understanding of host‑pathogen interactions and can be used to develop effective disease control strategies for honey bees.

  18. Effects of Density and Moisture Variation on Dynamic Deformation Properties of Compacted Lateritic Soil

    Directory of Open Access Journals (Sweden)

    Weizheng Liu

    2016-01-01

    Full Text Available A series of repeated load triaxial tests were conducted in this study to investigate the influences of compaction density and postcompaction moisture variation on the dynamic elastic modulus (Ed and plastic permanent strain (PPS of compacted lateritic soil. Specimens were compacted at optimum moisture content (OMC and three degrees of compaction (90%, 93%, and 96%. Then the specimens were dried or wetted to different moisture contents (OMC, OMC±3%, OMC±6%, and OMC+9% prior to testing for Ed and PPS. Results show that moisture content has greater influence on the Ed and PSS than compaction degree, and the increase in moisture content leads to a decrease of Ed and an increase of PPS. Furthermore, an empirical relationship between Ed and applied cyclic stress (σd is developed that incorporates density and moisture variations. Three different evolution types of PPS with number of load cycles, plastic stable, plastic creep, and incremental collapse, are identified as the increase of moisture content. In addition, the critical dynamic stress (σdc separating stable and unstable deformation is determined based on the shakedown concept. The envelope curves of σdc-moisture of lateritic soil with different degrees of compaction are also determined to provide reference for the pavement design.

  19. Microstructural Evolution and Dynamic Softening Mechanisms of Al-Zn-Mg-Cu Alloy during Hot Compressive Deformation

    Directory of Open Access Journals (Sweden)

    Cangji Shi

    2014-01-01

    Full Text Available The hot deformation behavior and microstructural evolution of an Al-Zn-Mg-Cu (7150 alloy was studied during hot compression at various temperatures (300 to 450 °C and strain rates (0.001 to 10 s−1. A decline ratio map of flow stresses was proposed and divided into five deformation domains, in which the flow stress behavior was correlated with different microstructures and dynamic softening mechanisms. The results reveal that the dynamic recovery is the sole softening mechanism at temperatures of 300 to 400 °C with various strain rates and at temperatures of 400 to 450 °C with strain rates between 1 and 10 s−1. The level of dynamic recovery increases with increasing temperature and with decreasing strain rate. At the high deformation temperature of 450 °C with strain rates of 0.001 to 0.1 s−1, a partially recrystallized microstructure was observed, and the dynamic recrystallization (DRX provided an alternative softening mechanism. Two kinds of DRX might operate at the high temperature, in which discontinuous dynamic recrystallization was involved at higher strain rates and continuous dynamic recrystallization was implied at lower strain rates.

  20. Stress and temperature dependence of the avalanche dynamics during creep deformation of metallic glasses.

    Science.gov (United States)

    Herrero-Gómez, Carlos; Samwer, Konrad

    2016-09-22

    The understanding of the mesoscopic origin of plasticity in metallic glasses remains still an open issue. At the microscopic level, Shear Transformation Zones (STZ), composed by dozens of atoms, have been identified as the basic unit of the deformation process. Macroscopically, metallic glasses perform either homogeneous or inhomogeneous flow depending on the experimental conditions. However, the emergence of macroscopic behavior resulting from STZ interactions is still an open issue and is of great interest. In the current work we present an approach to analyze the different interaction mechanisms of STZ's by studying the statistics of the avalanches produced by a metallic glass during tensile creep deformation. We identified a crossover between different regimes of avalanches, and we analyzed the dependence of such crossover on the experimental conditions, namely stress and temperature. We interpret such crossover as a transition from 3D random STZ activity to localized 2D nano-shear bands. The experimental time at which the crossover takes place seems to depend on the overall strain and strain rate in the sample.

  1. Development of Deformation-Semisolid-Casting (D-SSC) Process and Applications to Some Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent advances in the semisolid casting technologies are introduced for aluminum alloys. The advantages of the rheocast and thixocast methods to fabricate alloys with refined spheroidized α-Al particles are described.The deformation-semisolid-casting (D-SSC) process developed by the author's group is presented. The D-SSC process is extremely effective to produce microstructures of refined intermetallic compound particles as well as the spheroidized α-Al particles in the Al-Si based alloys containing highly concentrated Fe. In the D-SSC processed Al-Si-Cu alloy high elongation of about 20% was achieved even contained concentrated impurity of Fe. The D-SSC process is also useful to produce wrought aluminum alloys with microstructures of refined α-Al particles.

  2. Study of Dynamic Characteristics of Slow-Changing Process

    Directory of Open Access Journals (Sweden)

    Yinong Li

    2000-01-01

    Full Text Available A vibration system with slow-changing parameters is a typical nonlinear system. Such systems often occur in the working and controlled process of some intelligent structures when vibration and deformation exist synchronously. In this paper, a system with slow-changing stiffness, damping and mass is analyzed in an intelligent structure. The relationship between the amplitude and the frequency of the system is studied, and its dynamic characteristic is also discussed. Finally, a piecewise linear method is developed on the basis of the asymptotic method. The simulation and the experiment show that a suitable slow-changing stiffness can restrain the amplitude of the system when the system passes through the resonant region.

  3. Postseismic Deformation Following the 2010 El Mayor-Cucapah Earthquake: Observations, Kinematic Inversions, and Dynamic Models

    Science.gov (United States)

    Rollins, Christopher; Barbot, Sylvain; Avouac, Jean-Philippe

    2015-05-01

    models of dynamically coupled deformation mechanisms that fit the postseismic transient well: a model combining afterslip in the lower crust, Newtonian viscoelastic relaxation in a localized zone in the lower crust beneath areas of high heat flow and geothermal activity, and Newtonian viscoelastic relaxation in the asthenosphere; and a second model that replaces the afterslip in the first model with viscoelastic relaxation with a stress-dependent viscosity in the mantle. The rheology of this high-heat-flow, high-strain-rate region may incorporate elements of both these models and may well be more complex than either of them.

  4. Dynamic Process Analysis In Cutting Zone During Machining Of Nickel Alloys

    Science.gov (United States)

    Czán, Andrej; Šajgalík, Michal; Martikáň, Anton; Mrázik, Jozef

    2015-12-01

    To generally improve effectivity of parts production and metal cutting process, there are used process models of super alloys together with finite element modeling simulations. Advanced measurement methods of the process could improve and verify the accuracy of these models. These methods cause many error sources when using empiric or exact methods such as infrared radiation thermography to measure the temperature distribution of the tool, workpiece, and chip during metal cutting. Measuring of metal machining is challenging due to factors such as the high magnification required, high surface speeds and deformations, micro-blackbody effects, changing emissivity and deformations present at metal cutting. As part of an ongoing effort to improve our understanding of uncertainties associated with these measurement methods, multimeasurement sets of experiments were performed. First set of measurements observed connection between surface temperature and the internal temperature of the cutting tool. This was accomplished by measuring the temperature using a thermal camera in cutting zone. Second set performed high-speed scan of dynamic processes such as formation of elastic and plastic deformation. During this operation was applied high-speed scannning system using macro conversion lens for monitoring of micro-structural changes in deformation areas. Next necessary applied set is recording of dynamic processes by implementation of piezoelectric measurement device for monitoring of cutting forces. The outputs from multimeasuring system are the basis for verification of theoretical knowledge from this field and elimination of uncertainties, which arise by using computer simulation systems.

  5. A dynamically reconfigurable data stream processing system

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J.M.; Trombly-Freytag, K.; /Fermilab

    2004-11-01

    This paper describes a component-based framework for data stream processing that allows for configuration, tailoring, and runtime system reconfiguration. The system's architecture is based on a pipes and filters pattern, where data is passed through routes between components. A network of pipes and filters can be dynamically reconfigured in response to a preplanned sequence of processing steps, operator intervention, or a change in one or more data streams. This framework provides several mechanisms supporting dynamic reconfiguration and can be used to build static data stream processing applications such as monitoring or data acquisition systems, as well as self-adjusting systems that can adapt their processing algorithm, presentation layer, or data persistency layer in response to changes in input data streams.

  6. Group Dynamic Processes in Email Groups

    Science.gov (United States)

    Alpay, Esat

    2005-01-01

    Discussion is given on the relevance of group dynamic processes in promoting decision-making in email discussion groups. General theories on social facilitation and social loafing are considered in the context of email groups, as well as the applicability of psychodynamic and interaction-based models. It is argued that such theories may indeed…

  7. Role of pairing degrees of freedom and higher multipolarity deformations in spontaneous fission process

    CERN Document Server

    Lojewski, Z

    1999-01-01

    Spontaneous fission (T sub s sub f) and alpha-decay half-lives (T subalpha) of the heaviest nuclei with atomic number 100 <= Z <= 114 are calculated on the basis of the deformed Woods-Saxon potential. The calculations of (T sub s sub f) are performed by the WKB approximation, in the multi-dimensional dynamical-programing method (MDP). We have examined three different effects: the effect of higher even-multipolarity shape parameters (beta sub 6 and beta sub 8), the role of reflection-asymmetry (beta sub 3 and beta sub 5) and the influence of pairing degrees of freedom (DELTA sub p and DELTA sub n). Alpha-decay half-lives (T subalpha) have been calculated by the Viola-Seaborg (V-S) formula with the parameters modified to the latest experimental data.

  8. Mathematical modeling of phenomena of dynamic recrystallization during hot plastic deformation in high-carbon bainitic steel

    Directory of Open Access Journals (Sweden)

    T. Dembiczak

    2017-01-01

    Full Text Available Based on the research results, coefficients were determined in constitutive equations, describing the kinetics of dynamic recrystallization in high-carbon bainitic steel during hot deformation. The developed mathematical model takes into account the dependence of changing kinetics in the size evolution of the initial austenite grains, the value of strain, strain rate, temperature and time. Physical simulations were carried out on rectangular specimens measuring 10 × 15 × 20 mm. Compression tests with a plane state of deformation were carried out using a Gleeble 3800.

  9. Quantitative formulation of mechanism of sintering process during creep deformation of refractory concretes

    Directory of Open Access Journals (Sweden)

    Terzić Anja

    2009-01-01

    Full Text Available This paper is concerned with quantitative formulation of the mechanism of the sintering process during secondary state creep deformation of refractory concretes. Investigated concretes varied in, both, chemical and mineralogical compositions. The sintering process during secondary state creep within refractory concrete has an isothermal character. Thus, an attempt was made to describe the mentioned process quantitatively. Creep was investigated at three different temperatures: 1200, 1300 and 1400ºC. Variations of the microstructure of concrete samples, exposed to constant static pressure and constant temperature during certain time-intervals, were investigated using a scanning electron microscope. Obtained results of the investigation proved that creep resistance is an irreplaceable method when the decision about the best possible type of refractory concrete for application in metallurgical furnaces is required.

  10. Coupled deformation and dehydration processes in smectite-rich sediments constrained by laboratory experiments

    Science.gov (United States)

    Huepers, Andre; Kopf, Achim J.

    2013-04-01

    Subduction zones play a central role in the geological activity of the earth which is expressed as devastating events such as earthquakes, tsunamis and explosive volcanism. Many processes that lead to such catastrophic behavior are driven by fluids, which in turn affect the rock mechanical behavior. The kinetic reaction of hydrous smectite to illite is widely accepted as a fluid source in subduction zone forearcs that also affects the mechanical state of subduction zone sediments. The released fluids are characterized by low-chlorinity and high volatile content. Also, previous workers demonstrated in uniaxial deformation tests that smectite partially dehydrates with increasing effective stress. To shed light on this process we performed uniaxial deformation experiments on smectite-rich samples from the Nankai and Costa Rica subduction zones. Experiments were conducted at temperatures of up to 100°C under constant rate of strain and effective stresses of up to ~100MPa. Fluids expelled during the experiments were analyzed for major and minor element content. The fluids are characterized by fluid-freshening and increasing volatile content that starts at ~1.3MPa effective stress. During the course of the experiments the smectite interlayer water content decreases from 27 wt-% to 20 wt-%. The released interlayer water comprises up to 17% of the total fluid volume released from the consolidating sediment. The onset of fluid freshening is characterized by a change in deformation behavior of the samples. The porosity decrease with increasing effective stress is smaller at effective stresses greater 1.3MPa. We propose that dehydration of the low permeable smectite leads to excess pore pressures in the sample, which causes a load transfer from the solid phase to the pore fluid.

  11. Microstructural evolution and mechanical properties of high strength magneisum alloys fabricated by deformation processing

    Science.gov (United States)

    Mansoor, Bilal

    The goal of this research was to develop high strength Mg by thermo-mechanical processing. Several novel techniques were developed to impart large plastic strains on Mg alloys and Mg based composites. The main emphasis of this work was on investigating the effect of different processing schemes on grain-refinement and texture modification of processed material. The room-temperature and elevated-temperature mechanical behavior of processed-Mg was studied in detail. Biaxial corrugated pressing, also known as alternate biaxial reverse corrugation processing was applied to twin-roll cast AZ31 Mg and warm-extruded ZK60 Mg. Friction stir processing to partial depths was applied to thixomolded AM60 Mg and warm-extruded ZK60 Mg. A new process called "bending reverse-bending", was developed and applied to hot rolled AZ31-H24 Mg. A Mg/Al laminated composite was developed by hot pressing and rolling. In processed condition, Mg alloys exhibit enhancement in room-temperature strength and ductility, as well as elevated temperature formability. It was concluded that improvement in mechanical properties of processed-Mg is strongly influenced by grain size and precipitates; while ductility largely depends on resulting deformation textures.

  12. Probing deformation substructure by synchrotron X-ray diffraction and dislocation dynamics modelling.

    Science.gov (United States)

    Korsunsky, Alexander M; Hofmann, Felix; Song, Xu; Eve, Sophie; Collins, Steve P

    2010-09-01

    Materials characterization at the nano-scale is motivated by the desire to resolve the structural aspects and deformation behavior at length scales relevant to those mechanisms that define the novel and unusual properties of nano-structured materials. A range of novel techniques has recently become accessible with the help of synchrotron X-ray beams that can be focused down to spot sizes of less than a few microns on the sample. The unique combination of tunability (energy selection), parallelism and brightness of synchrotron X-ray beams allows their use for high resolution diffraction (determination of crystal structure and transformations, analysis of dislocation sub-structures, orientation and texture analysis, strain mapping); small angle X-ray scattering (analysis of nano-scale voids and defects; orientation analysis) and imaging (radiography and tomography). After a brief review of the state-of-the-art capabilities for monochromatic and white beam synchrotron diffraction, we consider the usefulness of these techniques for the task of bridging the gap between experiment and modeling. Namely, we discuss how the experiments can be configured to provide information relevant to the validation and improvement of modeling approaches, and also how the results of various simulations can be post-processed to improve the possibility of (more or less) direct comparison with experiments. Using the example of some recent experiments carried out on beamline 116 at Diamond Light Source near Oxford, we discuss how such experimental results can be interpreted in view and in conjunction with numerical deformation models, particularly those incorporating dislocation effects, e.g., finite-element based pseudo-continuum strain gradient formulations, and discrete dislocation simulations. Post-processing of FE and discrete dislocation simulations is described, illustrating the kind of information that can be extracted from comparisons between modeling and experimental data.

  13. FE Simulation Modelling and Exergy Analysis of Conventional Forging Deformation Behaviour of Material Processing

    Directory of Open Access Journals (Sweden)

    Santosh Sanodiya

    2017-03-01

    Full Text Available The present paper examines the deformation behaviour of geometrical specimens of an aluminium alloy undergoing axial compression in a Universal Testing Machine under dry condition. It is observed that researchers have made attempts to investigate alternate specimens for friction calibration. It is found that ring compression test is recommended as the standard test for determination of coefficient of friction, because it gives reliable results. The effect of weight percentage of silicon carbide on microstructure, hardness and upsetting load is studied. The friction factor at die metal interface is evaluated by ring compression tests and its effect on non-uniform deformation is investigated. The experimental results are finally compared with those obtained by FEA simulation and modelling. In order to validate the predictability of these specimens, real experiments on them are carried out. Rings of standard dimensional ratio 6:3:1 in the same machine. Friction predictions from both specimen are found to be in close match, proposed alternate specimen offers a powerful tool for friction prediction in the absence of ring specimen. Some aspects of Exergy calculations have been in the past repeatedly used to quantify the quality and quantity of energy used in thermal energy processes. This attempt to drive a exergy utilization and compare for the first time two entirely different manufacturing processes, material processing by a mechanical method of straining of the material and thermal processing during cold forging of the same mass of the material using exergy formulation as metric. The exergy analysis of material processing is determined by performed work and utilized heat transfer using mechanical and thermal processes

  14. Deformation Behavior of Ultra-low Carbon Steel in Ferrite Region during Warm Processing

    Institute of Scientific and Technical Information of China (English)

    XU Guang; CHEN Zhenye; LIU Li; YU Shengfu

    2008-01-01

    The hot deformation experiments of ultra-low carbon steel in ferrite range were carried out ina hot simulator in order to research hot deformation behaviors of ultra-low carbon steel in ferrite range at low temperature.The results show that the influences of deformation parameters on flow stress are different to those in austenitic deformation.The deformation characteristic parameters were calculated for ultra-low carbon steel in ferrite region.The flow stress equation for ultra-low carbon steel in ferritic deformation at low temperature was obtained.

  15. Dynamic recrystallization behavior and processing map of the Cu-Cr-Zr-Nd alloy.

    Science.gov (United States)

    Zhang, Yi; Sun, Huili; Volinsky, Alex A; Tian, Baohong; Song, Kexing; Chai, Zhe; Liu, Ping; Liu, Yong

    2016-01-01

    Hot deformation behavior of the Cu-Cr-Zr-Nd alloy was studied by hot compressive tests in the temperature range of 650-950 °C and the strain rate range of 0.001-10 s(-1) using Gleeble-1500D thermo-mechanical simulator. The results showed that the flow stress is strongly dependent on the deformation temperature and the strain rate. With the increase of temperature or the decrease of strain rate, the flow stress significantly decreases. Hot activation energy of the alloy is about 404.84 kJ/mol and the constitutive equation of the alloy based on the hyperbolic-sine equation was established. Based on the dynamic material model, the processing map was established to optimize the deformation parameters. The optimal processing parameters for the Cu-Cr-Zr-Nd alloy hot working are in the temperature range of 900-950 °C and strain rate range of 0.1-1 s(-1). A full dynamic recrystallization structure with fine and homogeneous grain size can be obtained at optimal processing conditions. The microstructure of specimens deformed at different conditions was analyzed and connected with the processing map. The surface fracture was observed to identify instability conditions.

  16. Influence of a cold deformation process by drawing on the electrical properties of copper wires

    Directory of Open Access Journals (Sweden)

    Rafael da Silva Bernardo

    Full Text Available Abstract This article presents a study of the drawing, deformation, hardening and heat treatment of copper wire, in order to investigate the influence of combinations of operating variables (annealing factor, oil emulsion temperature and machine speed during the drawing process on the electrical conductivity of copper wires. The results showed that when the metal is deformed, the value of electrical conductivity suffers a decrease due to the hardening phenomenon. Because of this, it is necessary to heat treat the material. So, it was observed that the annealing factor, which is associated with the thermal treatment temperature, showed a high degree of correlation with the electrical conductivity. This fact is explained by the annealing factor which is responsible for the intensity of the heat treatment. The speed at which the drawing occurs also showed a direct correlation with electric conductivity because the higher the value, the greater the heat treatment temperature and consequently, the greater the electrical conductivity of the material. On the other hand, it had not been possible to establish a conclusion about the correlation between the electrical conductivity and oil emulsion temperature during the drawing process.

  17. The Elastic Mold Deformation During the Filling and Packing Stage of the Injection Molding Process

    Directory of Open Access Journals (Sweden)

    Stefan Kleindel

    2014-03-01

    Full Text Available The accurate numerical prediction of the mold filling process of long and thin walled parts is dependent on numerous factors. This paper investigates the effect of various influencing variables on the filling pattern by means of simulation and experimental validation. It was found that mold temperature, process settings and venting conditions have little effect on the predicted filling pattern. However, in the actual case study, the filling behavior observed during the experiments was significantly different compared to the numerical prediction. A structural finite element analysis of the moving mold half showed an unacceptable large deformation of the mold plates under injection pressure. A very good correlation between simulation and experiment was attained after improving the stiffness of the mold. Therefore it can be concluded, that the elasticity of the mold may have a significant influence on the filling pattern when long and thin walled products are considered. Furthermore, it was shown, that even an apparently stiff mold can exhibit a distinct deformation during filling and packing stage.

  18. Identification for the optimal working parameters of Ti-6Al-4V-0.1Ru alloy in a wide deformation condition range by processing maps based on DMM

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yu-feng; Long, Shuai; Zhou, Yu-ting; Zhao, Jia; Wang, Tian-yu; Zhou, Jie, E-mail: kkyttyls@vip.qq.com [School of Material Science and Engineering, Chongqing University (China)

    2016-11-15

    The hot deformation behaviours of Ti-6Al-4V-0.1Ru alloy were investigated by isothermal hot compression tests in the temperature range of 1023-1423 K and strain rate range of 0.01-10 s{sup -1}. The β transus was determined to be 1198 K by continuous heating method. The values of deformation activation energy Q at the strain of 0.3 were calculated to be 630.01 kJ/mol in dual-phase field and 331.75 kJ/mol in β-phase field. Moreover, the processing maps at the strain of 0.2, 0.4, 0.6 and 0.8 were developed based on dynamic materials model (DMM). To deeply understand the microstructure evolution mechanism during hot deformation processes and to verify the processing maps, the microstructures at different deformation conditions were observed. The stable microstructures (i.e. globularization, dynamic recovery (DRV) and β dynamic recrystallization (β-DRX)) and instable microstructures (i.e. lamellae kinking and flow localization) were obtained. To make it useful in the design of industrial hot working schedules for this material, a microstructural mechanism map was constructed on the basis of processing maps and microstructure observation. Deformation conditions in the vicinity of 1150 K & 0.01 s{sup -1} where globularization occurs and in the vicinity of 1323 K & 0.01 s{sup -1} where β-DRX occurs are recommended. (author)

  19. Understanding the Entrepreneurial Process: a Dynamic Approach

    Directory of Open Access Journals (Sweden)

    Vânia Maria Jorge Nassif

    2010-04-01

    Full Text Available There is considerable predominance in the adoption of perspectives based on characteristics in research into entrepreneurship. However, most studies describe the entrepreneur from a static or snapshot approach; very few adopt a dynamic perspective. The aim of this study is to contribute to the enhancement of knowledge concerning entrepreneurial process dynamics through an understanding of the values, characteristics and actions of the entrepreneur over time. By focusing on personal attributes, we have developed a framework that shows the importance of affective and cognitive aspects of entrepreneurs and the way that they evolve during the development of their business.

  20. Porosity expansion of tablets as a result of bonding and deformation of particulate solids

    NARCIS (Netherlands)

    van der Voort Maarschalk, K; Zuurman, K; Vromans, H; Bolhuis, G.K.

    1996-01-01

    This paper describes the tabletting process of gamma-sorbitol on the basis of the stress-deformation curve; This curve distinguishes between small, elastic deformation and large, viscous deformation. Small deformations can be quantified by the dynamic Young's modulus. The results demonstrated an eff

  1. Investigation of the dynamic diameter deformation of vascular stents during fatigue testing with radial loading

    Directory of Open Access Journals (Sweden)

    Boeck Maria

    2015-09-01

    Full Text Available Endovascular stents are exposed to cyclic loads resulting from daily activity and pulsatile arterial blood pressure. DIN EN ISO 25539-2 and FDA guideline 1545 recommend durability testing, exposing stents to physiological cyclic loads for a 10 year equivalent. For accelerated testing, the simulated deformation has to be comparable to physiological in-vivo deformation. A new test setup is presented to determine diameter deformation of vascular stents during fatigue testing with radial loading.

  2. Effects of deformability and thermal motion of lipid membrane on electroporation: By molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Sheng; Yin, Guangyao [Bioengineering Graduate Program, Hong Kong University of Science and Technology, Hong Kong Special Administrative Region (China); Lee, Yi-Kuen [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Hong Kong Special Administrative Region (China); Wong, Joseph T.Y. [Division of Life Science, Hong Kong University of Science and Technology, Hong Kong Special Administrative Region (China); Zhang, Tong-Yi, E-mail: mezhangt@ust.hk [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Hong Kong Special Administrative Region (China)

    2011-01-14

    Research highlights: {yields} MD simulations show that deformability and thermal motion of membrane affect electroporation. {yields} Stiffer membrane inhibits electroporation and makes water penetrate from both sides. {yields} Higher temperature accelerates electroporation. -- Abstract: Effects of mechanical properties and thermal motion of POPE lipid membrane on electroporation were studied by molecular dynamics simulations. Among simulations in which specific atoms of lipids were artificially constrained at their equilibrium positions using a spring with force constant of 2.0 kcal/(mol A{sup 2}) in the external electric field of 1.4 kcal/(mol A e), only constraint on lateral motions of lipid tails prohibited electroporation while non-tail parts had little effects. When force constant decreased to 0.2 kcal/(mol A{sup 2}) in the position constraints on lipid tails in the external electric field of 2.0 kcal/(mol A e), water molecules began to enter the membrane. Position constraints of lipid tails allow water to penetrate from both sides of membrane. Thermal motion of lipids can induce initial defects in the hydrophobic core of membrane, which are favorable nucleation sites for electroporation. Simulations at different temperatures revealed that as the temperature increases, the time taken to the initial pore formation will decrease.

  3. An Efficient Mesh Generation Method for Fractured Network System Based on Dynamic Grid Deformation

    Directory of Open Access Journals (Sweden)

    Shuli Sun

    2013-01-01

    Full Text Available Meshing quality of the discrete model influences the accuracy, convergence, and efficiency of the solution for fractured network system in geological problem. However, modeling and meshing of such a fractured network system are usually tedious and difficult due to geometric complexity of the computational domain induced by existence and extension of fractures. The traditional meshing method to deal with fractures usually involves boundary recovery operation based on topological transformation, which relies on many complicated techniques and skills. This paper presents an alternative and efficient approach for meshing fractured network system. The method firstly presets points on fractures and then performs Delaunay triangulation to obtain preliminary mesh by point-by-point centroid insertion algorithm. Then the fractures are exactly recovered by local correction with revised dynamic grid deformation approach. Smoothing algorithm is finally applied to improve the quality of mesh. The proposed approach is efficient, easy to implement, and applicable to the cases of initial existing fractures and extension of fractures. The method is successfully applied to modeling of two- and three-dimensional discrete fractured network (DFN system in geological problems to demonstrate its effectiveness and high efficiency.

  4. High-Temperature Deformation Processing Map Approach for Obtaining the Desired Microstructure in a Multi-component (Ni-Ti-Cu-Fe) Alloy

    Science.gov (United States)

    Nayan, Niraj; Singh, Gaurav; Narayana Murty, S. V. S.; Jha, Abhay K.; Pant, Bhanu; George, Koshy M.

    2015-05-01

    An equiatomic NiTiCuFe multi-component alloy with simple body-centered cubic (bcc) and face-centered cubic solid-solution phases in the microstructure was processed by vacuum induction melting furnace under dynamic Ar atmosphere. High-temperature uniaxial compression experiments were conducted on it in the temperature range of 1073 K to 1303 K (800 °C to 1030 °C) and strain rate range of 10-3 to 10-1 s-1. The data generated were analyzed with the aid of the dynamic materials model through which power dissipation efficiency and instability maps were generated so as to identify the governing deformation mechanisms that are operative in different temperature-strain rate regimes with the aid of complementary microstructural analysis of the deformed specimens. Results indicate that the stable domain for the high temperature deformation of the multi-component alloy occurs in the temperature range of 1173 K to 1303 K (900 °C to 1030 °C) and range of 10-3 to 10-1.2 s-1, and the deformation is unstable at T = 1073 K to 1153 K (800 °C to 880 °C) and = 10-3 to 10-1.4 s-1 as well as T = 1223 K to 1293 K (950 °C to 1020 °C) and = 10-1.4 to 10-1 s-1, with adiabatic shear banding, localized plastic flow, or cracking being the unstable mechanisms. A constitutive equation that describes the flow stress of NiTiCuFe multi-component alloy as a function of strain rate and deformation temperature was also determined.

  5. Effects of strain rate on the hot deformation behavior and dynamic recrystallization in China low activation martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuanyuan [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Chen, Xizhang, E-mail: kernel.chen@gmail.com [School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035 (China); Madigan, Bruce [Montana Tech, Butte, MT (United States); Cao, Hongyan [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Konovalov, Sergey [Center for Collective Use Material Science, Siberian State Industrial University, Novokuznetsk (Russian Federation)

    2016-02-15

    Graphical abstract: - Highlights: • Average grain sizes of 1.8 μm are observed at strain rate of 10 s{sup −1}. • Peak stress value increased, but strain decreased with increasing of strain rate. • A catenuliform recrystallized occurred at a strain rate of 5 s{sup −1}. • DRX effect improved with increasing of deformation amounts. - Abstract: To investigate the effects of strain rate on dynamic recrystallization (DRX) behavior on China low activation martensitic steel, hot uniaxial compression tests with strain rates ranging from 0.1 s{sup −1} to 10 s{sup −1} and deformations amounts of 40% and 70% where conducted. The true stress–true strain curves were analyzed for the occurrence of DRX under the different strain rates and compressive deformation amounts. The steel microstructures were examined and linked to the observed stress-strain diagrams to study DRX. Results show that DRX was responsible for refining the grain structure over a wide range of strain rates under 70% deformation. However, significant DRX occurred only at the relatively low strain rate of 0.1 s{sup −1} under 40% deformation. The original elongated microstructure of the rolled plate from which the specimens were taken was replaced by dynamic recrystallization grains. At 70% deformation, the average grain size was 4.2 μm at a strain rate of 0.1 s{sup −1}, 2.5 μm at a strain rate of 5 s{sup −1}, 1.8 μm at a strain rate of 10 s{sup −1}. In conclusion, with increasing strain rate, the recrystallized grain size decreased and the peak stress increased.

  6. Analytical and Experimental Investigation of Process Loads on Incremental Severe Plastic Deformation

    Science.gov (United States)

    Okan Görtan, Mehmet

    2017-05-01

    From the processing point of view, friction is a major problem in the severe plastic deformation (SPD) using equal channel angular pressing (ECAP) process. Incremental ECAP can be used in order to optimize frictional effects during SPD. A new incremental ECAP has been proposed recently. This new process called as equal channel angular swaging (ECAS) combines the conventional ECAP and the incremental bulk metal forming method rotary swaging. ECAS tool system consists of two dies with an angled channel that contains two shear zones. During ECAS process, two forming tool halves, which are concentrically arranged around the workpiece, perform high frequency radial movements with short strokes, while samples are pushed through these. The oscillation direction nearly coincides with the shearing direction in the workpiece. The most important advantages in comparison to conventional ECAP are a significant reduction in the forces in material feeding direction plus the potential to be extended to continuous processing. In the current study, the mechanics of the ECAS process is investigated using slip line field approach. An analytical model is developed to predict process loads. The proposed model is validated using experiments and FE simulations.

  7. Nanoindentation Induced Deformation and Pop-in Events in a Silicon Crystal: Molecular Dynamics Simulation and Experiment.

    Science.gov (United States)

    Jiapeng, Sun; Cheng, Li; Han, Jing; Ma, Aibin; Fang, Liang

    2017-08-31

    Silicon has such versatile characteristics that the mechanical behavior and deformation mechanism under contact load are still unclear and hence are interesting and challenging issues. Based on combined study using molecular dynamics simulations and experiments of nanoindentation on Si(100), the versatile deformation modes, including high pressure phase transformation (HPPT), dislocation, median crack and surface crack, were found, and occurrence of multiple pop-in events in the load-indentation strain curves was reported. HPPTs are regard as the dominant deformation mode and even becomes the single deformation mode at a small indentation strain (0.107 in simulations), suggesting the presence of a defect-free region. Moreover, the one-to-one relationship between the pop-in events and the deformation modes is established. Three distinct mechanisms are identified to be responsible for the occurrence of multiple pop-in events in sequence. In the first mechanism, HPPTs from Si-I to Si-II and Si-I to bct5 induce the first pop-in event. The formation and extrusion of α-Si outside the indentation cavity are responsible for the subsequent pop-in event. And the major cracks on the surface induces the pop-in event at extreme high load. The observed dislocation burst and median crack beneath the transformation region produce no detectable pop-in events.

  8. q-deformed statistical-mechanical property in the dynamics of trajectories en route to the Feigenbaum attractor.

    Science.gov (United States)

    Robledo, A; Moyano, L G

    2008-03-01

    We demonstrate that the dynamics toward and within the Feigenbaum attractor combine to form a q -deformed statistical-mechanical construction. The rate at which ensemble trajectories converge to the attractor (and to the repellor) is described by a q entropy obtained from a partition function generated by summing distances between neighboring positions of the attractor. The values of the q indices involved are given by the unimodal map universal constants, while the thermodynamic structure is closely related to that formerly developed for multifractals. As an essential component in our demonstration we expose, in great detail, the features of the dynamics of trajectories that either evolve toward the Feigenbaum attractor or are captured by its matching repellor. The dynamical properties of the family of periodic superstable cycles in unimodal maps are seen to be key ingredients for the comprehension of the discrete scale invariance features present at the period-doubling transition to chaos. Elements in our analysis are the following. (i) The preimages of the attractor and repellor of each of the supercycles appear entrenched into a fractal hierarchical structure of increasing complexity as period doubling develops. (ii) The limiting form of this rank structure results in an infinite number of families of well-defined phase-space gaps in the positions of the Feigenbaum attractor or of its repellor. (iii) The gaps in each of these families can be ordered with decreasing width in accordance with power laws and are seen to appear sequentially in the dynamics generated by uniform distributions of initial conditions. (iv) The power law with log-periodic modulation associated with the rate of approach of trajectories toward the attractor (and to the repellor) is explained in terms of the progression of gap formation. (v) The relationship between the law of rate of convergence to the attractor and the inexhaustible hierarchy feature of the preimage structure is elucidated

  9. A comparison of the uniaxial deformation of copper and nickel (1 1 19) surfaces: a molecular dynamics study

    Science.gov (United States)

    Pukšič, Nuša; Jenko, Monika; Godec, Matjaž; McGuiness, Paul J.

    2017-02-01

    While a lot is known about the deformation of metallic surfaces from experiments, elasticity theory and simulations, this investigation represents the first molecular-dynamics-based simulation of uniaxial deformation for the vicinal surfaces in a comparison of copper and nickel. These vicinal surfaces are composed of terraces divided by equidistant, mono-atomic steps. The periodicity of vicinals makes them good candidates for the study of the surface steps’ influences on surface dynamics. The simulations of tensile and compressive uniaxial deformations were performed for the (1 1 19) vicinal surfaces. Since the steps on the surfaces serve as stress concentrators, the first defects were expected to nucleate here. In the case of copper, this was found to be the case. In the case of nickel, however, dislocations nucleated beneath the near-surface layer affected by the displacement field generated by the steps. Slip was hindered at the surface step by the vortex in the displacement field. The differences in the deformation mechanisms for the Ni(1 1 19) and Cu(1 1 19) surfaces can be linked to the differences in their displacement fields. This could lead to novel bottom-up approaches to the nanostructuring of surfaces using strain.

  10. 3D deformation and dynamics of the human cadaver abdomen under seatbelt loading.

    Science.gov (United States)

    Lamielle, Sophie; Vezin, Philippe; Verriest, Jean-Pierre; Petit, Philippe; Trosseille, Xavier; Vallancien, Guy

    2008-11-01

    to be able to compare the load penetration characteristics to the results reported in the literature. The injury outcomes are provided and compared to all the published data. The PMHS sustained MAIS2-3 abdominal injuries in the low speed tests and MAIS2-4 injuries in the high speed tests. Finally, the dynamic 3D deformation of the abdominal wall was reconstructed and is provided for further validation of finite element models of the human abdomen.

  11. Research of Tool Durability in Surface Plastic Deformation Processing by Burnishing of Steel Without Metalworking Fluids

    Science.gov (United States)

    Grigoriev, S. N.; Bobrovskij, N. M.; Melnikov, P. A.; Bobrovskij, I. N.

    2017-05-01

    Modern vector of development of machining technologies aimed at the transition to environmentally safe technologies - “green” technologies. The concept of “green technology” includes a set of signs of knowledge intended for practical use (“technology”). One of the ways to improve the quality of production is the use of surface plastic deformation (SPD) processing methods. The advantage of the SPD is a capability to combine effects of finishing and strengthening treatment. The SPD processing can replace operations: fine turning, grinding or polishing. The SPD is a forceful contact impact of indentor on workpiece’s surface in condition of their relative motion. It is difficult to implement the core technology of the SPD (burnishing, roller burnishing, etc.) while maintaining core technological advantages without the use of lubricating and cooling technology (metalworking fluids, MWF). The “green” SPD technology was developed by the authors for dry processing and has not such shortcomings. When processing with SPD without use of MWF requirements for tool’s durability is most significant, especially in the conditions of mass production. It is important to determine the period of durability of tool at the design stage of the technological process with the purpose of wastage preventing. This paper represents the results of durability research of natural and synthetic diamonds (polycrystalline diamond - ASPK) as well as precision of polycrystalline superabrasive tools made of dense boron nitride (DBN) during SPD processing without application of MWF.

  12. Dynamics of the tuning process between singers

    CERN Document Server

    Urteaga, R

    2004-01-01

    We present a dynamical model describing a predictable human behavior like the tuning process between singers. The purpose, inspired in physiological and behavioral grounds of human beings, is sensitive to all Fourier spectrum of each sound emitted and it contemplates an asymmetric coupling between individuals. We have recorded several tuning exercises and we have confronted the experimental evidence with the results of the model finding a very well agreement between calculated and experimental sonograms.

  13. Dynamical processes in atomic and molecular physics

    CERN Document Server

    Ogurtsov, Gennadi

    2012-01-01

    Atomic and molecular physics underlie a basis for our knowledge of fundamental processes in nature and technology and in such applications as solid state physics, chemistry and biology. In recent years, atomic and molecular physics has undergone a revolutionary change due to great achievements in computing and experimental techniques. As a result, it has become possible to obtain information both on atomic and molecular characteristics and on dynamics of atomic and molecular processes. This e-book highlights the present state of investigations in the field of atomic and molecular physics. Rece

  14. Dynamical gluon mass in QCD processes

    Energy Technology Data Exchange (ETDEWEB)

    Ducati, M.B. Gay; Sauter, W. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Fisica. Grupo de Fenomenologia de Particulas de Altas Energias (GFPAE)

    2007-06-15

    We perform phenomenological applications of modified gluon propagators and running coupling constants in scattering processes in Quantum Chromodynamics (QCD). The modified forms of propagators and running coupling constant are obtained by non-perturbative methods. The processes investigated includes the diffractive ones - proton-proton elastic scattering, light vector meson photo-production and double vector meson production in gamma-gamma scattering - as well as the pion and kaon meson form factors. The results are compared with experimental data (if available), showing a good agreement with a gluon with dynamical mass but do not indicate the correct gluon propagator functional form. (author)

  15. Coarsening dynamics of zero-range processes

    Science.gov (United States)

    Godrèche, Claude; Drouffe, Jean-Michel

    2017-01-01

    We consider a class of zero-range processes exhibiting a condensation transition in the stationary state, with a critical single-site distribution decaying faster than a power law. We present the analytical study of the coarsening dynamics of the system on the complete graph, both at criticality and in the condensed phase. In contrast with the class of zero-range processes with critical single-site distribution decaying as a power law, in the present case the role of finite-time corrections is essential for the understanding of the approach to scaling.

  16. Property optimization of nanostructured ARB-processed Al by post-process deformation

    DEFF Research Database (Denmark)

    Huang, Xiaoxu; Kamikawa, Naoya; Hansen, Niels

    2008-01-01

    , and 50% reductions and ultimate tensile strength (UTS), yield stress and elongation have been determined by tensile testing at room temperature. The mechanical testing shows that cold rolling to low strains (10% and 15%) leads to softening and increase in elongation compared to the as-processed ARB...

  17. On the clinical deformation of maxillary complete dentures. Influence of the processing techniques of acrylate-based polymers.

    Science.gov (United States)

    el Ghazali, S; Glantz, P O; Randow, K

    1988-10-01

    This paper aims to study the functional deformation patterns of complete maxillary dentures constructed in three different types of denture base materials and with two techniques of processing of dentures. The patients' evaluation of the fit of the dentures was also recorded. Thirty strain-gauged duplicate dentures were made for this study of five test subjects. The functional loading tests included maximum biting and the chewing of three food test samples. The results showed that there was no correlation between the patients' evaluation and acceptance of the fit of the dentures and the actual straining magnitudes and deformation of their dentures. The results also suggest that dentures manufactured from toughened or co-polymerized poly(methyl methacrylate) and processed by the injection molding technique deform to a lesser extent than when processed by by the compression molding technique. Standard poly(methyl methacrylate) seems to be less sensitive to the processing technique.

  18. Large Deformation Dynamic Three-Dimensional Coupled Finite Element Analysis of Soft Biological Tissues Treated as Biphasic Porous Media

    Science.gov (United States)

    2014-11-01

    2006; White and Borja, 2008; Sun, Ostien, and Salinger , 2013) Q8P8 hexahedral element is also implemented within the coupled dynamics framework, and...but based on our implementation, it was ineffective for our particular applications of soft tissues at finite strain. Sun, Ostien, and Salinger ...large deformation. Int. J. Numer. Methods Engrg., vol. 32, pp. 1411–1439. Sun, W.-C.; Ostien, J.; Salinger , A. (2013): A stabilized assumed

  19. Analysis on Shear Deformation for High Manganese Austenite Steel during Hot Asymmetrical Rolling Process Using Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    Feng-li SUI; Xin WANG; Jun ZHAO; Biao MA; Chang-sheng LI

    2015-01-01

    Based on the rigid-plastic ifnite element method (FEM), the shear stress ifeld of deformation region for high manganese austenite steel during hot asymmetrical rolling process was analyzed. The inlfuences of rolling parameters, such as thevelocity ratio of upper to lower rolls, theinitial temperature of workpiece and the reduction rate, on the shear deformation of three nodes in the upper, center and lower layers were discussed. As the rolling parameters change, distinct shear deformation appears in the up-per and lower layers, but the shear deformation in the center layer appears only when the velocity ratio is more than 1.00, and the absolute value of the shear stress in this layer is changed with rolling parameters. A mathematical model which relfected the change of the maximal absolute shear stress for the center layer was established, by which the maximal absolute shear stress for the center layer can be easily calculated and the appropriate rolling technology can be designed.

  20. Defects interaction processes in deformed high purity polycrystalline molybdenum at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lambri, O.A., E-mail: olambri@fceia.unr.edu.ar [Laboratorio de Materiales, Escuela de Ingeniería Eléctrica, Centro de Tecnología e Investigación Eléctrica, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario – CONICET, Avda. Pellegrini 250, (2000) Rosario (Argentina); Bonifacich, F.G. [Laboratorio de Materiales, Escuela de Ingeniería Eléctrica, Centro de Tecnología e Investigación Eléctrica, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario – CONICET, Avda. Pellegrini 250, (2000) Rosario (Argentina); Bozzano, P.B. [Laboratorio de Microscopía Electrónica, Unidad de Actividad Materiales, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica e Instituto Sábato – Universidad Nacional de San Martín, Avda. Gral. Paz 1499, (1650) San Martín (Argentina); Zelada, G.I. [Laboratorio de Materiales, Escuela de Ingeniería Eléctrica, Centro de Tecnología e Investigación Eléctrica, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario – CONICET, Avda. Pellegrini 250, (2000) Rosario (Argentina); and others

    2014-10-15

    Mechanical spectroscopy (damping and elastic modulus as a function of temperature) and transmission electron microscopy studies have been performed in high purity polycrystalline molybdenum plastically deformed to different values of tensile and torsion strain. Mechanical spectroscopy measurements were performed from room temperature up to 1285 K. A relaxation peak in polycrystalline molybdenum related to the movement of dislocations into lower energy configurations near grain boundaries has been discovered to appear around 1170 K. The activation energy of the peak is 4.2 eV ± 0.5 eV. This relaxation phenomenon involves the interaction between vacancies and mobile dislocations near the grain boundaries. It should be highlighted that this relaxation process is controlled by the arrangement of vacancies and dislocations which occur at temperature below 1070 K.

  1. Processes in Environmental Depositional Systems and Deformation in Sedimentary Basins: Goals for Exoloration in Mexico

    Science.gov (United States)

    Sandoval-Ochoa, J.

    2005-05-01

    Among the recent needs to establish new goals in the mexican energy industry to increase the petroleum reserves, has been necessary to recapitulate on some academic an operative concepts and definitions applied to the Petroliferous Basins Exploration; first of all, in order to understand the Petroleum System in given tectonophysical framework. The tectonophysical environment experienced by the petroliferous basin in the southwestern Gulf of Mexico, merely in the Campeche Sound and adjacent terrestrial regions (Figure 1); has been the result of interaction among the tectonic plates, the Coco's Plate with impingement and subduction beneath the Northamerican Plate and the Yucatán Microplate and even in very deep connection with the oceanic crust of southwesternmost portion of the Gulf of Mexico and the one of the Caribbean sea beneath the gulf of Belize-Honduras. The tectonosedimentary effects in the Campeche Bay starting with the skeleton formed for the Cenozoic Era, kept simultaneous conditions in depositions and deformations because of strain, stress and collapse fields, acted through this Era up to the present day, as observed in the surface Aguayo et al, 1999 and Sandoval, 2000. The involved portions of the crust and its boundaries have also been performing the relative sinking of the mere southwestern centre of the Gulf of Mexico, and the rising of the southeastern lands of Mexico. In the middle contiguity are found the productive Tertiary basins of: Comalcalco, Macuspana, Salina del Itsmo, Campeche-Champoton and other in deep waters; all of them, in an arrangement of basins among distensive faulted blocks in echelon, falling down to the deep centre of the Gulf Sandoval, op cit. With this scenario and that ones of other basins, a recapitulation on concepts and definitions, has been made on the regional natural processes of the environmental depositional systems and on the basins analysis in the tectonophysical framework, in order to reflect on the

  2. Effect of Deformation Condition on Axial CompressivePrecision Forming Process of Tube with Curling Die

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of the deformation condition on the axial compressive precision forming process of tube with curling die was investigated by using a rigid-plastic FEM. The results show that the forming accuracy depends mainly on geometric condition rρ/d0, little on tube material properties and friction condition; the relative gap Δ/2rρ of double-walled tubes obtained decreases with increasing rρ/d0, and there is a parameter k for a given t0/d0 or rρ/t0, when rρ,/d0>k, Δ/2rρ<1,otherwise Δ/2rρ>1.

  3. Crustal deformation and magmatic processes at Laguna del Maule volcanic field (Chile): Geodetic measurements and numerical models

    Science.gov (United States)

    Le Mével, Hélène

    The Laguna del Maule (LdM) volcanic field in Chile is an exceptional example of postglacial rhyolitic volcanism in the Southern Volcanic Zone of the Andes. Since 2007, LdM has experienced an unrest episode characterized by high rates of deformation measured by interferometric analysis of synthetic aperture radar (SAR) images acquired between 2007 and 2016, and data from the Global Positioning System (GPS) recorded since 2012 at five stations. The inflating region includes most of the 16--km-by--14--km ring of rhyolitic domes and coulees. The fastest-moving GPS station (MAU2) has a velocity vector of [[special character omited]72 +/- 4, 19 +/- 1, 194 +/- 3] mm/yr between 2012 and 2016 for the eastward, northward, and upward components, respectively. First, we model the InSAR observations assuming a rectangular dislocation in a half space with uniform elastic properties. The best time function for modeling the InSAR data set is a double exponential model with rates increasing from 2007 through 2010 and decreasing slowly since 2011. Modeling of historical uplift at Yellowstone, Long Valley, and Three Sisters volcanic fields suggests a common temporal evolution of vertical displacement rates. We hypothesize that magma intruding into an existing silicic magma reservoir is driving the surface deformation and present a new dynamic model to describe this process. A Newtonian fluid characterized by its viscosity, density, and pressure flows through a vertical conduit, intruding into a reservoir embedded in an elastic domain and leading to time-dependent surface deformation. Using a grid-search optimization, we minimize the misfit to the InSAR displacement data by varying the three parameters governing the analytical solution: the characteristic timescale tauP for magma propagation, the injection pressure, and the inflection time when the acceleration switches from positive to negative. For a spheroid with semi-major axis a = 6200 m, semi-minor axis c = 100 m, located at a

  4. Competing dynamical processes on two interacting networks

    CERN Document Server

    Alvarez-Zuzek, L G; Braunstein, L A; Vazquez, F

    2016-01-01

    We propose and study a model for the competition between two different dynamical processes, one for opinion formation and the other for decision making, on two interconnected networks. The networks represent two interacting social groups, the society and the Congress. An opinion formation process takes place on the society, where the opinion S of each individual can take one of four possible values (S=-2,-1,1,2), describing its level of agreement on a given issue, from totally against (S=-2) to totally in favor (S=2). The dynamics is controlled by a reinforcement parameter r, which measures the ratio between the likelihood to become an extremist or a moderate. The dynamics of the Congress is akin to that of the Abrams-Strogatz model, where congressmen can adopt one of two possible positions, to be either in favor (+) or against (-) the issue. The probability that a congressman changes his decision is proportional to the fraction of interacting neighbors that hold the opposite opinion raised to a power $\\beta$...

  5. Topic: Catchment system dynamics: Processes and feedbacks

    Science.gov (United States)

    Keesstra, Saskia

    2015-04-01

    In this meeting we can talk about my main expertise: the focus of my research ocus revolves around understanding catchment system dynamics in a holistic way by incorporating both processes on hillslopes as well as in the river channel. Process knowledge enables explanation of the impact of natural and human drivers on the catchment systems and which consequences these drivers have for water and sediment connectivity. Improved understanding of the catchment sediment and water dynamics will empower sustainable land and river management and mitigate soil threats like erosion and off-side water and sediment accumulation with the help of nature's forces. To be able to understand the system dynamics of a catchment, you need to study the catchment system in a holistic way. In many studies only the hillslopes or even plots are studied; or only the channel. However, these systems are connected and should be evaluated together. When studying a catchment system any intervention to the system will create both on- as well as off sites effects, which should especially be taken into account when transferring science into policy regulations or management decisions.

  6. Process factors influencing spinning deformation of thin-walled tubular part with longitudinal inner ribs

    Institute of Scientific and Technical Information of China (English)

    江树勇; 薛克敏; 宗影影; 喻林

    2004-01-01

    As a successively and locally plastic deformation process, ball backward spinning is applied for the purpose of producing thin-walled tubular parts with longitudinal inner ribs. By simplifying ball backward spinning as forward extrusion mechanics model, slab method is used in order to solve spinning force. Based on plastic mechanics, the influence of the process parameters involved on formability of inner ribs as well as the quality defects of spun parts is analyzed so as to present an approach to acquire the desired parts. The quality of inner ribs is one of the critical tasks in obtaining the desired spun workpieces and the height of inner rib depends greatly on spinning material,ball diameter, feed ratio, and wall thickness of tubular blank. The knowledge of the influence of process variables such as ball diameter, feed ratio, and wall thickness of tubular blank on the spinning process is essential to prevent the quality defects of the spun parts and obtain the desired spun parts.

  7. Evaluation of the Mechanical Properties of AA 6063 Processed by Severe Plastic Deformation

    Science.gov (United States)

    Jafarlou, Davoud Mashhadi; Zalnezhad, Erfan; Hamouda, Abdelmagid Salem; Faraji, Ghader; Mardi, Noor Azizi Bin; Hassan Mohamed, Mohsen Abdelnaeim

    2015-05-01

    In this study, the mechanical properties, including surface hardness, tensile strength, fatigue, and fretting fatigue behavior of AA 6063 processed by equal channel angular pressing as the most efficient severe shear plastic deformation (SPD) technique, were investigated. Following the SPD process, samples were subjected to heat treatment (HT), hard anodizing (HA), and a combination of HT and HA. Rotating-bending fretting fatigue tests were performed to explore the samples' response to the fretting condition. From the experimental fatigue and fretting fatigue tests, it was apparent that the SPD treatment had a positive effect on enhancing the fatigue and fretting fatigue lives of the samples at low and high-cyclic loads compared with the HT technique by 78 and 67 pct, and 131 and 154 pct respectively. The results also indicate that the SPD + HT technique significantly increased the fatigue and fretting fatigue lives of the samples at high and low cycles by 15.56 and 8.33 pct, and 14.4 and 5.1 pct respectively, compared with the SPD method. HA of AA6063 increased the fatigue and fretting fatigue lives of SPD + HT-processed samples at low cycle by 15.5 and 18.4 pct respectively; however, at high cycle, HA had reverse effects, whereby the fatigue and fretting fatigue lives of SPD + HT-processed samples decreased by 16.7 and 30 pct, respectively.

  8. Slope Edge Deformation and Permafrost Dynamics Along the Arctic Shelf Edge, Beaufort Sea, Canada

    Science.gov (United States)

    Paull, C. K.; Dallimore, S.; Caress, D. W.; Gwiazda, R.; Lundsten, E. M.; Anderson, K.; Riedel, M.; Melling, H.

    2015-12-01

    The shelf of the Canadian Beaufort Sea is underlain by relict offshore permafrost that formed in the long intervals of terrestrial exposure during glacial periods. At the shelf edge the permafrost thins rapidly and also warms. This area has a very distinct morphology that we attribute to both the formation and degradation of ice bearing permafrost. Positive relief features include circular to oval shaped topographic mounds, up to 10 m high and ~50 m in diameter which occur at a density of ~6 per km2. Intermixed are circular topographic depressions up to 20 m deep. This topography was investigated using an autonomous underwater vehicle that provides 1 m horizontal resolution bathymetry and chirp profiles, a remotely operated vehicle to document seafloor textures, and sediment cores to sample pore waters. A consistent down-core freshening at rates of 14 to 96 mM Cl- per meter was found in these pore waters near the shelf edge. Downward extrapolation of these trends indicates water with ≤335 mM Cl- should occur at 2.3 to 22.4 m sub-seafloor depths within this shelf edge deformation band. Pore water with 335 mM Cl- or less freezes at -1.4°C. As bottom water temperatures in this area are persistently (<-1.4°C) cold and ground ice was observed in some core samples, we interpret the volume changes associated with mound formation are in part due to pore water freezing. Thermal models (Taylor et al., 2014) predict brackish water along the shelf edge may be sourced in relict permafrost melting under the adjacent continental shelf. Buoyant brackish water is hypothesized to migrate along the base of the relict permafrost, to emerge at the shelf edge and then refreeze when it encounters the colder seafloor. Expansion generated by the formation of ice-bearing permafrost generates the positive relief mounds and ridges. The associated negative relief features may be related to permafrost dynamics also. Permafrost dynamics may have geohazard implications that are unique to the

  9. Cascading Edge Failures: A Dynamic Network Process

    CERN Document Server

    Zhang, June

    2016-01-01

    This paper considers the dynamics of edges in a network. The Dynamic Bond Percolation (DBP) process models, through stochastic local rules, the dependence of an edge $(a,b)$ in a network on the states of its neighboring edges. Unlike previous models, DBP does not assume statistical independence between different edges. In applications, this means for example that failures of transmission lines in a power grid are not statistically independent, or alternatively, relationships between individuals (dyads) can lead to changes in other dyads in a social network. We consider the time evolution of the probability distribution of the network state, the collective states of all the edges (bonds), and show that it converges to a stationary distribution. We use this distribution to study the emergence of global behaviors like consensus (i.e., catastrophic failure or full recovery of the entire grid) or coexistence (i.e., some failed and some operating substructures in the grid). In particular, we show that, depending on...

  10. Foot deformation during walking: differences between static and dynamic 3D foot morphology in developing feet.

    Science.gov (United States)

    Barisch-Fritz, Bettina; Schmeltzpfenning, Timo; Plank, Clemens; Grau, Stefan

    2014-01-01

    The complex functions of feet require a specific composition, which is progressively achieved by developmental processes. This development should take place without being affected by footwear. The aim of this study is to evaluate differences between static and dynamic foot morphology in developing feet. Feet of 2554 participants (6-16 years) were recorded using a new scanner system (DynaScan4D). Each foot was recorded in static half and full weight-bearing and during walking. Several foot measures corresponding to those used in last construction were calculated. The differences were identified by one-way ANOVA and paired Student's t-test. Static and dynamic values of each foot measure must be considered to improve the fit of footwear. In particular, footwear must account for the increase of forefoot width and the decrease of midfoot girth. Furthermore, the toe box should have a more rounded shape. The findings are important for the construction of footwear for developing feet.

  11. Mechanical Properties and Fractographic Analysis of High Manganese Steels After Dynamic Deformation Tests

    Directory of Open Access Journals (Sweden)

    Jabłońska M.B.

    2014-10-01

    Full Text Available Since few years many research centres conducting research on the development of high-manganese steels for manufacturing of parts for automotive and railway industry. Some of these steels belong to the group of AHS possessing together with high strength a great plastic elongation, and an ideal uniform work hardening behavior. The article presents the dynamic mechanical properties of two types of high manganese austenitic steel with using a flywheel machine at room temperature with strain rates between 5×102÷3.5×103s?–1. It was found that the both studied steels exhibit a high sensitivity Rm to the strain rate. With increasing the strain rate from 5×102 to 3.5×103s?–1 the hardening dominates the process. The fracture analysis indicate that after dynamic test both steel is characterized by ductile fracture surfaces which indicate good plasticity of investigated steels.

  12. Disease processes as hybrid dynamical systems

    Directory of Open Access Journals (Sweden)

    Pietro Liò

    2012-08-01

    Full Text Available We investigate the use of hybrid techniques in complex processes of infectious diseases. Since predictive disease models in biomedicine require a multiscale approach for understanding the molecule-cell-tissue-organ-body interactions, heterogeneous methodologies are often employed for describing the different biological scales. Hybrid models provide effective means for complex disease modelling where the action and dosage of a drug or a therapy could be meaningfully investigated: the infection dynamics can be classically described in a continuous fashion, while the scheduling of multiple treatment discretely. We define an algebraic language for specifying general disease processes and multiple treatments, from which a semantics in terms of hybrid dynamical system can be derived. Then, the application of control-theoretic tools is proposed in order to compute the optimal scheduling of multiple therapies. The potentialities of our approach are shown in the case study of the SIR epidemic model and we discuss its applicability on osteomyelitis, a bacterial infection affecting the bone remodelling system in a specific and multiscale manner. We report that formal languages are helpful in giving a general homogeneous formulation for the different scales involved in a multiscale disease process; and that the combination of hybrid modelling and control theory provides solid grounds for computational medicine.

  13. Detection of microparticles in dynamic processes

    Science.gov (United States)

    Ten, K. A.; Pruuel, E. R.; Kashkarov, A. O.; Rubtsov, I. A.; Shechtman, L. I.; Zhulanov, V. V.; Tolochko, B. P.; Rykovanov, G. N.; Muzyrya, A. K.; Smirnov, E. B.; Stolbikov, M. Yu; Prosvirnin, K. M.

    2016-11-01

    When a metal plate is subjected to a strong shock impact, its free surface emits a flow of particles of different sizes (shock-wave “dusting”). Traditionally, the process of dusting is investigated by the methods of pulsed x-ray or piezoelectric sensor or via an optical technique. The particle size ranges from a few microns to hundreds of microns. The flow is assumed to include also finer particles, which cannot be detected with the existing methods yet. On the accelerator complex VEPP-3-VEPP-4 at the BINP there are two experiment stations for research on fast processes, including explosion ones. The stations enable measurement of both passed radiation (absorption) and small-angle x-ray scattering on synchrotron radiation (SR). Radiation is detected with a precision high-speed detector DIMEX. The detector has an internal memory of 32 frames, which enables recording of the dynamics of the process (shooting of movies) with intervals of 250 ns to 2 μs. Flows of nano- and microparticles from free surfaces of various materials (copper and tin) have been examined. Microparticle flows were emitted from grooves of 50-200 μs in size and joints (gaps) between metal parts. With the soft x-ray spectrum of SR one can explore the dynamics of a single microjet of micron size. The dynamics of density distribution along micro jets were determined. Under a shock wave (∼ 60 GPa) acting on tin disks, flows of microparticles from a smooth surface were recorded.

  14. Dissipative particle dynamics simulations of deformation and aggregation of healthy and diseased red blood cells in a tube flow

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ting; Phan-Thien, Nhan, E-mail: Nhan@nus.edu.sg; Khoo, Boo Cheong; Lim, Chwee Teck [Department of Mechanical Engineering, National University of Singapore, Singapore 119260 (Singapore)

    2014-11-15

    In this paper, we report simulation results assessing the deformation and aggregation of mixed healthy and malaria-infected red blood cells (RBCs) in a tube flow. A three dimensional particle model based on Dissipative Particle Dynamics (DPD) is developed to predict the tube flow containing interacting cells. The cells are also modelled by DPD, with a Morse potential to characterize the cell-cell interaction. As validation tests, a single RBC in a tube flow and two RBCs in a static flow are simulated to examine the cell deformation and intercellular interaction, respectively. The study of two cells, one healthy and the other malaria-infected RBCs in a tube flow demonstrates that the malaria-infected RBC (in the leading position along flow direction) has different effects on the healthy RBC (in the trailing position) at the different stage of parasite development or at the different capillary number. With parasitic development, the malaria-infected RBC gradually loses its deformability, and in turn the corresponding trailing healthy RBC also deforms less due to the intercellular interaction. With increasing capillary number, both the healthy and malaria-infected RBCs are likely to undergo an axisymmetric motion. The minimum intercellular distance becomes small enough so that rouleaux is easily formed, i.e., the healthy and malaria-infected RBCs are difficultly disaggregated.

  15. Microstructure and mechanical properties of fine grain seamless Nb tube by a novel shear deformation process

    Science.gov (United States)

    Balachandran, S.; Seymour, N.; Mezyenski, R.; Barber, R.; Hartwig, K. T.

    2014-01-01

    The objective of this work is to demonstrate a seamless tube fabrication method for obtaining uniform fine grained microstructures by a novel shear deformation process for tubular metal products. The manufacture of fine grained RRR Nb superconducting radio frequency (SRF) cavities, and other tubular Nb products requires strict microstructure control with respect to grain size and texture for good formability. The major challenges in SRF cavity fabrication and performance stems from: a) the high cost of pure Nb, b) a poor and inconsistent microstructure in the starting material, and c) seam welding to manufacture multi-cell cavities. The approach presented by the authors indicates a possible strategy to obtain fine grain Nb tube by an innovative shear process. Grain size less than 30μm and tensile ductility greater than 40 percent in the orthogonal direction are achieved. The tensile properties correlate with the strongest texture component in the processed tube. Based on preliminary results, the proposed methodology maybe a viable and cost effective approach to fabricating a seamless Nb tube with good hydroformability.

  16. Deformation and Phase Transformation Processes in Polycrystalline NiTi and NiTiHf High Temperature Shape Memory Alloys

    Science.gov (United States)

    Benafan, Othmane

    2012-01-01

    The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.

  17. ANALYSIS OF DEFORMATION PROCESSES IN THE LITHOSPHERE FROM GEODETIC MEASUREMENTS BASED ON THE EXAMPLE OF THE SAN ANDREAS FAULT

    Directory of Open Access Journals (Sweden)

    Yury V. Gabsatarov

    2015-09-01

    Full Text Available Analysis of data from permanent GPS observation stations located in tectonically active regions provides for direct observation of deformation processes of the earth's surface which result from elastic interaction of the lithospheric plates and also occur when accumulated stresses are released by seismic events and postseismic processes.This article describes the methodology of applying the regression analysis of time series of data from GPS-stations for identification of individual components of the stations’ displacements caused by the influence of various deformation processes. Modelling of the stations’ displacements caused only by deformations of the marginal zone, wherein the lithospheric plates interact, allows us to study variations of the steady-state deformation in the marginal zone.he proposed methodology is applied to studies of variations of fields of cumulative surface displacements, surface displacement velocity and maximum shear strain velocity which are determined from the GPS data recorded prior to the Parkfield earthquake of 28 September 2004 (Mw=6.0.Combined analysis of the variations of the above-mentioned fields shows that measurable anomalies of the elastic deformation of the transform fault’s edge took place prior to the seismic event of 28 September 2004, and such anomalies were coincident in space and time with the focal area of the future seismic event.

  18. Dynamic modeling for rigid rotor bearing systems with a localized defect considering additional deformations at the sharp edges

    Science.gov (United States)

    Liu, Jing; Shao, Yimin

    2017-06-01

    Rotor bearing systems (RBSs) play a very valuable role for wind turbine gearboxes, aero-engines, high speed spindles, and other rotational machinery. An in-depth understanding of vibrations of the RBSs is very useful for condition monitoring and diagnosis applications of these machines. A new twelve-degree-of-freedom dynamic model for rigid RBSs with a localized defect (LOD) is proposed. This model can formulate the housing support stiffness, interfacial frictional moments including load dependent and load independent components, time-varying displacement excitation caused by a LOD, additional deformations at the sharp edges of the LOD, and lubricating oil film. The time-varying displacement model is determined by a half-sine function. A new method for calculating the additional deformations at the sharp edges of the LOD is analytical derived based on an elastic quarter-space method presented in the literature. The proposed dynamic model is utilized to analyze the influences of the housing support stiffness and LOD sizes on the vibration characteristics of the rigid RBS, which cannot be predicted by the previous dynamic models in the literature. The results show that the presented method can give a new dynamic modeling method for vibration formulation for a rigid RBS with and without the LOD on the races.

  19. Investigation of the longitudinal magnetic field effect on dynamic response of viscoelastic graphene sheet based on sinusoidal shear deformation theory

    Science.gov (United States)

    Arani, A. Ghorbanpour; Jalaei, M. H.

    2017-02-01

    This research aims to investigate the influence of a longitudinal magnetic field on the dynamic response of single-layered graphene sheet (SLGS) resting on viscoelastic foundation based on the nonlocal sinusoidal shear deformation theory. The present model is capable of capturing both small scale effect and transverse shear deformation effects of nanoplate, and does not require shear correction factors. The material properties of graphene sheet are assumed orthotropic viscoelastic using Kelvin-Voigt model. Utilizing Hamilton's principle governing equations of motion are derived and solved analytically. The parametric study is conducted, focusing on the remarkable effects of the magnetic field, structural damping, stiffness and damping coefficient of the foundation, nonlocal parameter, aspect ratio and length to thickness ratio on the dynamic response of the SLGS. Results indicate that the longitudinal magnetic field exerted on the SLGS decreases the amplitude of dynamic response. In addition, it is observed that the magnetic field effect on the dynamic response is more distinguished as the nonlocal parameter increases while by increasing the foundation and structural damping coefficients, this effect diminishes. The results of this study can be used in design and manufacturing of nanomechanical devices in the presence of magnetic field as a parametric controller.

  20. Investigation of the longitudinal magnetic field effect on dynamic response of viscoelastic graphene sheet based on sinusoidal shear deformation theory

    Energy Technology Data Exchange (ETDEWEB)

    Arani, A. Ghorbanpour, E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience & Nanotechnology University of Kashan, Kashan (Iran, Islamic Republic of); Jalaei, M.H. [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)

    2017-02-01

    This research aims to investigate the influence of a longitudinal magnetic field on the dynamic response of single-layered graphene sheet (SLGS) resting on viscoelastic foundation based on the nonlocal sinusoidal shear deformation theory. The present model is capable of capturing both small scale effect and transverse shear deformation effects of nanoplate, and does not require shear correction factors. The material properties of graphene sheet are assumed orthotropic viscoelastic using Kelvin-Voigt model. Utilizing Hamilton's principle governing equations of motion are derived and solved analytically. The parametric study is conducted, focusing on the remarkable effects of the magnetic field, structural damping, stiffness and damping coefficient of the foundation, nonlocal parameter, aspect ratio and length to thickness ratio on the dynamic response of the SLGS. Results indicate that the longitudinal magnetic field exerted on the SLGS decreases the amplitude of dynamic response. In addition, it is observed that the magnetic field effect on the dynamic response is more distinguished as the nonlocal parameter increases while by increasing the foundation and structural damping coefficients, this effect diminishes. The results of this study can be used in design and manufacturing of nanomechanical devices in the presence of magnetic field as a parametric controller.

  1. Multiscale regression modeling in mouse supraspinatus tendons reveals that dynamic processes act as mediators in structure-function relationships.

    Science.gov (United States)

    Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H; Jawad, Abbas F; Birk, David E; Soslowsky, Louis J

    2016-06-14

    Recent advances in technology have allowed for the measurement of dynamic processes (re-alignment, crimp, deformation, sliding), but only a limited number of studies have investigated their relationship with mechanical properties. The overall objective of this study was to investigate the role of composition, structure, and the dynamic response to load in predicting tendon mechanical properties in a multi-level fashion mimicking native hierarchical collagen structure. Multiple linear regression models were investigated to determine the relationships between composition/structure, dynamic processes, and mechanical properties. Mediation was then used to determine if dynamic processes mediated structure-function relationships. Dynamic processes were strong predictors of mechanical properties. These predictions were location-dependent, with the insertion site utilizing all four dynamic responses and the midsubstance responding primarily with fibril deformation and sliding. In addition, dynamic processes were moderately predicted by composition and structure in a regionally-dependent manner. Finally, dynamic processes were partial mediators of the relationship between composition/structure and mechanical function, and results suggested that mediation is likely shared between multiple dynamic processes. In conclusion, the mechanical properties at the midsubstance of the tendon are controlled primarily by fibril structure and this region responds to load via fibril deformation and sliding. Conversely, the mechanical function at the insertion site is controlled by many other important parameters and the region responds to load via all four dynamic mechanisms. Overall, this study presents a strong foundation on which to design future experimental and modeling efforts in order to fully understand the complex structure-function relationships present in tendon.

  2. Quantitative analysis of the deformation of polypropylene foam under dynamic loading

    Science.gov (United States)

    Plougonven, Erwan; Bernard, Dominique; Viot, Philippe

    2006-08-01

    A dynamic crash loading experiment is performed on a polypropylene foam. Several interrupted shocks are conducted, in between which microtomographic acquisitions are made, showing the evolution of the sample during its compression. This data can help construct and validate predictive models, although, because this material is multiscale (consitutive grains at the mesoscopic scale are made of microscopic closed cells), image processing is required to extract useful quantitative measures. Such processing is described here, so as to determine a representative volume for each grain of the sample, in order to associate to each grain and to each stage of the compression values such as grain density. This can help build a predictive model at the mesoscopic scale.

  3. Development of microstructure in submicron particles reinforced magnesium matrix composite processed by room temperature deformation

    Energy Technology Data Exchange (ETDEWEB)

    Nie, K.B., E-mail: kaibo.nie@gmail.com [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Deng, K.K., E-mail: jamsdk@163.com [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Xu, F.J. [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, X.J.; Wu, K. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-01-15

    Magnesium matrix composite reinforced with submicron SiC particles was subjected to room temperature deformation. A stepped tensile method was adopted to observe the development of microstructure at different tensile strain state. The microstructure evolution determined by transmission electron microscopy showed that the existence of submicron SiC particles could promote dislocation multiplication as well as impede dislocation motion. Dislocation density around SiC particles increased with the increase of tensile strain. Compared with the matrix alloy, the composite could withstand greater external loads, which can be related to the pinning effect caused by the submicron SiC particles on the movement of grain and twin boundaries. The study of the interface between the submicron SiC particles and matrix in the composite suggested that single submicron SiC particle bonded well with the matrix alloy after tensile process. Initiation of micro-cracks usually generated in the submicron particle dense zone during tensile process, which could lead to the fracture of composite. - Highlights: • Interaction among SiCp, dislocations, grain boundaries and twinning is analyzed. • Microstructures of SiCp/AZ91 during tensile is characterized. • 0.2 μm SiCp has significant pinning effect on dislocation movement. • Interfacial bonding between 0.2 μm SiCp-Mg is analyzed.

  4. Investigating 2010 Northern Cascadia ETS Processes With Absolute Gravity & Deformation Measurements Near Port Renfrew, British Columbia

    Science.gov (United States)

    Henton, J. A.; Dragert, H.; Wang, K.; Kao, H.; Lambert, A.

    2010-12-01

    The monitoring of subduction zone Episodic Tremor and Slip (ETS) has been carried out primarily using seismic data for tremor and continuous Global Positioning System (GPS) and strain- or tilt-meter observations for transient slip. The regularity of ETS episodes in the forearc of the northern Cascadia Subduction Zone has recently allowed us to schedule a series of absolute gravity (AG) measurements to augment these other data and thereby help in understanding the physical processes involved in the generation of ETS. High-precision AG observations are sensitive to vertical motion of the observation site as well as mass redistribution during transient deformation. For the 2010 ETS event in the northern Cascadia, AG observations were carried out at Port Renfrew, British Columbia. The Port Renfrew region was targeted since it has typically had large (~7mm) vertical displacements measured at a nearby GPS site. Additionally this region has experienced large strains during past ETS episodes. The closest PBO borehole strainmeter to Port Renfrew, B004 (Sekiu, WA), typically experiences ETS shear strain transients exceeding 100 nanostrain. In this contribution, we focus on the analysis of the multiple epoch series of AG observations at Port Renfrew during the 2010 ETS event. The ratio of the change of surface gravity (Δg) to vertical displacement (Δh) during the ETS event will also be examined. This ratio provides unique constraints on processes involved in generating observed gravity signals and will help us explore the mechanism of ETS.

  5. "Frictional processes" in carbonate-bearing rocks at seismic deformation conditions

    Science.gov (United States)

    Di Toro, G.; Spagnuolo, E.; Violay, M.; Rempe, M.; Smith, S. A. F.; Nielsen, S. B.; Fondriest, M.; Plumper, O.

    2015-12-01

    Moderate to large earthquakes often rupture and propagate along faults in carbonate-bearing rocks (dolostones, limestones, marbles, etc.). Compared to silicate-bearing rocks, which melt, weaken and wear when sheared at seismic slip rates (ca. 1 m/s), carbonate-bearing rocks do not melt, the minimum friction coefficient can be much lower (down to 5% of static friction) and the wear rate is negligible at seismic slip rates. In cohesive carbonate-bearing rocks, experiments simulating seismic deformation conditions and stopped at slip initiation (solid lubricant) at asperity contacts. With progressive slip and bulk temperature increase, nanograins accommodate large strain rates (ca. 104 s-1) by grain boundary sliding as suggested by several authors. The presence of a microporous fabric boosts pore-controlled diffusive process propelled by CO2 gas exhaust due to decarbonation. Enhanced pore-controlled diffusive processes allow (1) efficient mass transfer during grain boundary sliding and (2) sintering of the nanograins into a foam-like slip surface at the end of the experiment.

  6. Microstructure and properties of plastic deformed martensite induced by laser shock processing

    Institute of Scientific and Technical Information of China (English)

    Jichang Yang(杨继昌); Yinqun Hua(花银群); Ruifang Chen(陈瑞芳); Lan Cai(蔡兰); Yongkang Zhang(张永康); Hong Yan(颜红)

    2004-01-01

    Firstly, 45# steel was quenched by the NEL-2500A rapidly axial flow CO2 laser. The experimental parameters were the laser power of 750 W, the laser beam diameter of 4 mm, the scanning velocity of 7 mm/s.The thickness of coating layer was 0.1 mm and the width was 8 mm. Secondly, the martensite induced by laser quench was shocked by Nd:YAG laser. The parameters of laser shock processing were the wavelength of 1.06 μm, the pulse duration of 23 ns, and the output energy of 16-20 J. The laser was focused on a spot of φ7 mm. K9 optical glass was used as confinement. The sample was coated with black paint 86-1 (the thickness is about 0.025 mm). By testing and analysis of samples which were treated by laser quench and laser quench+shock with transmission electron microscope (TEM), it was discovered that the surface layer of martensite was deformed plastically by laser shock processing. In the secondary hardened zones,there were a lot of slender secondary twin crystal martensites, dislocation tangles, and cellular dislocations.Compared with that of the hardened zones through laser quench only, the residual stress and mechanical properties of the secondary hardened zones were improved and increased through laser compound method.

  7. Texture Evolution in a Ti-Ta-Nb Alloy Processed by Severe Plastic Deformation

    Science.gov (United States)

    Cojocaru, Vasile-Danut; Raducanu, Doina; Gloriant, Thierry; Cinca, Ion

    2012-05-01

    Titanium alloys are extensively used in a variety of applications because of their good mechanical properties, high biocompatibility, and corrosion resistance. Recently, β-type Ti alloys containing Ta and Nb have received much attention because they feature not only high specific strength but also biocorrosion resistance, no allergic problems, and biocompatibility. A Ti-25Ta-25Nb β-type titanium alloy was subjected to severe plastic deformation (SPD) processing by accumulative roll bonding and investigated with the aim to observe the texture developed during SPD processing. Texture data expressed by pole figures, inverse pole figures, and orientation distribution functions for the (110), (200), and (211) β-Ti peaks were obtained by XRD investigations. The results showed that it is possible to obtain high-intensity share texture modes ({001}) and well-developed α and γ-fibers; the most important fiber is the α-fiber ({001} to {114} to {112} ). High-intensity texture along certain crystallographic directions represents a way to obtain materials with high anisotropic properties.

  8. SU-E-J-254: Utility of Pinnacle Dynamic Planning Module Utilizing Deformable Image Registration in Adaptive Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jani, S [Sharp Memorial Hospital, San Diego, CA (United States)

    2014-06-01

    Purpose For certain highly conformal treatment techniques, changes in patient anatomy due to weight loss and/or tumor shrinkage can result in significant changes in dose distribution. Recently, the Pinnacle treatment planning system added a Dynamic Planning module utilizing Deformable Image Registration (DIR). The objective of this study was to evaluate the effectiveness of this software in adapting to altered anatomy and adjusting treatment plans to account for it. Methods We simulated significant tumor response by changing patient thickness and altered chin positions using a commercially-available head and neck (H and N) phantom. In addition, we studied 23 CT image sets of fifteen (15) patients with H and N tumors and eight (8) patients with prostate cancer. In each case, we applied deformable image registration through Dynamic Planning module of our Pinnacle Treatment Planning System. The dose distribution of the original CT image set was compared to the newly computed dose without altering any treatment parameter. Result was a dose if we did not adjust the plan to reflect anatomical changes. Results For the H and N phantom, a tumor response of up to 3.5 cm was correctly deformed by the Pinnacle Dynamic module. Recomputed isodose contours on new anatomies were within 1 mm of the expected distribution. The Pinnacle system configuration allowed dose computations resulting from original plans on new anatomies without leaving the planning system. Original and new doses were available side-by-side with both CT image sets. Based on DIR, about 75% of H and N patients (11/15) required a re-plan using new anatomy. Among prostate patients, the DIR predicted near-correct bladder volume in 62% of the patients (5/8). Conclusions The Dynamic Planning module of the Pinnacle system proved to be an accurate and useful tool in our ability to adapt to changes in patient anatomy during a course of radiotherapy.

  9. In situ characterization of the deformation and failure behavior of non-stochastic porous structures processed by selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Gorny, B.; Niendorf, T.; Lackmann, J. [Lehrstuhl fuer Werkstoffkunde (Materials Science), University of Paderborn, Pohlweg 47-49, 33098 Paderborn (Germany); Thoene, M.; Troester, T. [Lehrstuhl fuer Leichtbau im Automobil (Automotive Lightweight Construction), University of Paderborn, Pohlweg 47-49, 33098 Paderborn (Germany); Direct Manufacturing Research Center (DMRC), Mersinweg 3, 33098 Paderborn (Germany); Maier, H.J., E-mail: hmaier@mail.upb.de [Lehrstuhl fuer Werkstoffkunde (Materials Science), University of Paderborn, Pohlweg 47-49, 33098 Paderborn (Germany)

    2011-10-15

    Highlights: {yields} The present study focused on deformation behavior and failure mechanisms in lattice structure produced by selective laser melting (SLM). {yields} It is demonstrated that heat treatments can be used to increase the energy absorption of an SLM-processed structure. {yields} An in situ testing procedure was introduced, where local strains were calculated by digital image correlation {yields} Shear failure could be predicted by localization using Tresca strains. {yields} The approach employed provides a means to understand the microstructure-mechanical property-local deformation relationship. - Abstract: Cellular materials are promising candidates for load adapted light-weight structures. Direct manufacturing (DM) tools are effective methods to produce non-stochastic structures. Many DM studies currently focus on optimization of the geometric nature of the structures obtained. The literature available so far reports on the mechanical properties but local deformation mechanisms are not taken into account. In order to fill this gap, the current study addresses the deformation behavior of a lattice structure produced by selective laser melting (SLM) on the local scale by means of a comprehensive experimental in situ approach, including electron backscatter diffraction, scanning electron microscopy and digital image correlation. SLM-processed as well as heat treated lattice structures made from TiAl6V4 alloy were employed for mechanical testing. It is demonstrated that the current approach provides means to understand the microstructure-mechanical property-local deformation relationship to allow for optimization of load adapted lattice structures.

  10. Dynamic pedobarography and radiographic evaluation of surgically treated cavovarus foot deformity in children with Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Erickson, Steven; Hosseinzadeh, Pooya; Iwinski, Henry J; Muchow, Ryan C; Talwalkar, Vishwas R; Walker, Janet L; Milbrandt, Todd A

    2015-07-01

    Pedobarography is a common tool for the evaluation of foot deformity. We describe our radiographic and pedobarographic outcomes of surgical treatment of cavovarus foot deformity in children with Charcot-Marie-Tooth disease. Nineteen patients for a total of 30 feet were included. Preoperative and postoperative dynamic pedobarographic measurements were made and analyzed using the five-mask technique. Pedobarographic measures showed statistical significance for increased contact area and decreased peak forces in most mask areas after surgical treatment. Peak pressure and redistribution of varus pressure patterns trended toward improvement. We found pedobarographic studies helpful; however, pedobarographic data are somewhat difficult to interpret and should be used in addition to clinical and radiographic examination.

  11. On-line surveillance of a dynamic process by a moving system based on pulsed digital holographic interferometry.

    Science.gov (United States)

    Pedrini, Giancarlo; Alexeenko, Igor; Osten, Wolfgang; Schnars, Ulf

    2006-02-10

    A method based on pulsed digital holographic interferometry for the measurement of dynamic deformations of a surface by using a moving system is presented. The measuring system may move with a speed of several meters per minute and can measure deformation of the surface with an accuracy of better than 50 nm. The deformation is obtained by comparison of the wavefronts recorded at different times with different laser pulses produced by a Nd:YAG laser. The effect due to the movement of the measuring system is compensated for by digital processing of the different holograms. The system is well suited for on-line surveillance of a dynamic process such as laser welding and friction stir welding. Experimental results are presented, and the advantages of the method are discussed.

  12. Looking into the causes of deformation processes: The example of an industrial-scale turbine; Ursachenerforschung bei Deformationsprozessen am Beispiel einer Grossturbine

    Energy Technology Data Exchange (ETDEWEB)

    Pfeufer, A. [Hannover Univ. (Germany). Geodaetisches Inst.

    1996-12-31

    While quasistatic and kinematic methods for analysis and interpretation of deformation processes reached technical maturity long ago, dynamic models are still in the early development phase. Starting from an outline of the current state of knowledge and a proposal on the definition `Dynamic models`, two fundamentally different dynamic model approaches are described and discussed, i.e. input-output models and state models. Input-output models are discussed in some detail, and the results of such a model when applied to investigations of the deformation characteristics of an industria-scale turbine are presented. (orig.) [Deutsch] Waehrend im Bereich der s.g. quasi-statischen und kinematischen Verfahrensentwicklung zur Analyse und Interpretation von Deformationsprozessen nur noch wenige Verfeinerungen zu erwarten sind, steht man bei der Bereitstellung praxisreifer dynamischer Modelle noch weitestgehend am Anfang einer vielversprechenden Entwicklungsphase. Ausgehend von einem kurzen Ueberblick zum aktuellen Entwicklungsstand und einem Vorschlag zur Definition `Dynamischer Modelle` werden zwei grundsaetzlich verschiedene dynamische Modellansaetze - die Ein-Ausgangs-Modelle und Zustandsmodelle - beschrieben und bezueglich ihrer Vor- und Nachteile diskutiert. Nach einer tiefgruendigeren Behandlung von Ein-Ausgangs-Modellen folgen Ergebnisse der Anwendung eines solchen Modellansatzes zur Untersuchung des Deformationsverhaltens einer Grossturbine. (orig.)

  13. Computational Fluid Dynamics - Applications in Manufacturing Processes

    Science.gov (United States)

    Beninati, Maria Laura; Kathol, Austin; Ziemian, Constance

    2012-11-01

    A new Computational Fluid Dynamics (CFD) exercise has been developed for the undergraduate introductory fluid mechanics course at Bucknell University. The goal is to develop a computational exercise that students complete which links the manufacturing processes course and the concurrent fluid mechanics course in a way that reinforces the concepts in both. In general, CFD is used as a tool to increase student understanding of the fundamentals in a virtual world. A ``learning factory,'' which is currently in development at Bucknell seeks to use the laboratory as a means to link courses that previously seemed to have little correlation at first glance. A large part of the manufacturing processes course is a project using an injection molding machine. The flow of pressurized molten polyurethane into the mold cavity can also be an example of fluid motion (a jet of liquid hitting a plate) that is applied in manufacturing. The students will run a CFD process that captures this flow using their virtual mold created with a graphics package, such as SolidWorks. The laboratory structure is currently being implemented and analyzed as a part of the ``learning factory''. Lastly, a survey taken before and after the CFD exercise demonstrate a better understanding of both the CFD and manufacturing process.

  14. Research the dynamical characteristics of slow deformation waves as a rock massif response to explosions during its outworking

    Science.gov (United States)

    Hachay, Olga; Khachay, Oleg; Shipeev, Oleg

    2015-04-01

    As a result of long-term natural geomechanics and geophysical observation data on mines of complex ore rocks, generalization of the non-linear reaction of rock massif to heavy dynamic influences have been established. In addition, pendulum type waves have been observed and the sources of them have been located inside geoblocks of different hierarchic levels (Oparin et al., 2010). At the same time, these waves propagate with wide low (compared with seismic waves) velocity values (Kurlenja et al., 1993; Oparin et al., 2006). Research into the massif state with the use of the dynamic systems theory approach (Naimark et al., 2009; Chulichkov, 2003; Hachay et al., 2010) has been developed to ascertain the criteria of dissipative regimes changing for real rock massifs, which are under heavy man-caused influence. To realize such research we used the data from the seismic record of the Tashtagol mine for the two-year period from June 2006 up to June 2008. We used the space-time coordinates for all dynamic massif event responses, which occurred during that period inside the mine space and for the explosions - values fixed by seismic station energy (Hachay et al., 2010). The phase diagrams of the massif state for the northern and southern parts of the mine space were plotted in coordinates Ev(t) and d(Ev(t))/dt, t - time - in parts of 24 hours, Ev - the dissipated massive seismic energy - in joules. Hachay et al., (2010) analysed the morphology of seismic response phase trajectories on the explosion influences during different serial intervals in the southern part of the mine. In that period, according to data for different explosions in the mine, the majority of the total energy had been injected into the southern part of the mine. Moreover, at the end of 2007, just in the southern part, the strongest rock burst during the whole history of the working mine happened. We developed a new processing method of seismological information in real, which we can use directly in the

  15. A Vision-Based Methodology to Dynamically Track and Describe Cell Deformation during Cell Micromanipulation

    Science.gov (United States)

    Karimirad, Fatemeh; Shirinzadeh, Bijan; Yan, Wenyi; Fatikow, Sergej

    2013-02-01

    The main objective of this article is to mechanize the procedure of tracking and describing the various phases of deformation of a biological circular cell during micromanipulation. The devised vision-based methodology provides a real-time strategy to track and describe the cell deformation by extracting a geometric feature called dimple angle. An algorithm based on Snake was established to acquire the boundary of the indenting cell and measure the aforementioned feature. Micromanipulation experiments were conducted for zebrafish embryos. Experimental results were used to characterize the deformation of the manipulating embryo by the devised geometric parameter. The results demonstrated the high capability of the methodology. The proposed method is applicable to the micromanipulation of other circular biological embryos such as injection of the mouse oocyte/embryo. Supplemental materials are available for this article. Go to the publisher's online edition of the International Journal of Optomechatronics to view the supplemental files.

  16. Modelling of real area of contact between tool and workpiece in metal forming processes including the influence of subsurface deformation

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, Paulo A. F.; Bay, Niels Oluf

    2016-01-01

    New equipment for testing asperity deformation at various normal loads and subsurface elongations is presented. Resulting real contact area ratios increase heavily with increasing subsurface expansion due to lowered yield pressure on the asperities when imposing subsurface normal stress parallel ...... for estimating friction in the numerical modelling of metal forming processes....

  17. The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing

    DEFF Research Database (Denmark)

    Apps, P.J.; Bowen, Jacob R.; Prangnell, P.B.

    2003-01-01

    The effect of second-phase particles on the rate of grain refinement during severe deformation processing has been investigated, by comparing the microstructure evolution in an AA8079 aluminium alloy, containing 2.5 vol.% of ~2 μm particles, with that in a high purity, single-phase, Al-0.13% Mg a...

  18. Hardening mechanisms in a dynamic strain aging alloy, Hastelloy X, during isothermal and thermomechanical cyclic deformation

    Science.gov (United States)

    Miner, R. V.; Castelli, M. G.

    1992-01-01

    The relative contributions of the hardening mechanisms in Hastelloy X during cyclic deformation were investigated by conducting isothermal cyclic deformation tests within a total strain range of +/-0.3 pct and at several temperatures and strain rates, and thermomechanical tests within several different temperature limits. The results of the TEM examinations and special constant structure tests showed that the precipitation on dislocations of Cr23C6 contributed to hardening, but only after sufficient time above 500 C. Solute drag alone produced very considerable cyclic hardening. Heat dislocation densities, peaking around 10 exp 11 per sq cm, were found to develop at temperatures producing the greatest cyclic hardening.

  19. Oxide dispersion-strengthened steel PM2000 after dynamic plastic deformation: nanostructure and annealing behaviour

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Tao, N. R.; Mishin, Oleg V.

    2016-01-01

    , which substantially increases the strength of the material, but decreases its thermal stability. In the as-deformed microstructure, the stored energy density is found to be higher in 〈111〉-oriented regions than in 〈100〉-oriented regions. Recovery during annealing at 715 °C reduces the energy stored...... in the deformed microstructure. This reduction is more pronounced in the 〈111〉-oriented regions. Orientation-dependent recrystallisation takes place in the recovered microstructure, leading to strengthening of the 〈111〉 fibre texture component at the expense of the 〈100〉 fibre texture component....

  20. Rock deformation processes in the Karakoram fault zone, Eastern Karakoram, Ladakh, NW India

    Science.gov (United States)

    Rutter, E. H.; Faulkner, D. R.; Brodie, K. H.; Phillips, R. J.; Searle, M. P.

    2007-08-01

    The Karakoram fault shows a full range of fault rocks from ductile (deformation by intracrystalline plasticity) mylonites to low temperature brittle fault rocks along the trace of the fault in the Eastern Karakoram, Ladakh, NW India. The Karakoram fault is a prominent feature on satellite images and has estimated long-term average slip rates between 3 and 11 mm/year, based on U-Pb geochronology of mapped offset markers, notably mid-Miocene leucogranites. Mylonitic marbles, superimposed by cataclastic deformation and clay-bearing fault gouges and late fracturing were found on a presently active strand of the fault, and testify to progressive deformation from plastic through brittle deformation during unroofing and cooling. From microstructural analysis we confirmed the right-lateral strike slip character of the fault, estimated peak differential stresses of ca. 200 MPa at the transition from plastic to brittle deformation, and found microstructural features to be consistent with inferences from the extrapolation of deformation behaviour from experimental rock deformation studies. Implied long-term averaged slip rates from microstructural constraints were found to be broadly consistent with estimates from geochronologic and geodetic studies.

  1. Influence of Compatibilizer and Processing Conditions on Morphology, Mechanical Properties, and Deformation Mechanism of PP/Clay Nanocomposite

    Directory of Open Access Journals (Sweden)

    B. Akbari

    2012-01-01

    Full Text Available Polypropylene/montmorillonite nanocomposite was prepared by melt intercalation method using a twin-screw extruder with starve feeding system in this paper. The effects of compatibilizer, extruder rotor speed and feeding rate on properties of nanocomposite were investigated. Structure, tensile, and impact properties and deformation mechanism of the compounds were studied. For investigation of structure and deformation mechanisms, X-ray diffraction (XRD and transmission optical microscopy (TOM techniques were utilized, respectively. The results illustrate that introduction of the compatibilizer and also variation of the processing conditions affect structure and mechanical properties of nanocomposite.

  2. Dynamics of ranking processes in complex systems.

    Science.gov (United States)

    Blumm, Nicholas; Ghoshal, Gourab; Forró, Zalán; Schich, Maximilian; Bianconi, Ginestra; Bouchaud, Jean-Philippe; Barabási, Albert-László

    2012-09-21

    The world is addicted to ranking: everything, from the reputation of scientists, journals, and universities to purchasing decisions is driven by measured or perceived differences between them. Here, we analyze empirical data capturing real time ranking in a number of systems, helping to identify the universal characteristics of ranking dynamics. We develop a continuum theory that not only predicts the stability of the ranking process, but shows that a noise-induced phase transition is at the heart of the observed differences in ranking regimes. The key parameters of the continuum theory can be explicitly measured from data, allowing us to predict and experimentally document the existence of three phases that govern ranking stability.

  3. ICM METALLICITY EVOLUTION: EFFECTS OF DYNAMICAL PROCESSES

    Directory of Open Access Journals (Sweden)

    S. Cora

    2009-01-01

    Full Text Available We present a study on the origin of the metallicity evolution of the intracluster medium (ICM by applying a semi-analytic model of galaxy formation to N-Body/SPH non-radiative cosmological simulations of clusters of galaxies. The results obtained for a set of clusters with virial masses of - 1:5 - 1015 h-1M contribute to the theoretical interpretation of recent observational X-ray data, which indicate a decrease of the average iron content of the intracluster gas with increasing redshift, z. We nd that this evolution is mainly due to a progressive increase of the iron content within 15 per cent of the virial radius as a result of dynamical processes. The clusters have been considerably enriched by z - 1 with very low contribution from recent star formation. Low entropy gas that has been enriched at high z sink to the cluster centre contributing to the evolution of the metallicity pro les.

  4. Lithospheric architecture and deformation of NE Tibet: New insights on the interplay of regional tectonic processes

    Science.gov (United States)

    Guo, Xiaoyu; Gao, Rui; Li, Sanzhong; Xu, Xiao; Huang, Xingfu; Wang, Haiyan; Li, Wenhui; Zhao, Shujuan; Li, Xiyao

    2016-09-01

    GPS measurements indicate rapid lateral extrusion of the NE Tibetan Plateau, which causes active NE-directed crustal shortening and has initiated oblique shearing along the margins of NE Tibet. However, the Tibetan highlands terminate around 103°E longitude and topographic relief disappears to the northeast. The exact reasons for this drop in elevation remain obscure due to widespread Tertiary sediments and Quaternary loess, which obscure details of the lithospheric structure. This study describes a new 310 km-long deep seismic reflection line striking NE-SW across the interior of NE Tibet. Integrating its data with a previously described 165 km-long deep seismic profile of the Tibet-Ordos transition zone together, these datasets provide a complete picture of the crustal architecture of the north-easternmost Tibetan Plateau. Gravity anomaly and previous geological evidence also help constrain complex deformation pattern in the region. Interpretations of these patterns indicate the importance of the large-scale sinistral Haiyuan fault zone and inherited vertical variation in mechanical properties of the lithosphere in the overall tectonic evolution of the NE Tibetan Plateau. The overall crustal architecture obtained in this study provides spatial context for the neotectonic evolution of NE Tibet and helps constrain the interplay of geologic and geodynamic processes affecting NE Tibet and adjacent regions.

  5. Deformation behavior of Cu-12wt%AI alloy wires with continuous columnar crystals in dieless drawing process

    Institute of Scientific and Technical Information of China (English)

    LIU XueFeng; WU YuHui; XIE JianXin

    2009-01-01

    The microstructure and mechanical properties of Cu-12wt%AI alloy wires which are composed of continuous columnar crystals after dieless drawing forming at drawing speed of 1.0-1.4 mm/s and deformation temperature of 600-900℃ were analyzed,and deformation behavior of the alloy during dieless drawing forming was experimentally investigated.The results showed that in the above-mentioned conditions,recrystallization phenomenon was not found during dieless drawing forming.When a drawing speed of 1.0 mm/s was used,the grain boundaries were out of straight gradually with increasing deformation temperature from 600℃ to 900℃,and tensile strength of the dieless drawn Cu-12wt%AI alloy wires increased while elongations decreased with increasing deformation temperature.At drawing speed of 1.1-1.2 mm/s and deformation temperature of 600℃,the effect of dieless drawing forming process on the microstructure of the alloy was inconspicuous,and when drawing speed was up to 1.3-1.4 mm/s,the grain boundaries of continuous columnar crystals became zigzag while there was little effect of drawing speed of 1.1-1.4 mm/s on the elongation and tensile strength of the alloy wires.

  6. Deformation behavior of Cu-12wt%Al alloy wires with continuous columnar crystals in dieless drawing process

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The microstructure and mechanical properties of Cu-12wt%Al alloy wires which are composed of continuous columnar crystals after dieless drawing forming at drawing speed of 1.0―1.4 mm/s and deformation temperature of 600―900℃ were analyzed, and deformation behavior of the alloy during dieless drawing forming was experimentally investigated. The results showed that in the abovemen-tioned conditions, recrystallization phenomenon was not found during dieless drawing forming. When a drawing speed of 1.0 mm/s was used, the grain boundaries were out of straight gradually with increasing deformation temperature from 600℃ to 900℃, and tensile strength of the dieless drawn Cu-12wt%Al alloy wires increased while elongations decreased with increasing deformation temperature. At drawing speed of 1.1―1.2 mm/s and deformation temperature of 600℃, the effect of dieless drawing forming process on the microstructure of the alloy was inconspicuous, and when drawing speed was up to 1.3―1.4 mm/s, the grain boundaries of continuous columnar crystals became zigzag while there was little effect of drawing speed of 1.1―1.4 mm/s on the elongation and tensile strength of the alloy wires.

  7. The influence of deformation path on strain characteristics of AA1050 aluminium processed by equal-channel angular pressing followed by rolling

    Energy Technology Data Exchange (ETDEWEB)

    Vega, M.C.V. [Department of Materials Engineering – Universidade Federal de São Carlos, (SP) Rod. Washington Luis km 235, 13565-905 São Carlos (Brazil); Bolmaro, R.E. [Instituto de Física Rosario (IFIR) FCEIA-UNR-CONICET, Bv. 27 de Febrero 210 bis, S2000EZP Rosario (Argentina); Ferrante, M.; Sordi, V.L. [Department of Materials Engineering – Universidade Federal de São Carlos, (SP) Rod. Washington Luis km 235, 13565-905 São Carlos (Brazil); Kliauga, A.M., E-mail: kliauga@ufscar.br [Department of Materials Engineering – Universidade Federal de São Carlos, (SP) Rod. Washington Luis km 235, 13565-905 São Carlos (Brazil)

    2015-10-14

    The present investigation reports on the microstructure evolution, texture development, the nature of the grain boundaries and the tensile and deep drawing behaviour of commercial AA1050 Al processed by Equal Channel Angular Pressing (ECAP) plus rolling. Although in terms of final mechanical strength ECAP and rolling are indistinguishable, the deformation path is substantially different, and this has important consequences on both microstructure and texture. From the spatial distribution of high angle grain boundaries (HAGB) and low angle grain boundaries (LAGB), the fine microstructure and the crystallographic texture, it was concluded that the microstructure is oriented according to the external imposed flow: a spin movement in the ECAP process, which promotes the rotation of the cells inside the original grain, followed by a sliding movement caused by the rolling, leading to grain elongation. The ECAP process is more suitable to promote a higher fraction of HAGBs, and the same time as it reduces the intensity of the bulk crystallographic texture. As a consequence an increase of the penetration depth and deformation strain, as measured by the Erichsen test, was observed in samples processed by 8 ECAP passes, characterized by low texture intensity and a high degree of dynamic recrystallization.

  8. Nonlinear Dynamic Characteristics of Combustion Wave in SHS Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The characteristic of combustion wave and its change were analyzed by numerical value calculation and computer simulation,based on the combustion dynamical model of SHS process. It is shown that with the change of condition parameters in SHS process various time-space order combustion waves appear.It is concluded from non-liner dynamical mechanism analysis that the strong coupling of two non-linear dynamical processes is the dynamical mechanism causing the time-space order dissipation structures.

  9. Enhanced Fabrication Processes Development for High Actuator Count Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to advance manufacturing science and technology to improve yield and optical surface figure in high actuator count, high-resolution deformable mirrors...

  10. 10^3 Segment MEMS Deformable-Mirror Process Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Iris AO will extend its proven segmented MEMS deformable mirror architecture to large array sizes required for high-contrast astrophysical imagers. Current...

  11. Sill emplacement and corresponding ground deformation processes at the Alu-Dalafilla volcanic centre in the Danakil Depression, Ethiopia

    Science.gov (United States)

    Magee, Craig; Bastow, Ian; Hetherington, Rachel; van Wyk de Vries, Ben; Jackson, Christopher

    2016-04-01

    evaporitic host rock sequence. Important consequences of the shift to sill-dominated magmatism in the Danakil Depression include: (i) roof uplift induced by sill intrusion may not directly relate to the emplaced magma volume if intrusion promotes ductile deformation of the host evaporitic sequence (Schofield et al. 2014), implying that InSAR studies of ground deformation, crucial to volcanic hazard assessment, may under-estimate intruded magma volumes; and (ii) sill volumes are not incorporated into total melt volume estimates, which are used to constrain lithospheric processes active during continental break-up.

  12. Dynamic tensile deformation and fracture of a highly particle-filled composite using SHPB and high-speed DIC method

    OpenAIRE

    Huang F; Guo B.; Chen P; Zhou Z

    2012-01-01

    In this work, various tensile tests, including Brazilian disc test (BDT), flattened Brazilian disc (FBD) test and semi-circular bending (SCB) test, were carried out on a highly particle-filled composite by using a split Hopkinson pressure bar (SHPB). With the consideration of low strength and low wave impedance of the materials, a quartz crystal transducer was embedded in SHPB to measure the loading forces. A high-speed camera was used to capture the deformation and fracture process of materi...

  13. Influence Intensive Plastic Deformation on Phase Formation Process in Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    V.I. Lysov

    2016-06-01

    Full Text Available The influence of intensive plastic deformation on structure and properties of amorphous alloys were investigated experimentally. Using highly sensitive dilatometer techniques shown that intensive plastic deformation of amorphous alloys leads to increased of thermal stability interval that can be explained by a shift of the phase equilibria in heterogeneous system: amorphous matrix - frozen crystallization centers. Thus there is a dissolution frozen crystallization centers present in the original sample that confirmed by electron researches.

  14. Finite Element Surface Layer Inheritable Condition Residual Stresses Model in Surface Plastic Deformation Processes

    Science.gov (United States)

    Mahalov, M. S.; Blumenstein, V. Yu

    2016-04-01

    The residual stresses (RS) research and computational algorithms creation in complex types of loading on the product lifecycle stages relevance is shown. The RS forming finite element model at surface plastic deformation strengthening machining, including technological inheritance effect, is presented. A model feature is the production previous stages obtained transformation properties consideration, as well as these properties evolution during metal particles displacement through the deformation space in the present loading step.

  15. Hot deformation behavior and dynamic recrystallization kinetics of AZ61 and AZ61 + Sr magnesium alloys

    Directory of Open Access Journals (Sweden)

    S. Aliakbari Sani

    2016-06-01

    Full Text Available In this study, the effect of strontium addition on hot deformation of AZ61 alloy was investigated by hot compression tests. A reference alloy (AZ61 and an Sr-containing alloy (AZ61 + Sr was cast while their average initial grain size were supposed to be about 140 and 40 µm, respectively. In AZ61 + Sr alloy, the Sr-containing precipitations were stable at homogenization temperature. Analysing the hot compression curves, it was revealed that dynamic recrystallization phenomenon had occurred and controlled the thermomechanical behaviour of the alloys. The derived constitutive equations showed that the hot deformation parameters (n and Q in AZ61 + Sr alloy is smaller than those of AZ61 alloy; this can be related to the small initial grain size and the lower amounts of solute aluminium atoms. The analysis of DRX kinetics along with the micrographs of the deformed microstructures showed that at the same condition the development of DRXed microstructure in AZ61 + Sr alloy was faster than AZ61 alloy. The increased recrystallized microstructure was interpretated to be attributed to (1 the more grain boundaries present and (2 the existance of the Al-Mg-Sr precipitations assisted the PSN mechanism. Also, the attenuated intensity of the basal texture of AZ61 + Sr was related to the DRX fraction of microstructure.

  16. Simulation of Deformation and Aggregation of Two Red Blood Cells in a Stenosed Microvessel by Dissipative Particle Dynamics.

    Science.gov (United States)

    Xiao, Lanlan; Liu, Yang; Chen, Shuo; Fu, Bingmei

    2016-12-01

    The motion of two red blood cells in a stenosed microvessel was simulated using dissipative particle dynamics. The effects of intercellular interaction, red blood cell deformability and the initial cell orientation on the deformation and aggregation of the RBCs and on the flow resistance were investigated. The red blood cell membrane was treated as a three-dimensional coarse-grained network model and the intercellular interaction was modeled by the Morse potential based on a depletion-mediated assumption. It is shown that the flow resistance increases dramatically when the red blood cells enter into the stenosis and decreases rapidly as RBCs move away from the stenosis. Particularly, for a pair of stiffer red blood cells with the initial inclination angle of 90°, the maximum value of the flow resistance is larger; while a higher flow resistance can also come from a stronger aggregation. For a pair of stiffer red blood cells moving parallel to the main flow, when their positions are closer to the vessel wall at the upstream of the stenosis, the flow resistance increases due to the migration to the vessel center at the stenosis. In addition, for a pair of red blood cells with the initial inclination angle of 0°, the flow resistance from the aggregate formed by a pair of red blood cells with a larger deformation is higher.

  17. Dynamic Process of Money Transfer Models

    CERN Document Server

    Wang, Y; Wang, Yougui; Ding, Ning

    2005-01-01

    We have studied numerically the statistical mechanics of the dynamic phenomena, including money circulation and economic mobility, in some transfer models. The models on which our investigations were performed are the basic model proposed by A. Dragulescu and V. Yakovenko [1], the model with uniform saving rate developed by A. Chakraborti and B.K. Chakrabarti [2], and its extended model with diverse saving rate [3]. The velocity of circulation is found to be inversely related with the average holding time of money. In order to check the nature of money transferring process in these models, we demonstrated the probability distributions of holding time. In the model with uniform saving rate, the distribution obeys exponential law, which indicates money transfer here is a kind of Poisson process. But when the saving rate is set diversely, the holding time distribution follows a power law. The velocity can also be deduced from a typical individual's optimal choice. In this way, an approach for building the micro-...

  18. Serpentinization-assisted deformation processes and characterization of hydrothermal fluxes at mid-ocean ridges

    Science.gov (United States)

    Genc, Gence

    methods and techniques either in the plumes or right at sources, there is still limited knowledge of direct estimates of heat discharge particularly at the vent scale and reliable estimates of temporal variation in heat flux. Moreover, a few previously used tools to make discrete measurements were associated with mechanical complications and/or problems mostly related to electronics or irrecoverable damage due to environmental problems such as accumulation of sediments/particles from hydrothermal fluids. In this dissertation we showed the stages of design, fabrication, calibration and in-situ deployment from DSV Alvin for two unique heat flow measuring seafloor instruments; cup anemometer and turbine flow meter. The devices have proven to be robust, practical, and simple to maneuver and perform in both focused and diffuse flow milieus. Field experiments showed that these self-contained devices yielded a broad range of accurate heat flow estimates ranging from 2 cm/s to 200 cm/s with minimum required maintenance and much less on-station time compared to previous designs. This dissertation reports 63 successful point measurements of focused and diffuse fluid flow the majority of which were completed at the Main Endeavour, High Rise and Mothra hydrothermal vent fields along Endeavour Segment of Juan de Fuca Ridge. By coupling a fraction of our flow rate results with geochemical data (i.e. fluid volatile concentrations) collected with in-situ mass spectrometer, direct geochemical flux were estimated from both focused and diffuse flows. Heat and fluid flow results we have obtained complement our understanding of serpentinization assisted deformation processes at Mid-Ocean Ridges and subduction zones. This dissertation also includes a simple mathematical model developed for crustal deformation and seafloor uplift resulting from volume expansion associated with subsurface serpentinization. Application of this model shows the apparent deformation at the central portion of the

  19. Modeling of un-deformed chip thickness in RUM process and study of size effects in μ-RUM.

    Science.gov (United States)

    Jain, Anil Kumar; Pandey, Pulak M

    2017-05-01

    Un-deformed chip thickness is a critical parameter in machining processes. Measuring un-deformed chip thickness experimentally is a complicated process, especially in micro machining and may not even be measured accurately. The un-deformed chip thickness has an influence on material removal rate, cutting forces, specific energy and surface finish etc. In ceramic machining, it is also an indication of material removal mode such as ductile or brittle fracture. In the present study, an effort is made to model undeformed chip thickness, cutting forces and specific cutting energy in rotary ultrasonic machining (RUM) applied to the side milling operation. RUM may be considered as super-imposition of ultrasonic vibrations on the grinding process. The kinematics of ultrasonic motion has been applied to the grinding for the development of the RUM process models. To validate the models, machining experiments have been performed on borosilicate glass in RUM and grinding modes. Percentage of ductile mode of fracture for the machined surfaces has been evaluated using SEM images. Surface roughness values have also been compared for the same material removal rate conditions to ascertain fracture mode. Developed models have been verified and found that ductile mode of fracture as well as surface finish were higher in RUM as compared to grinding process for same material removal rate. RUM process for six aerospace grade materials has also been tried using micro and macro tools and size effects studied.

  20. Steel Processing Properties and Their Effect on Impact Deformation of Lightweight Structures

    Energy Technology Data Exchange (ETDEWEB)

    Simunovic, S

    2003-09-23

    integration of forming processes and crash models. Computational analysis of vehicle-to-vehicle crashes between ULSAB and conventional car designs is reported in Section 3. The study involved vehicles of comparable weights and dimensions to assess the compatibility of the ULSAB with existing designs. Deformation and acceleration data for crashed vehicles were analyzed. Vehicle-modeling approaches have strong influence on computational results and the requirements for compatibility of models were identified for future research on vehicle-to-vehicle crash modeling.

  1. Dynamic Modelling of Tooth Deformation Using Occlusal Kinematics and Finite Element Analysis.

    Directory of Open Access Journals (Sweden)

    Stefano Benazzi

    Full Text Available Dental biomechanics based on finite element (FE analysis is attracting enormous interest in dentistry, biology, anthropology and palaeontology. Nonetheless, several shortcomings in FE modeling exist, mainly due to unrealistic loading conditions. In this contribution we used kinematics information recorded in a virtual environment derived from occlusal contact detection between high resolution models of an upper and lower human first molar pair (M1 and M1, respectively to run a non-linear dynamic FE crash colliding test.MicroCT image data of a modern human skull were segmented to reconstruct digital models of the antagonistic right M1 and M1 and the dental supporting structures. We used the Occlusal Fingerprint Analyser software to reconstruct the individual occlusal pathway trajectory during the power stroke of the chewing cycle, which was applied in a FE simulation to guide the M1 3D-path for the crash colliding test.FE analysis results showed that the stress pattern changes considerably during the power stroke, demonstrating that knowledge about chewing kinematics in conjunction with a morphologically detailed FE model is crucial for understanding tooth form and function under physiological conditions.Results from such advanced dynamic approaches will be applicable to evaluate and avoid mechanical failure in prosthodontics/endodontic treatments, and to test material behavior for modern tooth restoration in dentistry. This approach will also allow us to improve our knowledge in chewing-related biomechanics for functional diagnosis and therapy, and it will help paleoanthropologists to illuminate dental adaptive processes and morphological modifications in human evolution.

  2. Dynamic modeling of smart shear-deformable heterogeneous piezoelectric nanobeams resting on Winkler-Pasternak foundation

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-11-01

    Free vibration analysis is presented for a simply supported, functionally graded piezoelectric (FGP) nanobeam embedded on elastic foundation in the framework of third-order parabolic shear deformation beam theory. Effective electro-mechanical properties of FGP nanobeam are supposed to be variable throughout the thickness based on power-law model. To incorporate the small size effects into the local model, Eringen's nonlocal elasticity theory is adopted. Analytical solution is implemented to solve the size-dependent buckling analysis of FGP nanobeams based upon a higher-order shear deformation beam theory where coupled equations obtained using Hamilton's principle exist for such beams. Some numerical results for natural frequencies of the FGP nanobeams are prepared, which include the influences of elastic coefficients of foundation, electric voltage, material and geometrical parameters and mode number. This study is motivated by the absence of articles in the technical literature and provides beneficial results for accurate FGP structures design.

  3. Deformation Behavior of Recycled Concrete Aggregate during Cyclic and Dynamic Loading Laboratory Tests

    Directory of Open Access Journals (Sweden)

    Wojciech Sas

    2016-09-01

    Full Text Available Recycled concrete aggregate (RCA is a relatively new construction material, whose applications can replace natural aggregates. To do so, extensive studies on its mechanical behavior and deformation characteristics are still necessary. RCA is currently used as a subbase material in the construction of roads, which are subject to high settlements due to traffic loading. The deformation characteristics of RCA must, therefore, be established to find the possible fatigue and damage behavior for this new material. In this article, a series of triaxial cyclic loading and resonant column tests is used to characterize fatigue in RCA as a function of applied deviator stress after long-term cyclic loading. A description of the shakedown phenomenon occurring in the RCA and calculations of its resilient modulus (Mr as a function of fatigue are also presented. Test result analysis with the stress-life method on the Wohler S-N diagram shows the RCA behavior in accordance with the Basquin law.

  4. Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala

    Directory of Open Access Journals (Sweden)

    Lauren N. Schaefer

    2016-01-01

    Full Text Available Pacaya volcano is a persistently active basaltic cone complex located in the Central American Volcanic Arc in Guatemala. In May of 2010, violent Volcanic Explosivity Index-3 (VEI-3 eruptions caused significant topographic changes to the edifice, including a linear collapse feature 600 m long originating from the summit, the dispersion of ~20 cm of tephra and ash on the cone, the emplacement of a 5.4 km long lava flow, and ~3 m of co-eruptive movement of the southwest flank. For this study, Interferometric Synthetic Aperture Radar (InSAR images (interferograms processed from both spaceborne Advanced Land Observing Satellite-1 (ALOS-1 and aerial Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR data acquired between 31 May 2010 and 10 April 2014 were used to measure post-eruptive deformation events. Interferograms suggest three distinct deformation processes after the May 2010 eruptions, including: (1 subsidence of the area involved in the co-eruptive slope movement; (2 localized deformation near the summit; and (3 emplacement and subsequent subsidence of about a 5.4 km lava flow. The detection of several different geophysical signals emphasizes the utility of measuring volcanic deformation using remote sensing techniques with broad spatial coverage. Additionally, the high spatial resolution of UAVSAR has proven to be an excellent compliment to satellite data, particularly for constraining motion components. Measuring the rapid initiation and cessation of flank instability, followed by stabilization and subsequent influence on eruptive features, provides a rare glimpse into volcanic slope stability processes. Observing these and other deformation events contributes both to hazard assessment at Pacaya and to the study of the stability of stratovolcanoes.

  5. Statistical Modeling Applied to Deformation-Relaxation Processes in a Composite Biopolymer Network Induced by Magnetic Field

    Science.gov (United States)

    Tarrío-Saavedra, Javier; González, Cécilia Galindo; Naya, Salvador; López-Beceiro, Jorge

    2017-01-01

    This study investigated a methodology based on image processing and statistics to characterize and model the deformation upon controlled and uniform magnetic field and the relaxation under zero field of droplets observed in aqueous solutions of sodium alginate incorporating magnetic maghemite nanoparticles stabilized by adsorption of citrate ions. The changes of droplet geometry were statistically analyzed using a new approach based on the data obtained from optical microscopy, image processing, nonlinear regression, evolutionary optimization, analysis of variance and resampling. Image enhancement and then image segmentation (Gaussian mixture modeling) processes were applied to extract features with reliable information of droplets dimensions from optical micrographs. The droplets deformation and relaxation trends were accurately adjusted by the Kohlrausch-Williams-Watts (KWW) function and a mean relaxation time was obtained by fitting the time evolution of geometry parameters. It was found to be proportional to the initial radius of the spherical droplets and was associated to interfacial tension. PMID:28081239

  6. Physical Simulation of Deformation and Microstructure Evolution During Friction Stir Processing of Ti-6Al-4V Alloy

    Science.gov (United States)

    Babu, S. S.; Livingston, J.; Lippold, J. C.

    2013-08-01

    The feasibility of using high-strain rate (1.475 to 3.942 s-1) hot-torsion testing with a Gleeble® thermomechanical simulator was demonstrated for simulating microstructures consistent with friction stir processing (FSP) of Ti-6Al-4V. The tests were performed on α/β-processed base material at temperatures both above and below the β-transus. Various phenomena including the refinement of α- and β-grains, deformation-induced heating, and deformation instabilities were observed. These tests reproduced the range of microstructures that are observed under FSP processing conditions. The testing methodology can be used for generating constitutive material property equations relevant to computational FSP/friction stir welding models.

  7. Permanent deformation estimates of dynamic equipment foundations: Application to a gas turbine in granular soils

    OpenAIRE

    Galindo Aires, Rubén Ángel; Illueca Jové, Manuel; Jimenez Rodriguez, Rafael

    2014-01-01

    Permanent displacements of a gas turbine founded on a fine, poorly graded, and medium density sand are studied. The amplitudes and modes of vibration are computed using Barkan´s formulation, and the “High-Cycle Accumulation” (HCA) model is employed to account for accumulated deformations due to the high number of cycles. The methodology is simple: it can be easily incorporated into standard mathematical software, and HCA model parameters can be estimated based on granulometry and index proper...

  8. Molecular dynamics simulations on deformation and fracture of bi-layer graphene with different stacking pattern under tension

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, M.D.; Wang, L. [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Wang, C.Y. [Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013 (China); Zhang, Q., E-mail: lxzhangqing@hhu.edu.cn [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Ye, S.Y.; Wang, F.Y. [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China)

    2016-02-05

    Based on AIREBO (Adaptive Intermolecular Reactive Empirical Bond Order) potential, molecular dynamics simulations (MDs) are performed to study the mechanical behavior of AB- and AA-stacked bi-layer graphene films (BGFs) under tension. Stress–strain relationship is established and deformation mechanism is investigated via morphology analysis. It is found that AA-stacked BGFs show wavy folds, i.e. the structural instability, and the local structure of AB-stacked BGFs transforms into AA-stacked ones during free relaxation. The values of the Young's modulus obtained for AA-stacked zigzag and armchair BGFs are 797.2 GPa and 727.4 GPa, and those of their AB-stacked counterparts are 646.7 GPa and 603.5 GPa, respectively. In comparison with single-layer graphene, low anisotropy is observed for BGFs, especially AB-stacked ones. During the tensile deformation, hexagonal cells at the edge of BGFs are found to transform into pentagonal rings and the number of such defects increases with the rise of tensile strain. - Highlights: • Molecular dynamics simulations are performed to study the mechanical behavior of AB- and AA-stacked bi-layer graphene films under tension. • Stress–strain relationship is established and deformation mechanism is investigated via morphology analysis. • AA-stacked graphene shows structural instability and the local structure of AB-stacked films transforms into AA-stacked in free relaxation. • Low anisotropy is observed for bi-layer graphene films, especially for AB-stacked ones.

  9. Dynamics of a slowly evaporating solvent-polymer mixture with a deformable upper surface

    KAUST Repository

    Hennessy, M. G.

    2014-06-17

    This paper examines how surface deformations affect the stability of a slowly evaporating solvent-polymer mixture. The destabilizing effect of surface-tension variations arising from evaporation-induced concentration gradients and the counteracting influence of mean gravity and surface tension are incorporated into the mathematical model. A linear stability analysis that takes advantage of the separation between the characteristic time scales of the slowly evolving base state and the perturbations is carried out in combination with numerical solutions of the linearized system. It is shown that the onset of instability can occur for Marangoni numbers that are much lower than the critical value for a non-deformable surface. Moreover, two types of Marangoni instabilities appear in the system: one is associated with the traditional stationary instability, and the other is an oscillatory instability that is not present for a non-deformable liquid surface. A region of the parameter space where the oscillatory instability dominates is identified and used to formulate appropriate conditions for future experiments. © 2014 The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  10. The Contribution of GGOS to Understanding Dynamic Earth Processes

    Science.gov (United States)

    Gross, Richard

    2017-04-01

    Geodesy is the science of the Earth's shape, size, gravity and rotation, including their evolution in time. Geodetic observations play a major role in the solid Earth sciences because they are fundamental for the understanding and modeling of Earth system processes. Changes in the Earth's shape, its gravitational field, and its rotation are caused by external forces acting on the Earth system and internal processes involving mass transfer and exchange of angular and linear momentum. Thus, variations in these geodetic quantities of the Earth reflect and constrain mechanical and thermo-dynamic processes in the Earth system. Mitigating the impact on human life and property of natural hazards such as earthquakes, volcanic eruptions, debris flows, landslides, land subsidence, sea level change, tsunamis, floods, storm surges, hurricanes and extreme weather is an important scientific task to which geodetic observations make fundamental contributions. Geodetic observations can be used to monitor the pre-eruptive deformation of volcanoes and the pre-seismic deformation of earthquake fault zones, aiding in the issuance of volcanic eruption and earthquake warnings. They can also be used to rapidly estimate earthquake fault motion, aiding in the modeling of tsunami genesis and the issuance of tsunami warnings. Geodetic observations are also used in other areas of the Earth sciences, not just the solid Earth sciences. For example, geodesy contributes to atmospheric science by supporting both observation and prediction of the weather by geo-referencing meteorological observing data and by globally tracking change in stratospheric mass and lower tropospheric water vapor fields. Geodetic measurements of refraction profiles derived from satellite occultation data are routinely assimilated into numerical weather prediction models. Geodesy contributes to hydrologic studies by providing a unique global reference system for measurements of: sub-seasonal, seasonal and secular movements

  11. New compliant strain gauges for self-sensing dynamic deformation of flapping wings on miniature air vehicles

    Science.gov (United States)

    Wissman, James; Perez-Rosado, Ariel; Edgerton, Alex; Levi, Benjamin M.; Karakas, Zeynep N.; Kujawski, Mark; Philipps, Alyssa; Papavizas, Nicholas; Fallon, Danielle; Bruck, Hugh A.; Smela, Elisabeth

    2013-08-01

    Over the past several years there has been an increasing interest in the development of miniature air vehicles (MAVs) with flapping wings. To allow these MAVs to adjust to changes in wind direction and to maximize their efficiency, it is desirable to monitor the deformation of the wing during flight. This paper presents a step in this direction, demonstrating the measurement of strain on the surface of the wing using minimally invasive compliant piezoresistive sensors. The strain gauges consisted of latex mixed with electrically conducting exfoliated graphite, and they were applied by spray coating. To calibrate the gauges, both static and dynamic testing up to 10 Hz were performed using cantilever structures. In tension the static sensitivity was a linear 0.4 Ω μɛ-1 and the gauge factor was 28; in compression, the gauge factor was -5. Although sensitivities in tension and compression differed by a factor of almost six, this was not reflected in the dynamic data, which followed the strain reversibly with little distortion. There was no attenuation with frequency, indicating a sufficiently small time constant for this application. The gauges were thin, compliant, and light enough to measure, without interference, deformations due to shape changes of the flexible wing associated with generating lift and thrust. During flapping the resistance closely tracked the generated thrust, measured on a test stand, with both signals tracing figure-8 loops as a function of wing position throughout each cycle.

  12. Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants.

    Science.gov (United States)

    Serra, Glaucio; Morais, Liliane; Elias, Carlos Nelson; Semenova, Irina P; Valiev, Ruslan; Salimgareeva, Gulnaz; Pithon, Matheus; Lacerda, Rogério

    2013-10-01

    Titanium mini-implants have been successfully used as anchorage devices in Orthodontics. Commercially pure titanium (cpTi) was recently replaced by Ti-6Al-4V alloy as the mini-implant material base due to the higher strength properties of the alloy. However, the lower corrosion resistance and the lower biocompatibility have been lowering the success rate of Ti-6Al-4V mini-implants. Nanostructured titanium (nTi) is commercially pure titanium that was nanostructured by a specific technique of severe plastic deformation. It is bioinert, does not contain potentially toxic or allergic additives, and has higher specific strength properties than any other titanium applied in medical implants. The higher strength properties associated to the higher biocompatibility make nTi potentially useful for orthodontic mini-implant applications, theoretically overcoming cpTi and Ti-6Al-4V mini-implants. The purposes of the this work were to process nTi, to mechanically compare cpTi, Ti-6Al-4V, and nTi mini-implants by torque test, and to evaluate both the surface morphology and the fracture surface characteristics of them by SEM. Torque test results showed significant increase in the maximum torque resistance of nTi mini-implants when compared to cpTi mini-implants, and no statistical difference between Ti-6Al-4V and nTi mini-implants. SEM analysis demonstrated smooth surface morphology and transgranular fracture aspect for nTi mini-implants. Since nanostructured titanium mini-implants have mechanical properties comparable to titanium alloy mini-implants, and biocompatibility comparable to commercially pure titanium mini-implants, it is suggestive that nanostructured titanium can replace Ti-6Al-4V alloy as the material base for mini-implants.

  13. PyLith: A Finite-Element Code for Modeling Quasi-Static and Dynamic Crustal Deformation

    Science.gov (United States)

    Aagaard, B.; Williams, C. A.; Knepley, M. G.

    2011-12-01

    We have developed open-source finite-element software for 2-D and 3-D dynamic and quasi-static modeling of crustal deformation. This software, PyLith (current release is version 1.6) can be used for quasi-static viscoelastic modeling, dynamic spontaneous rupture and/or ground-motion modeling. Unstructured and structured finite-element discretizations allow for spatial scales ranging from tens of meters to hundreds of kilometers with temporal scales in dynamic problems ranging from milliseconds to minutes and temporal scales in quasi-static problems ranging from minutes to thousands of years. PyLith development is part of the NSF funded Computational Infrastructure for Geodynamics (CIG) and the software runs on a wide variety of platforms (laptops, workstations, and Beowulf clusters). Binaries (Linux, Darwin, and Windows systems) and source code are available from geodynamics.org. PyLith uses a suite of general, parallel, graph data structures called Sieve for storing and manipulating finite-element meshes. This permits use of a variety of 2-D and 3-D cell types including triangles, quadrilaterals, hexahedra, and tetrahedra. Current PyLith features include prescribed fault ruptures with multiple earthquakes and aseismic creep, spontaneous fault ruptures with a variety of fault constitutive models, time-dependent Dirichlet and Neumann boundary conditions, absorbing boundary conditions, time-dependent point forces, and gravitational body forces. PyLith supports infinitesimal and small strain formulations for linear elastic rheologies, linear and generalized Maxwell viscoelastic rheologies, power-law viscoelastic rheologies, and Drucker-Prager elastoplastic rheologies. Current software development focuses on coupling quasi-static and dynamic simulations to resolve multi-scale deformation across the entire seismic cycle and the coupling of elasticity to heat and/or fluid flow.

  14. Progressive deformation of feldspar recording low-barometry impact processes, Tenoumer impact structure, Mauritania

    Science.gov (United States)

    Jaret, Steven J.; Kah, Linda C.; Harris, R. Scott

    2014-06-01

    The Tenoumer impact structure is a small, well-preserved crater within Archean to Paleoproterozoic amphibolite, gneiss, and granite of the Reguibat Shield, north-central Mauritania. The structure is surrounded by a thin ejecta blanket of crystalline blocks (granitic gneiss, granite, and amphibolite) and impact-melt rocks. Evidence of shock metamorphism of quartz, most notably planar deformation features (PDFs), occurs exclusively in granitic clasts entrained within small bodies of polymict, glass-rich breccia. Impact-related deformation features in oligoclase and microcline grains, on the other hand, occur both within clasts in melt-breccia deposits, where they co-occur with quartz PDFs, and also within melt-free crystalline ejecta, in the absence of co-occurring quartz PDFs. Feldspar deformation features include multiple orientations of PDFs, enhanced optical relief of grain components, selective disordering of alternate twins, inclined lamellae within alternate twins, and combinations of these individual textures. The distribution of shock features in quartz and feldspar suggests that deformation textures within feldspar can record a wide range of average pressures, starting below that required for shock deformation of quartz. We suggest that experimental analysis of feldspar behavior, combined with detailed mapping of shock metamorphism of feldspar in natural systems, may provide critical data to constrain energy dissipation within impact regimes that experienced low average shock pressures.

  15. An investigation of deformed microstructure and mechanical properties of Zircaloy-4 processed through multiaxial forging

    Energy Technology Data Exchange (ETDEWEB)

    Fuloria, Devasri; Nageswararao, P. [Department of Metallurgical and Materials Engineering & Centre of Nanotechnology, IIT Roorkee, Roorkee 247667 (India); Jayaganthan, R., E-mail: rjayafmt@iitr.ernet.in [Department of Metallurgical and Materials Engineering & Centre of Nanotechnology, IIT Roorkee, Roorkee 247667 (India); Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036 (India); Jha, S. [Nuclear Fuel Complex Limited, Hyderabad 501301 (India); Srivastava, D. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 40085 (India)

    2016-04-15

    In the present work, the mechanical behavior of Zircaloy-4 subjected to various deformation strains by multiaxial forging (MAF) at cryogenic temperature (CT) was investigated. The alloy was strained up to different number of cycles, viz., 6 cycles, 9 cycles, and 12 cycles at cumulative strains of 2.96, 4.44, and 5.91, respectively. The mechanical properties of the alloy were investigated by performing the universal tensile test and the Vickers hardness test. Both the test showed improvement in the ultimate tensile strength and hardness value by 51% and 26%, respectively, at the highest cumulative strain of 5.91. The electron backscattered diffraction (EBSD) measurement and transmission electron microscopy (TEM) were used for analyzing the deformed microstructure. The microstructures of the alloy underwent deformation at various cumulative strains/cycles showed grain refinement with the evolution of shear and twin bands that were highest for the alloy deformed at the highest number of cycles. The effective grain refinement was due to twins formation and their intersection, which led to the improvement in mechanical properties of the MAFed alloy, as observed in the present work. - Highlights: • Zircaloy-4 was subjected to MAF at cryogenic temperature. • Microstructural evolution was studied through EBSD and TEM. • Deformed microstructure was marked with various types of twinning and shear banding. • Twins formations are responsible for effective grain refinement and enhanced mechanical properties.

  16. Study of temporal variations of seismoacoustic emission and electromagnetic radiation in boreholes exposed to natural deformation processes.

    Science.gov (United States)

    Trojanov, Alexandr; Astrakhantsev, Yurie; Nachapkin, Nilolay; Beloglasova, Nadegda; Bagenova, Evgenija; Vdovin, Alexey

    2013-04-01

    The investigation of the correlation between the deformation processes, seismoacoustic emission and electromagnetic radiation of the geo-environment is a timely problem due to many reasons. It is related to the discovery of the modulation effect of the high-frequency noise by the long-period deformation processes [1]. The possibility appeared to distinguish similar periods in the variations of the amplitude level of the seismic acoustic emission (SAE) and electromagnetic radiation (EMR) based on the known periodicities of the deformation processes. The investigation of the deformation processes is a complicated problem because the majority of currently applied methods give us information about deformations in the surface layer. In the conditions of the hierarchical block structure of the Earth's crust; such observations do not sufficiently reveal the distribution of deformations related to the accumulation and relaxation of stresses in the internal points of the medium. Therefore, the spatiotemporal distribution of the SAE and EMR in the boreholes carries significant information about the deformation processes in the Earth's crust directly reflecting the actual stresses and the structure of the investigated rock massive [2]. Geodynamical active zones along boreholes are characterized by anomalous (maximum) SAE and EMR values, moreover they change in time [3]. Simultaneous operational measurements of seismic acoustic emission and electromagnetic radiation were carried out in wells Kamchatskiy geodynamic testing ground and the Urals region. An analysis of amplitude-frequency spectra obtained by synchronous uninterrupted SAE and EMR measurements in boreholes allowed identifying latent periodicity of SAE and EMR signals and evaluating its connection with well-known deformation processes. As a result of realized investigations it was shown that simultaneous measurements of SAE and EMR in boreholes contain information on manifestation of deformation processes in fields

  17. Deformation- and temperature-related processes that occur upon the collapse of a thick cylindrical shell made of steel 20

    Science.gov (United States)

    Zel'dovich, V. I.; Frolova, N. Yu.; Kheifets, A. E.; Dolgikh, S. M.; Gaan, K. V.; Shorokhov, E. V.

    2015-03-01

    An experiment has been performed on the collapse of a thick steel cylindrical shell into a continuous cylinder under the action of a sliding detonation wave. The process of the collapse has been recorded via X-ray photography, and it has been found that the time of collapse in one section is equal to 30 μs. The average degree of deformation is 77% and the rate of deformation is 104 s-1. The structure of steel 20 in the transverse section of the cylinder consists of three zones. In the outer zone, the initial ferrite-pearlite structure changes under the effect of compressive shock wave and localized shears. The shock wave leads to the formation of a high-pressure ɛ phase and twins. Upon the subsequent inertial collapse of the shell, substantial shear deformations arise in the surface layer, which are localized in directions located at angles of 60° to the cylindrical surface. The structure of the middle zone changes under the action of severe plastic deformation, which occurs predominantly in the radial direction. The deformation leads to the appearance of an internal pressure and to an increase in the temperature. As a result of the action of three factors (pressure, temperature, and deformation), the temperature of the formation of austenite decreases by several hundred kelvins. In the free ferrite, an α → γ transformation occurs and quenching takes place following a subsequent sharp decrease in pressure (barothermic quenching). The pearlitic regions suffer plastic deformation. The microhardness of the steel with this structure is equal to the microhardness of quenched steel. The structure of the third, i.e., central, zone, changes under the action of a significant increase in temperature caused by the further increase in the degree of deformation. The complete transformation of ferrite into austenite occurs at the center of this zone, which means that the temperature in this zone reaches 850-900°C or greater. The microhardness decreases to values typical

  18. Spatiotemporal computed tomography of dynamic processes

    Science.gov (United States)

    Kaestner, Anders; Münch, Beat; Trtik, Pavel; Butler, Les

    2011-12-01

    Modern computed tomography (CT) equipment allowing fast 3-D imaging also makes it possible to monitor dynamic processes by 4-D imaging. Because the acquisition time of various 3-D-CT systems is still in the range of at least milliseconds or even hours, depending on the detector system and the source, the balance of the desired temporal and spatial resolution must be adjusted. Furthermore, motion artifacts will occur, especially at high spatial resolution and longer measuring times. We propose two approaches based on nonsequential projection angle sequences allowing a convenient postacquisition balance of temporal and spatial resolution. Both strategies are compatible with existing instruments, needing only a simple reprograming of the angle list used for projection acquisition and care with the projection order list. Both approaches will reduce the impact of artifacts due to motion. The strategies are applied and validated with cold neutron imaging of water desorption from originally saturated particles during natural air-drying experiments and with x-ray tomography of a polymer blend heated during imaging.

  19. Static and dynamic tensile behaviour of aluminium processed by high pressure torsion

    Directory of Open Access Journals (Sweden)

    Verleysen Patricia

    2015-01-01

    Full Text Available High pressure torsion (HPT is a severe plastic deformation technique in which a small, disk-like sample is subjected to a torsional deformation under a high hydrostatic pressure. In present study, the static and dynamic tensile behaviour of commercially pure aluminium (99.6 wt% processed by HPT is studied. The high strain rate tensile behaviour is characterized using a purpose-developed miniature split Hopkinson tensile bar setup by which strain rates up to 5 × 103 s−1 can be reached. During the tests, the deformation of a speckle pattern applied to the samples is recorded, by which local information on the strain is obtained using a digital image correlation technique. Electron back scatter diffraction images are used to investigate the microstructural evolution, more specifically the grain refinement obtained by HPT. The fracture surfaces of the tensile samples are studied by scanning electron microscopy. Results show that the imposed severe plastic deformation significantly increases the tensile strength, however, at the expense of ductility. The strain rate only has a minor influence on the materials tensile behaviour.

  20. EFFECTS OF DEFORMATION-INDUCED ORIENTATION ON CYCLIZATION AND OXIDATION OF POLYACRYLONITRILE FIBERS DURING STABILIZATION PROCESS

    Institute of Scientific and Technical Information of China (English)

    Jie Liu; Feng Lian; Zhao-kun Ma; Jie-ying Liang

    2012-01-01

    Orientation of copolymer polyacrylonitrile (PAN) chains during their deformation prior to stabilization and the further effect on the stabilization were investigated in detail.Results reveal that the orientation of PAN chains presents a saturation point of 69.51% when the deformation ratio reaches approximately 1.07,meanwhile the cyclization rather than the oxidation has a stronger dependence on the orientation of PAN chains during stabilization.The cyclization is facilitated that the cyclization degree is increasing while the activation energy is decreasing obviously as a consequence of the developing orientation of PAN fibers before the saturation point; however,it is restrained during the further deformation of PAN fibers after the point.The resulting carbon fibers obtained from the PAN fibers prepared at the saturation point possess the highest mechanical properties of 4.07 GPa in tensile strength and 249.0 GPa in tensile modulus.

  1. Effect of various mechanical deformation processes on critical current density and microstructure in MgB2 tapes and wires

    Science.gov (United States)

    Zhou, Sihai; Pan, Alexey V.; Liu, Huakun; Horvat, Joseph; Dou, Shixue

    2002-11-01

    MgB2 tapes and wires have been prepared by the in situ reaction method. Two cycle drawing and groove-rolling were used for the mechanic deformation of the samples. The critical current density, Jc, as a function of applied magnetic field, Ba, was measured and compared for all the prepared samples. The influence of the different processing at its different stages on the MgB2 microstructure was studied by scanning electron microscopy. Weak links introduced in the superconducting core after the second cycle mechanical deformation could not be re-joined with a consecutive heat treatment. Accordingly, for these samples Jc(Ba) turned out to decrease significantly faster in an increasing field than for samples prepared with one-cycle processing.

  2. Modelling the dynamics of reasoning processes: reasoning by assumption

    NARCIS (Netherlands)

    Jonker, C.M.; Treur, J.

    2008-01-01

    To model the dynamics of cognitive processes, often the Dynamical Systems Theory (DST) is advocated. However, for higher cognitive processes such as reasoning and certain forms of natural language processing the techniques adopted within DST are not very adequate. This paper shows how an analysis of

  3. Severe plastic deformation using friction stir processing, and the characterization of microstructure and mechanical behavior using neutron diffraction

    Science.gov (United States)

    Woo, Wanchuck

    Friction-stir welding (FSW) is a solid-state joining process, which utilizes a cylindrical rotating tool consisting of a concentric threaded tool pin and tool shoulder. The strong metallurgical bonding during the FSW is accomplished through: (1) the severe plastic deformation caused by the rotation of the tool pin that plunges into the material and travels along the joining line; and (2) the frictional heat generated mainly from the pressing tool shoulder. Recently, a number of variations of the FSW have been applied to modify the microstructure, for example, grain refinements and homogenization of precipitate particles, namely friction-stir processing (FSP). Applications of the FSP/FSW are widespread for the transportation industries. The microstructure and mechanical behavior of light-weight materials subjected to the FSW/FSP are being studied extensively. However, separating the effect of the frictional heat and severe plastic deformation on the residual stress and texture has been a standing problem for the fundamental understanding of FSW/FSP. The fundamental issues are: (i) the heat- and plastic-deformation-induced internal stresses that may be detrimental to the integrity and performance of components; (ii) the frictional heating that causes a microstructural softening due to the dissolution or growth of the precipitates in precipitation-hardenable Al alloys during the process; and (iii) the crystallographic texture can be significantly altered from the original texture, which could affect the physical and mechanical properties. The understanding of the influences of the de-convoluted sources (e.g. frictional heat, severe plastic deformation, or their combination) on the residual stress, microstructural softening, and texture variations during FSW can be used for a physicsvi based optimization of the processing parameters and new tool designs. Furthermore, the analyses and characterization of the natural aging behavior and the aging kinetics can be

  4. Anisotropy and oxidative resistance of highly crosslinked UHMWPE after deformation processing by solid-state ram extrusion.

    Science.gov (United States)

    Kurtz, Steven M; Mazzucco, Dan; Rimnac, Clare M; Schroeder, Dave

    2006-01-01

    Solid-state deformation processing is a promising technique for modifying the physical and mechanical properties of highly crosslinked ultra-high molecular weight polyethylene (UHMWPE) beyond simple thermal treatment cycles that have been employed previously. This study evaluates anisotropy and oxidative resistance in a novel, radiation crosslinked (50 kGy) UHMWPE material (ArComXL: Biomet, Inc., Warsaw, IN), incorporating solid-state, deformation processing by extrusion below the melt transition for application in total hip arthroplasty. Tensile, compression, and small punch tests were conducted to evaluate the material properties in the three principal axes of the resulting material. Furthermore, short-term oxidative resistance was evaluated using Fourier transform infrared spectroscopy and the small punch test in conjunction with accelerated shelf aging protocols. The results of this testing indicate that the material is anisotropic, with significantly enhanced strength oriented along the long axis of the rod. For certain other properties, the magnitude of the anisotropy was relatively slight, especially in the elastic regime, in which only a 20% difference was noted between the long axis of the rod and the orthogonal, radial direction. The highly crosslinked material contains detectable free radicals, at a concentration that is 90% less than control, gamma inert sterilized UHMWPE. An unexpected finding of this study was evidence of oxidative stability of the deformation-processed material, even after 4 weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003), which resulted in macroscopic embrittlement of the control material. The oxidative stability observed in ArComXL suggests that the deformation-processed material may be suitable for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted highly crosslinked UHMWPE.

  5. Visualization and quantification of deformation processes controlling the mechanical response of alloys in aggressive environments

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Ian M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Materials Science and Engineering; Univ. of Illinois, Champaign, IL (United States)

    2017-01-05

    The overall objective of this program was to develop the technique of electron tomography for studies of defects and to couple it with real time dynamic experiments such that four-dimensional (time and three spatial dimensions) characterization of dislocation interactions with defects is feasible and apply it to discovery of the fundamental unit processes of dislocation-defect interactions in metallic systems. Strategies to overcome the restrictions normally associated with electron tomography and to make it practical within the constraints of conducting a dynamic experiment in the transmission electron microscope were developed. These methods were used to determine the mechanism controlling the transfer of slip across grain boundaries in FCC and HCP metals, dislocation precipitate interactions in Al alloys, and dislocation-dislocation interactions in HCP Ti. In addition, preliminary investigations of slip transfer across cube-on-cube and incoherent twin interfaces in a multi-layered system, thermal stability of grains in nanongrained Ni and Fe, and on corrosion of Fe films were conducted.

  6. Dynamic globularization prediction during cogging process of large size TC11 titanium alloy billet with lamellar structure

    Institute of Scientific and Technical Information of China (English)

    Hong-wu SONG; Shi-hong ZHANG; Ming CHENG

    2014-01-01

    The flow behavior and dynamic globularization of TC11 titanium alloy during subtransus deformation are investigated through hot compression tests. A constitutive model is established based on physical-based hardening model and phenomenological softening model. And based on the recrystallization mechanisms of globularization, the Avrami type kinetics model is established for prediction of globularization fraction and globularized grain size under large strain subtransus deformation of TC11 alloy. As the preliminary application of the previous results, the cogging process of large size TC11 alloy billet is simulated. Based on subroutine development of the DEFORM software, the coupled simulation of one fire cogging process is developed. It shows that the predicted results are in good agreement with the experimental results in forging load and microstructure characteristic, which validates the reliability of the developed FEM subroutine models.

  7. Understanding Dynamic Capabilities from Its Antecedents, Processes and Outcomes

    Directory of Open Access Journals (Sweden)

    Vilmar Antônio Gonçalves Tondolo

    2014-01-01

    Full Text Available The theory of Dynamic Capabilities has been one of the references in the search for understanding of the competitive advantage of organizations. However, even with the development of studies on this topic, it is not clear how the Dynamic Capabilities develop and operate within organizations. Thus, this study aims to understand the dynamics capabilities from its antecedents, processes and outcomes. Through a literature review, it was possible to identify external and internal antecedents that make Dynamics Capabilities emerge in organizations, such as environmental dynamism and corporate entrepreneurship. In when it comes to process, it was identified that the Dynamic Capabilities are formed by a set of processes that have effect on resources and organizational capabilities. Thus, the development of resources and capabilities is the outcome of Dynamic Capabilities. Finally, unlike other studies, this work considers the DCs not as a specific capacity, but as a set of processes that enable the organization to deal with changes in the competitive environment.

  8. The Deformation Mechanisms in Process of Crack Propagation for Alpha Titanium with Compounding Microdefects

    Directory of Open Access Journals (Sweden)

    Ying Sheng

    2016-01-01

    Full Text Available The multiscale analysis method based on traction-separation law (TSL and cohesive zone law was used to describe the cross-scale defective process of alpha titanium (α-Ti material with compounding microdefects in this paper. First, the properties of T-S curve and the reasonable range of T-S area relative to the length of defects were discussed. Next, based on the conclusions above, the molecule dynamics analysis of three models of α-Ti with compounding microdefects was conducted and cross-scaly simulated. The phenomenon, principles, and mechanisms of different compound microscale defects propagation of α-Ti were observed and explained at atomic scale, and the effects of different microdefects on macrofracture parameters of materials were studied.

  9. Studies of dynamical processes affecting global climate

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C.; Cooper, D.; Eichinger, W. [and others

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at the Los Alamos National Laboratory (LANL). The main objective was, by a combined theoretical and observational approach, to develop improved models of dynamic processes in the oceans and atmosphere and to incorporate them into large climate codes, chiefly in four main areas: numerical physics, chemistry, water vapor, and ocean-atmosphere interactions. Main areas of investigation included studies of: cloud parameterizations for global climate codes, Lidar and the planetary boundary layer, chemistry, climate variability using coupled ocean-atmospheric models, and numerical physical methods. This project employed a unique approach that included participation of a number of University of California faculty, postdoctoral fellows and graduate students who collaborated with Los Alamos research staff on specific tasks, thus greatly enhancing the research output. Overall accomplishments during the sensing of the atmospheric planetary were: (1) first two- and three-dimensional remote sensing of the atmospheric planetary boundary layer using Lidars, (2) modeling of 20-year cycle in both pressure and sea surface temperatures in North Pacific, (3) modeling of low frequency internal variability, (4) addition of aerosols to stratosphere to simulate Pinatubo effect on ozone, (5) development of fast, comprehensive chemistry in the troposphere for urban pollution studies, (6) new prognostic cloud parameterization in global atmospheric code remedied problems with North Pacific atmospheric circulation and excessive equatorial precipitation, (7) development of a unique aerosol analysis technique, the aerosol time-of-flight mass spectrometer (ATOFMS), which allows real-time analysis of the size and chemical composition of individual aerosol particles, and (8) numerical physics applying Approximate Inertial Manifolds to ocean circulation. 14 refs., 6 figs.

  10. Static sampling of dynamic processes - a paradox?

    Science.gov (United States)

    Mälicke, Mirko; Neuper, Malte; Jackisch, Conrad; Hassler, Sibylle; Zehe, Erwin

    2017-04-01

    Environmental systems monitoring aims at its core at the detection of spatio-temporal patterns of processes and system states, which is a pre-requisite for understanding and explaining their baffling heterogeneity. Most observation networks rely on distributed point sampling of states and fluxes of interest, which is combined with proxy-variables from either remote sensing or near surface geophysics. The cardinal question on the appropriate experimental design of such a monitoring network has up to now been answered in many different ways. Suggested approaches range from sampling in a dense regular grid using for the so-called green machine, transects along typical catenas, clustering of several observations sensors in presumed functional units or HRUs, arrangements of those cluster along presumed lateral flow paths to last not least a nested, randomized stratified arrangement of sensors or samples. Common to all these approaches is that they provide a rather static spatial sampling, while state variables and their spatial covariance structure dynamically change in time. It is hence of key interest how much of our still incomplete understanding stems from inappropriate sampling and how much needs to be attributed to an inappropriate analysis of spatial data sets. We suggest that it is much more promising to analyze the spatial variability of processes, for instance changes in soil moisture values, than to investigate the spatial variability of soil moisture states themselves. This is because wetting of the soil, reflected in a soil moisture increase, is causes by a totally different meteorological driver - rainfall - than drying of the soil. We hence propose that the rising and the falling limbs of soil moisture time series belong essentially to different ensembles, as they are influenced by different drivers. Positive and negative temporal changes in soil moisture need, hence, to be analyzed separately. We test this idea using the CAOS data set as a benchmark

  11. Unraveling the tectonic processes behind the contemporary observed deformation rates in southern Alaska

    Science.gov (United States)

    Ali, T.; Freed, A.

    2008-12-01

    Southern Alaska forms part of the complex tectonic boundary between the North American and Pacific plates where the interplate boundary transitions from strike-slip to flat and oblique subduction associated with microplate collision to normal subduction. The deformation of this broad plate boundary has been extensively observed by a large array of GPS receivers that illuminate a wide variety of current (1996-2002) deformation characteristics. These include northwestward directed velocities that diminish rapidly across the Denali Fault and a region of southeastward directed velocities near the site of the great 1964 Alaska earthquake. Here we attempt to explain the major trends of the deformation by using a 3-D viscoelastic Lagrangian finite element model that incorporates the complex geometry of the Pacific slab as it subducts beneath North America, the major earthquakes in the region during over the past half century (just prior to the 2002 Denali Fault earthquake), and postseismic relaxation of a mobile lower crust and mantle associated with these events. Results suggest that the deformation field is dominated by convergence of the subducting Pacific plate. However, in order to explain the rapid drop-off in velocities across the Denali Fault, the regions to the south must be substantially weaker mechanically. This would be consistent with distributed brittle behavior throughout these accreted allochthonous terranes, each of which has undergone extensive internal deformation in the past. In addition, on-going viscoelastic relaxation associated with the 1964 earthquake is consistent with southeastward directed velocities in the vicinity of the western Kenai Peninsula. And postseismic relaxation associated with earthquakes in 1949, 1958, and 1972 along the Queen Charlotte - Fairweather fault system explains well the lack of northwestward directed velocities east of the Fairweather fault. The locking depth of the megathrust and the viscoelastic structure also play

  12. Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation.

    Science.gov (United States)

    Ramamurti, Ravi; Sandberg, William C; Löhner, Rainald; Walker, Jeffrey A; Westneat, Mark W

    2002-10-01

    Many fishes that swim with the paired pectoral fins use fin-stroke parameters that produce thrust force from lift in a mechanism of underwater flight. These locomotor mechanisms are of interest to behavioral biologists, biomechanics researchers and engineers. In the present study, we performed the first three-dimensional unsteady computations of fish swimming with oscillating and deforming fins. The objective of these computations was to investigate the fluid dynamics of force production associated with the flapping aquatic flight of the bird wrasse Gomphosus varius. For this computational work, we used the geometry of the wrasse and its pectoral fin, and previously measured fin kinematics, as the starting points for computational investigation of three-dimensional (3-D) unsteady fluid dynamics. We performed a 3-D steady computation and a complete set of 3-D quasisteady computations for a range of pectoral fin positions and surface velocities. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing was then used to compute the unsteady flow about the wrasse through several complete cycles of pectoral fin oscillation. The shape deformation of the pectoral fin throughout the oscillation was taken from the experimental kinematics. The pressure distribution on the body of the bird wrasse and its pectoral fins was computed and integrated to give body and fin forces which were decomposed into lift and thrust. The velocity field variation on the surface of the wrasse body, on the pectoral fins and in the near-wake was computed throughout the swimming cycle. We compared our computational results for the steady, quasi-steady and unsteady cases with the experimental data on axial and vertical acceleration obtained from the pectoral fin kinematics experiments. These comparisons show that steady state computations are incapable of describing the fluid dynamics of flapping fins. Quasi-steady state computations, with correct incorporation of

  13. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  14. Dynamic Measurements of Plastic Deformation in a Water-Filled Aluminum Tube in Response to Detonation of a Small Explosives Charge

    Directory of Open Access Journals (Sweden)

    Harold Sandusky

    1999-01-01

    Full Text Available Experiments have been conducted to benchmark computer code calculations for the dynamic interaction of explosions in water with structures. Aluminum cylinders with a length slightly more than twice their diameter were oriented vertically, sealed on the bottom by a thin plastic sheet, and filled with distilled water. An explosive charge suspended in the center of the tube plastically deformed but did not rupture the wall. Tube wall velocity, displacement, and strain were directly measured. The agreement among the three sets of dynamic data and the agreement of the terminal displacement measurements with the residual deformation were excellent.

  15. Dynamic behavior of a rotating delaminated composite beam including rotary inertia and shear deformation effects

    Directory of Open Access Journals (Sweden)

    Ramazan-Ali Jafari-Talookolaei

    2015-09-01

    Full Text Available A finite element (FE model is developed to study the free vibration of a rotating laminated composite beam with a single delamination. The rotary inertia and shear deformation effects, as well as the bending–extension, bending–twist and extension–twist coupling terms are taken into account in the FE model. Comparison between the numerical results of the present model and the results published in the literature verifies the validity of the present model. Furthermore, the effects of various parameters, such as delamination size and location, fiber orientation, hub radius, material anisotropy and rotating speed, on the vibration of the beam are studied in detail. These results provide useful information in the study of the free vibration of rotating delaminated composite beams.

  16. Deformation Mechanism of Zr702 Processed by Equal Channel Angular Pressing

    Science.gov (United States)

    Cao, W. Q.; Yu, S. H.; Chun, Y. B.; Shin, D. H.; Hwang, S. K.

    2007-11-01

    Commercial purity zirconium (Zr702) was deformed by equal channel angular (ECA) pressing up to eight passes, and the resulting microstructure and texture were studied by electron backscattered diffraction, transmission electron microscopy (TEM), and X-ray diffraction. The most prominent feature of the substructure was the dislocation cell blocks (CBs), indicating that the dislocation slip rather than twinning was the main mechanism of deformation. With two passes of ECA pressing, pancake-shape grains of 0.25 μm in thickness were obtained. The grain refinement achieved by the ECA pressing was attributed to the evolution of low-angle geometrically necessary boundaries (GNBs) into high-angle grain boundaries (HAGBs) during accumulation of strain by repeated pressing. The texture characteristics were such that a shear texture was predominant in the single-pass specimen, whereas a high-strain rolling texture became apparent in the specimens repeatedly pressed.

  17. Engineering-aided treatment of chest deformities to improve the process of breathing.

    Science.gov (United States)

    Gzik-Zroska, Bożena; Wolański, Wojciech; Gzik, Marek

    2013-09-01

    In this paper, the application of new visualization technologies in correction of funnel chest is presented. Often, such defects cause problems with breathing, and therefore, to improve the cardiorespiratory efficiency, a correction is required. The virtual model of chest was formulated to determine the strains and stresses after correction of deformation with using the stabilizing plate. From biomechanical point of view, the knowledge of the load-affecting stabilizer is necessary to select optimal parameters of the plate. The force-affecting plate that was used in the correction of chest deformation by Nuss method was determined on the basis of finite element model of funnel chest. The main aim of this work was to select the optimal thickness of plate. Calculations were conducted for three alternative constraints.

  18. A molecular dynamics investigation of the deformation mechanism and shape memory effect of epoxy shape memory polymers

    Science.gov (United States)

    Yang, Hua; Wang, ZhengDao; Guo, YaFang; Shi, XingHua

    2016-03-01

    Following deformation, thermally induced shape memory polymers (SMPs) have the ability to recover their original shape with a change in temperature. In this work, the thermomechanical properties and shape memory behaviors of three types of epoxy SMPs with varying curing agent contents were investigated using a molecular dynamics (MD) method. The mechanical properties under uniaxial tension at different temperatures were obtained, and the simulation results compared reasonably with experimental data. In addition, in a thermomechanical cycle, ideal shape memory effects for the three types of SMPs were revealed through the shape frozen and shape recovery responses at low and high temperatures, respectively, indicating that the recovery time is strongly influenced by the ratio of E-51 to 4,4'-Methylenedianiline.

  19. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption.

    Science.gov (United States)

    Ripepe, Maurizio; Donne, Dario Delle; Genco, Riccardo; Maggio, Giuseppe; Pistolesi, Marco; Marchetti, Emanuele; Lacanna, Giorgio; Ulivieri, Giacomo; Poggi, Pasquale

    2015-05-18

    Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrates downwards, tracking the residual volume of magma in the shallow reservoir. Gravity-driven magma discharge dynamics explain the initially high discharge rates observed during eruptive crises and greatly influence our ability to predict the evolution of effusive eruptions.

  20. In Situ XRD Studies of the Process Dynamics During Annealing in Cold-Rolled Copper

    Science.gov (United States)

    Dey, Santu; Gayathri, N.; Bhattacharya, M.; Mukherjee, P.

    2016-09-01

    The dynamics of the release of stored energy during annealing along two different crystallographic planes, i.e., {111} and {220}, in deformed copper have been investigated using in situ X-ray diffraction measurements at 458 K and 473 K (185 °C and 200 °C). The study has been carried out on 50 and 80 pct cold-rolled Cu sheets. The microstructures of the rolled samples have been characterized using optical microscopy and electron backscattered diffraction measurements. The microstructural parameters were evaluated from the X-ray diffractogram using the Scherrer equation and the modified Rietveld method. The stored energy along different planes was determined using the modified Stibitz formula from the X-ray peak broadening, and the bulk stored energy was evaluated using differential scanning calorimetry. The process dynamics of recovery and recrystallization as observed through the release of stored energy have been modeled as the second-order and first-order processes, respectively.

  1. Microstructural evolution and mechanical properties of cryomilled nanograined near Al-5083 alloy following deformation processing

    Science.gov (United States)

    Kaisar, Khan Hasib

    Nanocrystalline Al-Mg alloys are being considered for light weight transportation applications because they possess significantly higher strength than the conventional coarse grained alloys. Failure strengths higher than 1000 MPa have been reported for Al-5083 alloy at New Mexico Tech, which are almost double the strength of commercial precipitation strengthened Al-alloys. Unfortunately, the ductility tends to exhibit inverse relationship to strength and therefore there is a need to find ways to increase the ductility while maintaining high strength. In this work, we utilize a near Al-5083 alloy that was cryomilled for 24 hours in liquid nitrogen environment and consolidated by vacuum hot-pressing. The as-atomized Al-Mg powder was especially fabricated to minimize undesired impurity content to prevent premature fracture from intermetallic particles. It turned out that the final composition was slightly lower in Mn and Mg content and so the alloy is better designated as a near Al-5083 alloy. The as-vacuum hot pressed material had poor ductility because of inadequate prior-particle bonding, and therefore was subjected to deformation processing using low strain-rate extrusion at elevated temperatures. Both the strain-rate and temperature of extrusion were varied in an effort to obtain a good combination of tensile strength and ductility. In addition, the samples were annealed following extrusion in order to reduce residual stresses. The microstructure of extruded samples were characterized using a combination of electron microscope and X-ray diffraction techniques, and revealed a multi-scale morphology that could be binned into three different sizes of grains: i) those less than 100 nm that were analyzed using the X-ray based Williamson-Hall technique and transmission electron microscopy (TEM), ii) grain sizes in the 100-300 nm regime that were best revealed using TEM and scanning electron microscope (SEM) based electron-backscatter diffraction (EBSD) techniques, and

  2. Study of the fission process of deformed Na clusters in liquid-drop stabilized jellium model

    Directory of Open Access Journals (Sweden)

    M Payami

    2008-07-01

    Full Text Available   In this work, using the liquid drop model in the context of the stabilized jellium model, we have studied the fission of charged Na clusters. In this study we have assumed a deformed non-spherical shape for the cluster. The ground state energies, critical sizes, fission barrier height, and the evaporation energies have been calculated. The results show a better agreement to the experimental results compared to our earlier work.

  3. Relation of ongoing deformation rates to the subduction zone process in southern Alaska

    Science.gov (United States)

    Sauber, Jeanne; McClusky, Simon; King, Robert

    1997-11-01

    The rate and orientation of ongoing strain associated with subduction of the Pacific plate and the accretion of the Yakutat terrane to southern Alaska has been estimated at 13 sites from Global Positioning System measurements made in June 1993 and 1995. Along the Gulf of Alaska coast near Cape Yakataga, the average rate of deformation, relative to Fairbanks, was ≈38 mm/yr at N32°W. Further inland, above the region where the dip of the downgoing Pacific plate changes from about 10° to >30°, the deformation rate was ≈12mm/yr at N26°W. In the Sourdough/Paxson area, the deformation rate drops to 2-5 mm/yr and suggests a low short-term deformation rate across the Denali fault. Elastic straining of the overriding plate due to back-slip on a main thrust zone with an average dip of about 10° can account for the overall rate and distribution of short-term compressional strain across south central Alaska. Above the transitional region between unstable and stable sliding we suggest that strain associated with ≈15 mm/yr of right-lateral strike-slip occurs also. If the strain accumulated since the two 1899 earthquakes (both MW=8.1) from the offshore Pamplona fault zone to south of the Border Ranges fault (down-dip width ≈100 km) was seismically released on a single fault it would correspond to a M=8.1 earthquake.

  4. Computational analysis of linear friction welding process and micromechanical modeling of deformation behavior for medium carbon steel

    Institute of Scientific and Technical Information of China (English)

    杨夏炜; 李文亚; 马铁军

    2015-01-01

    Finite element simulation of linear friction welding (LFW) medium carbon steel was carried out using the ABAQUS software. A two-dimensional (2D) coupled thermo-mechanical model was established. First, the temperature fields of medium carbon steel during LFW process were investigated. And then, the Mises stress and the 1st, 2nd and 3rd principal stresses fields’ evolution of the steel during LFW process were studied. The deformation behavior of LFW carbon steel was analyzed by using micromechanics model based on ABAQUS with Python code. The Lode parameter was expressed using the Mohr stress circle and it was investigated in detail.

  5. Volcano dome dynamics at Mount St. Helens: Deformation and intermittent subsidence monitored by seismicity and camera imagery pixel offsets

    Science.gov (United States)

    Salzer, Jacqueline T.; Thelen, Weston A.; James, Mike R.; Walter, Thomas R.; Moran, Seth; Denlinger, Roger

    2016-11-01

    The surface deformation field measured at volcanic domes provides insights into the effects of magmatic processes, gravity- and gas-driven processes, and the development and distribution of internal dome structures. Here we study short-term dome deformation associated with earthquakes at Mount St. Helens, recorded by a permanent optical camera and seismic monitoring network. We use Digital Image Correlation (DIC) to compute the displacement field between successive images and compare the results to the occurrence and characteristics of seismic events during a 6 week period of dome growth in 2006. The results reveal that dome growth at Mount St. Helens was repeatedly interrupted by short-term meter-scale downward displacements at the dome surface, which were associated in time with low-frequency, large-magnitude seismic events followed by a tremor-like signal. The tremor was only recorded by the seismic stations closest to the dome. We find a correlation between the magnitudes of the camera-derived displacements and the spectral amplitudes of the associated tremor. We use the DIC results from two cameras and a high-resolution topographic model to derive full 3-D displacement maps, which reveals internal dome structures and the effect of the seismic activity on daily surface velocities. We postulate that the tremor is recording the gravity-driven response of the upper dome due to mechanical collapse or depressurization and fault-controlled slumping. Our results highlight the different scales and structural expressions during growth and disintegration of lava domes and the relationships between seismic and deformation signals.

  6. Analysis of Grinding Force and Elastic Deformation in Thread Grinding Process

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2013-01-01

    Full Text Available Considering the grinding geometry of the thread grinding dynamic contact arc length, a dynamic numerical thread grinding model has been set up on the basis of study of a single grit grinding model. The properties of grinding force and dynamic contact arc-length have been studied by means of the developed numerical model. The results have shown that the angle of helix has little effect on the dynamic contact arc-length than the wheel speed on the dynamic contact arc-length. And the wheel speed also produced a large effect on grinding force.

  7. The dynamics of local processes towards environmentally sustainable transport

    DEFF Research Database (Denmark)

    Hansen, Carsten Jahn

    1999-01-01

    The paper explores and discusses the dynamics of local leading towards the creation of an environmentally sustainable transport system. processes......The paper explores and discusses the dynamics of local leading towards the creation of an environmentally sustainable transport system. processes...

  8. Coupled model of deformation and gas flow process with temperature and slippage effect

    Directory of Open Access Journals (Sweden)

    Chunhui ZHANG

    2015-06-01

    Full Text Available The effects of temperature, slippage effect and effective stress of coal on the coupled mechanism of deformation and gas glow are key issues to control coal and gas outburst and design the methane recovery engineering. Firstly, intact coal from Huaxing mine in Jilin Province is crushed and coal briquette specimen are made. Then the tri-axial coupled test setup of the deformation, gas flow and temperature developed by ourselves is adopted to investigate the effects of pore pressure, effective stress and temperature on the permeability of coal briquette specimen. The results show that: 1 Under the condition of low pore pressure, the permeability first reduces with pore pressure increasing, then at a threshold of pore pressure it rises with pore pressure increasing, which is called “slippage effect”. 2 The effective confining stress significantly influences the permeability. With increasing effective confining stress, the space of pores and cracks are compressed and the permeability reduces. 3 The temperature significantly influences the permeability and the permeability decreases with temperature increasing. The main reason is that the space of pores and cracks is compressed due to the temperature stress. Because of the constraint around, temperature compressive stress appears in internal coal samples. Coal pore and fracture space is compressed, and the sample permeability decreases. Besides, the viscosity of gas increases with temperature increasing. It decreases the trend of coal permeability . The temperature influence on coal permeability approximates to linear relationship. 4 The empirical permeability evolution equation with varying temperature, effective stress and slippage effects is presented. The coal is viewed as elastic medium, combined with effective stress principle and the empirical permeability equation, the coupled model of deformation and gas flow with varying temperature and slippage effects is built. Furthermore, the code

  9. On the problem of deformed spherical systems in Modified Newtonian Dynamics

    CERN Document Server

    Ko, Chung-Ming

    2016-01-01

    Based on Newtonian dynamics, observations show that the luminous masses of astrophysical objects that are the size of a galaxy or larger are not enough to generate the measured motions which they supposedly determine. This is typically attributed to the existence of dark matter, which possesses mass but does not radiate (or absorb radiation). Alternatively, the mismatch can be explained if the underlying dynamics is not Newtonian. Within this conceptual scheme, Modified Newtonian Dynamics (MOND) is a successful theoretical paradigm. MOND is usually expressed in terms of a nonlinear Poisson equation, which is difficult to analyse for arbitrary matter distributions. We study the MONDian gravitational field generated by slightly non-spherically symmetric mass distributions based on the fact that both Newtonian and MONDian fields are conservative (which we refer to as the compatibility condition). As the non-relativistic version of MOND has two different formulations (AQUAL and QuMOND) and the compatibility condi...

  10. Dynamic recrystallization of AZ91 magnesium alloy during compression deformation at elevated temperature

    Institute of Scientific and Technical Information of China (English)

    李淑波; 王艳秋; 郑明毅; 吴昆

    2004-01-01

    High temperature compressive tests of AZ91 Mg alloy were carried out at 573 -723 K and strain rates of 0. 001 - 1s -1. The microstructures of as-compressed samples were observed by optical microscopy and transmission electron microscopy (TEM), and the microhardness was also tested. It is shown that with the increase of temperature or the decrease of strain rate, the flow stress decreases, at the same time the dynamic recrystallization (DRX)of the alloy is more noticeable. The microstructures reveal that continuous dynamic recrystallization, which develops through conversion of low-angle grain boundaries into high-angle boundaries, occurs preferentially at the grain boundary.

  11. Modeling Academic Education Processes by Dynamic Storyboarding

    Science.gov (United States)

    Sakurai, Yoshitaka; Dohi, Shinichi; Tsuruta, Setsuo; Knauf, Rainer

    2009-01-01

    In high-level education such as university studies, there is a flexible but complicated system of subject offerings and registration rules such as prerequisite subjects. Those offerings, connected with registration rules, should be matched to the students' learning needs and desires, which change dynamically. Students need assistance in such a…

  12. Dynamic Conditional Correlations for Asymmetric Processes

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe paper develops two Dynamic Conditional Correlation (DCC) models, namely the Wishart DCC (WDCC) model and the Matrix-Exponential Conditional Correlation (MECC) model. The paper applies the WDCC approach to the exponential GARCH (EGARCH) and GJR models to propose asymmetric DCC models.

  13. Dynamic Conditional Correlations for Asymmetric Processes

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe paper develops two Dynamic Conditional Correlation (DCC) models, namely the Wishart DCC (WDCC) model and the Matrix-Exponential Conditional Correlation (MECC) model. The paper applies the WDCC approach to the exponential GARCH (EGARCH) and GJR models to propose asymmetric DCC models.

  14. Dynamic recrystallization behavior of Inconel 690 during hot contin-uous deformation%690合金高温连续变形动态再结晶行为

    Institute of Scientific and Technical Information of China (English)

    谭化超; 董建新; 张麦仓; 姚志浩

    2013-01-01

    Continuous hot deformation testing of Inconel 690 cone samples at three different temperatures (1100, 1140 and 1180 ℃) was performed with a hydraulic press machine. Dynamic recrystallization in the alloy during con-tinuous hot deformation was studied by optical microscopy and back scattering diffraction. It is found that dynamic recrystallization in Inconel 690 happens during continuous hot compression deformation. The nucleation of dynamic recrystallization is in the order of triple junctions of grains→strain-induced boundary migration→twin boundaries→inside of grains, and the twin promotes the recrystallization process of Inconel 690.%应用液压机对690合金圆锥试样在3种不同温度下(1100、1140和1180℃)进行连续压缩变形实验,利用光学显微镜和背散射衍射技术研究690合金在热加工过程的动态再结晶行为。研究发现:在连续热压缩变形过程中动态再结晶以三叉晶界形核-原始晶界形核-孪晶形核(孪晶界和孪晶碎化)-晶内形核的顺序发展,而孪晶促进了690合金的再结晶过程。

  15. 3D Dynamic Finite Element Analysis of the Nonuniform Residual Stress in Ultrasonic Impact Treatment Process

    Science.gov (United States)

    Hu, Shengsun; Guo, Chaobo; Wang, Dongpo; Wang, Zhijiang

    2016-09-01

    The nonuniform distributions of the residual stress were simulated by a 3D finite element model to analyze the elastic-plastic dynamic ultrasonic impact treatment (UIT) process of multiple impacts on the 2024 aluminum alloy. The evolution of the stress during the impact process was discussed. The successive impacts during the UIT process improve the uniformity of the plastic deformation and decrease the maximum compressive residual stress beneath the former impact indentations. The influences of different controlled parameters, including the initial impact velocity, pin diameter, pin tip, device moving, and offset distances, on the residual stress distributions were analyzed. The influences of the controlled parameters on the residual stress distributions are apparent in the offset direction due to the different surface coverage in different directions. The influences can be used to understand the UIT process and to obtain the desired residual stress by optimizing the controlled parameters.

  16. Bubble nonlinear dynamics and stimulated scattering process

    Science.gov (United States)

    Jie, Shi; De-Sen, Yang; Sheng-Guo, Shi; Bo, Hu; Hao-Yang, Zhang; Shi-Yong, Hu

    2016-02-01

    A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition. Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1228) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050 and 11204049).

  17. Partial dynamical symmetry and odd-even staggering in deformed nuclei

    CERN Document Server

    Leviatan, A

    2015-01-01

    Partial dynamical symmetry (PDS) is shown to be relevant for describing the odd-even staggering in the $\\gamma$-band of $^{156}$Gd while retaining solvability and good SU(3) symmetry for the ground and $\\beta$ bands. Several classes of interacting boson model Hamiltonians with SU(3) PDS are surveyed.

  18. Partial dynamical symmetry and odd-even staggering in deformed nuclei

    Directory of Open Access Journals (Sweden)

    Leviatan A.

    2015-01-01

    Full Text Available Partial dynamical symmetry (PDS is shown to be relevant for describing the odd-even staggering in the γ-band of 156Gd while retaining solvability and good SU(3 symmetry for the ground and β bands. Several classes of interacting boson model Hamiltonians with SU(3 PDS are surveyed.

  19. Experimental Study of Pore Pressure and Deformation of Suction Bucket Foundations Under Horizontal Dynamic Loading

    Institute of Scientific and Technical Information of China (English)

    LU Xiao-bing; WANG Shu-yun; ZHANG Jian-hong; SUN Guo-liang; SHI Zhong-min

    2005-01-01

    Centrifuge experiments are carried out to investigate the responses of suction bucket foundations under horizontal dynamic loading. The effects of loading amplitude, the size of the bucket and the structural weight on the dynamic responses are investigated. It is shown that, when the loading amplitude is over a critical value, the sand at the upper part around the bucket softens or even liquefies. The liquefaction index (excess pore pressure divided by initial effective stress. In this paper, the developmental degree of excess pore pressure is described by liquefaction index) decreases from the upper part to the lower part of the sand foundation in the vertical direction and decreases from near to far away from the bucket′s side wall in the horizontal direction. Large settlements of the bucket and the sand around the bucket are induced by the horizontal dynamic loading. The dynamic responses of the bucket of a smaller height (when the diameter is the same) are heavier. A cyclic crack some distance near the bucket occurs in the sand.

  20. Insights on Continental Collisional Processes from GPS Data: Dynamics of the Peri-Adriatic Belts

    Science.gov (United States)

    Metois, Marianne; D'Agostino, Nicola; Avallone, Antonio; Chamot-Rooke, Nicolas; Rabaute, Alain; Duni, Llambro; Kuka, Neki; Koci, Rexhep; Georgiev, Ivan

    2015-04-01

    Recent advances in GPS technology and processing strategies make now spatial geodesy a suitable tool to image intra-continental slowly deforming areas such as collisional mountain belts and to get further insights on their kinematics and dynamics. Here, using the peri-Adriatic belts as a test case, we propose a methodology based on accurate GPS velocities to discriminate whether the current day deformation pattern over a mountain belt is controlled at the first order by gravity through gradients of gravitational potential energy. We calculate a new GPS velocity field covering the peri-Adriatic region and the entire Balkan Peninsula, taking advantage of newly available measurements coming from private networks operating since several years in this area. Based on these velocities, we derive the strain rate tensor and an interpolated velocity field using the method of Haines & Holt (1993). Opposite to the commonly accepted hypothesis considering the Balkans as part of the stable Eurasia, we show that the peninsula experiences significant compression across the Dinarides belt and extension toward the Aegean domain South of 44°N. We image a clockwise rotation of the entire peninsula around North Albania, and propose that the lithosphere under the old Scutari-Peck transform zone is weak and acts as a pivot point for this rotation since early Miocene. The Hellenic slab suction and the release of stress in the northern Hellenides subduction zone may favour the southwestward motion of the inner Balkan lithosphere, flowing between the rigid Apulia and Black sea blocks consequently. Because our velocity field is unusually dense in Slovenia and Austria, we picture the Eastern Alps deformation with great details and show that the Austrian Alps are moving eastward together with the Alpine foreland and Bohemian Promontory relative to stable Eurasia. Based on these new GPS data, we investigate the dynamics of the peri-Adriatic mountain belts, in particular of Albania and Eastern

  1. Anion Effects on the Ion Exchange Process and the Deformation Property of Ionic Polymer Metal Composite Actuators

    Directory of Open Access Journals (Sweden)

    Wataru Aoyagi

    2016-06-01

    Full Text Available An ionic polymer-metal composite (IPMC actuator composed of a thin perfluorinated ionomer membrane with electrodes plated on both surfaces undergoes a large bending motion when a low electric field is applied across its thickness. Such actuators are soft, lightweight, and able to operate in solutions and thus show promise with regard to a wide range of applications, including MEMS sensors, artificial muscles, biomimetic systems, and medical devices. However, the variations induced by changing the type of anion on the device deformation properties are not well understood; therefore, the present study investigated the effects of different anions on the ion exchange process and the deformation behavior of IPMC actuators with palladium electrodes. Ion exchange was carried out in solutions incorporating various anions and the actuator tip displacement in deionized water was subsequently measured while applying a step voltage. In the step voltage response measurements, larger anions such as nitrate or sulfate led to a more pronounced tip displacement compared to that obtained with smaller anions such as hydroxide or chloride. In AC impedance measurements, larger anions generated greater ion conductivity and a larger double-layer capacitance at the cathode. Based on these mechanical and electrochemical measurements, it is concluded that the presence of larger anions in the ion exchange solution induces a greater degree of double-layer capacitance at the cathode and results in enhanced tip deformation of the IPMC actuators.

  2. Joint estimation of shape and deformation for the detection of lesions in dynamic contrast-enhanced breast MRI

    Science.gov (United States)

    Hong, Byung-Woo

    2013-11-01

    We propose a mathematical framework for simultaneously delineating the boundary of object and estimating its temporal motion in the application of lesion detection in a dynamic contrast-enhanced (DCE) breast MRI sequence where both the appearance and the shape of region of interest is assumed to change in time. A unified energy functional for a joint segmentation and registration is proposed based on the assumption that the statistical properties of dynamic intensity curves within a region of interest are homogeneous. Our algorithm is designed to provide the morphological properties of the enhanced region and its dynamic intensity profiles, called kinetic signatures, in the analysis of DCE imagery since these features are considered as significant cues in understanding images. The proposed energy comprises a combination of a segmentation energy and a registration energy. The segmentation energy is developed based on a convex formulation being insensitive to the initialization. The registration energy is designed to compensate motion artifacts that are usually involved in the temporal imaging procedure. The major objective of this work is to provide a mathematical framework for a joint segmentation and registration on a dynamic sequence of images, and we demonstrate the mutual benefit of the estimation of temporal deformations for the registration step and the localization of regions of interest for the segmentation step. The effectiveness of the developed algorithm has been demonstrated on a number of clinical DCE breast MRI data in the application of breast lesion detection and the results show its potential to improve the accuracy and the efficiency in the diagnosis of breast cancer.

  3. Deformation style and controlling geodynamic processes at the eastern Guadalquivir foreland basin (Southern Spain)

    Science.gov (United States)

    Marín-Lechado, C.; Pedrera, A.; Peláez, J. A.; Ruiz-Constán, A.; González-Ramón, A.; Henares, J.

    2017-06-01

    The tectonic structure of the Guadalquivir foreland basin becomes complex eastward evolving from a single depocenter to a compartmented basin. The deformation pattern within the eastern Guadalquivir foreland basin has been characterized by combining seismic reflection profiles, boreholes, and structural field data to output a 3-D model. High-dipping NNE-SSW to NE-SW trending normal and reverse fault arrays deform the Variscan basement of the basin. These faults generally affect Tortonian sediments, which show syntectonic features sealed by the latest Miocene units. Curved and S-shaped fault traces are abundant and caused by the linkage of nearby fault segments during lateral fault propagation. Preexisting faults were reactivated either as normal or reverse faults depending on their position within the foreland. At Tortonian time, reverse faults deformed the basin forebulge, while normal faults predominated within the backbulge. Along-strike variation of the Betic foreland basin geometry is supported by an increasing mechanical coupling of the two plates (Alborán Domain and Variscan basement) toward the eastern part of the cordillera. Thus, subduction would have progressed in the western Betics, while it would have failed in the eastern one. There, the initially subducted Iberian paleomargin (Nevado-Filábride Complex) was incorporated into the upper plate promoting the transmission of collision-related compressional stresses into the foreland since the middle Miocene. Nowadays, compression is still active and produces low-magnitude earthquakes likely linked to NNE-SSW to NE-SW preexiting faults reactivated with reverse oblique-slip kinematics. Seismicity is mostly concentrated around fault tips that are frequently curved in overstepping zones.

  4. Nonlinear Deformation Processes and Damage Modes of Super Carbon Nanotubes with Armchair-Armchair Topology

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-Li; LIU Bin; YIN Ya-Jun; HUANG Yong-Gang; HWUANG Keh-Chih

    2008-01-01

    The tensile deformations and fractures of super carbon nanotubes (SCNTs) with armchair-armchair topology are investigated by using the atomic-scale finite element method. SCNTs generated from carbon nanotubes (CNTs) with different characteristic aspect ratios are found to have different nonlinear behaviours under uniaxiai tensions. Specifically, an SCNT with higher aspect ratio has three distinct stages: rotation, stretch and rupture, while an SCNT with lower aspect ratio has only two stages. This information may compensate for previous work and enrich our knowledge about Y-branched CNTs and SCNTs.

  5. The socially-dynamic entrepreneurial process

    DEFF Research Database (Denmark)

    Bjerregaard, Toke; Lauring, Jakob

    2012-01-01

    or cognitive schemes as the independent variable behind entrepreneurial activity. Elaborating on the socially-dynamic perspectives of anthropological theories, this article presents a coherent theoretical framework for entrepreneurship research embracing the social dimensions as well as individual factors......Large shares of the entrepreneurship research are informed by two central lines of thought. One focuses on the role of formal and informal social networks for mobilising resources and obtaining information about new markets and opportunities. The other conceives of individual personality traits...

  6. Co-deformation and bonding of multi-component billets with application to niobium-tin based superconductor processing

    Science.gov (United States)

    Peng, Xuan

    The standard procedure of the fabrication of low temperature superconductor precursors is the co-extrusion of composite materials followed by co-drawing. Defects including wire breakage and poor bonding between core and sleeve as well as between individual filaments are the main manufacturing problems. Understanding of interfacial bonding during the co-extrusion and co-drawing of the composites including the distributions of deformation, stress and temperature, and the generation process of interfacial bonding under different conditions will be helpful for the selection of parameters in the manufacture. First, the bonding created during the extrusion of subelements was examined and characterized using a focused ion beam (FIB) technique together with scanning transmission electronic microscopic (STEM) and the results confirmed that perfectly bonded subelements could be obtained by proper assembly, HIP, and subsequent extrusion. The second part of the work was aimed at the bonding generation during co-drawing process. Finite Element Method (FEM) was used to simulate the co-deformation process in order to investigate the effects of die angle, area reduction, core ratio, and the variation of bonding between components on the deformed geometry, and stress distribution in the product. The FEM simulation incorporated with a Pressure Bonding Model to study the generation process of interfacial bonding between components during the drawing process. This work starts with the multiple-pass drawing of a simple cylindrical monocore arrangement consisting of a Nb7.5%Ta core inside a Cu sleeve and a six-around-one restack of the monocores. The effect of the drawing pass, area reductions, die angles and core ratio on the deformation and bonding generation was investigated. On the experimental side, Cu-clad Nb7.5%Ta monocore "billet" was drawn to certain size, restacked into a Cu can to form a 7 restack multifilamentary billet, and then drawn to small size. High resolution scanning

  7. Transient dynamics for sequence processing neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Masaki [Faculty of Science, Yamaguchi University, Yamaguchi (Japan)]. E-mail: kawamura@sci.yamaguchi-u.ac.jp; Okada, Masato [RIKEN BSI, Hirosawa, Wako-shi (Japan)

    2002-01-18

    An exact solution of the transient dynamics for a sequential associative memory model is discussed through both the path-integral method and the statistical neurodynamics. Although the path-integral method has the ability to give an exact solution of the transient dynamics, only stationary properties have been discussed for the sequential associative memory. We have succeeded in deriving an exact macroscopic description of the transient dynamics by analysing the correlation of crosstalk noise. Surprisingly, the order parameter equations of this exact solution are completely equivalent to those of the statistical neurodynamics, which is an approximation theory that assumes crosstalk noise to obey the Gaussian distribution. In order to examine our theoretical findings, we numerically obtain cumulants of the crosstalk noise. We verify that the third- and fourth-order cumulants are equal to zero, and that the crosstalk noise is normally distributed even in the non-retrieval case. We show that the results obtained by our theory agree with those obtained by computer simulations. We have also found that the macroscopic unstable state completely coincides with the separatrix. (author)

  8. Accelerating glassy dynamics using graphics processing units

    CERN Document Server

    Colberg, Peter H

    2009-01-01

    Modern graphics hardware offers peak performances close to 1 Tflop/s, and NVIDIA's CUDA provides a flexible and convenient programming interface to exploit these immense computing resources. We demonstrate the ability of GPUs to perform high-precision molecular dynamics simulations for nearly a million particles running stably over many days. Particular emphasis is put on the numerical long-time stability in terms of energy and momentum conservation. Floating point precision is a crucial issue here, and sufficient precision is maintained by double-single emulation of the floating point arithmetic. As a demanding test case, we have reproduced the slow dynamics of a binary Lennard-Jones mixture close to the glass transition. The improved numerical accuracy permits us to follow the relaxation dynamics of a large system over 4 non-trivial decades in time. Further, our data provide evidence for a negative power-law decay of the velocity autocorrelation function with exponent 5/2 in the close vicinity of the transi...

  9. Atomic and dislocation dynamics simulations of plastic deformation in reactor pressure vessel steel

    Science.gov (United States)

    Monnet, Ghiath; Domain, Christophe; Queyreau, Sylvain; Naamane, Sanae; Devincre, Benoit

    2009-11-01

    The collective behavior of dislocations in reactor pressure vessel (RPV) steel involves dislocation properties on different phenomenological scales. In the multiscale approach, adopted in this work, we use atomic simulations to provide input data for larger scale simulations. We show in this paper how first-principles calculations can be used to describe the Peierls potential of screw dislocations, allowing for the validation of the empirical interatomic potential used in molecular dynamics simulations. The latter are used to compute the velocity of dislocations as a function of the applied stress and the temperature. The mobility laws obtained in this way are employed in dislocation dynamics simulations in order to predict properties of plastic flow, namely dislocation-dislocation interactions and dislocation interactions with carbides at low and high temperature.

  10. Atomic and dislocation dynamics simulations of plastic deformation in reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Monnet, Ghiath, E-mail: ghiathmonnet@yahoo.f [EDF-R and D, MMC, Avenue des Renardieres, 77818 Moret sur Loing (France); Domain, Christophe; Queyreau, Sylvain; Naamane, Sanae [EDF-R and D, MMC, Avenue des Renardieres, 77818 Moret sur Loing (France); Devincre, Benoit [LEM, CNRS-ONERA, 29 av. de la division Leclerc, 92130 Chatillon (France)

    2009-11-15

    The collective behavior of dislocations in reactor pressure vessel (RPV) steel involves dislocation properties on different phenomenological scales. In the multiscale approach, adopted in this work, we use atomic simulations to provide input data for larger scale simulations. We show in this paper how first-principles calculations can be used to describe the Peierls potential of screw dislocations, allowing for the validation of the empirical interatomic potential used in molecular dynamics simulations. The latter are used to compute the velocity of dislocations as a function of the applied stress and the temperature. The mobility laws obtained in this way are employed in dislocation dynamics simulations in order to predict properties of plastic flow, namely dislocation-dislocation interactions and dislocation interactions with carbides at low and high temperature.

  11. Dynamic biogas upgrading based on the Sabatier process: thermodynamic and dynamic process simulation.

    Science.gov (United States)

    Jürgensen, Lars; Ehimen, Ehiaze Augustine; Born, Jens; Holm-Nielsen, Jens Bo

    2015-02-01

    This study aimed to investigate the feasibility of substitute natural gas (SNG) generation using biogas from anaerobic digestion and hydrogen from renewable energy systems. Using thermodynamic equilibrium analysis, kinetic reactor modeling and transient simulation, an integrated approach for the operation of a biogas-based Sabatier process was put forward, which was then verified using a lab scale heterogenous methanation reactor. The process simulation using a kinetic reactor model demonstrated the feasibility of the production of SNG at gas grid standards using a single reactor setup. The Wobbe index, CO2 content and calorific value were found to be controllable by the H2/CO2 ratio fed the methanation reactor. An optimal H2/CO2 ratio of 3.45-3.7 was seen to result in a product gas with high calorific value and Wobbe index. The dynamic reactor simulation verified that the process start-up was feasible within several minutes to facilitate surplus electricity use from renewable energy systems.

  12. MOLECULAR DYNAMICS INVESTIGATION OF DEFORMATION RESPONSE OF THIN-FILM METALLIC NANOSTRUCTURES UNDER HEATING

    OpenAIRE

    KONOVALENKO IVAN; ZOLNIKOV KONSTANTIN; PSAKHIE SERGEY

    2011-01-01

    Molecular dynamics simulation of nanostructure behavior under impulse heating is carried out. These structures are formed by self-rolling of nano-thickness bilayer crystal films. The interatomic interactions are described by potentials obtained by the embedded atom method. The calculation data are shown that simulated nanostructures can transform the supplied thermal energy into the mechanical oscillations of its free edges. The influence of heating rate and its duration, medium viscosity pro...

  13. Coercivity enhancement of hot-deformed Nd-Fe-B magnets by the eutectic grain boundary diffusion process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lihua [Elements Strategy Initiative Center for Magnetic Materials, National Institute of Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba 305-8577 (Japan); Sepehri-Amin, H.; Ohkubo, T. [Elements Strategy Initiative Center for Magnetic Materials, National Institute of Materials Science, Tsukuba 305-0047 (Japan); Yano, M.; Kato, A.; Shoji, T. [Toyota Motor Corporation, Advanced Material Engineering Div., Susono 410-1193 (Japan); Hono, K., E-mail: kazuhiro.hono@nims.go.jp [Elements Strategy Initiative Center for Magnetic Materials, National Institute of Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba 305-8577 (Japan)

    2016-05-05

    Nd-M (M = Al, Cu, Ga, Zn, Mn) alloys with compositions close to eutectic points were investigated as diffusion sources for the grain boundary diffusion process to hot-deformed Nd-Fe-B magnets. Coercivity enhancement was observed for most of the alloys. Among them, the sample processed with Nd{sub 90}Al{sub 10} exhibited the highest coercivity of 2.5 T at room temperature. However, the sample processed with Nd{sub 70}Cu{sub 30} exhibited the highest coercivity of 0.7 T at 200 {sup °}C. Microstructural observations using scanning transmission electron microscope (STEM) showed that nonferromagnetic Nd-rich intergranular phase envelops the Nd{sub 2}Fe{sub 14}B grains after the diffusion process. Abnormal grain growth and the dissolution of Al into the Nd{sub 2}Fe{sub 14}B grains were observed in the sample processed with Nd{sub 90}Al{sub 10}, which explains its inferior thermal stability of coercivity compared to the sample processed with Nd{sub 70}Cu{sub 30}. The coercivity enhancement and poor thermal stability of the coercivity of the Nd{sub 90}Al{sub 10} diffusion-processed sample are discussed based on microstructure studies by transmission electron microscopy. - Highlights: • Coercivity of hot-deformed Nd-Fe-B magnets is enhanced by the infiltration of various R-TM eutectic alloys. • The sample infiltrated with Nd{sub 90}Al{sub 10} shows the highest coercivity of 2.5 T at room temperature. • At 200 °C, Nd{sub 70}Cu{sub 30} diffusion-processed sample possesses the highest coercivity of 0.7 T.

  14. Analysis of source process and static surface deformation of the November 15, 2014 Halmahera earthquake

    Science.gov (United States)

    Rosid, A.; Suardi, I.; Muzli, M.

    2016-05-01

    The November 15 2014 Halmahera earthquake (= 7.3) was quite unique earthquake. This event generated tsunami waves with small amplitudes reported by BMKG. The tsunami run up heights was reported at Jailolo, Tobelo, and Manado 0.09 m, 0.01 m, and 0.03 m, respectively. A research has been conducted to understand this phenomenon using inversion method to the teleseismic body wave data from the IRIS-DMC seismic network. The Green functions were calculated using Kikuchi and Kanamori method. The result shows that there are two asperities. The maximum slip amount is 1.057 m in the second asperity (asperity B) near epicenter. The source parameters are obtained i.e. the total seismic moment = 0.4526x Nm (= 7.0), and the source duration time is 25 seconds. Furthermore, to understand the impact of this earthquake, we have also investigated the static surface deformation around the earthquake event particularly in the land area by using forward modeling to the slip distribution data. The results show that the predicted static surface deformation at Manado is 0.0021 m, Tobelo 0.0045 m, and the largest amount is 0.0073 m at Ibu, respectively.

  15. Acquisition and Analysis of Dynamic Responses of a Historic Pedestrian Bridge using Video Image Processing

    Science.gov (United States)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; O'Donnell, Deirdre; Wright, Robert; Pakrashi, Vikram

    2015-07-01

    Video based tracking is capable of analysing bridge vibrations that are characterised by large amplitudes and low frequencies. This paper presents the use of video images and associated image processing techniques to obtain the dynamic response of a pedestrian suspension bridge in Cork, Ireland. This historic structure is one of the four suspension bridges in Ireland and is notable for its dynamic nature. A video camera is mounted on the river-bank and the dynamic responses of the bridge have been measured from the video images. The dynamic response is assessed without the need of a reflector on the bridge and in the presence of various forms of luminous complexities in the video image scenes. Vertical deformations of the bridge were measured in this regard. The video image tracking for the measurement of dynamic responses of the bridge were based on correlating patches in time-lagged scenes in video images and utilisinga zero mean normalisedcross correlation (ZNCC) metric. The bridge was excited by designed pedestrian movement and by individual cyclists traversing the bridge. The time series data of dynamic displacement responses of the bridge were analysedto obtain the frequency domain response. Frequencies obtained from video analysis were checked against accelerometer data from the bridge obtained while carrying out the same set of experiments used for video image based recognition.

  16. Physically-Based and Power-Law Constitutive Relations for Higher Temperature Metal Processing and Creep-Type Deformations

    Science.gov (United States)

    Armstrong, R. W.; Balasubramanian, N.

    2017-02-01

    There is continuing research interest in the development and use of constitutive relations for assistance with description and optimization of higher temperature metal and alloy processing conditions and desired mechanical property performances, particularly in the latter case for nanopolycrystalline materials under creep-type loading deformations. Here, we focus on the plastic flow stress dependence on strain rate, temperature, and especially, on material grain size. Connection is established between, on the one hand, relatively recent thermal-activation-based relations for dislocation motion and, on the other hand, comparative power law expressions.

  17. Quantum Dynamics as a Stochastic Process

    CERN Document Server

    Figueiredo, J M A

    2002-01-01

    We study the classical motion of a particle subject to a stochastic force. We then present a perturbative schema for the associated Fokker-Planck equation where, in the limit of a vanishingly small noise source, a consistent dynamical model is obtained. The resulting theory is similar to Quantum Mechanics, having the same field equations for probability measures, the same operator structure and symmetric ordering of operators. The model is valid for general electromagnetic interaction as well as many body systems with mutual interactions of general nature.

  18. Dynamic Conditional Correlations for Asymmetric Processes

    OpenAIRE

    Asai, Manabu; McAleer, Michael

    2011-01-01

    The paper develops two Dynamic Conditional Correlation (DCC) models, namely the Wishart DCC (wDCC) model. The paper applies the wDCC approach to the exponential GARCH (EGARCH) and GJR models to propose asymmetric DCC models. We use the standardized multivariate t-distribution to accommodate heavy-tailed errors. The paper presents an empirical example using the trivariate data of the Nikkei 225, Hang Seng and Straits Times Indices for estimating and forecasting the wDCC-EGARCH and wDCC-GJR mod...

  19. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    Science.gov (United States)

    Solomon, Sean C.

    During our participation in the NASA Crustal Dynamics Project under NASA contract NAS-27339 and grant NAG5-814 for the period 1982-1991, we published or submitted for publication 30 research papers and 52 abstracts of presentations at scientific meetings. In addition, five M.I.T. Ph.D. students (Eric Bergman, Steven Bratt, Dan Davis, Jeanne Sauber, Anne Sheehan) were supported wholly or in part by this project during their thesis research. Highlights of our research progress during this period include the following: application of geodetic data to determine rates of strain in the Mojave block and in central California and to clarify the relation of such strain to the San Andreas fault and Pacific-North American plate motions; application of geodetic data to infer post seismic deformation associated with large earthquakes in the Imperial Valley, Hebgen Lake, Argentina, and Chile; determination of the state of stress in oceanic lithosphere from a systematic study of the centroid depths and source mechanisms of oceanic intraplate earthquakes; development of models for the state of stress in young oceanic regions arising from the differential cooling of the lithosphere; determination of the depth extent and rupture characteristics of oceanic transform earthquakes; improved determination of earthquake slip vectors in the Gulf of California, an important data set for the estimation of Pacific-North American plate motions; development of models for the state of stress and mechanics of fold-and-thrust belts and accretionary wedges; development of procedures to invert geoid height, residual bathymetry, and differential body wave travel time residuals for lateral variations in the characteristic temperature and bulk composition of the oceanic upper mantle; and initial GPS measurements of crustal deformation associated with the Imperial-Cerro Prieto fault system in southern California and northern Mexico. Full descriptions of the research conducted on these topics may be

  20. Experimental and numerical analyses of pure copper during ECFE process as a novel severe plastic deformation method

    Directory of Open Access Journals (Sweden)

    M. Ebrahimi

    2014-02-01

    Full Text Available In this paper, a new severe plastic deformation method called equal channel forward extrusion (ECFE process has been proposed and investigated by experimental and numerical approaches on the commercial pure copper billets. The experimental results indicated that the magnitudes of yield strength, ultimate tensile strength and Vickers micro-hardness have been markedly improved from 114 MPa, 204 MPa and 68 HV as the annealed condition to 269 MPa, 285 MPa and 126 HV after the fourth pass of ECFE process, respectively. In addition, scanning electron microscopy observation of the samples showed that the average grain size of the as-received state which is about 22 μm has been reduced to 1.4 μm after the final pass. The numerical investigation suggested that although one pass ECFE process fabricates material with the mean effective strain magnitude of about 1, the level of imposed effective plastic strain gradually diminishes from the circumference to the center of the deformed billet.

  1. Institutional dynamics and the negotiation process

    DEFF Research Database (Denmark)

    Kumar, Rajesh; Worm, Verner

    2004-01-01

    The paper develops the argument for analyzing negotiations from an institutional perspective. A major theme of the argument being advanced in the paper is that the institutional perspective provides a more comprehensive understanding of the negotiation process in its entirety. The negotiation...... process can be broken down into three distinct components, namely (a) the pre negotiation phase; (b) the negotiating phase; and (c) the post negotiation evaluation. Each of these phases is critically influenced by a specific component or components of the institutional environment. Scott's distinction...... and their implications for negotiating processes in these countries. Choosing India and China to illustrate the utility of this framework is justified by the fact that India and China are both in the process of transforming their economies and although confronted with similar challenges they have dealt with them in very...

  2. Static and dynamic finite element analysis of 304 stainless steel rod and wire hot continuous rolling process

    Institute of Scientific and Technical Information of China (English)

    Siyu Yuan; Liwen Zhang; Shulun Liao; Mao Li; Min Qi; Yu Zhen; Shuqi Guo

    2008-01-01

    Three-dimensional finite element models were developed to analyze 304 stainless steel rod and wire hot continuous rolling process with the help of MSC.Marc software. The entire 30-pass deformation process and the actual parameters of production line were taken into account. Static and dynamic procedures were used to study the continuous rolling process with the aid of the thermo-mechanical coupled FEM of elastic-plasticity. The properties of billets, such as deformation, temperature field and rolling force, were mainly discussed. The simulation results of temperature agree well with the measured values. Comparisons of the analysis results obtained using static implicit method and dynamic implicit method were presented. It is shown that static implicit proce-dure is more accurate than dynamic implicit procedure and is able to simulate the rolling process with a lower speed, such as a rough-ing mill. Whereas, dynamic analysis shows a higher efficiency than static analysis and is fit for simulating the rolling process with a higher speed, such as a finishing mill.

  3. Experimental deformation and recrystallization of olivine – processes and time scales of damage healing during postseismic relaxation at mantle depths

    Directory of Open Access Journals (Sweden)

    C. A. Trepmann

    2013-04-01

    Full Text Available Experiments comprising sequences of deformation (at 300 or 600 °C and annealing at varying temperature (700 to 1100 °C, time (up to 144 h and stress (up to 1.5 GPa were carried out in a Griggs-type apparatus on natural olivine-rich peridotite samples to simulate deformation and recrystallization processes in deep shear zones that reach mantle depth as continuations of seismically active faults. The resulting olivine microfabrics were analysed by polarization and electron microscopy. Core-and-mantle like microstructures are the predominant result of our experiments simulating rapid stress relaxation (without or with minor creep after a high-stress deformation event: porphyroclasts (> 100 μm are surrounded by defect-poor recrystallized grains with a wide range in size (2 to 40 μm. Areas with smaller recrystallized grains (> 10 μm trace former high-strain zones generated during initial high-stress deformation even after annealing at a temperature of 1100 °C for 70 h. A weak crystallographic preferred orientation (CPO of recrystallized olivine grains is related to the orientation of the host crystals but appears unrelated to the strain field. Based on these findings, we propose that olivine microstructures in natural shear-zone peridotites with a large range in recrystallized grain size, localized fine-grained zones, and a weak CPO not related to the strain field are diagnostic for a sequence of high-stress deformation followed by recrystallization at low stresses, as to be expected in areas of seismic activity. We extended the classic Avrami-kinetics equation by accounting for time-dependent growth kinetics and constrained the involved parameters relying on our results and previously reported kinetics parameters. Extrapolation to natural conditions suggests that the observed characteristic microstructure may develop within as little as tens of years and less than ten thousands of years. These recrystallization microstructures have a great

  4. Numerical Simulation of Similar and Dissimilar Materials Welding Process; Quantifications of Temperature, Stress, Strain and Deformation

    Directory of Open Access Journals (Sweden)

    Ranjit Shrestha

    2015-02-01

    Full Text Available In the present paper, 3 Dimensional welding simulation was carried out in the FE software ANSYS in order to predict temperature, stress, strain and deformation in the joining of similar and dissimilar materials. The numerical simulation shows that temperature exceeds well above the melting temperature of the substrate material in the welding region. It is found that, higher residual stress is distributed in the weld bead area and surrounding heat affected zone. The stress and strain distribution patterns in the specimen showed that both tended to concentrate at or near points of application of thermal load, and were generally not uniform in these areas. It is also found that Stress and strain were concentrated at corners, edges, and other areas of abrupt change in the shape of the specimen and was also not uniform where the cross-section of the structure changed suddenly, and had large gradients at localized points. The deformation was found maximum at the beginning and the end of welding direction (Y-axis and minimum at the ends of X-axis as they are simply supported in both ends. In addition, among the six different cases of similar and dissimilar materials (S40C+S40C, STS304+STS304, STS316L+STS316L, S40C+STS304, S40C+STS316L, STS304+STS316L, the minimum temperature was found in S40C+STS304 whereas the maximum temperature was S40C+STS316L; the minimum stress was found in case of S40C+STS304 and maximum stress was found in 40C+STS316L; the minimum strain was found in case of S40C+STS304 and maximum strain was found in STS304+STS304; the minimum deformation was found in S40C+S40C and maximum in S40C+STS316L.The prediction show qualitative good agreement with the experimental results found in the literature and hence it was confirmed that the method of finite elements has proved to be successful for proper design analysis.

  5. Understanding Dynamic Capabilities from Its Antecedents, Processes and Outcomes

    OpenAIRE

    2014-01-01

    The theory of Dynamic Capabilities has been one of the references in the search for understanding of the competitive advantage of organizations. However, even with the development of studies on this topic, it is not clear how the Dynamic Capabilities develop and operate within organizations. Thus, this study aims to understand the dynamics capabilities from its antecedents, processes and outcomes. Through a literature review, it was possible to identify external and internal antecedents that ...

  6. Scalable stacked array piezoelectric deformable mirror for astronomy and laser processing applications.

    Science.gov (United States)

    Wlodarczyk, Krystian L; Bryce, Emma; Schwartz, Noah; Strachan, Mel; Hutson, David; Maier, Robert R J; Atkinson, David; Beard, Steven; Baillie, Tom; Parr-Burman, Phil; Kirk, Katherine; Hand, Duncan P

    2014-02-01

    A prototype of a scalable and potentially low-cost stacked array piezoelectric deformable mirror (SA-PDM) with 35 active elements is presented in this paper. This prototype is characterized by a 2 μm maximum actuator stroke, a 1.4 μm mirror sag (measured for a 14 mm × 14 mm area of the unpowered SA-PDM), and a ±200 nm hysteresis error. The initial proof of concept experiments described here show that this mirror can be successfully used for shaping a high power laser beam in order to improve laser machining performance. Various beam shapes have been obtained with the SA-PDM and examples of laser machining with the shaped beams are presented.

  7. Dynamic Noise and its Role in Understanding Epidemiological Processes

    Science.gov (United States)

    Stollenwerk, Nico; Aguiar, Maíra

    2010-09-01

    We investigate the role of dynamic noise in understanding epidemiological systems, such as influenza or dengue fever by deriving stochastic ordinary differential equations from markov processes for discrete populations. This approach allows for an easy analysis of dynamical noise transitions between co-existing attractors.

  8. Developmental Dynamics of Emotion and Cognition Processes in Preschoolers

    Science.gov (United States)

    Blankson, A. Nayena; O'Brien, Marion; Leerkes, Esther M.; Marcovitch, Stuart; Calkins, Susan D.; Weaver, Jennifer Miner

    2013-01-01

    Dynamic relations during the preschool years across processes of control and understanding in the domains of emotion and cognition were examined. Participants were 263 children (42% non-White) and their mothers who were seen first when the children were 3 years old and again when they were 4. Results indicated dynamic dependence among the…

  9. Developmental Dynamics of Emotion and Cognition Processes in Preschoolers

    Science.gov (United States)

    Blankson, A. Nayena; O'Brien, Marion; Leerkes, Esther M.; Marcovitch, Stuart; Calkins, Susan D.; Weaver, Jennifer Miner

    2013-01-01

    Dynamic relations during the preschool years across processes of control and understanding in the domains of emotion and cognition were examined. Participants were 263 children (42% non-White) and their mothers who were seen first when the children were 3 years old and again when they were 4. Results indicated dynamic dependence among the…

  10. The role of the deformational entropy in the miscibility of polymer blends investigated using a hybrid statistical mechanics and molecular dynamics model.

    Science.gov (United States)

    Madkour, Tarek M; Salem, Sarah A; Miller, Stephen A

    2013-04-28

    To fully understand the thermodynamic nature of polymer blends and accurately predict their miscibility on a microscopic level, a hybrid model employing both statistical mechanics and molecular dynamics techniques was developed to effectively predict the total free energy of mixing. The statistical mechanics principles were used to derive an expression for the deformational entropy of the chains in the polymeric blends that could be evaluated from molecular dynamics trajectories. Evaluation of the entropy loss due to the deformation of the polymer chains in the case of coiling as a result of the repulsive interactions between the blend components or in the case of swelling due to the attractive interactions between the polymeric segments predicted a negative value for the deformational entropy resulting in a decrease in the overall entropy change upon mixing. Molecular dynamics methods were then used to evaluate the enthalpy of mixing, entropy of mixing, the loss in entropy due to the deformation of the polymeric chains upon mixing and the total free energy change for a series of polar and non-polar, poly(glycolic acid), PGA, polymer blends.

  11. Interfacial fluid dynamics and transport processes

    CERN Document Server

    Schwabe, Dietrich

    2003-01-01

    The present set of lectures and tutorial reviews deals with various topical aspects related to instabilities of interfacial processes and driven flows from both the theoretical and experimental point of views. New research has been spurred by the many demands for applications in material sciences (melting, solidification, electro deposition), biomedical engineering and processing in microgravity environments. This book is intended as both a modern source of reference for researchers in the field as well as an introduction to postgraduate students and non-specialists from related areas.

  12. A Domain Decomposition Approach to Implementing Fault Slip in Finite-Element Models of Quasi-static and Dynamic Crustal Deformation

    CERN Document Server

    Aagaard, Brad T; Williams, Charles A

    2013-01-01

    We employ a domain decomposition approach with Lagrange multipliers to implement fault slip in a finite-element code, PyLith, for use in both quasi-static and dynamic crustal deformation applications. This integrated approach to solving both quasi-static and dynamic simulations leverages common finite-element data structures and implementations of various boundary conditions, discretization schemes, and bulk and fault rheologies. We have developed a custom preconditioner for the Lagrange multiplier portion of the system of equations that provides excellent scalability with problem size compared to conventional additive Schwarz methods. We demonstrate application of this approach using benchmarks for both quasi-static viscoelastic deformation and dynamic spontaneous rupture propagation that verify the numerical implementation in PyLith.

  13. Molecular Dynamics for Elastic and Plastic Deformation of a Single-Walled Carbon Nanotube Under Nanoindentation

    Institute of Scientific and Technical Information of China (English)

    FANG Te-Hua; JIAN Sheng-Rui; CHUU Der-San

    2004-01-01

    @@ Mechanical characteristics of a suspended (10, 10) single-walled carbon nanotube (SWCNT) during atomic force microscopy (AFM) nanoindentation are investigated at different temperatures by molecular dynamics simulations.The results indicate that the Young modulus of the (10, 10) SWCNT under temperatures of 300-600K is 1.2-1.3 TPa. As the temperature increases, the Young modulus of the SWCNT increases, but the axial strain of the SWCNT decreases. The strain-induced spontaneous formation of the Stone-Wales defects and the rippled behaviour under inhomogeneous stress are studied. The rippled behaviour of the SWCNT is enhanced with the increasing axial strain. The adhesive phenomenon between the probe and the nanotube and the elastic recovery of the nanotube during the retraction are also investigated.

  14. Academic writing development: a complex, dynamic process

    NARCIS (Netherlands)

    Penris, Wouter; Verspoor, Marjolijn; Pfenniger, Simone; Navracsics, Judit

    2017-01-01

    Traditionally we look at learning outcomes by examining single outcomes. A new and future direction is to look at the actual process of development. Imagine an advanced, 17-year-old student of English (L2) who has just finished secondary school in the Netherlands and wants to become an English

  15. Dynamic Process Simulation for Analysis and Design.

    Science.gov (United States)

    Nuttall, Herbert E., Jr.; Himmelblau, David M.

    A computer program for the simulation of complex continuous process in real-time in an interactive mode is described. The program is user oriented, flexible, and provides both numerical and graphic output. The program has been used in classroom teaching and computer aided design. Typical input and output are illustrated for a sample problem to…

  16. Academic writing development: a complex, dynamic process

    NARCIS (Netherlands)

    Penris, Wouter; Verspoor, Marjolijn; Pfenniger, Simone; Navracsics, Judit

    2017-01-01

    Traditionally we look at learning outcomes by examining single outcomes. A new and future direction is to look at the actual process of development. Imagine an advanced, 17-year-old student of English (L2) who has just finished secondary school in the Netherlands and wants to become an English teach

  17. Annotations: Dynamic Semantics in Stream Processing

    NARCIS (Netherlands)

    Amiguet, Juan; Wombacher, Andreas; Klifman, Tim E.

    2010-01-01

    In the field of e-science stream data processing is common place facilitating sensor networks, in particular for prediction and supporting decision making. However, sensor data may be erroneous, like e.g. due to measurement errors (outliers) or changes of the environment. While it can be foreseen th

  18. Contrasts between deformation accommodated by induced seismic and aseismic processes revealed by combined monitoring of seismicity and surface deformations: Brady Geothermal Field, Nevada, USA

    Science.gov (United States)

    Davatzes, N. C.; Ali, S. T.; Mellors, R. J.; Foxall, W.; Wang, H. F.; Feigl, K. L.; Drakos, P. S.; Zemach, E.

    2013-12-01

    Fluid pressure change accompanying pumping in the Brady Geothermal Field is associated with two easily measureable deformation responses: (1) surface deformations and 2) seismic slip. Surface deformation can be imaged by InSAR and appears to correspond to volume change at depth. Seismic slip on fractures is likely induced by either changes in effective normal stress or solid stress with minimal impact to volume. Both responses have potential impact on permeability structure due to dilation or compaction along natural fractures. We present an integrated data set that compares pumping records with these deformation responses to investigate their coupling and to constrain the geometry and rheology of the reservoir and surrounding crust. We also seek to clarify the relationship between induced seismicity and pumping. Currently, the dominant pumping signal is pressure reduction resulting from on-going production since 1992. Surface subsidence extends over a region of approximately 5 km by 2 km with the long axis along the strike of the major normal faults associated with the reservoir. Smaller approximately 1 km length-scale regions of intense subsidence are associated bends or intersections among individual normal fault segments. Modeling of the deformation source indicates that the broader subsidence pattern is consistent with the majority of fluid extraction from a reservoir at a depth of approximately 1 km and extending along the entire length of the mapped Brady normal fault. The more intense subsidence is consistent with fluid extraction along steep conduits from shallower depths that extend to the main reservoir. These results indicate a reservoir much larger than would be expected from the footprint of the production wells. In contrast, seismicity is primarily concentrated along a narrow path between injecting and producing wells, but outside the regions of most intense subsidence. Overall, seismicity represents only a small fraction of the strain energy

  19. 考虑剪切效应有限变形粘弹性板的动力稳定性%Dynamic Stability of Viscoelastic Plates with Finite Deformation and Shear Effects

    Institute of Scientific and Technical Information of China (English)

    李晶晶; 程昌钧; 张能辉

    2002-01-01

    Based on Reddy' s theory of plates with higher-order shear deformations and the Boltzmann superposition principles, thegoverning equations were established for dynamic stability of viscoelastic plates with finite deformations taking account of shear ef-fects. The Galerkin method was applied to simplify the set of equations. The numerical methods in nonlinear dynamics were used tosolve the simplified system. It could be seen that there are plenty of dynamic properties for this kind of viscoelastic plates under trans-verse harmonic loads. The influences of the transverse shear deformations and material parameter on the dynamic behavior of nonlin-ear viscoelastic plates were investigated.

  20. Extending Newtonian Dynamics to Include Stochastic Processes

    Science.gov (United States)

    Zak, Michail

    2009-01-01

    A paper presents further results of continuing research reported in several previous NASA Tech Briefs articles, the two most recent being Stochastic Representations of Chaos Using Terminal Attractors (NPO-41519), [Vol. 30, No. 5 (May 2006), page 57] and Physical Principle for Generation of Randomness (NPO-43822) [Vol. 33, No. 5 (May 2009), page 56]. This research focuses upon a mathematical formalism for describing post-instability motions of a dynamical system characterized by exponential divergences of trajectories leading to chaos (including turbulence as a form of chaos). The formalism involves fictitious control forces that couple the equations of motion of the system with a Liouville equation that describes the evolution of the probability density of errors in initial conditions. These stabilizing forces create a powerful terminal attractor in probability space that corresponds to occurrence of a target trajectory with probability one. The effect in configuration space (ordinary three-dimensional space as commonly perceived) is to suppress exponential divergences of neighboring trajectories without affecting the target trajectory. As a result, the post-instability motion is represented by a set of functions describing the evolution of such statistical quantities as expectations and higher moments, and this representation is stable.

  1. Dynamical processes in heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Blann, M.; Remington, B.A.

    1988-07-25

    In this report I review the physical assumptions of the Boltzmann Master Equation (BME). Comparisons of the model with experimental neutron spectra gated on evaporation residues for a range of incident projectile energies and masses are presented; next, I compare n spectra gated on projectile-like fragments, followed by comparisons with ungated, inclusive proton spectra. I will then consider secondary effects from the nucleon-nucleon processes involved in the heavy ion relaxation processes, specifically the high energy ..gamma..-rays which have been observed at energies up to 140 MeV in collisions of heavy ions of 20/endash/84 MeV/..mu... Another secondary effect, subthreshold pion production, was covered in the XVII School and will not be repeated. 39 refs., 16 figs.

  2. Analysis of Uncertainty in Dynamic Processes Development of Banks Functioning

    Directory of Open Access Journals (Sweden)

    Aleksei V. Korovyakovskii

    2013-01-01

    Full Text Available The paper offers the approach to measure of uncertainty estimation in dynamic processes of banks functioning, using statistic data of different banking operations indicators. To calculate measure of uncertainty in dynamic processes of banks functioning the phase images of relevant sets of statistic data are considered. Besides, it is shown that the form of phase image of the studied sets of statistic data can act as a basis of measure of uncertainty estimation in dynamic processes of banks functioning. The set of analytical characteristics are offered to formalize the form of phase image definition of the studied sets of statistic data. It is shown that the offered analytical characteristics consider inequality of changes in values of the studied sets of statistic data, which is one of the ways of uncertainty display in dynamic processes development. The invariant estimates of measure of uncertainty in dynamic processes of banks functioning, considering significant changes in absolute values of the same indicators for different banks were obtained. The examples of calculation of measure of uncertainty in dynamic processes of concrete banks functioning were cited.

  3. Deformable Nanolaminate Optics

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S S; Papavasiliou, A P; Barbee, T W; Miles, R R; Walton, C C; Cohn, M B; Chang, K

    2006-05-12

    We are developing a new class of deformable optic based on electrostatic actuation of nanolaminate foils. These foils are engineered at the atomic level to provide optimal opto-mechanical properties, including surface quality, strength and stiffness, for a wide range of deformable optics. We are combining these foils, developed at Lawrence Livermore National Laboratory (LLNL), with commercial metal processing techniques to produce prototype deformable optics with aperture sizes up to 10 cm and actuator spacing from 1 mm to 1 cm and with a range of surface deformation designed to be as much as 10 microns. The existing capability for producing nanolaminate foils at LLNL, coupled with the commercial metal processing techniques being used, enable the potential production of these deformable optics with aperture sizes of over 1 m, and much larger deformable optics could potentially be produced by tiling multiple deformable segments. In addition, based on the fabrication processes being used, deformable nanolaminate optics could potentially be produced with areal densities of less than 1 kg per square m for applications in which lightweight deformable optics are desirable, and deformable nanolaminate optics could potentially be fabricated with intrinsically curved surfaces, including aspheric shapes. We will describe the basic principles of these devices, and we will present details of the design, fabrication and characterization of the prototype deformable nanolaminate optics that have been developed to date. We will also discuss the possibilities for future work on scaling these devices to larger sizes and developing both devices with lower areal densities and devices with curved surfaces.

  4. Error processing network dynamics in schizophrenia.

    Science.gov (United States)

    Becerril, Karla E; Repovs, Grega; Barch, Deanna M

    2011-01-15

    Current theories of cognitive dysfunction in schizophrenia emphasize an impairment in the ability of individuals suffering from this disorder to monitor their own performance, and adjust their behavior to changing demands. Detecting an error in performance is a critical component of evaluative functions that allow the flexible adjustment of behavior to optimize outcomes. The dorsal anterior cingulate cortex (dACC) has been repeatedly implicated in error-detection and implementation of error-based behavioral adjustments. However, accurate error-detection and subsequent behavioral adjustments are unlikely to rely on a single brain region. Recent research demonstrates that regions in the anterior insula, inferior parietal lobule, anterior prefrontal cortex, thalamus, and cerebellum also show robust error-related activity, and integrate into a functional network. Despite the relevance of examining brain activity related to the processing of error information and supporting behavioral adjustments in terms of a distributed network, the contribution of regions outside the dACC to error processing remains poorly understood. To address this question, we used functional magnetic resonance imaging to examine error-related responses in 37 individuals with schizophrenia and 32 healthy controls in regions identified in the basic science literature as being involved in error processing, and determined whether their activity was related to behavioral adjustments. Our imaging results support previous findings showing that regions outside the dACC are sensitive to error commission, and demonstrated that abnormalities in brain responses to errors among individuals with schizophrenia extend beyond the dACC to almost all of the regions involved in error-related processing in controls. However, error related responses in the dACC were most predictive of behavioral adjustments in both groups. Moreover, the integration of this network of regions differed between groups, with the

  5. Multiscale mathematical modeling and simulation of cellular dynamical process.

    Science.gov (United States)

    Nakaoka, Shinji

    2014-01-01

    Epidermal homeostasis is maintained by dynamic interactions among molecules and cells at different spatiotemporal scales. Mathematical modeling and simulation is expected to provide clear understanding and precise description of multiscaleness in tissue homeostasis under systems perspective. We introduce a stochastic process-based description of multiscale dynamics. Agent-based modeling as a framework of multiscale modeling to achieve consistent integration of definitive subsystems is proposed. A newly developed algorithm that particularly aims to perform stochastic simulations of cellular dynamical process is introduced. Finally we review applications of multiscale modeling and quantitative study to important aspects of epidermal and epithelial homeostasis.

  6. Interestingness-Driven Diffusion Process Summarization in Dynamic Networks

    DEFF Research Database (Denmark)

    Qu, Qiang; Liu, Siyuan; Jensen, Christian S.

    2014-01-01

    tool in this regard is data summarization. However, few existing studies aim to summarize graphs/networks for dynamics. Dynamic networks raise new challenges not found in static settings, including time sensitivity and the needs for online interestingness evaluation and summary traceability, which......The widespread use of social networks enables the rapid diffusion of information, e.g., news, among users in very large communities. It is a substantial challenge to be able to observe and understand such diffusion processes, which may be modeled as networks that are both large and dynamic. A key...... render existing techniques inapplicable. We study the topic of dynamic network summarization: how to summarize dynamic networks with millions of nodes by only capturing the few most interesting nodes or edges over time, and we address the problem by finding interestingness-driven diffusion processes...

  7. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation.

    Science.gov (United States)

    Zhang, Chao; Hao, Xiao-Li; Wang, Cui-Xia; Wei, Ning; Rabczuk, Timon

    2017-01-25

    Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12-16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications.

  8. Modelling plastic deformation in BCC metals: Dynamic recovery and cell formation effects

    Energy Technology Data Exchange (ETDEWEB)

    Galindo-Nava, E.I. [Department of Materials Science and Metallurgy, Pembroke Street, CB2 3QZ, University of Cambridge, Cambridge (United Kingdom); Department of Materials Science and Engineering, Mekelweg 2 2628 CD, Delft University of Technology, Delft (Netherlands); Rivera-Diaz-del-Castillo, P.E.J., E-mail: pejr2@cam.ac.uk [Department of Materials Science and Metallurgy, Pembroke Street, CB2 3QZ, University of Cambridge, Cambridge (United Kingdom)

    2012-12-15

    A recently developed model for describing plasticity in FCC metals (E.I., Galindo-Nava, P.E.J., Rivera-Diaz-del-Castillo, Mater. Sci. Eng. A 543 (2012) 110-116; E.I. Galindo-Nava, P.E.J. Rivera-Diaz-del-Castillo, Acta Mater. 60 (2012) 4370-4378) has now been applied to BCC. The core of the theory is the thermostatistical description of dislocation annihilation paths, which determines the dynamic recovery rate of the material. Input to this is the energy for the formation, migration and ordering of dislocation paths; the latter term corresponds to the statistical entropy which features strongly on the solution. The distinctions between FCC and BCC stem primarily from the possible directions and planes for dislocation slip and cross-slip, as well as from the presence of the kink-pair mechanism for dislocation migration in BCC, which are incorporated to the mathematical formulation of the model. The theory is unique in describing the stress-strain response for pure iron, molybdenum, tantalum, vanadium and tungsten employing physical parameters as input; the description is made for wide ranges of temperature and strain rate. Additionally, succinct equations to predict dislocation cell size variation with strain, strain rate and temperature are provided and validated for pure iron.

  9. Effects of deformability and thermal motion of lipid membrane on electroporation: By molecular dynamics simulations

    KAUST Repository

    Sun, Sheng

    2011-01-01

    Effects of mechanical properties and thermal motion of POPE lipid membrane on electroporation were studied by molecular dynamics simulations. Among simulations in which specific atoms of lipids were artificially constrained at their equilibrium positions using a spring with force constant of 2.0kcal/(molÅ2) in the external electric field of 1.4kcal/(molÅe), only constraint on lateral motions of lipid tails prohibited electroporation while non-tail parts had little effects. When force constant decreased to 0.2kcal/(molÅ2) in the position constraints on lipid tails in the external electric field of 2.0kcal/(molÅe), water molecules began to enter the membrane. Position constraints of lipid tails allow water to penetrate from both sides of membrane. Thermal motion of lipids can induce initial defects in the hydrophobic core of membrane, which are favorable nucleation sites for electroporation. Simulations at different temperatures revealed that as the temperature increases, the time taken to the initial pore formation will decrease. © 2010 Elsevier Inc.

  10. Nonlinear dynamics of angle-ply composite laminated thin plate with third-order shear deformation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An asymptotic perturbation method is presented based on the Fourier expansion and temporal rescaling to investigate the nonlinear oscillations and chaotic dynamics of a simply supported angle-ply composite laminated rectangular thin plate with parametric and external excitations.According to the Reddy’s third-order plate theory,the governing equations of motion for the angle-ply composite laminated rectangular thin plate are derived by using the Hamilton’s principle.Then,the Galerkin procedure is applied to the partial differential governing equation to obtain a two-degrees-of-freedom nonlinear system including the quadratic and cubic nonlinear terms.Such equations are utilized to deal with the resonant case of 1:1 internal resonance and primary parametric resonance-1/2 subharmonic resonance.Furthermore,the stability analysis is given for the steady-state solutions of the averaged equation.Based on the averaged equation obtained by the asymptotic perturbation method,the phase portrait and power spectrum are used to analyze the multi-pulse chaotic motions of the angle-ply composite laminated rectangular thin plate.Under certain conditions the various chaotic motions of the angle-ply composite laminated rectangular thin plate are found.

  11. Influence of dynamic strain aging on tensile deformation behavior of alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Ekaputra, I. M. W. [Pukyong National University, Busan (Korea, Republic of); Kim, Woo Gon; Park, Jae Young; Kim, Seon Jin; Kim, Eung Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    To investigate the dynamic strain aging (DSA) behavior of Alloy 617, high-temperature tensile tests were carried out with strain rates variations of 10{sup -}3{sup /}s, 10{sup -4}/s, and 10{sup -5}/s from 24°C to 950°C. Five flow relationships, Hollomon, Ludwik, Swift, Ludwigson, and Voce, were applied to describe the tensile true stress–strain curves, and the DSA region was defined. In describing the tensile curves, Ludwigson's equation was superior to the other equations, and the DSA region was adequately defined by this equation as plateaus at intermediate temperatures from 200°C to 700°C. It was identified that Alloy 617 is dominated by three types of serrations, known as Types D, A+B, and C. The activation energy values for each serration type were obtained by the Arrhenius equation. By using the obtained activation energy values, the serrated yielding map and the DSA mechanism were drawn and manifested. In addition, the relationship between the tensile strength and strain rate at higher temperatures above 700°C was found to be closely related to the amounts of slip lines. In the scanning electron microscope (SEM) fractographs, there was a significant difference at the low, intermediate, and high temperatures, but almost the same to the three strain rates.

  12. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation

    Science.gov (United States)

    Zhang, Chao; Hao, Xiao-Li; Wang, Cui-Xia; Wei, Ning; Rabczuk, Timon

    2017-01-01

    Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12–16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications. PMID:28120921

  13. Conformational dynamics of Rouse chains during creep/recovery processes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiroshi; Inoue, Tadashi [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2005-05-18

    The Rouse model is a well-established model for non-entangled polymer chains and also serves as a fundamental model for entangled chains. The dynamic behaviour of this model under strain-controlled conditions has been fully analysed in the literature. However, despite the importance of the Rouse model, no analysis has been made so far of the orientational anisotropy of the Rouse eigenmodes during the stress-controlled, creep and recovery processes. For completeness of the analysis of the model, the Rouse equation of motion is solved to calculate this anisotropy for monodisperse chains and their binary blends during the creep/recovery processes. The calculation is simple and straightforward, but the result is intriguing in the sense that each Rouse eigenmode during these processes has a distribution in the retardation times. This behaviour, reflecting the interplay/correlation among the Rouse eigenmodes of different orders (and for different chains in the blends) under the constant stress condition, is quite different from the behaviour under rate-controlled flow (where each eigenmode exhibits retardation/relaxation associated with a single characteristic time). Furthermore, the calculation indicates that the Rouse chains exhibit affine deformation on sudden imposition/removal of the stress and the magnitude of this deformation is inversely proportional to the number of bond vectors per chain. In relation to these results, a difference between the creep and relaxation properties is also discussed for chains obeying multiple relaxation mechanisms (Rouse and reptation mechanisms). (topical review)

  14. Multiscale Analysis of Information Dynamics for Linear Multivariate Processes

    CERN Document Server

    Faes, Luca; Stramaglia, Sebastiano; Nollo, Giandomenico; Stramaglia, Sebastiano

    2016-01-01

    In the study of complex physical and physiological systems represented by multivariate time series, an issue of great interest is the description of the system dynamics over a range of different temporal scales. While information-theoretic approaches to the multiscale analysis of complex dynamics are being increasingly used, the theoretical properties of the applied measures are poorly understood. This study introduces for the first time a framework for the analytical computation of information dynamics for linear multivariate stochastic processes explored at different time scales. After showing that the multiscale processing of a vector autoregressive (VAR) process introduces a moving average (MA) component, we describe how to represent the resulting VARMA process using state-space (SS) models and how to exploit the SS model parameters to compute analytical measures of information storage and information transfer for the original and rescaled processes. The framework is then used to quantify multiscale infor...

  15. Numerical Modelling of Tsunami Generated by Deformable Submarine Slides: Parameterisation of Slide Dynamics for Coupling to Tsunami Propagation Model

    Science.gov (United States)

    Smith, R. C.; Collins, G. S.; Hill, J.; Piggott, M. D.; Mouradian, S. L.

    2015-12-01

    Numerical modelling informs risk assessment of tsunami generated by submarine slides; however, for large-scale slides modelling can be complex and computationally challenging. Many previous numerical studies have approximated slides as rigid blocks that moved according to prescribed motion. However, wave characteristics are strongly dependent on the motion of the slide and previous work has recommended that more accurate representation of slide dynamics is needed. We have used the finite-element, adaptive-mesh CFD model Fluidity, to perform multi-material simulations of deformable submarine slide-generated waves at real world scales for a 2D scenario in the Gulf of Mexico. Our high-resolution approach represents slide dynamics with good accuracy, compared to other numerical simulations of this scenario, but precludes tracking of wave propagation over large distances. To enable efficient modelling of further propagation of the waves, we investigate an approach to extract information about the slide evolution from our multi-material simulations in order to drive a single-layer wave propagation model, also using Fluidity, which is much less computationally expensive. The extracted submarine slide geometry and position as a function of time are parameterised using simple polynomial functions. The polynomial functions are used to inform a prescribed velocity boundary condition in a single-layer simulation, mimicking the effect the submarine slide motion has on the water column. The approach is verified by successful comparison of wave generation in the single-layer model with that recorded in the multi-material, multi-layer simulations. We then extend this approach to 3D for further validation of this methodology (using the Gulf of Mexico scenario proposed by Horrillo et al., 2013) and to consider the effect of lateral spreading. This methodology is then used to simulate a series of hypothetical submarine slide events in the Arctic Ocean (based on evidence of historic

  16. Spiral-Wave Dynamics in Ionically Realistic MathematicalModels for Human Ventricular Tissue: The Effects of PeriodicDeformation

    Directory of Open Access Journals (Sweden)

    Alok Ranjan Nayak

    2014-06-01

    Full Text Available We carry out an extensive numerical study of the dynamics of spiral waves of electrical activation, in the presence of periodic deformation (PD in two-dimensional simulation domains, in the biophysically realistic mathematical models of human ventricular tissue due to (a ten-Tusscher and Panfilov (the TP06 model and (b ten-Tusscher, Noble, Noble, and Panfilov (theTNNP04 model. We first consider simulations in cable-type domains, in which we calculate the conduction velocity $CV$ andthe wavelength $lambda$ of a plane wave; we show that PD leads to a periodic, spatial modulation of $CV$ and a temporallyperiodic modulation of $lambda$; both these modulations depend on the amplitude and frequency of the PD. We then examine three types of initial conditions for both TP06 and TNNP04 models and show that the imposition of PD leads to a rich variety ofspatiotemporal patterns in the transmembrane potential including states with a single rotating spiral (RS wave, a spiral-turbulence (ST state with a single meandering spiral, an ST state with multiple broken spirals, and a state SA in which all spirals are absorbed at the boundaries of our simulation domain. We find, for both TP06 and TNNP04 models, that spiral-wave dynamics depends sensitively on the amplitude and frequency of PD and the initial condition. We examine how these different types of spiral-wave states can be eliminated in the presence of PD by the application of low-amplitude pulses on square and rectangular control meshes. We suggest specific experiments that can test the results of our simulations.

  17. Spiral-wave dynamics in ionically realistic mathematical models for human ventricular tissue: the effects of periodic deformation.

    Science.gov (United States)

    Nayak, Alok R; Pandit, Rahul

    2014-01-01

    We carry out an extensive numerical study of the dynamics of spiral waves of electrical activation, in the presence of periodic deformation (PD) in two-dimensional simulation domains, in the biophysically realistic mathematical models of human ventricular tissue due to (a) ten-Tusscher and Panfilov (the TP06 model) and (b) ten-Tusscher, Noble, Noble, and Panfilov (the TNNP04 model). We first consider simulations in cable-type domains, in which we calculate the conduction velocity θ and the wavelength λ of a plane wave; we show that PD leads to a periodic, spatial modulation of θ and a temporally periodic modulation of λ; both these modulations depend on the amplitude and frequency of the PD. We then examine three types of initial conditions for both TP06 and TNNP04 models and show that the imposition of PD leads to a rich variety of spatiotemporal patterns in the transmembrane potential including states with a single rotating spiral (RS) wave, a spiral-turbulence (ST) state with a single meandering spiral, an ST state with multiple broken spirals, and a state SA in which all spirals are absorbed at the boundaries of our simulation domain. We find, for both TP06 and TNNP04 models, that spiral-wave dynamics depends sensitively on the amplitude and frequency of PD and the initial condition. We examine how these different types of spiral-wave states can be eliminated in the presence of PD by the application of low-amplitude pulses by square- and rectangular-mesh suppression techniques. We suggest specific experiments that can test the results of our simulations.

  18. Practice of Improving Roll Deformation Theory in Strip Rolling Process Based on Boundary Integral Equation Method

    Science.gov (United States)

    Yuan, Zhengwen; Xiao, Hong; Xie, Hongbiao

    2014-02-01

    Precise strip-shape control theory is significant to improve rolled strip quality, and roll flattening theory is a primary part of the strip-shape theory. To improve the accuracy of roll flattening calculation based on semi-infinite body model, a new and more accurate roll flattening model is proposed in this paper, which is derived based on boundary integral equation method. The displacement fields of the finite length semi-infinite body on left and right sides are simulated by using finite element method (FEM) and displacement decay functions on left and right sides are established. Based on the new roll flattening model, a new 4Hi mill deformation model is established and verified by FEM. The new model is compared with Foppl formula and semi-infinite body model in different strip width, roll shifting value and bending force. The results show that the pressure and flattening between rolls calculated by the new model are more precise than other two models, especially near the two roll barrel edges.

  19. The role of oral processing in dynamic sensory perception.

    Science.gov (United States)

    Foster, Kylie D; Grigor, John M V; Cheong, Jean Ne; Yoo, Michelle J Y; Bronlund, John E; Morgenstern, Marco P

    2011-03-01

    Food oral processing is not only important for the ingestion and digestion of food, but also plays an important role in the perception of texture and flavor. This overall sensory perception is dynamic and occurs during all stages of oral processing. However, the relationships between oral operations and sensory perception are not yet fully understood. This article reviews recent progress and research findings on oral food processing, with a focus on the dynamic character of sensory perception of solid foods. The reviewed studies are discussed in terms of both physiology and food properties, and cover first bite, mastication, and swallowing. Little is known about the dynamics of texture and flavor perception during mastication and the importance on overall perception. Novel approaches use time intensity and temporal dominance techniques, and these will be valuable tools for future research on the dynamics of texture and flavor perception.

  20. Enhanced Spreading Dynamics by Non-Poissonian Processes

    CERN Document Server

    Jo, Hang-Hyun; Kaski, Kimmo; Kertész, János

    2013-01-01

    In order to characterize in detail the nature of temporally inhomogeneous spreading processes we introduce a novel dynamic mean field model to investigate analytically the effect of non-Poissonian or bursty inter-event time distributions on the Susceptible-Infected (SI) spreading dynamics. The exact solution shows that for early and intermediate times bursty dynamics accelerates the spreading as compared to a corresponding Poisson-like process with the same mean activity and lower bound of the inter-event times. The late time dynamics in finite systems is the opposite, where the power law distribution of inter-event times results in a slower and algebraic convergence to the asymptotics as compared to the exponential decay of the Poisson-like process.