WorldWideScience

Sample records for dynamic deformation processes

  1. Recrystallization kinetics of nanostructured copper processed by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Lin, Fengxiang; Zhang, Yubin; Pantleon, Wolfgang

    2012-01-01

    The recrystallization kinetics of nanostructured copper samples processed by dynamic plastic deformation was investigated by electron backscatter diffraction. It was found that the evolution of the recrystallized volume fraction as a function of annealing time has a very low slope (n=0.37) when...

  2. Dislocation Dynamics During Plastic Deformation

    CERN Document Server

    Messerschmidt, Ulrich

    2010-01-01

    The book gives an overview of the dynamic behavior of dislocations and its relation to plastic deformation. It introduces the general properties of dislocations and treats the dislocation dynamics in some detail. Finally, examples are described of the processes in different classes of materials, i.e. semiconductors, ceramics, metals, intermetallic materials, and quasicrystals. The processes are illustrated by many electron micrographs of dislocations under stress and by video clips taken during in situ straining experiments in a high-voltage electron microscope showing moving dislocations. Thus, the users of the book also obtain an immediate impression and understanding of dislocation dynamics.

  3. Deformation mechanisms in nanotwinned copper by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xing [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Tieu, Anh Kiet; Pei, Linqing; Zhang, Liang; Su, Lihong [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Zhan, Lihua [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China)

    2017-02-27

    Nanotwinned materials exhibit simultaneous ultrahigh strength and high ductility which is attributed to the interactions between dislocations and twin boundaries but the specific deformation mechanisms are rarely seen in experiments at the atomic level. Here we use large scale molecular dynamics simulations to explore this intricate interplay during the plastic deformation of nanotwinned Cu. We demonstrate that the dominant deformation mechanism transits dynamically from slip transfer to twin boundary migration to slip-twin interactions as the twin boundary orientation changes from horizontal to slant, and then to a vertical direction. Building on the fundamental physics of dislocation processes from computer simulations and combining the available experimental investigations, we unravel the underlying deformation mechanisms for nanotwinned Cu, incorporating all three distinct dislocation processes. Our results give insights into systematically engineering the nanoscale twins to fabricate nanotwinned metals or alloys that have high strength and considerable ductility.

  4. Dynamic skin deformation simulation using musculoskeletal model and soft tissue dynamics

    Institute of Scientific and Technical Information of China (English)

    Akihiko Murai; Q. Youn Hong; Katsu Yamane; Jessica K. Hodgins

    2017-01-01

    Deformation of skin and muscle is essential for bringing an animated character to life. This deformation is difficult to animate in a realistic fashion using traditional techniques because of the subtlety of the skin deformations that must move appropriately for the character design. In this paper, we present an algorithm that generates natural, dynamic, and detailed skin deformation (movement and jiggle) from joint angle data sequences. The algorithm has two steps: identification of parameters for a quasi-static muscle deformation model, and simulation of skin deformation. In the identification step, we identify the model parameters using a musculoskeletal model and a short sequence of skin deformation data captured via a dense marker set. The simulation step first uses the quasi-static muscle deformation model to obtain the quasi-static muscle shape at each frame of the given motion sequence (slow jump). Dynamic skin deformation is then computed by simulating the passive muscle and soft tissue dynamics modeled as a mass–spring–damper system. Having obtained the model parameters, we can simulate dynamic skin deformations for subjects with similar body types from new motion data. We demonstrate our method by creating skin deformations for muscle co-contraction and external impacts from four different behaviors captured as skeletal motion capture data. Experimental results show that the simulated skin deformations are quantitatively and qualitatively similar to measured actual skin deformations.

  5. Dynamic skin deformation simulation using musculoskeletal model and soft tissue dynamics

    Institute of Scientific and Technical Information of China (English)

    Akihiko Murai; Q.Youn Hong; Katsu Yamane; Jessica K.Hodgins

    2017-01-01

    Deformation of skin and muscle is essential for bringing an animated character to life. This deformation is difficult to animate in a realistic fashion using traditional techniques because of the subtlety of the skin deformations that must move appropriately for the character design. In this paper, we present an algorithm that generates natural, dynamic, and detailed skin deformation(movement and jiggle) from joint angle data sequences. The algorithm has two steps: identification of parameters for a quasi-static muscle deformation model, and simulation of skin deformation. In the identification step, we identify the model parameters using a musculoskeletal model and a short sequence of skin deformation data captured via a dense marker set. The simulation step first uses the quasi-static muscle deformation model to obtain the quasi-static muscle shape at each frame of the given motion sequence(slow jump). Dynamic skin deformation is then computed by simulating the passive muscle and soft tissue dynamics modeled as a mass–spring–damper system. Having obtained the model parameters, we can simulate dynamic skin deformations for subjects with similar body types from new motion data. We demonstrate our method by creating skin deformations for muscle co-contraction and external impacts from four different behaviors captured as skeletal motion capture data. Experimental results show that the simulated skin deformations are quantitatively and qualitatively similar to measured actual skin deformations.

  6. Nonlinear Deformable-body Dynamics

    CERN Document Server

    Luo, Albert C J

    2010-01-01

    "Nonlinear Deformable-body Dynamics" mainly consists in a mathematical treatise of approximate theories for thin deformable bodies, including cables, beams, rods, webs, membranes, plates, and shells. The intent of the book is to stimulate more research in the area of nonlinear deformable-body dynamics not only because of the unsolved theoretical puzzles it presents but also because of its wide spectrum of applications. For instance, the theories for soft webs and rod-reinforced soft structures can be applied to biomechanics for DNA and living tissues, and the nonlinear theory of deformable bodies, based on the Kirchhoff assumptions, is a special case discussed. This book can serve as a reference work for researchers and a textbook for senior and postgraduate students in physics, mathematics, engineering and biophysics. Dr. Albert C.J. Luo is a Professor of Mechanical Engineering at Southern Illinois University, Edwardsville, IL, USA. Professor Luo is an internationally recognized scientist in the field of non...

  7. Hot deformation behavior of delta-processed superalloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y., E-mail: wangyanhit@yahoo.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); School of Aeronautics and Astronautics, Central South University, Changsha 410083 (China); Shao, W.Z.; Zhen, L.; Zhang, B.Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2011-03-25

    Research highlights: {yields} The peak stress for hot deformation can be described by the Z parameter. {yields} The grain size of DRX was inversely proportional to the Z parameter. {yields} The dissolution of {delta} phases was greatly accelerated under hot deformation. {yields}The {delta} phase stimulated nucleation can serve as the main DRX mechanism. - Abstract: Flow stress behavior and microstructures during hot compression of delta-processed superalloy 718 at temperatures from 950 to 1100 deg. C with strain rates of 10{sup -3} to 1 s{sup -1} were investigated by optical microscopy (OM), electron backscatter diffraction (EBSD) technique and transmission electron microscopy (TEM). The relationship between the peak stress and the deformation conditions can be expressed by a hyperbolic-sine type equation. The activation energy for the delta-processed superalloy 718 is determined to be 467 kJ/mol. The change of the dominant deformation mechanisms leads to the decrease of stress exponent and the increase of activation energy with increasing temperature. The dynamically recrystallized grain size is inversely proportional to the Zener-Hollomon (Z) parameter. It is found that the dissolution rate of {delta} phases under hot deformation conditions is much faster than that under static conditions. Dislocation, vacancy and curvature play important roles in the dissolution of {delta} phases. The main nucleation mechanisms of dynamic recrystallization (DRX) for the delta-processed superalloy 718 include the bulging of original grain boundaries and the {delta} phase stimulated DRX nucleation, which is closely related to the dissolution behavior of {delta} phases under certain deformation conditions.

  8. Coordination of Cellular Dynamics Contributes to Tooth Epithelium Deformations

    Science.gov (United States)

    Morita, Ritsuko; Kihira, Miho; Nakatsu, Yousuke; Nomoto, Yohei; Ogawa, Miho; Ohashi, Kazumasa; Mizuno, Kensaku; Tachikawa, Tetsuhiko; Ishimoto, Yukitaka; Morishita, Yoshihiro; Tsuji, Takashi

    2016-01-01

    The morphologies of ectodermal organs are shaped by appropriate combinations of several deformation modes, such as invagination and anisotropic tissue elongation. However, how multicellular dynamics are coordinated during deformation processes remains to be elucidated. Here, we developed a four-dimensional (4D) analysis system for tracking cell movement and division at a single-cell resolution in developing tooth epithelium. The expression patterns of a Fucci probe clarified the region- and stage-specific cell cycle patterns within the tooth germ, which were in good agreement with the pattern of the volume growth rate estimated from tissue-level deformation analysis. Cellular motility was higher in the regions with higher growth rates, while the mitotic orientation was significantly biased along the direction of tissue elongation in the epithelium. Further, these spatio-temporal patterns of cellular dynamics and tissue-level deformation were highly correlated with that of the activity of cofilin, which is an actin depolymerization factor, suggesting that the coordination of cellular dynamics via actin remodeling plays an important role in tooth epithelial morphogenesis. Our system enhances the understanding of how cellular behaviors are coordinated during ectodermal organogenesis, which cannot be observed from histological analyses. PMID:27588418

  9. Cardiac fluid dynamics meets deformation imaging.

    Science.gov (United States)

    Dal Ferro, Matteo; Stolfo, Davide; De Paris, Valerio; Lesizza, Pierluigi; Korcova, Renata; Collia, Dario; Tonti, Giovanni; Sinagra, Gianfranco; Pedrizzetti, Gianni

    2018-02-20

    Cardiac function is about creating and sustaining blood in motion. This is achieved through a proper sequence of myocardial deformation whose final goal is that of creating flow. Deformation imaging provided valuable contributions to understanding cardiac mechanics; more recently, several studies evidenced the existence of an intimate relationship between cardiac function and intra-ventricular fluid dynamics. This paper summarizes the recent advances in cardiac flow evaluations, highlighting its relationship with heart wall mechanics assessed through the newest techniques of deformation imaging and finally providing an opinion of the most promising clinical perspectives of this emerging field. It will be shown how fluid dynamics can integrate volumetric and deformation assessments to provide a further level of knowledge of cardiac mechanics.

  10. Dynamic tensile behaviour and deformational mechanism of C5191 phosphor bronze under high strain rates deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dao-chun [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Taizhou Vocational & Technical College, Taizhou 318000 (China); Chen, Ming-he, E-mail: meemhchen@nuaa.edu.cn [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Lei; Cheng, Hu [College of Mechanical Engineering, Taizhou University, Taizhou 318000 (China)

    2016-01-01

    High speed stamping process is used to high strength and high electrical conductivity phosphor bronze with extremely high strain rates more than 10{sup 3} s{sup −1}. This study on the dynamic tensile behaviour and deformational mechanism is to optimise the high speed stamping processes and improve geometrical precision in finished products. Thus, the tensile properties and deformation behaviour of C5191 phosphor bronze under quasi-static tensile condition at a strain rate of 0.001 s{sup −1} by electronic universal testing machine, and dynamic tensile condition at strain rate of 500, 1000 and 1500 s{sup −1} by split Hopkinson tensile bar (SHTB) apparatus were studied. The effects of strain rate and the deformation mechanism were investigated by means of SEM and TEM. The results showed that the yield strength and tensile strength of C5191 phosphor bronze under high strain rates deformation increased by 32.77% and 11.07% respectively compared with quasi-static condition, the strain hardening index increases from 0.075 to 0.251, and the strength of the material strain rates sensitivity index change from 0.005 to 0.022, which presented a clear sensitive to strain rates. Therefore, it is claimed that the dominant deformation mechanism was changed by the dislocation motion under different strain rates, and the ability of plastic deformation of C5191 phosphor bronze increased due to the number of movable dislocations increased significantly, started multi-line slip, and the soft effect of adiabatic temperature rise at the strain rate ranging from 500 to 1500 s{sup −1}.

  11. Semantic modeling of the structural and process entities during plastic deformation of crystals and rocks

    Science.gov (United States)

    Babaie, Hassan; Davarpanah, Armita

    2016-04-01

    We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive

  12. Mechanisms of dynamic deformation and dynamic failure in aluminum nitride

    International Nuclear Information System (INIS)

    Hu Guangli; Chen, C.Q.; Ramesh, K.T.; McCauley, J.W.

    2012-01-01

    Uniaxial quasi-static, uniaxial dynamic and confined dynamic compression experiments have been performed to characterize the failure and deformation mechanisms of a sintered polycrystalline aluminum nitride using a servohydraulic machine and a modified Kolsky bar. Scanning electron microscopy and transmission electron microscopy (TEM) are used to identify the fracture and deformation mechanisms under high rate and high pressure loading conditions. These results show that the fracture mechanisms are strong functions of confining stress and strain rate, with transgranular fracture becoming more common at high strain rates. Dynamic fracture mechanics and micromechanical models are used to analyze the observed fracture mechanisms. TEM characterization of fragments from the confined dynamic experiments shows that at higher pressures dislocation motion becomes a common dominant deformation mechanism in AlN. Prismatic slip is dominant, and pronounced microcrack–dislocation interactions are observed, suggesting that the dislocation plasticity affects the macroscopic fracture behavior in this material under high confining stresses.

  13. Nanoscale lamellae in an oxide dispersion strengthened steel processed by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, N. R.

    2014-01-01

    The microstructure of an oxide dispersion strengthened ferritic PM2000 steel with a strong initial (100) texture has been investigated after compression by dynamic plastic deformation (DPD) at room temperature to a strain of 2.1. Measurements using electron backscatter diffraction and transmission...

  14. Dynamics of viscoplastic deformation in amorphous solids

    International Nuclear Information System (INIS)

    Falk, M.L.; Langer, J.S.

    1998-01-01

    We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically, reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a stress threshold above which unbounded plastic flow occurs, and a strong dependence of the state of the system on the history of past deformations. Microscopic observations suggest that a dynamically complete description of the macroscopic state of this deforming body requires specifying, in addition to stress and strain, certain average features of a population of two-state shear transformation zones. Our introduction of these state variables into the constitutive equations for this system is an extension of earlier models of creep in metallic glasses. In the treatment presented here, we specialize to temperatures far below the glass transition and postulate that irreversible motions are governed by local entropic fluctuations in the volumes of the transformation zones. In most respects, our theory is in good quantitative agreement with the rich variety of phenomena seen in the simulations. copyright 1998 The American Physical Society

  15. State diagram for adhesion dynamics of deformable capsules under shear flow.

    Science.gov (United States)

    Luo, Zheng Yuan; Bai, Bo Feng

    2016-08-17

    Due to the significance of understanding the underlying mechanisms of cell adhesion in biological processes and cell capture in biomedical applications, we numerically investigate the adhesion dynamics of deformable capsules under shear flow by using a three-dimensional computational fluid dynamic model. This model is based on the coupling of the front tracking-finite element method for elastic mechanics of the capsule membrane and the adhesion kinetics simulation for adhesive interactions between capsules and functionalized surfaces. Using this model, three distinct adhesion dynamic states are predicted, such as detachment, rolling and firm-adhesion. Specifically, the effects of capsule deformability quantified by the capillary number on the transitions of these three dynamic states are investigated by developing an adhesion dynamic state diagram for the first time. At low capillary numbers (e.g. Ca state no longer appears, since capsules exhibit large deviation from the spherical shape.

  16. Red blood cell dynamics: from cell deformation to ATP release.

    Science.gov (United States)

    Wan, Jiandi; Forsyth, Alison M; Stone, Howard A

    2011-10-01

    The mechanisms of red blood cell (RBC) deformation under both static and dynamic, i.e., flow, conditions have been studied extensively since the mid 1960s. Deformation-induced biochemical reactions and possible signaling in RBCs, however, were proposed only fifteen years ago. Therefore, the fundamental relationship between RBC deformation and cellular signaling dynamics i.e., mechanotransduction, remains incompletely understood. Quantitative understanding of the mechanotransductive pathways in RBCs requires integrative studies of physical models of RBC deformation and cellular biochemical reactions. In this article we review the physical models of RBC deformation, spanning from continuum membrane mechanics to cellular skeleton dynamics under both static and flow conditions, and elaborate the mechanistic links involved in deformation-induced ATP release. This journal is © The Royal Society of Chemistry 2011

  17. Contour junctions defined by dynamic image deformations enhance perceptual transparency.

    Science.gov (United States)

    Kawabe, Takahiro; Nishida, Shin'ya

    2017-11-01

    The majority of work on the perception of transparency has focused on static images with luminance-defined contour junctions, but recent work has shown that dynamic image sequences with dynamic image deformations also provide information about transparency. The present study demonstrates that when part of a static image is dynamically deformed, contour junctions at which deforming and nondeforming contours are connected facilitate the deformation-based perception of a transparent layer. We found that the impression of a transparent layer was stronger when a dynamically deforming area was adjacent to static nondeforming areas than when presented alone. When contour junctions were not formed at the dynamic-static boundaries, however, the impression of a transparent layer was not facilitated by the presence of static surrounding areas. The effect of the deformation-defined junctions was attenuated when the spatial pattern of luminance contrast at the junctions was inconsistent with the perceived transparency related to luminance contrast, while the effect did not change when the spatial luminance pattern was consistent with it. In addition, the results showed that contour completions across the junctions were required for the perception of a transparent layer. These results indicate that deformation-defined junctions that involve contour completion between deforming and nondeforming regions enhance the perception of a transparent layer, and that the deformation-based perceptual transparency can be promoted by the simultaneous presence of appropriately configured luminance and contrast-other features that can also by themselves produce the sensation of perceiving transparency.

  18. Large Deformation Dynamic Bending of Composite Beams

    Science.gov (United States)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  19. Creep of crystals: High-temperature deformation processes in metals, ceramics and minerals

    Science.gov (United States)

    Poirier, J. P.

    An introductory text describing high-temperature deformation processes in metals, ceramics, and minerals is presented. Among the specific topics discussed are: the mechanical aspects of crystal deformation; lattice defects; and phenomenological and thermodynamical analysis of quasi-steady-state creep. Consideration is also given to: dislocation creep models; the effect of hydrostatic pressure on deformation; creep polygonization; and dynamic recrystallization. The status of experimental techniques for the study of transformation plasticity in crystals is also discussed.

  20. Monitoring Bridge Dynamic Deformation in Vibration by Digital Photography

    Science.gov (United States)

    Yu, Chengxin; Zhang, Guojian; Liu, Xiaodong; Fan, Li; Hai, Hua

    2018-01-01

    This study adopts digital photography to monitor bridge dynamic deformation in vibration. Digital photography in this study is based on PST-TBPM (photographing scale transformation-time baseline parallax method). Firstly, we monitor the bridge in static as a zero image. Then, we continuously monitor the bridge in vibration as the successive images. Based on the reference points on each image, PST-TBPM is used to calculate the images to obtain the dynamic deformation values of these deformation points. Results show that the average measurement accuracies are 0.685 pixels (0.51mm) and 0.635 pixels (0.47mm) in X and Z direction, respectively. The maximal deformations in X and Z direction of the bridge are 4.53 pixels and 5.21 pixels, respectively. PST-TBPM is valid in solving the problem that the photographing direction is not perpendicular to the bridge. Digital photography in this study can be used to assess bridge health through monitoring the dynamic deformation of a bridge in vibration. The deformation trend curves also can warn the possible dangers over time.

  1. Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments?

    International Nuclear Information System (INIS)

    Wolf, D.; Yamakov, V.; Phillpot, S.R.; Mukherjee, A.; Gleiter, H.

    2005-01-01

    We review the results of recent molecular-dynamics simulations of the structure and deformation behavior of nanocrystalline materials, i.e., polycrystalline materials with a grain size of typically less than about 100 nm. These simulations have now become large enough and sophisticated enough that they are beginning to cover the entire range of grain sizes over which the experimentally suggested transition from a dislocation-based deformation mechanism to one involving GB processes takes place. Their atomic-level resolution provides novel insights into the intricate interplay between the dislocation and GB processes responsible for this crossover. These simulations also reveal how and why this crossover in the dominant mechanism leads to a transition in the mechanical behavior. However, in spite of these early successes, these simulations are inherently limited to rather idealized model microstructures and extremely high deformation rates. We therefore address the critical question as to the degree to which they begin to capture the experimentally observed, albeit controversial, deformation behavior of real nanocrystalline materials. (Supplementary material to this article, in the form of color graphs of some of the figures and several deformation-simulation movies, can be viewed at http://phillpot.mse.ufl.edu/review.html.)

  2. Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan

    2018-05-30

    Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.

  3. Characterization of hot deformation behavior and processing map of FGH4096–GH4133B dual alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanhui; Ning, Yongquan, E-mail: ningke521@163.com; Nan, Yang; Liang, Houquan; Li, Yuzhi; Zhao, Zhanglong

    2015-06-05

    Highlights: • Hot deformation behavior of dual superalloys FGH4096–GH4133B was investigated. • Power dissipation maps built at different strains exhibit a continuous dynamic course. • Processing map approach was adopted to optimize hot forging process for dual superalloys. • Microstructure evolution at different deformation temperature and strain rate of dual superalloys was researched. - Abstract: The dual superalloys FGH4096–GH4133B were joined by the electron beam welding. Isothermal compression tests were carried out on electron beam weldments FGH4096–GH4133B alloys at the temperatures of 1020–1140 °C (the nominal γ′-transus temperature is about 1080 °C) and strain rates of 0.001–1.0 s{sup −1} with the height reduction of 50%. The results showed that the true stress–true strain curves are greatly affected by deformation temperature and strain rate. There is an intrinsic and necessary connection between the flow stress and thermal–dynamic behavior, which can be indicated by the true stress–true strain curves. The power dissipation maps at different strains exhibit that true strain has a great effect on processing maps. Processing maps under different strains were constructed for evaluation of the flow instability regime and optimization of processing parameters. When the true strain is 0.69, the optimum processing condition is around 1090−1130 °C/0.1−1.0 s{sup −1} with the peak efficiency of 0.58. The dynamic recrystallization mechanism and microstructure evolution in the welding seam of the studied dual-alloys have been discussed. High temperature and low strain rate are instrumental to dynamic recrystallization. The size of dynamically recrystallized grain decreased with the increase of strain rate and increased with the increase of deformation temperature. Based on the established combine processing map and microstructures, hot deformation process should be carried out under the condition of 1100−1120 °C/0.3−1.0 s

  4. Characterization of hot deformation behavior and processing map of FGH4096–GH4133B dual alloys

    International Nuclear Information System (INIS)

    Liu, Yanhui; Ning, Yongquan; Nan, Yang; Liang, Houquan; Li, Yuzhi; Zhao, Zhanglong

    2015-01-01

    Highlights: • Hot deformation behavior of dual superalloys FGH4096–GH4133B was investigated. • Power dissipation maps built at different strains exhibit a continuous dynamic course. • Processing map approach was adopted to optimize hot forging process for dual superalloys. • Microstructure evolution at different deformation temperature and strain rate of dual superalloys was researched. - Abstract: The dual superalloys FGH4096–GH4133B were joined by the electron beam welding. Isothermal compression tests were carried out on electron beam weldments FGH4096–GH4133B alloys at the temperatures of 1020–1140 °C (the nominal γ′-transus temperature is about 1080 °C) and strain rates of 0.001–1.0 s −1 with the height reduction of 50%. The results showed that the true stress–true strain curves are greatly affected by deformation temperature and strain rate. There is an intrinsic and necessary connection between the flow stress and thermal–dynamic behavior, which can be indicated by the true stress–true strain curves. The power dissipation maps at different strains exhibit that true strain has a great effect on processing maps. Processing maps under different strains were constructed for evaluation of the flow instability regime and optimization of processing parameters. When the true strain is 0.69, the optimum processing condition is around 1090−1130 °C/0.1−1.0 s −1 with the peak efficiency of 0.58. The dynamic recrystallization mechanism and microstructure evolution in the welding seam of the studied dual-alloys have been discussed. High temperature and low strain rate are instrumental to dynamic recrystallization. The size of dynamically recrystallized grain decreased with the increase of strain rate and increased with the increase of deformation temperature. Based on the established combine processing map and microstructures, hot deformation process should be carried out under the condition of 1100−1120 °C/0.3−1.0 s −1 with

  5. Q-deformed systems and constrained dynamics

    International Nuclear Information System (INIS)

    Shabanov, S.V.

    1993-01-01

    It is shown that quantum theories of the q-deformed harmonic oscillator and one-dimensional free q-particle (a free particle on the 'quantum' line) can be obtained by the canonical quantization of classical Hamiltonian systems with commutative phase-space variables and a non-trivial symplectic structure. In the framework of this approach, classical dynamics of a particle on the q-line coincides with the one of a free particle with friction. It is argued that q-deformed systems can be treated as ordinary mechanical systems with the second-class constraints. In particular, second-class constrained systems corresponding to the q-oscillator and q-particle are given. A possibility of formulating q-deformed systems via gauge theories (first-class constrained systems) is briefly discussed. (orig.)

  6. Molecular Dynamics Simulation of Structural Characterization of Elastic and Inelastic Deformation in ZrCu Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Shidong Feng

    2014-01-01

    Full Text Available The nanoscopic deformation behaviors in a ZrCu metallic glass model during loading-unloading process under uniaxial compression have been analyzed on the basis of the molecular dynamics (MD. The reversible degree of shear origin zones (SOZs is used as the structural indicator to distinguish the elastic deformation and inelastic deformation of ZrCu metallic glass at the atomic level. We find that the formation of SOZs is reversible at the elastic stage but irreversible at the inelastic stage during the loading and unloading processes. At the inelastic stage, the full-icosahedra fraction in SOZs is quickly reduced with increased strain and the decreasing process is also irreversible during the unloading processes.

  7. Dynamic Landslide Deformation Monitoring with Fiber Bragg Grating Sensors

    Science.gov (United States)

    Moore, J. R.; Gischig, V.; Button, E.; Loew, S.

    2009-12-01

    insights into the deformation process. Controlled-source shotgun tests were performed to investigate the sensor response to dynamic inputs. These tests compared an independent measure of ground motion with the dynamic strain measured across a tension crack by the FO sensor. Low frequency signals are comparable but the fiber optic record suffers from aliasing, where undersampling of higher frequency signals generates false peaks in the spectrum. In the event of an earthquake, however, such high frequency energy will not be present and the FO sensors are expected to provide an accurate measure of dynamic strain.

  8. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  9. PREFACE: International Symposium on Dynamic Deformation and Fracture of Advanced Materials (D2FAM 2013)

    Science.gov (United States)

    Silberschmidt, Vadim V.

    2013-07-01

    Intensification of manufacturing processes and expansion of usability envelopes of modern components and structures in many cases result in dynamic loading regimes that cannot be resented adequately employing quasi-static formulations of respective problems of solid mechanics. Specific features of dynamic deformation, damage and fracture processes are linked to various factors, most important among them being: a transient character of load application; complex scenarios of propagation, attenuation and reflection of stress waves in real materials, components and structures; strain-rate sensitivity of materials properties; various thermo-mechanical regimes. All these factors make both experimental characterisation and theoretical (analytical and numerical) analysis of dynamic deformation and fracture rather challenging; for instance, besides dealing with a spatial realisation of these processes, their evolution with time should be also accounted for. To meet these challenges, an International Symposium on Dynamic Deformation and Fracture of Advanced Materials D2FAM 2013 was held on 9-11 September 2013 in Loughborough, UK. Its aim was to bring together specialists in mechanics of materials, applied mathematics, physics, continuum mechanics, materials science as well as various areas of engineering to discuss advances in experimental and theoretical analysis, and numerical simulations of dynamic mechanical phenomena. Some 50 papers presented at the Symposium by researchers from 12 countries covered various topics including: high-strain-rate loading and deformation; dynamic fracture; impact and blast loading; high-speed penetration; impact fatigue; damping properties of advanced materials; thermomechanics of dynamic loading; stress waves in micro-structured materials; simulation of failure mechanisms and damage accumulation; processes in materials under dynamic loading; a response of components and structures to harsh environment. The materials discussed at D2FAM 2013

  10. Evolution of oxide nanoparticles during dynamic plastic deformation of ODS steel

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, Nairong

    2014-01-01

    The microstructure as well as the deformation behavior of oxide nanoparticles has been analyzed in the ferritic ODS steel PM2000 after compression by dynamic plastic deformation (DPD) to different strains. A dislocation cell structure forms after deformation to a strain of 1.0. DPD to a strain of 2...

  11. Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Azarbarmas, M. [Faculty of Materials Science and Engineering, K.N. Toosi University of Technology, 1999143344 Tehran (Iran, Islamic Republic of); Aghaie-Khafri, M., E-mail: maghaei@kntu.ac.ir [Faculty of Materials Science and Engineering, K.N. Toosi University of Technology, 1999143344 Tehran (Iran, Islamic Republic of); Cabrera, J.M.; Calvo, J. [Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB – Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain)

    2016-12-15

    The hot deformation behavior of an IN718 superalloy was studied by isothermal compression tests under the deformation temperature range of 950–1100 °C and strain rate range of 0.001–1 s{sup −1} up to true strains of 0.05, 0.2, 0.4 and 0.7. Electron backscattered diffraction (EBSD) technique was employed to investigate systematically the effects of strain, strain rate and deformation temperature on the subgrain structures, local and cumulative misorientations and twinning phenomena. The results showed that the occurrence of dynamic recrystallization (DRX) is promoted by increasing strain and deformation temperature and decreasing strain rate. The microstructural changes showed that discontinuous dynamic recrystallization (DDRX), characterized by grain boundary bulging, is the dominant nucleation mechanism in the early stages of deformation in which DRX nucleation occurs by twining behind the bulged areas. Twin boundaries of nuclei lost their ∑3 character with further deformation. However, many simple and multiple twins can be also regenerated during the growth of grains. The results showed that continuous dynamic recrystallization (CDRX) is promoted at higher strains and large strain rates, and lower temperatures, indicating that under certain conditions both DDRX and CDRX can occur simultaneously during the hot deformation of IN718.

  12. Study on Hot Deformation Behavior of 7085 Aluminum Alloy during Backward Extrusion Process

    Directory of Open Access Journals (Sweden)

    R. B. Mei

    2015-01-01

    Full Text Available Compression test was carried out and the true stress-strain curves were obtained from the hot compression of 7085 alloy. A numerical simulation on the deformation behavior of 7085 aluminum alloy during the backward extrusion was also performed by finite element method. The results show that dynamic recrystallization occurs in the hot compression of 7085 alloy and the peak stress reaches higher values as the strain rate increases and deformation temperature decreases. The backward extrusion processes include contact deformation, initial deformation, and steady deformation. Severe plastic deformation of shear and compression occurs when the metal flowed into the channel between fillet of punch and wall of die so that the grain size can be refined by backward extrusion. The deformation in the region of top of wall is too small to meet the mechanical properties of requirements and the metal usually needs to be trimmed. The experiments with the same parameters as simulation had been carried out and the experimental cup after extrusion has better quality.

  13. Molecular dynamics simulation of deformation twin in rocksalt vanadium nitride

    International Nuclear Information System (INIS)

    Fu, Tao; Peng, Xianghe; Zhao, Yinbo; Li, Tengfei; Li, Qibin; Wang, Zhongchang

    2016-01-01

    We perform molecular dynamics simulation of nano-indentation with a cylindrical indenter to investigate the formation mechanism of deformation twin in vanadium nitride (VN) with a rocksalt structure. We find that the deformation twins occur during the loading stage, and subsequently conduct a systematic analysis of nucleation, propagation and thickening of a deformation twin. We find that the nucleation of a partial dislocation and its propagation to form a stacking fault are premise of deformation twin formation. The sequential nucleation and propagation of partial dislocation on adjacent parallel {111} planes are found to cause the thickening of the deformation twin. Moreover, the deformation twins can exist in VN at room temperature. - Highlights: • MD simulations of indentation are performed to study the deformation twin in VN. • The deformation twins can occur in VN during the loading stage. • The nucleation, propagation and thickening of a deformation twin are analyzed. • The deformation twins can exist in VN at room temperature.

  14. Optical dynamic deformation measurements at translucent materials.

    Science.gov (United States)

    Philipp, Katrin; Koukourakis, Nektarios; Kuschmierz, Robert; Leithold, Christoph; Fischer, Andreas; Czarske, Jürgen

    2015-02-15

    Due to their high stiffness-to-weight ratio, glass fiber-reinforced polymers are an attractive material for rotors, e.g., in the aerospace industry. A fundamental understanding of the material behavior requires non-contact, in-situ dynamic deformation measurements. The high surface speeds and particularly the translucence of the material limit the usability of conventional optical measurement techniques. We demonstrate that the laser Doppler distance sensor provides a powerful and reliable tool for monitoring radial expansion at fast rotating translucent materials. We find that backscattering in material volume does not lead to secondary signals as surface scattering results in degradation of the measurement volume inside the translucent medium. This ensures that the acquired signal contains information of the rotor surface only, as long as the sample surface is rough enough. Dynamic deformation measurements of fast-rotating fiber-reinforced polymer composite rotors with surface speeds of more than 300 m/s underline the potential of the laser Doppler sensor.

  15. Dynamics modeling for a rigid-flexible coupling system with nonlinear deformation field

    International Nuclear Information System (INIS)

    Deng Fengyan; He Xingsuo; Li Liang; Zhang Juan

    2007-01-01

    In this paper, a moving flexible beam, which incorporates the effect of the geometrically nonlinear kinematics of deformation, is investigated. Considering the second-order coupling terms of deformation in the longitudinal and transverse deflections, the exact nonlinear strain-displacement relations for a beam element are described. The shear strains formulated by the present modeling method in this paper are zero, so it is reasonable to use geometrically nonlinear deformation fields to demonstrate and simplify a flexible beam undergoing large overall motions. Then, considering the coupling terms of deformation in two dimensions, finite element shape functions of a beam element and Lagrange's equations are employed for deriving the coupling dynamical formulations. The complete expression of the stiffness matrix and all coupling terms are included in the formulations. A model consisting of a rotating planar flexible beam is presented. Then the frequency and dynamical response are studied, and the differences among the zero-order model, first-order coupling model and the new present model are discussed. Numerical examples demonstrate that a 'stiffening beam' can be obtained, when more coupling terms of deformation are added to the longitudinal and transverse deformation field. It is shown that the traditional zero-order and first-order coupling models may not provide an exact dynamic model in some cases

  16. Large shear deformation of particle gels studied by Brownian Dynamics simulations

    NARCIS (Netherlands)

    Rzepiela, A.A.; Opheusden, van J.H.J.; Vliet, van T.

    2004-01-01

    Brownian Dynamics (BD) simulations have been performed to study structure and rheology of particle gels under large shear deformation. The model incorporates soft spherical particles, and reversible flexible bond formation. Two different methods of shear deformation are discussed, namely affine and

  17. A grain-boundary diffusion model of dynamic grain growth during superplastic deformation

    International Nuclear Information System (INIS)

    Kim, Byung-Nam; Hiraga, Keijiro; Sakka, Yoshio; Ahn, Byung-Wook

    1999-01-01

    Dynamic grain growth during superplastic deformation is modelled on the basis of a grain-boundary diffusion mechanism. On the grain boundary where a static and a dynamic potential difference coexist, matter transport along the boundary is assumed to contribute to dynamic grain growth through depositing the matter on the grain surface located opposite to the direction of grain-boundary migration. The amount of the diffusive matter during deformation is calculated for an aggregate of spherical grains and is converted to the increment of mean boundary migration velocity. The obtained relationship between the strain rate and the dynamic grain growth rate is shown to be independent of deformation mechanisms, provided that the grain growth is controlled by grain-boundary diffusion. The strain dependence, strain-rate dependence and temperature dependence of grain growth predicted from this model are consistent with those observed in superplastic ZrO 2 -dispersed Al 2 O 3

  18. Effect of dynamic plastic deformation on microstructure and annealing behaviour of modified 9Cr-1Mo steel

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg V.; Tao, N. R.

    2015-01-01

    after quasi- static compression. The microstructure after dynamic plastic deformation is however less stable than the microstructure after quasi- static compression. Annealing at 675 and 700 degrees C leads to structural coarsening and recrystallisation in each sample, but with recrystallisation...... occurring faster in the sample annealed after dynamic plastic deformation. The lower thermal stability of the microstructure produced by dynamic plastic deformation is attributed to a higher driving force for recrystallisation in the dynamically deformed material....

  19. A dynamic stall model for airfoils with deformable trailing edges

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Christian

    2009-01-01

    , lead-lag, pitch, trailing-edge flapping. In the linear region, the model reduces to the inviscid model, which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed model can be considered a crossover between the work of Gaunaa......The present work contains an extension of the Beddoes-Leishman-type dynamic stall model. In this work, a deformable trailing-edge flap has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments on an airfoil section undergoing arbitrary motion in heave...... for the attached flow region and Hansen et al. The model is compared qualitatively to wind tunnel measurements of a Riso/ B1-18 blade section equipped with deformable trailing-edge flap devices in the form of piezoelectric devices. Copyright © 2009 John Wiley & Sons, Ltd....

  20. A dynamic stall model for airfoils with deformable trailing edges

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Dan Christian

    2007-01-01

    on an airfoil section undergoing arbitrary motion in heave, lead-lag, pitch, Trailing Edge (TE) flapping. In the linear region, the model reduces to the inviscid model of Gaunaa [4], which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed......The present work contains an extension of the Beddoes-Leishman (B-L) type dynamic stall model, as described by Hansen et al. [7]. In this work a Deformable Trailing Edge Geometry (DTEG) has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments...

  1. Dynamic strain ageing of deformed nitrogen-alloyed AISI 316 stainless steels

    International Nuclear Information System (INIS)

    Ehrnsten, U.; Toivonen, A.; Ivanchenko, M.; Nevdacha, V.; Yagozinskyy, Y.; Haenninen, H.

    2004-01-01

    Intergranular stress corrosion cracking has occurred in BWR environment in non-sensitized, deformed austenitic stainless steel materials. The affecting parameters are so far not fully known, but deformation mechanisms may be decisive. The effect of deformation and nitrogen content on the behaviour of austenitic stainless steels was investigated. The materials were austenitic stainless steels of AISI 316L type with different amounts of nitrogen (0.03 - 0.18%) and they were mechanically deformed 0, 5 and 20%. The investigations are focused on the dynamic strain ageing (DSA) behaviour. A few crack growth rate measurements are performed on nuclear grade AISI 316NG material with different degrees of deformation (0, 5 and 20%). The effects of DSA on mechanical properties of these materials are evaluated based on peaks in ultimate tensile strength and strain hardening coefficient and minimum in ductility in the DSA temperature range. Additionally, internal friction measurements have been performed in the temperature range of -100 to 600 deg. C for determining nitrogen interactions with other alloying elements and dislocations (cold-worked samples). The results show an effect of nitrogen on the stainless steel behaviour, e.g. clear indications of dynamic strain ageing and changes in the internal friction peaks as a function of nitrogen content and amount of deformation. (authors)

  2. Analysis and Modeling of Process of Residual Deformations Accumulation in Soils and Granular Materials

    Science.gov (United States)

    Aleksandrov, A. S.; Dolgih, G. V.; Kalinin, A. L.

    2017-11-01

    It is established that under the influence of repeated loads the process of plastic deformation in soils and discrete materials is hereditary. To perform the mathematical modeling of plastic deformation, the authors applied the integral equation by solution of which they manage to obtain the power and logarithmic dependencies connecting plastic deformation with the number of repeated loads, the parameters of the material and components of the stress tensor in the principal axes. It is shown that these dependences generalize a number of models proposed earlier in Russia and abroad. Based on the analysis of the experimental data obtained during material testing in the dynamic devices of triaxial compression at different values of the stress deviator, the coefficients in the proposed models of deformation are determined. The authors determined the application domain for logarithmic and degree dependences.

  3. Odd-parity currents induced by dynamic deformations in graphene-like systems

    International Nuclear Information System (INIS)

    Zhang, Kai; Zhang, Erhu; Chen, Huawei; Zhang, Shengli

    2016-01-01

    Reduced (3  +  1)-dimensional Dirac systems with inter-pseudo-spin and inter-valley scattering are employed to investigate current responses to (chiral) gauge fields in graphene-like systems. From (chiral) current—(chiral) current correlation functions, we derive the current responses. Except for electric currents induced by external gauge fields, we find the inter-valley scattering can break the topological nature of odd-parity currents. Given the proper conditions, this property can help us realize valley-polarized electric currents. Through the dynamic deformations generating the chiral gauge fields, we find the vortex-like currents while their profiles can be tuned by superposition of some deformations. In particular, we find a more manageable approach to realize the topological electric current by choosing a linear dynamic deformation. (paper)

  4. Dynamic control of knee axial deformities

    Directory of Open Access Journals (Sweden)

    E. E. Malyshev

    2013-01-01

    Full Text Available The authors have evaluated the clinical examination of the patients with axial malalignments in the knee by the original method and device which was named varovalgometer. The measurements were conducted by tension of the cord through the spina iliaca anterior superior and the middle of the lower pole of patella. The deviation of the center of the ankle estimated by metal ruler which was positioned perpendicular to the lower leg axis on the level of the ankle joint line. The results of comparison of our method and computer navigation in 53 patients during the TKA show no statistically significant varieties but they differ by average 5° of valgus in clinical examination in comparison with mechanical axis which was identified by computer navigation. The dynamic control of axial malalignment can be used in clinical practice for estimation of the results of treatment of pathology with axial deformities in the knee; for the control of reduction and secondary displacement of the fractures around the knee; for assessment of instability; in planning of correctional osteotomies and intraoperative control of deformity correction; for estimation of Q angle in subluxation and recurrent dislocation of patella; in planning of TKA; during the growth of child it allows to assess the progression of deformity.

  5. Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718

    International Nuclear Information System (INIS)

    Wang, Y.; Shao, W.Z.; Zhen, L.; Zhang, X.M.

    2008-01-01

    Microstructure evolution during dynamic recrystallization (DRX) of superalloy 718 was studied by optical microscope and electron backscatter diffraction (EBSD) technique. Compression tests were performed at different strains at temperatures from 950 deg. C to 1120 deg. C with a strain rate of 10 -1 s -1 . Microstructure observations show that the recrystallized grain size as well as the fraction of new grains increases with the increasing temperature. A power exponent relationship is obtained between the dynamically recrystallized grain size and the peak stress. It is found that different nucleation mechanisms for DRX are operated in hot deformed superalloy 718, which is closely related to deformation temperatures. DRX nucleation and development are discussed in consideration of subgrain rotation or twinning taking place near the original grain boundaries. Particular attention is also paid to the role of continuous dynamic recrystallization (CDRX) at both higher and lower temperatures

  6. Two-Dimensional Self-Propelled Fish Motion in Medium: An Integrated Method for Deforming Body Dynamics and Unsteady Fluid Dynamics

    International Nuclear Information System (INIS)

    Yan, Yang; Yong-Liang, Yu; Bing-Gang, Tong; Guan-Hao, Wu

    2008-01-01

    We present (1) the dynamical equations of deforming body and (2) an integrated method for deforming body dynamics and unsteady fluid dynamics, to investigate a modelled freely self-propelled fish. The theoretical model and practical method is applicable for studies on the general mechanics of animal locomotion such as flying in air and swimming in water, particularly of free self-propulsion. The present results behave more credibly than the previous numerical studies and are close to the experimental results, and the aligned vortices pattern is discovered in cruising swimming

  7. Property optimization of nanostructured ARB-processed Al by post-process deformation

    DEFF Research Database (Denmark)

    Huang, Xiaoxu; Kamikawa, Naoya; Hansen, Niels

    2008-01-01

    The effect of post-process deformation on the mechanical properties of nanostructured aluminum (99.2% purity) has been investigated by cold rolling of samples which have been processed by accumulative roll bonding (ARB) to a strain of epsilon(vM) = 4.8. Samples have been cold rolled to 10, 15...... material. In contrary, cold rolling to large strain (50%) results in significant strengthening. This leads to the suggestion of a transition strain within the range of 25-35% reduction by rolling. The microstructural evolution during post-process deformation has been followed by transmission electron...

  8. From Quantum Deformations of Relativistic Symmetries to Modified Kinematics and Dynamics

    International Nuclear Information System (INIS)

    Lukierski, J.

    2010-01-01

    We present a short review describing the use of noncommutative spacetime in quantum-deformed dynamical theories: classical and quantum mechanics as well as classical and quantum field theory. We expose the role of Hopf algebras and their realizations (noncommutative modules) as important mathematical tool describing quantum-deformed symmetries: quantum Lie groups and quantum Lie algebras. We consider in some detail the most studied examples of noncommutative space-time geometry: the canonical and κ-deformed cases. Finally, we briefly describe the modifications of Einstein gravity obtained by introduction of noncommutative space-time coordinates. (author)

  9. Simplified dynamic analysis to evaluate liquefaction-induced lateral deformation of earth slopes: a computational fluid dynamics approach

    Science.gov (United States)

    Jafarian, Yaser; Ghorbani, Ali; Ahmadi, Omid

    2014-09-01

    Lateral deformation of liquefiable soil is a cause of much damage during earthquakes, reportedly more than other forms of liquefaction-induced ground failures. Researchers have presented studies in which the liquefied soil is considered as viscous fluid. In this manner, the liquefied soil behaves as non-Newtonian fluid, whose viscosity decreases as the shear strain rate increases. The current study incorporates computational fluid dynamics to propose a simplified dynamic analysis for the liquefaction-induced lateral deformation of earth slopes. The numerical procedure involves a quasi-linear elastic model for small to moderate strains and a Bingham fluid model for large strain states during liquefaction. An iterative procedure is considered to estimate the strain-compatible shear stiffness of soil. The post-liquefaction residual strength of soil is considered as the initial Bingham viscosity. Performance of the numerical procedure is examined by using the results of centrifuge model and shaking table tests together with some field observations of lateral ground deformation. The results demonstrate that the proposed procedure predicts the time history of lateral ground deformation with a reasonable degree of precision.

  10. Deformation processes within wheel-rail adhesion in contact area

    Science.gov (United States)

    Albagachiev, A. Yu; Keropyan, A. M.

    2018-03-01

    The study of working surface deformation during interaction of open-pit locomotive tires allowed defining outstanding features of phenomena occurring in the contact area of interacting surfaces. It was found that processes typical for plastic saturated contact occur in the area of wheel-rail interaction of industrial railway transport. In case of plastic deformation exposed to heavy loads typical for open-pit locomotives, upon all rough surfaces of the contour contact area being fully deformed, the frame on which they are found is exposed to plastic deformation. Plastic deformation of roughness within the contact area of interacting surfaces leads to the increase in the actual area of their contact and, therefore, increases the towing capacity of mining machines. Finally, the available data on deformation characteristics with regard to processes occurring in the contact area of wheel-rail interaction will allow making theoretical forecasts on the expected design value of friction coefficient and, therefore, the towing capacity of open-pit locomotives.

  11. Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper.

    Science.gov (United States)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun

    2015-12-01

    Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.

  12. Oxide dispersion-strengthened steel PM2000 after dynamic plastic deformation: nanostructure and annealing behaviour

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Tao, N. R.; Mishin, Oleg V.

    2016-01-01

    The microstructure, texture and mechanical properties have been studied in PM2000 compressed via dynamic plastic deformation to a strain of 2.1. It is found that dynamic plastic deformation results in a duplex 〈111〉 + 〈100〉 fibre texture and refines the initial microstructure by nanoscale lamellae...... in the deformed microstructure. This reduction is more pronounced in the 〈111〉-oriented regions. Orientation-dependent recrystallisation takes place in the recovered microstructure, leading to strengthening of the 〈111〉 fibre texture component at the expense of the 〈100〉 fibre texture component....

  13. A Dynamic Stall Model for Airfoils with Deformable Trailing Edges

    International Nuclear Information System (INIS)

    Andersen, Peter Bjoern; Gaunaa, Mac; Bak, Christian; Hansen, Morten Hartvig

    2007-01-01

    The present work contains an extension of the Beddoes-Leishman (B-L) type dynamic stall model, as described by Hansen et al. In this work a Deformable Trailing Edge Geometry (DTEG) has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments on an airfoil section undergoing arbitrary motion in heave, lead-lag, pitch, Trailing Edge (TE) flapping. In the linear region, the model reduces to the inviscid model of Gaunaa, which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed model can be considered a crossover between the work of Gaunaa for the attached flow region and Hansen et al. The model will be compared to wind tunnel measurements from Velux described by Bak et al

  14. Microstructure and Texture in Surface Deformation Layer of Al-Zn-Mg-Cu Alloy Processed by Milling

    Directory of Open Access Journals (Sweden)

    CHEN Yanxia

    2017-12-01

    Full Text Available The microstructural and crystallographic features of the surface deformation layer in Al-Zn-Mg-Cu alloy induced by milling were investigated by means of transmission electron microscopy (TEM and precession electron diffraction (PED assisted nanoscale orientation mapping. The result shows that the surface deformation layer is composed by the top surface of equiaxed nanograins/ultrafine grains and the subsurface of lamellar nanograins/ultrafine grains surrounded by coarse grain boundary precipitates (GBPs. The recrystallized nanograins/ultrafine grains in the deformation layer show direct evidence that dynamic recrystallization plays an important role in grain refining process. The GBPs and grain interior precipitates (GIPs show a great difference in size and density with the matrix due to the thermally and mechanically induced precipitate redistribution. The crystallographic texture of the surface deformation layer is proved to be a mixture of approximate copper{112}, rotated cube{001} and F {111}. The severe shear deformation of the surface induced by milling is responsible for the texture evolution.

  15. Three-Dimensional Dynamic Deformation Measurements Using Stereoscopic Imaging and Digital Speckle Photography

    International Nuclear Information System (INIS)

    Prentice, H. J.; Proud, W. G.

    2006-01-01

    A technique has been developed to determine experimentally the three-dimensional displacement field on the rear surface of a dynamically deforming plate. The technique combines speckle analysis with stereoscopy, using a modified angular-lens method: this incorporates split-frame photography and a simple method by which the effective lens separation can be adjusted and calibrated in situ. Whilst several analytical models exist to predict deformation in extended or semi-infinite targets, the non-trivial nature of the wave interactions complicates the generation and development of analytical models for targets of finite depth. By interrogating specimens experimentally to acquire three-dimensional strain data points, both analytical and numerical model predictions can be verified more rigorously. The technique is applied to the quasi-static deformation of a rubber sheet and dynamically to Mild Steel sheets of various thicknesses

  16. In situ nuclear magnetic resonance study of defect dynamics during deformation of materials

    NARCIS (Netherlands)

    Murty, K.L.; Detemple, K.; Kanert, O.; Peters, G; de Hosson, J.T.M.

    1996-01-01

    Nuclear magnetic resonance techniques can be used to monitor in situ the dynamical behaviour of point and line defects in materials during deformation. These techniques are non-destructive and non-invasive. We report here the atomic transport, in particular the enhanced diffusion during deformation

  17. Microstructure and annealing behavior of a modified 9Cr-1Mo steel after dynamic plastic deformation to different strains

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, N.R.

    2015-01-01

    The microstructure, hardness and tensile properties of a modified 9Cr-1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level...... in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength....

  18. Sequence-dependent DNA deformability studied using molecular dynamics simulations.

    Science.gov (United States)

    Fujii, Satoshi; Kono, Hidetoshi; Takenaka, Shigeori; Go, Nobuhiro; Sarai, Akinori

    2007-01-01

    Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein-DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein-DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids.

  19. Evaluation of Permanent Deformation of Unmodified and Rubber-Reinforced SMA Asphalt Mixtures Using Dynamic Creep Test

    Directory of Open Access Journals (Sweden)

    Herda Yati Katman

    2015-01-01

    Full Text Available This paper presents the evaluation of permanent deformation of rubber-reinforced SMA asphalt mixtures by using dynamic creep test. The effect of trans-polyoctenamer as a cross-linking agent in permanent deformation of rubberized mixtures was also evaluated. Dynamic creep test was conducted at different stress levels (200 kPa, 400 kPa and temperatures (40°C, 50°C. Permanent deformation parameters such as dynamic creep curve, ultimate strain, and creep strain slope (CSS were used to analyse the results. Finally, the creep behaviour of the specimens was estimated by the Zhou three-stage creep model. The results show that crumb rubber and trans-polyoctenamer significantly affected the parameters especially at high stress and temperatures. Consistent findings were observed for all permanent deformation parameters. Moreover, based on Zhou model, it was concluded that resistance to permanent deformation was improved by application of crumb rubber and trans-polyoctenamer.

  20. Parameter studies on the effect of pulse shape on the dynamic plastic deformation of a hexagon

    International Nuclear Information System (INIS)

    Youngdahl, C.K.

    1973-10-01

    Results of a parameter study on the dynamic plastic response of a hexagonal subassembly duct subjected to an internal pressure pulse of arbitrary shape are presented. Plastic distortion of the cross section and large-deformation geometric effects that result in redistribution of the internal forces between bending and membrane stresses in the hexagon wall are included in the analytical model. Correlation procedures are established for relating permanent plastic deformation to simple properties of the pressure pulse, for both the small- and large-deformation ranges. Characteristic response times are determined, and the dynamic load factor for large-deformation plastic response is computed

  1. Role of rotational energy and deformations in the dynamics of {sup 6}Li+{sup 90}Zr reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Gurvinder; Grover, Neha; Sandhu, Kirandeep; Sharma, Manoj K., E-mail: msharma@thapar.edu

    2014-07-15

    In reference to recent experimental data, the dynamical cluster-decay model (DCM) has been applied to study the neutron evaporation residue (ER) cross sections of intermediate mass nucleus {sup 96}Tc{sup ⁎} spread over a wide range of incident energy across the Coulomb barrier. In order to analyze the effect of rotational energy in the dynamics of {sup 6}Li+{sup 90}Zr reaction, the cross sections have been calculated using the sticking (I{sub S}) and the non-sticking (I{sub NS}) limits of moment of inertia with inclusion of quadrupole (β{sub 2}) deformation within optimum orientation approach. The effect of either of the two approaches on the angular momentum, and hence the rotational energy associated with it, is assessed through the fragment mass distribution, preformation factor and the barrier penetrability. Also, the role of deformations is studied through a comparative analysis of decay path for spherical and β{sub 2} deformed fragmentation. The calculated evaporation residue cross sections show excellent agreement with the reported data at all incident energies for both spherical and β{sub 2}-deformed approach. Finally, the incomplete fusion (ICF) process observed due to loosely bound projectile {sup 6}Li is addressed within the framework of DCM.

  2. Planar dynamics of large-deformation rods under moving loads

    Science.gov (United States)

    Zhao, X. W.; van der Heijden, G. H. M.

    2018-01-01

    We formulate the problem of a slender structure (a rod) undergoing large deformation under the action of a moving mass or load motivated by inspection robots crawling along bridge cables or high-voltage power lines. The rod is described by means of geometrically exact Cosserat theory which allows for arbitrary planar flexural, extensional and shear deformations. The equations of motion are discretised using the generalised-α method. The formulation is shown to handle the discontinuities of the problem well. Application of the method to a cable and an arch problem reveals interesting nonlinear phenomena. For the cable problem we find that large deformations have a resonance detuning effect on cable dynamics. The problem also offers a compelling illustration of the Timoshenko paradox. For the arch problem we find a stabilising (delay) effect on the in-plane collapse of the arch, with failure suppressed entirely at sufficiently high speed.

  3. Dynamic Sensing of Cornea Deformation during an Air Puff

    Science.gov (United States)

    Yamada, Kenji; Yamasaki, Naoyuki; Gosho, Takumi; Kiuchi, Yoshiaki; Takenaka, Jouji; Higashimori, Mitsuru; Kaneko, Makoto

    In early diagnosis of glancoma, intraocular pressure measurement is one of an important method. Non-contact method has measured eye pressure through the deformation of cornea during the increase of the force due to air puff. The deformation is influenced by the cornea stiffness as well as the eye internal pressure. Since the cornea stiffness is unknown in general, it is difficult to evaluate the ture eye pressure. The dynamic behavior of cornea under air puff may provide us with a good hint for evaluating the cornea stiffness appropriately. For this purpose, we develop the sensing system composed of a high speed camera, a mirror for producing a virtual camera, a non-contact tonometer and a slit light source. This system enables us to measure the cornea deformation under concave shape. We show the experimental data for human eyes as well as an artificial eye made by transparent material.

  4. Optimum Control for Nonlinear Dynamic Radial Deformation of Turbine Casing with Time-Varying LSSVM

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Fei

    2015-01-01

    Full Text Available With the development of the high performance and high reliability of aeroengine, the blade-tip radial running clearance (BTRRC of high pressure turbine seriously influences the reliability and performance of aeroengine, wherein the radial deformation control of turbine casing has to be concerned in BTRRC design. To improve BTRRC design, the optimum control-based probabilistic optimization of turbine casing radial deformation was implemented using time-varying least square support vector machine (T-LSSVM by considering nonlinear material properties and dynamic thermal load. First the T-LSSVM method was proposed and its mathematical model was established. And then the nonlinear dynamic optimal control model of casing radial deformation was constructed with T-LSSVM. Thirdly, through the numerical experiments, the T-LSSVM method is demonstrated to be a promising approach in reducing additional design samples and improving computational efficiency with acceptable computational precision. Through the optimum control-based probabilistic optimization for nonlinear dynamic radial turbine casing deformation, the optimum radial deformation is 7.865 × 10−4 m with acceptable reliability degree 0.995 6, which is reduced by 7.86 × 10−5 m relative to that before optimization. These results validate the effectiveness and feasibility of the proposed T-LSSVM method, which provides a useful insight into casing radial deformation, BTRRC control, and the development of gas turbine with high performance and high reliability.

  5. Effect of orientation on deformation behavior of Fe nanowires: A molecular dynamics study

    Science.gov (United States)

    Sainath, G.; Srinivasan, V. S.; Choudhary, B. K.; Mathew, M. D.; Jayakumar, T.

    2014-04-01

    Molecular dynamics simulations have been carried out to study the effect of crystal orientation on tensile deformation behaviour of single crystal BCC Fe nanowires at 10 K. Two nanowires with an initial orientation of /{100} and /{111} have been chosen for this study. The simulation results show that the deformation mechanisms varied with crystal orientation. The nanowire with an initial orientation of /{100} deforms predominantly by twinning mechanism, whereas the nanowire oriented in /{111}, deforms by dislocation plasticity. In addition, the single crystal oriented in /{111} shows higher strength and elastic modulus than /{100} oriented nanowire.

  6. Microstructural Changes of the Nanostructured Bainitic Steel Induced by Quasi-Static and Dynamic Deformation

    Directory of Open Access Journals (Sweden)

    Marcisz J.

    2017-12-01

    Full Text Available Changes in the microstructure of nanostructured bainitic steel induced by quasi-static and dynamic deformation have been shown in the article. The method of deformation and strain rate have important impact on the microstructure changes especially due to strain localization. Microstructure of nanostructured steel Fe-0.6%C-1.9Mn-1.8Si-1.3Cr-0.7Mo consists of nanometer size carbide-free bainite laths and 20-30% volume fraction of retained austenite. Quasi-static and dynamic (strain rate up to 2×102 s−1 compression tests were realized using Gleeble simulator. Dynamic deformation at the strain rate up to 9×103 s−1 was realized by the Split Hopkinson Pressure Bar method (SHPB. Moreover high energy firing tests of plates made of the nanostructured bainitic steel were carried out to produce dynamically deformed material for investigation. Adiabatic shear bands were found as a result of localization of deformation in dynamic compression tests and in firing tests. Microstructure of the bands was examined and hardness changes in the vicinity of the bands were determined. The TEM examination of the ASBs showed the change from the internal shear band structure to the matrix structure to be gradual. This study clearly resolved that the interior (core of the band has an extremely fine grained structure with grain diameter ranging from 100 nm to 200 nm. Martensitic twins were found within the grains. No austenite and carbide reflections were detected in the diffraction patterns taken from the core of the band. Hardness of the core of the ASBs for examined variants of isothermal heat treatment was higher about 300 HV referring to steel matrix hardness.

  7. Calculation model of non-linear dynamic deformation of composite multiphase rods

    Directory of Open Access Journals (Sweden)

    Mishchenko Andrey Viktorovich

    2014-05-01

    Full Text Available The method of formulating non-linear physical equations for multiphase rods is suggested in the article. Composite multiphase rods possess various structures, include shear, polar, radial and axial inhomogeneity. The Timoshenko’s hypothesis with the large rotation angles is used. The method is based on the approximation of longitudinal normal stress low by basic functions expansions regarding the linear viscosity low. The shear stresses are calculated with the equilibrium equation using the subsidiary function of the longitudinal shift force. The system of differential equations connecting the internal forces and temperature with abstract deformations are offered by the basic functions. The application of power functions with arbitrary index allows presenting the compact form equations. The functional coefficients in this system are the highest order rigidity characteristics. The whole multiphase cross-section rigidity characteristics are offered the sums of the rigidity characteristics of the same phases individually. The obtained system allows formulating the well-known particular cases. Among them: hard plasticity and linear elastic deformation, different module deformation and quadratic Gerstner’s low elastic deformation. The reform of differential equations system to the quasilinear is suggested. This system contains the secant variable rigidity characteristics depending on abstract deformations. This system includes the sum of the same uniform blocks of different order. The rods phases defined the various set of uniform blocks phase materials. The integration of dynamic, kinematic and physical equations taking into account initial and edge condition defines the full dynamical multiphase rods problem. The quasilinear physical equations allow getting the variable flexibility matrix of multiphase rod and rods system.

  8. Microstructure and mechanical properties of precipitation hardened aluminum under high rate deformation

    International Nuclear Information System (INIS)

    Grady, D.E.; Asav, J.R.; Rohde, R.W.; Wise, J.L.

    1983-01-01

    This chapter attempts to correlate the shock compression and quasistatic deformation of 6061-T6 aluminium. Examines recovered specimens which have been shock loaded, and compares results with both static and dynamic mechanical property measurements. Discusses experimental procedures (reshock and unloading experiments, shock recovery techniques, metallographic techniques and coldwork experiments); dynamic strength and wave-profile properties (strength and shear-stress states on the Hugoniot, steady-wave risetime and viscosity); quasistatic and shock metallography studies (metallography of quasistatically deformed material; metallography of shock deformed specimens; comparison of static and shock deformation; correlation of hardness and dynamic strength measurements); and thermal trapping calculations in shocked aluminium (heterogeneous deformation and adiabatic heating in shock-wave loading; energy and risetime relations under steadywave shock compression; heterogeneous temperature calculations in aluminium). Concludes that heterogeneous shear deformation appears to play a role in the dynamic deformation process

  9. Exploring of PST-TBPM in Monitoring Dynamic Deformation of Steel Structure in Vibration

    Science.gov (United States)

    Chen, Mingzhi; Zhao, Yongqian; Hai, Hua; Yu, Chengxin; Zhang, Guojian

    2018-01-01

    In order to monitor the dynamic deformation of steel structure in the real-time, digital photography is used in this paper. Firstly, the grid method is used correct the distortion of digital camera. Then the digital cameras are used to capture the initial and experimental images of steel structure to obtain its relative deformation. PST-TBPM (photographing scale transformation-time baseline parallax method) is used to eliminate the parallax error and convert the pixel change value of deformation points into the actual displacement value. In order to visualize the deformation trend of steel structure, the deformation curves are drawn based on the deformation value of deformation points. Results show that the average absolute accuracy and relative accuracy of PST-TBPM are 0.28mm and 1.1‰, respectively. Digital photography used in this study can meet accuracy requirements of steel structure deformation monitoring. It also can warn the safety of steel structure and provide data support for managers’ safety decisions based on the deformation curves on site.

  10. Investigation of the deformation stability in the incremental sheet forming process

    Directory of Open Access Journals (Sweden)

    Ai S.

    2015-01-01

    Full Text Available Incremental sheet forming (ISF is a highly versatile and flexible process for rapid manufacturing of complex sheet metal parts. One of the unique characters of the ISF process is the improved formability comparing to conventional sheet forming process. This may be due to the localized deformation nature, which increases the deformation stability in the ISF process. Although many hypotheses have been proposed, there is no direct modelling and calculation of the ISF deformation stability. Aiming to obtain a better understanding of the ISF process, an analytical model was developed to investigate and analyse the material deformation stability in this work. Based on the analytical evaluation of stress variations and force equilibrium, a mathematical relationship between the maximum forming angle and the process stability condition was established. To validate the developed model, experiments were carried out by forming a hyperbolic part made of AA1100 material. The maximum forming angle, as an indicator to the ISF formability, was employed compare the analytical evaluation and experimental result. It was found that the ISF deformation stability is one of the key factors that affect the ISF formability.

  11. Identification for the optimal working parameters of Ti-6Al-4V-0.1Ru alloy in a wide deformation condition range by processing maps based on DMM

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yu-feng; Long, Shuai; Zhou, Yu-ting; Zhao, Jia; Wang, Tian-yu; Zhou, Jie, E-mail: kkyttyls@vip.qq.com [School of Material Science and Engineering, Chongqing University (China)

    2016-11-15

    The hot deformation behaviours of Ti-6Al-4V-0.1Ru alloy were investigated by isothermal hot compression tests in the temperature range of 1023-1423 K and strain rate range of 0.01-10 s{sup -1}. The β transus was determined to be 1198 K by continuous heating method. The values of deformation activation energy Q at the strain of 0.3 were calculated to be 630.01 kJ/mol in dual-phase field and 331.75 kJ/mol in β-phase field. Moreover, the processing maps at the strain of 0.2, 0.4, 0.6 and 0.8 were developed based on dynamic materials model (DMM). To deeply understand the microstructure evolution mechanism during hot deformation processes and to verify the processing maps, the microstructures at different deformation conditions were observed. The stable microstructures (i.e. globularization, dynamic recovery (DRV) and β dynamic recrystallization (β-DRX)) and instable microstructures (i.e. lamellae kinking and flow localization) were obtained. To make it useful in the design of industrial hot working schedules for this material, a microstructural mechanism map was constructed on the basis of processing maps and microstructure observation. Deformation conditions in the vicinity of 1150 K & 0.01 s{sup -1} where globularization occurs and in the vicinity of 1323 K & 0.01 s{sup -1} where β-DRX occurs are recommended. (author)

  12. Hot Deformation Behavior of Hot-Extruded AA7175 Through Hot Torsion Tests.

    Science.gov (United States)

    Lee, Se-Yeon; Jung, Taek-Kyun; Son, Hyeon-Woo; Kim, Sang-Wook; Son, Kwang-Tae; Choi, Ho-Joon; Oh, Sang-Ho; Lee, Ji-Woon; Hyun, Soong-Keun

    2018-03-01

    The hot deformation behavior of hot-extruded AA7175 was investigated with flow curves and processing maps through hot torsion tests. The flow curves and the deformed microstructures revealed that dynamic recrystallization (DRX) occurred in the hot-extruded AA7175 during hot working. The failure strain was highest at medium temperature. This was mainly influenced by the dynamic precipitation of fine rod-shaped MgZn2. The processing map determined the optimal deformation condition for the alloy during hot working.

  13. Constitutive Behavior and Processing Map of T2 Pure Copper Deformed from 293 to 1073 K

    Science.gov (United States)

    Liu, Ying; Xiong, Wei; Yang, Qing; Zeng, Ji-Wei; Zhu, Wen; Sunkulp, Goel

    2018-02-01

    The deformation behavior of T2 pure copper compressed from 293 to 1073 K with strain rates from 0.01 to 10 s-1 was investigated. The constitutive equations were established by the Arrhenius constitutive model, which can be expressed as a piecewise function of temperature with two sections, in the ranges 293-723 K and 723-1073 K. The processing maps were established according to the dynamic material model for strains of 0.2, 0.4, 0.6, and 0.8, and the optimal processing parameters of T2 copper were determined accordingly. In order to obtain a better understanding of the deformation behavior, the microstructures of the compressed samples were studied by electron back-scattered diffraction. The grains tend to be more refined with decreases in temperature and increases in strain rate.

  14. Study on hot deformation behavior and microstructure evolution of cast-extruded AZ31B magnesium alloy and nanocomposite using processing map

    International Nuclear Information System (INIS)

    Srinivasan, M.; Loganathan, C.; Narayanasamy, R.; Senthilkumar, V.; Nguyen, Q.B.; Gupta, M.

    2013-01-01

    Highlights: ► Hot deformation behavior of AZ31B Mg alloy and nanocomposite were studied. ► Activation energy of AZ31B Mg alloy and nanocomposite were determined. ► Twining, shear bands and flow localization were observed. - Abstract: The hot deformation behavior and microstructural evolution of cast-extruded AZ31B magnesium alloy and nanocomposite have been studied using processing-maps. Compression tests were conducted in the temperature range of 250–400 °C and strain rate range of 0.01–1.0 s −1 . The three-dimensional (3D) processing maps developed in this work, describe the variations of the efficiency of power dissipation and flow instability domains in the strain rate (ε) and temperature (T) space. The deformation mechanisms namely dynamic recrystallization (DRX), dynamic recovery (DRY) and instability regions were identified using processing maps. The deformation mechanisms were also correlated with transmission electron microscopy (TEM) and optical microscopy (OM). The optimal region for hot working has been observed at a strain rate (ε) of 0.01 s −1 and the temperature (T) of 400 °C for both magnesium alloy and nanocomposite. Few instability regimes have been identified in this study at higher strain rate (ε) and temperature (T). The stability domains have been identified in the lower strain rate regimes

  15. Research of dynamical Characteristics of slow deformation Waves as Massif Responses on Explosions

    Science.gov (United States)

    Hachay, Olga; Khachay, Oleg; Shipeev, Oleg

    2013-04-01

    The research of massif state with use of approaches of open system theory [1-3] was developed for investigation the criterions of dissipation regimes for real rock massifs, which are under heavy man-caused influence. For realization of that research we used the data of seismic catalogue of Tashtagol mine. As a result of the analyze of that data we defined character morphology of phase trajectories of massif response, which was locally in time in a stable state: on the phase plane with coordinates released by the massif during the dynamic event energy E and lg(dE/dt) there is a local area as a ball of twisted trajectories and some not great bursts from that ball, which are not greater than 105 joules. In some time intervals that burst can be larger, than 105 joules, achieving 106 joules and yet 109 joules. [3]. Evidently there are two reciprocal depend processes: the energy accumulation in the attracted phase trajectories area and resonance fault of the accumulated energy. But after the fault the system returns again to the same attracted phase trajectories area. For analyzing of the thin structure of the chaotic area we decided to add the method of processing of the seismic monitoring data by new parameters. We shall consider each point of explosion as a source of seismic or deformation waves. Using the kinematic approach of seismic information processing we shall each point of the massif response use as a time point of the first arrival of the deformation wave for calculation of the wave velocity, because additionally we know the coordinates of the fixed response and the coordinates of explosion. The use of additional parameter-velocity of slow deformation wave propagation allowed us with use method of phase diagrams identify their hierarchic structure, which allow us to use that information for modeling and interpretation the propagation seismic and deformation waves in hierarchic structures. It is researched with use of that suggested processing method the thin

  16. Soft tissue deformation for surgical simulation: a position-based dynamics approach.

    Science.gov (United States)

    Camara, Mafalda; Mayer, Erik; Darzi, Ara; Pratt, Philip

    2016-06-01

    To assist the rehearsal and planning of robot-assisted partial nephrectomy, a real-time simulation platform is presented that allows surgeons to visualise and interact with rapidly constructed patient-specific biomechanical models of the anatomical regions of interest. Coupled to a framework for volumetric deformation, the platform furthermore simulates intracorporeal 2D ultrasound image acquisition, using preoperative imaging as the data source. This not only facilitates the planning of optimal transducer trajectories and viewpoints, but can also act as a validation context for manually operated freehand 3D acquisitions and reconstructions. The simulation platform was implemented within the GPU-accelerated NVIDIA FleX position-based dynamics framework. In order to validate the model and determine material properties and other simulation parameter values, a porcine kidney with embedded fiducial beads was CT-scanned and segmented. Acquisitions for the rest position and three different levels of probe-induced deformation were collected. Optimal values of the cluster stiffness coefficients were determined for a range of different particle radii, where the objective function comprised the mean distance error between real and simulated fiducial positions over the sequence of deformations. The mean fiducial error at each deformation stage was found to be compatible with the level of ultrasound probe calibration error typically observed in clinical practice. Furthermore, the simulation exhibited unconditional stability on account of its use of clustered shape-matching constraints. A novel position-based dynamics implementation of soft tissue deformation has been shown to facilitate several desirable simulation characteristics: real-time performance, unconditional stability, rapid model construction enabling patient-specific behaviour and accuracy with respect to reference CT images.

  17. Fabrication Process Development for Light Deformable Mirrors

    Data.gov (United States)

    National Aeronautics and Space Administration — The project objective is to develop robust, reproductibble fabrication processes to realize functional deformable membrane mirrors (DM) for a space mission in which...

  18. Deformation behaviour of {gamma}+{alpha}{sub 2} Ti aluminide processed through reaction synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.K., E-mail: rohitkumar_gupta@vssc.gov.in [Vikram Sarabhai Space Centre, ISRO, Trivandrum, Kerala 695 022 (India); Pant, Bhanu [Vikram Sarabhai Space Centre, ISRO, Trivandrum, Kerala 695 022 (India); Kumar, Vinod [SAIL-RDCIS, Ranchi (India); Agarwala, Vijaya [Indian Institute of Technology, Roorkee 247 667 (India); Sinha, P.P. [Vikram Sarabhai Space Centre, ISRO, Trivandrum, Kerala 695 022 (India)

    2013-01-01

    {gamma}+{alpha}{sub 2} titanium aluminide alloys made through reaction synthesis have been used for deformation study. Hot isothermal compression test is carried out to study the deformation characteristics of the alloys using Gleeble thermomechanical simulator. Three alloys based on Ti48Al2Cr2Nb0.1B (at%) are tested at different temperatures and at different strain rates. True stress-true strain plots are analyzed along with analysis of tested specimens. Tested specimens are observed under optical and electron microscopes. Presence of various deformation morphologies and phases were confirmed. Microhardness evaluation and transmission electron microscopic examination are used to confirm the presence of different phases. It is found that dynamic recrystallization is mainly playing role in deformation of these alloys. Presence of dynamically recrystallized (DRX) grains and lamellar microstructures is confirmed at the intergranular area and inside the grains, respectively. A nucleation model is suggested for DRX and lamellar grain nucleation during deformation. Attempt has been made to quantify the presence of various phases through optical microscopy. Hot workability map is also suggested on the basis of microstructural and visual observation of compression tested specimens.

  19. Coercivities of hot-deformed magnets processed from amorphous and nanocrystalline precursors

    International Nuclear Information System (INIS)

    Tang, Xin; Sepehri-Amin, H.; Ohkubo, T.; Hioki, K.; Hattori, A.; Hono, K.

    2017-01-01

    Hot-deformed magnets have been processed from amorphous and nanocrystalline precursors and their hard magnetic properties and microstructures have been investigated in order to explore the optimum process route. The hot-deformed magnets processed from an amorphous precursor exhibited the coercivity of 1.40 T that is higher than that processed from nanocrystalline powder, ∼1.28 T. The average grain size was larger in the magnets processed from amorphous precursor. Detailed microstructure analyses by aberration corrected scanning transmission electron microscopy revealed that the Nd + Pr concentrations in the intergranular phases were higher in the hot-deformed magnet processed from the amorphous precursor, which is considered to lead to the enhanced coercivity due to a stronger pinning force against magnetic domain wall motion.

  20. On the modelling of the dynamics of elastically deformable floating structures

    DEFF Research Database (Denmark)

    Seng, Sopheak; Malenica, Sime; Jensen, Jørgen Juncher

    2015-01-01

    In this paper we are reexamining the dynamic equations of an elastically deformable floating structure to identify and evaluate the contribution from the inertia cross coupling terms which commonly have been neglected due to the assumption of small structural deformation. Numerical experiments...... on two vessels, a flexible barge, and a full scale ultra large container vessel, are designed for revealing the magnitude of errors introduced into the numerical solutions when these inertia cross coupling terms have been ignored. The results shows that in realistic conditions with strong structural...

  1. Dynamic Deformation Behavior of Soft Material Using Shpb Technique and Pulse Shaper

    Science.gov (United States)

    Lee, Ouk Sub; Cho, Kyu Sang; Kim, Sung Hyun; Han, Yong Hwan

    This paper presents a modified Split Hopkinson Pressure Bar (SHPB) technique to obtain compressive stress strain data for NBR rubber materials. An experimental technique with a modified the conventional SHPB has been developed for measuring the compressive stress strain responses of materials with low mechanical impedance and low compressive strengths, such as the rubber and the polymeric material. This paper uses an aluminum pressure bar to achieve a closer impedance match between the pressure bar and the specimen materials. In addition, a pulse shaper is utilized to lengthen the rising time of the incident pulse to ensure dynamic stress equilibrium and homogeneous deformation of NBR rubber materials. It is found that the modified technique can determine the dynamic deformation behavior of rubbers more accurately.

  2. Impact of Martensite Spatial Distribution on Quasi-Static and Dynamic Deformation Behavior of Dual-Phase Steel

    Science.gov (United States)

    Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi

    2018-02-01

    The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.

  3. Static and dynamic deformations of actinide nuclei

    International Nuclear Information System (INIS)

    Rozmej, P.

    1985-09-01

    The zero-point quadrupole-hexadecapole vibrations have been taken into account to calculate dynamical deformations for even-even actinide nuclei. The collective and intrinsic motions are separated according to the Born-Oppenheimer approximation. The collective Hamiltonian is constructed using the macroscopic-microscopic method in the potential energy part and the cranking model in the kinetic energy part. The BCS theory with a modified oscillator potential is applied to describe the intrinsic motion of nucleons. A new set of Nilsson potential parameters, which produces a much better description of the properties of light actinide nuclei, has also been found. (orig.)

  4. The Finite Deformation Dynamic Sphere Test Problem

    Energy Technology Data Exchange (ETDEWEB)

    Versino, Daniele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brock, Jerry Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    In this manuscript we describe test cases for the dynamic sphere problem in presence of finite deformations. The spherical shell in exam is made of a homogeneous, isotropic or transverse isotropic material and elastic and elastic-plastic material behaviors are considered. Twenty cases, (a) to (t), are thus defined combining material types and boundary conditions. The inner surface radius, the outer surface radius and the material's density are kept constant for all the considered test cases and their values are ri = 10mm, ro = 20mm and p = 1000Kg/m3 respectively.

  5. Rate controlling mechanisms during hot deformation of Mg–3Gd–1Zn magnesium alloy: Dislocation glide and climb, dynamic recrystallization, and mechanical twinning

    International Nuclear Information System (INIS)

    Mirzadeh, H.; Roostaei, M.; Parsa, M.H.; Mahmudi, R.

    2015-01-01

    Highlights: • Hot deformation behavior and dynamic recrystallization of GZ31 magnesium alloy. • Deducing the operative deformation mechanisms by constitutive analysis. • Viscous glide as the rate controlling step during hot working of GZ31 alloy. • Characterization of the effect of mechanical twinning on constitutive relations. - Abstract: The flow behavior of the Mg–3Gd–1Zn (GZ31) magnesium alloy during hot working was critically analyzed and dislocation glide in the form of a viscous drag process (viscous glide) was identified as the rate controlling mechanism due to interaction of rare earth Gd atoms with the moving dislocations. Mechanical twinning was shown to significantly affect the level of flow stress at high Zener–Hollomon parameters, i.e. low forming temperatures and high strain rates. Moreover, dynamic recrystallization (DRX) was found to be another responsible phenomenon for deviation of constitutive equations from the theoretical ones, namely the deformation activation energy based on diffusivity and the pre-defined Garofalo’s type hyperbolic sine power, during high-temperature thermomechanical processing of this creep resistant light alloy

  6. QuikForm: Intelligent deformation processing of structural alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, R.J.; Wellman, G.W.

    1994-09-01

    There currently exists a critical need for tools to enhance the industrial competitiveness and agility of US industries involved in deformation processing of structural alloys. In response to this need, Sandia National Laboratories has embarked upon the QuikForm Initiative. The goal of this program is the development of computer-based tools to facilitate the design of deformation processing operations. The authors are currently focusing their efforts on the definition/development of a comprehensive system for the design of sheet metal stamping operations. The overall structure of the proposed QuikForm system is presented, and the focus of their thrust in each technical area is discussed.

  7. Dynamic virtual fixture on the Euclidean group for admittance-type manipulator in deforming environments.

    Science.gov (United States)

    Zhang, Dongwen; Zhu, Qingsong; Xiong, Jing; Wang, Lei

    2014-04-27

    In a deforming anatomic environment, the motion of an instrument suffers from complex geometrical and dynamic constraints, robot assisted minimally invasive surgery therefore requires more sophisticated skills for surgeons. This paper proposes a novel dynamic virtual fixture (DVF) to enhance the surgical operation accuracy of admittance-type medical robotics in the deforming environment. A framework for DVF on the Euclidean Group SE(3) is presented, which unites rotation and translation in a compact form. First, we constructed the holonomic/non-holonomic constraints, and then searched for the corresponded reference to make a distinction between preferred and non-preferred directions. Second, different control strategies are employed to deal with the tasks along the distinguished directions. The desired spatial compliance matrix is synthesized from an allowable motion screw set to filter out the task unrelated components from manual input, the operator has complete control over the preferred directions; while the relative motion between the surgical instrument and the anatomy structures is actively tracked and cancelled, the deviation relative to the reference is compensated jointly by the operator and DVF controllers. The operator, haptic device, admittance-type proxy and virtual deforming environment are involved in a hardware-in-the-loop experiment, human-robot cooperation with the assistance of DVF controller is carried out on a deforming sphere to simulate beating heart surgery, performance of the proposed DVF on admittance-type proxy is evaluated, and both human factors and control parameters are analyzed. The DVF can improve the dynamic properties of human-robot cooperation in a low-frequency (0 ~ 40 rad/sec) deforming environment, and maintain synergy of orientation and translation during the operation. Statistical analysis reveals that the operator has intuitive control over the preferred directions, human and the DVF controller jointly control the

  8. Analysis of High Temperature Deformed Structure and Dynamic Precipitation in W9Mo3Cr4V Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With TEM、SEM, various high-temperature deformed structures inW9Mo3Cr4V steel were investigated. The sub-structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The relationship between recrystallized structures and dynamic precipitation was discussed. The results showed that the deformed structures in W9Mo3Cr4V steel are more complicated than those in low alloy steels. Because W9Mo3Cr4V steel is a high-speed steel, there are a large number of residual carbides on the matrix. Also, much dynamic precipitating carbides will precipitate during deformation at high temperature.

  9. Dynamic strength, particle deformation, and fracture within fluids with impact-activated microstructures

    Science.gov (United States)

    Petel, Oren E.; Ouellet, Simon

    2017-07-01

    The evolution of material strength within several dense particle suspensions impacted by a projectile is investigated and shown to be strongly dependent on the particle material in suspension. For stronger particles, such as silicon carbide, the shear strength of the fluid is shown to increase with the ballistic impact strength. For weaker particles, such as silica, the shear strength of the suspension is found to be independent of impact strength in this dynamic range of tests. A soft-capture technique is employed to collect ejecta samples of a silica-based shear thickening fluid, following a ballistic impact and penetration event. Ejecta samples that were collected from impacts at three different velocities are observed and compared to the benchmark particles using a Scanning Electron Microscope. The images show evidence of fractured and deformed silica particles recovered among the nominally 1 μm diameter monodisperse spheres. There is also evidence of particle fragments that appear to be the result of interparticle grinding. The trends observed in the shear strength estimates are interpreted with regards to the particle damage seen in the ejecta recovery experiments to develop a concept of the impact response of these fluids. The results suggest that particle slip through deformation is likely the dominant factor in limiting the transient impact strength of these fluids. Particularly, particle strength is important in the formation and collapse of dynamically jammed particle contact networks in the penetration process.

  10. Shape coexistence in 16O, 72Se, and 240Pu: a comprehensive view based on the dynamic deformation model

    International Nuclear Information System (INIS)

    Kumar, K.

    1980-01-01

    The dynamic deformation model has been improved and applied to calculate the potential energies of deformation and the collective spectra of 16 O, 72 Se, and 240 Pu. A comprehensive view based on the dynamics of five-dimensional quadrupole motion is provided for three seemingly different types of shape coexistence: spherical (Op - Oh) and deformed (2p - 2h) shapes in 16 O, spherical and deformed minima in the potential energy surface of 72 Se, ground-state shape and the fission-isomer shape of 240 Pu. 5 figures, 3 tables

  11. Molecular dynamics simulation on double-elastic deformation of zigzag graphene nanoribbons at low temperature

    International Nuclear Information System (INIS)

    Sun, Y.J.; Huang, Y.H.; Ma, F.; Ma, D.Y.; Hu, T.W.; Xu, K.W.

    2014-01-01

    Highlights: • Molecular dynamics simulation was performed to study the deformation behaviors of Zigzag Graphene Nano-Ribbons (ZGNRs). • The “phase transformation” from hexagonal to quasi-rectangular and the subsequent second elastic deformation were observed. • Related thermal effects model was built to predict fracture strain of ZGNRs, and was consistent with simulation results. -- Abstract: Molecular dynamics simulation was performed to study the deformation behaviors of Zigzag Graphene Nano-Ribbons (ZGNRs) 150 Å × 150 Å in size, and double-elastic deformation was observed at temperatures lower than 90 K. Essentially, at such a low temperature, the lattice vibration was significantly weakened and thus the lifetime of C-C bonds was prolonged considerably. Moreover, it was difficult for broken bonds to accumulate and resulted in the destructive fracture of ZGNRs at low temperature. As a result, the “phase transformation” from hexagonal to quasi-rectangular and subsequently the second elastic deformation took place. However, at higher temperatures, says, 300 K, brittle fracture was observed and the fracture strength decreased with temperature, which was consistent with previously reported results. Additionally at higher strain rate, the atoms could not respond to the external loading in time, the fracture strain and fracture strength were enhanced

  12. Shepherd's Crook Deformity of Polyostotic Fibrous Dysplasia Treated with Corrective Osteotomy and Dynamic Hip Screw

    Directory of Open Access Journals (Sweden)

    Wei-Jen Chen

    2005-07-01

    Full Text Available Fibrous dysplasia, a condition in which the skeleton fails to develop normally, is characterized by fibroblastic stroma and immature bone. Bowing of the long bones occurs frequently in the polyostotic form, and stress fractures often result. Shepherd's crook deformity is a characteristic feature of fibrous dysplasia. The goal of its treatment is to obtain normal walking ability and relieve pain due to pathologic fracture secondary to the deformity; however, correction of the deformity is a surgical challenge. We present 2 cases of shepherd's crook deformity treated with corrective osteotomy and a dynamic hip screw. Both cases showed good bone healing and no recurrent deformity. The gross deformities were corrected, and both patients were pain-free after operation.

  13. Observing earthquakes triggered in the near field by dynamic deformations

    Science.gov (United States)

    Gomberg, J.; Bodin, P.; Reasenberg, P.A.

    2003-01-01

    We examine the hypothesis that dynamic deformations associated with seismic waves trigger earthquakes in many tectonic environments. Our analysis focuses on seismicity at close range (within the aftershock zone), complementing published studies of long-range triggering. Our results suggest that dynamic triggering is not confined to remote distances or to geothermal and volcanic regions. Long unilaterally propagating ruptures may focus radiated dynamic deformations in the propagation direction. Therefore, we expect seismicity triggered dynamically by a directive rupture to occur asymmetrically, with a majority of triggered earthquakes in the direction of rupture propagation. Bilaterally propagating ruptures also may be directive, and we propose simple criteria for assessing their directivity. We compare the inferred rupture direction and observed seismicity rate change following 15 earthquakes (M 5.7 to M 8.1) that occured in California and Idaho in the United States, the Gulf of Aqaba, Syria, Guatemala, China, New Guinea, Turkey, Japan, Mexico, and Antarctica. Nine of these mainshocks had clearly directive, unilateral ruptures. Of these nine, seven apparently induced an asymmetric increase in seismicity rate that correlates with the rupture direction. The two exceptions include an earthquake preceded by a comparable-magnitude event on a conjugate fault and another for which data limitations prohibited conclusive results. Similar (but weaker) correlations were found for the bilaterally rupturing earthquakes we studied. Although the static stress change also may trigger seismicity, it and the seismicity it triggers are expected to be similarly asymmetric only if the final slip is skewed toward the rupture terminus. For several of the directive earthquakes, we suggest that the seismicity rate change correlates better with the dynamic stress field than the static stress change.

  14. Hot Deformation and Processing Window Optimization of a 70MnSiCrMo Carbide-Free Bainitic Steel.

    Science.gov (United States)

    Han, Ying; Sun, Yu; Zhang, Wei; Chen, Hua

    2017-03-21

    The hot deformation behavior of a high carbon carbide-free bainitic steel was studied through isothermal compression tests that were performed on a Gleeble-1500D thermal mechanical simulator at temperatures of 1223-1423 K and strain rates of 0.01-5 s -1 . The flow behavior, constitutive equations, dynamic recrystallization (DRX) characteristics, and processing map were respectively analyzed in detail. It is found that the flow stress increases with increasing the strain rate and decreases with increasing the temperature, and the single-peak DRX can be easily observed at high temperatures and/or low strain rates. The internal relationship between the flow stress and processing parameters was built by the constitutive equations embracing a parameter of Z/A, where the activation energy for hot deformation is 351.539 kJ/mol and the stress exponent is 4.233. In addition, the DRX evolution and the critical conditions for starting DRX were discussed. Then the model of the DRX volume fraction was developed with satisfied predictability. Finally, the processing maps at different strains were constructed according to the dynamic material model. The safety domains and flow instability regions were identified. The best processing parameters of this steel are within the temperature range of 1323-1423 K and strain rate range of 0.06-1 s -1 .

  15. Hot Deformation and Processing Window Optimization of a 70MnSiCrMo Carbide-Free Bainitic Steel

    Directory of Open Access Journals (Sweden)

    Ying Han

    2017-03-01

    Full Text Available The hot deformation behavior of a high carbon carbide-free bainitic steel was studied through isothermal compression tests that were performed on a Gleeble-1500D thermal mechanical simulator at temperatures of 1223–1423 K and strain rates of 0.01–5 s−1. The flow behavior, constitutive equations, dynamic recrystallization (DRX characteristics, and processing map were respectively analyzed in detail. It is found that the flow stress increases with increasing the strain rate and decreases with increasing the temperature, and the single-peak DRX can be easily observed at high temperatures and/or low strain rates. The internal relationship between the flow stress and processing parameters was built by the constitutive equations embracing a parameter of Z/A, where the activation energy for hot deformation is 351.539 kJ/mol and the stress exponent is 4.233. In addition, the DRX evolution and the critical conditions for starting DRX were discussed. Then the model of the DRX volume fraction was developed with satisfied predictability. Finally, the processing maps at different strains were constructed according to the dynamic material model. The safety domains and flow instability regions were identified. The best processing parameters of this steel are within the temperature range of 1323–1423 K and strain rate range of 0.06–1 s−1.

  16. 3D video-based deformation measurement of the pelvis bone under dynamic cyclic loading

    Directory of Open Access Journals (Sweden)

    Freslier Marie

    2011-07-01

    Full Text Available Abstract Background Dynamic three-dimensional (3D deformation of the pelvic bones is a crucial factor in the successful design and longevity of complex orthopaedic oncological implants. The current solutions are often not very promising for the patient; thus it would be interesting to measure the dynamic 3D-deformation of the whole pelvic bone in order to get a more realistic dataset for a better implant design. Therefore we hypothesis if it would be possible to combine a material testing machine with a 3D video motion capturing system, used in clinical gait analysis, to measure the sub millimetre deformation of a whole pelvis specimen. Method A pelvis specimen was placed in a standing position on a material testing machine. Passive reflective markers, traceable by the 3D video motion capturing system, were fixed to the bony surface of the pelvis specimen. While applying a dynamic sinusoidal load the 3D-movement of the markers was recorded by the cameras and afterwards the 3D-deformation of the pelvis specimen was computed. The accuracy of the 3D-movement of the markers was verified with 3D-displacement curve with a step function using a manual driven 3D micro-motion-stage. Results The resulting accuracy of the measurement system depended on the number of cameras tracking a marker. The noise level for a marker seen by two cameras was during the stationary phase of the calibration procedure ± 0.036 mm, and ± 0.022 mm if tracked by 6 cameras. The detectable 3D-movement performed by the 3D-micro-motion-stage was smaller than the noise level of the 3D-video motion capturing system. Therefore the limiting factor of the setup was the noise level, which resulted in a measurement accuracy for the dynamic test setup of ± 0.036 mm. Conclusion This 3D test setup opens new possibilities in dynamic testing of wide range materials, like anatomical specimens, biomaterials, and its combinations. The resulting 3D-deformation dataset can be used for a better

  17. Evaluation of Dynamic Deformation Behaviors in Metallic Materials under High Strain-Rates Using Taylor Bar Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyung Oh; Shin, Hyung Seop [Andong National Univ., Andong (Korea, Republic of)

    2016-09-15

    To ensure the reliability and safety of various mechanical systems in accordance with their high-speed usage, it is necessary to evaluate the dynamic deformation behavior of structural materials under impact load. However, it is not easy to understand the dynamic deformation behavior of the structural materials using experimental methods in the high strain-rate range exceeding 10{sup 4} s{sup -1}. In this study, the Taylor bar impact test was conducted to investigate the dynamic deformation behavior of metallic materials in the high strain-rate region, using a high-speed photography system. Numerical analysis of the Taylor bar impact test was performed using AUTODYN S/W. The results of the analysis were compared with the experimental results, and the material behavior in the high strain-rate region was discussed.

  18. Microstructure and annealing behavior of a modified 9Cr−1Mo steel after dynamic plastic deformation to different strains

    International Nuclear Information System (INIS)

    Zhang, Z.B.; Mishin, O.V.; Tao, N.R.; Pantleon, W.

    2015-01-01

    The microstructure, hardness and tensile properties of a modified 9Cr−1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level of strength can be achieved by DPD to a strain of 2.3, and that the microstructure at this strain contains a large fraction of high angle boundaries. The ductility of the DPD processed steel is however low. Considerable structural coarsening of the deformed microstructure without pronounced recrystallization takes place during annealing of the low-strain and high-strain samples for 1 h at 650 °C and 600 °C, respectively. Both coarsening and partial recrystallization occur in the high-strain sample during annealing at 650 °C for 1 h. For this sample, it is found that whereas coarsening alone results in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength

  19. Deformation induced dynamic recrystallization and precipitation strengthening in an Mg−Zn−Mn alloy processed by high strain rate rolling

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jimiao; Song, Min [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yan, Hongge [School of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Yang, Chao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Ni, Song, E-mail: song.ni@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2016-11-15

    The microstructure of a high strain-rate rolled Mg−Zn−Mn alloy was investigated by transmission electron microscopy to understand the relationship between the microstructure and mechanical properties. The results indicate that: (1) a bimodal microstructure consisting of the fine dynamic recrystallized grains and the largely deformed grains was formed; (2) a large number of dynamic precipitates including plate-like MgZn{sub 2} phase, spherical MgZn{sub 2} phase and spherical Mn particles distribute uniformly in the grains; (3) the major facets of many plate-like MgZn{sub 2} precipitates deviated several to tens of degrees (3°–30°) from the matrix basal plane. It has been shown that the high strength of the alloy is attributed to the formation of the bimodal microstructure, dynamic precipitation, and the interaction between the dislocations and the dynamic precipitates. - Highlights: •A bimodal microstructure was formed in a high strain-rate rolled Mg−Zn−Mn alloy. •Plate-like MgZn{sub 2}, spherical MgZn{sub 2} and spherical Mn phases were observed. •The major facet of the plate-like MgZn{sub 2} deviated from the matrix basal plane.

  20. Dynamics of deformation and pinch-off of a migrating compound droplet in a tube

    Science.gov (United States)

    Borthakur, Manash Pratim; Biswas, Gautam; Bandyopadhyay, Dipankar

    2018-04-01

    A computational fluid dynamic investigation has been carried out to study the dynamics of a moving compound droplet inside a tube. The motions associated with such a droplet is uncovered by solving the axisymmetric Navier-Stokes equations in which the spatiotemporal evolution of a pair of twin-deformable interfaces has been tracked employing the volume-of-fluid approach. The deformations at the interfaces and their subsequent dynamics are found to be stimulated by the subtle interplay between the capillary and viscous forces. The simulations uncover that when a compound drop composed of concentric inner and outer interfaces migrates inside a tube, initially in the unsteady domain of evolution, the inner drop shifts away from the concentric position to reach a morphology of constant eccentricity at the steady state. The coupled motions of the droplets in the unsteady regime causes a continuous deformation of the inner and outer interfaces to obtain a configuration with a (an) prolate (oblate) shaped outer (inner) interface. The magnitudes of capillary number and viscosity ratio are found to have significant influence on the temporal evolution of the interfacial deformations as well as the eccentricity of the droplets. Further, the simulations uncover that, following the asymmetric deformation of the interfaces, the migrating compound droplet can undergo an uncommon breakup stimulated by a rather irregular pinch-off of the outer shell. The breakup is found to initiate with the thinning of the outer shell followed by the pinch-off. Interestingly, the kinetics of the thinning of outer shell is found to follow two distinct power-law regimes—a swiftly thinning stage at the onset followed by a rate limiting stage before pinch-off, which eventually leads to the uncommon breakup of the migrating compound droplets.

  1. Dynamic behavior and microstructural evolution during moderate to high strain rate hot deformation of a Fe–Ni–Cr alloy (alloy 800H)

    International Nuclear Information System (INIS)

    Cao, Yu; Di, Hongshuang; Zhang, Jiecen; Yang, Yaohua

    2015-01-01

    The objective of the study is to fundamentally understand the dynamic behavior of alloy 800H at moderate to high strain rate using hot compression tests and propose nucleation mechanism associated with dynamic crystallization (DRX). We firstly investigated the dynamic behavior of alloy 800H with industrial scale strain rates using hot compression tests and adiabatic correction was performed to correct as-measured flow curves. Secondly, a Johnson–Cook model was established by using the corrected data and could give a precise prediction of elevated temperature flow stress for the studied alloy. Finally, the nucleation mechanism of DRX grains at high strain rates was studied. The results showed that the predominant nucleation mechanism for DRX is the formation of “bulge” at parent grain boundary. Additionally, the fragmentation of original grain at low deformation temperatures and the twinning near the bulged regions at high deformation temperatures also accelerate the DRX process

  2. Dynamic behavior and microstructural evolution during moderate to high strain rate hot deformation of a Fe-Ni-Cr alloy (alloy 800H)

    Science.gov (United States)

    Cao, Yu; Di, Hongshuang; Zhang, Jiecen; Yang, Yaohua

    2015-01-01

    The objective of the study is to fundamentally understand the dynamic behavior of alloy 800H at moderate to high strain rate using hot compression tests and propose nucleation mechanism associated with dynamic crystallization (DRX). We firstly investigated the dynamic behavior of alloy 800H with industrial scale strain rates using hot compression tests and adiabatic correction was performed to correct as-measured flow curves. Secondly, a Johnson-Cook model was established by using the corrected data and could give a precise prediction of elevated temperature flow stress for the studied alloy. Finally, the nucleation mechanism of DRX grains at high strain rates was studied. The results showed that the predominant nucleation mechanism for DRX is the formation of "bulge" at parent grain boundary. Additionally, the fragmentation of original grain at low deformation temperatures and the twinning near the bulged regions at high deformation temperatures also accelerate the DRX process.

  3. Deformation compensation in dynamic tomography; Compensation de deformations en tomographie dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Desbat, L. [Universite Joseph Fourier, UMR CNRS 5525, 38 - Grenoble (France); Roux, S. [Universite Joseph Fourier, TIMC-IMAG, In3S, Faculte de Medecine, 38 - Grenoble (France)]|[CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France); Grangeat, P. [CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France)

    2005-07-01

    This work is a contribution to the compensation of motion in tomography. New classes of deformation are proposed, that compensates analytically by an algorithm of a F.B.P. type reconstruction. This work makes a generalisation of the known results for affine deformations, in parallel geometry and fan-beam, to deformation classes of infinite dimension able to include strong non linearities. (N.C.)

  4. Dynamic actuation of a novel laser-processed NiTi linear actuator

    International Nuclear Information System (INIS)

    Pequegnat, A; Daly, M; Wang, J; Zhou, Y; Khan, M I

    2012-01-01

    A novel laser processing technique, capable of locally modifying the shape memory effect, was applied to enhance the functionality of a NiTi linear actuator. By altering local transformation temperatures, an additional memory was imparted into a monolithic NiTi wire to enable dynamic actuation via controlled resistive heating. Characterizations of the actuator load, displacement and cyclic properties were conducted using a custom-built spring-biased test set-up. Monotonic tensile testing was also implemented to characterize the deformation behaviour of the martensite phase. Observed differences in the deformation behaviour of laser-processed material were found to affect the magnitude of the active strain. Furthermore, residual strain during cyclic actuation testing was found to stabilize after 150 cycles while the recoverable strain remained constant. This laser-processed actuator will allow for the realization of new applications and improved control methods for shape memory alloys. (paper)

  5. Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces

    Science.gov (United States)

    Tang, Huiying; Dong, Huimin; Liu, Zhanwei

    2017-11-01

    Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.

  6. A new dynamic recrystallisation model of an extruded Al-Cu-Li alloy during high-temperature deformation

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo; Deng, Lei; Wang, Xinyun, E-mail: wangxy_hust@163.com

    2015-02-11

    The high-temperature deformation behaviour and microstructure evolution of an extruded Al-Cu-Li alloy were investigated by compression tests conducted at various temperatures (613, 673 and 733 K) with various strain rates (0.001, 0.01, and 0.1 s{sup -1}). The results indicated that the deformation activation energy increased from 208.7 kJ/mol to 255.7 kJ/mol with an increase in strain from 0.1 to 0.7. The electron backscatter diffraction maps indicated that a dynamic recrystallisation occurred during the high-temperature deformation. Two types of recrystallisation mechanisms, grain boundary bulging and a grain boundary transformation from low misorientation to high misorientation, were considered as the mechanisms for controlling the formation of the recrystallised grains. A new dynamic recrystallisation model containing these two mechanisms was proposed to describe the microstructure evolution of the extruded Al-Cu-Li alloy. At the early stage of the deformation, the recrystallised grains were formed by grain boundary bulging along the original grain boundaries. With increasing strain, recrystallised grains were gradually generated in the deformed grains due to the transformation from low angle boundaries to high angle boundaries.

  7. Dynamics of deforming drops

    OpenAIRE

    Bouwhuis, W.

    2015-01-01

    Liquid drops play a dominant role in numerous industrial applications, such as spray coating, spray painting, inkjet printing, lithography processes, and spraying/sprinkling in agriculture or gardening. In all of these examples, the generation, flight, impact, and spreading of drops are separate stages of the corresponding industrial processes, which are all thoroughly studied for many years. This thesis focuses on drop dynamics, impact phenomena, Leidenfrost drops, and pouring flows. Based o...

  8. Hot Deformation Behavior and Processing Maps of Diamond/Cu Composites

    Science.gov (United States)

    Zhang, Hongdi; Liu, Yue; Zhang, Fan; Zhang, Di; Zhu, Hanxing; Fan, Tongxiang

    2018-06-01

    The hot deformation behaviors of 50 vol pct uncoated and Cr-coated diamond/Cu composites were investigated using hot isothermal compression tests under the temperature and strain rate ranging from 1073 K to 1273 K (800 °C to 1000 °C) and from 0.001 to 5 s-1, respectively. Dynamic recrystallization was determined to be the primary restoration mechanism during deformation. The Cr3C2 coating enhanced the interfacial bonding and resulted in a larger flow stress for the Cr-coated diamond/Cu composites. Moreover, the enhanced interfacial affinity led to a higher activation energy for the Cr-coated diamond/Cu composites (238 kJ/mol) than for their uncoated counterparts (205 kJ/mol). The strain-rate-dependent constitutive equations of the diamond/Cu composites were derived based on the Arrhenius model, and a high correlation ( R = 0.99) was observed between the calculated flow stresses and experimental data. With the help of processing maps, hot extrusions were realized at 1123 K/0.01 s-1 and 1153 K/0.01 s-1 (850 °C/0.01 s-1 and 880 °C/0.01 s-1) for the uncoated and coated diamond/Cu composites, respectively. The combination of interface optimization and hot extrusion led to increases of the density and thermal conductivity, thereby providing a promising route for the fabrication of diamond/Cu composites.

  9. Simulation of Stamping Process of Automotive Panel Considering Die Deformation

    International Nuclear Information System (INIS)

    Keum, Y.T.; Ahn, I.H.; Lee, I.K.; Song, M.H.; Kwon, S.O.; Park, J.S.

    2005-01-01

    In order to see the effect of die deformation on the forming of sheet metals, the draw-ins, strains, and spring-backs of an automotive fender panels are numerically simulated considering the die deformation, which is found by the simultaneous structural analysis of press and dies. By coupling the forming analysis and the structural analysis, the die deformation is simultaneously taken into account in the forming process. Furthermore, for the consideration of load difference transferred among the upper die, punch, and blank holder due to the changes in sheet thickness, the gap elements are employed instead of the blank sheet in the structural analysis. The numerical simulation results of an automotive fender draw panel are compared with the measurements. The comparison of the forming and spring-back analysis results between the rigid die and the deformed die shows that the deformed tool provides more accurate forming and spring-back prediction

  10. Assessment of stability during gait in patients with spinal deformity-A preliminary analysis using the dynamic stability margin.

    Science.gov (United States)

    Simon, Anne-Laure; Lugade, Vipul; Bernhardt, Kathie; Larson, A Noelle; Kaufman, Kenton

    2017-06-01

    Daily living activities are dynamic, requiring spinal motion through space. Current assessment of spinal deformities is based on static measurements from full-spine standing radiographs. Tools to assess dynamic stability during gait might be useful to enhance the standard evaluation. The aim of this study was to evaluate gait dynamic imbalance in patients with spinal deformity using the dynamic stability margin (DSM). Twelve normal subjects and 17 patients with spinal deformity were prospectively recruited. A kinematic 3D gait analysis was performed for the control group (CG) and the spinal deformity group (SDG). The DSM (distance between the extrapolated center of mass and the base of support) and time-distance parameters were calculated for the right and left side during gait. The relationship between DSM and step length was assessed using three variables: gait stability, symmetry, and consistency. Variables' accuracy was validated by a discriminant analysis. Patients with spinal deformity exhibited gait instability according to the DSM (0.25m versus 0.31m) with decreased velocity (1.1ms -1 versus 1.3ms -1 ) and decreased step length (0.32m versus 0.38m). According to the discriminant analysis, gait stability was the more accurate variable (area under the curve AUC=0.98) followed by gait symmetry and consistency. However, gait consistency showed 100% of specificity, sensitivity, and accuracy of precision. The DSM showed that patients with spinal malalignment exhibit decreased gait stability, symmetry, and consistency besides gait time-distance parameter changes. Additional work is required to determine how to apply the DSM for preoperative and postoperative spinal deformity management. Copyright © 2017. Published by Elsevier B.V.

  11. A novel unified dislocation density-based model for hot deformation behavior of a nickel-based superalloy under dynamic recrystallization conditions

    International Nuclear Information System (INIS)

    Lin, Y.C.; Wen, Dong-Xu; Chen, Xiao-Min; Chen, Ming-Song

    2016-01-01

    In this study, a novel unified dislocation density-based model is presented for characterizing hot deformation behaviors in a nickel-based superalloy under dynamic recrystallization (DRX) conditions. In the Kocks-Mecking model, a new softening item is proposed to represent the impacts of DRX behavior on dislocation density evolution. The grain size evolution and DRX kinetics are incorporated into the developed model. Material parameters of the developed model are calibrated by a derivative-free method of MATLAB software. Comparisons between experimental and predicted results confirm that the developed unified dislocation density-based model can nicely reproduce hot deformation behavior, DRX kinetics, and grain size evolution in wide scope of initial grain size, strain rate, and deformation temperature. Moreover, the developed unified dislocation density-based model is well employed to analyze the time-variant forming processes of the studied superalloy. (orig.)

  12. A novel unified dislocation density-based model for hot deformation behavior of a nickel-based superalloy under dynamic recrystallization conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.C. [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); Light Alloy Research Institute of Central South University, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China); Wen, Dong-Xu; Chen, Xiao-Min [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); Chen, Ming-Song [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China)

    2016-09-15

    In this study, a novel unified dislocation density-based model is presented for characterizing hot deformation behaviors in a nickel-based superalloy under dynamic recrystallization (DRX) conditions. In the Kocks-Mecking model, a new softening item is proposed to represent the impacts of DRX behavior on dislocation density evolution. The grain size evolution and DRX kinetics are incorporated into the developed model. Material parameters of the developed model are calibrated by a derivative-free method of MATLAB software. Comparisons between experimental and predicted results confirm that the developed unified dislocation density-based model can nicely reproduce hot deformation behavior, DRX kinetics, and grain size evolution in wide scope of initial grain size, strain rate, and deformation temperature. Moreover, the developed unified dislocation density-based model is well employed to analyze the time-variant forming processes of the studied superalloy. (orig.)

  13. Deformation-induced structural changes of amorphous Ni0.5Zr0.5 in molecular-dynamic simulations

    International Nuclear Information System (INIS)

    Brinkmann, K.

    2006-01-01

    The present work investigates the plastic deformation of metallic glasses by the aid of molecular-dynamic simulations. The parameters for the model system are adapted to those for a NiZr-alloy. In particular, the composition Ni 0.5 Zr 0.5 is used. The analyzed deformation simulations are conducted for small systems with 5184 atoms and large systems with 17500 atoms in a periodic simulation cell. The deformation simulations of pre-deformed samples are carried out either at constant shear-rate or at constant load, the latter mode modeling a creep experiment. Stress-strain curves for pre-deformed samples show a less pronounced stress-overshoot phenomenon. Creep-simulations of samples deformed beyond the yield region indicate a drastically reduced viscosity in these systems when compared to samples pre-deformed only up to the linear regime of the stress-strain curve. From analyzing the local atomic topology it is found that the transition from the highly viscous, hard-to-deform state of the undeformed or only weakly strained system into the easy-to-deform flow-state, present if the system is strained far beyond the yielding regime of the stress-strain curve, is connected with the formation of a region containing atoms with massive changes in their topology which is oriented along a diagonal plane of the simulation cell. The degree of localization of these deformation bands is influenced by temperature and shear-rate. In subsequent deformations of pre-deformed samples the regions with massive changes in the atomic topology are again susceptible to changes in the local atomic topology. By using methods from statistics, a significant difference in the distribution of atomic properties for the group of atoms with massive topology changes on the one hand and the group of atoms without changes in their topology on the other gets quantitatively ascertainable. From the differences in structural properties, e.g. potential energy, cage volumes, angular order parameters or atomic

  14. In situ diffraction profile analysis during tensile deformation motivated by molecular dynamics

    International Nuclear Information System (INIS)

    Van Swygenhoven, H.; Budrovic, Z.; Derlet, P.M.; Froseth, A.G.; Van Petegem, S.

    2005-01-01

    Molecular dynamics simulations can provide insight into the slip mechanism at the atomic scale and suggest that in nanocrystalline metals dislocations are nucleated and absorbed by the grain boundaries. However, this technique is limited by very short simulation times. Using suggestions from molecular dynamics, we have developed a new in situ X-ray diffraction technique wherein the profile analysis of several Bragg diffraction peaks during tensile deformation is possible. Combining experiment and careful structural analysis the results confirm the suggestions from atomistic simulations

  15. Transmission-lattice based geometric phase analysis for evaluating the dynamic deformation of a liquid surface.

    Science.gov (United States)

    Shi, Wenxiong; Huang, Xianfu; Liu, Zhanwei

    2014-05-05

    Quantitatively measuring a dynamic liquid surface often presents a challenge due to high transparency, fluidity and specular reflection. Here, a novel Transmission-Lattice based Geometric Phase Analysis (TLGPA) method is introduced. In this method, a special lattice is placed underneath a liquid to be tested and, when viewed from above, the phase of the transmission-lattice image is modulated by the deformation of the liquid surface. Combining this with multi-directional Newton iteration algorithms, the dynamic deformation field of the liquid surface can be calculated from the phase variation of a series of transmission-lattice images captured at different moments. The developed method has the advantage of strong self-adaption ability to initial lattice rotational errors and this is discussed in detail. Dynamic 3D ripples formation and propagation was investigated and the results obtained demonstrated the feasibility of the method.

  16. A BHR Composite Network-Based Visualization Method for Deformation Risk Level of Underground Space.

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    Full Text Available This study proposes a visualization processing method for the deformation risk level of underground space. The proposed method is based on a BP-Hopfield-RGB (BHR composite network. Complex environmental factors are integrated in the BP neural network. Dynamic monitoring data are then automatically classified in the Hopfield network. The deformation risk level is combined with the RGB color space model and is displayed visually in real time, after which experiments are conducted with the use of an ultrasonic omnidirectional sensor device for structural deformation monitoring. The proposed method is also compared with some typical methods using a benchmark dataset. Results show that the BHR composite network visualizes the deformation monitoring process in real time and can dynamically indicate dangerous zones.

  17. InSAR Deformation Time Series Processed On-Demand in the Cloud

    Science.gov (United States)

    Horn, W. B.; Weeden, R.; Dimarchi, H.; Arko, S. A.; Hogenson, K.

    2017-12-01

    During this past year, ASF has developed a cloud-based on-demand processing system known as HyP3 (http://hyp3.asf.alaska.edu/), the Hybrid Pluggable Processing Pipeline, for Synthetic Aperture Radar (SAR) data. The system makes it easy for a user who doesn't have the time or inclination to install and use complex SAR processing software to leverage SAR data in their research or operations. One such processing algorithm is generation of a deformation time series product, which is a series of images representing ground displacements over time, which can be computed using a time series of interferometric SAR (InSAR) products. The set of software tools necessary to generate this useful product are difficult to install, configure, and use. Moreover, for a long time series with many images, the processing of just the interferograms can take days. Principally built by three undergraduate students at the ASF DAAC, the deformation time series processing relies the new Amazon Batch service, which enables processing of jobs with complex interconnected dependencies in a straightforward and efficient manner. In the case of generating a deformation time series product from a stack of single-look complex SAR images, the system uses Batch to serialize the up-front processing, interferogram generation, optional tropospheric correction, and deformation time series generation. The most time consuming portion is the interferogram generation, because even for a fairly small stack of images many interferograms need to be processed. By using AWS Batch, the interferograms are all generated in parallel; the entire process completes in hours rather than days. Additionally, the individual interferograms are saved in Amazon's cloud storage, so that when new data is acquired in the stack, an updated time series product can be generated with minimal addiitonal processing. This presentation will focus on the development techniques and enabling technologies that were used in developing the time

  18. On the dynamic mechanical property and deformation mechanism of as-extruded Mg-Sn-Ca alloys under tension

    International Nuclear Information System (INIS)

    Huang, Qiuyan; Pan, Hucheng; Tang, Aitao; Ren, Yuping; Song, Bo; Qin, Gaowu; Zhang, Mingxing; Pan, Fusheng

    2016-01-01

    To further understand the deformation mechanism of magnesium alloys and expand their applications under dynamic conditions, the newly developed Mg-2Sn-1Ca alloy (TX21) is selected as the representative sample and tested under wide loading rate ranging from quasi-static to dynamic level (10"−"3–500/s). Both ultimate tensile strength and elongation of the as-extruded TX21 alloys increase with strain rate. Although twinning is accompanied due to the enhanced activity at higher strain rate, the preferential activation of dislocations is readily clarified and confirmed as the dominant deformation modes. Active interactions of pyramidal dislocations result in the higher strain hardening ability and could be correlated to the obviously positive strain-rate sensitivity for mechanical properties. Moreover, it is observed that the larger grain size and higher content of solute atoms dissolved in matrix would lead to the more active dislocations and twinning formations. The present results would provide insight into further understanding the deformation mechanism under dynamic rate loading and designing Mg alloy suitable for impact conditions.

  19. On the dynamic mechanical property and deformation mechanism of as-extruded Mg-Sn-Ca alloys under tension

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiuyan [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Hucheng [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Tang, Aitao, E-mail: tat@cqu.edu.cn [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Ren, Yuping [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Song, Bo [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Qin, Gaowu, E-mail: qingw@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Zhang, Mingxing [School of Mechanical and Mining Engineering, University of Queensland, St Lucia, QLD 4072 (Australia); Pan, Fusheng [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2016-05-10

    To further understand the deformation mechanism of magnesium alloys and expand their applications under dynamic conditions, the newly developed Mg-2Sn-1Ca alloy (TX21) is selected as the representative sample and tested under wide loading rate ranging from quasi-static to dynamic level (10{sup −3}–500/s). Both ultimate tensile strength and elongation of the as-extruded TX21 alloys increase with strain rate. Although twinning is accompanied due to the enhanced activity at higher strain rate, the preferential activation of dislocations is readily clarified and confirmed as the dominant deformation modes. Active interactions of pyramidal dislocations result in the higher strain hardening ability and could be correlated to the obviously positive strain-rate sensitivity for mechanical properties. Moreover, it is observed that the larger grain size and higher content of solute atoms dissolved in matrix would lead to the more active dislocations and twinning formations. The present results would provide insight into further understanding the deformation mechanism under dynamic rate loading and designing Mg alloy suitable for impact conditions.

  20. How deformation enhances mobility in a polymer glass

    Science.gov (United States)

    Lacks, Daniel

    2013-03-01

    Recent experiments show that deformation of a polymer glass can lead to orders-of-magnitude enhancement in the atomic level dynamics. To determine why this change in dynamics occurs, we carry out molecular dynamics simulations and energy landscape analyses. The simulations address the coarse-grained polystyrene model of Kremer and co-workers, and the dynamics, as quantified by the van Hove function, are examined as the glass undergoes shear deformation. In agreement with experiment, the simulations find that deformation enhances the atomic mobility. The enhanced mobility is shown to arise from two mechanisms: First, active deformation continually reduces barriers for hopping events, and the importance of this mechanism is modulated by the rate of thermally activated transitions between adjacent energy minima. Second, deformation moves the system to higher-energy regions of the energy landscape, characterized by lower barriers. Both mechanisms enhance the dynamics during deformation, and the second mechanism is also relevant after deformation has ceased.

  1. A new methodology to simulate subglacial deformation of water saturated granular material

    DEFF Research Database (Denmark)

    Damsgaard, Anders; Egholm, David Lundbek; Piotrowski, Jan A.

    2015-01-01

    The dynamics of glaciers are to a large degree governed by processes operating at the ice-bed interface, and one of the primary mechanisms of glacier flow over soft unconsolidated sediments is subglacial deformation. However, it has proven difficult to constrain the mechanical response of subglac......The dynamics of glaciers are to a large degree governed by processes operating at the ice-bed interface, and one of the primary mechanisms of glacier flow over soft unconsolidated sediments is subglacial deformation. However, it has proven difficult to constrain the mechanical response...... or weakening components, depending on the rate of deformation, the material state, clay mineral content, and the hydrological properties of the material. The influence of the fluid phase is negligible when relatively permeable sediment is deformed. However, by reducing the local permeability, fast deformation...... can cause variations in the pore-fluid pressure. The pressure variations weaken or strengthen the granular phase, and in turn influence the distribution of shear strain with depth. In permeable sediments the strain distribution is governed by the grain-size distribution and effective normal stress...

  2. EBSD Analysis of Deformed and Partially Recrystallized Microstructures in ECAE-Processed Copper

    DEFF Research Database (Denmark)

    Mishin, Oleg; Bowen, Jacob R.; Godfrey, A.

    2012-01-01

    The deformed microstructure and recrystallization behavior of copper samples processed using equal channel angular extrusion (ECAE) have been investigated. The heavily deformed microstructure was found to be non-uniform through the sample thickness and to vary in a manner consistent with the non...

  3. Dynamic visual cryptography on deformable finite element grids

    Science.gov (United States)

    Aleksiene, S.; Vaidelys, M.; Aleksa, A.; Ragulskis, M.

    2017-07-01

    Dynamic visual cryptography scheme based on time averaged moiré fringes on deformable finite element grids is introduced in this paper. A predefined Eigenshape function is used for the selection of the pitch of the moiré grating. The relationship between the pitch of moiré grating, the roots of the zero order Bessel function of the first kind and the amplitude of harmonic oscillations is derived and validated by computational experiments. Phase regularization algorithm is used in the entire area of the cover image in order to embed the secret image and to avoid large fluctuations of the moiré grating. Computational simulations are used to demonstrate the efficiency and the applicability of the proposed image hiding technique.

  4. Microstructure and High Temperature Plastic Deformation Behavior of Al-12Si Based Alloy Fabricated by an Electromagnetic Casting and Stirring Process

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Kyung-Soo; Roh, Heung-Ryeol; Kim, Mok-Soon [Inha University, Incheon (Korea, Republic of); Kim, Jong-Ho; Park, Joon-Pyo [Research Institute of Industrial Science and Technology, Pohang (Korea, Republic of)

    2017-06-15

    An as-received EMC/S (electromagnetic casting and stirring)-processed Al-12Si based alloy billet was homogenized to examine its microstructure and high temperature plastic deformation behavior, using compressive tests over the temperature range from 623 to 743 K and a strain rate range from 1.0×10{sup -3} to 1.0×10{sup 0}s{sup -1}. The results were compared with samples processed by the direct chill casting (DC) method. The fraction of equiaxed structure for the as-received EMC/S billet(41%) was much higher than that of the as-received DC billet(6 %). All true stress – true strain curves acquired from the compressive tests exhibited a peak stress at the initial stage of plastic deformation. Flow stress showed a steady state region after the appearance of peak stress with increasing strain. The peak stress decreased with increasing temperature at a given strain rate and a decreasing strain rate at a given temperature. A constitutive equation was made for each alloy, which could be used to predict the peak stress. A recrystallized grain structure was observed in all the deformed specimens, indicating that dynamic recrystallization is the predominant mechanism during high temperature plastic deformation of both the homogenized EMC/S and DC-processed Al-12Si based alloys.

  5. Microstructure and Deformation Response of TRIP-Steel Syntactic Foams to Quasi-Static and Dynamic Compressive Loads

    Science.gov (United States)

    Ehinger, David; Weise, Jörg; Baumeister, Joachim; Funk, Alexander; Krüger, Lutz; Martin, Ulrich

    2018-01-01

    The implementation of hollow S60HS glass microspheres and Fillite 106 cenospheres in a martensitically transformable AISI 304L stainless steel matrix was realized by means of metal injection molding of feedstock with varying fractions of the filler material. The so-called TRIP-steel syntactic foams were studied with respect to their behavior under quasi-static compression and dynamic impact loading. The interplay between matrix material behavior and foam structure was discussed in relation to the findings of micro-structural investigations, electron back scatter diffraction EBSD phase analyses and magnetic measurements. During processing, the cenospheres remained relatively stable retaining their shape while the glass microspheres underwent disintegration associated with the formation of pre-cracked irregular inclusions. Consequently, the AISI 304L/Fillite 106 syntactic foams exhibited a higher compression stress level and energy absorption capability as compared to the S60HS-containing variants. The α′ -martensite kinetic of the steel matrix was significantly influenced by material composition, strain rate and arising deformation temperature. The highest ferromagnetic α′-martensite phase fraction was detected for the AISI 304L/S60HS batches and the lowest for the TRIP-steel bulk material. Quasi-adiabatic sample heating, a gradual decrease in strain rate and an enhanced degree of damage controlled the mechanical deformation response of the studied syntactic foams under dynamic impact loading. PMID:29695107

  6. An Improved Lubrication Model between Piston Rings and Cylinder Liners with Consideration of Liner Dynamic Deformations

    Directory of Open Access Journals (Sweden)

    Guoxing Li

    2017-12-01

    Full Text Available The friction pair of piston rings and cylinder liner is one of the most important friction couplings in an internal combustion engine. It influences engine efficiency and service life. Under the excitation of piston slaps, the dynamic deformation of cylinder liner is close to the surface roughness magnitudes, which can affect the friction and lubrication performance between the piston rings and cylinder assemblies. To investigate the potential influences of structural deformations to tribological behaviours of cylinder assemblies, the dynamic deformation of the inner surface due to pistons slaps is obtained by dynamic simulations, and then coupled into an improved lubrication model. Different from the traditional lubrication model which takes the pressure stress factor and shear stress factor to be constant, the model proposed in this paper calculated these factors in real time using numerical integration to achieve a more realistic simulation. Based on the improved piston rings and cylinder liner lubrication model, the minimum oil film thickness and friction force curves are obtained for an entire work cycle. It shows that the friction force obtained from the improved model manifests clear oscillations in each stoke, which is different from the smoothed profiles predicted traditionally. Moreover, the average amplitude of the friction forces also shows clear reduction.

  7. In-process, non-destructive multimodal dynamic testing of high-speed composite rotors

    Science.gov (United States)

    Kuschmierz, Robert; Filippatos, Angelos; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgern W.; Fischer, Andreas

    2014-03-01

    Fibre reinforced plastic (FRP) rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency, lifetime and loading limits. Due to complex rotor structures, high anisotropy and non-linear behavior of FRP under dynamic loads, an in-process measurement system is necessary to monitor and to investigate the evolution of damages under real operation conditions. A non-invasive, optical laser Doppler distance sensor measurement system is applied to determine the biaxial deformation of a bladed FRP rotor with micron uncertainty as well as the tangential blade vibrations at surface speeds above 300 m/s. The laser Doppler distance sensor is applicable under vacuum conditions. Measurements at varying loading conditions are used to determine elastic and plastic deformations. Furthermore they allow to determine hysteresis, fatigue, Eigenfrequency shifts and loading limits. The deformation measurements show a highly anisotropic and nonlinear behavior and offer a deeper understanding of the damage evolution in FRP rotors. The experimental results are used to validate and to calibrate a simulation model of the deformation. The simulation combines finite element analysis and a damage mechanics model. The combination of simulation and measurement system enables the monitoring and prediction of damage evolutions of FRP rotors in process.

  8. Deformed Materials: Towards a Theory of Materials Morphology Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sethna, James P [Laboratory of Atomic and Solid State Physics, Cornell University

    2017-06-28

    This grant supported work on the response of crystals to external stress. Our primary work described how disordered structural materials break in two (statistical models of fracture in disordered materials), studied models of deformation bursts (avalanches) that mediate deformation on the microscale, and developed continuum dislocation dynamics models for plastic deformation (as when scooping ice cream bends a spoon, Fig. 9). Glass is brittle -- it breaks with almost atomically smooth fracture surfaces. Many metals are ductile -- when they break, the fracture surface is locally sheared and stretched, and it is this damage that makes them hard to break. Bone and seashells are made of brittle material, but they are strong because they are disordered -- lots of little cracks form as they are sheared and near the fracture surface, diluting the external force. We have studied materials like bone and seashells using simulations, mathematical tools, and statistical mechanics models from physics. In particular, we studied the extreme values of fracture strengths (how likely will a beam in a bridge break far below its design strength), and found that the traditional engineering tools could be improved greatly. We also studied fascinating crackling-noise precursors -- systems which formed microcracks of a broad range of sizes before they broke. Ductile metals under stress undergo irreversible plastic deformation -- the planes of atoms must slide across one another (through the motion of dislocations) to change the overall shape in response to the external force. Microscopically, the dislocations in crystals move in bursts of a broad range of sizes (termed 'avalanches' in the statistical mechanics community, whose motion is deemed 'crackling noise'). In this grant period, we resolved a longstanding mystery about the average shape of avalanches of fixed duration (using tools related to an emergent scale invariance), we developed the fundamental theory

  9. Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien; Keall, Paul J., E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, University of Sydney, NSW 2006 (Australia); Booth, Jeremy T. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia)

    2014-06-15

    Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real time tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first

  10. Irreversible thermodynamics models and constitutive equations of the irradiation induced deformation and damage accumulating processes

    International Nuclear Information System (INIS)

    Wassilew, C.

    1989-11-01

    This report gives an overall evaluation of several in-reactor deformation and creep-rupture experiments performed in BR-2, FFTF, and Rapsodie on pressurised tubes of the stabilized austenitic stainless steels 1.4970, 1.4981, 1.4988, and the nickel base alloy Hastelloy-X. The irradiation induced deformation processes observed in the components operating in a neutron environment can be divided into two main groups: 1. volume conserving creep and 2. volumetric swelling. Since the observed deformation as well as damage accumulating phenomena are caused by the same constrained generated and free disposable point defects and helium atoms, it is obvious and advisable to analyze, and to model simultaneously the ensemble of the elementary mechanisms and processes effective at the same time. Phenomenological models based on the thermodynamics of irreversible processes have been developed, with the aim of: 1. grasping the partial relationships between the external variables and the response functions (creep, swelling, creep driven swelling, and time to rupture), 2. fathoming the rate-controlling mechanisms, 3. providing insight into the structural details and changes occurring during the deformation and the damage accumulating processes, 4. integrating the damage accumulating processes comprehensively, and 5. formulating the constitutive equations required to describe the elementary processes that generate plastic deformations as well as damage accumulation. (orig./MM)

  11. Frobenius–Perron eigenstates in deformed microdisk cavities: non-Hermitian physics and asymmetric backscattering in ray dynamics

    International Nuclear Information System (INIS)

    Kullig, Julius; Wiersig, Jan

    2016-01-01

    In optical microdisk cavities with boundary deformations the backscattering between clockwise and counter-clockwise propagating waves is in general asymmetric. The striking consequence of this asymmetry is that these apparently weakly open systems show pronounced non-Hermitian phenomena. The optical modes appear in non-orthogonal pairs, where both modes copropagate in a preferred sense of rotation, i.e. the modes exhibit a finite chirality. Full asymmetry in the backscattering results in a non-Hermitian degeneracy (exceptional point) where the deviation from closed system evolution is strongest. We study the effects of asymmetric backscattering in ray dynamics. For this purpose, we construct a finite approximation of the Frobenius–Perron operator for deformed microdisk cavities, which describes the dynamics of intensities in phase space. Eigenstates of the Frobenius–Perron operator show nice analogies to optical modes: they come in non-orthogonal copropagating pairs and have a finite chirality. We introduce a new cavity system with a smooth asymmetric boundary deformation where we demonstrate our results and we illustrate the main aspects with the help of a simple analytically solvable 1D model. (paper)

  12. Influence of thermally activated processes on the deformation behavior during low temperature ECAP

    Science.gov (United States)

    Fritsch, S.; Scholze, M.; F-X Wagner, M.

    2016-03-01

    High strength aluminum alloys are generally hard to deform. Therefore, the application of conventional severe plastic deformation methods to generate ultrafine-grained microstructures and to further increase strength is considerably limited. In this study, we consider low temperature deformation in a custom-built, cooled equal channel angular pressing (ECAP) tool (internal angle 90°) as an alternative approach to severely plastically deform a 7075 aluminum alloy. To document the maximum improvement of mechanical properties, these alloys are initially deformed from a solid solution heat-treated condition. We characterize the mechanical behavior and the microstructure of the coarse grained initial material at different low temperatures, and we analyze how a tendency for the PLC effect and the strain-hardening rate affect the formability during subsequent severe plastic deformation at low temperatures. We then discuss how the deformation temperature and velocity influence the occurrence of PLC effects and the homogeneity of the deformed ECAP billets. Besides the mechanical properties and these microstructural changes, we discuss technologically relevant processing parameters (such as pressing forces) and practical limitations, as well as changes in fracture behavior of the low temperature deformed materials as a function of deformation temperature.

  13. Report on Microgravity Experiments of Dynamic Surface Deformation Effects on Marangoni Instability in High-Prandtl-Number Liquid Bridges

    Science.gov (United States)

    Yano, Taishi; Nishino, Koichi; Matsumoto, Satoshi; Ueno, Ichiro; Komiya, Atsuki; Kamotani, Yasuhiro; Imaishi, Nobuyuki

    2018-04-01

    This paper reports an overview and some important results of microgravity experiments called Dynamic Surf, which have been conducted on board the International Space Station from 2013 to 2016. The present project mainly focuses on the relations between the Marangoni instability in a high-Prandtl-number (Pr= 67 and 112) liquid bridge and the dynamic free surface deformation (DSD) as well as the interfacial heat transfer. The dynamic free surface deformations of large-scale liquid bridges (say, for diameters greater than 10 mm) are measured with good accuracy by an optical imaging technique. It is found that there are two causes of the dynamic free surface deformation in the present study: the first is the time-dependent flow behavior inside the liquid bridge due to the Marangoni instability, and the second is the external disturbance due to the residual acceleration of gravity, i.e., g-jitter. The axial distributions of DSD along the free surface are measured for several conditions. The critical parameters for the onset of oscillatory Marangoni convection are also measured for various aspect ratios (i.e., relative height to the diameter) of the liquid bridge and various thermal boundary conditions. The characteristics of DSD and the onset conditions of instability are discussed in this paper.

  14. Numerical simulation of deformation of dynamic mesh in the human vocal tract model

    Directory of Open Access Journals (Sweden)

    Řidký Václav

    2015-01-01

    Full Text Available Numerical simulation of the acoustic signal generation in the human vocal tract is a very complex problem. The computational mesh is not static; it is deformed due to vibration of vocal folds. Movement of vocal folds is in this case prescribed as function of translation and rotation. A new boundary condition for the 2DOF motion of the vocal folds was implemented in OpenFOAM, an open-source software package based on finite volume method Work is focused on the dynamic mesh and deformation of structured meshes in the computation a package OpenFOAM. These methods are compared with focus onquality of the mesh (non-orthogonality, aspect ratio and skewness.

  15. q-Deformed nonlinear maps

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 3 ... Keywords. Nonlinear dynamics; logistic map; -deformation; Tsallis statistics. ... As a specific example, a -deformation procedure is applied to the logistic map. Compared ...

  16. Controlling microstructure and texture in magnesium alloy sheet by shear-based deformation processing

    Science.gov (United States)

    Sagapuram, Dinakar

    Application of lightweight Mg sheet is limited by its low workability, both in production of sheet (typically by multistep hot and cold-rolling) and forming of sheet into components. Large strain extrusion machining (LSEM), a constrained chip formation process, is used to create Mg alloy AZ31B sheet in a single deformation step. The deformation in LSEM is shown to be intense simple shear that is confined to a narrow zone, which results in significant deformation-induced heating up to ~ 200°C and reduces the need for pre-heating to realize continuous sheet forms. This study focuses on the texture and microstructure development in the sheet processed by LSEM. Interestingly, deep, highly twinned steady-state layer develops in the workpiece subsurface due to the compressive field ahead of the shear zone. The shear deformation, in conjunction with this pre-deformed twinned layer, results in tilted-basal textures in the sheet with basal planes tilted well away from the surface. These textures are significantly different from those in rolled sheet, where basal planes are nearly parallel to the surface. By controlling the strain path, the basal plane inclination from the surface could be varied in the range of 32-53°. B-fiber (basal plane parallel to LSEM shear plane), associated with basal slip, is the major texture component in the sheet. An additional minor C2-fiber component appears above 250°C due to the thermal activation of pyramidal slip. Together with these textures, microstructure ranges from severely cold-worked to (dynamically) recrystallized type, with the corresponding grain sizes varying from ultrafine- (~ 200 nm) to fine- (2 mum) grained. Small-scale limiting dome height (LDH) confirmed enhanced formability (~ 50% increase in LDH) of LSEM sheet over the conventional rolled sheet. Premature, twinning-driven shear fractures are observed in the rolled sheet with the basal texture. In contrast, LSEM sheet with a tilted-basal texture favorably oriented for

  17. Studies on the optimization of deformation processed metal metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Tim W. [Iowa State Univ., Ames, IA (United States)

    1994-01-04

    A methodology for the production of deformation processed metal metal matrix composites from hyper-eutectic copper-chromium alloys was developed. This methodology was derived from a basic study of the precipitation phenomena in these alloys encompassing evaluation of microstructural, electrical, and mechanical properties. The methodology developed produces material with a superior combination of electrical and mechanical properties compared to those presently available in commercial alloys. New and novel alloying procedures were investigated to extend the range of production methods available for these material. These studies focused on the use of High Pressure Gas Atomization and the development of new containment technologies for the liquid alloy. This allowed the production of alloys with a much more refined starting microstructure and lower contamination than available by other methods. The knowledge gained in the previous studies was used to develop two completely new families of deformation processed metal metal matrix composites. These composites are based on immissible alloys with yttrium and magnesium matrices and refractory metal reinforcement. This work extends the physical property range available in deformation processed metal metal matrix composites. Additionally, it also represents new ways to apply these metals in engineering applications.

  18. Corrugated Membrane Nonlinear Deformation Process Calculation

    Directory of Open Access Journals (Sweden)

    A. S. Nikolaeva

    2015-01-01

    Full Text Available Elastic elements are widely used in instrumentation. They are used to create a particular interference between the parts, for accumulating mechanical energy, as the motion transmission elements, elastic supports, and sensing elements of measuring devices. Device reliability and quality depend on the calculation accuracy of the elastic elements. A corrugated membrane is rather common embodiment of the elastic element.The corrugated membrane properties depend largely on its profile i.e. a generatrix of the meridian surface.Unlike other types of pressure elastic members (bellows, tube spring, the elastic characteristics of which are close to linear, an elastic characteristic of the corrugated membrane (typical movement versus external load is nonlinear. Therefore, the corrugated membranes can be used to measure quantities, nonlinearly related to the pressure (e.g., aircraft air speed, its altitude, pipeline fluid or gas flow rate. Another feature of the corrugated membrane is that significant movements are possible within the elastic material state. However, a significant non-linearity of membrane characteristics leads to severe complicated calculation.This article is aimed at calculating the corrugated membrane to obtain the elastic characteristics and the deformed shape of the membrane meridian, as well as at investigating the processes of buckling. As the calculation model, a thin-walled axisymmetric shell rotation is assumed. The material properties are linearly elastic. We consider a corrugated membrane of sinusoidal profile. The membrane load is a uniform pressure.The algorithm for calculating the mathematical model of an axisymmetric corrugated membrane of constant thickness, based on the Reissner’s theory of elastic thin shells, was realized as the author's program in C language. To solve the nonlinear problem were used a method of changing the subspace of control parameters, developed by S.S., Gavriushin, and a parameter marching method

  19. Shape coexistence in 16O, 72Se, and 240Pu: a comprehensive view based on the dynamic deformation model

    International Nuclear Information System (INIS)

    Kumar, K.

    1979-01-01

    It has been shown that the gross features of the collective spectra of even-even nuclei ranging from 12 C to 240 Pu are reproduced by the dynamic deformation model without any fitting parameters. We apply another test to be same model in the present study. Can this single model explain three seemingly different types of shape co-existence proposed previously: spherical op-oh and deformed 2p-2h shapes in 16 O, spherical and prolate-deformed minima in the potential energy surface of 72 Se, ground state shape and fission isomer shape of 240 Pu. Of these three nuclei, only the nucleus 72 Se is off the line of beta-stability. The calculated potential energy surfaces and collective spectra of 16 O, 72 Se, and 240 Pu are discussed and compared with experiments. The three different kinds of shape coexistence proposed previously for 16 O, 72 Se, and 240 Pu are all reproduced by the present version of the dynamic deformation model within the same model and without any fitting parameters. We conclude that the combination of the dynamics of the nine-dimensional quadrupole and pairing motions with a large space microscopic calculation provides a rather powerful tool for studying practically all even-even nuclei

  20. Disciplinary maintenance of process of overcoming of deformations of professional-pedagogical authentication of future teachers

    Directory of Open Access Journals (Sweden)

    Zhanna P. Pavlova

    2011-04-01

    Full Text Available In the article examined disciplinary maintenance of process of overcoming of deformations of professional-pedagogical authentication of future teachers and maintenance of process of overcoming of deformations, which is built on module principle on the basis of disciplinary connections.

  1. Isolated, slowly evolving, and dynamical trapping horizons: Geometry and mechanics from surface deformations

    International Nuclear Information System (INIS)

    Booth, Ivan; Fairhurst, Stephen

    2007-01-01

    We study the geometry and dynamics of both isolated and dynamical trapping horizons by considering the allowed variations of their foliating two-surfaces. This provides a common framework that may be used to consider both their possible evolutions and their deformations as well as derive the well-known flux laws. Using this framework, we unify much of what is already known about these objects as well as derive some new results. In particular we characterize and study the ''almost isolated'' trapping horizons known as slowly evolving horizons. It is for these horizons that a dynamical first law holds and this is analogous and closely related to the Hawking-Hartle formula for event horizons

  2. Numerical simulation of deformation and failure processes of a complex technical object under impact loading

    Science.gov (United States)

    Kraus, E. I.; Shabalin, I. I.; Shabalin, T. I.

    2018-04-01

    The main points of development of numerical tools for simulation of deformation and failure of complex technical objects under nonstationary conditions of extreme loading are presented. The possibility of extending the dynamic method for construction of difference grids to the 3D case is shown. A 3D realization of discrete-continuum approach to the deformation and failure of complex technical objects is carried out. The efficiency of the existing software package for 3D modelling is shown.

  3. Austenite strengthening and softening during hot deformation

    International Nuclear Information System (INIS)

    Tushinskij, L.I.; Vlasov, V.S.; Kazimirova, I.E.; Tokarev, A.O.

    1981-01-01

    Processes of formation of austenite structure of 20 and 12Kh18N10T steels during hot deformation and postdeformation isothermal holdings have been investigated by the methods of analysis of curves of hot deformation, high-temperature metallography and light microscopy. Deformation has been exercised by extention in vacuum with average 4x10 -2 s -1 rate. Deformation temperatures of steel 20 are 930 and 1000 deg C, of steel 12Kh18N10T - 1100 deg C. It is stated that dynamic recrystallization takes place in both investigated steels during hot deformation. In the carbonic steel it is developed by shifting sections of high-angular boundaries, flow stress in this case remains constant. Recrystallization is developed by subgrain coalescence in austenite steel, that brings about preservation of increased defect density in recrystallized volumes. As a result strengthening of steel is continued up to fracture during the increase of the deformation degree. Postdeformation weakening of 12Kh18N10T steel is slowed down as compared with weakening of carbonic steel [ru

  4. Looking into the causes of deformation processes: The example of an industrial-scale turbine; Ursachenerforschung bei Deformationsprozessen am Beispiel einer Grossturbine

    Energy Technology Data Exchange (ETDEWEB)

    Pfeufer, A [Hannover Univ. (Germany). Geodaetisches Inst.

    1997-12-31

    While quasistatic and kinematic methods for analysis and interpretation of deformation processes reached technical maturity long ago, dynamic models are still in the early development phase. Starting from an outline of the current state of knowledge and a proposal on the definition `Dynamic models`, two fundamentally different dynamic model approaches are described and discussed, i.e. input-output models and state models. Input-output models are discussed in some detail, and the results of such a model when applied to investigations of the deformation characteristics of an industria-scale turbine are presented. (orig.) [Deutsch] Waehrend im Bereich der s.g. quasi-statischen und kinematischen Verfahrensentwicklung zur Analyse und Interpretation von Deformationsprozessen nur noch wenige Verfeinerungen zu erwarten sind, steht man bei der Bereitstellung praxisreifer dynamischer Modelle noch weitestgehend am Anfang einer vielversprechenden Entwicklungsphase. Ausgehend von einem kurzen Ueberblick zum aktuellen Entwicklungsstand und einem Vorschlag zur Definition `Dynamischer Modelle` werden zwei grundsaetzlich verschiedene dynamische Modellansaetze - die Ein-Ausgangs-Modelle und Zustandsmodelle - beschrieben und bezueglich ihrer Vor- und Nachteile diskutiert. Nach einer tiefgruendigeren Behandlung von Ein-Ausgangs-Modellen folgen Ergebnisse der Anwendung eines solchen Modellansatzes zur Untersuchung des Deformationsverhaltens einer Grossturbine. (orig.)

  5. Looking into the causes of deformation processes: The example of an industrial-scale turbine; Ursachenerforschung bei Deformationsprozessen am Beispiel einer Grossturbine

    Energy Technology Data Exchange (ETDEWEB)

    Pfeufer, A. [Hannover Univ. (Germany). Geodaetisches Inst.

    1996-12-31

    While quasistatic and kinematic methods for analysis and interpretation of deformation processes reached technical maturity long ago, dynamic models are still in the early development phase. Starting from an outline of the current state of knowledge and a proposal on the definition `Dynamic models`, two fundamentally different dynamic model approaches are described and discussed, i.e. input-output models and state models. Input-output models are discussed in some detail, and the results of such a model when applied to investigations of the deformation characteristics of an industria-scale turbine are presented. (orig.) [Deutsch] Waehrend im Bereich der s.g. quasi-statischen und kinematischen Verfahrensentwicklung zur Analyse und Interpretation von Deformationsprozessen nur noch wenige Verfeinerungen zu erwarten sind, steht man bei der Bereitstellung praxisreifer dynamischer Modelle noch weitestgehend am Anfang einer vielversprechenden Entwicklungsphase. Ausgehend von einem kurzen Ueberblick zum aktuellen Entwicklungsstand und einem Vorschlag zur Definition `Dynamischer Modelle` werden zwei grundsaetzlich verschiedene dynamische Modellansaetze - die Ein-Ausgangs-Modelle und Zustandsmodelle - beschrieben und bezueglich ihrer Vor- und Nachteile diskutiert. Nach einer tiefgruendigeren Behandlung von Ein-Ausgangs-Modellen folgen Ergebnisse der Anwendung eines solchen Modellansatzes zur Untersuchung des Deformationsverhaltens einer Grossturbine. (orig.)

  6. Modelling ground deformation patterns associated with volcanic processes at the Okataina Volcanic Centre

    Science.gov (United States)

    Holden, L.; Cas, R.; Fournier, N.; Ailleres, L.

    2017-09-01

    The Okataina Volcanic Centre (OVC) is one of two large active rhyolite centres in the modern Taupo Volcanic Zone (TVZ) in the North Island of New Zealand. It is located in a complex section of the Taupo rift, a tectonically active section of the TVZ. The most recent volcanic unrest at the OVC includes the 1315 CE Kaharoa and 1886 Tarawera eruptions. Current monitoring activity at the OVC includes the use of continuous GPS receivers (cGPS), lake levelling and seismographs. The ground deformation patterns preceding volcanic activity the OVC are poorly constrained and restricted to predictions from basic modelling and comparison to other volcanoes worldwide. A better understanding of the deformation patterns preceding renewed volcanic activity is essential to determine if observed deformation is related to volcanic, tectonic or hydrothermal processes. Such an understanding also means that the ability of the present day cGPS network to detect these deformation patterns can also be assessed. The research presented here uses the finite element (FE) modelling technique to investigate ground deformation patterns associated with magma accumulation and diking processes at the OVC in greater detail. A number of FE models are produced and tested using Pylith software and incorporate characteristics of the 1315 CE Kaharoa and 1886 Tarawera eruptions, summarised from the existing body of research literature. The influence of a simple ring fault structure at the OVC on the modelled deformation is evaluated. The ability of the present-day continuous GPS (cGPS) GeoNet monitoring network to detect or observe the modelled deformation is also considered. The results show the modelled horizontal and vertical displacement fields have a number of key features, which include prominent lobe based regions extending northwest and southeast of the OVC. The results also show that the ring fault structure increases the magnitude of the displacements inside the caldera, in particular in the

  7. Dynamics of Coarse-grained Model of Filled Rubber Composite under Deformation

    Science.gov (United States)

    Hagita, Katsumi; Ueno, Shinichi; Bito, Yasumasa; Takano, Hiroshi; Doi, Masao; Morita, Hiroshi

    2010-03-01

    We presented a result of coarse-grained Molecular Dynamics simulation of filled polymer melts with Sulfur-crosslink under deformation based on the Kremer-Grest Model. Because all polymer chains are connected to one network gel, the size of simulation box under periodic boundary conditions (PBC) is set to about 33nm. We put 4 fillers, 80 polymer chains of 1024 particles, and many crosslink into the PBC box. One filler consists of 1280 particles of the C1280 fullerene structure. A repulsive force from the center of the filler is applied to the particles of C1280 in order to make a sphere whose diameter is about 15nm. Some patterns of distribution of the fillers are examined. The stress-strain curves estimated by applying a deformation to the system in simulations qualitatively agree with those in experiments. It is successful to show hysteresis on the S-S curve between elongation / release of the filled rubber.

  8. Rigid-Plastic Approximations for Predicting Plastic Deformation of Cylindrical Shells Subject to Dynamic Loading

    Directory of Open Access Journals (Sweden)

    Michelle S. Hoo Fatt

    1996-01-01

    Full Text Available A theoretical approach was developed for predicting the plastic deformation of a cylindrical shell subject to asymmetric dynamic loads. The plastic deformation of the leading generator of the shell is found by solving for the transverse deflections of a rigid-plastic beam/string-on-foundation. The axial bending moment and tensile force in the beam/string are equivalent to the longitudinal bending moments and membrane forces of the shell, while the plastic foundation force is equivalent to the shell circumferential bending moment and membrane resistances. Closed-form solutions for the transient and final deformation profile of an impulsive loaded shell when it is in a “string” state were derived using the eigenfunction expansion method. These results were compared to DYNA 3D predictions. The analytical predictions of the transient shell and final centerline deflections were within 25% of the DYNA 3D results.

  9. Measurement of Rotorcraft Blade Deformation Using Projection Moiré Interferometry

    Directory of Open Access Journals (Sweden)

    Gary A. Fleming

    2000-01-01

    Full Text Available Projection Moiré Interferometry (PMI has been used to obtain near instantaneous, quantitative blade deformation measurements of a generic rotorcraft model at several test conditions. These laser-based measurements provide quantitative, whole field, dynamic blade deformation profiles conditionally sampled as a function of rotor azimuth. The instantaneous nature of the measurements permits computation of the mean and unsteady blade deformation, blade bending, and twist. The PMI method is presented, and the image processing steps required to obtain quantitative deformation profiles from PMI interferograms are described. Experimental results are provided which show blade bending, twist, and unsteady motion. This initial proof-of-concept test has demonstrated the capability of PMI to acquire accurate, full field rotorcraft blade deformation data.

  10. In-situ studies of bulk deformation structures: Static properties under load and dynamics during deformation

    DEFF Research Database (Denmark)

    Jakobsen, Bo

    2006-01-01

    The main goal of the study presented in this thesis was to perform in-situ investigations on deformation structures in plastically deformed polycrystalline copper at low degrees of tensile deformation (model system for cell forming pure fcc metals. Anovel synchrotron...... grains in polycrystalline samples during tensile deformation. We have shown that the resulting 3D reciprocal space maps from tensile deformed copper comprise a pronounced structure, consisting of bright sharp peaks superimposed on a cloud of enhanced intensity. Based on the integrated intensity......, the width of the peaks, and spatial scanning experiments it is concluded that the individual peaks arise from individual dislocation-free regions (the subgrains) in the dislocation structure. The cloud is attributed to the dislocation rich walls. Samples deformed to 2% tensile strain were investigated under...

  11. Micro-deformation behavior in micro-compression with high-purity aluminum processed by ECAP

    Directory of Open Access Journals (Sweden)

    Xu Jie

    2015-01-01

    Full Text Available Ultrafine-grained (UFG materials have a potential for applications in micro-forming since grain size appears to be the dominant factor which determines the limiting size of the geometrical features. In this research, high-purity Al was processed by equal-channel angular pressing (ECAP at room temperature through 1–8 passes. Analysis shows that processing by ECAP produces a UFG structure with a grain size of ~1.3 μm and with microhardness and microstructural homogeneity. Micro-compression testing was carried out with different specimen dimensions using the annealed sample and after ECAP processing through 1–8 passes. The results show the flow stress increases significantly after ECAP processing by comparison with the annealed material. The flow stress generally reaches a maximum value after 2 passes which is consistent with the results of microhardness. The flow stress decreases with decreasing specimen diameter from 4 mm to 1 mm which demonstrates that size effects also exist in the ultrafine-grained materials. However, the deformation mechanism in ultrafine-grained pure Al changes from strain strengthening to softening by dynamic recovery by comparison with the annealed material.

  12. Finite element modelling of shot peening process: Prediction of the compressive residual stresses, the plastic deformations and the surface integrity

    International Nuclear Information System (INIS)

    Frija, M.; Hassine, T.; Fathallah, R.; Bouraoui, C.; Dogui, A.

    2006-01-01

    This paper presents a numerical simulation of the shot peening process using finite element method. The majority of the controlling parameters of the process have been taken into account. The shot peening loading has been characterised by using energy equivalence between the dynamic impact and a static indentation of a peening shot in the treated surface. The behaviour of the subjected material is supposed to be elastic plastic with damage. An integrated law of the damage proposed by Lemaitre and Chaboche has been used. The proposed model leads to obtain the residual stress, the plastic deformation profiles and the surface damage. An application on a shot peened Ni-based super alloy Waspaloy has been carried out. The comparison of the residual stresses, obtained by X-ray diffraction method and by finite element calculation, shows a good correlation. The in-depth profile of the plastic deformations and the superficial damage values are in good agreement with the experimental observations

  13. Study of Dynamic Characteristics of Slow-Changing Process

    Directory of Open Access Journals (Sweden)

    Yinong Li

    2000-01-01

    Full Text Available A vibration system with slow-changing parameters is a typical nonlinear system. Such systems often occur in the working and controlled process of some intelligent structures when vibration and deformation exist synchronously. In this paper, a system with slow-changing stiffness, damping and mass is analyzed in an intelligent structure. The relationship between the amplitude and the frequency of the system is studied, and its dynamic characteristic is also discussed. Finally, a piecewise linear method is developed on the basis of the asymptotic method. The simulation and the experiment show that a suitable slow-changing stiffness can restrain the amplitude of the system when the system passes through the resonant region.

  14. Late-Paleozoic-Mesozoic deformational and deformation related metamorphic structures of Kuznetsk-Altai region

    Science.gov (United States)

    Zinoviev, Sergei

    2014-05-01

    Kuznetsk-Altai region is a part of the Central Asian Orogenic Belt. The nature and formation mechanisms of the observed structure of Kuznetsk-Altai region are interpreted by the author as the consequence of convergence of Tuva-Mongolian and Junggar lithospheric block structures and energy of collision interaction between the blocks of crust in Late-Paleozoic-Mesozoic period. Tectonic zoning of Kuznetsk-Altai region is based on the principle of adequate description of geological medium (without methods of 'primary' state recovery). The initial indication of this convergence is the crust thickening in the zone of collision. On the surface the mechanisms of lateral compression form a regional elevation; with this elevation growth the 'mountain roots' start growing. With an approach of blocks an interblock elevation is divided into various fragments, and these fragments interact in the manner of collision. The physical expression of collision mechanisms are periodic pulses of seismic activity. The main tectonic consequence of the block convergence and collision of interblock units is formation of an ensemble of regional structures of the deformation type on the basis of previous 'pre-collision' geological substratum [Chikov et al., 2012]. This ensemble includes: 1) allochthonous and autochthonous blocks of weakly deformed substratum; 2) folded (folded-thrust) systems; 3) dynamic metamorphism zones of regional shears and main faults. Characteristic of the main structures includes: the position of sedimentary, magmatic and PT-metamorphic rocks, the degree of rock dynamometamorphism and variety rock body deformation, as well as the styles and concentrations of mechanic deformations. 1) block terranes have weakly elongated or isometric shape in plane, and they are the systems of block structures of pre-collision substratum separated by the younger zones of interblock deformations. They stand out among the main deformation systems, and the smallest are included into the

  15. Strain rate dependent deformation and failure behavior of laser welded DP780 steel joint under dynamic tensile loading

    International Nuclear Information System (INIS)

    Liu, Yang; Dong, Danyang; Wang, Lei; Chu, Xi; Wang, Pengfei; Jin, Mengmeng

    2015-01-01

    at high strain rates. The diffuse necking of the DP780 WJ occurs earlier during the tensile deformation process at higher strain rates under dynamic loadings

  16. Strain rate dependent deformation and failure behavior of laser welded DP780 steel joint under dynamic tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: liuyang@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Dong, Danyang, E-mail: dongdanyang@mail.neu.edu.cn [College of Science, Northeastern University, Shenyang 110819 (China); Wang, Lei, E-mail: wanglei@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Chu, Xi, E-mail: chuxi.ok@163.com [College of Science, Northeastern University, Shenyang 110819 (China); Wang, Pengfei, E-mail: wpf1963871400@163.com [College of Science, Northeastern University, Shenyang 110819 (China); Jin, Mengmeng, E-mail: 24401878@163.com [College of Science, Northeastern University, Shenyang 110819 (China)

    2015-03-11

    occurs at high strain rates. The diffuse necking of the DP780 WJ occurs earlier during the tensile deformation process at higher strain rates under dynamic loadings.

  17. Nanostructures in a ferritic and an oxide dispersion strengthened steel induced by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo

    fission and fusion reactors. In this study, two candidate steels for nuclear reactors, namely a ferritic/martensitic steel (modified 9Cr-1Mo steel) and an oxide dispersion strengthened (ODS) ferritic steel (PM2000), were nanostructured by dynamic plastic deformation (DPD). The resulting microstructure...

  18. Plastic Deformation of Pressured Metallic Glass

    Directory of Open Access Journals (Sweden)

    Yun Cheng

    2017-11-01

    Full Text Available Although pressured metallic glass (MG has been reported in the literature; there are few studies focusing on pressure effects on the structure; dynamics and its plastic deformation. In this paper; we report on and characterize; via molecular dynamics simulation, the structure and dynamics heterogeneity of pressured MGs, and explore a causal link between local structures and plastic deformation mechanism of pressured glass. The results exhibit that the dynamical heterogeneity of metallic liquid is more pronounced at high pressure, while the MGs were less fragile after the release of external pressure, reflected by the non-Gaussian parameter (NGP. High pressure glass shows better plastic deformation; and the local strain zone distributed more uniformly than of in normal glass. Further research indicates that although the number of icosahedrons in pressured glass was much larger than that in normal glass, while the interpenetrating connections of icosahedra (ICOI exhibited spatial correlations were rather poor; In addition, the number of ‘fast’ atoms indexed by the atoms’ moving distance is larger than that in normal glass; leading to the sharp decreasing in number of icosahedrons during deformation. An uniform distribution of ‘fast’ atoms also contributed to better plastic deformation ability in the pressured glass. These findings may suggest a link between the deformation and destruction of icosahedra with short-range order.

  19. A novel deformation mechanism for superplastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Muto, H.; Sakai, M. (Toyohashi Univ. of Technology (Japan). Dept. of Materials Science)

    1999-01-01

    Uniaxial compressive creep tests with strain value up to -0.1 for a [beta]-spodumene glass ceramic are conducted at 1060 C. From the observation of microstructural changes between before and after the creep deformations, it is shown that the grain-boundary sliding takes place via cooperative movement of groups of grains rather than individual grains under the large-scale-deformation. The deformation process and the surface technique used in this work are not only applicable to explain the deformation and flow of two-phase ceramics but also the superplastic deformation. (orig.) 12 refs.

  20. Opposite photo-induced deformations in azobenzene-containing polymers with different molecular architecture: Molecular dynamics study

    International Nuclear Information System (INIS)

    Ilnytskyi, Jaroslav M.; Neher, Dieter; Saphiannikova, Marina

    2011-01-01

    Photo-induced deformations in azobenzene-containing polymers (azo-polymers) are central to a number of applications, such as optical storage and fabrication of diffractive elements. The microscopic nature of the underlying opto-mechanical coupling is yet not clear. In this study, we address the experimental finding that the scenario of the effects depends on molecular architecture of the used azo-polymer. Typically, opposite deformations in respect to the direction of light polarization are observed for liquid crystalline and amorphous azo-polymers. In this study, we undertake molecular dynamics simulations of two different models that mimic these two types of azo-polymers. We employ hybrid force field modeling and consider only trans-isomers of azobenzene, represented as Gay-Berne sites. The effect of illumination on the orientation of the chromophores is considered on the level of orientational hole burning and emphasis is given to the resulting deformation of the polymer matrix. We reproduce deformations of opposite sign for the two models being considered here and discuss the relevant microscopic mechanisms in both cases.

  1. The effect of tooling deformation on process control in multistage metal forming

    NARCIS (Netherlands)

    Havinga, Gosse Tjipke; van den Boogaard, Antonius H.; Chinesta, F; Cueto, E; Abisset-Chavanne, E.

    2016-01-01

    Forming of high-strength steels leads to high loads within the production process. In multistage metal forming, the loads in different process stages are transferred to the other stages through elastic deformation of the stamping press. This leads to interactions between process steps, affecting the

  2. Progressive softening of brittle-ductile transition due to interplay between chemical and deformation processes

    Science.gov (United States)

    Jeřábek, Petr; Bukovská, Zita; Morales, Luiz F. G.

    2017-04-01

    The micro-scale shear zones (shear bands) in granitoids from the South Armorican Shear Zone reflect localization of deformation and progressive weakening in the conditions of brittle-ductile transition. We studied microstructures in the shear bands with the aim to establish their P-T conditions and to derive stress and strain rates for specific deformation mechanisms. The evolving microstructure within shear bands documents switches in deformation mechanisms related to positive feedbacks between deformation and chemical processes and imposes mechanical constraints on the evolution of the brittle-ductile transition in the continental transform fault domains. The metamorphic mineral assemblage present in the shear bands indicate their formation at 300-350 ˚ C and 100-400 MPa. Focusing on the early development of shear bands, we identified three stages of shear band evolution. The early stage I associated with initiation of shear bands occurs via formation of microcracks with possible yielding differential stress of up to 250 MPa (Diamond and Tarantola, 2015). Stage II is associated with subgrain rotation recrystallization and dislocation creep in quartz and coeval dissolution-precipitation creep of microcline. Recrystallized quartz grains in shear bands show continual increase in size, and decrease in stress and strain rates from 94 MPa to 17-26 MPa (Stipp and Tullis, 2003) and 3.8*10-12 s-1- 1.8*10-14 s-1 (Patterson and Luan, 1990) associated with deformation partitioning into weaker microcline layer and shear band widening. The quartz mechanical data allowed us to set some constrains for coeval dissolution-precipitation of microcline which at our estimated P-T conditions suggests creep at 17-26 MPa differential stress and 3.8*10-13 s-1 strain rate. Stage III is characterized by localized slip along interconnected white mica bands accommodated by dislocation creep at strain rate 3.8*10-12 s-1 and stress 9.36 MPa (Mares and Kronenberg, 1993). The studied example

  3. Atomistic simulation study of deformation twinning of nanocrystalline body-centered cubic Mo

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Xiaofeng [The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China); Li, Dan, E-mail: txf8378@163.com [The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China); Yu, You [College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu (China); You, Zhen Jiang [Australian School of Petroleum, University of Adelaide, SA 5005 (Australia); Li, Tongye [The National Key Laboratory of Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu (China); Ge, Liangquan [The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China)

    2017-04-06

    Deformation twinning of nanocrystalline body-centered cubic Mo was studied using molecular dynamics simulations, and the effects of grain sizes and temperatures on the deformation were evaluated. With small grain size, grain rotation accompanying grain growth was found to play important role in nanocrystalline Mo during tensile deformation. Additionally, grain rotation and the deformation controlled by GB-mediated processes induce to the difficulty of creating crack. Twin was formed by successive emission of twinning partials from grain boundaries in small grain size systems. However, the twin mechanisms of GB splitting and overlapping of two extended dislocations were also found in larger size grain. Twin induced crack tips were observed in our simulation, and this confirmed the results of previous molecular dynamics simulations. At higher temperatures, GB activities can be thermally activated, resulting in suppression of twinning tendency and improvement of ductility of nanocrystalline Mo.

  4. Shear zone nucleation and deformation transient: effect of heterogeneities and loading conditions in experimentally deformed calcite

    Science.gov (United States)

    Morales, L. F. G.; Rybacki, E.; Dresen, G. H.; Kilian, R.

    2015-12-01

    In the Earth's middle to lower crust, strain is frequently localized along ductile shear zones, which commonly nucleate at structural and material heterogeneities. To investigate shear zone nucleation and development due to heterogeneities, we performed constant strain-rate (CSR) and constant stress (CS) simple shear (torsion) deformation experiments on Carrara marble samples containing weak (limestone) inclusions. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure and maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. In CS tests a narrow shear zone developed in front of the inclusion, whereas in CSR experiments the deformation is more heterogeneously distributed, up to g=3.. In the later, secondary foliations oblique to the process zone and alternating thin, high-strain layers are common. In samples deformed at the same shear strain (g=1), the average recrystallized grain size in the process zone is similar for CS and CSR conditions. Crystallographic preferred orientation (CPO) measurements shows that different grain sizes have slightly different CPO patterns. CPO strength varies for different grain sizes, with a CPO strength peak between 40-50 μm, decreasing progressively within smaller grain size, but with secondary peaks for different coarse-grained sizes. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.

  5. Influence of heat treated microstructures on the dynamic deformation characteristics of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Seo, Yong Seok; Lee, Yong Shin; Woo, Sung Choong; Kim, Tae Won

    2015-01-01

    We investigated the influence of heat treated microstructures, namely, equiaxed, bimodal and lamella types of Ti-6Al-4V alloy on the dynamic deformation characteristics. Four different heat treatment conditions were employed for the development of the microstructures. Static tensile and compressive deformation tests were preliminarily performed with hydraulic test equipment. Dynamic deformation tests at a high level of strain rate, 2700 s"-"1 ∼ 6400 s"-"1, together with high velocity impact tests were, respectively, conducted on the specimens through a compressive Split Hopkinson pressure bar (SHPB) and a high pressure gas gun system. The dependence of flow stress on the strain rate associated with the corresponding microstructure was examined. The microstructural factors on the dynamic fracture characteristics were analyzed by scanning electron microscopy. The static compressive tests showed that the flow stress was greatest in the lamella microstructure and decreased in the order of lamella, bimodal and equiaxed microstructures, whereas the ductility was largest in the bimodal microstructure and smallest in the lamellar microstructure. In dynamic compressive tests, a similar dependency of the flow stress on microstructures was observed: highest in the lamellar microstructure and lowest in the equiaxed microstructure. The ductility, such as strain at maximum stress or at failure, was highest in the equiaxed microstructure and lowest in the lamellar structure. In addition, the ductility for individual microstructure decreased as the strain rate increased. Every microstructure exhibited ductile fracture surfaces, and it seems that a large shear crack on the lateral surface in the specimen was the main factor inducing the final failure. The result of high velocity impact test exhibited that the resistance to fracture of equiaxed microstructure with superior dynamic toughness was much higher than that of lamella microstructure with inferior dynamic toughness. The

  6. Influence of heat treated microstructures on the dynamic deformation characteristics of Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Yong Seok; Lee, Yong Shin [Chungnam National University, Daejeon (Korea, Republic of); Woo, Sung Choong; Kim, Tae Won [Hanyang University, Seoul (Korea, Republic of)

    2015-11-15

    We investigated the influence of heat treated microstructures, namely, equiaxed, bimodal and lamella types of Ti-6Al-4V alloy on the dynamic deformation characteristics. Four different heat treatment conditions were employed for the development of the microstructures. Static tensile and compressive deformation tests were preliminarily performed with hydraulic test equipment. Dynamic deformation tests at a high level of strain rate, 2700 s{sup -1} ∼ 6400 s{sup -1}, together with high velocity impact tests were, respectively, conducted on the specimens through a compressive Split Hopkinson pressure bar (SHPB) and a high pressure gas gun system. The dependence of flow stress on the strain rate associated with the corresponding microstructure was examined. The microstructural factors on the dynamic fracture characteristics were analyzed by scanning electron microscopy. The static compressive tests showed that the flow stress was greatest in the lamella microstructure and decreased in the order of lamella, bimodal and equiaxed microstructures, whereas the ductility was largest in the bimodal microstructure and smallest in the lamellar microstructure. In dynamic compressive tests, a similar dependency of the flow stress on microstructures was observed: highest in the lamellar microstructure and lowest in the equiaxed microstructure. The ductility, such as strain at maximum stress or at failure, was highest in the equiaxed microstructure and lowest in the lamellar structure. In addition, the ductility for individual microstructure decreased as the strain rate increased. Every microstructure exhibited ductile fracture surfaces, and it seems that a large shear crack on the lateral surface in the specimen was the main factor inducing the final failure. The result of high velocity impact test exhibited that the resistance to fracture of equiaxed microstructure with superior dynamic toughness was much higher than that of lamella microstructure with inferior dynamic toughness

  7. Mathematical modeling of phenomena of dynamic recrystallization during hot plastic deformation in high-carbon bainitic steel

    Directory of Open Access Journals (Sweden)

    T. Dembiczak

    2017-01-01

    Full Text Available Based on the research results, coefficients were determined in constitutive equations, describing the kinetics of dynamic recrystallization in high-carbon bainitic steel during hot deformation. The developed mathematical model takes into account the dependence of changing kinetics in the size evolution of the initial austenite grains, the value of strain, strain rate, temperature and time. Physical simulations were carried out on rectangular specimens measuring 10 × 15 × 20 mm. Compression tests with a plane state of deformation were carried out using a Gleeble 3800.

  8. Deformation processes in refractory metals. Progress report, 1 December 1974--30 November 1975

    International Nuclear Information System (INIS)

    Donoso, J.R.; Reed-Hill, R.E.

    1975-01-01

    Work in progress is mostly concerned with the stress-strain behavior of niobium, as affected by dynamic strain aging. An investigation of the aging phenomena in nickel containing carbon as the major interstitial impurity was also conducted. Some aspects of the deformation behavior of the hexagonal metals titanium and zirconium still warrant investigation and are also being considered. (auth)

  9. Effect of compression deformation on the microstructure and corrosion behavior of magnesium alloys

    International Nuclear Information System (INIS)

    Snir, Y.; Ben-Hamu, G.; Eliezer, D.; Abramov, E.

    2012-01-01

    Highlights: ► Metallurgical features (mainly twinning, dislocation accumulation, and dynamic recrystallization). ► The thermo-mechanical state (amount of deformation and its temperature). ► The corrosion behavior of wrought Mg-alloys. This correlation was emphasized by the mechanical behavior measured through micro-hardness. ► Microstructural changes during deformation, and potentio-dynamic corrosion tests were correlated. - Abstract: The effect of deformation on the corrosion and mechanical behavior of wrought Mg-alloys AZ31, AM50, and ZK60 was investigated. The materials’ behavior was correlated to the changes in metallurgical features, during compression, into different amounts of deformation at three temperatures: 250° C, 280° C, and 350° C. The metallurgical features were monitored by optical microscope, scanning electron microscope (SEM), and transmission electron microscopy (TEM). It was observed that there is a very strong correlation between three features: 1. metallurgical features (mainly twinning, dislocation accumulation, and dynamic recrystallization); 2. The thermo-mechanical state (amount of deformation and its temperature); and 3. The corrosion behavior of wrought Mg-alloys. This correlation was emphasized by the mechanical behavior measured through micro-hardness. Microstructural changes during deformation, and potentio-dynamic corrosion tests were correlated. These results show that studies on the effect of thermo-mechanical state (related to the microstructure) on the corrosion behavior of wrought Mg-alloys are essential in order to optimize their applicability to plastic forming processes.

  10. Different deformation patterns using GPS in the volcanic process of El Hierro (Canary Island) 2011-2013

    Science.gov (United States)

    García-Cañada, Laura; José García-Arias, María; Pereda de Pablo, Jorge; Lamolda, Héctor; López, Carmen

    2014-05-01

    Ground deformation is one of the most important parameter in volcano monitoring. The detected deformations in volcanic areas can be precursors of a volcanic activity and contribute with useful information to study the evolution of an unrest, eruption or any volcanic process. GPS is the most common technique used to measure volcano deformations. It can be used to detect slow displacement rates or much larger and faster deformations associated with any volcanic process. In volcanoes the deformation is expected to be a mixed of nature; during periods of quiescence it will be slow or not present, while increased activity slow displacement rates can be detected or much larger and faster deformations can be measure due to magma intrusion, for example in the hours to days prior a eruption beginning. In response to the anomalous seismicity detected at El Hierro in July 2011, the Instituto Geográfico Nacional (IGN) improved its volcano monitoring network in the island with continuous GPS that had been used to measure the ground deformation associated with the precursory unrest since summer 2011, submarine eruption (October 2011-March 2012) and the following unrest periods (2012-2013). The continuous GPS time series, together with other techniques, had been used to evaluate the activity and to detect changes in the process. We investigate changes in the direction and module of the deformation obtained by GPS and they show different patterns in every unrest period, very close to the seismicity locations and migrations.

  11. Hot Deformation Behavior of SiCP/A1-Cu Composite

    Directory of Open Access Journals (Sweden)

    CHENG Ming-yang

    2017-02-01

    Full Text Available Using the Gleeble-1500D simulator, the high temperature plastic deformation behavior of SiCp/Al-Cu composite were investigated at 350-500℃ with the strain rate of 0.01-10s-1. The true stress-strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the softening mechanism of dynamic recrystallization is a feature of high-temperature flow stress-strain curves of SiCp/A1-Cu composite, and the peak stress increases with the decrease of deformation temperature or the increase of strain rate.The flow stress behavior of the composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 320.79kJ/mol. The stable regions and the instability regions in the processing map were identified and the microstructures in different regions of processing map were studied.There are particle breakage and void in the instability regions.

  12. Perceptual transparency from image deformation.

    Science.gov (United States)

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation.

  13. Prediction of deformations of steel plate by artificial neural network in forming process with induction heating

    International Nuclear Information System (INIS)

    Nguyen, Truong Thinh; Yang, Young Soo; Bae, Kang Yul; Choi, Sung Nam

    2009-01-01

    To control a heat source easily in the forming process of steel plate with heating, the electro-magnetic induction process has been used as a substitute of the flame heating process. However, only few studies have analyzed the deformation of a workpiece in the induction heating process by using a mathematical model. This is mainly due to the difficulty of modeling the heat flux from the inductor traveling on the conductive plate during the induction process. In this study, the heat flux distribution over a steel plate during the induction process is first analyzed by a numerical method with the assumption that the process is in a quasi-stationary state around the inductor and also that the heat flux itself greatly depends on the temperature of the workpiece. With the heat flux, heat flow and thermo-mechanical analyses on the plate to obtain deformations during the heating process are then performed with a commercial FEM program for 34 combinations of heating parameters. An artificial neural network is proposed to build a simplified relationship between deformations and heating parameters that can be easily utilized to predict deformations of steel plate with a wide range of heating parameters in the heating process. After its architecture is optimized, the artificial neural network is trained with the deformations obtained from the FEM analyses as outputs and the related heating parameters as inputs. The predicted outputs from the neural network are compared with those of the experiments and the numerical results. They are in good agreement

  14. Deformation and failure response of 304L stainless steel SMAW joint under dynamic shear loading

    International Nuclear Information System (INIS)

    Lee, Woei-Shyan; Cheng, J.-I.; Lin, C.-F.

    2004-01-01

    The dynamic shear deformation behavior and fracture characteristics of 304L stainless steel shielded metal arc welding (SMAW) joint are studied experimentally with regard to the relations between mechanical properties and strain rate. Thin-wall tubular specimens are deformed at room temperature under strain rates in the range of 8 x 10 2 to 2.8 x 10 3 s -1 using a torsional split-Hopkinson bar. The results indicate that the strain rate has a significant influence on the mechanical properties and fracture response of the tested SMAW joints. It is found that the flow stress, total shear strain to failure, work hardening rate and strain rate sensitivity all increase with increasing strain rate, but that the activation volume decreases. The observed dynamic shear deformation behavior is modeled using the Kobayashi-Dodd constitutive law, and it is shown that the predicted results are in good agreement with the experimental data. Fractographic analysis using scanning electron microscopy reveals that the tested specimens all fracture within their fusion zones, and that the primary failure mechanism is one of the extensive localized shearing. The fracture surfaces are characterized by the presence of many dimples. A higher strain rate tends to reduce the size of the dimples and to increase their density. The observed fracture features are closely related to the preceding flow behavior

  15. Strain-rate effect on initial crush stress of irregular honeycomb under dynamic loading and its deformation mechanism

    Science.gov (United States)

    Wang, Peng; Zheng, Zhijun; Liao, Shenfei; Yu, Jilin

    2018-02-01

    The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored. The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.

  16. On the dynamic stability of shear deformable beams under a tensile load

    Science.gov (United States)

    Caddemi, S.; Caliò, I.; Cannizzaro, F.

    2016-07-01

    Loss of stability of beams in a linear static context due to the action of tensile loads has been disclosed only recently in the scientific literature. However, tensile instability in the dynamic regime has been only marginally covered. Several aspects concerning the role of shear deformation on the tensile dynamic instability on continuous and discontinuous beams are still to be addressed. It may appear as a paradox, but also for the case of the universally studied Timoshenko beam model, despite its old origin, frequency-axial load diagrams in the range of negative values of the load (i.e. tensile load) has never been brought to light. In this paper, for the first time, the influence of a conservative tensile axial loads on the dynamic behaviour of the Timoshenko model, according to the Haringx theory, is assessed. It is shown that, under increasing tensile loads, regions of positive/negative fundamental frequency variations can be distinguished. In addition, the beam undergoes eigen-mode changes, from symmetric to anti-symmetric shapes, until tensile instability of divergence type is reached. As a further original contribution on the subject, taking advantage of a new closed form solution, it is shown that the same peculiarities are recovered for an axially loaded Euler-Bernoulli vibrating beam with multiple elastic sliders. This latter model can be considered as the discrete counterpart of the Timoshenko beam-column in which the internal sliders concentrate the shear deformation that in the Timoshenko model is continuously distributed. Original aspects regarding the evolution of the vibration frequencies and the relevant mode shapes with the tensile load value are highlighted.

  17. Mechanics of deformable bodies

    CERN Document Server

    Sommerfeld, Arnold Johannes Wilhelm

    1950-01-01

    Mechanics of Deformable Bodies: Lectures on Theoretical Physics, Volume II covers topics on the mechanics of deformable bodies. The book discusses the kinematics, statics, and dynamics of deformable bodies; the vortex theory; as well as the theory of waves. The text also describes the flow with given boundaries. Supplementary notes on selected hydrodynamic problems and supplements to the theory of elasticity are provided. Physicists, mathematicians, and students taking related courses will find the book useful.

  18. Dynamic precipitation of nickel-based superalloys undergoing severe deformation below the solvus temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nowotnik, Andrzej; Rokicki, Pawel; Mrowka-Nowotnik, Grazyna; Sieniawski, Jan [Rzeszow Univ. of Technology (Poland). Dept. of Material Science

    2015-07-15

    The authors performed uniaxial compression tests of nickel-based superalloys: single crystal CMSX-4, also precipitation hardened; Inconel 718 and X750, at temperatures below the γ' solvus, in order to study the effect of temperature and strain rate on their flow stress and microstructural development. On the basis of the obtained flow stress values, the activation energy of a high-temperature deformation process was estimated. Microstructural observations of the deformed samples at high temperatures, previously solution heat treated and aged CMSX-4 and Inconel alloys revealed non-uniform deformation effects. Distribution of either molybdenum- or niobium-rich carbides was found to be affected by localized flow within the investigated strain range at relatively low deformation temperatures, 720-850 C. Microstructural examination of the alloys also showed that shear banding and cavity growth were responsible for the decrease in flow stress and a specimen fracture at larger strains.

  19. Process Modelling of Curing Process-Induced Internal Stress and Deformation of Composite Laminate Structure with Elastic and Viscoelastic Models

    Science.gov (United States)

    Li, Dongna; Li, Xudong; Dai, Jianfeng

    2018-06-01

    In this paper, two kinds of transient models, the viscoelastic model and the linear elastic model, are established to analyze the curing deformation of the thermosetting resin composites, and are calculated by COMSOL Multiphysics software. The two models consider the complicated coupling between physical and chemical changes during curing process of the composites and the time-variant characteristic of material performance parameters. Subsequently, the two proposed models are implemented respectively in a three-dimensional composite laminate structure, and a simple and convenient method of local coordinate system is used to calculate the development of residual stresses, curing shrinkage and curing deformation for the composite laminate. Researches show that the temperature, degree of curing (DOC) and residual stresses during curing process are consistent with the study in literature, so the curing shrinkage and curing deformation obtained on these basis have a certain referential value. Compared the differences between the two numerical results, it indicates that the residual stress and deformation calculated by the viscoelastic model are more close to the reference value than the linear elastic model.

  20. The influence of deformation path on strain characteristics of AA1050 aluminium processed by equal-channel angular pressing followed by rolling

    Energy Technology Data Exchange (ETDEWEB)

    Vega, M.C.V. [Department of Materials Engineering – Universidade Federal de São Carlos, (SP) Rod. Washington Luis km 235, 13565-905 São Carlos (Brazil); Bolmaro, R.E. [Instituto de Física Rosario (IFIR) FCEIA-UNR-CONICET, Bv. 27 de Febrero 210 bis, S2000EZP Rosario (Argentina); Ferrante, M.; Sordi, V.L. [Department of Materials Engineering – Universidade Federal de São Carlos, (SP) Rod. Washington Luis km 235, 13565-905 São Carlos (Brazil); Kliauga, A.M., E-mail: kliauga@ufscar.br [Department of Materials Engineering – Universidade Federal de São Carlos, (SP) Rod. Washington Luis km 235, 13565-905 São Carlos (Brazil)

    2015-10-14

    The present investigation reports on the microstructure evolution, texture development, the nature of the grain boundaries and the tensile and deep drawing behaviour of commercial AA1050 Al processed by Equal Channel Angular Pressing (ECAP) plus rolling. Although in terms of final mechanical strength ECAP and rolling are indistinguishable, the deformation path is substantially different, and this has important consequences on both microstructure and texture. From the spatial distribution of high angle grain boundaries (HAGB) and low angle grain boundaries (LAGB), the fine microstructure and the crystallographic texture, it was concluded that the microstructure is oriented according to the external imposed flow: a spin movement in the ECAP process, which promotes the rotation of the cells inside the original grain, followed by a sliding movement caused by the rolling, leading to grain elongation. The ECAP process is more suitable to promote a higher fraction of HAGBs, and the same time as it reduces the intensity of the bulk crystallographic texture. As a consequence an increase of the penetration depth and deformation strain, as measured by the Erichsen test, was observed in samples processed by 8 ECAP passes, characterized by low texture intensity and a high degree of dynamic recrystallization.

  1. Dynamic Measurements of Plastic Deformation in a Water-Filled Aluminum Tube in Response to Detonation of a Small Explosives Charge

    Directory of Open Access Journals (Sweden)

    Harold Sandusky

    1999-01-01

    Full Text Available Experiments have been conducted to benchmark computer code calculations for the dynamic interaction of explosions in water with structures. Aluminum cylinders with a length slightly more than twice their diameter were oriented vertically, sealed on the bottom by a thin plastic sheet, and filled with distilled water. An explosive charge suspended in the center of the tube plastically deformed but did not rupture the wall. Tube wall velocity, displacement, and strain were directly measured. The agreement among the three sets of dynamic data and the agreement of the terminal displacement measurements with the residual deformation were excellent.

  2. Polymer deformation in Brownian ratchets: theory and molecular dynamics simulations.

    Science.gov (United States)

    Kenward, Martin; Slater, Gary W

    2008-11-01

    We examine polymers in the presence of an applied asymmetric sawtooth (ratchet) potential which is periodically switched on and off, using molecular dynamics (MD) simulations with an explicit Lennard-Jones solvent. We show that the distribution of the center of mass for a polymer in a ratchet is relatively wide for potential well depths U0 on the order of several kBT. The application of the ratchet potential also deforms the polymer chains. With increasing U0 the Flory exponent varies from that for a free three-dimensional (3D) chain, nu=35 (U0=0), to that corresponding to a 2D compressed (pancake-shaped) polymer with a value of nu=34 for moderate U0. This has the added effect of decreasing a polymer's diffusion coefficient from its 3D value D3D to that of a pancaked-shaped polymer moving parallel to its minor axis D2D. The result is that a polymer then has a time-dependent diffusion coefficient D(t) during the ratchet off time. We further show that this suggests a different method to operate a ratchet, where the off time of the ratchet, toff, is defined in terms of the relaxation time of the polymer, tauR. We also derive a modified version of the Bader ratchet model [Bader, Proc. Natl. Acad. Sci. U.S.A. 96, 13165 (1999)] which accounts for this deformation and we present a simple expression to describe the time dependent diffusion coefficient D(t). Using this model we then illustrate that polymer deformation can be used to modulate polymer migration in a ratchet potential.

  3. Numerical modelling of river processes: flow and river bed deformation

    NARCIS (Netherlands)

    Tassi, P.A.

    2007-01-01

    The morphology of alluvial river channels is a consequence of complex interaction among a number of constituent physical processes, such as flow, sediment transport and river bed deformation. This is, an alluvial river channel is formed from its own sediment. From time to time, alluvial river

  4. Description of vertical displacements in the active process of rock strata deformation under conditions of mining operations

    Energy Technology Data Exchange (ETDEWEB)

    Piwowarski, W. (Akademia Gorniczo-Hutnicza, Cracow (Poland))

    1989-01-01

    Analyzes modeling vertical displacement in the evolution process of rock strata deformation caused by underground coal mining. The modeling results in a continuous description of the deformation process. Assumptions concerning model structure account for geometry of the phenomenon, while development of the deformation process is based on one physical mechanism. As a result of the analysis it has been stated that the deformation process is quantitatively similar to diffusion. On that basis the problem is described by differential equations. The class and order of the differential equations result from energy balance of the displacement field, while the analysis of the gradient of changes in the displacement field leads to a parabolic equation. The vertical displacement process in a transient state is characterized as a parabolic problem: one-dimensional, two-dimensional solenoidal, two-dimensional with one source of displacements. Equation solutions are based on Green's identity with boundary conditions. Modeling rock strata displacement in a transient state of deformation includes integration of differential equations and optimization of model parameters. The algorithm solution is written in form of a program for PC IBM/XT class computers. 41 refs.

  5. Spatiotemporal processing of gated cardiac SPECT images using deformable mesh modeling

    International Nuclear Information System (INIS)

    Brankov, Jovan G.; Yang Yongyi; Wernick, Miles N.

    2005-01-01

    In this paper we present a spatiotemporal processing approach, based on deformable mesh modeling, for noise reduction in gated cardiac single-photon emission computed tomography images. Because of the partial volume effect (PVE), clinical cardiac-gated perfusion images exhibit a phenomenon known as brightening--the myocardium appears to become brighter as the heart wall thickens. Although brightening is an artifact, it serves as an important diagnostic feature for assessment of wall thickening in clinical practice. Our proposed processing algorithm aims to preserve this important diagnostic feature while reducing the noise level in the images. The proposed algorithm is based on the use of a deformable mesh for modeling the cardiac motion in a gated cardiac sequence, based on which the images are processed by smoothing along space-time trajectories of object points while taking into account the PVE. Our experiments demonstrate that the proposed algorithm can yield significantly more-accurate results than several existing methods

  6. On the High Temperature Deformation Behaviour of 2507 Super Duplex Stainless Steel

    Science.gov (United States)

    Mishra, M. K.; Balasundar, I.; Rao, A. G.; Kashyap, B. P.; Prabhu, N.

    2017-02-01

    High temperature deformation behaviour of 2507 super duplex stainless steel was investigated by conducting isothermal hot compression tests. The dominant restoration processes in ferrite and austenite phases present in the material were found to be distinct. The possible causes for these differences are discussed. Based on the dynamic materials model, processing map was developed to identify the optimum processing parameters. The microstructural mechanisms operating in the material were identified. A unified strain-compensated constitutive equation was established to describe the high temperature deformation behaviour of the material under the identified processing conditions. Standard statistical parameter such as correlation coefficient has been used to validate the established equation.

  7. Modeling of dislocation generation and interaction during high-speed deformation of metals

    DEFF Research Database (Denmark)

    Schiøtz, J.; Leffers, T.; Singh, B.N.

    2002-01-01

    Recent experiments by Kiritani et al. [1] have revealed a surprisingly high rate of vacancy production during highspeed deformation of thin foils of fcc metals. Virtually no dislocations are seen after the deformation. This is interpreted as evidence for a dislocation-free deformation mechanism...... at very high strain rates. We have used molecular-dynamics simulations to investigate high-speed deformation of copper crystals. Even though no pre-existing dislocation sources are present in the initial system, dislocations are quickly nucleated and a very high dislocation density is reached during...... the deformation. Due to the high density of dislocations, many inelastic interactions occur between dislocations, resulting in the generation of vacancies. After the deformation, a very high density of vacancies is observed, in agreement with the experimental observations. The processes responsible...

  8. A mesh density study for application to large deformation rolling process evaluation

    International Nuclear Information System (INIS)

    Martin, J.A.

    1997-12-01

    When addressing large deformation through an elastic-plastic analysis the mesh density is paramount in determining the accuracy of the solution. However, given the nonlinear nature of the problem, a highly-refined mesh will generally require a prohibitive amount of computer resources. This paper addresses finite element mesh optimization studies considering accuracy of results and computer resource needs as applied to large deformation rolling processes. In particular, the simulation of the thread rolling manufacturing process is considered using the MARC software package and a Cray C90 supercomputer. Both mesh density and adaptive meshing on final results for both indentation of a rigid body to a specified depth and contact rolling along a predetermined length are evaluated

  9. A nonlocal strain gradient model for dynamic deformation of orthotropic viscoelastic graphene sheets under time harmonic thermal load

    Science.gov (United States)

    Radwan, Ahmed F.; Sobhy, Mohammed

    2018-06-01

    This work presents a nonlocal strain gradient theory for the dynamic deformation response of a single-layered graphene sheet (SLGS) on a viscoelastic foundation and subjected to a time harmonic thermal load for various boundary conditions. Material of graphene sheets is presumed to be orthotropic and viscoelastic. The viscoelastic foundation is modeled as Kelvin-Voigt's pattern. Based on the two-unknown plate theory, the motion equations are obtained from the dynamic version of the virtual work principle. The nonlocal strain gradient theory is established from Eringen nonlocal and strain gradient theories, therefore, it contains two material scale parameters, which are nonlocal parameter and gradient coefficient. These scale parameters have two different effects on the graphene sheets. The obtained deflection is compared with that predicted in the literature. Additional numerical examples are introduced to illustrate the influences of the two length scale coefficients and other parameters on the dynamic deformation of the viscoelastic graphene sheets.

  10. Micro-scaled products development via microforming deformation behaviours, processes, tooling and its realization

    CERN Document Server

    Fu, Ming Wang

    2014-01-01

    ‘Micro-scaled Products Development via Microforming’ presents state-of-the-art research on microforming processes, and focuses on the development of micro-scaled metallic parts via microforming processes. Microforming refers to the fabrication of microparts via micro-scaled plastic deformation and  presents a promising micromanufacturing process. When compared to other  micromanufacturing processes, microforming offers advantages such as high productivity and good mechanical properties of the deformed microparts. This book provides extensive and informative illustrations, tables and photos in order to convey this information clearly and directly to readers. Although the knowledge of macroforming processes is abundant and widely used in industry, microparts cannot be developed by leveraging existing knowledge of macroforming because the size effect presents a barrier to this knowledge transfer. Therefore systematic knowledge of microforming needs to be developed. In tandem with product miniaturization, t...

  11. TO THE MODELING ISSUES OF LIFE CYCLE OF DEFORMATION WORK OF THE RAILWAY TRACK ELEMENTS

    Directory of Open Access Journals (Sweden)

    I. O. Bondarenko

    2014-12-01

    Full Text Available Purpose. This article highlightsthe operational cycle modeling of the railway track elements for the development processes study of deformability as the basis of creating a regulatory framework of the track while ensuring the reliability of the railways. Methodology.The basic theory of wave propagation process in describing the interaction of track and rolling stock are used to achieve the goal. Findings. The basic provisions concerning the concept «the operational cycle of the deformation track» were proposed and formulated. The method was set. On its base the algorithm for determining the dynamic effects of the rolling stock on the way was obtained. The basic principles for the calculation schemes of railway track components for process evaluation of the deformability of the way were formulated. An algorithm was developed, which allows getting the field values of stresses, strains and displacements of all points of the track design elements. Based on the fields of stress-strain state of the track, an algorithm to establish the dependence of the process of deformability and the amount of energy expended on the deformability of the track operation was created. Originality.The research of track reliability motivates the development of new models, provides an opportunity to consider it for some developments. There is a need to define the criteria on which the possibility of assessing and forecasting changes in the track states in the course of its operation. The paper proposed the basic principles, methods, algorithms, and the terms relating to the conduct of the study, questions the reliability of the track. Practical value. Analytical models, used to determine the parameters of strength and stability of tracks, fully meet its objectives, but cannot be applied to determine the parameters of track reliability. One of the main factors of impossibility to apply these models is a quasi-dynamic approach. Therefore, as a rule, not only one dynamic

  12. The effect of processing parameters on the dynamic recrystallisation behaviour of API-X70 pipeline steel

    International Nuclear Information System (INIS)

    Al Shahrani, Abdullah; Yazdipour, Nima; Dehghan-Manshadi, Ali; Gazder, Azdiar A.; Cayron, Cyril; Pereloma, Elena V.

    2013-01-01

    The effect of deformation temperature and strain rate on the dynamic recrystallisation (DRX) behaviour of X70 pipeline steel was investigated. DRX parameters such as the critical and peak stresses and strains as well as the deformation activation energy were determined in the temperature range between 925 °C and 1125 °C for strain rates of 0.1, 1 and 5 s −1 . The relationship between the peak stresses and strains with the Zener–Hollomon parameter was determined. The dynamically recrystallised volume fraction was computed as a function of the different temperatures and strain rates. The APRGE software was applied for the first time on electron back-scattering diffraction data of dynamically recrystallised microstructures in order to reconstruct the prior austenite from the as-quenched martensite phase. The dynamically recrystallised flow stress curves and microstructure were also predicted using cellular automata modelling. The results show an earlier onset of DRX with a decrease in strain rate or an increase in deformation temperature. The dynamically recrystallised grain size is also found to decrease with an increase in strain rate and a lowering of deformation temperature

  13. Thermal-mechanical deformation modelling of soft tissues for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Jazar, Reza; Subic, Aleksandar

    2014-01-01

    Modeling of thermal-induced mechanical behaviors of soft tissues is of great importance for thermal ablation. This paper presents a method by integrating the heating process with thermal-induced mechanical deformations of soft tissues for simulation and analysis of the thermal ablation process. This method combines bio-heat transfer theories, constitutive elastic material law under thermal loads as well as non-rigid motion dynamics to predict and analyze thermal-mechanical deformations of soft tissues. The 3D governing equations of thermal-mechanical soft tissue deformation are discretized by using the finite difference scheme and are subsequently solved by numerical algorithms. Experimental results show that the proposed method can effectively predict the thermal-induced mechanical behaviors of soft tissues, and can be used for the thermal ablation therapy to effectively control the delivered heat energy for cancer treatment.

  14. Microstructural characterization of IF steel after severe plastic deformation via ARB and subsequent heat treatment

    International Nuclear Information System (INIS)

    Oliveira, F.C.; Abrantes, A.L.A.; Lins, J.F.C.

    2010-01-01

    This study aimed to evaluate the microstructural evolution of a titanium stabilized IF steel deformed to warm through the ARB process for 5 consecutive cycles and then annealing at 600 deg C for 1 h. The material was characterized with the aid of the techniques of scanning electron microscopy and electron backscatter diffraction (Electron Backscatter Diffraction - EBSD). An intense process of microstructural refinement was observed in the deformed material and the phenomenon of dynamic recovery was predominant. It can be concluded that the annealing of severely deformed material was not sufficient for a complete recrystallization of the microstructure. (author)

  15. Seismic anisotropy in deforming salt bodies

    Science.gov (United States)

    Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.

    2017-12-01

    Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.

  16. GPU-based acceleration of computations in nonlinear finite element deformation analysis.

    Science.gov (United States)

    Mafi, Ramin; Sirouspour, Shahin

    2014-03-01

    The physics of deformation for biological soft-tissue is best described by nonlinear continuum mechanics-based models, which then can be discretized by the FEM for a numerical solution. However, computational complexity of such models have limited their use in applications requiring real-time or fast response. In this work, we propose a graphic processing unit-based implementation of the FEM using implicit time integration for dynamic nonlinear deformation analysis. This is the most general formulation of the deformation analysis. It is valid for large deformations and strains and can account for material nonlinearities. The data-parallel nature and the intense arithmetic computations of nonlinear FEM equations make it particularly suitable for implementation on a parallel computing platform such as graphic processing unit. In this work, we present and compare two different designs based on the matrix-free and conventional preconditioned conjugate gradients algorithms for solving the FEM equations arising in deformation analysis. The speedup achieved with the proposed parallel implementations of the algorithms will be instrumental in the development of advanced surgical simulators and medical image registration methods involving soft-tissue deformation. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Dynamic Deformation and Collapse of Granular Columns

    Science.gov (United States)

    Uenishi, K.; Tsuji, K.; Doi, S.

    2009-12-01

    Large dynamic deformation of granular materials may be found in nature not only in the failure of slopes and cliffs — due to earthquakes, rock avalanches, debris flows and landslides — but also in earthquake faulting itself. Granular surface flows often consist of solid grains and intergranular fluid, but the effect of the fluid may be usually negligible because the volumetric concentration of grains is in many cases high enough for interparticle forces to dominate momentum transport. Therefore, the investigation of dry granular flow of a mass might assist in further understanding of the above mentioned geophysical events. Here, utilizing a high-speed digital video camera system, we perform a simple yet fully-controlled series of laboratory experiments related to the collapse of granular columns. We record, at an interval of some microseconds, the dynamic transient granular mass flow initiated by abrupt release of a tube that contains dry granular materials. The acrylic tube is partially filled with glass beads and has a cross-section of either a fully- or semi-cylindrical shape. Upon sudden removal of the tube, the granular solid may fragment under the action of its own weight and the particles spread on a rigid horizontal plane. This study is essentially the extension of the previous ones by Lajeunesse et al. (Phys. Fluids 2004) and Uenishi and Tsuji (JPGU 2008), but the striped layers of particles in a semi-cylindrical tube, newly introduced in this contribution, allow us to observe the precise particle movement inside the granular column: The development of slip lines inside the column and the movement of particles against each other can be clearly identified. The major controlling parameters of the spreading dynamics are the initial aspect ratio of the granular (semi-)cylindrical column, the frictional properties of the horizontal plane (substrate) and the size of beads. We show the influence of each parameter on the average flow velocity and final radius

  18. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.

    Directory of Open Access Journals (Sweden)

    Olga Kononova

    2016-01-01

    Full Text Available The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams modeling the particle structure. The beams' deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F-deformation (X spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young's moduli for Hertzian and bending deformations, and the structural damage dependent beams' survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications.

  19. 2008 Gordon Research Conference on Rock Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hirth, James G.; Gray, Nancy Ryan

    2009-09-21

    The GRC on Rock Deformation highlights the latest research in brittle and ductile rock mechanics from experimental, field and theoretical perspectives. The conference promotes a multi-disciplinary forum for assessing our understanding of rock strength and related physical properties in the Earth. The theme for the 2008 conference is 'Real-time Rheology'. Using ever-improving geophysical techniques, our ability to constrain the rheological behavior during earthquakes and post-seismic creep has improved significantly. Such data are used to investigate the frictional behavior of faults, processes responsible for strain localization, the viscosity of the lower crust, and viscous coupling between the crust and mantle. Seismological data also provide information on the rheology of the lower crust and mantle through analysis of seismic attenuation and anisotropy. Geologists are improving our understanding of rheology by combining novel analyses of microstructures in naturally deformed rocks with petrologic data. This conference will bring together experts and students in these research areas with experimentalists and theoreticians studying the same processes. We will discuss and assess where agreement exists on rheological constraints derived at different length/time scales using different techniques - and where new insight is required. To encompass the elements of these topics, speakers and discussion leaders with backgrounds in geodesy, experimental rock deformation, structural geology, earthquake seismology, geodynamics, glaciology, materials science, and mineral physics will be invited to the conference. Thematic sessions will be organized on the dynamics of earthquake rupture, the rheology of the lower crust and coupling with the upper mantle, the measurement and interpretation of seismic attenuation and anisotropy, the dynamics of ice sheets and the coupling of reactive porous flow and brittle deformation for understanding geothermal and chemical

  20. Deformation characteristics of {delta} phase in the delta-processed Inconel 718 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.Y., E-mail: haiyanzhang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, S.H., E-mail: shzhang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Cheng, M. [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Z.X. [Beijing Institute of Aeronautica1 Materials, Beijing 100095 (China)

    2010-01-15

    The hot working characteristics of {delta} phase in the delta-processed Inconel 718 alloy during isothermal compression deformation at temperature of 950 deg. C and strain rate of 0.005 s{sup -1}, were studied by using optical microscope, scanning electron microscope and quantitative X-ray diffraction technique. The results showed that the dissolution of plate-like {delta} phase and the precipitation of spherical {delta} phase particles coexisted during the deformation, and the content of {delta} phase decreased from 7.05 wt.% to 5.14 wt.%. As a result of deformation breakage and dissolution breakage, the plate-like {delta} phase was spheroidized and transferred to spherical {delta} phase particles. In the center with largest strain, the plate-like {delta} phase disappeared and spherical {delta} phase appeared in the interior of grains and grain boundaries.

  1. SU-E-J-254: Utility of Pinnacle Dynamic Planning Module Utilizing Deformable Image Registration in Adaptive Radiotherapy

    International Nuclear Information System (INIS)

    Jani, S

    2014-01-01

    Purpose For certain highly conformal treatment techniques, changes in patient anatomy due to weight loss and/or tumor shrinkage can result in significant changes in dose distribution. Recently, the Pinnacle treatment planning system added a Dynamic Planning module utilizing Deformable Image Registration (DIR). The objective of this study was to evaluate the effectiveness of this software in adapting to altered anatomy and adjusting treatment plans to account for it. Methods We simulated significant tumor response by changing patient thickness and altered chin positions using a commercially-available head and neck (H and N) phantom. In addition, we studied 23 CT image sets of fifteen (15) patients with H and N tumors and eight (8) patients with prostate cancer. In each case, we applied deformable image registration through Dynamic Planning module of our Pinnacle Treatment Planning System. The dose distribution of the original CT image set was compared to the newly computed dose without altering any treatment parameter. Result was a dose if we did not adjust the plan to reflect anatomical changes. Results For the H and N phantom, a tumor response of up to 3.5 cm was correctly deformed by the Pinnacle Dynamic module. Recomputed isodose contours on new anatomies were within 1 mm of the expected distribution. The Pinnacle system configuration allowed dose computations resulting from original plans on new anatomies without leaving the planning system. Original and new doses were available side-by-side with both CT image sets. Based on DIR, about 75% of H and N patients (11/15) required a re-plan using new anatomy. Among prostate patients, the DIR predicted near-correct bladder volume in 62% of the patients (5/8). Conclusions The Dynamic Planning module of the Pinnacle system proved to be an accurate and useful tool in our ability to adapt to changes in patient anatomy during a course of radiotherapy

  2. Direct observation of magnetization reversal of hot-deformed Nd-Fe-B magnet

    Science.gov (United States)

    Zhu, Xiaoyun; Tang, Xu; Pei, Ke; Tian, Yue; Liu, Jinjun; Xia, Weixing; Zhang, Jian; Liu, J. Ping; Chen, Renjie; Yan, Aru

    2018-01-01

    The dynamic magnetic domain structure in magnetization and demagnetization process of hot-deformed and NdCu-diffused Nd2Fe14B magnets were in-situ observed by Lorentz transmission electron microscopy (LTEM). The demagnetization process of hot-deformed sample is dominated by domain-wall pinning, while that of NdCu-diffused sample is mainly the magnetization reversal of single grains or grain aggregations. This firstly observed result gives an explicit evidence to understand the coercivity mechanism of magnetically segregated magnet. The effect of magnetic field of TEM on decrease in domain wall energy was theoretically analyzed, which helps to understand the in-situ observation process of magnetic materials.

  3. The transformation of spinal curvature into spinal deformity: pathological processes and implications for treatment

    Directory of Open Access Journals (Sweden)

    Hawes Martha C

    2006-03-01

    Full Text Available Abstract Background This review summarizes what is known about the pathological processes (e.g. structural and functional changes, by which spinal curvatures develop and evolve into spinal deformities. Methods Comprehensive review of articles (English language only published on 'scoliosis,' whose content yielded data on the pathological changes associated with spinal curvatures. Medline, Science Citation Index and other searches yielded > 10,000 titles each of which was surveyed for content related to 'pathology' and related terms such as 'etiology,' 'inheritance,' 'pathomechanism,' 'signs and symptoms.' Additional resources included all books published on 'scoliosis' and available through the Arizona Health Sciences Library, Interlibrary Loan, or through direct contact with the authors or publishers. Results A lateral curvature of the spine–'scoliosis'–can develop in association with postural imbalance due to genetic defects and injury as well as pain and scarring from trauma or surgery. Irrespective of the factor that triggers its appearance, a sustained postural imbalance can result, over time, in establishment of a state of continuous asymmetric loading relative to the spinal axis. Recent studies support the longstanding hypothesis that spinal deformity results directly from such postural imbalance, irrespective of the primary trigger, because the dynamics of growth within vertebrae are altered by continuous asymmetric mechanical loading. These data suggest that, as long as growth potential remains, evolution of a spinal curvature into a spinal deformity can be prevented by reversing the state of continuous asymmetric loading. Conclusion Spinal curvatures can routinely be diagnosed in early stages, before pathological deformity of the vertebral elements is induced in response to asymmetric loading. Current clinical approaches involve 'watching and waiting' while mild reversible spinal curvatures develop into spinal deformities with

  4. Influences of rolling method on deformation force in cold roll-beating forming process

    Science.gov (United States)

    Su, Yongxiang; Cui, Fengkui; Liang, Xiaoming; Li, Yan

    2018-03-01

    In process, the research object, the gear rack was selected to study the influence law of rolling method on the deformation force. By the mean of the cold roll forming finite element simulation, the variation regularity of radial and tangential deformation was analysed under different rolling methods. The variation of deformation force of the complete forming racks and the single roll during the steady state under different rolling modes was analyzed. The results show: when upbeating and down beating, radial single point average force is similar, the tangential single point average force gap is bigger, the gap of tangential single point average force is relatively large. Add itionally, the tangential force at the time of direct beating is large, and the dire ction is opposite with down beating. With directly beating, deformation force loading fast and uninstall slow. Correspondingly, with down beating, deformat ion force loading slow and uninstall fast.

  5. Dynamics of fatty acid vesicles in response to pH stimuli

    DEFF Research Database (Denmark)

    Ikari, Keita; Sakuma, Yuka; Jimbo, Takehiro

    2015-01-01

    We investigate the dynamics of decanoic acid/decanoate (DA) vesicles in response to pH stimuli. Two types of dynamic processes induced by the micro injection of NaOH solutions are sequentially observed: deformations and topological transitions. In the deformation stage, DA vesicles show a series...

  6. Large shear deformation of particle gels studied by Brownian Dynamics simulations

    NARCIS (Netherlands)

    Rzepiela, A.A.; Opheusden, van J.H.J.; Vliet, van T.

    2002-01-01

    This paper focuses on shear deformation of particle gels. Two different methods of shear deformation are discussed, namely affine and non-affine deformation, the second being novel in simulation studies of gels. Non-affine deformation resulted in a slower increase of the stress at small deformation.

  7. Static and dynamic micro deformable mirror characterization by phase-shifting and time-averaged interferometry

    Science.gov (United States)

    Liotard, Arnaud; Zamkotsian, Frédéric

    2017-11-01

    The micro-opto-electro-mechanical systems (MOEMS), based on mature technologies of micro-electronics, are essential in the design of future astronomical instruments. One of these key-components is the microdeformable mirror for wave-front correction. Very challenging topics like search of exo-planets could greatly benefit from this technology. Design, realization and characterization of micro-Deformable Mirrors are under way at Laboratoire d'Astrophysique de Marseille (LAM) in collaboration with Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS). In order to measure the surface shape and the deformation parameters during operation of these devices, a high-resolution Twyman-Green interferometer has been developed. Measurements have been done on a tiltable micro-mirror (170*100μm2) designed by LAM-LAAS and realized by an American foundry, and also on an OKO deformable mirror (15mm diameter). Static characterization is made by phase shifting interferometry and dynamic measurements have been made by quantitative time-averaged interferometry. The OKO mirror has an actuator stroke of 370+/-10nm for 150V applied and its resonant frequency is 1170+/-50 Hz, and the tiltable mirror has a rotation cut-off frequency of 31+/-3 kHz.

  8. Semantic modeling of plastic deformation of polycrystalline rock

    Science.gov (United States)

    Babaie, Hassan A.; Davarpanah, Armita

    2018-02-01

    We have developed the first iteration of the Plastic Rock Deformation (PRD) ontology by modeling the semantics of a selected set of deformational processes and mechanisms that produce, reconfigure, displace, and/or consume the material components of inhomogeneous polycrystalline rocks. The PRD knowledge model also classifies and formalizes the properties (relations) that hold between instances of the dynamic physical and chemical processes and the rock components, the complex physio-chemical, mathematical, and informational concepts of the plastic rock deformation system, the measured or calculated laboratory testing conditions, experimental procedures and protocols, the state and system variables, and the empirical flow laws that define the inter-relationships among the variables. The ontology reuses classes and properties from several existing ontologies that are built for physics, chemistry, biology, and mathematics. With its flexible design, the PRD ontology is well positioned to incrementally develop into a model that more fully represents the knowledge of plastic deformation of polycrystalline rocks in the future. The domain ontology will be used to consistently annotate varied data and information related to the microstructures and the physical and chemical processes that produce them at different spatial and temporal scales in the laboratory and in the solid Earth. The PRDKB knowledge base, when built based on the ontology, will help the community of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and integration and query of heterogeneous experimental deformation data that originate from autonomous rock testing laboratories.

  9. INVESTIGATION OF MATERIAL RESISTANCE TO PLASTIC DEFORMATION AT PROCESSING METALS BY PRESSURE WITH IMPOSING ULTRASONIC OSCILLATIONS

    Directory of Open Access Journals (Sweden)

    V. V. Klubovich

    2007-01-01

    Full Text Available The paper contains substantiation for application of experimental technique in order to investigate material resistance to plastic deformation at processing metals by pressure with imposing ultrasonic oscillations while proceeding from laws of similarity. It is shown that at modeling any metal processing by pressure with imposing ultrasonic oscillations it is possible to consider that actual elastic and plastic metal properties remain constant during processing under ultrasound action. The second aspect that requires a special attention at modeling is pulse or vibration-shock deformation at processing metals by pressure with imposing ultrasonic oscillations.

  10. Localization in Naturally Deformed Systems - the Default State?

    Science.gov (United States)

    Clancy White, Joseph

    2017-04-01

    Based on the extensive literature on localized rock deformation, conventional wisdom would interpret it to be a special behaviour within an anticipated background of otherwise uniform deformation. The latter notwithstanding, the rock record is so rife with transient (cyclic), heterogeneous deformation, notably shear localization, as to characterize localization as the anticipated 'normal' behaviour. The corollary is that steady, homogeneous deformation is significantly less common, and if achieved must reflect some special set of conditions that are not representative of the general case. An issue central to natural deformation is then not the existance of localized strain, but rather how the extant deformation processes scale across tectonic phenomena and in turn organize to enable a coherent(?) descripion of Earth deformation. Deformation is fundamentally quantized, discrete (diffusion, glide, crack propagation) and reliant on the defect state of rock-forming minerals. The strain energy distribution that drives thermo-mechanical responses is in the first instance established at the grain-scale where the non-linear interaction of defect-mediated micromechanical processes introduces heterogeneous behaviour described by various gradient theories, and evidenced by the defect microstructures of deformed rocks. Hence, the potential for non-uniform response is embedded within even quasi-uniform, monomineralic materials, seen, for example, in the spatially discrete evolution of dynamic recrystallization. What passes as homogeneous or uniform deformation at various scales is the aggregation of responses at some characteristic dimension at which heterogeneity is not registered or measured. Nevertheless, the aggregate response and associated normalized parameters (strain, strain rate) do not correspond to any condition actually experienced by the deforming material. The more common types of macroscopic heterogeneity promoting localization comprise mechanically contrasting

  11. Chain dynamics and nanoparticle motion in attractive polymer nanocomposites subjected to large deformations.

    Science.gov (United States)

    Senses, Erkan; Tyagi, Madhusudan; Natarajan, Bharath; Narayanan, Suresh; Faraone, Antonio

    2017-11-08

    The effect of large deformation on the chain dynamics in attractive polymer nanocomposites was investigated using neutron scattering techniques. Quasi-elastic neutron backscattering measurements reveal a substantial reduction of polymer mobility in the presence of attractive, well-dispersed nanoparticles. In addition, large deformations are observed to cause a further slowing down of the Rouse rates at high particle loadings, where the interparticle spacings are slightly smaller than the chain dimensions, i.e. in the strongly confined state. No noticeable change, however, was observed for a lightly confined system. The reptation tube diameter, measured by neutron spin echo, remained unchanged after shear, suggesting that the level of chain-chain entanglements is not significantly affected. The shear-induced changes in the interparticle bridging reflect the slow nanoparticle motion measured by X-ray photon correlation spectroscopy. These results provide a first step for understanding how large shear can significantly affect the segmental motion in nanocomposites and open up new opportunities for designing mechanically responsive soft materials.

  12. Ra and the average effective strain of surface asperities deformed in metal-working processes

    DEFF Research Database (Denmark)

    Bay, Niels; Wanheim, Tarras; Petersen, A. S

    1975-01-01

    Based upon a slip-line analysis of the plastic deformation of surface asperities, a theory is developed determining the Ra-value (c.l.a.) and the average effective strain in the surface layer when deforming asperities in metal-working processes. The ratio between Ra and Ra0, the Ra-value after...... and before deformation, is a function of the nominal normal pressure and the initial slope γ0 of the surface asperities. The last parameter does not influence Ra significantly. The average effective strain View the MathML sourcege in the deformed surface layer is a function of the nominal normal pressure...... and γ0. View the MathML sourcege is highly dependent on γ0, View the MathML sourcege increasing with increasing γ0. It is shown that the Ra-value and the strain are hardly affected by the normal pressure until interacting deformation of the asperities begins, that is until the limit of Amonton's law...

  13. Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions

    Energy Technology Data Exchange (ETDEWEB)

    Balch, Dorian K. [Northwestern University, Evanston, IL (United States); O' Dwyer, John G. [Waterford Institute of Technology (Ireland); Davis, Graham R. [Queen Mary, University of London (United Kingdom); Cady, Carl M. [Los Alamos National Laboratory, Los Alamos, NM (United States); Gray, George T. [Los Alamos National Laboratory, Los Alamos, NM (United States); Dunand, David C. [Northwestern University, Evanston, IL (United States)]. E-mail: dunand@northwestern.edu

    2005-01-25

    Syntactic foams were fabricated by liquid metal infiltration of commercially pure and 7075 aluminum into preforms of hollow ceramic microspheres. The foams exhibited peak strengths during quasi-static compression ranging from -100 to -230 MPa, while dynamic compression loading showed a 10-30% increase in peak strength magnitude, with strain rate sensitivities similar to those of aluminum-matrix composite materials. X-ray tomographic investigation of the post-compression loaded foam microstructures revealed sharp differences in deformation modes, with the unalloyed-Al foam failing initially by matrix deformation, while the alloy-matrix foams failed more abruptly through the formation of sharp crush bands oriented at about 45 deg. to the compression axis. These foams displayed pronounced energy-absorbing capabilities, suggesting their potential use in packaging applications or for impact protection; proper tailoring of matrix and microsphere strengths would result in optimized syntactic foam properties.

  14. Nucleon deformation from lattice QCD

    International Nuclear Information System (INIS)

    Tsapalis, A.

    2008-01-01

    The issue of nucleon and Delta(1232) deformation is discussed through the evaluation of the N to Delta electromagnetic transition and Delta electromagnetic form factors in Lattice QCD. The momentum dependence of the form factors is studied using 2+1 staggered dynamical flavors at pion masses as low as 350 MeV and compared to results obtained in the Wilson quenched and two-flavor dynamical theory at similar pion masses. The measurement of small non-zero quadrupole amplitudes, in agreement to recent experiments, establishes the existence of deformation in the N and Delta states. (author)

  15. Deformation Partitioning: The Missing Link Between Outcrop-Scale Observations And Orogen-Scale Processes

    Science.gov (United States)

    Attia, S.; Paterson, S. R.; Jiang, D.; Miller, R. B.

    2017-12-01

    Structural studies of orogenic deformation fields are mostly based on small-scale structures ubiquitous in field exposures, hand samples, and under microscopes. Relating deformation histories derived from such structures to changing lithospheric-scale deformation and boundary conditions is not trivial due to vast scale separation (10-6 107 m) between characteristic lengths of small-scale structures and lithospheric plates. Rheological heterogeneity over the range of orogenic scales will lead to deformation partitioning throughout intervening scales of structural development. Spectacular examples of structures documenting deformation partitioning are widespread within hot (i.e., magma-rich) orogens such as the well-studied central Sierra Nevada and Cascades core of western North America: (1) deformation partitioned into localized, narrow, triclinic shear zones separated by broad domains of distributed pure shear at micro- to 10 km scales; (2) deformation partitioned between plutons and surrounding metamorphic host rocks as shown by pluton-wide magmatic fabrics consistently oriented differently than coeval host rock fabrics; (3) partitioning recorded by different fabric intensities, styles, and orientations established from meter-scale grid mapping to 100 km scale domainal analyses; and (4) variations in the causes of strain and kinematics within fold-dominated domains. These complex, partitioned histories require synthesized mapping, geochronology, and structural data at all scales to evaluate partitioning and in the absence of correct scaling can lead to incorrect interpretations of histories. Forward modeling capable of addressing deformation partitioning in materials containing multiple scales of rheologically heterogeneous elements of varying characteristic lengths provides the ability to upscale the large synthesized datasets described above to plate-scale tectonic processes and boundary conditions. By comparing modeling predictions from the recently developed

  16. An electromechanical based deformable model for soft tissue simulation.

    Science.gov (United States)

    Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan

    2009-11-01

    Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.

  17. Boostream: a dynamic fluid flow process to assemble nanoparticles at liquid interface

    Science.gov (United States)

    Delléa, Olivier; Lebaigue, Olivier

    2017-12-01

    CEA-LITEN develops an original process called Boostream® to manipulate, assemble and connect micro- or nanoparticles of various materials, sizes, shapes and functions to obtain monolayer colloidal crystals (MCCs). This process uses the upper surface of a liquid film flowing down a ramp to assemble particles in a manner that is close to the horizontal situation of a Langmuir-Blodgett film construction. In presence of particles at the liquid interface, the film down-flow configuration exhibits an unusual hydraulic jump which results from the fluid flow accommodation to the particle monolayer. In order to master our process, the fluid flow has been modeled and experimentally characterized by optical means, such as with the moiré technique that consists in observing the reflection of a succession of periodic black-and-red fringes on the liquid surface mirror. The fringe images are deformed when reflected by the curved liquid surface associated with the hydraulic jump, the fringe deformation being proportional to the local slope of the surface. This original experimental setup allowed us to get the surface profile in the jump region and to measure it along with the main process parameters (liquid flow rate, slope angle, temperature sensitive fluid properties such as dynamic viscosity or surface tension, particle sizes). This work presents the experimental setup and its simple model, the different experimental characterization techniques used and will focus on the way the hydraulic jump relies on the process parameters.

  18. Early-time particle dynamics and non-affine deformations during microstructure selection in solids

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Surajit [Centre for Advanced Materials, Indian Association for the Cultivation of Science, 2A and 2B, Raja S C Mullick Road, Jadavpur, Kolkata 700032 (India); Rao, Madan [Raman Research Institute, C V Raman Avenue, Bangalore 560 080 (India); Bhattacharya, Jayee [S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India)

    2011-07-27

    Solid-solid transitions are invariably associated with groups of particles whose deformations cannot be expressed as an affine strain about a reference configuration. The dynamics of these non-affine zones (NAZ) determine the subsequent microstructure, i.e. the mesoscale patterning resulting from the structural transition. Here, we focus on early-time dynamics of individual particles within an NAZ associated with a nucleation event. We show that the early-time behavior of these particles have distinctive characteristics depending on the transition temperature. The dynamics is heterogeneous, consisting of a few active particles exhibiting complex intermittent jamming and flow in response to internal stresses generated during the transformation. At low temperatures, the dynamics of these active particles is ballistic and the structural transformation proceeds via string-like correlated movement of active particles, along ridges in the potential energy topography set up by inactive particles. On increasing temperature, the dynamics of active particles show an abrupt transition from ballistic to diffusive behavior with a diffusion coefficient which appears to be independent of temperature. This dynamical transition in the nature of the trajectories of particles is coincident with a discontinuous transition in the microstructure of the solid. Finally, we characterize this transition in terms of a dynamical order parameter in the space of trajectories and discuss its connection with the glass transition and rheology of soft and granular matter.

  19. Research on the drawing process with a large total deformation wires of AZ31 alloy

    International Nuclear Information System (INIS)

    Bajor, T; Muskalski, Z; Suliga, M

    2010-01-01

    Magnesium and their alloys have been extensively studied in recent years, not only because of their potential applications as light-weight engineering materials, but also owing to their biodegradability. Due to their hexagonal close-packed crystallographic structure, cold plastic processing of magnesium alloys is difficult. The preliminary researches carried out by the authors have indicated that the application of the KOBO method, based on the effect of cyclic strain path change, for the deformation of magnesium alloys, provides the possibility of obtaining a fine-grained structure material to be used for further cold plastic processing with large total deformation. The main purpose of this work is to present research findings concerning a detailed analysis of mechanical properties and changes occurring in the structure of AZ31 alloy wire during the multistage cold drawing process. The appropriate selection of drawing parameters and the application of multistep heat treatment operations enable the deformation of the AZ31 alloy in the cold drawing process with a total draft of about 90%.

  20. Fluid Surface Deformation by Objects in the Cheerios Effect

    Science.gov (United States)

    Nguyen, Khoi; Miller, Michael; Mandre, Shreyas; Mandre Lab Team

    2012-11-01

    Small objects floating on a fluid/air interface deform of the surface depending on material surface properties, density, and geometry. These objects attract each other through capillary interactions, a phenomenon dubbed the ``cheerios effect.'' The attractive force and torque exerted on these objects by the interface can be estimated if the meniscus deformation is known. In addition, the floating objects can also rotate due to such an interaction. We present a series of experiments focused on visualizing the the motions of the floating objects and the deformation of the interface. The experiments involve thin laser-cut acrylic pieces attracting each other on water in a large glass petri dish and a camera set-up to capture the process. Furthermore, optical distortion of a grid pattern is used to visualize the water surface deformation near the edge of the objects. This study of the deformation of the water surface around a floating object, of the attractive/repulsive forces, and of post-contact rotational dynamics are potentially instrumental in the study of colloidal self-assembly.

  1. Grain refinement through severe plastic deformation (SPD) processing

    International Nuclear Information System (INIS)

    Izairi, N.; Vevecka - Priftaj, A.

    2012-01-01

    There is considerable current interest in processing metallic samples through procedures involving the imposition of severe plastic deformation (SPD). These procedures lead to very significant grain refinement to the submicrometer or even the nanometer level, resulting in advanced physical properties. Among various SPD processes, Equal Channel Angular Pressing, High pressure Torsion and Accumulated Roll Bonding have been widely used for many metals and alloys. In the present work, we present an overview of the most used methods of SPD for grain refinement and the production of bulk nano structured materials with enhancement in their mechanical and functional properties. In order to examine the potential for using ECAP to refine the grain size and improve the mechanical properties, two commercial 5754 Al alloy and AA 3004 , were selected for study. Processing by ECAP gives a reduction in the grain size and an increase in the microhardness. (Author)

  2. A kinematical model for the plastic deformation of face-centred cubic polycrystals

    International Nuclear Information System (INIS)

    Leffers, T.

    1975-01-01

    During the plastic deformation of a polycrystalline material the deformation of the individual grain must be adjusted to the deformation of the surrounding grains so that material continuity is maintained. This continuity condition is the essential feature distinguishing polycrystal deformation from single-crystal deformation. In the present work it is attempted to explain how the continuity condition is fulfilled in face-centred cubic polycrystals. The early treatments of the plastic deformation of polycrystalline materials were aimed directly at the formulation of a ''dynamical'' theory, i.e. it was the intention to cover the magnitude of the stresses involved as well as the slip processes producing the deformation. It is argued that rolling texture is a good tool for a necessary intermediate stage of establishing a ''kinematical'' model describing the slip processes, but not the magnitude of the necessary stresses. Three aspects of rolling texture are considered: (a) the development of the rolling textures found experimentally in face-centred cubic materials can be computer-simulated on the basis of models for the plastic deformation that only involve (111) slip; (b) experimentally that the widely accepted twinning theory for the transition in f.c.c. rolling texture does not reflect the behaviour of real materials; and (c) it is shown that the texture transition is thermally activated with an activation energy corresponding to that of cross slip. An electron-microscopical investigation of the slip process operating during rolling of f.c.c. polycrystals is also included. On the basis of the computer simulation of the texture formation supplemented by the experimental results a kinematical model is developed for the plastic deformation of f.c.c. polycrystals by rolling. In the proposed model the material continuity is maintained by inhomogeneous slip processes, combined with homogeneous multiple glide when the cross-slip frequency is high. (author)

  3. Direct observation of magnetization reversal of hot-deformed Nd-Fe-B magnet

    Directory of Open Access Journals (Sweden)

    Xiaoyun Zhu

    2018-01-01

    Full Text Available The dynamic magnetic domain structure in magnetization and demagnetization process of hot-deformed and NdCu-diffused Nd2Fe14B magnets were in-situ observed by Lorentz transmission electron microscopy (LTEM. The demagnetization process of hot-deformed sample is dominated by domain-wall pinning, while that of NdCu-diffused sample is mainly the magnetization reversal of single grains or grain aggregations. This firstly observed result gives an explicit evidence to understand the coercivity mechanism of magnetically segregated magnet. The effect of magnetic field of TEM on decrease in domain wall energy was theoretically analyzed, which helps to understand the in-situ observation process of magnetic materials.

  4. Investigation of the Deformation Mechanism of a near β Titanium Alloy through Isothermal Compression

    Directory of Open Access Journals (Sweden)

    Jie Wu

    2017-11-01

    Full Text Available This study investigated the hot deformation behavior of Ti-4Al-1Sn-2Zr-5Mo-8V-2.5Cr alloy through isothermal compression tests at temperatures from 780 to 930 °C with strain rates ranging from 0.001 to 1 s−1. The flow stress decreases with a decreased strain rate and an increased temperature. A constitutive equation was established for this alloy and the dependence of activation energy on temperature and strain rate is discussed. We further proposed a processing map using the dynamic materials model. On the processing map various domains of flow stability and flow instability can be identified. The deformation mechanisms associated with flow stability regions are mainly dynamic recrystallization (DRX and dynamic recovery (DRV. The flow instability is manifested in the form of the band of flow localizations. The optimum processing conditions are suggested such that the temperature range is from 780 to 880 °C and the strain rate ranges from 0.001 to 0.01 s−1.

  5. Analytical functions used for description of the plastic deformation process in Zirconium alloys WWER type fuel rod cladding under designed accident conditions

    International Nuclear Information System (INIS)

    Fedotov, A.

    2003-01-01

    The aim of this work was to improve the RAPTA-5 code as applied to the analysis of the thermomechanical behavior of the fuel rod cladding under designed accident conditions. The irreversible process thermodynamics methods were proposed to be used for the description of the plastic deformation process in zirconium alloys under accident conditions. Functions, which describe yielding stress dependence on plastic strain, strain rate and temperature may be successfully used in calculations. On the basis of the experiments made and the existent experimental data the dependence of yielding stress on plastic strain, strain rate, temperature and heating rate for E110 alloy was determined. In future the following research work shall be made: research of dynamic strain ageing in E635 alloy under different strain rates; research of strain rate influence on plastic strain in E635 alloy under test temperature higher than 873 K; research of deformation strengthening of E635 alloy under high temperatures; research of heating rate influence n phase transformation in E110 and E635 alloys

  6. Dynamic Recrystallization Behavior of AISI 422 Stainless Steel During Hot Deformation Processes

    Science.gov (United States)

    Ahmadabadi, R. Mohammadi; Naderi, M.; Mohandesi, J. Aghazadeh; Cabrera, Jose Maria

    2018-02-01

    In this work, hot compression tests were performed to investigate the dynamic recrystallization (DRX) process of a martensitic stainless steel (AISI 422) at temperatures of 950, 1000, 1050, 1100 and 1150 °C and strain rates of 0.01, 0.1 and 1 s-1. The dependency of strain-hardening rate on flow stress was used to estimate the critical stress for the onset of DRX. Accordingly, the critical stress to peak stress ratio was calculated as 0.84. Moreover, the effect of true strain was examined by fitting stress values to an Arrhenius type constitutive equation, and then considering material constants as a function of strain by using a third-order polynomial equation. Finally, two constitutive models were used to investigate the competency of the strain-dependent constitutive equations to predict the flow stress curves of the studied steel. It was concluded that one model offers better precision on the flow stress values after the peak stress, while the other model gives more accurate results before the peak stress.

  7. Evaluation of permanent deformation characteristics of unmodified and Polyethylene Terephthalate modified asphalt mixtures using dynamic creep test

    International Nuclear Information System (INIS)

    Baghaee Moghaddam, Taher; Soltani, Mehrtash; Karim, Mohamed Rehan

    2014-01-01

    Highlights: • Waste PET was utilized as modifier in asphalt mixture. • Deformation characteristics of asphalt mixtures were assessed. • Dynamic creep test was conducted at different temperatures and stress levels. • Permanent deformation models were introduced. - Abstract: One of the major types of plastics that can be found in Municipal Solid Waste (MSW) is Polyethylene Terephthalate (PET) which is a non-biodegradable semi-crystalline thermoplastic polymer, and is considered as polyester material. Generating large amount of waste PET, mainly as bottles, would cause environmental hazards by disposing in landfills. This paper aims to evaluate effects of utilizing waste PET flakes as modifier in asphalt mixture as an alternative solution to overcome the potential risks arise from producing large amount of waste PET as well as evaluating the deformation characteristics of unmodified and PET modified asphalt mixtures. To achieve this aim, different percentages of PET were designated for this investigation, namely: 0%, 0.2%, 0.4%, 0.6%, 0.8% and 1% by weight of aggregate particles, and dynamic creep test was performed at different stress levels (300 kPa and 400 kPa) and temperatures (10 °C, 25 °C and 40 °C). Consequently, Zhou three-stage model was developed. The results showed that permanent deformation characteristics of asphalt mixture were considerably improved by utilization of PET modification, when the permanent strain was remarkably decreased in PET modified mixture compared to the conventional mixture at all stress levels and temperatures. Besides, based on Zhou model, it was concluded that elastic and visco-elastic properties of asphalt mixture were improved by application of PET modification

  8. Instrumented anvil-on-rod impact experiments for validating constitutive strength model for simulating transient dynamic deformation response of metals

    International Nuclear Information System (INIS)

    Martin, M.; Shen, T.; Thadhani, N.N.

    2008-01-01

    Instrumented anvil-on-rod impact experiments were performed to access the applicability of this approach for validating a constitutive strength model for dynamic, transient-state deformation and elastic-plastic wave interactions in vanadium, 21-6-9 stainless steel, titanium, and Ti-6Al-4V. In addition to soft-catching the impacted rod-shaped samples, their transient deformation states were captured by high-speed imaging, and velocity interferometry was used to record the sample back (free) surface velocity and monitor elastic-plastic wave interactions. Simulations utilizing AUTODYN-2D hydrocode with Steinberg-Guinan constitutive equation were used to generate simulated free surface velocity traces and final/transient deformation profiles for comparisons with experiments. The simulations were observed to under-predict the radial strain for bcc vanadium and fcc steel, but over-predict the radial strain for hcp titanium and Ti-6Al-4V. The correlations illustrate the applicability of the instrumented anvil-on-rod impact test as a method for providing robust model validation based on the entire deformation event, and not just the final deformed state

  9. Non-affine deformation in microstructure selection in solids II: Elastoplastic theory for the dynamics of solid state transformations

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Arya; Bhattacharya, Jayee; Sengupta, Surajit [S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Calcutta 700 098 (India); Rao, Madan [Raman Research Institute, C V Raman Avenue, Bangalore 560 080 (India)

    2008-09-10

    We study the nucleation dynamics of a model solid state transformation and the criterion for microstructure selection. Using a molecular dynamics (MD) simulation, we had shown that the dynamics of the solid is accompanied by the creation of transient non-affine zones (NAZ), which evolve with the rapidly moving transformation front. Guided by our MD results, we formulate a dynamical continuum theory of solid state transformation, which couples the elastic strain to the non-affine deformation. We demonstrate that our elastoplastic description recovers all qualitative features of the MD simulation. We construct a dynamical phase diagram for microstructure selection, including regimes where martensite or ferrite obtains, in addition to making several testable predictions.

  10. Molecular Dynamics Simulation of Nanoindentation-induced Mechanical Deformation and Phase Transformation in Monocrystalline Silicon

    Directory of Open Access Journals (Sweden)

    Jian Sheng-Rui

    2008-01-01

    Full Text Available AbstractThis work presents the molecular dynamics approach toward mechanical deformation and phase transformation mechanisms of monocrystalline Si(100 subjected to nanoindentation. We demonstrate phase distributions during loading and unloading stages of both spherical and Berkovich nanoindentations. By searching the presence of the fifth neighboring atom within a non-bonding length, Si-III and Si-XII have been successfully distinguished from Si-I. Crystallinity of this mixed-phase was further identified by radial distribution functions.

  11. Development of mathematical models for automation of strength calculation during plastic deformation processing

    Science.gov (United States)

    Steposhina, S. V.; Fedonin, O. N.

    2018-03-01

    Dependencies that make it possible to automate the force calculation during surface plastic deformation (SPD) processing and, thus, to shorten the time for technological preparation of production have been developed.

  12. Conformational dynamics of Rouse chains during creep/recovery processes: a review

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi; Inoue, Tadashi

    2005-01-01

    The Rouse model is a well-established model for non-entangled polymer chains and also serves as a fundamental model for entangled chains. The dynamic behaviour of this model under strain-controlled conditions has been fully analysed in the literature. However, despite the importance of the Rouse model, no analysis has been made so far of the orientational anisotropy of the Rouse eigenmodes during the stress-controlled, creep and recovery processes. For completeness of the analysis of the model, the Rouse equation of motion is solved to calculate this anisotropy for monodisperse chains and their binary blends during the creep/recovery processes. The calculation is simple and straightforward, but the result is intriguing in the sense that each Rouse eigenmode during these processes has a distribution in the retardation times. This behaviour, reflecting the interplay/correlation among the Rouse eigenmodes of different orders (and for different chains in the blends) under the constant stress condition, is quite different from the behaviour under rate-controlled flow (where each eigenmode exhibits retardation/relaxation associated with a single characteristic time). Furthermore, the calculation indicates that the Rouse chains exhibit affine deformation on sudden imposition/removal of the stress and the magnitude of this deformation is inversely proportional to the number of bond vectors per chain. In relation to these results, a difference between the creep and relaxation properties is also discussed for chains obeying multiple relaxation mechanisms (Rouse and reptation mechanisms). (topical review)

  13. Comparative Analysis of Bulge Deformation between 2D and 3D Finite Element Models

    Directory of Open Access Journals (Sweden)

    Qin Qin

    2014-02-01

    Full Text Available Bulge deformation of the slab is one of the main factors that affect slab quality in continuous casting. This paper describes an investigation into bulge deformation using ABAQUS to model the solidification process. A three-dimensional finite element analysis model of the slab solidification process has been first established because the bulge deformation is closely related to slab temperature distributions. Based on slab temperature distributions, a three-dimensional thermomechanical coupling model including the slab, the rollers, and the dynamic contact between them has also been constructed and applied to a case study. The thermomechanical coupling model produces outputs such as the rules of bulge deformation. Moreover, the three-dimensional model has been compared with a two-dimensional model to discuss the differences between the two models in calculating the bulge deformation. The results show that the platform zone exists in the wide side of the slab and the bulge deformation is affected strongly by the ratio of width-to-thickness. The indications are also that the difference of the bulge deformation for the two modeling ways is little when the ratio of width-to-thickness is larger than six.

  14. The multiphonon method as a dynamical approach to octupole correlations in deformed nuclei

    International Nuclear Information System (INIS)

    Piepenbring, R.

    1986-09-01

    The octupole correlations in nuclei are studied within the framework of the multiphonon method which is mainly the exact diagonalization of the total Hamiltonian in the space spanned by collective phonons. This treatment takes properly into account the Pauli principle. It is a microscopic approach based on a reflection symmetry of the potential. The spectroscopic properties of double even and odd-mass nuclei are nicely reproduced. The multiphonon method appears as a dynamical approach to octupole correlations in nuclei which can be compared to other models based on stable octupole deformation. 66 refs

  15. 2D numerical modeling of gravity-driven giant-scale deformation processes in the offshore Barreirinhas Basin (Brazil)

    Science.gov (United States)

    Cruciani, Francesco; Manconi, Andrea; Rinaldo Barchi, Massimiliano

    2014-05-01

    Gravity-driven deformation processes at continental passive margins occur at different scales, from small-scale turbidity currents and sediment slides, to large-scale mass transport complexes (MTCs), to the giant-scale deep water fold and thrust belts (DW-FTBs), which affect most or the entire sedimentary sequence. This kind of giant structures, quite widespread in passive margins, may be active for tens of millions of years. In this context, the Brazilian Atlantic margin hosts several well-known DW-FTBs detached on both shale and salt décollement. Despite of their relevant scientific and economic importance, the mechanical processes driving the onset and evolution of these giant-scale structures are still poorly investigated. In this work, we focus on the shale décollement DW-FTB of the Barreirinhas Basin, where the continental slope has been affected by multi-phase gravitational processes since the Late Cretaceous. This DW-FTB consists of a linked fault system of listric normal faults updip and thrust faults downdip, detached over a common concave upward décollement surface. From the onshore extensional to the offshore compressional domain the DW-FTB is about 50 km wide and involve a sedimentary sequence up to 5 km thick. Shortening within the compressional domain is accommodated almost entirely from a single thrust ramp with a large related anticline fold. Previous studies have shown that the main activity phases of the gravitational processes are closely linked to significant increases in the sediment supply within the basin. Indeed, the highest deformation rate, accounting for about 80% of the net strain, occurred in the Upper Miocene following a drainage rearrangement which led to the birth of the modern Amazon River drainage system. The Barreirinhas Basin DW-FTB entails a rather simple geometrical structure, which can be well schematized, therefore is particularly suitable for numerical simulations aimed to study and understand the dynamics of DW-FTB at

  16. Microstructure and micro-texture evolution during large strain deformation of Inconel alloy IN718

    Energy Technology Data Exchange (ETDEWEB)

    Nayan, Niraj [Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Trivandrum 695 022 (India); Gurao, N.P. [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208 016 (India); Narayana Murty, S.V.S., E-mail: susarla.murty@gmail.com [Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Trivandrum 695 022 (India); Jha, Abhay K.; Pant, Bhanu; George, Koshy M. [Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Trivandrum 695 022 (India)

    2015-12-15

    The hot deformation behaviour of Inconel alloy IN718 was studied in the temperature range of 950–1100 °C and at strain rates of 0.01 and 1 s{sup −1} with a view to understand the microstructural evolution as a function of strain rate and temperature. For this purpose, a single hit, hot isothermal plane strain compression (PSC) technique was used. The flow curves obtained during PSC exhibited weak flow softening at higher temperatures. Electron backscattered diffraction analysis (EBSD) of the PSC tested samples at the location of maximum strain revealed dynamic recrystallisation occurring at higher temperatures. Based on detailed microstructure and microtexture analyses, it was concluded that single step, large strain deformation has a distinct advantage in the thermo-mechanical processing of Inconel alloy IN718. - Highlights: • Plane strain compression (PSC) on IN718 was conducted. • Evolution of microstructure during large strain deformation was studied. • Flow curves exhibited weak softening at higher temperatures and dipping of the flow curve at a strain rate of 1 s{sup −1}. • Optimization of microstructure and process parameter for hot rolling possible by plane strain compression testing • Dynamic recrystallisation occurs in specimens deformed at higher temperatures and lower strain rates.

  17. Geometry and dynamics of particle emission from strongly deformed nuclei

    International Nuclear Information System (INIS)

    Aleshin, V.P.

    1995-01-01

    By using our semiclassical approach to particle evaporation from deformed nuclei, we analyze the heuristic models of particle emission from deformed nuclei which are used in the codes GANES, ALICE, and EVAP. The calculations revealed that the heuristic models are reasonable for particle energy spectra but fail, at large deformations, to describe the angular distributions

  18. Non-singular Brans–Dicke collapse in deformed phase space

    Energy Technology Data Exchange (ETDEWEB)

    Rasouli, S.M.M., E-mail: mrasouli@ubi.pt [Departamento de Física, Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal); Centro de Matemática e Aplicações (CMA - UBI), Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal); Physics Group, Qazvin Branch, Islamic Azad University, Qazvin (Iran, Islamic Republic of); Ziaie, A.H., E-mail: ah_ziaie@sbu.ac.ir [Department of Physics, Shahid Beheshti University, G. C., Evin, 19839 Tehran (Iran, Islamic Republic of); Department of Physics, Shahid Bahonar University, PO Box 76175, Kerman (Iran, Islamic Republic of); Jalalzadeh, S., E-mail: shahram.jalalzadeh@unila.edu.br [Federal University of Latin-American Integration, Technological Park of Itaipu PO box 2123, Foz do Iguaçu-PR, 85867-670 (Brazil); Moniz, P.V., E-mail: pmoniz@ubi.pt [Departamento de Física, Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal); Centro de Matemática e Aplicações (CMA - UBI), Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal)

    2016-12-15

    We study the collapse process of a homogeneous perfect fluid (in FLRW background) with a barotropic equation of state in Brans–Dicke (BD) theory in the presence of phase space deformation effects. Such a deformation is introduced as a particular type of non-commutativity between phase space coordinates. For the commutative case, it has been shown in the literature (Scheel, 1995), that the dust collapse in BD theory leads to the formation of a spacetime singularity which is covered by an event horizon. In comparison to general relativity (GR), the authors concluded that the final state of black holes in BD theory is identical to the GR case but differs from GR during the dynamical evolution of the collapse process. However, the presence of non-commutative effects influences the dynamics of the collapse scenario and consequently a non-singular evolution is developed in the sense that a bounce emerges at a minimum radius, after which an expanding phase begins. Such a behavior is observed for positive values of the BD coupling parameter. For large positive values of the BD coupling parameter, when non-commutative effects are present, the dynamics of collapse process differs from the GR case. Finally, we show that for negative values of the BD coupling parameter, the singularity is replaced by an oscillatory bounce occurring at a finite time, with the frequency of oscillation and amplitude being damped at late times.

  19. Non-singular Brans–Dicke collapse in deformed phase space

    International Nuclear Information System (INIS)

    Rasouli, S.M.M.; Ziaie, A.H.; Jalalzadeh, S.; Moniz, P.V.

    2016-01-01

    We study the collapse process of a homogeneous perfect fluid (in FLRW background) with a barotropic equation of state in Brans–Dicke (BD) theory in the presence of phase space deformation effects. Such a deformation is introduced as a particular type of non-commutativity between phase space coordinates. For the commutative case, it has been shown in the literature (Scheel, 1995), that the dust collapse in BD theory leads to the formation of a spacetime singularity which is covered by an event horizon. In comparison to general relativity (GR), the authors concluded that the final state of black holes in BD theory is identical to the GR case but differs from GR during the dynamical evolution of the collapse process. However, the presence of non-commutative effects influences the dynamics of the collapse scenario and consequently a non-singular evolution is developed in the sense that a bounce emerges at a minimum radius, after which an expanding phase begins. Such a behavior is observed for positive values of the BD coupling parameter. For large positive values of the BD coupling parameter, when non-commutative effects are present, the dynamics of collapse process differs from the GR case. Finally, we show that for negative values of the BD coupling parameter, the singularity is replaced by an oscillatory bounce occurring at a finite time, with the frequency of oscillation and amplitude being damped at late times.

  20. EBSD characterization of low temperature deformation mechanisms in modern alloys

    Science.gov (United States)

    Kozmel, Thomas S., II

    For structural applications, grain refinement has been shown to enhance mechanical properties such as strength, fatigue resistance, and fracture toughness. Through control of the thermos-mechanical processing parameters, dynamic recrystallization mechanisms were used to produce microstructures consisting of sub-micron grains in 9310 steel, 4140 steel, and Ti-6Al-4V. In both 9310 and 4140 steel, the distribution of carbides throughout the microstructure affected the ability of the material to dynamically recrystallize and determined the size of the dynamically recrystallized grains. Processing the materials at lower temperatures and higher strain rates resulted in finer dynamically recrystallized grains. Microstructural process models that can be used to estimate the resulting microstructure based on the processing parameters were developed for both 9310 and 4140 steel. Heat treatment studies performed on 9310 steel showed that the sub-micron grain size obtained during deformation could not be retained due to the low equilibrium volume fraction of carbides. Commercially available aluminum alloys were investigated to explain their high strain rate deformation behavior. Alloys such as 2139, 2519, 5083, and 7039 exhibit strain softening after an ultimate strength is reached, followed by a rapid degradation of mechanical properties after a critical strain level has been reached. Microstructural analysis showed that the formation of shear bands typically preceded this rapid degradation in properties. Shear band boundary misorientations increased as a function of equivalent strain in all cases. Precipitation behavior was found to greatly influence the microstructural response of the alloys. Additionally, precipitation strengthened alloys were found to exhibit similar flow stress behavior, whereas solid solution strengthened alloys exhibited lower flow stresses but higher ductility during dynamic loading. Schmid factor maps demonstrated that shear band formation behavior

  1. Dynamical recrystallization of high purity austenitic stainless steels

    International Nuclear Information System (INIS)

    Gavard, L.

    2001-01-01

    The aim of this work is to optimize the performance of structural materials. The elementary mechanisms (strain hardening and dynamical regeneration, germination and growth of new grains) occurring during the hot working of metals and low pile defect energy alloys have been studied for austenitic stainless steels. In particular, the influence of the main experimental parameters (temperature, deformation velocity, initial grain size, impurities amount, deformation way) on the process of discontinuous dynamical recrystallization has been studied. Alloys with composition equal to those of the industrial stainless steel-304L have been fabricated from ultra-pure iron, chromium and nickel. Tests carried out in hot compression and torsion in order to cover a wide range of deformations, deformation velocities and temperatures for two very different deformation ways have allowed to determine the rheological characteristics (sensitivity to the deformation velocity, apparent activation energy) of materials as well as to characterize their microstructural deformations by optical metallography and electron back-scattered diffraction. The influence of the initial grain size and the influence of the purity of the material on the dynamical recrystallization kinetics have been determined. An analytical model for the determination of the apparent mobility of grain boundaries, a semi-analytical model for the dynamical recrystallization and at last an analytical model for the stationary state of dynamical recrystallization are proposed as well as a new criteria for the transition between the refinement state and the state of grain growth. (O.M.)

  2. Validation of performance of real-time kinematic PPP. A possible tool for deformation monitoring

    OpenAIRE

    Martín Furones, Ángel Esteban; Anquela Julián, Ana Belén; DIMAS PAGÉS, ALEJANDRO; Cos-Gayón López, Fernando José

    2015-01-01

    Structural failures (bridge or building collapses) and geohazards (landslides, ground subsi- dence or earthquakes) are worldwide problems that often lead to significant economic and loss of life. Monitoring the deformation of both natural phenomena and man-made struc- tures is a major key to assessing structural dynamic responses. Actually, this monitoring process is under real-time demand for developing warning and alert systems. One of the most used techniques for real-time deformation m...

  3. Thermal Hydraulic Computational Fluid Dynamics Simulations and Experimental Investigation of Deformed Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Mays, Brian [AREVA Federal Services, Lynchburg, VA (United States); Jackson, R. Brian [TerraPower, Bellevue, WA (United States)

    2017-03-08

    The project, Toward a Longer Life Core: Thermal Hydraulic CFD Simulations and Experimental Investigation of Deformed Fuel Assemblies, DOE Project code DE-NE0008321, was a verification and validation project for flow and heat transfer through wire wrapped simulated liquid metal fuel assemblies that included both experiments and computational fluid dynamics simulations of those experiments. This project was a two year collaboration between AREVA, TerraPower, Argonne National Laboratory and Texas A&M University. Experiments were performed by AREVA and Texas A&M University. Numerical simulations of these experiments were performed by TerraPower and Argonne National Lab. Project management was performed by AREVA Federal Services. The first of a kind project resulted in the production of both local point temperature measurements and local flow mixing experiment data paired with numerical simulation benchmarking of the experiments. The project experiments included the largest wire-wrapped pin assembly Mass Index of Refraction (MIR) experiment in the world, the first known wire-wrapped assembly experiment with deformed duct geometries and the largest numerical simulations ever produced for wire-wrapped bundles.

  4. Nd-Fe-B-Cu hot deformation processing: a comparison of deformation modes, microstructural development and magnetic properties

    International Nuclear Information System (INIS)

    Ferrante, M.; Sinka, V.; Assis, O.B.G.; Oliveira, I. de; Freitas, E. de

    1996-01-01

    Due to its relative simplicity and low cost the hot deformation of Nd-Fe-B ingots is rapidly reaching the status of a valid alternative to sintering. Among the possible deformation modes, pressing, rolling and forging are perhaps the most successful. This paper describes the research programme undertaken so far, by discussing the relationship between deformation mode, microstructure and magnetic properties of magnets produced by hot deformation mode, microstructure and magnetic properties of magnets produced by hot deformation of a number of Nd-fe-B-Cu alloys. Microstructural observation showed that both pressed and forged samples are characterized by a heterogeneous microstructure and from magnetic measurements it was concluded that magnetic properties differ when taken in the center or in the periphery of the sample. On the other hand roller magnets were homogeneous both in terms of microstructure and magnetic properties, and interpretations of the mechanisms of texture development and of microstructural development of hot deformed magnets is put forward. (author)

  5. A connectionist-geostatistical approach for classification of deformation types in ice surfaces

    Science.gov (United States)

    Goetz-Weiss, L. R.; Herzfeld, U. C.; Hale, R. G.; Hunke, E. C.; Bobeck, J.

    2014-12-01

    Deformation is a class of highly non-linear geophysical processes from which one can infer other geophysical variables in a dynamical system. For example, in an ice-dynamic model, deformation is related to velocity, basal sliding, surface elevation changes, and the stress field at the surface as well as internal to a glacier. While many of these variables cannot be observed, deformation state can be an observable variable, because deformation in glaciers (once a viscosity threshold is exceeded) manifests itself in crevasses.Given the amount of information that can be inferred from observing surface deformation, an automated method for classifying surface imagery becomes increasingly desirable. In this paper a Neural Network is used to recognize classes of crevasse types over the Bering Bagley Glacier System (BBGS) during a surge (2011-2013-?). A surge is a spatially and temporally highly variable and rapid acceleration of the glacier. Therefore, many different crevasse types occur in a short time frame and in close proximity, and these crevasse fields hold information on the geophysical processes of the surge.The connectionist-geostatistical approach uses directional experimental (discrete) variograms to parameterize images into a form that the Neural Network can recognize. Recognizing that each surge wave results in different crevasse types and that environmental conditions affect the appearance in imagery, we have developed a semi-automated pre-training software to adapt the Neural Net to chaining conditions.The method is applied to airborne and satellite imagery to classify surge crevasses from the BBGS surge. This method works well for classifying spatially repetitive images such as the crevasses over Bering Glacier. We expand the network for less repetitive images in order to analyze imagery collected over the Arctic sea ice, to assess the percentage of deformed ice for model calibration.

  6. Numerical modelling of stresses and deformations in casting processes

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    1997-01-01

    Keywords: Stresses and deformations, casting, governing equations, thermal strain, control volume method......Keywords: Stresses and deformations, casting, governing equations, thermal strain, control volume method...

  7. High-temperature deformation and processing maps of Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles

    Science.gov (United States)

    Chen, Jing; Liu, Huiqun; Zhang, Ruiqian; Li, Gang; Yi, Danqing; Lin, Gaoyong; Guo, Zhen; Liu, Shaoqiang

    2018-06-01

    High-temperature compression deformation of a Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles was investigated at 750 °C-950 °C with a strain rate of 0.01-1.0 s-1 and height reduction of 20%. Scanning electron microscopy was utilized to investigate the influence of the deformation conditions on the microstructure of the composite and damage to the coated surrogate fuel particles. The results indicated that the flow stress of the composite increased with increasing strain rate and decreasing temperature. The true stress-strain curves showed obvious serrated oscillation characteristics. There were stable deformation ranges at the initial deformation stage with low true strain at strain rate 0.01 s-1 for all measured temperatures. Additionally, the coating on the surface of the surrogate nuclear fuel particles was damaged when the Zr-4 matrix was deformed at conditions of high strain rate and low temperature. The deformation stability was obtained from the processing maps and microstructural characterization. The high-temperature deformation activation energy was 354.22, 407.68, and 433.81 kJ/mol at true strains of 0.02, 0.08, and 0.15, respectively. The optimum deformation parameters for the composite were 900-950 °C and 0.01 s-1. These results are expected to provide guidance for subsequent determination of possible hot working processes for this composite.

  8. The effects of rheological decoupling on slab deformation in the Earth's upper mantle

    NARCIS (Netherlands)

    Androvičová, A.; Čížková, H.; van den Berg, A.

    2013-01-01

    Processes within subduction zones have a major influence on the plate dynamics and mantle convection. Subduction is controlled by a combination of many parameters and there is no simple global relationship between the resulting slab geometry and deformation and any specific subduction parameter.

  9. Simultaneous measurement of dynamic force and spatial thin film thickness between deformable and solid surfaces by integrated thin liquid film force apparatus.

    Science.gov (United States)

    Zhang, Xurui; Tchoukov, Plamen; Manica, Rogerio; Wang, Louxiang; Liu, Qingxia; Xu, Zhenghe

    2016-11-09

    Interactions involving deformable surfaces reveal a number of distinguishing physicochemical characteristics that do not exist in interactions between rigid solid surfaces. A unique fully custom-designed instrument, referred to as integrated thin liquid film force apparatus (ITLFFA), was developed to study the interactions between one deformable and one solid surface in liquid. Incorporating a bimorph force sensor with interferometry, this device allows for the simultaneous measurement of the time-dependent interaction force and the corresponding spatiotemporal film thickness of the intervening liquid film. The ITLFFA possesses the specific feature of conducting measurement under a wide range of hydrodynamic conditions, with a displacement velocity of deformable surfaces ranging from 2 μm s -1 to 50 mm s -1 . Equipped with a high speed camera, the results of a bubble interacting with hydrophilic and partially hydrophobic surfaces in aqueous solutions indicated that ITLFFA can provide information on interaction forces and thin liquid film drainage dynamics not only in a stable film but also in films of the quick rupture process. The weak interaction force was extracted from a measured film profile. Because of its well-characterized experimental conditions, ITLFFA permits the accurate and quantitative comparison/validation between measured and calculated interaction forces and temporal film profiles.

  10. Asymmetric Rolling Process Simulations by Dynamic Explicit Crystallographic Homogenized Finite Element Method

    International Nuclear Information System (INIS)

    Ngoc Tam, Nguyen; Nakamura, Yasunori; Terao, Toshihiro; Kuramae, Hiroyuki; Nakamachi, Eiji; Sakamoto, Hidetoshi; Morimoto, Hideo

    2007-01-01

    Recently, the asymmetric rolling (ASR) has been applied to the material processing of aluminum alloy sheet to control micro-crystal structure and texture in order to improve the mechanical properties. Previously, several studies aimed at high formability sheet generation have been carried out experimentally, but finite element simulations to predict the deformation induced texture evolution of the asymmetrically rolled sheet metals have not been investigated rigorously. In this study, crystallographic homogenized finite element (FE) codes are developed and applied to analyze the asymmetrical rolling processes. The textures of sheet metals were measured by electron back scattering diffraction (EBSD), and compared with FE simulations. The results from the dynamic explicit type Crystallographic homogenization FEM code shows that this type of simulation is a comprehensive tool to predict the plastic induced texture evolution

  11. Dynamic deformation theory of spherical and deformed light and heavy nuclei with A = 12-240

    International Nuclear Information System (INIS)

    Kumar, Krishna.

    1979-01-01

    Deformation dependent wave functions are calculated for different types of even-even nuclei (spherical, transitional, deformed; light, medium, heavy) without any fitting parameters. These wave functions are employed for the energies, B(E2)'s, quadrupole and magnetic moments of selected nuclei with A = 12-240 (with special emphasis on 56 Fe, 154 Gd), and for neutron cross sections of 148 Sm, 152 Sm

  12. Evaluation of permanent deformation of CRM-reinforced SMA and its correlation with dynamic stiffness and dynamic creep.

    Science.gov (United States)

    Mashaan, Nuha Salim; Karim, Mohamed Rehan

    2013-01-01

    Today, rapid economic and industrial growth generates increasing amounts of waste materials such as waste tyre rubber. Attempts to inspire a green technology which is more environmentally friendly that can produce economic value are a major consideration in the utilization of waste materials. The aim of this study is to evaluate the effect of waste tyre rubber (crumb rubber modifier (CRM)), in stone mastic asphalt (SMA 20) performance. The virgin bitumen (80/100) penetration grade was used, modified with crumb rubber at four different modification levels, namely, 6%, 12%, 16%, and 20% by weight of the bitumen. The testing undertaken on the asphalt mix comprises the indirect tensile (dynamic stiffness), dynamic creep, and wheel tracking tests. By the experimentation, the appropriate amount of CRM was found to be 16% by weight of bitumen. The results show that the addition of CRM into the mixture has an obvious significant effect on the performance properties of SMA which could improve the mixture's resistance against permanent deformation. Further, higher correlation coefficient was obtained between the rut depth and permanent strain as compared to resilient modulus; thus dynamic creep test might be a more reliable test in evaluating the rut resistance of asphalt mixture.

  13. Evaluation of Permanent Deformation of CRM-Reinforced SMA and Its Correlation with Dynamic Stiffness and Dynamic Creep

    Directory of Open Access Journals (Sweden)

    Nuha Salim Mashaan

    2013-01-01

    Full Text Available Today, rapid economic and industrial growth generates increasing amounts of waste materials such as waste tyre rubber. Attempts to inspire a green technology which is more environmentally friendly that can produce economic value are a major consideration in the utilization of waste materials. The aim of this study is to evaluate the effect of waste tyre rubber (crumb rubber modifier (CRM, in stone mastic asphalt (SMA 20 performance. The virgin bitumen (80/100 penetration grade was used, modified with crumb rubber at four different modification levels, namely, 6%, 12%, 16%, and 20% by weight of the bitumen. The testing undertaken on the asphalt mix comprises the indirect tensile (dynamic stiffness, dynamic creep, and wheel tracking tests. By the experimentation, the appropriate amount of CRM was found to be 16% by weight of bitumen. The results show that the addition of CRM into the mixture has an obvious significant effect on the performance properties of SMA which could improve the mixture's resistance against permanent deformation. Further, higher correlation coefficient was obtained between the rut depth and permanent strain as compared to resilient modulus; thus dynamic creep test might be a more reliable test in evaluating the rut resistance of asphalt mixture.

  14. Radiative processes as a condensation phenomenon and the physical meaning of deformed canonical structures

    International Nuclear Information System (INIS)

    Gamboa, J.; Mendez, F.; Grigorio, L.S.; Guimaraes, M.S.; Wotzasek, C.

    2008-01-01

    We study the radiative corrections of QED 3 from the dual point of view and show that this process is the exact dual to the Julia-Toulouse mechanism introduced by Quevedo and Trugenberger [F. Quevedo, C.A. Trugenberger, Nucl. Phys. B 501 (1997) 143] some years ago. We discuss the physics behind this mechanism that involves condensation of topological defects. It is shown that the dual Stuckelberg mechanism is responsible for the 'rank-jump' phenomenon that transforms the scalar field (dual to Maxwell in this dimensionality) into the vectorial self-dual field. This phenomenon is studied using the ideas of noncommutative fields theory that examines possible deformations of the canonical structure of some well-known models in (2+1)D. A deformation is constructed linking the massless scalar field theory with the self-dual theory. This is the exact dual of the known deformation connecting the Maxwell theory with the Maxwell-Chern-Simons theory. Duality, radiative corrections, the Julia-Toulouse mechanism and canonical deformations are then used to establish a web of relations between the mentioned theories and to propose a physical picture of the deformation procedure adopted

  15. Mechanisms of deformation and of recrystallization of imperfect uranium monocrystals

    International Nuclear Information System (INIS)

    Calais, D.

    1960-04-01

    The various means by which plastic deformations by slip, twinning or kinking are produced by tension of imperfect α uranium single crystals prepared by a β → α phase change, have been studied by X-rays and micrographic examination. Depending on the crystallographic orientation with respect to the direction of the applied tension, and depending on the magnitude of the change in length, the crystals are deformed either preferentially according to a single mechanism, for example twinning, or simultaneously according to two or three mechanisms. The results of a subsequent annealing of the deformed single in the α phase are studied with respect to the deformation mechanisms. In the case of a deformation due primarily to (010) [100], (011) [100] or (110) [001] sliding, there occurs recrystallization by crystal growth selectivity. If the deformation occurs via deformation bands, there is recrystallization by 'oriented nucleation'. The crystals deformed preponderantly by twinning give on recrystallization perfect crystals having optimum dimensions and having orientational characteristics closely related to those of the original crystal. Finally are discussed some criteria relating to the geometry and the dynamics with a view to explaining the occurrence of such and such a deformation mechanism of a single crystal with a given orientation. This study, in conclusion, must help to define the best conditions (crystalline orientation and process of deformation) which will promote the growth of large, perfect, single crystals. (author) [fr

  16. Deformable Organic Nanowire Field-Effect Transistors.

    Science.gov (United States)

    Lee, Yeongjun; Oh, Jin Young; Kim, Taeho Roy; Gu, Xiaodan; Kim, Yeongin; Wang, Ging-Ji Nathan; Wu, Hung-Chin; Pfattner, Raphael; To, John W F; Katsumata, Toru; Son, Donghee; Kang, Jiheong; Matthews, James R; Niu, Weijun; He, Mingqian; Sinclair, Robert; Cui, Yi; Tok, Jeffery B-H; Lee, Tae-Woo; Bao, Zhenan

    2018-02-01

    Deformable electronic devices that are impervious to mechanical influence when mounted on surfaces of dynamically changing soft matters have great potential for next-generation implantable bioelectronic devices. Here, deformable field-effect transistors (FETs) composed of single organic nanowires (NWs) as the semiconductor are presented. The NWs are composed of fused thiophene diketopyrrolopyrrole based polymer semiconductor and high-molecular-weight polyethylene oxide as both the molecular binder and deformability enhancer. The obtained transistors show high field-effect mobility >8 cm 2 V -1 s -1 with poly(vinylidenefluoride-co-trifluoroethylene) polymer dielectric and can easily be deformed by applied strains (both 100% tensile and compressive strains). The electrical reliability and mechanical durability of the NWs can be significantly enhanced by forming serpentine-like structures of the NWs. Remarkably, the fully deformable NW FETs withstand 3D volume changes (>1700% and reverting back to original state) of a rubber balloon with constant current output, on the surface of which it is attached. The deformable transistors can robustly operate without noticeable degradation on a mechanically dynamic soft matter surface, e.g., a pulsating balloon (pulse rate: 40 min -1 (0.67 Hz) and 40% volume expansion) that mimics a beating heart, which underscores its potential for future biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A deformation (strain) envelope for cyclic disturbed sand

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2018-01-01

    Recent advances in triaxial testing procedures revealed new properties governing disturbed sand stiffness. This paper summarizes the new observations into an original, proof of concept. The novel concept interpolates effective stress within a strain (deformation) envelope. Coulomb stress limits...... are still satisfied, but the stresses are interpolated using a deformation (strain) envelope. The method is not part of a constitutive formulation, but is remarkably functional in triaxial testing practice. The practicality is proven by plotting simulations on top of empirically measured stiffness history...... - the fitting is remarkably good even during tests of extreme complexity. The novelty has substantial interdisciplinary potential: offshore anchors and foundations, earthquakes and industrial processes - wherever dynamic loads and disturbed sand are encountered. It opens the door to a new branch of numerical...

  18. Anisotropic deformation behavior of as-extruded 6063-T4 alloy under dynamic impact loading

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Tuo [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082 (China); Li, Luoxing, E-mail: luoxing_li@yahoo.com [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082 (China); Joint Center for Intelligent New Energy Vehicle, Tongji University, Shanghai 200092 (China); Liu, Xiao; Liu, Wenhui [Key Laboratory of High Temperature Wear Resistant Materials Preparation Technology of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201 (China); Guo, Pengcheng; Tang, Xu [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082 (China)

    2016-06-01

    The deformation behavior of 6063-T4 aluminum alloy bar was investigated by compression tests conducted at a wide strain rate range of 10{sup −4} to 9×10{sup 3} s{sup −1} with loading directions at 0°, 45° and 90° to the axis of the extruded bar. It is found that the flow stresses of 0° specimens are always the highest and those of the 45° specimens are the lowest at the same conditions. The flow stress exhibits obvious strain rate sensitivity (SRS), which differs from static to dynamic deformation. The Schmid factors (SFs) for each type of texture components were calculated. For the {112}<111> texture component, the max Schmid factors are 0.27, 0.49 and 0.41 for 0°, 45° and 90° specimens. For the {110}<111> texture component, they are 0.27, 0.43 and 0.41 for the three directions. The initial texture changes significantly with increasing strain, the strain rate has slight influence on the texture evolution. The transmission electron microscope (TEM) observations indicate that as the strain rate increases, the density of the dislocation increases and its distribution becomes more homogeneous. It is necessary to consider the anisotropic deformation behavior and microstructure evolution in material selection and structure design for the impact components.

  19. Process of diffractive scattering and disintegration of complex particles by nonspherical deformed nuclei

    International Nuclear Information System (INIS)

    Evlanov, M.V.

    1989-01-01

    The differential and integral cross sections of diffractive elastic and inelastic scattering and of the disintegration of complex particles by axial and nonaxial deformed nuclei are investigated depending on the shape, deformability and diffuseness of nuclear boundary as well as on the structure of the incident particles and of the rescattering processes. It is shown that the complicated coincidence experiments and experimnts on inelastic scattering with excitation of the target nucleus collective states are satisfactorily described taking simultaneously into account all factors mentioned above and the final-state interaction between the disintegration products of the incident particle

  20. HPT-Deformation of Copper and NicKEXl Single Crystals

    International Nuclear Information System (INIS)

    Hafok, M.; Vorhauer, A.; Pippan, R.; KEXcKEXs, J.

    2005-01-01

    Full text: Copper and nicKEXl single crystals of high purity with a crystallographic orientation, (001) and (111) respectively, were deformed by applying high pressure torsion (HPT) at room temperature. Special interest was devoted to the structural evolution of the material, which was characterized by electron backscatter diffraction (EBSD) and x-ray texture analysis as well. In addition back scatter electron investigations were applied to characterize shape and size of the new formed structure. Furthermore the study is focused on the micro structural and micro textural evolution that lead to the increase of misorientation angle with increasing plastic deformation. We observed an increasing fragmentation of the structure with increasing plastic equivalent strain up to a level where the grain size is saturated. The saturation could be traced back to dynamical recovery and recrystallisation during the deformation process that is depending on the purity of the material. (author)

  1. New developments in geometric dynamic recrystallization

    International Nuclear Information System (INIS)

    Kassner, M.E.; Barrabes, S.R.

    2005-01-01

    The concept of geometric dynamic recrystallization (GDX) originated in 1980s with work on elevated-temperature deformation aluminum to large strains. In this case, substantial grain refinement occurs through a process of grain elongation and thinning leading to a dramatic increase in grain boundary area. The grain boundaries become serrated as a result of subgrain (low angle) boundary formation. Pinching off and annihilation of high-angle grain boundaries occurs as the original grains thin to about twice the subgrain diameter to and a 'steady-state' structure. This concept has since been carefully verified in pure Al, as well as Al-Mg alloys deforming in the three-power regime. Large strain deformation of Al single crystals is also consistent with the concept. Also, data in the literature on large strain deformation of a bcc iron alloy are consistent with GDX. Recent experiments on α-zirconium show that GDX applies to this hcp metal. Thus, it appears that GDX is a general phenomenon that can lead to grain refinement in the absence of any discontinuous dynamic recrystallization (DRX) or continuous dynamic recrystallization (CDX). A discussion of continuous dynamic recrystallization and geometric necessary boundaries in relation to GDX will also be discussed. This may be particularly relevant to severe plastic deformation such as rolling and equal-channel angular pressing where dramatic increases in the number of high-angle boundaries are observed

  2. Effect of surfactants on the deformation of single droplet in shear flow studied by dissipative particle dynamics

    Science.gov (United States)

    Zhang, Yuzhou; Xu, Junbo; He, Xianfeng

    2018-07-01

    The behaviour of a single droplet in shear flow is a fundamental problem in immiscible liquid-liquid multiphase fluid systems. In this article, the deformation and inclination angle of single droplet covered with surfactants in shear flow at moderate Reynolds number, when both the inertial effects and interfacial tension are the key governing factors, were simulated by dissipative particle dynamics (DPD). Weber number We was adopted to indicate the force state of the droplet and a linear relationship between the deformation parameter D and We was found when Reynolds number Re is about 1-10, which is similar to the relation of D and Capillary number Ca when Re ≪ 1. When the surfactant concentration is lower than the critical micelle concentration (CMC), the distribution of surfactants, the droplet inclination angle θ and the droplet deformation parameter D were investigated at different surfactant density at interface ds and shear rate ?. When the droplet size is close to the characteristic size of surfactant molecules, phase interfaces of water in oil (W/O) and oil in water (O/W) systems have different microstructures, which result in differences in the surfactant distribution, the droplet inclination angle and deformation of the two systems.

  3. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mathiazhagan, S., E-mail: smathi.research@gmail.com; Anup, S., E-mail: anupiist@gmail.com

    2016-08-19

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models. - Highlights: • The deformation behaviour of staggered nanocomposites is studied. • Stair-wise staggered model has high stiffness and strength, but low toughness. • Rapid crack growth in overlap region causes this low toughness. • Toughness could be enhanced by arresting interfacial crack in the overlap.

  4. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    International Nuclear Information System (INIS)

    Mathiazhagan, S.; Anup, S.

    2016-01-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models. - Highlights: • The deformation behaviour of staggered nanocomposites is studied. • Stair-wise staggered model has high stiffness and strength, but low toughness. • Rapid crack growth in overlap region causes this low toughness. • Toughness could be enhanced by arresting interfacial crack in the overlap.

  5. Translation-rotation plasticity as basic mechanism of plastic deformation in macro-, micro- and nanoindentation processes

    International Nuclear Information System (INIS)

    Grabco, D; Shikimaka, O; Harea, E

    2008-01-01

    This paper presents a brief review of multilateral examinations for the purpose of detection of interrelation between processes occuring in solids at different levels of action of exterior loading, namely, at macro-, micro- and nanoindentation. Convincing arguments supporting the rotation deformation mechanism alongside the recognized dislocation one are adduced. It has been shown that the decrease in dislocation mobility leads at all scales to the intensification of rotation plasticity and to the involvement of other plastic deformation mechanisms, such as appearance and interaction of disclinations, twinning, phase transition and compression of material. The conversion from translation plasticity to the rotation-translation one means transition to the higher level of plastic deformation, the mesolevel, when the possibilities of the previous microscopic level are exhausted. It was established that the plastic deformation zone in the vicinity of indentations could be separated into two main specific regions: (i) peripheral region predominantly with the dislocation deformation mechanism; otherwise, translation mechanism: microlevel, and (ii) quasidestructured region mainly with the disclination or the intergranular sliding mechanism: rotation mechanism, mesolevel

  6. Deformation-induced phase transformation in 4H–SiC nanopillars

    International Nuclear Information System (INIS)

    Chen, Bin; Wang, Jun; Zhu, Yiwei; Liao, Xiaozhou; Lu, Chunsheng; Mai, Yiu-Wing; Ringer, Simon P.; Ke, Fujiu; Shen, Yaogen

    2014-01-01

    The deformation behaviour of single-crystal SiC nanopillars was studied by a combination of in situ deformation transmission electron microscopy and molecular dynamics simulations. An unexpected deformation-induced phase transformation from the 4H hexagonal structure to the 3C face-centred cubic structure was observed in these nanopillars at room temperature. Atomistic simulations revealed that the 4H to 3C phase transformation follows a stick–slip process with initiation and end stresses of 12.1–14.0 and 7.9–9.0 GPa, respectively. The experimentally measured stress of 9–10 GPa for the phase transformation falls within the range of these theoretical upper and lower stresses. The reasons for the phase transformation are discussed. The finding sheds light on the understanding of phase transformation in polytypic materials at low temperature

  7. FEATURES OF THE RESEARCH WORK ELEMENTS DEFORMABILITY OF RAILWAY TRACK

    Directory of Open Access Journals (Sweden)

    I. O. Bondarenko

    2015-06-01

    Full Text Available Purpose. The scientific paper is supposed the determination of basic physical and structural conditions in modeling life cycle of the elements of the railway line for the study of deformation processes as the basis of normative base of the track at the condition of railway safety. Methodology. To achieve the aim principles of the elasticity theory and wave propagation process in the description of the interaction between the track and rolling stock were used. Findings. The basic physical and structural conditions under which it is necessary to carry out the simulation of the life cycle of the elements of the railway line for the study of deformation processes were determined. The basic physical and structural principles of drawing the design schemes of railway track elements for the process assessment of the track deformation work were formulated. The decision correctness and the possibility of the problem solution are proved. Originality. The study of the track reliability questions motivates the development of new models, allow considering it for some developments. There is a need to identify the main physical and structural conditions for assembly design schemes based on assessment and prediction of possible track state changes during its operation. The paper presents the basic principles of physical and structural drafting design schemes of railway line items for which Huygens’ principle is implemented. This principle can be performed only when the four dimensional space: the volume changing over time is considered. Practical value. Analytical models applied in determining the parameters of strength and resistance lines, fully satisfy the task, but can not be used to determine the parameters of track reliability. One of the main impossibility factors of these models is quasidynamic approach. Therefore, as a rule, receive and examine not only dynamic process of a railway track, but also its consequences. Besides, these models are related to

  8. Deformation-Induced Dissolution and Precipitation of Nitrides in Austenite and Ferrite of a High-Nitrogen Stainless Steel

    Science.gov (United States)

    Shabashov, V. A.; Makarov, A. V.; Kozlov, K. A.; Sagaradze, V. V.; Zamatovskii, A. E.; Volkova, E. G.; Luchko, S. N.

    2018-02-01

    Methods of Mössbauer spectroscopy and electron microscopy have been used to study the effect of the severe plastic deformation by high pressure torsion in Bridgman anvils on the dissolution and precipitation of chromium nitrides in the austenitic and ferritic structure of an Fe71.2Cr22.7Mn1.3N4.8 high-nitrogen steel. It has been found that an alternative process of dynamic aging with the formation of secondary nitrides affects the kinetics of the dissolution of chromium nitrides. The dynamic aging of ferrite is activated with an increase in the deformation temperature from 80 to 573 K.

  9. A Bloch-Torrey Equation for Diffusion in a Deforming Media

    International Nuclear Information System (INIS)

    Rohmer, Damien; Gullberg, Grant T.

    2006-01-01

    Diffusion Tensor Magnetic Resonance Imaging (DTMRI)technique enables the measurement of diffusion parameters and therefore, informs on the structure of the biological tissue. This technique is applied with success to the static organs such as brain. However, the diffusion measurement on the dynamically deformable organs such as the in-vivo heart is a complex problem that has however a great potential in the measurement of cardiac health. In order to understand the behavior of the Magnetic Resonance (MR)signal in a deforming media, the Bloch-Torrey equation that leads the MR behavior is expressed in general curvilinear coordinates. These coordinates enable to follow the heart geometry and deformations through time. The equation is finally discredited and presented in a numerical formulation using implicit methods, in order to get a stable scheme that can be applied to any smooth deformations. Diffusion process enables the link between the macroscopic behavior of molecules and the microscopic structure in which they evolve. The measurement of diffusion in biological tissues is therefore of major importance in understanding the complex underlying structure that cannot be studied directly. The Diffusion Tensor Magnetic Resonance Imaging(DTMRI) technique enables the measurement of diffusion parameters and therefore provides information on the structure of the biological tissue. This technique has been applied with success to static organs such as the brain. However, diffusion measurement of dynamically deformable organs such as the in-vivo heart remains a complex problem, which holds great potential in determining cardiac health. In order to understand the behavior of the magnetic resonance (MR) signal in a deforming media, the Bloch-Torrey equation that defines the MR behavior is expressed in general curvilinear coordinates. These coordinates enable us to follow the heart geometry and deformations through time. The equation is finally discredited and presented in a

  10. Structure and properties of copper after large strain deformation

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, Kinga; Molak, Rafal M.; Pakiela, Zbigniew

    2010-05-15

    Structure and properties of Cu in dependence on strain (from {epsilon}{proportional_to} 0.9 to {epsilon}{proportional_to} 15) during multi-axial compression processing at room temperature was investigated. The evolution of dislocation structure, misorientation distribution and crystallite size were observed by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipment with electron back scattered diffraction (EBSD) facility. The mechanical properties of yield strength (YS), ultimate tensile strength (UTS) and uniform elongation was performed on MTS QTest/10 machine equipped with digital image correlation method (DIC). The structure-flow stress relationship of multi-axial compression processing material at strains {epsilon}{proportional_to} 3.5 and {epsilon}{proportional_to} 5.5 is discussed. It is found that processing does not produce any drastic changes in deformation structure and the microstructural refinement is slow. These results indicate that dynamic recrystallization plays an important role during multi-axial compression process in this range of deformation (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. A two-dimensional deformable phantom for quantitatively verifying deformation algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; Chuang, Cynthia; Pouliot, Jean [Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143-1708 (United States)

    2011-08-15

    Purpose: The incorporation of deformable image registration into the treatment planning process is rapidly advancing. For this reason, the methods used to verify the underlying deformation algorithms must evolve equally fast. This manuscript proposes a two-dimensional deformable phantom, which can objectively verify the accuracy of deformation algorithms, as the next step for improving these techniques. Methods: The phantom represents a single plane of the anatomy for a head and neck patient. Inflation of a balloon catheter inside the phantom simulates tumor growth. CT and camera images of the phantom are acquired before and after its deformation. Nonradiopaque markers reside on the surface of the deformable anatomy and are visible through an acrylic plate, which enables an optical camera to measure their positions; thus, establishing the ground-truth deformation. This measured deformation is directly compared to the predictions of deformation algorithms, using several similarity metrics. The ratio of the number of points with more than a 3 mm deformation error over the number that are deformed by more than 3 mm is used for an error metric to evaluate algorithm accuracy. Results: An optical method of characterizing deformation has been successfully demonstrated. For the tests of this method, the balloon catheter deforms 32 out of the 54 surface markers by more than 3 mm. Different deformation errors result from the different similarity metrics. The most accurate deformation predictions had an error of 75%. Conclusions: The results presented here demonstrate the utility of the phantom for objectively verifying deformation algorithms and determining which is the most accurate. They also indicate that the phantom would benefit from more electron density heterogeneity. The reduction of the deformable anatomy to a two-dimensional system allows for the use of nonradiopaque markers, which do not influence deformation algorithms. This is the fundamental advantage of this

  12. Deformation relaxation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Yu, L.; Gan, Z.G.; Zhang, Z.Y.; Zhang, H.F.; Li, J.Q.

    2014-01-01

    In deeply inelastic heavy-ion collisions, the quadrupole deformations of both fragments are taken as stochastic independent dynamical variables governed by the Fokker–Planck equation (FPE) under the corresponding driving potential. The mean values, variances and covariance of the fragments are analytically expressed by solving the FPE in head on collisions. The characteristics and mechanism of the deformation are discussed. It is found that both the internal structures and interactions of the colliding partners are critical for the deformation relaxation in deeply inelastic collisions.

  13. Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala

    Directory of Open Access Journals (Sweden)

    Lauren N. Schaefer

    2016-01-01

    Full Text Available Pacaya volcano is a persistently active basaltic cone complex located in the Central American Volcanic Arc in Guatemala. In May of 2010, violent Volcanic Explosivity Index-3 (VEI-3 eruptions caused significant topographic changes to the edifice, including a linear collapse feature 600 m long originating from the summit, the dispersion of ~20 cm of tephra and ash on the cone, the emplacement of a 5.4 km long lava flow, and ~3 m of co-eruptive movement of the southwest flank. For this study, Interferometric Synthetic Aperture Radar (InSAR images (interferograms processed from both spaceborne Advanced Land Observing Satellite-1 (ALOS-1 and aerial Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR data acquired between 31 May 2010 and 10 April 2014 were used to measure post-eruptive deformation events. Interferograms suggest three distinct deformation processes after the May 2010 eruptions, including: (1 subsidence of the area involved in the co-eruptive slope movement; (2 localized deformation near the summit; and (3 emplacement and subsequent subsidence of about a 5.4 km lava flow. The detection of several different geophysical signals emphasizes the utility of measuring volcanic deformation using remote sensing techniques with broad spatial coverage. Additionally, the high spatial resolution of UAVSAR has proven to be an excellent compliment to satellite data, particularly for constraining motion components. Measuring the rapid initiation and cessation of flank instability, followed by stabilization and subsequent influence on eruptive features, provides a rare glimpse into volcanic slope stability processes. Observing these and other deformation events contributes both to hazard assessment at Pacaya and to the study of the stability of stratovolcanoes.

  14. Cracking in reinforced concrete structures due to imposed deformations

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, A.

    1997-04-01

    This thesis is concerned with modeling of the cracking process in reinforced concrete due to imposed deformations. Cracking is investigated both at early ages, during hydration, and at mature age when the final properties of the concrete are reached. One of the most important material characteristics of the concrete at early ages, the Young`s modulus is determined by means of a dynamic method called the resonance frequency method. 40 refs

  15. A method of increasing the depth of the plastically deformed layer in the roller burnishing process

    Science.gov (United States)

    Kowalik, Marek; Trzepiecinski, Tomasz

    2018-05-01

    The subject of this paper is an analysis of the determination of the depth of the plastically deformed layer in the process of roller burnishing a shaft using a newly developed method in which a braking moment is applied to the roller. It is possible to increase the depth of the plastically deformed layer by applying the braking moment to the roller during the burnishing process. The theoretical considerations presented are based on the Hertz-Bielayev and Huber-Mises theories and permit the calculation of the depth of plastic deformation of the top layer of the burnished shaft. The theoretical analysis has been verified experimentally and using numerical calculations based on the finite element method using the Msc.MARC program. Experimental tests were carried out on ring-shaped samples made of C45 carbon steel. The samples were burnished at different values of roller force and different values of braking moment. A significant increase was found in the depth of the plastically deformed surface layer of roller burnished shafts. Usage of the phenomenon of strain hardening of steel allows the technology presented here to increase the fatigue life of the shafts.

  16. A coupled hydraulic and structure-dynamic model for prediction of RCCA drop time under hypothetical FA deformation

    International Nuclear Information System (INIS)

    Ren, Mingmin; Dressel, Bernd

    2009-01-01

    The ability of the RCCA (Rod Control Cluster Assemblies) in a pressurized water reactor (PWR) to be fully inserted into the core and to reach the dashpot within a required time limit is one of the important safety requirements for quick shutdown. This kind of quick shutdown in a PWR is initiated by allowing the control rod with the drive rod together to fall into the core by gravity. During normal operation, the RCCA drop time is mainly influenced by the weight of control assembly, hydraulic resistance in the CRDM (Control Rod Drive Mechanism), control rod guide assembly and guide thimbles and by the mechanical friction forces between the RCCA and its surroundings. In the case of an accident, e.g. earthquake, an additional influence of horizontal vibrations of the RCCA and its surroundings has to be considered [1]. A coupled hydraulic and structure-dynamic model is presented in this paper for prediction of RCCA drop time down to dashpot under hypothetical fuel assembly (FA) deformations. This coupled model was verified by RCCA static and dynamic drop tests with a deformed FA and by RCCA drop tests under operational conditions. (orig.)

  17. Effect of dynamic strain aging on cyclic stress response and deformation behavior of Zircaloy-2

    International Nuclear Information System (INIS)

    Sudhakar Rao, G.; Verma, Preeti; Mahobia, G.S.; Santhi Srinivasa, N.C.; Singh, Vakil; Chakravartty, J.K.; Nudurupatic, Saibaba

    2016-01-01

    The effect of strain rate and temperature was studied on cyclic stress response and deformation behavior of annealed Zircaloy-2. Dynamic strain aging was exhibited under some test conditions. The cyclic stress response was found to be dependent on temperature and strain rate. At 300 °C, with decrease in strain rate, there was decrease in the rate as well as the degree of cyclic hardening. However, at 400°C, there was opposite trend and with decrease in strain rate both the rate as well as the degree of hardening increased. The deformation substructure showed dislocation bands, dislocation vein structure, PSB wall structure at both the temperatures. Irrespective of the temperature, there was dislocation loop structure, known as corduroy structure, at both the test temperatures. Based on the dislocation structure, the initial linear hardening is attributed to development of veins and PSB wall structure and the secondary hardening to the Corduroy structure. (author)

  18. Low temperature uniform plastic deformation of metallic glasses during elastic iteration

    International Nuclear Information System (INIS)

    Fujita, Takeshi; Wang Zheng; Liu Yanhui; Sheng, Howard; Wang Weihua; Chen Mingwei

    2012-01-01

    Molecular dynamics simulations and dynamic mechanical analysis experiments were employed to investigate the mechanical behavior of metallic glasses subjected to iteration deformation in a nominally elastic region. It was found that cyclic deformation leads to the formation of irreversible shear transformation zones (STZs) and a permanent uniform strain. The initiation of STZs is directly correlated with the atomic heterogeneity of the metallic glass and the accumulated permanent strain has a linear relation with the number of STZs. This study reveals a new deformation mode and offers insights into the atomic mechanisms of STZ formation and low temperature uniform plastic deformation of metallic glasses.

  19. On the role of initial void geometry in plastic deformation of metallic thin films: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yanqing [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0340 (United States); Xu, Shuozhi, E-mail: shuozhixu@gatech.edu [GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2016-12-15

    Void growth is usually considered one of the most critical phases leading to dynamic fracture of ductile materials. Investigating the detailed process of void growth at the nanoscale aids in understanding the damage mechanism of metals. While most atomistic simulations by far assume circular or spherical voids for simplicity, recent studies highlight the significance of the initial void ellipticity in mechanical response of voided metals. In this work, we perform large scale molecular dynamics simulations with millions of atoms to investigate the void growth in plastic deformation of thin films in face-centered cubic Cu. It is found that the initial ellipticity and the initial orientation angle of the void have substantial impacts on the dislocation nucleation, the void evolution, and the stress-strain response. In particular, the initial dislocation emission sites and the sequence of slip plane activation vary with the initial void geometry. For the void size evolution, three regimes are identified: (I) the porosity increases relatively slowly in the absence of dislocations, (II) the porosity grows much more rapidly after dislocations start to glide on different slip planes, and (III) the rate of porosity variation becomes much more slowly when dislocations are saturated in the model, and the void surface becomes irregular, non-smooth. In terms of the stress-strain response, the effects of the initial orientation angle are more pronounced when the initial void ellipticity is large; the influence of the initial void ellipticity is different for different initial orientation angles. The effects of the temperature, the strain rate, the loading direction, and the initial porosity in the void growth are also explored. Our results reveal the underlying mechanisms of initial void geometry-dependent plastic deformation of metallic thin films and shed light on informing more accurate theoretical models.

  20. On the role of initial void geometry in plastic deformation of metallic thin films: A molecular dynamics study

    International Nuclear Information System (INIS)

    Su, Yanqing; Xu, Shuozhi

    2016-01-01

    Void growth is usually considered one of the most critical phases leading to dynamic fracture of ductile materials. Investigating the detailed process of void growth at the nanoscale aids in understanding the damage mechanism of metals. While most atomistic simulations by far assume circular or spherical voids for simplicity, recent studies highlight the significance of the initial void ellipticity in mechanical response of voided metals. In this work, we perform large scale molecular dynamics simulations with millions of atoms to investigate the void growth in plastic deformation of thin films in face-centered cubic Cu. It is found that the initial ellipticity and the initial orientation angle of the void have substantial impacts on the dislocation nucleation, the void evolution, and the stress-strain response. In particular, the initial dislocation emission sites and the sequence of slip plane activation vary with the initial void geometry. For the void size evolution, three regimes are identified: (I) the porosity increases relatively slowly in the absence of dislocations, (II) the porosity grows much more rapidly after dislocations start to glide on different slip planes, and (III) the rate of porosity variation becomes much more slowly when dislocations are saturated in the model, and the void surface becomes irregular, non-smooth. In terms of the stress-strain response, the effects of the initial orientation angle are more pronounced when the initial void ellipticity is large; the influence of the initial void ellipticity is different for different initial orientation angles. The effects of the temperature, the strain rate, the loading direction, and the initial porosity in the void growth are also explored. Our results reveal the underlying mechanisms of initial void geometry-dependent plastic deformation of metallic thin films and shed light on informing more accurate theoretical models.

  1. Recrystallization of deformed copper - kinetics and microstructural evolution

    DEFF Research Database (Denmark)

    Lin, Fengxiang

    The objective of this study is to investigate the recrystallization kinetics and microstructural evolution in copper deformed to high strains, including copper deformed by cold-rolling and copper deformed by dynamic plastic deformation (DPD). Various characterization techniques were used, including...... electron backscatter diffraction (EBSD), Vickers hardness test, 3D X-ray diffraction (3DXRD) and differential scanning calorimetry (DSC). For the cold-rolled samples, a series of initial parameters was investigated for their effects on the recrystallization kinetics and textures, including initial grain...

  2. Dynamic Optimization of UV Flash Processes

    DEFF Research Database (Denmark)

    Ritschel, Tobias Kasper Skovborg; Capolei, Andrea; Jørgensen, John Bagterp

    2017-01-01

    UV ash processes, also referred to as isoenergetic-isochoric ash processes, occur for dynamic simulation and optimization of vapor-liquid equilibrium processes. Dynamic optimization and nonlinear model predictive control of distillation columns, certain two-phase ow problems, as well as oil reser...... that the optimization solver, the compiler, and high-performance linear algebra software are all important for e_cient dynamic optimization of UV ash processes....

  3. Corneal biomechanical properties from air-puff corneal deformation imaging

    Science.gov (United States)

    Marcos, Susana; Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos

    2014-02-01

    The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.

  4. Numerical simulation of the dynamic recrystallization behaviour in hot precision forging helical gears

    Directory of Open Access Journals (Sweden)

    Feng Wei

    2015-01-01

    Full Text Available In hot precision forging helical gears, the dynamic recrystallization phenomena will occur, which affect the microstructure of the formed part and in turn decide their mechanical properties. To investigate the effect of deformation temperature on the dynamic recrystallization in hot precision forging helical gears, a three dimensional (3D finite element (FE model was created by coupling the thermo-mechanical model with the microstructure evolution model developed based on the hot compressive experimental data of 20CrMnTiH steel. The hot precision forging process was simulated and the effect laws of the deformation temperature on the microstructure evolution the formed part were investigated. The results show that the dynamic recrystallization volume fraction and the average grain sizes increased with the increasing deformation temperature and the higher deformation temperature is beneficial to dynamic recrystallization and grain refinement.

  5. Dynamic Recrystallization and Hot Workability of 316LN Stainless Steel

    Directory of Open Access Journals (Sweden)

    Chaoyang Sun

    2016-07-01

    Full Text Available To identify the optimal deformation parameters for 316LN austenitic stainless steel, it is necessary to study the macroscopic deformation and the microstructural evolution behavior simultaneously in order to ascertain the relationship between the two. Isothermal uniaxial compression tests of 316LN were conducted over the temperature range of 950–1150 °C and for the strain rate range of 0.001–10 s−1 using a Gleeble-1500 thermal-mechanical simulator. The microstructural evolution during deformation processes was investigated by studying the constitutive law and dynamic recrystallization behaviors. Dynamic recrystallization volume fraction was introduced to reveal the power dissipation during the microstructural evolution. Processing maps were developed based on the effects of various temperatures, strain rates, and strains, which suggests that power dissipation efficiency increases gradually with increasing temperature and decreasing stain rate. Optimum regimes for the hot deformation of 316LN stainless steel were revealed on conventional hot processing maps and verified effectively through the examination of the microstructure. In addition, the regimes for defects of the product were also interpreted on the conventional hot processing maps. The developed power dissipation efficiency maps allow optimized processing routes to be selected, thus enabling industry producers to effectively control forming variables to enhance practical production process efficiency.

  6. Non-steady homogeneous deformations: Computational techniques using Lie theory, and application to ellipsoidal markers in naturally deformed rocks

    Science.gov (United States)

    Davis, Joshua R.; Titus, Sarah J.; Horsman, Eric

    2013-11-01

    The dynamic theory of deformable ellipsoidal inclusions in slow viscous flows was worked out by J.D. Eshelby in the 1950s, and further developed and applied by various authors. We describe three approaches to computing Eshelby's ellipsoid dynamics and other homogeneous deformations. The most sophisticated of our methods uses differential-geometric techniques on Lie groups. This Lie group method is faster and more precise than earlier methods, and perfectly preserves certain geometric properties of the ellipsoids, including volume. We apply our method to the analysis of naturally deformed clasts from the Gem Lake shear zone in the Sierra Nevada mountains of California, USA. This application demonstrates how, given three-dimensional strain data, we can solve simultaneously for best-fit bulk kinematics of the shear zone, as well as relative viscosities of clasts and matrix rocks.

  7. Fine grained 304 ASS processed by a severe plastic deformation and subsequent annealing; microstructure and mechanical properties evaluation

    Science.gov (United States)

    Salout, Shima Ahmadzadeh; Shirazi, Hasan; Nili-Ahmadabadi, Mahmoud

    2018-01-01

    The current research is an attempt to study the effect of a novel severe plastic deformation technique so called "repetitive corrugation and straightening by rolling" (RCSR) and subsequent annealing on the microstructure and mechanical properties of AISI type 304 austenitic stainless steel. In this study, RCSR process was carried out at 200 °C on the 304 austenitic stainless steel (above Md30 temperature that is about 50 °C for this stainless steel) in order to avoid the formation of martensite phase when a high density of dislocations was introduced into the austenite phase and also high density of mechanical twins was induced in the deformed 304 austenitic stainless steel. Because of relationship between deformation temperature, stacking fault energy (SFE) and mechanisms of deformation. Thereafter subsequently, annealing treatment was applied into deformed structure in order to refine the microstructure of 304 stainless s teel. The specimens were examined by means of optical microscopy (OM), scanning electron microscopy (SEM), tensile and micro-hardness tests. The results indicate that by increasing the cycles of RCSR process (increasing applied strain), further mechanical twins are induced, the hardness and in particular, the yield stress of specimens have been increased.

  8. ANALYSIS OF DEFORMATION PROCESSES IN THE LITHOSPHERE FROM GEODETIC MEASUREMENTS BASED ON THE EXAMPLE OF THE SAN ANDREAS FAULT

    Directory of Open Access Journals (Sweden)

    Yury V. Gabsatarov

    2012-01-01

    Full Text Available Analysis of data from permanent GPS observation stations located in tectonically active regions provides for direct observation of deformation processes of the earth's surface which result from elastic interaction of the lithospheric plates and also occur when accumulated stresses are released by seismic events and postseismic processes.This article describes the methodology of applying the regression analysis of time series of data from GPS-stations for identification of individual components of the stations’ displacements caused by the influence of various deformation processes. Modelling of the stations’ displacements caused only by deformations of the marginal zone, wherein the lithospheric plates interact, allows us to study variations of the steady-state deformation in the marginal zone.he proposed methodology is applied to studies of variations of fields of cumulative surface displacements, surface displacement velocity and maximum shear strain velocity which are determined from the GPS data recorded prior to the Parkfield earthquake of 28 September 2004 (Mw=6.0.Combined analysis of the variations of the above-mentioned fields shows that measurable anomalies of the elastic deformation of the transform fault’s edge took place prior to the seismic event of 28 September 2004, and such anomalies were coincident in space and time with the focal area of the future seismic event.

  9. Computer simulation of nonequilibrium processes

    International Nuclear Information System (INIS)

    Wallace, D.C.

    1985-07-01

    The underlying concepts of nonequilibrium statistical mechanics, and of irreversible thermodynamics, will be described. The question at hand is then, how are these concepts to be realize in computer simulations of many-particle systems. The answer will be given for dissipative deformation processes in solids, on three hierarchical levels: heterogeneous plastic flow, dislocation dynamics, an molecular dynamics. Aplication to the shock process will be discussed

  10. Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy

    Science.gov (United States)

    Zhang, Yi; Sun, Huili; Volinsky, Alex A.; Wang, Bingjie; Tian, Baohong; Liu, Yong; Song, Kexing

    2018-02-01

    Hot compressive deformation behavior of the Cu-Zr-Ce alloy has been investigated according to the hot deformation tests in the 550-900 °C temperature range and 0.001-10 s-1 strain rate range. Based on the true stress-true strain curves, the flow stress behavior of the Cu-Zr-Ce alloy was investigated. Microstructure evolution was observed by optical microscopy. Based on the experimental results, a constitutive equation, which reflects the relationships between the stress, strain, strain rate and temperature, has been established. Material constants n, α, Q and ln A were calculated as functions of strain. The equation predicting the flow stress combined with these materials constants has been proposed. The predicted stress is consistent with experimental stress, indicating that developed constitutive equation can adequately predict the flow stress of the Cu-Zr-Ce alloy. Dynamic recrystallization critical strain was determined using the work hardening rate method. According to the dynamic material model, the processing maps for the Cu-Zr and Cu-Zr-Ce alloy were obtained at 0.4 and 0.5 strain. Based on the processing maps and microstructure observations, the optimal processing parameters for the two alloys were determined, and it was found that the addition of Ce can promote the hot workability of the Cu-Zr alloy.

  11. Study on the β to α transformation of PP/POE blends with β-phase nucleating agent during the tensile deformation process

    International Nuclear Information System (INIS)

    Li Xiaoxi; Wu Haiyan; Wang Yong; Bai Hongwei; Liu Li; Huang Ting

    2010-01-01

    As a part of serial work about the toughening effect of elastomer and nucleating agent on polypropylene (PP), this work is focused on the microstructure changes of PP matrix in PP/elastomer blends with β-phase nucleating agent (β-NA) during the uniaxial tensile deformation process. The microstructure changes have been investigated through differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD) measurements. The results show that there is a transformation of β-PP to α-PP, which is dependent on the local strain of the tensile-deformed specimen during the deformation process. The bigger the local strain, the high the degree of the β → α transformation is. At the later stage, β-PP is completely changed into α-PP. The presence of elastomer, especially at high load, prevents such transformation, possibly leading to more β-PP participating in the later deformation process of the fracture, which most likely results in the great improvement of fracture toughness of PP/elastomer/β-NA. Further results show that the β → α transformation occurs mainly in the necking region of the specimen during the deformation process.

  12. Numerical Modeling of Earthquake-Induced Landslide Using an Improved Discontinuous Deformation Analysis Considering Dynamic Friction Degradation of Joints

    Science.gov (United States)

    Huang, Da; Song, Yixiang; Cen, Duofeng; Fu, Guoyang

    2016-12-01

    Discontinuous deformation analysis (DDA) as an efficient technique has been extensively applied in the dynamic simulation of discontinuous rock mass. In the original DDA (ODDA), the Mohr-Coulomb failure criterion is employed as the judgment principle of failure between contact blocks, and the friction coefficient is assumed to be constant in the whole calculation process. However, it has been confirmed by a host of shear tests that the dynamic friction of rock joints degrades. Therefore, the friction coefficient should be gradually reduced during the numerical simulation of an earthquake-induced rockslide. In this paper, based on the experimental results of cyclic shear tests on limestone joints, exponential regression formulas are fitted for dynamic friction degradation, which is a function of the relative velocity, the amplitude of cyclic shear displacement and the number of its cycles between blocks with an edge-to-edge contact. Then, an improved DDA (IDDA) is developed by implementing the fitting regression formulas and a modified removing technique of joint cohesion, in which the cohesion is removed once the `sliding' or `open' state between blocks appears for the first time, into the ODDA. The IDDA is first validated by comparing with the theoretical solutions of the kinematic behaviors of a sliding block on an inclined plane under dynamic loading. Then, the program is applied to model the Donghekou landslide triggered by the 2008 Wenchuan earthquake in China. The simulation results demonstrate that the dynamic friction degradation of joints has great influences on the runout and velocity of sliding mass. Moreover, the friction coefficient possesses higher impact than the cohesion of joints on the kinematic behaviors of the sliding mass.

  13. Microstructures in the 6060 aluminium alloy after various severe plastic deformation treatments

    International Nuclear Information System (INIS)

    Adamczyk-Cieslak, Boguslawa; Mizera, Jaroslaw; Kurzydlowski, Krzysztof Jan

    2011-01-01

    This paper presents the results concerning the microstructural refinement of the industrial 6060 aluminium alloy processed by severe plastic deformation (SPD). The high level of plastic deformation was achieved using the three methods: hydrostatic extrusion (HE), equal channel angular extrusion (ECAE) and extrusion torsion (ET), which differed in the dynamics of the loading, intensity and homogeneity of the plastic strain field. Microstructure analyses were performed before and after SPD deformation using a transmission (TEM) and a scanning electron microscope (SEM). The refined microstructures were examined qualitatively and quantitatively by the stereological methods and computer image analyses. The microstructure of the industrial 6060 aluminium alloy after deformation was characterized by an average grain size of about 0.4 μm. The results show that the precipitates strongly affect the degree of refinement and the mechanism of microstructural transformations. During the SPD, the second phase particles break apart and homogenize. The HE method generates the largest increase of the volume fraction of the small primary particles. Moreover, the HE process is most effective in reducing the primary particle size. During HE and ECAE processes the second phase precipitates dissolve partially and change their shape. - Research Highlights: → SPD results in a significant increase in the density of the small primary particles. → SPD homogenizes the particle size distribution. → HE and ECAE processes bring nano-grains in the vicinity of the primary particles. → HE and ECAE processing results in the β' precipitates partial dissolutions. → During HE and ECAE processes the β' particles change their shape.

  14. Physics-based deformable organisms for medical image analysis

    Science.gov (United States)

    Hamarneh, Ghassan; McIntosh, Chris

    2005-04-01

    Previously, "Deformable organisms" were introduced as a novel paradigm for medical image analysis that uses artificial life modelling concepts. Deformable organisms were designed to complement the classical bottom-up deformable models methodologies (geometrical and physical layers), with top-down intelligent deformation control mechanisms (behavioral and cognitive layers). However, a true physical layer was absent and in order to complete medical image segmentation tasks, deformable organisms relied on pure geometry-based shape deformations guided by sensory data, prior structural knowledge, and expert-generated schedules of behaviors. In this paper we introduce the use of physics-based shape deformations within the deformable organisms framework yielding additional robustness by allowing intuitive real-time user guidance and interaction when necessary. We present the results of applying our physics-based deformable organisms, with an underlying dynamic spring-mass mesh model, to segmenting and labelling the corpus callosum in 2D midsagittal magnetic resonance images.

  15. Compensation of deformations in 3D cone beam tomography

    International Nuclear Information System (INIS)

    Desbat, L.; Roux, S.; Roux, S.; Grangeat, P.

    2006-01-01

    In dynamic tomography, the measured objects or organs are no-longer supposed to be static in the scanner during the acquisition but are supposed to move or to be deformed. Our approach is the analytic deformation compensation during the reconstruction. Our work concentrates on 3-dimensional cone beam tomography. We introduce a new large class of deformations preserving the 3-dimensional cone beam geometry. We show that deformations from this class can be analytically compensated. We present numerical experiments on phantoms showing the compensation of these deformations in 3-dimensional cone beam tomography. (authors)

  16. Dynamic Deformation of ETNA Volcano Observed by GPS and SAR Interferometry

    Science.gov (United States)

    Lundgren, P.; Rosen, P.; Webb, F.; Tesauro, M.; Lanari, R.; Sansosi, E.; Puglisi, G.; Bonforte, A.; Coltelli, M.

    1999-01-01

    Synthetic aperture radar (SAR) interferometry and GPS have shown that during the quiescent period from 1993-1995 Mt. Etna volcano, Italy, inflated. Since the initiation of eruptive activity since late 1995 the deformation has been more contentious. We will explore the detailed deformation during the period from 1995-1996 spanning the late stages of inflation and the beginning of eruptive activity. We use SAR interferometry and GPS data to measure the volcano deformation. We invert the observed deformation for both simple point source. le crack elastic sources or if warranted for a spheroidal pressure So In particular, we will examine the evolution of the inflation and the transition to a lesser deflation observed at the end of 1995. We use ERS-1/2 SAR data from both ascending and descending passes to allow for dense temporal 'sampling of the deformation and to allow us to critically assess atmospheric noise. Preliminary results from interferometry suggest that the inflation rate accelerated prior to resumption of activity in 1995, while GPS data suggest a more steady inflation with some fluctuation following the start of activity. This study will compare and contrast the interferometric SAR and GPS results and will address the strengths and weaknesses of each technique towards volcano deformation studies.

  17. Two-dimensional discrete dislocation models of deformation in polycrystalline thin metal films on substrates

    International Nuclear Information System (INIS)

    Hartmaier, Alexander; Buehler, Markus J.; Gao, Huajian

    2005-01-01

    The time-dependent irreversible deformation of polycrystalline thin metal films on substrates is investigated using two-dimensional discrete dislocation dynamics models incorporating essential parameters determined from atomistic studies. The work is focused on the mechanical properties of uncapped films, where diffusive processes play an important role. The simulations incorporate dislocation climb along the grain boundary as well as conservative glide. Despite of severe limitations of the two-dimensional dislocation models, the simulation results are found to largely corroborate experimental findings on different dominant deformation mechanisms at different film thicknesses

  18. Dynamic compressive constitutive relation and shearing instability of metallic neodymium

    International Nuclear Information System (INIS)

    Wang Huanran; Cai Canyuan; Chen Danian; Ma Dongfang; Hou Yanjun; Wu Shanxing

    2011-01-01

    Highlights: → Dynamic constitutive relation of Nd was determined in first compression of SHPB. → Deformation of Nd in multi-compression of SHPB were recorded by high-speed camera. → Constitutive relation of Nd was adjusted in modeling large deformation of Nd. → Results of SDDM investigation of recovered Nd specimens showed shearing fracture. → Shearing instability of Nd was estimated with constitutive relation. - Abstract: Based on static tests on MTS and dynamic tests on split Hopkinson pressure bar (SHPB) during the first loading, this study determined the dynamic compressive constitutive relation of metallic Nd. Based on large deformations of metallic Nd specimens generated by the multi-compressive loadings during SHPB tests, and recorded by a high-speed camera, the results of numerical simulations for SHPB test processes were used to extend the determined constitutive relation from small strain to large strain. The shearing instability strain in dynamic compressive deformations of metallic Nd was estimated with the extended constitutive relation according to the criterion given by Batra and Wei, and was compared with the average strain of recovered specimens.

  19. From point process observations to collective neural dynamics: Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining.

    Science.gov (United States)

    Truccolo, Wilson

    2016-11-01

    This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics ("order parameters") inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. Published by Elsevier Ltd.

  20. Thermodynamic analysis of elastic-plastic deformation

    International Nuclear Information System (INIS)

    Lubarda, V.

    1981-01-01

    The complete set of constitutive equations which fully describes the behaviour of material in elastic-plastic deformation is derived on the basis of thermodynamic analysis of the deformation process. The analysis is done after the matrix decomposition of the deformation gradient is introduced into the structure of thermodynamics with internal state variables. The free energy function, is decomposed. Derive the expressions for the stress response, entropy and heat flux, and establish the evolution equation. Finally, we establish the thermodynamic restrictions of the deformation process. (Author) [pt

  1. The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing

    DEFF Research Database (Denmark)

    Apps, P.J.; Bowen, Jacob R.; Prangnell, P.B.

    2003-01-01

    The effect of second-phase particles on the rate of grain refinement during severe deformation processing has been investigated, by comparing the microstructure evolution in an AA8079 aluminium alloy, containing 2.5 vol.% of ~2 μm particles, with that in a high purity, single-phase, Al-0.13% Mg a...... by an effective strain of only five in the particle-containing alloy, compared to ten in the single-phase material. The mechanisms that contribute to this acceleration of the grain refinement process are discussed.......The effect of second-phase particles on the rate of grain refinement during severe deformation processing has been investigated, by comparing the microstructure evolution in an AA8079 aluminium alloy, containing 2.5 vol.% of ~2 μm particles, with that in a high purity, single-phase, Al-0.13% Mg...... alloy, deformed identically by ECAE to an effective strain of ten. The materials were analysed by high-resolution EBSD orientation mapping, which revealed that grain refinement occurred at a dramatically higher rate in the particle-containing alloy. A submicron grain structure could be achieved...

  2. Nonlinear continuum mechanics and large inelastic deformations

    CERN Document Server

    Dimitrienko, Yuriy I

    2010-01-01

    This book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics - kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead t...

  3. q-deformed Brownian motion

    CERN Document Server

    Man'ko, V I

    1993-01-01

    Brownian motion may be embedded in the Fock space of bosonic free field in one dimension.Extending this correspondence to a family of creation and annihilation operators satisfying a q-deformed algebra, the notion of q-deformation is carried from the algebra to the domain of stochastic processes.The properties of q-deformed Brownian motion, in particular its non-Gaussian nature and cumulant structure,are established.

  4. Deformation of Ag clusters deposited on Au(111) - Experiment and molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Miroslawski, Natalie; Groenhagen, Niklas; Hoevel, Heinz [TU Dortmund, Experimentelle Physik I (Germany); Issendorff, Bernd von [Universitaet Freiburg, Fakultaet Physik (Germany); Jaervi, Tommi [Fraunhofer Institut fuer Werkstoffmechanik, Freiburg (Germany); Moseler, Michael [Universitaet Freiburg, Fakultaet Physik (Germany); Fraunhofer Institut fuer Werkstoffmechanik, Freiburg (Germany); Freiburger Materialforschungszentrum (Germany)

    2011-07-01

    Mass selected clusters from Ag{sup +}{sub 55} to Ag{sup +}{sub 147{+-}}{sub 2} were deposited with different deposition energies at 77 K on Au(111) and imaged with STM at 77 K. We observed a deformation of the cluster shape due to the strong metallic interaction between the cluster and the substrate. The clusters became epitaxial and developed a structure composed of several Ag monolayers. The number of these monolayers depends on the number of atoms in the cluster and the deposition energy. The larger the cluster mass the more monolayers the cluster develops on Au(111) and the larger the deposition energy the fewer monolayers occur. These results were verified by molecular dynamic simulations. Additionally the behaviour of Ag{sub N} clusters on Au(111) after different annealing steps was investigated.

  5. Formal analysis of design process dynamics

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; Treur, J.

    2010-01-01

    This paper presents a formal analysis of design process dynamics. Such a formal analysis is a prerequisite to come to a formal theory of design and for the development of automated support for the dynamics of design processes. The analysis was geared toward the identification of dynamic design

  6. Formal Analysis of Design Process Dynamics

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; Treur, J.

    2010-01-01

    This paper presents a formal analysis of design process dynamics. Such a formal analysis is a prerequisite to come to a formal theory of design and for the development of automated support for the dynamics of design processes. The analysis was geared toward the identification of dynamic design

  7. An Iterative Method for Estimating Airfoil Deformation due to Solid Particle Erosion

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2014-04-01

    Full Text Available Helicopter blades are currently constructed with composite materials enveloping honeycomb cores with only the leading and trailing edges made of metal alloys. In some cases, the erosive wear of the bound between the composite skin and metallic leading edge leads to full blade failure. It is therefore the goal of this paper to provide a method for simulating the way an airfoil is deformed through the erosion process. The method involves computational fluid dynamics simulations, scripts for automatic meshing and spreadsheet calculators for estimating the erosion and, ultimately, the airfoil deformation. Further work could include more complex meshing scripts allowing the use of similar methods for turbo-machineries.

  8. About deformation and rigidity in relativity

    International Nuclear Information System (INIS)

    Coll, Bartolome

    2007-01-01

    The notion of deformation involves that of rigidity. In relativity, starting from Born's early definition of rigidity, some other ones have been proposed, offering more or less interesting aspects but also accompanied of undesired or even pathological properties. In order to clarify the origin of these difficulties presented by the notion of rigidity in relativity, we analyze with some detail significant aspects of the unambiguous classical, Newtonian, notion. In particular, the relative character of its kinetic definition is pointed out, allowing to predict and to understand the limitations imposed by Herglotz-Noether theorem. Also, its equivalent dynamic definition is obtained and, in contrast, its absolute character is shown. But in spite of this absolute character, the dynamic definition is shown to be not extensible to relativity. The metric deformation of Minkowski space by the presence of a gravitational field is interpreted as a universal deformation, and it is shown that, under natural conditions, only a simple deformation law is possible, relating locally, but in an one-to-one way, gravitational fields and gauge classes of two-forms. We argue that fields of unit vectors associated to the internal gauge class of two-forms of every space-time (and, in particular, of Minkowski space-time) are the relativistic analogues of the classical accelerated observers, i.e. of the classical rigid motions. Some other consequences of the universal law of gravitational deformation are commented

  9. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins.

    Science.gov (United States)

    Suetsugu, Shiro; Kurisu, Shusaku; Takenawa, Tadaomi

    2014-10-01

    All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes. Copyright © 2014 the

  10. Role of flexural stiffness of leukocyte microvilli in adhesion dynamics

    Science.gov (United States)

    Wu, Tai-Hsien; Qi, Dewei

    2018-03-01

    Previous work reported that microvillus deformation has an important influence on dynamics of cell adhesion. However, the existing studies were limited to the extensional deformation of microvilli and did not consider the effects of their bending deformation on cell adhesion. This Rapid Communication investigates the effects of flexural stiffness of microvilli on the rolling process related to adhesion of leukocytes by using a lattice-Boltzmann lattice-spring method (LLM) combined with adhesive dynamics (AD) simulations. The simulation results reveal that the flexural stiffness of microvilli and their bending deformation have a profound effect on rolling velocity and adhesive forces. As the flexural stiffness of the microvilli decreases, their bending angles increase, resulting in an increase in the number of receptor-ligand bonds and adhesive bonding force and a decrease in the rolling velocity of leukocytes. The effects of flexural stiffness on deformation and adhesion represent crucial factors involved in cell adhesion.

  11. Prediction of plastic deformation under contact condition by quasi-static and dynamic simulations using explicit finite element analysis

    International Nuclear Information System (INIS)

    Siswanto, W. A.; Nagentrau, M.; Tobi, A. L. Mohd; Tamin, M. N.

    2016-01-01

    We compared the quasi-static and dynamic simulation responses on elastic-plastic deformation of advanced alloys using Finite element (FE) method with an explicit numerical algorithm. A geometrical model consisting of a cylinder-on-flat surface contact under a normal load and sliding motion was examined. Two aeroengine materials, Ti-6Al-4V and Super CMV (Cr-Mo-V) alloy, were employed in the FE analysis. The FE model was validated by comparative magnitudes of the FE-predicted maximum contact pressure variation along the contact half-width length with the theoretical Hertzian contact solution. Results show that the (compressive) displacement of the initial contact surface steadily increases for the quasi-static load case, but accumulates at an increasing rate to the maximum level for the dynamic loading. However, the relatively higher stiffness and yield strength of the Super CMV alloy resulted in limited deformation and low plastic strain when compared to the Ti-6Al-4V alloy. The accumulated equivalent plastic strain of the material point at the initial contact position was nearly a thousand times higher for the dynamic load case (for example, 6.592 for Ti-6Al-4V, 1.0 kN) when compared to the quasi-static loading (only 0.0072). During the loading step, the von Mises stress increased with a decreasing and increasing rate for the quasi-static and dynamic load case, respectively. A sudden increase in the stress magnitude to the respective peak value was registered due to the additional constraint to overcome the static friction of the mating surfaces during the sliding step

  12. Prediction of plastic deformation under contact condition by quasi-static and dynamic simulations using explicit finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Siswanto, W. A.; Nagentrau, M.; Tobi, A. L. Mohd [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat (Malaysia); Tamin, M. N. [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru (Malaysia)

    2016-11-15

    We compared the quasi-static and dynamic simulation responses on elastic-plastic deformation of advanced alloys using Finite element (FE) method with an explicit numerical algorithm. A geometrical model consisting of a cylinder-on-flat surface contact under a normal load and sliding motion was examined. Two aeroengine materials, Ti-6Al-4V and Super CMV (Cr-Mo-V) alloy, were employed in the FE analysis. The FE model was validated by comparative magnitudes of the FE-predicted maximum contact pressure variation along the contact half-width length with the theoretical Hertzian contact solution. Results show that the (compressive) displacement of the initial contact surface steadily increases for the quasi-static load case, but accumulates at an increasing rate to the maximum level for the dynamic loading. However, the relatively higher stiffness and yield strength of the Super CMV alloy resulted in limited deformation and low plastic strain when compared to the Ti-6Al-4V alloy. The accumulated equivalent plastic strain of the material point at the initial contact position was nearly a thousand times higher for the dynamic load case (for example, 6.592 for Ti-6Al-4V, 1.0 kN) when compared to the quasi-static loading (only 0.0072). During the loading step, the von Mises stress increased with a decreasing and increasing rate for the quasi-static and dynamic load case, respectively. A sudden increase in the stress magnitude to the respective peak value was registered due to the additional constraint to overcome the static friction of the mating surfaces during the sliding step.

  13. Parallel processing for fluid dynamics applications

    International Nuclear Information System (INIS)

    Johnson, G.M.

    1989-01-01

    The impact of parallel processing on computational science and, in particular, on computational fluid dynamics is growing rapidly. In this paper, particular emphasis is given to developments which have occurred within the past two years. Parallel processing is defined and the reasons for its importance in high-performance computing are reviewed. Parallel computer architectures are classified according to the number and power of their processing units, their memory, and the nature of their connection scheme. Architectures which show promise for fluid dynamics applications are emphasized. Fluid dynamics problems are examined for parallelism inherent at the physical level. CFD algorithms and their mappings onto parallel architectures are discussed. Several example are presented to document the performance of fluid dynamics applications on present-generation parallel processing devices

  14. Dissipative particle dynamics simulations of deformation and aggregation of healthy and diseased red blood cells in a tube flow

    International Nuclear Information System (INIS)

    Ye, Ting; Phan-Thien, Nhan; Khoo, Boo Cheong; Lim, Chwee Teck

    2014-01-01

    In this paper, we report simulation results assessing the deformation and aggregation of mixed healthy and malaria-infected red blood cells (RBCs) in a tube flow. A three dimensional particle model based on Dissipative Particle Dynamics (DPD) is developed to predict the tube flow containing interacting cells. The cells are also modelled by DPD, with a Morse potential to characterize the cell-cell interaction. As validation tests, a single RBC in a tube flow and two RBCs in a static flow are simulated to examine the cell deformation and intercellular interaction, respectively. The study of two cells, one healthy and the other malaria-infected RBCs in a tube flow demonstrates that the malaria-infected RBC (in the leading position along flow direction) has different effects on the healthy RBC (in the trailing position) at the different stage of parasite development or at the different capillary number. With parasitic development, the malaria-infected RBC gradually loses its deformability, and in turn the corresponding trailing healthy RBC also deforms less due to the intercellular interaction. With increasing capillary number, both the healthy and malaria-infected RBCs are likely to undergo an axisymmetric motion. The minimum intercellular distance becomes small enough so that rouleaux is easily formed, i.e., the healthy and malaria-infected RBCs are difficultly disaggregated

  15. Dissipative particle dynamics simulations of deformation and aggregation of healthy and diseased red blood cells in a tube flow

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ting; Phan-Thien, Nhan, E-mail: Nhan@nus.edu.sg; Khoo, Boo Cheong; Lim, Chwee Teck [Department of Mechanical Engineering, National University of Singapore, Singapore 119260 (Singapore)

    2014-11-15

    In this paper, we report simulation results assessing the deformation and aggregation of mixed healthy and malaria-infected red blood cells (RBCs) in a tube flow. A three dimensional particle model based on Dissipative Particle Dynamics (DPD) is developed to predict the tube flow containing interacting cells. The cells are also modelled by DPD, with a Morse potential to characterize the cell-cell interaction. As validation tests, a single RBC in a tube flow and two RBCs in a static flow are simulated to examine the cell deformation and intercellular interaction, respectively. The study of two cells, one healthy and the other malaria-infected RBCs in a tube flow demonstrates that the malaria-infected RBC (in the leading position along flow direction) has different effects on the healthy RBC (in the trailing position) at the different stage of parasite development or at the different capillary number. With parasitic development, the malaria-infected RBC gradually loses its deformability, and in turn the corresponding trailing healthy RBC also deforms less due to the intercellular interaction. With increasing capillary number, both the healthy and malaria-infected RBCs are likely to undergo an axisymmetric motion. The minimum intercellular distance becomes small enough so that rouleaux is easily formed, i.e., the healthy and malaria-infected RBCs are difficultly disaggregated.

  16. Isothermal deformation of gamma titanium aluminide

    International Nuclear Information System (INIS)

    Srinivasan, R.; Singh, J.P.; Tuval, E.; Weiss, I.

    1996-01-01

    Gamma titanium aluminide has received considerable attention in recent years from the automotive industry as a potential material for making rotating and reciprocating components to produce a quieter and more efficient engine. The objectives of this study were to identify processing routes for the manufacture of automobile valves from gamma titanium aluminide. The issues considered were microstructure and composition of the material, and processing parameters such as deformation rates, temperatures, and total deformation. This paper examines isothermal deformation of gamma titanium aluminide in order to develop a processing window for this type of material

  17. Static recrystallisation and precipitation after hot deformation of austenitic stainless steels containing molybdenum and niobium

    International Nuclear Information System (INIS)

    Lombry, R.; Rossard, C.; Thomas, B.J.

    1981-01-01

    In general the hot workability of austenite depends on the work hardening during deformation and the kinetics of the dynamic and static restoration processes. Static recrystallisation is a very important factor in the case of hot rolling. The present work was undertaken to determine the effect of additions of molybdenum or niobium on the kinetics of static recrystallisation. The results show that the rate of static recrystallisation of type 304, 316 and 347 stainless steels decreases in this order for a given amount of prior deformation (epsilon=0,44). The differences in the rates of recrystallisation increases as the temperature is lowered towards 900 deg C. The effect of molybdenum appears to be attribuable to a solute drag effect on the mobility of dislocations, subgrain boundaries or grain boundaries whereas niobium additions lead to the formation of NbC precipitates on the dislocation cell walls and sub boundaries. It is also shown that in the case of type 316 and type 347 steels the dynamic recrystallisation process (observed in type 304 steels at all temperatures above 900 deg C) is replaced by dynamic recovery at temperatures egal to or below about 1000 deg C [fr

  18. Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation.

    Science.gov (United States)

    Ramamurti, Ravi; Sandberg, William C; Löhner, Rainald; Walker, Jeffrey A; Westneat, Mark W

    2002-10-01

    Many fishes that swim with the paired pectoral fins use fin-stroke parameters that produce thrust force from lift in a mechanism of underwater flight. These locomotor mechanisms are of interest to behavioral biologists, biomechanics researchers and engineers. In the present study, we performed the first three-dimensional unsteady computations of fish swimming with oscillating and deforming fins. The objective of these computations was to investigate the fluid dynamics of force production associated with the flapping aquatic flight of the bird wrasse Gomphosus varius. For this computational work, we used the geometry of the wrasse and its pectoral fin, and previously measured fin kinematics, as the starting points for computational investigation of three-dimensional (3-D) unsteady fluid dynamics. We performed a 3-D steady computation and a complete set of 3-D quasisteady computations for a range of pectoral fin positions and surface velocities. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing was then used to compute the unsteady flow about the wrasse through several complete cycles of pectoral fin oscillation. The shape deformation of the pectoral fin throughout the oscillation was taken from the experimental kinematics. The pressure distribution on the body of the bird wrasse and its pectoral fins was computed and integrated to give body and fin forces which were decomposed into lift and thrust. The velocity field variation on the surface of the wrasse body, on the pectoral fins and in the near-wake was computed throughout the swimming cycle. We compared our computational results for the steady, quasi-steady and unsteady cases with the experimental data on axial and vertical acceleration obtained from the pectoral fin kinematics experiments. These comparisons show that steady state computations are incapable of describing the fluid dynamics of flapping fins. Quasi-steady state computations, with correct incorporation of

  19. Deformation in Metallic Glass: Connecting Atoms to Continua

    Science.gov (United States)

    Hinkle, Adam R.; Falk, Michael L.; Rycroft, Chris H.; Shields, Michael D.

    Metallic glasses like other amorphous solids experience strain localization as the primary mode of failure. However, the development of continuum constitutive laws which provide a quantitative description of disorder and mechanical deformation remains an open challenge. Recent progress has shown the necessity of accurately capturing fluctuations in material structure, in particular the statistical changes in potential energy of the atomic constituents during the non-equilibrium process of applied shear. Here we directly cross-compare molecular dynamics shear simulations of a ZrCu glass with continuum shear transformation zone (STZ) theory representations. We present preliminary results for a methodology to coarse-grain detailed molecular dynamics data with the goal of initializing a continuum representation in the STZ theory. NSF Grants Awards 1107838, 1408685, and 0801471.

  20. Pair correlation of super-deformed rotation band

    International Nuclear Information System (INIS)

    Shimizu, Yoshio

    1989-01-01

    The effect of pair correlation, one of the most important residual interactions associated with the super-deformed rotation band, is discussed in terms of the characteristics of the rotation band (its effect on the moment of inertia in particular), and the tunneling into an normal deformed state in relation to its effect on the angular momentum dependence of the potential energy plane as a function of the deformation. The characteristics of the rotation band is discussed in terms of the kinematic and dynamic momenta of inertia. It is shown that the pair correlation in a super-deformed rotation band acts to decrease the former and increase the latter momentum mainly due to dynamic pair correlation. A theoretical approach that takes this effect into account can provide results that are consistent with measured momenta, although large differences can occur in some cases. Major conflicts include a large measured kinetic momentum of inertia compared to the theoretical value, and the absence of the abnormality (shape increase) generally seen in low-spin experiments. The former seems likely to be associated with the method of measuring the angular momentum. (N.K.)

  1. High-coercivity ultrafine-grained anisotropic Nd–Fe–B magnets processed by hot deformation and the Nd–Cu grain boundary diffusion process

    International Nuclear Information System (INIS)

    Sepehri-Amin, H.; Ohkubo, T.; Nagashima, S.; Yano, M.; Shoji, T.; Kato, A.; Schrefl, T.; Hono, K.

    2013-01-01

    The grain boundary diffusion process using an Nd 70 Cu 30 eutectic alloy has been applied to hot-deformed anisotropic Nd–Fe–B magnets, resulting in a substantial enhancement of coercivity, from 1.5 T to 2.3 T, at the expense of remanence. Scanning electron microscopy showed that the areal fraction of an Nd-rich intergranular phase increased from 10% to 37%. The intergranular phase of the hot-deformed magnet initially contained ∼55 at.% ferromagnetic element, while it diminished to an undetectable level after the process. Microscale eutectic solidification of Nd/NdCu as well as a fine lamellae structure of Nd 70 (Co,Cu) 30 /Nd were observed in the intergranular phase. Micromagnetic simulations indicated that the reduction of the magnetization in the intergranular phases leads to the enhancement of coercivity in agreement with the experimental observation

  2. Creep model of unsaturated sliding zone soils and long-term deformation analysis of landslides

    Science.gov (United States)

    Zou, Liangchao; Wang, Shimei; Zhang, Yeming

    2015-04-01

    reveal the mechanisms of the dynamic process of landslide deformation, and serve as an important basis for the prediction and evaluation of landslides.

  3. Hot Deformation Behavior and Processing Map of Mg-3Sn-2Ca-0.4Al-0.4Zn Alloy

    Directory of Open Access Journals (Sweden)

    Chalasani Dharmendra

    2018-03-01

    Full Text Available Among newly developed TX (Mg-Sn-Ca alloys, TX32 alloy strikes a good balance between ductility, corrosion, and creep properties. This study reports the influence of aluminum and zinc additions (0.4 wt % each to TX32 alloy on its strength and deformation behavior. Uniaxial compression tests were performed under various strain rates and temperature conditions in the ranges of 0.0003–10 s−1 and 300–500 °C, respectively. A processing map was developed for TXAZ3200 alloy, and it exhibits three domains that enable good hot workability in the ranges (1 300–340 °C/0.0003–0.001 s−1; (2 400–480 °C/0.01–1 s−1; and (3 350–500 °C/0.0003–0.01 s−1. The occurrence of dynamic recrystallization in these domains was confirmed from the microstructural observations. The estimated apparent activation energy in Domains 2 and 3 (219 and 245 kJ/mole is higher than the value of self-diffusion in magnesium. This is due to the formation of intermetallic phases in the matrix that generates back stress. The strength of TXAZ3200 alloy improved up to 150 °C as compared to TX32 alloy, suggesting solid solution strengthening due to Al and Zn. Also, the hot deformation behavior of TXAZ3200 alloy was compared in the form of processing maps with TX32, TX32-0.4Al, TX32-0.4Zn, and TX32-1Al-1Zn alloys.

  4. Looking into Vulcanian eruption through new analogue experiments and associated deformation patterns

    Science.gov (United States)

    Manta, F.; Taisne, B.

    2017-12-01

    The dynamic of Vulcanian eruptions is one of the most fascinating subjects in volcanology. Its characteristic pattern of inflation-deflation cycles has been observed through geodetic data at several volcanoes. Deformation can occur minutes before an explosion suggesting a rapid escalation of events happening in the shallow conduit region. Several numerical and theoretical models have been proposed to explain the relation between the observed deformation pattern and properties of the system. While all of them have their own way to simplify the complexity of the natural system, no comprehensive studies were done to estimate the uncertainties associated with such simplifications. This is a challenging task since no direct observations about the characteristics of the natural system (e.g. bubbles length, conduit radius, viscosity, density...) can be made. Available models can be used to invert the deformation pattern in order to estimate values of the controlling parameters. While taking into account the uncertainties on the data, limitation of the models are usually neglected. In order to quantify the uncertainties associated with the numerical models, we have performed analogue experiments that simulate surface deformation related to conduit processes. We reproduced a degassing volcanic system embedded into an elastic medium that has analogue elastic properties compared to the earth crust. By applying inversion techniques on the measured deformation data and knowing the values of the controlling parameters, we are able to estimate the uncertainties of the model. Through the experimental approach, we also aim to shed light on the triggering mechanism behind Vulcanian eruptions that is still subject of debate. To this end, we explored different scenarios of pressurization: from bubbly flow regime to gas overpressure below a viscous plug. Results will help to clarify what is the dynamic of Vulcanian eruptions and quantify how the properties of the system affect the

  5. Deformation of textural characteristics and sedimentology along micro-tidal estuarine beaches

    Digital Repository Service at National Institute of Oceanography (India)

    Dora, G.U.; SanilKumar, V.; Philip, C.S.; Johnson, G.

    Indian Journal of Geo Marine Sciences Vol. 45 (11), November 2016, pp. 1432-1444 *Corresponding author Deformation of textural characteristics and sedimentology along micro- tidal estuarine beaches G. Udhaba Dora, V. Sanil Kumar*, C... sediment is a foremost parameter for a coastal researcher/engineer/designer due to its various applications for sorting out a coastal environment. Sedimentary process at foreshore zone is a highly dynamical whereas textural characteristics...

  6. Ocean deformation processes at the Caribbean-North America-South America triple junction: Initial results of the 2007 ANTIPLAC marine survey

    Science.gov (United States)

    Benard, F.; Deville, E.; Le Drezen, E.; Loubrieu, B.; Maltese, L.; Patriat, M.; Roest, W.; Thereau, E.; Umber, M.; Vially, R.

    2007-12-01

    Marine geophysical data (multibeam and seismic lines) acquired in 2007 (ANTIPLAC survey) in the North-South Americas-Caribbean triple point (Central Atlantic, Barracuda and Tiburon ridges area), provide information about the structure, the tectonic processes and the timing of the deformation in this large diffuse zone of polyphase deformation. The deformation of the plate boundary between the north and south Americas is distributed on several structures located in the Atlantic plain, at the front of the Barbados accretionary prism. In this area of deformation of the Atlantic oceanic lithosphere, the main depressions and transform troughs are filled by Late Pliocene-Pleistocene turbidite sediments, especially in the Barracuda trough, north of Barracuda ridge. These sediments are not issued from the Lesser Antilles volcanic arc but they are sourced from the East, probably by the Orinoco turbidite distal system, through channels transiting in the Atlantic abyssal plain. These Late Pliocene- Quaternary sediments show locally spectacular evidences of syntectonic deformation. It can be shown notably that Barracuda ridge includes a pre-existing transform fault system which has been folded and uplifted very recently during Pleistocene times. This recent deformation has generate relieves up to 2 km high with associated erosion processes notably along the northern flank the Barracuda ridge. The subduction of these recently deformed ridges induces deformation of earlier structures within the Barbados accretionary prism. These asperities within the Atlantic oceanic lithosphere which is subducted in the Lesser Antilles active margin are correlated with the zone of intense seismic activity below the volcanic arc.

  7. New compliant strain gauges for self-sensing dynamic deformation of flapping wings on miniature air vehicles

    Science.gov (United States)

    Wissman, James; Perez-Rosado, Ariel; Edgerton, Alex; Levi, Benjamin M.; Karakas, Zeynep N.; Kujawski, Mark; Philipps, Alyssa; Papavizas, Nicholas; Fallon, Danielle; Bruck, Hugh A.; Smela, Elisabeth

    2013-08-01

    Over the past several years there has been an increasing interest in the development of miniature air vehicles (MAVs) with flapping wings. To allow these MAVs to adjust to changes in wind direction and to maximize their efficiency, it is desirable to monitor the deformation of the wing during flight. This paper presents a step in this direction, demonstrating the measurement of strain on the surface of the wing using minimally invasive compliant piezoresistive sensors. The strain gauges consisted of latex mixed with electrically conducting exfoliated graphite, and they were applied by spray coating. To calibrate the gauges, both static and dynamic testing up to 10 Hz were performed using cantilever structures. In tension the static sensitivity was a linear 0.4 Ω μɛ-1 and the gauge factor was 28; in compression, the gauge factor was -5. Although sensitivities in tension and compression differed by a factor of almost six, this was not reflected in the dynamic data, which followed the strain reversibly with little distortion. There was no attenuation with frequency, indicating a sufficiently small time constant for this application. The gauges were thin, compliant, and light enough to measure, without interference, deformations due to shape changes of the flexible wing associated with generating lift and thrust. During flapping the resistance closely tracked the generated thrust, measured on a test stand, with both signals tracing figure-8 loops as a function of wing position throughout each cycle.

  8. New compliant strain gauges for self-sensing dynamic deformation of flapping wings on miniature air vehicles

    International Nuclear Information System (INIS)

    Wissman, James; Perez-Rosado, Ariel; Edgerton, Alex; Levi, Benjamin M; Karakas, Zeynep N; Kujawski, Mark; Philipps, Alyssa; Papavizas, Nicholas; Fallon, Danielle; Bruck, Hugh A; Smela, Elisabeth

    2013-01-01

    Over the past several years there has been an increasing interest in the development of miniature air vehicles (MAVs) with flapping wings. To allow these MAVs to adjust to changes in wind direction and to maximize their efficiency, it is desirable to monitor the deformation of the wing during flight. This paper presents a step in this direction, demonstrating the measurement of strain on the surface of the wing using minimally invasive compliant piezoresistive sensors. The strain gauges consisted of latex mixed with electrically conducting exfoliated graphite, and they were applied by spray coating. To calibrate the gauges, both static and dynamic testing up to 10 Hz were performed using cantilever structures. In tension the static sensitivity was a linear 0.4 Ω με −1 and the gauge factor was 28; in compression, the gauge factor was −5. Although sensitivities in tension and compression differed by a factor of almost six, this was not reflected in the dynamic data, which followed the strain reversibly with little distortion. There was no attenuation with frequency, indicating a sufficiently small time constant for this application. The gauges were thin, compliant, and light enough to measure, without interference, deformations due to shape changes of the flexible wing associated with generating lift and thrust. During flapping the resistance closely tracked the generated thrust, measured on a test stand, with both signals tracing figure-8 loops as a function of wing position throughout each cycle. (paper)

  9. Clustering and triaxial deformations of 40Ca

    International Nuclear Information System (INIS)

    Taniguchi, Yasutaka; Kimura, Masaaki; Kanada-En'yo, Yoshiko; Horiuchi, Hisashi

    2007-01-01

    We have studied the positive-parity states of 40 Ca using antisymmetrized molecular dynamics (AMD) and the generator coordinate method (GCM). Imposing two different kinds of constraints on the variational calculation, we have found various kinds of 40 Ca structures such as a deformed-shell structure, as well as α- 36 Ar and 12 C- 28 Si cluster structures. After the GCM calculation, we obtained a normal-deformed band and a superdeformed band together with their side bands associated with triaxial deformation. The calculated B(E2) values agreed well with empirical data. It was also found that the normal-deformed and superdeformed bands have non-negligible α- 36 Ar cluster and 12 C- 28 Si cluster components, respectively. This leads to the presence of an α- 36 Ar higher nodal band occurring above the normal-deformed band

  10. Alpha- and Omega-Deformations from fluxes in M-Theory

    CERN Document Server

    Lambert, Neil; Reffert, Susanne

    2014-01-01

    We discuss an SL(2,R) family of deformed N=2 four-dimensional gauge theories which we derive from a flux background in M-theory. In addition to the Omega-deformation this family includes a new deformation, which we call the Alpha-deformation, which can be viewed as an S-dual to the Omega-deformation. We study these gauge theories in two ways: by constructing a non-Abelian (but UV-complete) Lagrangian, and by their strong coupling lift to M-theory where their low-energy dynamics can be determined by examining the equation of motion of a single M5-brane wrapped on a Riemann surface.

  11. Hot Ductility and Compression Deformation Behavior of TRIP980 at Elevated Temperatures

    Science.gov (United States)

    Zhang, Mei; Li, Haiyang; Gan, Bin; Zhao, Xue; Yao, Yi; Wang, Li

    2018-02-01

    The hot ductility tests of a kind of 980 MPa class Fe-0.31C (wt pct) TRIP steel (TRIP980) with the addition of Ti/V/Nb were conducted on a Gleeble-3500 thermomechanical simulator in the temperatures ranging from 873 K to 1573 K (600 °C to 1300 °C) at a constant strain rate of 0.001 s-1. It is found that the hot ductility trough ranges from 873 K to 1123 K (600 °C to 850 °C). The recommended straightening temperatures are from 1173 K to 1523 K (900 °C to 1250 °C). The isothermal hot compression deformation behavior was also studied by means of Gleeble-3500 in the temperatures ranging from 1173 K to 1373 K (900 °C to 1100 °C) at strain rates ranging from 0.01 s-1 to 10 s-1. The results show that the peak stress decreases with the increasing temperature and the decreasing strain rate. The deformation activation energy of the test steel is 436.7 kJ/mol. The hot deformation equation of the steel has been established, and the processing maps have been developed on the basis of experimental data and the principle of dynamic materials model (DMM). By analyzing the processing maps of strains of 0.5, 0.7, and 0.9, it is found that dynamic recrystallization occurs in the peak power dissipation efficiency domain, which is the optimal area of hot working. Finally, the factors influencing hot ductility and thermal activation energy of the test steel were investigated by means of microscopic analysis. It indicates that the additional microalloying elements play important roles both in the loss of hot ductility and in the enormous increase of deformation activation energy for the TRIP980 steel.

  12. Pixels Intensity Evolution to Describe the Plastic Films Deformation

    Directory of Open Access Journals (Sweden)

    Juan C. Briñez-De León

    2013-11-01

    Full Text Available This work proposes an approach for mechanical behavior description in the plastic film deformation using techniques for the images analysis, which are based on the intensities evolution of fixed pixels applied to an images sequence acquired through polarizing optical assembly implemented around the platform of the plastic film deformation. The pixels intensities evolution graphs, and mechanical behavior graphic of the deformation has dynamic behaviors zones which could be associated together.

  13. The effect of deformation temperature on the microstructure evolution of Inconel 625 superalloy

    Science.gov (United States)

    Guo, Qingmiao; Li, Defu; Guo, Shengli; Peng, Haijian; Hu, Jie

    2011-07-01

    Hot compression tests of Inconel 625 superalloy were conducted using a Gleeble-1500 simulator between 900 °C and 1200 °C with different true strains and a strain rate of 0.1 s -1. Scanning electron microscope (SEM) and electron backscatter diffraction technique (EBSD) were employed to investigate the effect of deformation temperature on the microstructure evolution and nucleation mechanisms of dynamic recrystallization (DRX). It is found that the relationship between the DRX grain size and the peak stress can be expressed by a power law function. Significant influence of deformation temperatures on the nucleation mechanisms of DRX are observed at different deformation stages. At lower deformation temperatures, continuous dynamic recrystallization (CDRX) characterized by progressive subgrain rotation is considered as the main mechanism of DRX at the early deformation stage. However, discontinuous dynamic recrystallization (DDRX) with bulging of the original grain boundaries becomes the operating mechanism of DRX at the later deformation stage. At higher deformation temperatures, DDRX is the primary mechanism of DRX, while CDRX can only be considered as an assistant mechanism at the early deformation stage. Nucleation of DRX can also be activated by the twinning formation. With increasing the deformation temperature, the effect of DDRX accompanied with twinning formation grows stronger, while the effect of CDRX grows weaker. Meanwhile, the position of subgrain formation shifts gradually from the interior of original grains to the vicinity of the original boundaries.

  14. Study of AFM-based nanometric cutting process using molecular dynamics

    International Nuclear Information System (INIS)

    Zhu Pengzhe; Hu Yuanzhong; Ma Tianbao; Wang Hui

    2010-01-01

    Three-dimensional molecular dynamics (MD) simulations are conducted to investigate the atomic force microscope (AFM)-based nanometric cutting process of copper using diamond tool. The effects of tool geometry, cutting depth, cutting velocity and bulk temperature are studied. It is found that the tool geometry has a significant effect on the cutting resistance. The friction coefficient (cutting resistance) on the nanoscale decreases with the increase of tool angle as predicted by the macroscale theory. However, the friction coefficients on the nanoscale are bigger than those on the macroscale. The simulation results show that a bigger cutting depth results in more material deformation and larger chip volume, thus leading to bigger cutting force and bigger normal force. It is also observed that a higher cutting velocity results in a larger chip volume in front of the tool and bigger cutting force and normal force. The chip volume in front of the tool increases while the cutting force and normal force decrease with the increase of bulk temperature.

  15. In-process, non-destructive, dynamic testing of high-speed polymer composite rotors

    Science.gov (United States)

    Kuschmierz, Robert; Filippatos, Angelos; Günther, Philipp; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgen; Fischer, Andreas

    2015-03-01

    Polymer composite rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency and lifetime, as well as allowing for higher dynamic loads. However, due to the complexity of the composite materials an in-process measurement system is required. This allows for monitoring the evolution of damages under dynamic loads, for testing and predicting the structural integrity of composite rotors in process. In rotor design, it can be used for calibrating and improving models, simulating the dynamic behaviour of polymer composite rotors. The measurement system is to work non-invasive, offer micron uncertainty, as well as a high measurement rate of several tens of kHz. Furthermore, it must be applicable at high surface speeds and under technical vacuum. In order to fulfil these demands a novel laser distance measurement system was developed. It provides the angle resolved measurement of the biaxial deformation of a fibre-reinforced polymer composite rotor with micron uncertainty at surface speeds of more than 300 m/s. Furthermore, a simulation procedure combining a finite element model and a damage mechanics model is applied. A comparison of the measured data and the numerically calculated data is performed to validate the simulation towards rotor expansion. This validating procedure can be used for a model calibration in the future. The simulation procedure could be used to investigate different damage-test cases of the rotor, in order to define its structural behaviour without further experiments.

  16. Interaction of Degradation, Deformation and Transport Processes in Municipal Solid Waste Landfills

    OpenAIRE

    Bente, Sonja

    2010-01-01

    In this thesis a model for the complex interactions between deformation, degradation and transport processe in municipal solid waste landfills is presented. Key aspects of the model are a joint continuum mechanical framework and a monolithic solution of the governing equations within the Theory of Porous Media. Interactions are considered by coupling the governing physical fields over the domain of a representative elementary volume via selected state variables. A simplified two-stage degrada...

  17. Deformation properties of sedimentary rocks in the process of underground coal gasification

    Directory of Open Access Journals (Sweden)

    Mirosława Bukowska

    2015-01-01

    Full Text Available The article presents results of research into changes in deformation properties of rocks, under influence of temperature, during the process of underground coal gasification. Samples of carboniferous sedimentary rocks (claystones and sandstones, collected in different areas of Upper Silesian Coal Basin (GZW, were heated at the temperature of between 100 and 1000–1200 °C, and then subjected to uniaxial compression tests to obtain a full stress-strain curves of the samples and determine values of residual strain and Poisson's ratio. To compare the obtained values of deformation parameters of rocks, tested in dry-air state and after heating in a given range of temperature, normalised values of residual strain and Poisson's ratio were determined. Based on them, coefficient of influence of temperature on tested deformation parameters was determined. The obtained values of the coefficient can be applied in mining practice to forecast deformability of gangue during underground coal gasification, when in the direct surrounding of a georeactor there are claystones or sandstones. The obtained results were analysed based on classification of uniaxial compression strength of GZW gangue, which formed the basis for dividing claystones and sandstones into very low, low, medium and high uniaxial compression strength rocks. Based on the conducted tests it was concluded that the influence of uniaxial compression strength on the value of residual strain, unlike the influence of grain size of sandstones, is unambiguous within the range of changes in the parameter. Among claystones changes in the value of Poisson's ratio depending on their initial strength were observed. Sandstones of different grain size either increased or decreased the value of Poisson's ratio in comparison with the value determined at room temperature in dry-air conditions.

  18. Interpretation of quasi-static and dynamic tensile behavior by digital image correlation technique in TWinning Induced Plasticity (TWIP) and low-carbon steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Minju; Park, Jaeyeong; Sohn, Seok Su; Kim, Hyoung Seop [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Nack J. [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Lee, Sunghak, E-mail: shlee@postech.ac.kr [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2017-05-02

    In this study, dynamic tensile tests were conducted on TWinning Induced Plasticity (TWIP) and low-carbon (LC) steel sheets at a strain rate of 1500–2000/s by using a split Hopkinson tensile bar, and deformation mechanisms related with improvement of dynamic tensile properties were investigated by a digital image correlation (DIC) technique. The dynamic tensile strength was higher than the quasi-static tensile strength in both TWIP and LC sheets, while the dynamic elongation was same to the quasi-static elongation in the TWIP sheet and was much lower than the quasi-static elongation in the LC sheet. According to the DIC results of the dynamically tensioned TWIP sheet, the homogeneous deformation occurred before the necking at the strain of 47.4%. This indicated that the dynamic deformation processes were almost similar to the quasi-static ones as the TWIP sheet was homogeneously deformed in the initial and intermediate deformation stages. This could be explained by deformation mechanisms including twinning, in consideration of favorable effect of increased twinning on tensile properties under the dynamic loading. On the other hand, the dynamically tensioned LC sheet was rapidly deformed and fractured as the necking was intensified in a narrow strain-concentrated region. The present DIC technique is an outstanding method for detailed dynamic deformation analyses, and provides an important idea for practical safety analyses of automotive steel sheets.

  19. Deformation behaviour of turbine foundations

    International Nuclear Information System (INIS)

    Koch, W.; Klitzing, R.; Pietzonka, R.; Wehr, J.

    1979-01-01

    The effects of foundation deformation on alignment in turbine generator sets have gained significance with the transition to modern units at the limit of design possibilities. It is therefore necessary to obtain clarification about the remaining operational variations of turbine foundations. Static measurement programmes, which cover both deformation processes as well as individual conditions of deformation are described in the paper. In order to explain the deformations measured structural engineering model calculations are being undertaken which indicate the effect of limiting factors. (orig.) [de

  20. Structural damping values as a function of dynamic response stress and deformation levels

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1980-01-01

    Damping as it is normally defined is the means by which the response motion of a structural system is reduced as the result of energy losses. However, as used in the context of nuclear plant design, the effects of changes in structural stiffness, geometry, support configuration, and modulus of elasticity are also usually lumped under the general heading of damping in current design methods. For convenience in structural design, damping in usually assumed as viscous in nature and in recognition of its use in modal response spectrum dynamic analysis is normally expressed as a percent of critical. In general, it should be understood that damping as used in design or analysis of nuclear plants is an experimentally determined factor which is used to make the results of linear elasticity analysis of dynamic systems agree reasonably well with observed experimental results. In this paper, damping data existing in the open literature applicable to nuclear power plant structures and equipment is summarized and statistically analyzed. Results of this analysis are used to develop damping trend curves which predict applicable damping values to be used in design at various levels of stress or deformation. (orig.)

  1. Deformational Features and Microstructure Evolution of Copper Fabricated by a Single Pass of the Elliptical Cross-Section Spiral Equal-Channel Extrusion (ECSEE) Process

    Science.gov (United States)

    Wang, Chengpeng; Li, Fuguo; Liu, Juncheng

    2018-04-01

    The objectives of this work are to study the deformational feature, textures, microstructures, and dislocation configurations of ultrafine-grained copper processed by the process of elliptical cross-section spiral equal-channel extrusion (ECSEE). The deformation patterns of simple shear and pure shear in the ECSEE process were evaluated with the analytical method of geometric strain. The influence of the main technical parameters of ECSEE die on the effective strain distribution on the surface of ECSEE-fabricated samples was examined by the finite element simulation. The high friction factor could improve the effective strain accumulation of material deformation. Moreover, the pure copper sample fabricated by ECSEE ion shows a strong rotated cube shear texture. The refining mechanism of the dislocation deformation is dominant in copper processed by a single pass of ECSEE. The inhomogeneity of the micro-hardness distribution on the longitudinal section of the ECSEE-fabricated sample is consistent with the strain and microstructure distribution features.

  2. Selection of Activities in Dynamic Business Process Simulation

    Directory of Open Access Journals (Sweden)

    Toma Rusinaitė

    2016-06-01

    Full Text Available Maintaining dynamicity of business processes is one of the core issues of today's business as it enables businesses to adapt to constantly changing environment. Upon changing the processes, it is vital to assess possible impact, which is achieved by using simulation of dynamic processes. In order to implement dynamicity in business processes, it is necessary to have an ability to change components of the process (a set of activities, a content of activity, a set of activity sequences, a set of rules, performers and resources or dynamically select them during execution. This problem attracted attention of researches over the past few years; however, there is no proposed solution, which ensures the business process (BP dynamicity. This paper proposes and specifies dynamic business process (DBP simulation model, which satisfies all of the formulated DBP requirements.

  3. Two-component feedback loops and deformed mechanics

    International Nuclear Information System (INIS)

    Tourigny, David S.

    2015-01-01

    It is shown that a general two-component feedback loop can be viewed as a deformed Hamiltonian system. Some of the implications of using ideas from theoretical physics to study biological processes are discussed. - Highlights: • Two-component molecular feedback loops are viewed as q-deformed Hamiltonian systems. • Deformations are reversed using Jackson derivatives to take advantage of working in the Hamiltonian limit. • New results are derived for the particular examples considered. • General deformations are suggested to be associated with a broader class of biological processes

  4. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  5. The Use of the Analytic Hierarchy Process to Aid Decision Making in Acquired Equinovarus Deformity

    NARCIS (Netherlands)

    van Til, Janine Astrid; Renzenbrink, G.J.; Dolan, J.G.; IJzerman, Maarten Joost

    2008-01-01

    Objective: To increase the transparency of decision making about treatment in patients with equinovarus deformity poststroke. - Design: The analytic hierarchy process (AHP) was used as a structured methodology to study the subjective rationale behind choice of treatment. - Setting: An 8-hour meeting

  6. Towards the Implementation of Semi-Dynamic Datum for Malaysia

    Science.gov (United States)

    Shariff, N. S.; Gill, J.; Amin, Z. M.; Omar, K. M.

    2017-10-01

    A semi-dynamic datum provides positions with respect to time while taking into account the secular and non-secular deformations, making it the best approach to adapt with the dynamic processes of the earth. Malaysia, as yet, employs a static datum, i.e., GDM2000, at epoch 2000; though Malaysia has evidently been affected by seismic activity for the past decade. Therefore, this paper seeks to propose a design for implementing a semi-dynamic datum for Malaysia. Methodologically, GPS time series analyses are carried out to investigate the seismic activity of Malaysia, which essentially contributes to the proposed design of the semi-dynamic datum for Malaysia. The implications of implementing a semi-dynamic datum for Malaysia are discussed as well. The results indicate that Malaysia undergoes a complex deformation; whereby the earthquakes - primarily the 2004 Sumatra-Andaman, 2005 Nias and 2012 Northern Sumatra earthquakes - have affected the underlying secular velocities of Malaysia. Consequently, from this information, the proposed design, particularly the secular and non-secular deformation models, is described in detail. The proposed semi-dynamic datum comprises a transformation, temporal, and spatial module, and utilizes a bilinear interpolation method. Overall, this paper aims to contribute to the feasibility of a semi-dynamic datum approach for Malaysia.

  7. Internal stress evolution in Fe laths deformed at low temperature analysed by dislocation dynamics simulations

    International Nuclear Information System (INIS)

    Chaussidon, Julien; Fivel, Marc; Robertson, Christian; Marini, Bernard

    2010-01-01

    Stress evolution in Fe laths undergoing plastic deformation is investigated using three-dimensional dislocation dynamics simulations adapted to body centred cubic crystals, in the ductile to brittle transition temperature range. The selected boundary conditions, applied stress tensor and initial dislocation structures account for the realistic microstructure observed in bainitic steels. The effective stress field projected in the three different {1 0 0}cleavage planes is calculated for two different temperatures (50 and 200 K) and presented quantitatively, in the form of stress/frequency diagrams. It is shown that plastic activity tends to relax the stress acting in certain cleavage planes (the (0 1 0) and (0 0 1) planes) while, at the same time, amplifying the stress acting in other cleavage planes (the (1 0 0) planes). The selective stress amplification in the latter planes depends on the applied load direction, in combination with the limited set of available slip systems and the lath geometry. In the examined configuration, this selection effect is more pronounced with decreasing temperature, emphasizing the role of thermally activated plasticity on deformation-induced stress concentrations

  8. Microstructural evolution during tensile deformation of polypropylenes

    International Nuclear Information System (INIS)

    Dasari, A.; Rohrmann, J.; Misra, R.D.K.

    2003-01-01

    Tensile deformation processes occurring at varying strain rates in high and low crystallinity polypropylenes and ethylene-propylene di-block copolymers have been investigated by scanning electron microscopy. This is examined for both long and short chain polymeric materials. The deformation processes in different polymeric materials show striking dissimilarities in spite of the common propylene matrix. Additionally, the deformation behavior of long and their respective short chain polymers was different. Deformation mechanisms include crazing/tearing, wedging, ductile ploughing, fibrillation, and brittle fracture. The different modes of deformation are depicted in the form of strain rate-strain diagrams. At a constant strain rate, the strain to fracture follows the sequence: high crystallinity polypropylenes< low crystallinity polypropylenes< ethylene-propylene di-block copolymers, indicative of the trend in resistance to plastic deformation

  9. The effect of deformation temperature on the microstructure evolution of Inconel 625 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Guo Qingmiao [General Research Institute for Non-Ferrous Metals, Beijing 100088 (China); Li Defu, E-mail: lide_fu@163.com [General Research Institute for Non-Ferrous Metals, Beijing 100088 (China); Guo Shengli; Peng Haijian; Hu Jie [General Research Institute for Non-Ferrous Metals, Beijing 100088 (China)

    2011-07-31

    Highlights: > The relationship between the stable DRX grain size and peak stress can be expressed by a power law function. > Deformation temperature has a significant influence on the nucleation mechanisms of DRX at different deformation stages. > With increasing the deformation temperature, the effect of DDRX accompanied with twinning formation grows stronger, while the effect of CDRX grows weaker. -- Abstract: Hot compression tests of Inconel 625 superalloy were conducted using a Gleeble-1500 simulator between 900 deg. C and 1200 deg. C with different true strains and a strain rate of 0.1 s{sup -1}. Scanning electron microscope (SEM) and electron backscatter diffraction technique (EBSD) were employed to investigate the effect of deformation temperature on the microstructure evolution and nucleation mechanisms of dynamic recrystallization (DRX). It is found that the relationship between the DRX grain size and the peak stress can be expressed by a power law function. Significant influence of deformation temperatures on the nucleation mechanisms of DRX are observed at different deformation stages. At lower deformation temperatures, continuous dynamic recrystallization (CDRX) characterized by progressive subgrain rotation is considered as the main mechanism of DRX at the early deformation stage. However, discontinuous dynamic recrystallization (DDRX) with bulging of the original grain boundaries becomes the operating mechanism of DRX at the later deformation stage. At higher deformation temperatures, DDRX is the primary mechanism of DRX, while CDRX can only be considered as an assistant mechanism at the early deformation stage. Nucleation of DRX can also be activated by the twinning formation. With increasing the deformation temperature, the effect of DDRX accompanied with twinning formation grows stronger, while the effect of CDRX grows weaker. Meanwhile, the position of subgrain formation shifts gradually from the interior of original grains to the vicinity of the

  10. Evaluation of Internal Friction versus Plastic Deformations Effects in Impact Dynamics Problems of Robotic Elements

    Directory of Open Access Journals (Sweden)

    Stelian Alaci

    2014-06-01

    Full Text Available The dynamical behavior study of robotic systems is obtained using multibody dynamics method. The joints met in robots are modeled in different manners. In a robotic joint the energy is lost via hysteretic work and plastic deformation work. The paper presents a comparative study for the results obtained by integration of the equations defining two limit models which describe the impact between two robot parts, modeled by the centric collision between two spheres with loss of energy. The motion equations characteristic for the two models are integrated and for a tangible situation, are presented comparatively, for different values of the coefficient of restitution, the time dependencies of impacting force between the two bodies as well as the hysteresis loops. Finally, an evaluation of the lost work during impact, for the whole range of coefficients of restitution, is completed, together with characteristic parameters of collision: approaching period, complete contact time, maximum approaching and plastic imprint.

  11. High rate deformation of metallic liner and its dislocation description

    International Nuclear Information System (INIS)

    Prut, V.V.; Shybaev, S.A.

    1996-01-01

    The dynamics of deformation in cylindrical liners are studied experimentally and theoretically in Z-pinch geometry, where the cylinders are deformed by a magnetic field created by a current flowing along the axis. This method allows one to obtain one-dimensional deformation and a reliable recording of magnetic field and cylinder deformation. The experiments are performed with a current amplitude of 0.8-3 MA and a current rise time of 2.5-4 μs. Aluminium and copper tubes, from 4 to 6 mm in diameter and 0.25-1 mm wall thick, are compressed. The deformation rates under study are in the range of 10 5 -10 6 s -1 . The time dependence of the radii of the copper and aluminium tubes are measured with a streak camera and by the pulsed x-ray technique. The time resolution of the streak and x-ray photographs is 10-15 ns, their spatial resolution is 10-15 μm. A rheological model describing the dynamics of compression is developed. The model includes the description of the metal as a plastic medium with moving dislocations in the solid state, and as a viscous medium in the liquid state. The one-dimensional solution to magneto-hydrodynamical equations of the liner dynamics is compared with the experimental results and thus the following rheological parameters of the metal are obtained: β, the probability of dislocation generation in plastic deformation; and σ d , the drag stress, the parameter which characterizes a drag force acting on the dislocation. (Author)

  12. Modelling of deformation process for the layer of elastoviscoplastic media under surface action of periodic force of arbitrary type

    Science.gov (United States)

    Mikheyev, V. V.; Saveliev, S. V.

    2018-01-01

    Description of deflected mode for different types of materials under action of external force plays special role for wide variety of applications - from construction mechanics to circuits engineering. This article con-siders the problem of plastic deformation of the layer of elastoviscolastic soil under surface periodic force. The problem was solved with use of the modified lumped parameters approach which takes into account close to real distribution of normal stress in the depth of the layer along with changes in local mechanical properties of the material taking place during plastic deformation. Special numeric algorithm was worked out for computer modeling of the process. As an example of application suggested algorithm was realized for the deformation of the layer of elasoviscoplastic material by the source of external lateral force with the parameters of real technological process of soil compaction.

  13. Development of dynamic explicit crystallographic homogenization finite element analysis code to assess sheet metal formability

    International Nuclear Information System (INIS)

    Nakamura, Yasunori; Tam, Nguyen Ngoc; Ohata, Tomiso; Morita, Kiminori; Nakamachi, Eiji

    2004-01-01

    The crystallographic texture evolution induced by plastic deformation in the sheet metal forming process has a great influence on its formability. In the present study, a dynamic explicit finite element (FE) analysis code is newly developed by introducing a crystallographic homogenization method to estimate the polycrystalline sheet metal formability, such as the extreme thinning and 'earing'. This code can predict the plastic deformation induced texture evolution at the micro scale and the plastic anisotropy at the macro scale, simultaneously. This multi-scale analysis can couple the microscopic crystal plasticity inhomogeneous deformation with the macroscopic continuum deformation. In this homogenization process, the stress at the macro scale is defined by the volume average of those of the corresponding microscopic crystal aggregations in satisfying the equation of motion and compatibility condition in the micro scale 'unit cell', where the periodicity of deformation is satisfied. This homogenization algorithm is implemented in the conventional dynamic explicit finite element code by employing the updated Lagrangian formulation and the rate type elastic/viscoplastic constitutive equation.At first, it has been confirmed through a texture evolution analyses in cases of typical deformation modes that Taylor's 'constant strain homogenization algorithm' yields extreme concentration toward the preferred crystal orientations compared with our homogenization one. Second, we study the plastic anisotropy effects on 'earing' in the hemispherical cup deep drawing process of pure ferrite phase sheet metal. By the comparison of analytical results with those of Taylor's assumption, conclusions are drawn that the present newly developed dynamic explicit crystallographic homogenization FEM shows more reasonable prediction of plastic deformation induced texture evolution and plastic anisotropy at the macro scale

  14. Mechanisms of deformation and of recrystallization of imperfect uranium monocrystals; Les mecanismes de deformation et de recristallisation des monocristaux imparfaits d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Calais, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-04-15

    The various means by which plastic deformations by slip, twinning or kinking are produced by tension of imperfect {alpha} uranium single crystals prepared by a {beta} {yields} {alpha} phase change, have been studied by X-rays and micrographic examination. Depending on the crystallographic orientation with respect to the direction of the applied tension, and depending on the magnitude of the change in length, the crystals are deformed either preferentially according to a single mechanism, for example twinning, or simultaneously according to two or three mechanisms. The results of a subsequent annealing of the deformed single in the {alpha} phase are studied with respect to the deformation mechanisms. In the case of a deformation due primarily to (010) [100], (011) [100] or (110) [001] sliding, there occurs recrystallization by crystal growth selectivity. If the deformation occurs via deformation bands, there is recrystallization by 'oriented nucleation'. The crystals deformed preponderantly by twinning give on recrystallization perfect crystals having optimum dimensions and having orientational characteristics closely related to those of the original crystal. Finally are discussed some criteria relating to the geometry and the dynamics with a view to explaining the occurrence of such and such a deformation mechanism of a single crystal with a given orientation. This study, in conclusion, must help to define the best conditions (crystalline orientation and process of deformation) which will promote the growth of large, perfect, single crystals. (author) [French] Les divers modes de deformation plastique, glissement, maclage et pliage, que provoque la traction de monocristaux d'uranium {alpha} imparfaits prepares par changement de phase {beta} {yields} {alpha} ont ete etudies par rayons X et par examen micrographique. Suivant l'orientation cristallographique par rapport a la direction de l'axe de traction et suivant l'importance de l'allongement, les monocristaux se

  15. A layman's guide to radiation-induced deformation processes in zirconium alloys

    International Nuclear Information System (INIS)

    Dutton, R.

    1990-07-01

    The fuel channel (comprising a pressure tube and a calandria tube fabricated from zirconium alloys) in a CANDU reactor undergoes shape changes because of radiation-induced deformation. This is a consequence of the microstructural modification arising from radiation damage produced by the fast-neutron flux. This report summarizes our current understanding of the physical processes responsible for the deformation. With the non-specialist reader in mind, the underlying mechanisms are described in a manner that avoids much of the associated technical terminology. Thus, the basic concepts of plasticity in a crystalline material are introduced and related to the various microstructural defects created during irradiation. In particular, the mechanisms of creep (a time-dependent strain activated by an applied stress) and growth (a time-dependent strain occurring in the absence of stress) are discussed in a non-technical language assisted by simple diagrams. Reference is made to both theoretical investigations (avoiding mathematical complexity) and experimental measurements. It is shown how the qualitative and quantitative knowledge can be used to derive a predictive model for reactor designers and operators. The current status of such a model is evaluated and suggestions for future improvements made

  16. Accelerated Deformable Registration of Repetitive MRI during Radiotherapy in Cervical Cancer

    DEFF Research Database (Denmark)

    Noe, Karsten Østergaard; Tanderup, Kari; Kiritsis, Christian

    2006-01-01

    Tumour regression and organ deformations during radiotherapy (RT) of cervical cancer represent major challenges regarding accurate conformation and calculation of dose when using image-guided adaptive radiotherapy. Deformable registration algorithms are able to handle organ deformations, which can...... be useful with advanced tools such as auto segmentation of organs and dynamic adaptation of radiotherapy. The aim of this study was to accelerate and validate deformable registration in MRI-based image-guided radiotherapy of cervical cancer.    ...

  17. Superplastic Deformation of TC6 Alloy

    Directory of Open Access Journals (Sweden)

    DING Ling

    2016-12-01

    Full Text Available The superplastic tensile tests of TC6 alloy were conducted in the temperature range of 800-900℃ by using the maximum m value superplasticity deformation (Max m SPD method and the constant strain rate deformation method at the strain rate range of 0.0001-0.1 s-1. The stress-strain curve of the tensile tests was obtained and the microstructure near the fracture were analyzed by metallographic microscope. The result shows that the superplasticity of TC6 alloy is excellent, and the elongation increases first and then decreases with the increase of strain rate or temperature. When the temperature is 850℃ and strain rate is 0.001 s-1 at constant stain rate tensile tests, the elongation reaches up to 993%. However, the elongation using Max m SPD method at 850℃ is 1353%. It is shown that the material can achieve better superplasticity by using Max m SPD tensile compared to constant stain rate tensile under the same temperature. The superplastic deformation of TC6 alloy can enhance the dynamic recrystallization behavior significantly, the dynamic recrystallization behavior is promoted when strain rate and temperature are increased.

  18. Quality regularities of dynamic X-ray diffraction in superlattices and films with variable gradient of deformation based on analysis of types of Takagi equation solutions

    International Nuclear Information System (INIS)

    Dyshekov, A.A.; Khapachev, Yu.P.

    1997-01-01

    It is proposed to use qualitative investigation methods of the differential Takagi equation solutions for the analysis of general properties of wave fields in deformed crystals. The physical interpretation of possible types of the Takagi equation solutions is considered briefly from the viewpoint of the stability theory. The type of solutions are defined by ratios between parameters involved in the equations set. For the Takagi equation these parameters are prescribed by the angular tuning from the precise Bragg angle as well as structural characteristics of the crystal and the deformation profile. The qualitative analysis for the problem of the dynamic X-ray diffraction is carried out for films with the variable deformation gradient and superlattices [ru

  19. Dynamic deformation and failure characteristic of rock foundation by means of effect of cyclic shear loading

    International Nuclear Information System (INIS)

    Fujiwara, Yoshikazu; Hibino, Satoshi; Kanagawa, Tadashi; Komada, Hiroya; Nakagawa, Kameichiro

    1984-01-01

    The main structures of nuclear power plants are built on hard and soft rocks. The rock-dynamic properties used for investigating the stability of the structures have been determined so far by laboratory tests for soft rocks. In hard rocks, however, joints and cracks exist, and the test including these effects is not able to be performed in laboratories at present. Therefore, a dynamic repeating shearing test equipment to be used under the condition including the joints and cracks of actual ground has been made for a base rock of tuff breccia. In this paper, the test results are reported as follows. The geological features of the testing site and the arrangement of tested rocks, the preparation for tests, test equipment, loading method, measuring method, analysis, and the result and the examination. The results of dynamic deformation and failure characteristics were as follows: (1) the dynamic shear-elasticity-modulus Gd of the base rock showed greater values as the normal stress increased, while Gd decreased and showed the strain dependence as the dynamic shear strain amplitude γ increased; (2) the relationship between Gd and γ was well represented with the equation proposed by Hardin-Drnevich; (3) damping ratio increased as γ increased, and decreased as normal stress increased; (4) When a specimen was about to break, γ suddenly increased, and the dynamic shear strain amplitude at yield point was in the range of approximately (3.4 to 4.1) x 10 -3 . (Wakatsuki, Y.)

  20. Hot deformation and processing maps of K310 cold work tool steel

    International Nuclear Information System (INIS)

    Ezatpour, H.R.; Sajjadi, S.A.; Haddad-Sabzevar, M.; Ebrahimi, G.R.

    2012-01-01

    Highlights: ► The steady state stresses are related to strain rate and temperature. ► The study led to n DRX = 3.95 and Q DRX = 219.65 kJ/(mol K) and α = 1.2 × 10 −2 MPa −1 . ► The safe domain occurs in the region of 1000–1100 °C for a strain rate of 0.1 s −1 . - Abstract: Hot working response of cold work tool steel K310 was investigated by means of compression test at temperature range of 900–1100 °C. The equivalent strain rates used in these tests were 0.01, 0.1 and 1 s −1 , respectively in order to obtain the processing and stability maps of the studied material following the Dynamic Material Model. All the zones of flow instability were studied through scanning electron microscopy (SEM). The microstructure of the samples after deformation was then analyzed by light microscopy and the differences were compared together. The steady state stress obtained from the flow curves was related to strain rate (ε . ) and temperature (T) by means of the well known Zener–Holloman equation. A least square analysis of the data led to n = 3.95 and Q DRX = 219.65 kJ/mol and α = 1.2 × 10 −2 MPa −1 . Also, hardness results showed that by increasing strain from peak to steady state strain, hardness was decreased.

  1. Joining by plastic deformation

    DEFF Research Database (Denmark)

    Mori, Ken-ichiro; Bay, Niels; Fratini, Livan

    2013-01-01

    As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating opportuni......As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating...

  2. Evaluation of filler effects on SBR in large shearing deformations 1. Utility of differential dynamic modulus as predictor for wet skid resistance

    International Nuclear Information System (INIS)

    Isono, Y.; Oyama, T.; Kawahara, S.

    2003-01-01

    Now the use of silica in tire tread applications is increasing. This is because of not so different rolling resistance for silica (Si) filled and carbon black (CB) filled rubbers, and of higher wet skid resistance for the former than the latter. Such difference should be attributed to the variation in viscoelasticity. It is, however, still unknown what viscoelastic function should be used as a predictor. At the place in contact with the road, a tire tread rubber undergoes a large deformation on which small oscillations are superposed. Hence differential dynamic modulus measured by intermittently superposing small oscillations on a large deformation may provide useful information. In this work, nonlinear viscoelastic properties of CB and Si (with coupling agent) filled SBR vulcanizates were studied in cycles of large shearing deformation (γ = 2) and recovery (γ = 0) on which small shear oscillations (γ osc = 0.005) were superposed. CB filled SBR showed different responses in deformed and recovered states: Values of tanδ are lower in deformed state than in recovered state. However, Si filled one showed no change in tanδ in the two states. In the deformed state, Si system showed higher tanδ than CB system. The results agree with our experience of higher wet skid resistance for Si than for CB, showing validity of differential loss tangent as the predictor. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  3. Deformation limits of polymer coated metal sheets

    NARCIS (Netherlands)

    Van Den Bosch, M.J.W.J.P.; Schreurs, P.J.G; Geers, M.G.D.

    2005-01-01

    Polymer coated metals are increasingly used by the packaging and automotive industry. During industrial deformation processes (drawing, roll-forming, bending etc.) the polymer-metal laminate is highly deformed at high deformation rates. These forming conditions can affect the mechanical integrity

  4. Plastic deformation, residual stress, and crystalline texture measurements for in-process characterization of FCC metal alloys

    International Nuclear Information System (INIS)

    Ruud, C.O.; Jacobs, M.E.; Weedman, S.D.; Snoha, D.J.

    1989-01-01

    This paper describes the results of several on-going investigations on the measurement of plastic deformation, residual stress, and crystalline texture in nickel, copper, and aluminum base alloys by x-ray diffraction techniques. X-ray diffraction techniques have been shown to be effective in the measurement of plastic deformation, residual stress, and crystalline texture in FCC metals, from the breadth, position, and intensity of the x-ray diffraction peaks. The Ruud-Barrett position-sensitive scintillation detector has been demonstrated to be fast, non-contacting, and tolerant of detector to component distance variation -- necessary requirements for cost-effective in-process inspection of materials

  5. Deformation and Phase Transformation Processes in Polycrystalline NiTi and NiTiHf High Temperature Shape Memory Alloys

    Science.gov (United States)

    Benafan, Othmane

    2012-01-01

    The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.

  6. Thermally induced processes in mixtures of aluminum with organic acids after plastic deformations under high pressure

    Science.gov (United States)

    Zhorin, V. A.; Kiselev, M. R.; Roldugin, V. I.

    2017-11-01

    DSC is used to measure the thermal effects of processes in mixtures of solid organic dibasic acids with powdered aluminum, subjected to plastic deformation under pressures in the range of 0.5-4.0 GPa using an anvil-type high-pressure setup. Analysis of thermograms obtained for the samples after plastic deformation suggests a correlation between the exothermal peaks observed around the temperatures of degradation of the acids and the thermally induced chemical reactions between products of acid degradation and freshly formed surfaces of aluminum particles. The release of heat in the mixtures begins at 30-40°C. The thermal effects in the mixtures of different acids change according to the order of acid reactivity in solutions. The extreme baric dependences of enthalpies of thermal effects are associated with the rearrangement of the electron subsystem of aluminum upon plastic deformation at high pressures.

  7. Effect of deformation on densification and corrosion behavior of Al-ZrB2 composite

    Directory of Open Access Journals (Sweden)

    Sai Mahesh Yadav Kaku

    2017-03-01

    Full Text Available In the present investigation, aluminium based metal matrix composites (MMCs were produced through powder metallurgical route. Different composites were processed by adding different amount of ZrB2 (0, 2, 4 and 6 wt. % at three aspect ratios of 0.35, 0.5, and 0.65, respectively. The powder mixture was compacted and pressureless sintered at 550 °C for 1 h in controlled atmosphere (argon gas. The relative density of the sintered preforms was found to be 90%, approximately. Sintered preforms are used as workpiece materials for deformation study at different temperatures in order to find the effect of temperature on the densification behaviour. Potentio-dynamic polarization studies were performed on the deformed preforms to find the effect of mechanical working. The corrosion rate was found to decrease with increase in deformation.

  8. α-clustering and triaxial deformations in 40Ca

    International Nuclear Information System (INIS)

    Taniguchi, Yasutaka; Kimura, Masaaki; Kanada-En'yo, Yoshiko; Horiuchi, Hisashi

    2007-01-01

    We have studied the positive-parity states of 40 Ca using antisymmetrized molecular dynamics (AMD) and the generator coordinate method (GCM). Imposing two different kinds of constraints on the variational calculation, we have found various kinds of 40 Ca structures such as a deformed-shell structure, as well as α- 36 Ar and 12 C- 28 Si cluster structures. After the GCM calculation, we obtained a normal-deformed band and a superdeformed band together with their side bands associated with triaxial deformation. The calculated B(E2) values agreed well with empirical data. It was also found that the normal-deformed and superdeformed bands contain α- 36 Ar and 12 C- 28 Si cluster structure components, respectively. This leads to the presence of an α- 36 Ar higher-nodal band occurring above the normal-deformed band

  9. Numerical simulation of mechanisms of deformation,failure and energy dissipation in porous rock media subjected to wave stresses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The pore characteristics,mineral compositions,physical and mechanical properties of the subarkose sandstones were acquired by means of CT scan,X-ray diffraction and physical tests.A few physical models possessing the same pore characteristics and matrix properties but different porosities compared to the natural sandstones were developed.The 3D finite element models of the rock media with varied porosities were established based on the CT image processing of the physical models and the MIMICS software platform.The failure processes of the porous rock media loaded by the split Hopkinson pressure bar(SHPB) were simulated by satisfying the elastic wave propagation theory.The dynamic responses,stress transition,deformation and failure mechanisms of the porous rock media subjected to the wave stresses were analyzed.It is shown that an explicit and quantitative analysis of the stress,strain and deformation and failure mechanisms of porous rocks under the wave stresses can be achieved by using the developed 3D finite element models.With applied wave stresses of certain amplitude and velocity,no evident pore deformation was observed for the rock media with a porosity less than 15%.The deformation is dominantly the combination of microplasticity(shear strain),cracking(tensile strain) of matrix and coalescence of the cracked regions around pores.Shear stresses lead to microplasticity,while tensile stresses result in cracking of the matrix.Cracking and coalescence of the matrix elements in the neighborhood of pores resulted from the high transverse tensile stress or tensile strain which exceeded the threshold values.The simulation results of stress wave propagation,deformation and failure mechanisms and energy dissipation in porous rock media were in good agreement with the physical tests.The present study provides a reference for analyzing the intrinsic mechanisms of the complex dynamic response,stress transit mode,deformation and failure mechanisms and the disaster

  10. Online interferometric study of viscoelastic rupture and necking deformation of as-spun (iPP) fibres due to creep process.

    Science.gov (United States)

    Sokkar, Taha; El-Farahaty, Kermal; Azzam, Amira

    2015-01-01

    Creep deformation under constant load leads to rupture when the polymer chains can no longer separate and accommodate the load. This fracture phenomenon is investigated interferometrically. The creep behaviour of as-spun isotactic Polypropylene (iPP) fibres is studied at different stresses, different initial lengths and different radii. The creep rate, which defines the velocity of the creep deformation and the dimensional stability of the material, is studied. The failure time and stress of iPP due to creep process is determined. The necking deformation was in situ detected during creep process. The mean refractive indices (n(P) andn⊥) profiles of iPP fibres were determined at different positions along the fibre axis before and after necking. The relation between the creep behaviour and different optical and structural parameters is investigated. Microinterferograms are given for illustration. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  11. Dual-phase ULCB steels thermomechanically processed

    International Nuclear Information System (INIS)

    Lis, A.K.; Lis, J.

    2001-01-01

    The design philosophy of the processing of dual-phase (D-P) ultra low carbon steels (ULCB) by thermomechanical treatment has been briefly discussed. Modelling of the structure evolution during thermomechanical rolling of ULCB steel was based upon the established empirical equations for yield flow at different conditions of: deformation temperatures, strain rates and stresses for applied amount of deformation during hot deformation compression tests. The critical amount of deformation needed for the occurrence of dynamic or static recrystallization was determined. The dependence of grain refinement of the acicular bainitic and polygonal ferrite of the accelerated cooling and amount of stored energy of deformation in steel has been evaluated. Effect of the decreasing of the finishing temperature of thermomechanical processing on the increase of the impact toughness of dual-phase microstructure consisted of the bainitie-martensite islands in the ferrite matrix has been shown. The effect of ageing process after thermomechanical rolling of heavy plates on fracture toughness values of J 0.2 for ULCB-Ni steels has been established from cod tests measurements. New low cost technology of rolling of ULCB steels dual-phase is proposed. (author)

  12. Crystal Orientation Effect on the Subsurface Deformation of Monocrystalline Germanium in Nanometric Cutting.

    Science.gov (United States)

    Lai, Min; Zhang, Xiaodong; Fang, Fengzhou

    2017-12-01

    Molecular dynamics simulations of nanometric cutting on monocrystalline germanium are conducted to investigate the subsurface deformation during and after nanometric cutting. The continuous random network model of amorphous germanium is established by molecular dynamics simulation, and its characteristic parameters are extracted to compare with those of the machined deformed layer. The coordination number distribution and radial distribution function (RDF) show that the machined surface presents the similar amorphous state. The anisotropic subsurface deformation is studied by nanometric cutting on the (010), (101), and (111) crystal planes of germanium, respectively. The deformed structures are prone to extend along the 110 slip system, which leads to the difference in the shape and thickness of the deformed layer on various directions and crystal planes. On machined surface, the greater thickness of subsurface deformed layer induces the greater surface recovery height. In order to get the critical thickness limit of deformed layer on machined surface of germanium, the optimized cutting direction on each crystal plane is suggested according to the relevance of the nanometric cutting to the nanoindentation.

  13. Fuzzy control of pressurizer dynamic process

    International Nuclear Information System (INIS)

    Ming Zhedong; Zhao Fuyu

    2006-01-01

    Considering the characteristics of pressurizer dynamic process, the fuzzy control system that takes the advantages of both fuzzy controller and PID controller is designed for the dynamic process in pressurizer. The simulation results illustrate this type of composite control system is with better qualities than those of single fuzzy controller and single PID controller. (authors)

  14. Anelastic deformation processes in metallic glasses and activation energy spectrum model

    NARCIS (Netherlands)

    Ocelik, [No Value; Csach, K; Kasardova, A; Bengus, VZ; Ocelik, Vaclav

    1997-01-01

    The isothermal kinetics of anelastic deformation below the glass transition temperature (so-called 'stress induced ordering' or 'creep recovery' deformation) was investigated in Ni-Si-B metallic glass. The relaxation time spectrum model and two recently developed methods for its calculation from the

  15. Structure of deformed metals. Struktura deformirovannykh metallov

    Energy Technology Data Exchange (ETDEWEB)

    Bernshtein, M L

    1977-01-01

    A teaching aid for students at metallurgical and machine-building institutions of higher learning. It can also be used by engineering-technical personnel and scientists. A presentation is made of physical concepts on the mechanism of plastic deformation and its effect on fine structure, structure and properties of metals and alloys. An examination is made of the processes of recovery, polygonization and recrystallization during the heating of cold-deformed metals. The influence of thermal deformation is described to account for the interaction between admixture atoms and dislocations, phase and structural transformations. An examination is made of the phenomenon of superplasticity. Special attention is given to the process of hot deformation. An analysis is made of phenomena at the basis of hardening steel as a result of thermo-mechanical processing, including controlled rolling.

  16. Vortex and characteristics of prestrained type-II deformable superconductors under magnetic fields

    International Nuclear Information System (INIS)

    Ma, Zeling; Wang, Xingzhe; Zhou, Youhe

    2016-01-01

    Highlights: • A numerical investigation of magnetic vortex dynamics of a deformable superconductor with prestrains is presented. • The prestrain has a remarkable influence on the magnetic vortex distribution and dynamics. • The different prestrains, i.e., pre-given compression and tension strains, result in dissimilar characteristics. • The energy density and spectrum in the deformable superconductor are demonstrated. - Abstract: Based on the time-dependent Ginzburg–Landau (TDGL) theory and the linear deformation theory, we present a numerical investigation of magnetic vortex characteristics of a type-II deformable superconductor with prestrain. The effect of prestrain on the wave function, vortex dynamics and energy density of a superconducting film is analyzed by solving the nonlinear TDGL equations in the presence of magnetic field. The results show that the prestrain has a remarkable influence on the magnetic vortex distribution and the vortex dynamics, as well as value of wave function of the superconductor. The different prestrains, i.e., pre-given compression and tension strains, result in dissimilar characteristics on a half-plane of deformable superconductor in an applied magnetic field, and the vortex distribution and entrance in a two dimensional superconducting film. The studies demonstrated that the compression prestrain may speed up the vortexes entering into the region of the superconducting film and increases the vortex number in comparison with those of free-prestrain case, while the tension prestrain shows the reversal features. The energy density and spectrum in the superconductor are further demonstrated numerically and discussed. The present investigation is an attempt to give insight into the superconductivity and electromagnetic characteristics taking into account the elastic deformation in superconductors.

  17. The role of chemical processes and brittle deformation during shear zone formation and its potential geophysical implications

    Science.gov (United States)

    Goncalves, Philippe; Leydier, Thomas; Mahan, Kevin; Albaric, Julie; Trap, Pierre; Marquer, Didier

    2017-04-01

    Ductile shear zones in the middle and lower continental crust are the locus of interactions between mechanical and chemical processes. Chemical processes encompass metamorphic reactions, fluid-rock interactions, fluid flow and chemical mass-transfer. Studying these processes at the grain scale, and even the atom scale, on exposed inactive shear zones can give insights into large-scale geodynamics phenomena (e.g. crustal growth and mountain building through the reconstruction of P-T-t-D-Ɛ evolutionary paths. However, other major issues in earth sciences can be tackled through these studies as well. For instance, the mechanism of fluid flow and mass transfer in the deep crust where permeability should be small and transient is still largely debated. Studying exhumed inactive shear zones can also help to interpret several new geophysical observations like (1) the origin of tremor and very low frequency earthquakes observed in the ductile middle and lower crust, (2) mechanisms for generating slow slip events and (3) the physical origin of puzzling crustal anisotropy observed in major active crustal shear zones. In this contribution, we present a collection of data (deformation, petrology, geochemistry, microtexture) obtained on various shear zones from the Alps that were active within the viscous regime (T > 450°C). Our observations show that the development of a shear zone, from its nucleation to its growth and propagation, is not only governed by ductile deformation coeval with reactions but also involves brittle deformation. Although brittle deformation is a very short-lived phenomenon, our petrological and textural observations show that brittle failure is also associated with fluid flow, mass transfer, metasomatic reactions and recrystallization. We speculate that the fluids and the associated mineralogical changes involved during this brittle failure in the ductile crust might play a role in earthquake / tremor triggering below the brittle - ductile transition

  18. Plate Like Convection with Viscous Strain Weakening and Corresponding Surface Deformation Pattern

    Science.gov (United States)

    Fuchs, L.; Becker, T. W.

    2017-12-01

    How plate tectonic surface motions are generated by mantle convection on Earth and possibly other terrestrial type planets has recently become more readily accessible with fully dynamic convection computations. However, it remains debated how plate-like the behavior in such models truly is, and in particular how the well plate boundary dynamics are captured in models which typically exclude the effects of deformation history and memory. Here, we analyze some of the effects of viscous strain weakening on plate behavior and the interactions between interior convection dynamics and surface deformation patterns. We use the finite element code CitcomCU to model convection in a 3D Cartesian model setup. The models are internally heated, with an Arrhenius-type temperature dependent viscosity including plastic yielding and viscous strain weakening (VSW) and healing (VSWH). VSW can mimic first order features of more complex damage mechanisms such as grain-size dependent rheology. Besides plate diagnostic parameters (Plateness, Mobility, and Toroidal: Poloidal ratio) to analyze the tectonic behavior our models, we also explore how "plate boundaries" link to convective patterns. In a first model series, we analyze general surface deformation patterns without VSW. In the early stages, deformation patterns are clearly co-located with up- and downwelling limbs of convection. Along downwellings strain-rates are high and localized, whereas upwellings tend to lead to broad zones of high deformation. At a more advanced stage, however, the plates' interior is highly deformed due to continuous strain accumulation and resurfaced inherited strain. Including only VSW leads to more localized deformation along downwellings. However, at a more advanced stage plate-like convection fails due an overall weakening of the material. This is prevented including strain healing. Deformation pattern at the surface more closely coincide with the internal convection patterns. The average surface

  19. Plastic deformation of solids viewed as a self-excited wave process

    International Nuclear Information System (INIS)

    Zuev, L.B.; Danilov, V.I.

    1998-01-01

    A self-excited wave model of plastic flow in crystalline solids is proposed. Experimental data on plastic flow in single crystals and polycrystalline solids involving different mechanisms have been correlated. The main types of strain localization in the materials investigated have been established and correlated with the respective stages of plastic flow curves. The best observing conditions have been defined for the major types of autowaves emerging by plastic deformation. The synergetic concepts of self-organization are shown to apply to description of plastic deformation. Suggested is a self-excited wave model of plastic flow in materials with different mechanisms of deformation. (orig.)

  20. Scanning electron microscopy and transmission electron microscopy study of hot-deformed gamma-TiAl-based alloy microstructure.

    Science.gov (United States)

    Chrapoński, J; Rodak, K

    2006-09-01

    The aim of this work was to assess the changes in the microstructure of hot-deformed specimens made of alloys containing 46-50 at.% Al, 2 at.% Cr and 2 at.% Nb (and alloying additions such as carbon and boron) with the aid of scanning electron microscopy and transmission electron microscopy techniques. After homogenization and heat treatment performed in order to make diverse lamellae thickness, the specimens were compressed at 1000 degrees C. Transmission electron microscopy examinations of specimens after the compression test revealed the presence of heavily deformed areas with a high density of dislocation. Deformation twins were also observed. Dynamically recrystallized grains were revealed. For alloys no. 2 and no. 3, the recovery and recrystallization processes were more extensive than for alloy no. 1.

  1. Orientation sensitive deformation in Zr alloys: experimental and modeling studies

    International Nuclear Information System (INIS)

    Srivastava, D.; Keskar, N.; Manikrishna, K.V.; Dey, G.K.; Jha, S.K.; Saibaba, N.

    2016-01-01

    Zirconium alloys are used for fuel cladding and other structural components in pressurised heavy water nuclear reactors (PHWR's). Currently there is a lot of interest in developing alloys for structural components for higher temperature reactor operation. There is also need for development of cladding material with better corrosion and mechanical property of cladding material for higher and extended burn up applications. The performance of the cladding material is primarily influenced by the microstructural features of the material such as constituent phases their morphology, precipitates characteristics, nature of defects etc. Therefore, the microstructure is tailored as per the performance requirement by through controlled additions of alloying elements, thermo-mechanical- treatments. In order to obtain the desired microstructure, it is important to know the deformation behaviour of the material. Orientation dependent deformation behavior was studied in Zr using a combination of experimental and modeling (both discrete and atomistic dislocation dynamics) methods. Under the conditions of plane strain deformation, it was observed that single phase Zr, had significant extent of deformation heterogeneity based on local orientations. Discrete dislocation dynamics simulations incorporating multi slip systems had captured the orientation sensitive deformation. MD dislocations on the other hand brought the fundamental difference in various crystallographic orientations in determining the nucleating stress for the dislocations. The deformed structure has been characterized using X-ray, electron and neutron diffraction techniques. The various operating deformation mechanism will be discussed in this presentation. (author)

  2. Surface-Assisted Dynamic Search Processes.

    Science.gov (United States)

    Shin, Jaeoh; Kolomeisky, Anatoly B

    2018-03-01

    Many chemical and biological systems exhibit intermittent search phenomena when participating particles alternate between dynamic regimes with different dimensionalities. Here we investigate theoretically a dynamic search process of finding a small target on a two-dimensional surface starting from a bulk solution, which is an example of such an intermittent search process. Both continuum and discrete-state stochastic descriptions are developed. It is found that depending on the scanning length λ, which describes the area visited by the reacting molecule during one search cycle, the system can exhibit three different search regimes: (i) For small λ values, the reactant finds the target mostly via three-dimensional bulk diffusion; (ii) for large λ values, the reactant molecule associates to the target mostly via surface diffusion; and (iii) for intermediate λ values, the reactant reaches the target via a combination of three-dimensional and two-dimensional search cycles. Our analysis also shows that the mean search times have different scalings as a function of the size of the surface segment depending on the nature of the dynamic search regime. Search dynamics are also sensitive to the position of the target for large scanning lengths. In addition, it is argued that the continuum description underestimates mean search times and does not always correctly describe the most optimal conditions for the surface-assisted dynamic processes. The importance of our findings for real natural systems is discussed.

  3. Integrating viscoelastic mass spring dampers into position-based dynamics to simulate soft tissue deformation in real time.

    Science.gov (United States)

    Xu, Lang; Lu, Yuhua; Liu, Qian

    2018-02-01

    We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications.

  4. Multi-Scale Modelling of Deformation and Fracture in a Biomimetic Apatite-Protein Composite: Molecular-Scale Processes Lead to Resilience at the μm-Scale.

    Directory of Open Access Journals (Sweden)

    Dirk Zahn

    Full Text Available Fracture mechanisms of an enamel-like hydroxyapatite-collagen composite model are elaborated by means of molecular and coarse-grained dynamics simulation. Using fully atomistic models, we uncover molecular-scale plastic deformation and fracture processes initiated at the organic-inorganic interface. Furthermore, coarse-grained models are developed to investigate fracture patterns at the μm-scale. At the meso-scale, micro-fractures are shown to reduce local stress and thus prevent material failure after loading beyond the elastic limit. On the basis of our multi-scale simulation approach, we provide a molecular scale rationalization of this phenomenon, which seems key to the resilience of hierarchical biominerals, including teeth and bone.

  5. Electron backscatter diffraction study of deformation and recrystallization textures of individual phases in a cross-rolled duplex steel

    Energy Technology Data Exchange (ETDEWEB)

    Zaid, Md; Bhattacharjee, P.P., E-mail: pinakib@iith.ac.in

    2014-10-15

    The evolution of microstructure and texture during cross-rolling and annealing was investigated by electron backscatter diffraction in a ferritic–austenitic duplex stainless steel. For this purpose an alloy with nearly equal volume fraction of the two phases was deformed by multi-pass cross-rolling process up to 90% reduction in thickness. The rolling and transverse directions were mutually interchanged in each pass by rotating the sample by 90° around the normal direction. In order to avoid deformation induced phase transformation and dynamic strain aging, the rolling was carried out at an optimized temperature of 898 K (625 °C) at the warm-deformation range. The microstructure after cross warm-rolling revealed a lamellar structure with alternate arrangement of the bands of two phases. Strong brass and rotated brass components were observed in austenite in the steel after processing by cross warm-rolling. The ferrite in the cross warm-rolling processed steel showed remarkably strong RD-fiber (RD//< 011 >) component (001)< 011 >. The development of texture in the two phases after processing by cross warm-rolling could be explained by the stability of the texture components. During isothermal annealing of the 90% cross warm-rolling processed material the lamellar morphology was retained before collapse of the lamellar structure to the mutual interpenetration of the phase bands. Ferrite showed recovery resulting in annealing texture similar to the deformation texture. In contrast, the austenite showed primary recrystallization without preferential orientation selection leading to the retention of deformation texture. The evolution of deformation and annealing texture in the two phases of the steel was independent of one another. - Highlights: • Effect of cross warm-rolling on texture formation is studied in duplex steel. • Brass texture in austenite and (001)<110 > in ferrite are developed. • Ferrite shows recovery during annealing retaining the (001

  6. Seismic triggering of landslides. Part B: Simulation of dynamic failure processes

    Directory of Open Access Journals (Sweden)

    H.-B. Havenith

    2003-01-01

    Full Text Available From field observations it is possible to establish correlations between geological conditions and landslide occurrence. However, in general, it is difficult to assess the affect of individual factors on slope instability because of their mutual interaction. In addition, the dynamic effect of propagating seismic waves significantly increases the complexity of the slope stability problem. Wave diffraction, reflection and focusing effects are dependent on local geological conditions and make it difficult to analyse dynamic sliding mechanisms using field observations alone. As a consequence, in order to examine the influence of various geological and seismic factors on slope movements, it is often necessary to produce numerical models. This paper describes the results of such models as applied to two case studies in Kyrgyzstan: the Ananevo rockslide, located in granite, and the Suusamyr debris slump-flow, situated within soft sediments (see Part A: Havenith et al., 2003. Discrete element modelling (UDEC, adapted both to the discontinuous character of fractured rock and to the heterogeneity of layered mediums, was used. This permitted simulation of deformation mechanisms, including seismically induced bending, block tilting, and slip. Particular attention was paid to the interaction between deformation mechanisms, site-specific amplification effects, and subsurface structure.

  7. The strain path dependence of plastic deformation response of AA5754: Experiment and modeling

    International Nuclear Information System (INIS)

    Pham, Minh-Son; Hu, Lin; Iadicola, Mark; Creuziger, Adam; Rollett, Anthony D.

    2013-01-01

    This work presents modeling of experiments on a balanced biaxial (BB) pre-strained AA5754 alloy, subsequently reloaded uniaxially along the rolling direction and transverse direction. The material exhibits a complex plastic deformation response during the change in strain path due to 1) crystallographic texture, 2) aging (interactions between dislocations and Mg atoms) and 3) recovery (annihilation and re-arrangement of dislocations). With a BB prestrain of about 5 %, the aging process is dominant, and the yield strength for uniaxially deformed samples is observed to be higher than the flow stress during BB straining. The strain hardening rate after changing path is, however, lower than that for pre-straining. Higher degrees of pre-straining make the dynamic recovery more active. The dynamic recovery at higher strain levels compensates for the aging effect, and results in: 1) a reduction of the yield strength, and 2) an increase in the hardening rate of re-strained specimens along other directions. The yield strength of deformed samples is further reduced if these samples are left at room temperature to let static recovery occur. The synergistic influences of texture condition, aging and recovery processes on the material response make the modeling of strain path dependence of mechanical behavior of AA5754 challenging. In this study, the influence of crystallographic texture is taken into account by incorporating the latent hardening into a visco-plastic self-consistent model. Different strengths of dislocation glide interaction models in 24 slip systems are used to represent the latent hardening. Moreover, the aging and recovery effects are also included into the latent hardening model by considering strong interactions between dislocations and dissolved atom Mg and the microstructural evolution. These microstructural considerations provide a powerful capability to successfully describe the strain path dependence of plastic deformation behavior of AA5754

  8. Dynamic tracking of prosthetic valve motion and deformation from bi-plane x-ray views: feasibility study

    Science.gov (United States)

    Hatt, Charles R.; Wagner, Martin; Raval, Amish N.; Speidel, Michael A.

    2016-03-01

    Transcatheter aortic valve replacement (TAVR) requires navigation and deployment of a prosthetic valve within the aortic annulus under fluoroscopic guidance. To support improved device visualization in this procedure, this study investigates the feasibility of frame-by-frame 3D reconstruction of a moving and expanding prosthetic valve structure from simultaneous bi-plane x-ray views. In the proposed method, a dynamic 3D model of the valve is used in a 2D/3D registration framework to obtain a reconstruction of the valve. For each frame, valve model parameters describing position, orientation, expansion state, and deformation are iteratively adjusted until forward projections of the model match both bi-plane views. Simulated bi-plane imaging of a valve at different signal-difference-to-noise ratio (SDNR) levels was performed to test the approach. 20 image sequences with 50 frames of valve deployment were simulated at each SDNR. The simulation achieved a target registration error (TRE) of the estimated valve model of 0.93 +/- 2.6 mm (mean +/- S.D.) for the lowest SDNR of 2. For higher SDNRs (5 to 50) a TRE of 0.04 mm +/- 0.23 mm was achieved. A tabletop phantom study was then conducted using a TAVR valve. The dynamic 3D model was constructed from high resolution CT scans and a simple expansion model. TRE was 1.22 +/- 0.35 mm for expansion states varying from undeployed to fully deployed, and for moderate amounts of inter-frame motion. Results indicate that it is feasible to use bi-plane imaging to recover the 3D structure of deformable catheter devices.

  9. Room temperature deformation mechanisms in ultrafine-grained materials processed by hot isostatic pressing

    International Nuclear Information System (INIS)

    Cao, W.Q.; Dirras, G.F.; Benyoucef, M.; Bacroix, B.

    2007-01-01

    Ultrafine-grained (uf-g) and microcrystalline-grained (mc-g) irons have been fabricated by hot isostatic pressing of nanopowders. The mechanical properties have been characterized by compressive tests at room temperature and the resulting microstructures and textures have been determined by combining electron back scatter diffraction and transmission electron microscopy. A transition of the deformation mode, from work hardening to work softening occurs for grain sizes below ∼1 μm, reflecting a transition of the deformation mode from homogeneous to localized deformation into shear bands (SBs). The homogeneous deformation is found to be lattice dislocation-based while the deformation within SBs involves lattice dislocations as well as boundary-related mechanisms, possibly grain boundary sliding accommodated by boundary opening

  10. Deformation of Man Made Objects

    KAUST Repository

    Ibrahim, Mohamed

    2012-07-01

    We introduce a framework for 3D object deformation with primary focus on man-made objects. Our framework enables a user to deform a model while preserving its defining characteristics. Moreover, our framework enables a user to set constraints on a model to keep its most significant features intact after the deformation process. Our framework supports a semi-automatic constraint setting environment, where some constraints could be automatically set by the framework while others are left for the user to specify. Our framework has several advantages over some state of the art deformation techniques in that it enables a user to add new features to the deformed model while keeping its general look similar to the input model. In addition, our framework enables the rotation and extrusion of different parts of a model.

  11. The formation of PSB-like shear bands in cyclically deformed ultrafine grained copper processed by ECAP

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.D.; Wang, Z.G.; Jiang, C.B.; Li, G.Y.; Alexandrov, I.V.; Valiev, R.Z

    2003-06-15

    Cyclic deformation was performed on ultrafine grained copper processed by ECAP. Shear bands (SBs) and adjacent microstructures were investigated using electron channeling contrast in scanning electron microscope. The possible formation mechanism of SB was discussed based on the characteristic distribution of defects introduced by ECAP.

  12. Coercivity enhancement of hot-deformed Nd-Fe-B magnets by the eutectic grain boundary diffusion process

    International Nuclear Information System (INIS)

    Liu, Lihua; Sepehri-Amin, H.; Ohkubo, T.; Yano, M.; Kato, A.; Shoji, T.; Hono, K.

    2016-01-01

    Nd-M (M = Al, Cu, Ga, Zn, Mn) alloys with compositions close to eutectic points were investigated as diffusion sources for the grain boundary diffusion process to hot-deformed Nd-Fe-B magnets. Coercivity enhancement was observed for most of the alloys. Among them, the sample processed with Nd 90 Al 10 exhibited the highest coercivity of 2.5 T at room temperature. However, the sample processed with Nd 70 Cu 30 exhibited the highest coercivity of 0.7 T at 200 ° C. Microstructural observations using scanning transmission electron microscope (STEM) showed that nonferromagnetic Nd-rich intergranular phase envelops the Nd 2 Fe 14 B grains after the diffusion process. Abnormal grain growth and the dissolution of Al into the Nd 2 Fe 14 B grains were observed in the sample processed with Nd 90 Al 10 , which explains its inferior thermal stability of coercivity compared to the sample processed with Nd 70 Cu 30 . The coercivity enhancement and poor thermal stability of the coercivity of the Nd 90 Al 10 diffusion-processed sample are discussed based on microstructure studies by transmission electron microscopy. - Highlights: • Coercivity of hot-deformed Nd-Fe-B magnets is enhanced by the infiltration of various R-TM eutectic alloys. • The sample infiltrated with Nd 90 Al 10 shows the highest coercivity of 2.5 T at room temperature. • At 200 °C, Nd 70 Cu 30 diffusion-processed sample possesses the highest coercivity of 0.7 T.

  13. What Property of the Contour of a Deforming Region Biases Percepts toward Liquid?

    Directory of Open Access Journals (Sweden)

    Takahiro Kawabe

    2017-06-01

    Full Text Available Human observers can perceive the existence of a transparent surface from dynamic image deformation. They can also easily discriminate a transparent solid material such as plastic and glass from a transparent fluid one such as water and shampoo just by viewing them. However, the image information required for material discrimination of this sort is still unclear. A liquid changes its contour shape non-rigidly. We therefore examined whether additional properties of the contour of a deformation-defined region, which indicated contour non-rigidity, biased percepts of the region toward liquid materials. Our stimuli had a translating circular region wherein a natural texture image was deformed at the spatiotemporal deformation frequency that was optimal for the perception of a transparent layer. In Experiment 1, we dynamically deformed the contour of the circular region and found that large deformation of the contour biased the percept toward liquid. In Experiment 2, we manipulated the blurriness of the contour and observed that a strongly blurred contour biased percepts toward liquid. Taken together, the results suggest that a deforming region lacking a discrete contour biases percepts toward liquid.

  14. Dynamical and hamiltonian dilations of stochastic processes

    International Nuclear Information System (INIS)

    Baumgartner, B.; Gruemm, H.-R.

    1982-01-01

    This is a study of the problem, which stochastic processes could arise from dynamical systems by loss of information. The notions of ''dilation'' and ''approximate dilation'' of a stochastic process are introduced to give exact definitions of this particular relationship. It is shown that every generalized stochastic process is approximately dilatable by a sequence of dynamical systems, but for stochastic processes in full generality one needs nets. (Author)

  15. Plastic Deformation of Metal Tubes Subjected to Lateral Blast Loads

    Directory of Open Access Journals (Sweden)

    Kejian Song

    2014-01-01

    Full Text Available When subjected to the dynamic load, the behavior of the structures is complex and makes it difficult to describe the process of the deformation. In the paper, an analytical model is presented to analyze the plastic deformation of the steel circular tubes. The aim of the research is to calculate the deflection and the deformation angle of the tubes. A series of assumptions are made to achieve the objective. During the research, we build a mathematical model for simply supported thin-walled metal tubes with finite length. At a specified distance above the tube, a TNT charge explodes and generates a plastic shock wave. The wave can be seen as uniformly distributed over the upper semicircle of the cross-section. The simplified Tresca yield domain can be used to describe the plastic flow of the circular tube. The yield domain together with the plastic flow law and other assumptions can finally lead to the solving of the deflection. In the end, tubes with different dimensions subjected to blast wave induced by the TNT charge are observed in experiments. Comparison shows that the numerical results agree well with experiment observations.

  16. Modelling and simulation of dynamic recrystallization (DRX) in OFHC copper at very high strain rates

    Science.gov (United States)

    Testa, G.; Bonora, N.; Ruggiero, A.; Iannitti, G.; Persechino, I.; Hörnqvist, M.; Mortazavi, N.

    2017-01-01

    At high strain rates, deformation processes are essentially adiabatic and if the plastic work is large enough dynamic recrystallization can occur. In this work, an examination on microstructure evolution of OFHC copper in Dynamic Tensile Extrusion (DTE) test, performed at 400 m/s, was carried out. EBSD investigations, along the center line of the fragment remaining in the extrusion die, showed a progressive elongation of the grains, and an accompanying development of a strong + dual fiber texture. Discontinuous dynamic recrystallization (DRX) occurred at larger strains, and it was showed that nucleation occurred during straining. A criterion for DRX to occur, based on the evolution of Zener-Hollomon parameter during the dynamic deformation process, is proposed. Finally, DTE test was simulated using the modified Rusinek-Klepaczko constitutive model incorporating a model for the prediction of DRX initiation.

  17. Advancing the Assessment of Dynamic Psychological Processes.

    Science.gov (United States)

    Wright, Aidan G C; Hopwood, Christopher J

    2016-08-01

    Most commonly used clinical assessment tools cannot fully capture the dynamic psychological processes often hypothesized as core mechanisms of psychopathology and psychotherapy. There is therefore a gap between our theories of problems and interventions for those problems and the tools we use to understand clients. The purpose of this special issue is to connect theory about clinical dynamics to practice by focusing on methods for collecting dynamic data, statistical models for analyzing dynamic data, and conceptual schemes for implementing dynamic data in applied settings. In this introductory article, we argue for the importance of assessing dynamic processes, highlight recent advances in assessment science that enable their measurement, review challenges in using these advances in applied practice, and adumbrate the articles in this issue.

  18. Normal dynamic deformation characteristics of non-consecutive jointed rock masses under impact loads

    Science.gov (United States)

    Zeng, Sheng; Jiang, Bowei; Sun, Bing

    2017-08-01

    In order to study deformation characteristics of non-consecutive single jointed rock masses under impact loads, we used the cement mortar materials to make simulative jointed rock mass samples, and tested the samples under impact loads by the drop hammer. Through analyzing the time-history signal of the force and the displacement, first we find that the dynamic compression displacement of the jointed rock mass is significantly larger than that of the intact jointless rock mass, the compression displacement is positively correlated with the joint length and the impact height. Secondly, the vertical compressive displacement of the jointed rock mass is mainly due to the closure of opening joints under small impact loads. Finally, the peak intensity of the intact rock mass is larger than that of the non-consecutive jointed rock mass and negatively correlated with the joint length under the same impact energy.

  19. Quasi-static and dynamic compressive deformation of a bulk nanolayered Ag–Cu eutectic alloy: Macroscopic response and dominant deformation mechanisms

    International Nuclear Information System (INIS)

    Kingstedt, O.T.; Eftink, B.; Lambros, J.; Robertson, I.M.

    2014-01-01

    Nanostructured multilayered material systems offer an attractive method of increasing material strength. This work examines the response of a bulk eutectic silver–copper material (Ag 60 Cu 40 , subscripts indicating atomic percent) which has a hierarchical structure of alternating Ag and Cu layers with thicknesses down to 50 nm. The hierarchical structure consists of two primary arrangements of layers, eutectic colonies of parallel layers, most commonly found at the material interior, and “grains” consisting of alternating Ag and Cu layers which emanate from a central region in a radial pattern, most commonly found at the material exterior surface. We show that the hierarchical structure causes a significant increase in the measured strength response when comparing the Ag 60 Cu 40 response to that of the constituent materials in their bulk nanograined or micrograined form. The deformation mechanisms of this material are studied under compressive loading over the quasi-static and dynamic regime (10 −3 –10 3 s −1 ) with strain between 5% and 50%

  20. STUDY OF THE EFFECT OF PRELIMINARY PLASTIC DEFORMATION IN THE PROCESS OF DISSOLUTION DURING TEMPERING OF LOW-CARBON AND BORON-CONTAINING ALLOYS

    OpenAIRE

    M. Yu. Filonenko; S. B. Piliaieva

    2009-01-01

    In the paper the influence of preliminary deformation on disintegration of martensite in boron-containing and carbonic alloy is explored. It is shown that at the small degree of deformation (7 per cent) both in low-carbonic and boron-containing alloys the process of martensite disintegration takes place less intensively. The increase of degree of preliminary deformation in a boron-containing alloy is instrumental in more even distribution of boron-cementite particles appearing as a result of ...

  1. Coupled elasticity–diffusion model for the effects of cytoskeleton deformation on cellular uptake of cylindrical nanoparticles

    Science.gov (United States)

    Wang, Jizeng; Li, Long

    2015-01-01

    Molecular dynamic simulations and experiments have recently demonstrated how cylindrical nanoparticles (CNPs) with large aspect ratios penetrate animal cells and inevitably deform cytoskeletons. Thus, a coupled elasticity–diffusion model was adopted to elucidate this interesting biological phenomenon by considering the effects of elastic deformations of cytoskeleton and membrane, ligand–receptor binding and receptor diffusion. The mechanism by which the binding energy drives the CNPs with different orientations to enter host cells was explored. This mechanism involved overcoming the resistance caused by cytoskeleton and membrane deformations and the change in configurational entropy of the ligand–receptor bonds and free receptors. Results showed that deformation of the cytoskeleton significantly influenced the engulfing process by effectively slowing down and even hindering the entry of the CNPs. Additionally, the engulfing depth was determined quantitatively. CNPs preferred or tended to vertically attack target cells until they were stuck in the cytoskeleton as implied by the speed of vertically oriented CNPs that showed much faster initial engulfing speeds than horizontally oriented CNPs. These results elucidated the most recent molecular dynamics simulations and experimental observations on the cellular uptake of carbon nanotubes and phagocytosis of filamentous Escherichia coli bacteria. The most efficient engulfment showed the stiffness-dependent optimal radius of the CNPs. Cytoskeleton stiffness exhibited more significant influence on the optimal sizes of the vertical uptake than the horizontal uptake. PMID:25411410

  2. Optimum stamping die structure based on analytical method of die deformation during draw process; Seikei katei no kanagata henkei kaiseki ni motozuku, press kanagata kozo no saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, T; Tamai, H [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    We measured an actual deformation and pressure distribution in draw process of bending cam, and analyzed deformation process of die structure, in order to eliminate adjusting work considering die deformation by stamping force. We studied die structure improvement with simulation based on analytical method. This report describes a sample of die structure improvement based on a simulation and actual measurement. 1 ref., 11 figs., 1 tab.

  3. Dynamic similarity in erosional processes

    Science.gov (United States)

    Scheidegger, A.E.

    1963-01-01

    A study is made of the dynamic similarity conditions obtaining in a variety of erosional processes. The pertinent equations for each type of process are written in dimensionless form; the similarity conditions can then easily be deduced. The processes treated are: raindrop action, slope evolution and river erosion. ?? 1963 Istituto Geofisico Italiano.

  4. Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys.

    Science.gov (United States)

    Ran, Chun; Chen, Pengwan

    2018-01-05

    To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear) is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively.

  5. Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket

    OpenAIRE

    Abbas, Laith K.; Chen, Dongyang; Rui, Xiaoting

    2014-01-01

    The application and workflow of Computational Fluid Dynamics (CFD)/Computational Structure Dynamics (CSD) on solving the static aeroelastic problem of a slender rocket are introduced. To predict static aeroelastic behavior accurately, two-way coupling and inertia relief methods are used to calculate the static deformations and aerodynamic characteristics of the deformed rocket. The aerodynamic coefficients of rigid rocket are computed firstly and compared with the experimental data, which ver...

  6. Quantitative description of changes in the structure in austenitic steels after hot temperature deformation

    International Nuclear Information System (INIS)

    Kuc, D.; Rodak, K.; Niewielski, G.; Hetmanczyk, M.

    1998-01-01

    An investigation on the structural changes in austenitic hard deformable Cr-Mn and Cr-Ni steels during dynamic recrystallization has been presented in the paper. The influence of the factors (strain rate, deformation, temperature) on the geometric characteristic of grains has been taken into consideration. Investigation of the structure were performed using metallographic microscope and transmission electron microscope. The results of researched should widen the theoretical background in order to the model of phenomena, which accompany the dynamic recovery and dynamic recrystallization. (author)

  7. EBSD-based techniques for characterization of microstructural restoration processes during annealing of metals deformed to large plastic strains

    DEFF Research Database (Denmark)

    Godfrey, A.; Mishin, Oleg; Yu, Tianbo

    2012-01-01

    Some methods for quantitative characterization of the microstructures deformed to large plastic strains both before and after annealing are discussed and illustrated using examples of samples after equal channel angular extrusion and cold-rolling. It is emphasized that the microstructures...... in such deformed samples exhibit a heterogeneity in the microstructural refinement by high angle boundaries. Based on this, a new parameter describing the fraction of regions containing predominantly low angle boundaries is introduced. This parameter has some advantages over the simpler high angle boundary...... on mode of the distribution of dislocation cell sizes is outlined, and it is demonstrated how this parameter can be used to investigate the uniformity, or otherwise, of the restoration processes occurring during annealing of metals deformed to large plastic strains. © (2012) Trans Tech Publications...

  8. Mechanical and structural behaviour of uranium α, β, γ phases during plastic deformation

    International Nuclear Information System (INIS)

    Prunier, C.; Collot, C.

    1981-06-01

    High temperature behaviour of rich and poor uranium alloys in α, β and γ crystalline structures is studied: dynamic recrystallization phenomena begins only in α and β phases high temperature range, high strength and brittle β phase shows a very large ductility above 700 0 C. Dynamic recrystallization in γ phase rich alloys is observed only if large energy is available. Recrystallization is a thermal actived phenomena localised at grain boundary, dependant with alloy concentration and crystalline structure. β phase activation energy and deformation rate for dynamic recrystallization beginning are the most important in relation with structure complexity; both temperature and rate deformation are dynamic recrystallization factors [fr

  9. Effect of ac electric field on the dynamics of a vesicle under shear flow in the small deformation regime

    Science.gov (United States)

    Sinha, Kumari Priti; Thaokar, Rochish M.

    2018-03-01

    Vesicles or biological cells under simultaneous shear and electric field can be encountered in dielectrophoretic devices or designs used for continuous flow electrofusion or electroporation. In this work, the dynamics of a vesicle subjected to simultaneous shear and uniform alternating current (ac) electric field is investigated in the small deformation limit. The coupled equations for vesicle orientation and shape evolution are derived theoretically, and the resulting nonlinear equations are handled numerically to generate relevant phase diagrams that demonstrate the effect of electrical parameters on the different dynamical regimes such as tank treading (TT), vacillating breathing (VB) [called trembling (TR) in this work], and tumbling (TU). It is found that while the electric Mason number (Mn), which represents the relative strength of the electrical forces to the shear forces, promotes the TT regime, the response itself is found to be sensitive to the applied frequency as well as the conductivity ratio. While higher outer conductivity promotes orientation along the flow axis, orientation along the electric field is favored when the inner conductivity is higher. Similarly a switch of orientation from the direction of the electric field to the direction of flow is possible by a mere change of frequency when the outer conductivity is higher. Interestingly, in some cases, a coupling between electric field-induced deformation and shear can result in the system admitting an intermediate TU regime while attaining the TT regime at high Mn. The results could enable designing better dielectrophoretic devices wherein the residence time as well as the dynamical states of the vesicular suspension can be controlled as per the application.

  10. Microstructural characterization of IF steel after severe plastic deformation via ARB and subsequent heat treatment; Caracterizacao microestrutural de um aco IF apos deformacao plastica severa via ARB e posterior recozimento

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, F.C.; Abrantes, A.L.A.; Lins, J.F.C., E-mail: cristinafo2@hotmail.co [Universidade Federal Fluminense (PPGEM/UFF), Volta Redonda, RJ (Brazil). Programa de Pos-graduacao em Engenharia Metalurgica

    2010-07-01

    This study aimed to evaluate the microstructural evolution of a titanium stabilized IF steel deformed to warm through the ARB process for 5 consecutive cycles and then annealing at 600 deg C for 1 h. The material was characterized with the aid of the techniques of scanning electron microscopy and electron backscatter diffraction (Electron Backscatter Diffraction - EBSD). An intense process of microstructural refinement was observed in the deformed material and the phenomenon of dynamic recovery was predominant. It can be concluded that the annealing of severely deformed material was not sufficient for a complete recrystallization of the microstructure. (author)

  11. Visual Tracking of Deformation and Classification of Non-Rigid Objects with Robot Hand Probing

    Directory of Open Access Journals (Sweden)

    Fei Hui

    2017-03-01

    Full Text Available Performing tasks with a robot hand often requires a complete knowledge of the manipulated object, including its properties (shape, rigidity, surface texture and its location in the environment, in order to ensure safe and efficient manipulation. While well-established procedures exist for the manipulation of rigid objects, as well as several approaches for the manipulation of linear or planar deformable objects such as ropes or fabric, research addressing the characterization of deformable objects occupying a volume remains relatively limited. The paper proposes an approach for tracking the deformation of non-rigid objects under robot hand manipulation using RGB-D data. The purpose is to automatically classify deformable objects as rigid, elastic, plastic, or elasto-plastic, based on the material they are made of, and to support recognition of the category of such objects through a robotic probing process in order to enhance manipulation capabilities. The proposed approach combines advantageously classical color and depth image processing techniques and proposes a novel combination of the fast level set method with a log-polar mapping of the visual data to robustly detect and track the contour of a deformable object in a RGB-D data stream. Dynamic time warping is employed to characterize the object properties independently from the varying length of the tracked contour as the object deforms. The proposed solution achieves a classification rate over all categories of material of up to 98.3%. When integrated in the control loop of a robot hand, it can contribute to ensure stable grasp, and safe manipulation capability that will preserve the physical integrity of the object.

  12. Angular deformation of radius and ulna treated by dynamic percutaneus osteogenesis distraction. Case report

    International Nuclear Information System (INIS)

    Rezende, C.M.F.; Melo, E.G.; Lamas, M.C.S.; Silva, C.A.

    2000-01-01

    The clinical exam of a male mongrel dog, 4-month-old, and 5.7kg of live weight, showed that the dog supported with the elbows and it was observed accentuated bilateral rotacional deformity of the radius and ulna. Radiographs of the radius and ulna revealed proximal fracture of the radius. After clinical and radiographic evaluation it was indicated the corrective osteotomy and distraction osteogenesis of the left foremember. The surgical procedure consisted in osteotomy in the diaphysis of the radius and ulna, and the utilization of external fixators composed by four Kirschner’s pins and two metallic thread bars, configuring a fixator type II, bilateral uniplanar dynamic. Before the fixation of the pins with acrylic, the fractured bony fragments were separated in approximately 0.5cm. Starting 10 days post surgery, the radial osteotomy site was distracted at a rate of 1.0mm every day for 30 days. The consolidation of the osteotomy site was observed radiographically 67 days after the intervention, when the fixator was removed. Similar procedure was accomplished in the right foremember at the age of 16 months. At this moment, it was necessary to remove a coins bony of approximately 1.0cm for correction of the limb angulation. At present, the dog shows normal function and support of the left foremember and light valgus deformity of the right foremember due to the broken implants [pt

  13. Dynamical recrystallization of high purity austenitic stainless steels; Recristallisation dynamique d'aciers inoxydables austenitiques de haute purete

    Energy Technology Data Exchange (ETDEWEB)

    Gavard, L

    2001-01-01

    The aim of this work is to optimize the performance of structural materials. The elementary mechanisms (strain hardening and dynamical regeneration, germination and growth of new grains) occurring during the hot working of metals and low pile defect energy alloys have been studied for austenitic stainless steels. In particular, the influence of the main experimental parameters (temperature, deformation velocity, initial grain size, impurities amount, deformation way) on the process of discontinuous dynamical recrystallization has been studied. Alloys with composition equal to those of the industrial stainless steel-304L have been fabricated from ultra-pure iron, chromium and nickel. Tests carried out in hot compression and torsion in order to cover a wide range of deformations, deformation velocities and temperatures for two very different deformation ways have allowed to determine the rheological characteristics (sensitivity to the deformation velocity, apparent activation energy) of materials as well as to characterize their microstructural deformations by optical metallography and electron back-scattered diffraction. The influence of the initial grain size and the influence of the purity of the material on the dynamical recrystallization kinetics have been determined. An analytical model for the determination of the apparent mobility of grain boundaries, a semi-analytical model for the dynamical recrystallization and at last an analytical model for the stationary state of dynamical recrystallization are proposed as well as a new criteria for the transition between the refinement state and the state of grain growth. (O.M.)

  14. A micro-macro constitutive model for finite-deformation viscoelasticity of elastomers with nonlinear viscosity

    Science.gov (United States)

    Zhou, Jianyou; Jiang, Liying; Khayat, Roger E.

    2018-01-01

    Elastomers are known to exhibit viscoelastic behavior under deformation, which is linked to the diffusion processes of the highly mobile and flexible polymer chains. Inspired by the theories of polymer dynamics, a micro-macro constitutive model is developed to study the viscoelastic behaviors and the relaxation process of elastomeric materials under large deformation, in which the material parameters all have a microscopic foundation or a microstructural justification. The proposed model incorporates the nonlinear material viscosity into the continuum finite-deformation viscoelasticity theories which represent the polymer networks of elastomers with an elastic ground network and a few viscous subnetworks. The developed modeling framework is capable of adopting most of strain energy density functions for hyperelastic materials and thermodynamics evolution laws of viscoelastic solids. The modeling capacity of the framework is outlined by comparing the simulation results with the experimental data of three commonly used elastomeric materials, namely, VHB4910, HNBR50 and carbon black (CB) filled elastomers. The comparison shows that the stress responses and some typical behaviors of filled and unfilled elastomers can be quantitatively predicted by the model with suitable strain energy density functions. Particularly, the strain-softening effect of elastomers could be explained by the deformation-dependent (nonlinear) viscosity of the polymer chains. The presented modeling framework is expected to be useful as a modeling platform for further study on the performance of different type of elastomeric materials.

  15. STUDY OF THE EFFECT OF PRELIMINARY PLASTIC DEFORMATION IN THE PROCESS OF DISSOLUTION DURING TEMPERING OF LOW-CARBON AND BORON-CONTAINING ALLOYS

    Directory of Open Access Journals (Sweden)

    M. Yu. Filonenko

    2009-12-01

    Full Text Available In the paper the influence of preliminary deformation on disintegration of martensite in boron-containing and carbonic alloy is explored. It is shown that at the small degree of deformation (7 per cent both in low-carbonic and boron-containing alloys the process of martensite disintegration takes place less intensively. The increase of degree of preliminary deformation in a boron-containing alloy is instrumental in more even distribution of boron-cementite particles appearing as a result of martensite disintegration.

  16. Influence of Compatibilizer and Processing Conditions on Morphology, Mechanical Properties, and Deformation Mechanism of PP/Clay Nano composite

    International Nuclear Information System (INIS)

    Akbari, B.; Bagheri, R.

    2012-01-01

    Polypropylene/montmorillonite nano composite was prepared by melt intercalation method using a twin-screw extruder with starve feeding system in this paper. The effects of compatibilizer, extruder rotor speed and feeding rate on properties of nano composite were investigated. Structure, tensile, and impact properties and deformation mechanism of the compounds were studied. For investigation of structure and deformation mechanisms, X-ray diffraction (XRD) and transmission optical microscopy (TOM) techniques were utilized, respectively. The results illustrate that introduction of the compatibilizer and also variation of the processing conditions affect structure and mechanical properties of nano composite.

  17. Features micro plastic deformation auxetic beryllium irradiated with high-energy electrons

    International Nuclear Information System (INIS)

    Rarans'kij, M.D.; Olyijnich-Lisyuk, A.V.; Tashchuk, O.Yu.

    2016-01-01

    By low-frequency internal friction (LFIF) (1...3 Hz) method, the study of the behavior of the dynamic modulus of torsion (Gef) and by mathematical modeling of dislocation motion studied micro plastic deformation in naturally aged and irradiated with high-energy (18 MeV) electrons auxetic beryllium. With increasing doses of radiation found an increase in IF and speed of movement of dislocations in 2-3 times. Installed stage character micro strain auxetic Be. By mathematical modeling showed that in the irradiated material the deformation occurs due to the accelerated movement of the twin dislocations in the early stages, and anomalous dynamic deceleration of complete dislocations with an increase in the degree of deformation in the second stage. It is shown that theoretically estimated values are in good agreement with the experimentally determined.

  18. A thermostatistical theory for solid solution effects in the hot deformation of alloys: an application to low-alloy steels

    International Nuclear Information System (INIS)

    Galindo-Nava, E I; Rivera-Díaz-del-Castillo, P E J; Perlade, A

    2014-01-01

    The hot deformation of low-alloy steels is described by a thermostatistical theory of plastic deformation. This is based on defining a statistical entropy term that accounts for the energy dissipation due to possible dislocation displacements. In this case, dilute substitutional and interstitial atom effects alter such paths. The dislocation population is described by a single parameter equation, with the parameter being the average dislocation density. Solute effects incorporate additional dislocation generation sources. They alter the energy barriers corresponding to the activation energies for dislocation recovery, grain nucleation and growth. The model is employed to describe work hardening and dynamic recrystallization softening in fifteen steels for a wide range of compositions, temperatures and strain rates. Maps for dynamic recrystallization occurrence are defined in terms of processing conditions and composition. (paper)

  19. Mathematical model of rolling an elastic wheel over deformable support base

    Science.gov (United States)

    Volskaia, V. N.; Zhileykin, M. M.; Zakharov, A. Y.

    2018-02-01

    One of the main direction of economic growth in Russia remains to be a speedy development of north and northeast regions that are the constituents of the 60 percent of the country territory. The further development of these territories requires new methods and technologies for solving transport and technological problems when off-road transportation of cargoes and people is conducting. One of the fundamental methods of patency prediction is imitation modeling of wheeled vehicles movement in different operating conditions. Both deformable properties of tires and physical and mechanical properties of the ground: normal tire deflection and gauge depth; variation of contact patch area depending on the load and pressure of air in the tire; existence of hysteresis losses in the tire material which are influencing on the rolling resistance due to friction processes between tire and ground in the contact patch; existence of the tangential reaction from the ground by entire contact area influence on the tractive patency. Nowadays there are two main trends in theoretical research of interaction wheeled propulsion device with ground: analytical method involving mathematical description of explored process and finite element method based on computational modeling. Mathematical models of interaction tire with the ground are used both in processes of interaction individual wheeled propulsion device with ground and researches of mobile vehicle dynamical models operated in specific road and climate conditions. One of the most significant imperfection of these models is the description of interaction wheel with flat deformable support base whereas profile of real support base surface has essential height of unevenness which is commensurate with radius of the wheel. The description of processes taking place in the ground under influence of the wheeled propulsion device using the finite element method is relatively new but most applicable lately. The application of this method allows

  20. Deformation behavior of curling strips on tearing tubes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji Won; Kwon, Tae Soo; Jung, Hyun Seung; Kim, Jin Sung [Dept. of Robotics and Virtual Engineering, Korea University of Science and Technology, Seoul (Korea, Republic of)

    2015-10-15

    This paper discusses the analysis of the curl deformation behavior when a dynamic force is applied to a tearing tube installed on a flat die to predict the energy absorption capacity and deformation behavior. The deformation of the tips of the curling strips was obtained when the curl tips and tube body are in contact with each other, and a formula describing the energy dissipation rate caused by the deformation of the curl tips is proposed. To improve this formula, we focused on the variation of the curl radius and the reduced thickness of the tube. A formula describing the mean curl radius is proposed and verified using the curl radius measurement data of collision test specimens. These improved formulas are added to the theoretical model previously proposed by Huang et al. and verified from the collision test results of a tearing tube.

  1. Deformed two-photon squeezed states in noncommutative space

    International Nuclear Information System (INIS)

    Zhang Jianzu

    2004-01-01

    Recent studies on nonperturbation aspects of noncommutative quantum mechanics explored a new type of boson commutation relations at the deformed level, described by deformed annihilation-creation operators in noncommutative space. This correlated boson commutator correlates different degrees of freedom, and shows an essential influence on dynamics. This Letter devotes to the development of formalism of deformed two-photon squeezed states in noncommutative space. General representations of deformed annihilation-creation operators and the consistency condition for the electromagnetic wave with a single mode of frequency in noncommunicative space are obtained. Two-photon squeezed states are studied. One finds that variances of the dimensionless Hermitian quadratures of the annihilation operator in one degree of freedom include variances in the other degree of freedom. Such correlations show the new feature of spatial noncommutativity and allow a deeper understanding of the correlated boson commutator

  2. Dynamics of defect-loaded grain boundary under shear deformation in alpha iron

    Science.gov (United States)

    Yang, L.; Zhou, H. L.; Liu, H.; Gao, F.; Zu, X. T.; Peng, S. M.; Long, X. G.; Zhou, X. S.

    2018-02-01

    Two symmetric tilt grain boundaries (GBs) (Σ3〈110〉{112} and Σ11〈110〉{332}) in alpha iron were performed to investigate the dynamics of defect-loaded GBs under shear deformation. The results show that the loaded self-interstitial atoms (SIAs) reduce the critical stress of the coupled GB motion in the Σ3 GB, but increase the critical stress in the Σ11 GB. The loaded SIAs in the Σ3 GB easily form 〈111〉 clusters and remain in the bulk when the GB moves away. However, the SIAs move along with the Σ11 GB and combine with the vacancies in the bulk, leading to the defect self-healing. The helium (He) atoms loaded into the GBs significantly affect the coupled GB motion. Once He clusters emit interstitials, the Σ11 GB carries those interstitials away but the Σ3 does not. The loaded He atoms reduce the critical stress of the Σ3 GB, but increase the critical stress of the Σ11 GB.

  3. Probing deformation substructure by synchrotron X-ray diffraction and dislocation dynamics modelling.

    Science.gov (United States)

    Korsunsky, Alexander M; Hofmann, Felix; Song, Xu; Eve, Sophie; Collins, Steve P

    2010-09-01

    Materials characterization at the nano-scale is motivated by the desire to resolve the structural aspects and deformation behavior at length scales relevant to those mechanisms that define the novel and unusual properties of nano-structured materials. A range of novel techniques has recently become accessible with the help of synchrotron X-ray beams that can be focused down to spot sizes of less than a few microns on the sample. The unique combination of tunability (energy selection), parallelism and brightness of synchrotron X-ray beams allows their use for high resolution diffraction (determination of crystal structure and transformations, analysis of dislocation sub-structures, orientation and texture analysis, strain mapping); small angle X-ray scattering (analysis of nano-scale voids and defects; orientation analysis) and imaging (radiography and tomography). After a brief review of the state-of-the-art capabilities for monochromatic and white beam synchrotron diffraction, we consider the usefulness of these techniques for the task of bridging the gap between experiment and modeling. Namely, we discuss how the experiments can be configured to provide information relevant to the validation and improvement of modeling approaches, and also how the results of various simulations can be post-processed to improve the possibility of (more or less) direct comparison with experiments. Using the example of some recent experiments carried out on beamline 116 at Diamond Light Source near Oxford, we discuss how such experimental results can be interpreted in view and in conjunction with numerical deformation models, particularly those incorporating dislocation effects, e.g., finite-element based pseudo-continuum strain gradient formulations, and discrete dislocation simulations. Post-processing of FE and discrete dislocation simulations is described, illustrating the kind of information that can be extracted from comparisons between modeling and experimental data.

  4. Compensation of some time dependent deformations in two dimensional (2D) tomography

    International Nuclear Information System (INIS)

    Desbat, L.; Roux, S.; Grangeat, P.

    2005-01-01

    This work is a contribution to motion compensation in tomography. It has been shown that much more general deformations than affine transforms can be analytically compensated in dynamic tomography. The class of deformations that transformed only a parallel projection geometry into an other parallel projection geometry, or a divergent projection geometry into an other divergent geometry have been considered. Among these deformation, it has been shown that those involving only an affine deformation along each line (this affine deformation can vary from line to line), can be efficiently analytically compensated, i e within a F.B.P. algorithm. This class of deformations is much larger than the very small class of affine deformation. It involves more local deformation possibilities. Deformations from this considered class have been written as a composition of an affine transform and deformations that can be compensated with weighting and re-binning step, the admissibility conditions and the F.B.P. algorithm are the same those given. (N.C.)

  5. Compensation of some time dependent deformations in two dimensional (2D) tomography

    Energy Technology Data Exchange (ETDEWEB)

    Desbat, L. [Universite Joseph Fourier, UMR CNRS 5525, 38 - Grenoble (France); Roux, S. [Universite Joseph Fourier, TIMC-IMAG, In3S, Faculte de Medecine, 38 - Grenoble (France)]|[CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France); Grangeat, P. [CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France)

    2005-07-01

    This work is a contribution to motion compensation in tomography. It has been shown that much more general deformations than affine transforms can be analytically compensated in dynamic tomography. The class of deformations that transformed only a parallel projection geometry into an other parallel projection geometry, or a divergent projection geometry into an other divergent geometry have been considered. Among these deformation, it has been shown that those involving only an affine deformation along each line (this affine deformation can vary from line to line), can be efficiently analytically compensated, i e within a F.B.P. algorithm. This class of deformations is much larger than the very small class of affine deformation. It involves more local deformation possibilities. Deformations from this considered class have been written as a composition of an affine transform and deformations that can be compensated with weighting and re-binning step, the admissibility conditions and the F.B.P. algorithm are the same those given. (N.C.)

  6. Experimental and numerical analyses of pure copper during ECFE process as a novel severe plastic deformation method

    Directory of Open Access Journals (Sweden)

    M. Ebrahimi

    2014-02-01

    Full Text Available In this paper, a new severe plastic deformation method called equal channel forward extrusion (ECFE process has been proposed and investigated by experimental and numerical approaches on the commercial pure copper billets. The experimental results indicated that the magnitudes of yield strength, ultimate tensile strength and Vickers micro-hardness have been markedly improved from 114 MPa, 204 MPa and 68 HV as the annealed condition to 269 MPa, 285 MPa and 126 HV after the fourth pass of ECFE process, respectively. In addition, scanning electron microscopy observation of the samples showed that the average grain size of the as-received state which is about 22 μm has been reduced to 1.4 μm after the final pass. The numerical investigation suggested that although one pass ECFE process fabricates material with the mean effective strain magnitude of about 1, the level of imposed effective plastic strain gradually diminishes from the circumference to the center of the deformed billet.

  7. Deformation processes in functional materials studied by in situ neutron diffraction and ultrasonic techniques

    International Nuclear Information System (INIS)

    Sittner, P.; Novak, V.; Landa, M.; Lukas, P.

    2007-01-01

    The unique thermomechanical functions of shape memory alloys (hysteretic stress-strain-temperature responses) not their structural properties (as strength, fatigue, corrosion resistance, etc.) are primarily utilized in engineering applications. In order to better understand and predict the functional behavior, we have recently employed two dedicated non-invasive in situ experimental methods capable to follow the deformation/transformation processes in thermomechanically loaded polycrystalline samples. The in situ neutron diffraction method takes advantage of the ability of thermal neutrons to penetrate bulk samples. As a diffraction technique sensitive to interplanar spacings in crystalline solids, it provides in situ information on the changes in crystal structure, phase composition, phase stress and texture in the transforming samples. The combined in situ ultrasonic and electric resistance method follows variations of the electric resistance as well as speed and attenuation of acoustic waves propagating through the transforming sample. The acoustic waves are mainly sensitive to changes of elastic properties accompanying the deformation/transformation processes. The latter method thus follows the changes in interatomic bonds rather than changes in the interplanar lattice spacings focused in the neutron diffraction method. The methods are thus complementary. They are briefly described and selected experimental results obtained recently on NiTi alloys are presented and discussed

  8. Information Processing Capacity of Dynamical Systems

    Science.gov (United States)

    Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge

    2012-07-01

    Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory.

  9. Information Processing Capacity of Dynamical Systems

    Science.gov (United States)

    Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge

    2012-01-01

    Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory. PMID:22816038

  10. Effects of Density and Moisture Variation on Dynamic Deformation Properties of Compacted Lateritic Soil

    Directory of Open Access Journals (Sweden)

    Weizheng Liu

    2016-01-01

    Full Text Available A series of repeated load triaxial tests were conducted in this study to investigate the influences of compaction density and postcompaction moisture variation on the dynamic elastic modulus (Ed and plastic permanent strain (PPS of compacted lateritic soil. Specimens were compacted at optimum moisture content (OMC and three degrees of compaction (90%, 93%, and 96%. Then the specimens were dried or wetted to different moisture contents (OMC, OMC±3%, OMC±6%, and OMC+9% prior to testing for Ed and PPS. Results show that moisture content has greater influence on the Ed and PSS than compaction degree, and the increase in moisture content leads to a decrease of Ed and an increase of PPS. Furthermore, an empirical relationship between Ed and applied cyclic stress (σd is developed that incorporates density and moisture variations. Three different evolution types of PPS with number of load cycles, plastic stable, plastic creep, and incremental collapse, are identified as the increase of moisture content. In addition, the critical dynamic stress (σdc separating stable and unstable deformation is determined based on the shakedown concept. The envelope curves of σdc-moisture of lateritic soil with different degrees of compaction are also determined to provide reference for the pavement design.

  11. Dynamics of process at the final stage of nuclear fission

    International Nuclear Information System (INIS)

    Koljari, I.G.; Mavlitov, N.D.

    2005-01-01

    Numerous experimental data show, that the final stage of nuclear fission near to a scission point plays an essential role at formation of characteristics of fission products. At the description of a final stage of fission there is a number of problems: Definition of the form of the nuclear near the scission point and definition forms of a fission fragments; The account of dynamic processes in compound nuclear directly before of fission. The condition of the quasistatic al adiabatic process - dS/dt=0 - is applied in a point of transition from the uniform compound nuclei to several forms for definition of generalized coordinates and speeds. Calculation of dependence of post neutrons from nuclear mass of fission fragments for reactions is α+ 83 Bi 209 → 85 At 213 (E lab = 45 MeV); α+ 92 U 242 → 94 Pu 242 (E lab = 45 MeV); 8 O 18 + 79 Au 197 → 97 Fr 215 (E lab = 159 MeV). System of equations, which describes behaviour of system in a point of nuclear fission-transition from the uniform form to system of a two (and, probably more) fission fragments is given. The system of the equations allows in a fission point to define the generalized coordinates, and the generalized speeds for each of the generalized coordinates of collective deformation variables

  12. Microstructure evolution and dynamic recrystallization behavior of a powder metallurgy Ti-22Al-25Nb alloy during hot compression

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jianbo [Education Ministry Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Yang, Yue [Education Ministry Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Qinhuangdao 066004 (China); Xu, Yan, E-mail: xuyan_916@163.com [Education Ministry Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Xu, Bo [Institute of Petrochemistry Heilongjiang Academy of Sciences, Harbin 150040, (China); Luo, Junting [Education Ministry Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, Kaifeng [National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China)

    2017-01-15

    The flow behavior of a powder metallurgy (P/M) Ti-22Al-25Nb alloy during hot compression tests has been investigated at a strain rate of 0.01 s{sup −1} and a temperature range of 980–1100 °C up to various true strains from 0.1 to 0.9. The effects of deformation temperature and strain on microstructure characterization and nucleation mechanisms of dynamic recrystallization (DRX) were assessed by means of Optical microscope (OM), electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) techniques, respectively. The results indicated that the process of DRX was promoted by increasing deformation temperature and strain. By regression analysis, a power exponent relationship between peak stresses and sizes of stable DRX grains was developed. In addition, it is suggested that the discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX) controlled nucleation mechanisms for DRX grains operated simultaneously during the whole hot process, and which played the leading role varied with hot process parameters of temperature and strain. It was further demonstrated that the CDRX featured by progressive subgrain rotation was weakened by elevating deformation temperatures. - Highlights: •Flow behavior of a P/M Ti-22Al-25Nb is studied by hot compression tests. •Microstructure evolution of alloy is affected by deformation temperature and strain. •The relationship between peak stress and stable DRX grain size was developed. •The process of DRX was promoted by increasing deformation temperature and strain. •Nucleation mechanisms of DRX were identified by EBSD analysis and TEM observation.

  13. Microstructure evolution and dynamic recrystallization behavior of a powder metallurgy Ti-22Al-25Nb alloy during hot compression

    International Nuclear Information System (INIS)

    Jia, Jianbo; Yang, Yue; Xu, Yan; Xu, Bo; Luo, Junting; Zhang, Kaifeng

    2017-01-01

    The flow behavior of a powder metallurgy (P/M) Ti-22Al-25Nb alloy during hot compression tests has been investigated at a strain rate of 0.01 s −1 and a temperature range of 980–1100 °C up to various true strains from 0.1 to 0.9. The effects of deformation temperature and strain on microstructure characterization and nucleation mechanisms of dynamic recrystallization (DRX) were assessed by means of Optical microscope (OM), electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) techniques, respectively. The results indicated that the process of DRX was promoted by increasing deformation temperature and strain. By regression analysis, a power exponent relationship between peak stresses and sizes of stable DRX grains was developed. In addition, it is suggested that the discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX) controlled nucleation mechanisms for DRX grains operated simultaneously during the whole hot process, and which played the leading role varied with hot process parameters of temperature and strain. It was further demonstrated that the CDRX featured by progressive subgrain rotation was weakened by elevating deformation temperatures. - Highlights: •Flow behavior of a P/M Ti-22Al-25Nb is studied by hot compression tests. •Microstructure evolution of alloy is affected by deformation temperature and strain. •The relationship between peak stress and stable DRX grain size was developed. •The process of DRX was promoted by increasing deformation temperature and strain. •Nucleation mechanisms of DRX were identified by EBSD analysis and TEM observation.

  14. Deformation Prediction Using Linear Polynomial Functions ...

    African Journals Online (AJOL)

    By Deformation, we mean change of shape of any structure from its original shape and by monitoring over time using Geodetic means, the change in shape, size and the overall structural dynamics behaviors of structure can be detected. Prediction is therefor based on the epochs measurement obtained during monitoring, ...

  15. Deformation-Induced Precession of a Robot Moving on Curved Space

    Science.gov (United States)

    Li, Shengkai; Aydin, Yasemin; Lofaro, Olivia; Rieser, Jennifer; Goldman, Daniel

    Previous studies have demonstrated that passive particles rolling on a deformed surface can mimic aspects of general relativity [Ford et al, AJP, 2015]. However, these systems are dissipative. To explore steady-state dynamics, we study the movement of a self-propelled robot car on a large deformable elastic membrane: a spandex sheet stretched over a metal frame with a diameter of 2.5 m. Two wheels in the rear of the car are differentially-driven by a DC motor, and a caster in the front helps maintain directional stability; in the absence of curvature the car drives straight. A linear actuator attached below the membrane allows for controlled deformation at the center of the membrane. We find that closed elliptic orbits occur when the membrane is highly depressed ( 10 cm). However, when the center is only slightly indented, the elliptical orbits precess at a rate depending on the orbit shape and the depression. Remarkably, this dynamic is well described by the Schwarzschild metric solution, typically used to describe the effects of gravity on bodies orbiting a massive object. Experiments with multiple cars reveal complex interactions that are mediated through car-induced deformations of the membrane.

  16. Fluid flow simulation and permeability computation in deformed porous carbonate grainstones

    Science.gov (United States)

    Zambrano, Miller; Tondi, Emanuele; Mancini, Lucia; Lanzafame, Gabriele; Trias, F. Xavier; Arzilli, Fabio; Materazzi, Marco; Torrieri, Stefano

    2018-05-01

    In deformed porous carbonates, the architecture of the pore network may be modified by deformation or diagenetic processes altering the permeability with respect to the pristine rock. The effects of the pore texture and morphology on permeability in porous rocks have been widely investigated due to the importance during the evaluation of geofluid reservoirs. In this study, these effects are assessed by combining synchrotron X-ray computed microtomography (SR micro-CT) and computational fluid dynamics. The studied samples pertain to deformed porous carbonate grainstones highly affected by deformation bands (DBs) exposed in Northwestern Sicily and Abruzzo regions, Italy. The high-resolution SR micro-CT images of the samples, acquired at the SYRMEP beamline of the Elettra - Sincrotrone Trieste laboratory (Italy), were used for simulating a pressure-driven flow by using the lattice-Boltzmann method (LBM). For the experiments, a multiple relaxation time (MRT) model with the D3Q19 scheme was used to avoid viscosity-dependent results of permeability. The permeability was calculated using Darcy's law once steady conditions were reached. After the simulations, the pore-network properties (effective porosity, specific surface area, and geometrical tortuosity) were calculated using 3D images of the velocity fields. These images were segmented considering a velocity threshold value higher than zero. The study showed that DBs may generate significant heterogeneity and anisotropy of the permeability of the evaluated rock samples. Cataclasis and cementation process taking place within the DBs reduce the effective porosity and therefore the permeability. Contrary to this, pressure dissolution and faulting may generate connected channels which contribute to the permeability only parallel to the DB.

  17. Influence of a cold deformation process by drawing on the electrical properties of copper wires

    Directory of Open Access Journals (Sweden)

    Rafael da Silva Bernardo

    Full Text Available Abstract This article presents a study of the drawing, deformation, hardening and heat treatment of copper wire, in order to investigate the influence of combinations of operating variables (annealing factor, oil emulsion temperature and machine speed during the drawing process on the electrical conductivity of copper wires. The results showed that when the metal is deformed, the value of electrical conductivity suffers a decrease due to the hardening phenomenon. Because of this, it is necessary to heat treat the material. So, it was observed that the annealing factor, which is associated with the thermal treatment temperature, showed a high degree of correlation with the electrical conductivity. This fact is explained by the annealing factor which is responsible for the intensity of the heat treatment. The speed at which the drawing occurs also showed a direct correlation with electric conductivity because the higher the value, the greater the heat treatment temperature and consequently, the greater the electrical conductivity of the material. On the other hand, it had not been possible to establish a conclusion about the correlation between the electrical conductivity and oil emulsion temperature during the drawing process.

  18. DISCRETE DEFORMATION WAVE DYNAMICS IN SHEAR ZONES: PHYSICAL MODELLING RESULTS

    Directory of Open Access Journals (Sweden)

    S. A. Bornyakov

    2016-01-01

    Full Text Available Observations of earthquake migration along active fault zones [Richter, 1958; Mogi, 1968] and related theoretical concepts [Elsasser, 1969] have laid the foundation for studying the problem of slow deformation waves in the lithosphere. Despite the fact that this problem has been under study for several decades and discussed in numerous publications, convincing evidence for the existence of deformation waves is still lacking. One of the causes is that comprehensive field studies to register such waves by special tools and equipment, which require sufficient organizational and technical resources, have not been conducted yet.The authors attempted at finding a solution to this problem by physical simulation of a major shear zone in an elastic-viscous-plastic model of the lithosphere. The experiment setup is shown in Figure 1 (A. The model material and boundary conditions were specified in accordance with the similarity criteria (described in detail in [Sherman, 1984; Sherman et al., 1991; Bornyakov et al., 2014]. The montmorillonite clay-and-water paste was placed evenly on two stamps of the installation and subject to deformation as the active stamp (1 moved relative to the passive stamp (2 at a constant speed. The upper model surface was covered with fine sand in order to get high-contrast photos. Photos of an emerging shear zone were taken every second by a Basler acA2000-50gm digital camera. Figure 1 (B shows an optical image of a fragment of the shear zone. The photos were processed by the digital image correlation method described in [Sutton et al., 2009]. This method estimates the distribution of components of displacement vectors and strain tensors on the model surface and their evolution over time [Panteleev et al., 2014, 2015].Strain fields and displacements recorded in the optical images of the model surface were estimated in a rectangular box (220.00×72.17 mm shown by a dot-and-dash line in Fig. 1, A. To ensure a sufficient level of

  19. A dynamic balanced scorecard for identification internal process factor

    Directory of Open Access Journals (Sweden)

    Javad sofiyabadi

    2012-08-01

    Full Text Available We present a dynamic balanced score card (BSC to investigate the strategic internal process management factors. The proposed dynamic BSC emphasizes on internal processes aspect, and using VIKOR and Shannon Entropy, determinants the internal processes, process management and improvement and all important factors are ranked. The current study first introduces dynamic BSC and examines effective factors on the process. The proposed model focuses on internal processes perspective of BSC and determines importance degree of each factor is used using VIKOR decision-making techniques.

  20. 6. International FIG-symposium on deformation measurements. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Pelzer, H; Heer, R [eds.

    1997-12-31

    Due to the diversified fields of specialization of the authors, the papers span a very wide spectrum of theories, applications and case studies, concerning various problems of deformation studies in structural, geotechnical and mining engineering, in rock mechanics and earth crustal movements, covering such topics as: Design and analysis of deformations surveys; Integration of terrestrial, and space measurement techniques; New instrumental developements for automatic, continuous and telemetric data-acquisition with respect to geotechnical and geodetic applications; Monitoring and prediction of ground subsidence in mining areas, land slides and tectonic movements; Modeling and computation of deformations by Kalman-filtering techniques, finite element analysis and a special view to continuum mechanics; Application of expert systems and artificial intelligence; Description and analysis of dynamical deformation problems; special views in rock- and groundmechanics; Demonstration of mechanical engineering problems with respect to the supervision of industrial production and quality control. (orig.)

  1. 6. International FIG-symposium on deformation measurements. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Pelzer, H.; Heer, R. [eds.

    1996-12-31

    Due to the diversified fields of specialization of the authors, the papers span a very wide spectrum of theories, applications and case studies, concerning various problems of deformation studies in structural, geotechnical and mining engineering, in rock mechanics and earth crustal movements, covering such topics as: Design and analysis of deformations surveys; Integration of terrestrial, and space measurement techniques; New instrumental developements for automatic, continuous and telemetric data-acquisition with respect to geotechnical and geodetic applications; Monitoring and prediction of ground subsidence in mining areas, land slides and tectonic movements; Modeling and computation of deformations by Kalman-filtering techniques, finite element analysis and a special view to continuum mechanics; Application of expert systems and artificial intelligence; Description and analysis of dynamical deformation problems; special views in rock- and groundmechanics; Demonstration of mechanical engineering problems with respect to the supervision of industrial production and quality control. (orig.)

  2. Deformation-induced structural changes of amorphous Ni{sub 0.5}Zr{sub 0.5} in molecular-dynamic simulations; Verformungsinduzierte Strukturaenderungen bei amorphen Ni{sub 0.5}Zr{sub 0.5} in Molekulardynamik-Simulationen

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, K

    2006-10-31

    The present work investigates the plastic deformation of metallic glasses by the aid of molecular-dynamic simulations. The parameters for the model system are adapted to those for a NiZr-alloy. In particular, the composition Ni{sub 0.5}Zr{sub 0.5} is used. The analyzed deformation simulations are conducted for small systems with 5184 atoms and large systems with 17500 atoms in a periodic simulation cell. The deformation simulations of pre-deformed samples are carried out either at constant shear-rate or at constant load, the latter mode modeling a creep experiment. Stress-strain curves for pre-deformed samples show a less pronounced stress-overshoot phenomenon. Creep-simulations of samples deformed beyond the yield region indicate a drastically reduced viscosity in these systems when compared to samples pre-deformed only up to the linear regime of the stress-strain curve. From analyzing the local atomic topology it is found that the transition from the highly viscous, hard-to-deform state of the undeformed or only weakly strained system into the easy-to-deform flow-state, present if the system is strained far beyond the yielding regime of the stress-strain curve, is connected with the formation of a region containing atoms with massive changes in their topology which is oriented along a diagonal plane of the simulation cell. The degree of localization of these deformation bands is influenced by temperature and shear-rate. In subsequent deformations of pre-deformed samples the regions with massive changes in the atomic topology are again susceptible to changes in the local atomic topology. By using methods from statistics, a significant difference in the distribution of atomic properties for the group of atoms with massive topology changes on the one hand and the group of atoms without changes in their topology on the other gets quantitatively ascertainable. From the differences in structural properties, e.g. potential energy, cage volumes, angular order parameters

  3. Computer Modelling of Dynamic Processes

    Directory of Open Access Journals (Sweden)

    B. Rybakin

    2000-10-01

    Full Text Available Results of numerical modeling of dynamic problems are summed in the article up. These problems are characteristic for various areas of human activity, in particular for problem solving in ecology. The following problems are considered in the present work: computer modeling of dynamic effects on elastic-plastic bodies, calculation and determination of performances of gas streams in gas cleaning equipment, modeling of biogas formation processes.

  4. Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket

    Directory of Open Access Journals (Sweden)

    Laith K. Abbas

    2014-01-01

    Full Text Available The application and workflow of Computational Fluid Dynamics (CFD/Computational Structure Dynamics (CSD on solving the static aeroelastic problem of a slender rocket are introduced. To predict static aeroelastic behavior accurately, two-way coupling and inertia relief methods are used to calculate the static deformations and aerodynamic characteristics of the deformed rocket. The aerodynamic coefficients of rigid rocket are computed firstly and compared with the experimental data, which verified the accuracy of CFD output. The results of the analysis for elastic rocket in the nonspinning and spinning states are compared with the rigid ones. The results highlight that the rocket deformation aspects are decided by the normal force distribution along the rocket length. Rocket deformation becomes larger with increasing the flight angle of attack. Drag and lift force coefficients decrease and pitching moment coefficients increase due to rocket deformations, center of pressure location forwards, and stability of the rockets decreases. Accordingly, the flight trajectory may be affected by the change of these aerodynamic coefficients and stability.

  5. Numerical model for the deformation of nucleated cells by optical stretchers

    KAUST Repository

    Sraj, Ihab

    2015-07-01

    In this paper, we seek to numerically study the deformation of nucleated cells by single diode-laser bar optical stretchers. We employ a recently developed computational model, the dynamic ray-tracing method, to determine the force distribution induced by optical stretchers on a cell encapsulating a nucleus of different optical properties. These optical forces are shape dependent and can deform real non-rigid objects; thus resulting in dynamically changing distributions with cell and nucleus deformation. A Chinese hamster ovary (CHO) cell is a common biological cell that is of interest to the biomedical community because of its use in recombinant protein therapeutics and is an example of a nucleated cell. To this end, we model CHO cells as two concentric three-dimensional elastic capsules immersed in a fluid where the hydrodynamic forces are calculated using the immersed boundary method. We vary the inner capsule size to simulate different nucleus sizes. Our results show that the presence of a nucleus has a major effect on the force distribution on the cell surface and consequently on its net deformation. Scattering and gradient forces are reported for different nucleus sizes and the effect of nucleus size on the cell deformation is discussed quantitatively. © 2015 IOP Publishing Ltd.

  6. 3D geodetic monitoring slope deformations

    Directory of Open Access Journals (Sweden)

    Weiss Gabriel

    1996-06-01

    Full Text Available For plenty of slope failures that can be found in Slovakia is necessary and very important their geodetic monitoring (because of their activity, reactivisations, checks. The paper gives new methodologies for these works, using 3D terrestrial survey technologies for measurements in convenient deformation networks. The design of an optimal type of deformation model for various kinds of landslides and their exact processing with an efficient testing procedure to determine the kinematics of the slope deformations are presented too.

  7. Deformation effects in the cluster radioactivity

    International Nuclear Information System (INIS)

    Misicu, S.; Protopopescu, D.

    1998-01-01

    We investigate the influence of the deformation on the decay rates of the cluster emission process 224 Ra → 210 Pb + 14 C. The interaction between the daughter and the cluster is given by a double folding potential, containing a nuclear repulsive core, with account of the quadrupole and hexadecupole deformed densities of both fragments. Upon comparison with the experimental value of the decay rate, the results obtained point out the importance of such deformations especially for the daughter nucleus

  8. Deformation Characteristic and Constitutive Modeling of 2707 Hyper Duplex Stainless Steel under Hot Compression

    Directory of Open Access Journals (Sweden)

    Huabing Li

    2016-09-01

    Full Text Available Hot deformation behavior and microstructure evolution of 2707 hyper duplex stainless steel (HDSS were investigated through hot compression tests in the temperature range of 900–1250 °C and strain rate range of 0.01–10 s−1. The results showed that the flow behavior strongly depended on strain rate and temperature, and flow stress increased with increasing strain rate and decreasing temperature. At lower temperatures, many precipitates appeared in ferrite and distributed along the deformation direction, which could restrain processing of discontinuous dynamic recrystallization (DRX because of pinning grain boundaries. When the temperature increased to 1150 °C, the leading softening behaviors were dynamic recovery (DRV in ferrite and discontinuous DRX in austenite. When the temperature reached 1250 °C, softening behavior was mainly DRV in ferrite. The increase of strain rate was conducive to the occurrence of discontinuous DRX in austenite. A constitutive equation at peak strain was established and the results indicated that 2707 HDSS had a higher Q value (569.279 kJ·mol−1 than other traditional duplex stainless steels due to higher content of Cr, Mo, Ni, and N. Constitutive modeling considering strain was developed to model the hot deformation behavior of 2707 HDSS more accurately, and the correlation coefficient and average absolute relative error were 0.992 and 5.22%, respectively.

  9. Faraday instability in deformable domains

    International Nuclear Information System (INIS)

    Pucci, G.

    2013-01-01

    Hydrodynamical instabilities are usually studied either in bounded regions or free to grow in space. In this article we review the experimental results of an intermediate situation, in which an instability develops in deformable domains. The Faraday instability, which consists in the formation of surface waves on a liquid experiencing a vertical forcing, is triggered in floating liquid lenses playing the role of deformable domains. Faraday waves deform the lenses from the initial circular shape and the mutual adaptation of instability patterns with the lens boundary is observed. Two archetypes of behaviour have been found. In the first archetype a stable elongated shape is reached, the wave vector being parallel to the direction of elongation. In the second archetype the waves exceed the response of the lens border and no equilibrium shape is reached. The lens stretches and eventually breaks into fragments that have a complex dynamics. The difference between the two archetypes is explained by the competition between the radiation pressure the waves exert on the lens border and its response due to surface tension.

  10. The Contribution of GGOS to Understanding Dynamic Earth Processes

    Science.gov (United States)

    Gross, Richard

    2017-04-01

    Geodesy is the science of the Earth's shape, size, gravity and rotation, including their evolution in time. Geodetic observations play a major role in the solid Earth sciences because they are fundamental for the understanding and modeling of Earth system processes. Changes in the Earth's shape, its gravitational field, and its rotation are caused by external forces acting on the Earth system and internal processes involving mass transfer and exchange of angular and linear momentum. Thus, variations in these geodetic quantities of the Earth reflect and constrain mechanical and thermo-dynamic processes in the Earth system. Mitigating the impact on human life and property of natural hazards such as earthquakes, volcanic eruptions, debris flows, landslides, land subsidence, sea level change, tsunamis, floods, storm surges, hurricanes and extreme weather is an important scientific task to which geodetic observations make fundamental contributions. Geodetic observations can be used to monitor the pre-eruptive deformation of volcanoes and the pre-seismic deformation of earthquake fault zones, aiding in the issuance of volcanic eruption and earthquake warnings. They can also be used to rapidly estimate earthquake fault motion, aiding in the modeling of tsunami genesis and the issuance of tsunami warnings. Geodetic observations are also used in other areas of the Earth sciences, not just the solid Earth sciences. For example, geodesy contributes to atmospheric science by supporting both observation and prediction of the weather by geo-referencing meteorological observing data and by globally tracking change in stratospheric mass and lower tropospheric water vapor fields. Geodetic measurements of refraction profiles derived from satellite occultation data are routinely assimilated into numerical weather prediction models. Geodesy contributes to hydrologic studies by providing a unique global reference system for measurements of: sub-seasonal, seasonal and secular movements

  11. Coupled elasticity-diffusion model for the effects of cytoskeleton deformation on cellular uptake of cylindrical nanoparticles.

    Science.gov (United States)

    Wang, Jizeng; Li, Long

    2015-01-06

    Molecular dynamic simulations and experiments have recently demonstrated how cylindrical nanoparticles (CNPs) with large aspect ratios penetrate animal cells and inevitably deform cytoskeletons. Thus, a coupled elasticity-diffusion model was adopted to elucidate this interesting biological phenomenon by considering the effects of elastic deformations of cytoskeleton and membrane, ligand-receptor binding and receptor diffusion. The mechanism by which the binding energy drives the CNPs with different orientations to enter host cells was explored. This mechanism involved overcoming the resistance caused by cytoskeleton and membrane deformations and the change in configurational entropy of the ligand-receptor bonds and free receptors. Results showed that deformation of the cytoskeleton significantly influenced the engulfing process by effectively slowing down and even hindering the entry of the CNPs. Additionally, the engulfing depth was determined quantitatively. CNPs preferred or tended to vertically attack target cells until they were stuck in the cytoskeleton as implied by the speed of vertically oriented CNPs that showed much faster initial engulfing speeds than horizontally oriented CNPs. These results elucidated the most recent molecular dynamics simulations and experimental observations on the cellular uptake of carbon nanotubes and phagocytosis of filamentous Escherichia coli bacteria. The most efficient engulfment showed the stiffness-dependent optimal radius of the CNPs. Cytoskeleton stiffness exhibited more significant influence on the optimal sizes of the vertical uptake than the horizontal uptake. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. The deformation record of olivine in mylonitic peridotites from the Finero Complex, Ivrea Zone: Separate deformation cycles during exhumation

    Science.gov (United States)

    Matysiak, Agnes K.; Trepmann, Claudia A.

    2015-12-01

    Mylonitic peridotites from the Finero complex are investigated to detect characteristic olivine microfabrics that can resolve separate deformation cycles at different metamorphic conditions. The heterogeneous olivine microstructures are characterized by deformed porphyroclasts surrounded by varying amounts of recrystallized grains. A well-developed but only locally preserved foam structure is present in recrystallized grain aggregates. This indicates an early stage of dynamic recrystallization and subsequent recovery and recrystallization at quasi-static stress conditions, where the strain energy was reduced such that a reduction in surface energy controlled grain boundary migration. Ultramylonites record a renewed stage of localized deformation and recrystallization by a second generation of recrystallized grains that do not show a foam structure. This second generation of recrystallized grains as well as sutured grain and kink band boundaries of porphyroclasts indicate that these microstructures developed during a stage of localized deformation after development of the foam structure. The heterogeneity of the microfabrics is interpreted to represent several (at least two) cycles of localized deformation separated by a marked hiatus with quasi-static recrystallization and recovery and eventually grain growth. The second deformation cycle did not only result in reactivation of preexisting shear zones but instead also locally affected the host rock that was not deformed in the first stage. Such stress cycles can result from sudden increases in differential stress imposed by seismic events, i.e., high stress-loading rates, during exhumation of the Finero complex.

  13. Coercivity enhancement of hot-deformed Nd-Fe-B magnets by the eutectic grain boundary diffusion process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lihua [Elements Strategy Initiative Center for Magnetic Materials, National Institute of Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba 305-8577 (Japan); Sepehri-Amin, H.; Ohkubo, T. [Elements Strategy Initiative Center for Magnetic Materials, National Institute of Materials Science, Tsukuba 305-0047 (Japan); Yano, M.; Kato, A.; Shoji, T. [Toyota Motor Corporation, Advanced Material Engineering Div., Susono 410-1193 (Japan); Hono, K., E-mail: kazuhiro.hono@nims.go.jp [Elements Strategy Initiative Center for Magnetic Materials, National Institute of Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba 305-8577 (Japan)

    2016-05-05

    Nd-M (M = Al, Cu, Ga, Zn, Mn) alloys with compositions close to eutectic points were investigated as diffusion sources for the grain boundary diffusion process to hot-deformed Nd-Fe-B magnets. Coercivity enhancement was observed for most of the alloys. Among them, the sample processed with Nd{sub 90}Al{sub 10} exhibited the highest coercivity of 2.5 T at room temperature. However, the sample processed with Nd{sub 70}Cu{sub 30} exhibited the highest coercivity of 0.7 T at 200 {sup °}C. Microstructural observations using scanning transmission electron microscope (STEM) showed that nonferromagnetic Nd-rich intergranular phase envelops the Nd{sub 2}Fe{sub 14}B grains after the diffusion process. Abnormal grain growth and the dissolution of Al into the Nd{sub 2}Fe{sub 14}B grains were observed in the sample processed with Nd{sub 90}Al{sub 10}, which explains its inferior thermal stability of coercivity compared to the sample processed with Nd{sub 70}Cu{sub 30}. The coercivity enhancement and poor thermal stability of the coercivity of the Nd{sub 90}Al{sub 10} diffusion-processed sample are discussed based on microstructure studies by transmission electron microscopy. - Highlights: • Coercivity of hot-deformed Nd-Fe-B magnets is enhanced by the infiltration of various R-TM eutectic alloys. • The sample infiltrated with Nd{sub 90}Al{sub 10} shows the highest coercivity of 2.5 T at room temperature. • At 200 °C, Nd{sub 70}Cu{sub 30} diffusion-processed sample possesses the highest coercivity of 0.7 T.

  14. Deformation twinning: Influence of strain rate

    Energy Technology Data Exchange (ETDEWEB)

    Gray, G.T. III

    1993-11-01

    Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shock wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.

  15. Coordinated Mapping of Sea Ice Deformation Features with Autonomous Vehicles

    Science.gov (United States)

    Maksym, T.; Williams, G. D.; Singh, H.; Weissling, B.; Anderson, J.; Maki, T.; Ackley, S. F.

    2016-12-01

    Decreases in summer sea ice extent in the Beaufort and Chukchi Seas has lead to a transition from a largely perennial ice cover, to a seasonal ice cover. This drives shifts in sea ice production, dynamics, ice types, and thickness distribution. To examine how the processes driving ice advance might also impact the morphology of the ice cover, a coordinated ice mapping effort was undertaken during a field campaign in the Beaufort Sea in October, 2015. Here, we present observations of sea ice draft topography from six missions of an Autonomous Underwater Vehicle run under different ice types and deformation features observed during autumn freeze-up. Ice surface features were also mapped during coordinated drone photogrammetric missions over each site. We present preliminary results of a comparison between sea ice surface topography and ice underside morphology for a range of sample ice types, including hummocked multiyear ice, rubble fields, young ice ridges and rafts, and consolidated pancake ice. These data are compared to prior observations of ice morphological features from deformed Antarctic sea ice. Such data will be useful for improving parameterizations of sea ice redistribution during deformation, and for better constraining estimates of airborne or satellite sea ice thickness.

  16. Dynamic process management for engineering environments

    NARCIS (Netherlands)

    Mentink, R.J.; van Houten, Frederikus J.A.M.; Kals, H.J.J.

    2003-01-01

    The research presented in this paper proposes a concept for dynamic process management as part of an integrated approach to engineering process support. The theory of information management is the starting point for the development of a process management system based on evolution of information

  17. Deformation behavior of commercial Mg-Al-Zn-Mn type alloys under a hydrostatic extrusion process at elevated temperatures

    International Nuclear Information System (INIS)

    Yoon, Duk Jae; Lee, Sang Mok; Lim, Seong Joo; Kim, Eung Zu

    2010-01-01

    This paper presents the deformation behavior of commercial Mg-Al-Zn-Mn type alloys during hydrostatic extrusion process at elevated temperatures. In the current study commercial Mg-Al-Zn-Mn type alloys with different Al contents were subjected to hydrostatic extrusion process at a range of temperatures and at ram speeds of 4.5, 10 and 17 mm/sec. Under the hydrostatic condition at 518K, the alloy with Al contents of 2.9 wt% was successfully extruded at all applied speeds. The alloys with Al content of 5.89 and 7.86 wt% were successful up to 10mm/sec, and finally extrusion of alloy with Al content 8.46wt% was successful only at 4.5 mm/sec. These results show that the deformation limit in the Mg alloys in terms of extrusion speed greatly extended to higher value in the proximity of lower Al content. It is presumed that deformation becomes harder as Al content increases because of strengthening mechanism by solute drag to increase of supersaturated Mg 17 Al 12 precipitates. Also, microstructures of cast and extruded Mg alloys were compared. Defect-wide microstructure of cast alloy completely evolved into dense and homogeneous microstructure with equiaxed grains

  18. Investigating deformation processes in AM60 magnesium alloy using the acoustic emission technique

    International Nuclear Information System (INIS)

    Mathis, K.; Chmelik, F.; Janecek, M.; Hadzima, B.; Trojanova, Z.; Lukac, P.

    2006-01-01

    Microstructure changes in an AM60 magnesium alloy were monitored using the acoustic emission (AE) technique during tensile tests in the temperature range from 20 to 300 deg. C. The correlation of the AE signal and the deformation processes is discussed. It is shown, using transmission electron and light microscopy, that the character of the AE response is associated with various modes of mechanical twinning at lower temperatures, whereas at higher temperatures also the influence of non-basal dislocations on the AE response must be taken into account

  19. The dynamic deformation of a layered viscoelastic medium under surface excitation

    International Nuclear Information System (INIS)

    Aglyamov, Salavat R; Karpiouk, Andrei B; Emelianov, Stanislav Y; Wang, Shang; Li, Jiasong; Larin, Kirill V; Twa, Michael

    2015-01-01

    In this study the dynamic behavior of a layered viscoelastic medium in response to the harmonic and impulsive acoustic radiation force applied to its surface was investigated both theoretically and experimentally. An analytical solution for a layered viscoelastic compressible medium in frequency and time domains was obtained using the Hankel transform. A special incompressible case was considered to model soft biological tissues. To verify our theoretical model, experiments were performed using tissue-like gel-based phantoms with varying mechanical properties. A 3.5 MHz single-element focused ultrasound transducer was used to apply the radiation force at the surface of the phantoms. A phase-sensitive optical coherence tomography system was used to track the displacements of the phantom surface. Theoretically predicted displacements were compared with experimental measurements. The role of the depth dependence of the elastic properties of a medium in its response to an acoustic pulse at the surface was studied. It was shown that the low-frequency vibrations at the surface are more sensitive to the deep layers than high-frequency ones. Therefore, the proposed model in combination with spectral analysis can be used to evaluate depth-dependent distribution of the mechanical properties based on the measurements of the surface deformation. (paper)

  20. Deformation Models Tracking, Animation and Applications

    CERN Document Server

    Torres, Arnau; Gómez, Javier

    2013-01-01

    The computational modelling of deformations has been actively studied for the last thirty years. This is mainly due to its large range of applications that include computer animation, medical imaging, shape estimation, face deformation as well as other parts of the human body, and object tracking. In addition, these advances have been supported by the evolution of computer processing capabilities, enabling realism in a more sophisticated way. This book encompasses relevant works of expert researchers in the field of deformation models and their applications.  The book is divided into two main parts. The first part presents recent object deformation techniques from the point of view of computer graphics and computer animation. The second part of this book presents six works that study deformations from a computer vision point of view with a common characteristic: deformations are applied in real world applications. The primary audience for this work are researchers from different multidisciplinary fields, s...

  1. Spatiotemporal neural network dynamics for the processing of dynamic facial expressions

    Science.gov (United States)

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota

    2015-01-01

    The dynamic facial expressions of emotion automatically elicit multifaceted psychological activities; however, the temporal profiles and dynamic interaction patterns of brain activities remain unknown. We investigated these issues using magnetoencephalography. Participants passively observed dynamic facial expressions of fear and happiness, or dynamic mosaics. Source-reconstruction analyses utilizing functional magnetic-resonance imaging data revealed higher activation in broad regions of the bilateral occipital and temporal cortices in response to dynamic facial expressions than in response to dynamic mosaics at 150–200 ms and some later time points. The right inferior frontal gyrus exhibited higher activity for dynamic faces versus mosaics at 300–350 ms. Dynamic causal-modeling analyses revealed that dynamic faces activated the dual visual routes and visual–motor route. Superior influences of feedforward and feedback connections were identified before and after 200 ms, respectively. These results indicate that hierarchical, bidirectional neural network dynamics within a few hundred milliseconds implement the processing of dynamic facial expressions. PMID:26206708

  2. Spatiotemporal neural network dynamics for the processing of dynamic facial expressions.

    Science.gov (United States)

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota

    2015-07-24

    The dynamic facial expressions of emotion automatically elicit multifaceted psychological activities; however, the temporal profiles and dynamic interaction patterns of brain activities remain unknown. We investigated these issues using magnetoencephalography. Participants passively observed dynamic facial expressions of fear and happiness, or dynamic mosaics. Source-reconstruction analyses utilizing functional magnetic-resonance imaging data revealed higher activation in broad regions of the bilateral occipital and temporal cortices in response to dynamic facial expressions than in response to dynamic mosaics at 150-200 ms and some later time points. The right inferior frontal gyrus exhibited higher activity for dynamic faces versus mosaics at 300-350 ms. Dynamic causal-modeling analyses revealed that dynamic faces activated the dual visual routes and visual-motor route. Superior influences of feedforward and feedback connections were identified before and after 200 ms, respectively. These results indicate that hierarchical, bidirectional neural network dynamics within a few hundred milliseconds implement the processing of dynamic facial expressions.

  3. Dynamic properties of ceramic materials

    International Nuclear Information System (INIS)

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process

  4. W-Cu composites subjected to heavy hot deformation

    International Nuclear Information System (INIS)

    Yu, Yang; Xu, Xiaoqiang; Zhang, Wencong

    2017-01-01

    The effect of plastic deformation on the properties and microstructure of W-Cu composites produced by multi-pass hot extrusion with steel cup was investigated. W-Cu composites were sintered at 1 100 C and then the sintered billets were firstly extruded at 900 C with different extrusion ratios. The second hot extrusion was performed at 900 C. The plastic deformation of copper phase plays a dominant part during the whole extrusion process. The microstructural evolution of W phase during the whole processing of heavy hot deformation can be divided into different stages. Experimental results indicate that the W agglomeration will be broken into fine particles effectively when the accumulated plastic deformation amounts to 97.6 % after the second extrusion.

  5. W-Cu composites subjected to heavy hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang; Xu, Xiaoqiang; Zhang, Wencong [Harbin Institute of Technology-Weihai (China). School of Materials Science and Engineering

    2017-04-15

    The effect of plastic deformation on the properties and microstructure of W-Cu composites produced by multi-pass hot extrusion with steel cup was investigated. W-Cu composites were sintered at 1 100 C and then the sintered billets were firstly extruded at 900 C with different extrusion ratios. The second hot extrusion was performed at 900 C. The plastic deformation of copper phase plays a dominant part during the whole extrusion process. The microstructural evolution of W phase during the whole processing of heavy hot deformation can be divided into different stages. Experimental results indicate that the W agglomeration will be broken into fine particles effectively when the accumulated plastic deformation amounts to 97.6 % after the second extrusion.

  6. Investigation of the yield process by deformation luminescence of X-ray irradiated KCl:Ca2+

    International Nuclear Information System (INIS)

    Nakamura, S.; Ida, K.; Ohgaku, T.

    2011-01-01

    It is found that deformation luminescence gives us information about the microscopic yield process of X-ray irradiated KCl:Ca 2+ . The stress-strain curve has a macroscopic yield point. But we find that luminescence appears to start before the macroscopic yield. This means that dislocation begin to move before the macroscopic yield because deformation luminescence is attributed to radiation-induced dislocation motion. The beginning of luminescence is considered to be the microscopic yield. Investigating the dependence of microscopic yield stress on strain rate and impurity concentration gives us additional information. The activation volume obtained from the dependence of microscopic yield stress on strain rate is comparable to the value estimated from the concentration of impurity. Then the dislocation starts to move overcoming impurity-vacancy dipoles as obstacles to dislocation motion. The dislocation density starts to increase at the microscopic yield point and then sharply increases to the macroscopic yield.

  7. Deformed fermion realization of the sp(4) algebra and its application

    International Nuclear Information System (INIS)

    Georgieva, A.I.; Sviratcheva, K.D.; Gueorguiev, V.G.; Draayer, J.P.

    2002-01-01

    Conclusions The deformed realization of sp_q(4) is based on the specific q-deformation of a two component Clifford algebra, realized in terms of creation and annihilation fermion operators. The deformed generators of Sp_q(4) close different realizations of the compact u_q(2) subalgebra. Each reduction into compact subalgebras of sp_q(4) provides for a description of a different physical model with different dynamical symmetries. While within a particular deformation scheme the basis states may either be deformed or not, the generators are always deformed as is their action on basis states. With a view towards applications, the additional parameter of the deformation gives in a Hamiltonian theory a dependence of the matrix elements on the q−deformation , which does not simply account for one more higher order of a two-body interaction, but it includes all of them through an exponential expansion in parameter κ, q = e"κ. In this way only one parameter, q, can restore the neglected non-linear terms of the residual interaction.

  8. Computer processing of dynamic scintigraphic studies

    International Nuclear Information System (INIS)

    Ullmann, V.

    1985-01-01

    The methods are discussed of the computer processing of dynamic scintigraphic studies which were developed, studied or implemented by the authors within research task no. 30-02-03 in nuclear medicine within the five year plan 1981 to 85. This was mainly the method of computer processing radionuclide angiography, phase radioventriculography, regional lung ventilation, dynamic sequential scintigraphy of kidneys and radionuclide uroflowmetry. The problems are discussed of the automatic definition of fields of interest, the methodology of absolute volumes of the heart chamber in radionuclide cardiology, the design and uses are described of the multipurpose dynamic phantom of heart activity for radionuclide angiocardiography and ventriculography developed within the said research task. All methods are documented with many figures showing typical clinical (normal and pathological) and phantom measurements. (V.U.)

  9. Deformation mechanisms in the San Andreas Fault zone - a comparison between natural and experimentally deformed microstructures

    Science.gov (United States)

    van Diggelen, Esther; Holdsworth, Robert; de Bresser, Hans; Spiers, Chris

    2010-05-01

    The San Andreas Fault (SAF) in California marks the boundary between the Pacific plate and the North American plate. The San Andreas Fault Observatory at Depth (SAFOD) is located 9 km northwest of the town of Parkfield, CA and provide an extensive set of samples through the SAF. The SAFOD drill hole encountered different lithologies, including arkosic sediments from the Salinian block (Pacific plate) and claystones and siltstones from the Great Valley block (North American plate). Fault deformation in the area is mainly by a combination of micro-earthquakes and fault creep. Deformation of the borehole casing indicated that the SAFOD drill hole cross cuts two actively deforming strands of the SAF. In order to determine the deformation mechanisms in the actively creeping fault segments, we have studied thin sections obtained from SAFOD phase 3 core material using optical and electron microscopy, and we have compared these natural SAFOD microstructures with microstructures developed in simulated fault gouges deformed in laboratory shear experiments. The phase 3 core material is divided in three different core intervals consisting of different lithologies. Core interval 1 consists of mildly deformed Salinian rocks that show evidence of cataclasis, pressure solution and reaction of feldspar to form phyllosilicates, all common processes in upper crustal rocks. Most of Core interval 3 (Great Valley) is also only mildly deformed and very similar to Core interval 1. Bedding and some sedimentary features are still visible, together with limited evidence for cataclasis and pressure solution, and reaction of feldspar to form phyllosilicates. However, in between the relatively undeformed rocks, Core interval 3 encountered a zone of foliated fault gouge, consisting mostly of phyllosilicates. This zone is correlated with one of the zones of localized deformation of the borehole casing, i.e. with an actively deforming strand of the SAF. The fault gouge zone shows a strong, chaotic

  10. Deformation processes in refractory metals

    International Nuclear Information System (INIS)

    Beckerman, L.P.; Boratto, F.J.M.; Watson, P.G.; Reed-Hill, R.E.

    1977-01-01

    A report is presented of yield point return studies on alloys of niobium containing both oxygen and hydrogen. Here it has been observed that hydrogen has a complex effect on both the kinetics and energetics of the oxygen yield point return in niobium. Work in the area of slow strain-rate embrittlement of oxygen by niobium and its relation to dynamic strain-aging is described, along with data that has been obtained for the diffusion of oxygen and nitrogen in tantalum. They compliment similar data already published on the diffusion of oxygen and nitrogen in both niobium and vanadium. Finally, a report of the preliminary work of a study of the effects of hydrogen on both slow strain-rate embrittlement and dynamic strain aging in vanadium is presented. Because the embrittling effect of hydrogen can seriously reduce the tensile ductility it is not possible to study most aspects of dynamic strain aging using tension tests. Compression tests on the other hand do not suffer from this problem

  11. Deformation processes in refractory metals

    Energy Technology Data Exchange (ETDEWEB)

    Beckerman, L.P.; Boratto, F.J.M.; Watson, P.G.; Reed-Hill, R.E.

    1977-01-01

    A report is presented of yield point return studies on alloys of niobium containing both oxygen and hydrogen. Here it has been observed that hydrogen has a complex effect on both the kinetics and energetics of the oxygen yield point return in niobium. Work in the area of slow strain-rate embrittlement of oxygen by niobium and its relation to dynamic strain-aging is described, along with data that has been obtained for the diffusion of oxygen and nitrogen in tantalum. They compliment similar data already published on the diffusion of oxygen and nitrogen in both niobium and vanadium. Finally, a report of the preliminary work of a study of the effects of hydrogen on both slow strain-rate embrittlement and dynamic strain aging in vanadium is presented. Because the embrittling effect of hydrogen can seriously reduce the tensile ductility it is not possible to study most aspects of dynamic strain aging using tension tests. Compression tests on the other hand do not suffer from this problem.

  12. The F-BAR domains from srGAP1, srGAP2 and srGAP3 regulate membrane deformation differently

    Science.gov (United States)

    Coutinho-Budd, Jaeda; Ghukasyan, Vladimir; Zylka, Mark J.; Polleux, Franck

    2012-01-01

    Summary Coordination of membrane deformation and cytoskeletal dynamics lies at the heart of many biological processes critical for cell polarity, motility and morphogenesis. We have recently shown that Slit-Robo GTPase-activating protein 2 (srGAP2) regulates neuronal morphogenesis through the ability of its F-BAR domain to regulate membrane deformation and induce filopodia formation. Here, we demonstrate that the F-BAR domains of two closely related family members, srGAP1 and srGAP3 [designated F-BAR(1) and F-BAR(3), respectively] display significantly different membrane deformation properties in non-neuronal COS7 cells and in cortical neurons. F-BAR(3) induces filopodia in both cell types, though less potently than F-BAR(2), whereas F-BAR(1) prevents filopodia formation in cortical neurons and reduces plasma membrane dynamics. These three F-BAR domains can heterodimerize, and they act synergistically towards filopodia induction in COS7 cells. As measured by fluorescence recovery after photobleaching, F-BAR(2) displays faster molecular dynamics than F-BAR(3) and F-BAR(1) at the plasma membrane, which correlates well with its increased potency to induce filopodia. We also show that the molecular dynamic properties of F-BAR(2) at the membrane are partially dependent on F-Actin. Interestingly, acute phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] depletion in cells does not interfere with plasma membrane localization of F-BAR(2), which is compatible with our result showing that F-BAR(2) binds to a broad range of negatively-charged phospholipids present at the plasma membrane, including phosphatidylserine (PtdSer). Overall, our results provide novel insights into the functional diversity of the membrane deformation properties of this subclass of F-BAR-domains required for cell morphogenesis. PMID:22467852

  13. Exact reconstruction in 2D dynamic CT: compensation of time-dependent affine deformations

    International Nuclear Information System (INIS)

    Roux, Sebastien; Desbat, Laurent; Koenig, Anne; Grangeat, Pierre

    2004-01-01

    This work is dedicated to the reduction of reconstruction artefacts due to motion occurring during the acquisition of computerized tomographic projections. This problem has to be solved when imaging moving organs such as the lungs or the heart. The proposed method belongs to the class of motion compensation algorithms, where the model of motion is included in the reconstruction formula. We address two fundamental questions. First what conditions on the deformation are required for the reconstruction of the object from projections acquired sequentially during the deformation, and second how do we reconstruct the object from those projections. Here we answer these questions in the particular case of 2D general time-dependent affine deformations, assuming the motion parameters are known. We treat the problem of admissibility conditions on the deformation in the parallel-beam and fan-beam cases. Then we propose exact reconstruction methods based on rebinning or sequential FBP formulae for each of these geometries and present reconstructed images obtained with the fan-beam algorithm on simulated data

  14. A novel approach to dynamical neutron diffraction by a deformed crystal

    International Nuclear Information System (INIS)

    Kulda, J.

    1984-01-01

    The propagation of neutron waves in a deformed crystal is considered from the point of view of quantum mechanics. Instead of solving the Takagi-Taupin equations the probability of transitions, induced by the variation of the interaction potential, between quantum states corresponding to the two sheets of the dispersion surface is calculated. In this way transmission and reflection coefficients for an incident plane wave are obtained after a simple analytical calculation for a wide class of crystal deformations. The predictions of this theory are found to be in agreement with direct solutions of the Takagi-Taupin equations as well as with the experimental results. (Auth.)

  15. Toward understanding dynamic annealing processes in irradiated ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael Thomas [Texas A & M Univ., College Station, TX (United States)

    2013-05-01

    High energy particle irradiation inevitably generates defects in solids. The ballistic formation and thermalization of the defect creation process occur rapidly, and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic annealing is crucial since such processes play an important role in the formation of stable postirradiation disorder in ion-beam-processing of semiconductors, and determines the “radiation tolerance” of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken.

  16. The Intrinsic Dynamics of Psychological Process

    NARCIS (Netherlands)

    Vallacher, Robin R.; van Geert, Paul; Nowak, Andrzej

    2015-01-01

    Psychological processes unfold on various timescales in accord with internally generated patterns. The intrinsic dynamism of psychological process is difficult to investigate using traditional methods emphasizing cause–effect relations, however, and therefore is rarely incorporated into social

  17. Dynamics of Persistent and Acute Deformed Wing Virus Infections in Honey Bees, Apis mellifera

    Directory of Open Access Journals (Sweden)

    Jay D. Evans

    2011-12-01

    Full Text Available The dynamics of viruses are critical to our understanding of disease pathogenesis. Using honey bee Deformed wing virus (DWV as a model, we conducted field and laboratory studies to investigate the roles of abiotic and biotic stress factors as well as host health conditions in dynamics of virus replication in honey bees. The results showed that temperature decline could lead to not only significant decrease in the rate for pupae to emerge as adult bees, but also an increased severity of the virus infection in emerged bees, partly explaining the high levels of winter losses of managed honey bees, Apis mellifera, around the world. By experimentally exposing adult bees with variable levels of parasitic mite Varroa destructor, we showed that the severity of DWV infection was positively correlated with the density and time period of Varroa mite infestation, confirming the role of Varroa mites in virus transmission and activation in honey bees. Further, we showed that host conditions have a significant impact on the outcome of DWV infection as bees that originate from strong colonies resist DWV infection and replication significantly better than bee originating from weak colonies. The information obtained from this study has important implications for enhancing our understanding of host‑pathogen interactions and can be used to develop effective disease control strategies for honey bees.

  18. Generated dynamics of Markov and quantum processes

    CERN Document Server

    Janßen, Martin

    2016-01-01

    This book presents Markov and quantum processes as two sides of a coin called generated stochastic processes. It deals with quantum processes as reversible stochastic processes generated by one-step unitary operators, while Markov processes are irreversible stochastic processes generated by one-step stochastic operators. The characteristic feature of quantum processes are oscillations, interference, lots of stationary states in bounded systems and possible asymptotic stationary scattering states in open systems, while the characteristic feature of Markov processes are relaxations to a single stationary state. Quantum processes apply to systems where all variables, that control reversibility, are taken as relevant variables, while Markov processes emerge when some of those variables cannot be followed and are thus irrelevant for the dynamic description. Their absence renders the dynamic irreversible. A further aim is to demonstrate that almost any subdiscipline of theoretical physics can conceptually be put in...

  19. Static and dynamic experimental behaviour of sands and anisotropic elasto-viscoplastic modelling in small and medium deformations

    International Nuclear Information System (INIS)

    Ezaoui, A.

    2008-06-01

    In the first part, based on various works realized in situ, the author discusses the importance of a fine characterization of soils within the field of small and medium deformations. He also presents the rheological background on which the modelling will be based. Then, he presents the experimental device, a tri-axial apparatus, 'StaDy', which allows high precision measurements, possesses force sensors comprising a piezoelectric device to generate compression and shear waves. He also presents the different static and dynamic prompting systems. He reports the experimental campaign performed on a Hostun S28 sand, and the analysis of its results. He describes the procedure of determination of the elastic tensor, and analyses and discusses the evolutions of this tensor in terms of the stress-strain status. Viscous phenomena creep and relaxation stages, and plastic behaviours are quantified and discussed with respect to the loading status, the initial granular arrangement, and the efforts applied to the material. The small deformation modelling is then presented and predictions are compared with experimental results obtained in the literature about a bus station. A general analog formulation is introduced, which associates three components (elastic, plastic and viscous). Models are calibrated with triaxial test results, and simulations of viscous and plastic phenomena allow the proposed approaches to be validated

  20. The Lamb wave bandgap variation of a locally resonant phononic crystal subjected to thermal deformation

    Science.gov (United States)

    Zhu, Yun; Li, Zhen; Li, Yue-ming

    2018-05-01

    A study on dynamical characteristics of a ternary locally resonant phononic crystal (PC) plate (i.e., hard scatterer with soft coating periodically disperse in stiff host matrix) is carried out in this paper. The effect of thermal deformation on the structure stiffness, which plays an important role in the PC's dynamical characteristics, is considered. Results show that both the start and the stop frequency of bandgap shift to higher range with the thermal deformation. In particular, the characteristics of band structure change suddenly at critical buckling temperature. The effect of thermal deformation could be utilized for tuning of phononic band structures, which can promote their design and further applications.

  1. Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD.

    Science.gov (United States)

    Chauve, T; Montagnat, M; Barou, F; Hidas, K; Tommasi, A; Mainprice, D

    2017-02-13

    Nucleation mechanisms occurring during dynamic recrystallization play a crucial role in the evolution of microstructures and textures during high temperature deformation. In polycrystalline ice, the strong viscoplastic anisotropy induces high strain heterogeneities between grains which control the recrystallization mechanisms. Here, we study the nucleation mechanisms occurring during creep tests performed on polycrystalline columnar ice at high temperature and stress (T=-5°C;σ=0.5 MPa) by post-mortem analyses of deformation microstructures using cryogenic electron backscatter diffraction. The columnar geometry of the samples enables discrimination of the nuclei from the initial grains. Various nucleation mechanisms are deduced from the analysis of the nuclei relations with the dislocation sub-structures within grains and at grain boundaries. Tilt sub-grain boundaries and kink bands are the main structures responsible for development of polygonization and mosaic sub-structures. Nucleation by bulging at serrated grain boundaries is also an efficient nucleation mechanism near the grain boundaries where strain incompatibilities are high. Observation of nuclei with orientations not related to the 'parent' ones suggests the possibility of 'spontaneous' nucleation driven by the relaxation of the dislocation-related internal stress field. The complexity of the nucleation mechanisms observed here emphasizes the impact of stress and strain heterogeneities on dynamic recrystallization mechanisms.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).

  2. Numerical Modelling of Metal-Elastomer Spring Nonlinear Response for Low-Rate Deformations

    Directory of Open Access Journals (Sweden)

    Sikora Wojciech

    2018-03-01

    Full Text Available Advanced knowledge of mechanical characteristics of metal-elastomer springs is useful in their design process and selection. It can also be used in simulating dynamics of machine where such elements are utilized. Therefore this paper presents a procedure for preparing and executing FEM modelling of a single metal-elastomer spring, also called Neidhart’s spring, for low-rate deformations. Elastomer elements were made of SBR rubber of two hardness values: 50°Sh and 70°Sh. For the description of material behaviour the Bergström-Boyce model has been used.

  3. Information governance in dynamic networked business process management

    NARCIS (Netherlands)

    Rasouli, M.; Eshuis, H.; Grefen, P.W.P.J.; Trienekens, J.J.M.; Kusters, R.J.

    2016-01-01

    Competition in today’s globalized markets forces organizations to collaborate within dynamic business networks to provide mass-customized integrated solutions for customers. The collaboration within dynamic business networks necessitates forming dynamic networked business processes (DNBPs).

  4. Dynamic restoration mechanism and physically based constitutive model of 2050 Al–Li alloy during hot compression

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ruihua; Liu, Qing [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Jinfeng, E-mail: lijinfeng@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Xiang, Sheng [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Chen, Yonglai; Zhang, Xuhu [Aerospace Research Institute of Materials and Processing Technology, Beijing 100076 (China)

    2015-11-25

    Dynamic restoration mechanism of 2050 Al–Li alloy and its constitutive model were investigated by means of hot compression simulation in the deformation temperature ranging from 340 to 500 °C and at strain rates of 0.001–10 s{sup −1}. The microstructures of the compressed samples were observed using optical microscopy and transmission electron microscopy. On the base of dislocation density theory and Avrami kinetics, a physically based constitutive model was established. The results show that dynamic recovery (DRV) and dynamic recrystallization (DRX) are co-responsible for the dynamic restoration during the hot compression process under all compression conditions. The dynamic precipitation (DPN) of T1 and σ phases was observed after the deformation at 340 °C. This is the first experimental evidence for the DPN of σ phase in Al–Cu–Li alloys. The particle stimulated nucleation of DRX (PSN-DRX) due to the large Al–Cu–Mn particle was also observed. The error analysis suggests that the established constitutive model can adequately describe the flow stress dependence on strain rate, temperature and strain during the hot deformation process. - Highlights: • The experimental evidence for the DPN of σ phase in Al–Cu–Li alloys was found. • The PSN-DRX due to the large Al–Cu–Mn particle was observed. • A novel method was proposed to calculated the stress multiplier α.

  5. Processing routes evaluation of severely deformed Mg-Fe alloys for hydrogen storage applications

    International Nuclear Information System (INIS)

    Antiqueira, F.J.; Leiva, D.R.; Ishikawa, T.T.; Jorge Junior, A.M.; Botta, W.J.

    2016-01-01

    MgH 2 is considered an interesting material for safe hydrogen storage in the solid state, due to its high gravimetric nominal capacity of 7,6%, and the relative low cost of magnesium. In this study, we attempted to improve the performance of the MgH 2 in the hydrogen storage. Different processing routes for Mg and Mg-Fe by severe plastic deformation were evaluated. The prepared materials were characterized by X-ray diffraction (XRD), scanning (SEM) and transmission electron microscopy (TEM). The hydrogen storage properties were evaluated by differential scanning calorimetry and the Sievert's method. The results indicate superior properties to materials catalyzed with iron, as well as a high dependence of hydrogen absorption / desorption kinetic in accordance with the microstructures obtained through the various processing routes. (author)

  6. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process

    Science.gov (United States)

    Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.

    2017-12-01

    Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.

  7. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process

    Science.gov (United States)

    Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.

    2018-05-01

    Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.

  8. Dynamic analysis of a guided projectile during engraving process

    Directory of Open Access Journals (Sweden)

    Tao Xue

    2014-06-01

    Full Text Available The reliability of the electronic components inside a guided projectile is highly affected by the launch dynamics of guided projectile. The engraving process plays a crucial role on determining the ballistic performance and projectile stability. This paper analyzes the dynamic response of a guided projectile during the engraving process. By considering the projectile center of gravity moving during the engraving process, a dynamics model is established with the coupling of interior ballistic equations. The results detail the stress situation of a guided projectile band during its engraving process. Meanwhile, the axial dynamic response of projectile in the several milliseconds following the engraving process is also researched. To further explore how the different performance of the engraving band can affect the dynamics of guided projectile, this paper focuses on these two aspects: (a the effects caused by the different band geometry; and (b the effects caused by different band materials. The time domain and frequency domain responses show that the dynamics of the projectile are quite sensitive to the engraving band width. A material with a small modulus of elasticity is more stable than one with a high modulus of elasticity.

  9. Classical studies of the ellipsoidal shapes for dynamical deformation theories of the nucleus

    International Nuclear Information System (INIS)

    Remaud, B.

    1978-01-01

    The shape-dependent functions of the Liquid Drop and the Droplet Models are analytically calculated for an ellipsoid. Using the ellipsoidal symmetries, these functions (including the curvature function) are written in terms of three basic expressions. The nuclear deformation energy can be calculated in a simple way for axially symmetric and asymmetric ellipsoidal nuclei whatever the magnitude of the deformation is

  10. Study on Plastic Deformation Characteristics of Shot Peening of Ni-Based Superalloy GH4079

    Science.gov (United States)

    Zhong, L. Q.; Liang, Y. L.; Hu, H.

    2017-09-01

    In this paper, the X-ray stress diffractometer, surface roughness tester, field emission scanning electron microscope(SEM), dynamic ultra-small microhardness tester were used to measure the surface residual stress and roughness, topography and surface hardness changes of GH4079 superalloy, which was processed by metallographic grinding, turning, metallographic grinding +shot peening and turning + shot peening. Analysized the effects of shot peening parameters on shot peening plastic deformation features; and the effects of the surface state before shot peening on shot peening plastic deformation characteristics. Results show that: the surface residual compressive stress, surface roughness and surface hardness of GH4079 superalloy were increased by shot peening, in addition, the increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening increased with increasing shot peening intensity, shot peening time, shot peening pressure and shot hardness, but harden layer depth was not affected considerably. The more plastic deformation degree of before shot peening surface state, the less increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening.

  11. 10^3 Segment MEMS Deformable-Mirror Process Development, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Iris AO will extend its proven segmented MEMS deformable mirror architecture to large array sizes required for high-contrast astrophysical imagers. Current...

  12. Effect on deformation process of adding a copper core to multifilament MgB2 superconducting wire

    DEFF Research Database (Denmark)

    Hancock, Michael Halloway; Bay, Niels

    2007-01-01

    Using the PIT method, multifilament wire with different packing strategies has been manufactured. In all, three types of wire have been investigated, a 19-filament configuration using ex-situ powder in an Fe-matrix and two 8-filament configurations in an Fe-matrix applying a copper core, one using....... This finding is supported by numerical simulations of the deformation process which indicate that tensile stresses are. concentrated around the middle of the wire during the drawing process. As such, strategic packing of the multifilament configuration can reduce the need for annealing during the mechanical...

  13. Plastic deformation of cubic zirconia single crystals at 1400 C

    International Nuclear Information System (INIS)

    Baufeld, B.; Baither, D.; Bartsch, M.; Messerschmidt, U.

    1998-01-01

    Cubic zirconia single crystals stabilized with 11 mol% yttria were deformed in air at 1400 C and around 1200 C at different strain rates along [1 anti 12] and [100] compression directions. The strain rate sensitivity of the flow stress was determined by strain rate cycling and stress relaxation tests. The microstructure of the deformed specimens was investigated by transmission high-voltage electron microscopy, including contrast extinction analysis for determining the Burgers vectors as well as stereo pairs and wide-angle tilting experiments to find the active slip planes. At deformation along [1 anti 12], the primary and secondary slip planes are of {100} type. Previous experiments had shown that the dislocations move easily on these planes in an athermal way. During deformation along [100], mainly dislocations on {100} planes are activated, which move in a viscous way by the aid of thermal activation. The discussion of the different deformation behaviours during deformation along [1 anti 12] and [100] is based on the different dynamic properties of dislocations and the fact that recovery is an essential feature of the deformation of cubic zirconia at 1400 C. The results on the shape of the deformation curve and the strain rate sensitivity of the flow stress are partly at variance with those of previous authors. (orig.)

  14. Electro-Deformation of Fused Cells in a Microfluidic Array Device

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2016-11-01

    Full Text Available We present a new method of analyzing the deformability of fused cells in a microfluidic array device. Electrical stresses—generated by applying voltages (4–20 V across discrete co-planar microelectrodes along the side walls of a microfluidic channel—have been used to electro-deform fused and unfused stem cells. Under an electro-deformation force induced by applying an alternating current (AC signal, we observed significant electro-deformation phenomena. The experimental results show that the fused stem cells were stiffer than the unfused stem cells at a relatively low voltage (<16 V. However, at a relatively high voltage, the fused stem cells were more easily deformed than were the unfused stem cells. In addition, the electro-deformation process is modeled based on the Maxwell stress tensor and structural mechanics of cells. The theoretical results show that a positive correlation is found between the deformation of the cell and the applied voltage, which is consistent with the experimental results. Combined with a numerical analysis and experimental study, the results showed that the significant difference of the deformation ratio of the fused and unfused cells is not due to their size difference. This demonstrates that some other properties of cell membranes (such as the membrane structure were also changed in the electrofusion process, in addition to the size modification of that process.

  15. A Bloch-Torrey Equation for Diffusion in a Deforming Media

    Energy Technology Data Exchange (ETDEWEB)

    Rohmer, Damien; Gullberg, Grant T.

    2006-12-29

    Diffusion Tensor Magnetic Resonance Imaging (DTMRI)technique enables the measurement of diffusion parameters and therefore,informs on the structure of the biological tissue. This technique isapplied with success to the static organs such as brain. However, thediffusion measurement on the dynamically deformable organs such as thein-vivo heart is a complex problem that has however a great potential inthe measurement of cardiac health. In order to understand the behavior ofthe Magnetic Resonance (MR)signal in a deforming media, the Bloch-Torreyequation that leads the MR behavior is expressed in general curvilinearcoordinates. These coordinates enable to follow the heart geometry anddeformations through time. The equation is finally discretized andpresented in a numerical formulation using implicit methods, in order toget a stable scheme that can be applied to any smooth deformations.Diffusion process enables the link between the macroscopic behavior ofmolecules and themicroscopic structure in which they evolve. Themeasurement of diffusion in biological tissues is therefore of majorimportance in understanding the complex underlying structure that cannotbe studied directly. The Diffusion Tensor Magnetic ResonanceImaging(DTMRI) technique enables the measurement of diffusion parametersand therefore provides information on the structure of the biologicaltissue. This technique has been applied with success to static organssuch as the brain. However, diffusion measurement of dynamicallydeformable organs such as the in-vivo heart remains a complex problem,which holds great potential in determining cardiac health. In order tounderstand the behavior of the magnetic resonance (MR) signal in adeforming media, the Bloch-Torrey equation that defines the MR behavioris expressed in general curvilinear coordinates. These coordinates enableus to follow the heart geometry and deformations through time. Theequation is finally discretized and presented in a numerical formulationusing

  16. Spatiotemporal patterns formed by deformed adhesive in peeling

    International Nuclear Information System (INIS)

    Yamazaki, Yoshihiro; Toda, Akihiko

    2007-01-01

    Dynamical properties of peeling an adhesive tape are investigated experimentally as an analogy of sliding friction. An adhesive tape is peeled by pulling an elastic spring connected to the tape. Controlling its spring constant k and pulling speed V, peel force is measured and spatiotemporal patterns formed on the peeled tape by deformed adhesive are observed. It is found that there exist two kinds of adhesive state in peeling front. The emergence of multiple states is caused by the stability of a characteristic structure (tunnel structure) formed by deformed adhesive. Tunnel structures are distributed spatiotemporally on adhesive tape after peeling. Based on the spatiotemporal distribution, a morphology-dynamical phase diagram is constructed on k-V space and is divided into the four regions: (A) uniform pattern with tunnel structure, (B) uniform pattern without tunnel structure, (C) striped pattern with oscillatory peeling, and (D) spatiotemporally coexistent pattern

  17. Solving Dynamic Traveling Salesman Problem Using Dynamic Gaussian Process Regression

    Directory of Open Access Journals (Sweden)

    Stephen M. Akandwanaho

    2014-01-01

    Full Text Available This paper solves the dynamic traveling salesman problem (DTSP using dynamic Gaussian Process Regression (DGPR method. The problem of varying correlation tour is alleviated by the nonstationary covariance function interleaved with DGPR to generate a predictive distribution for DTSP tour. This approach is conjoined with Nearest Neighbor (NN method and the iterated local search to track dynamic optima. Experimental results were obtained on DTSP instances. The comparisons were performed with Genetic Algorithm and Simulated Annealing. The proposed approach demonstrates superiority in finding good traveling salesman problem (TSP tour and less computational time in nonstationary conditions.

  18. Development of the Log-in Process and the Operation Process for the VHTR-SI Process Dynamic Simulation Code

    International Nuclear Information System (INIS)

    Chang, Jiwoon; Shin, Youngjoon; Kim, Jihwan; Lee, Kiyoung; Lee, Wonjae; Chang, Jonghwa; Youn, Cheung

    2009-01-01

    The VHTR-SI process is a hydrogen production technique by using Sulfur and Iodine. The SI process for a hydrogen production uses a high temperature (about 950 .deg. C) of the He gas which is a cooling material for an energy sources. The Korea Atomic Energy Research Institute Dynamic Simulation Code (KAERI DySCo) is an integration application software that simulates the dynamic behavior of the VHTR-SI process. A dynamic modeling is used to express and model the behavior of the software system over time. The dynamic modeling deals with the control flow of system, the interaction of objects and the order of actions in view of a time and transition by using a sequence diagram and a state transition diagram. In this paper, we present an user log-in process and an operation process for the KAERI DySCo by using a sequence diagram and a state transition diagram

  19. Experimental deformation of a mafic rock - interplay between fracturing, reaction and viscous deformation

    Science.gov (United States)

    Marti, Sina; Stünitz, Holger; Heilbronner, Renée; Plümper, Oliver; Drury, Martyn

    2016-04-01

    Deformation experiments were performed on natural Maryland Diabase (˜ 55% Plg, 42% Px, 3% accessories, 0.18 wt.-% H2O added) in a Griggs-type deformation apparatus in order to explore the brittle-viscous transition and the interplay between deformation and mineral reactions. Shear experiments at strain rates of ˜ 2e-5 /s are performed, at T=600, 700 and 800°C and confining pressures Pc=1.0 and 1.5 GPa. Deformation localizes in all experiments. Below 700°C, the microstructure is dominated by brittle deformation with a foliation formed by cataclastic flow and high strain accommodated along 3-5 major ultracataclasite shear bands. At 700°C, the bulk of the material still exhibits abundant microfractures, however, deformation localizes into an anastomosing network of shear bands (SB) formed from a fine-grained (<< 1 μm) mixture of newly formed Plg and Amph. These reaction products occur almost exclusively along syn-kinematic structures such as fractures and SB. Experiments at 800°C show extensive mineral reactions, with the main reaction products Amph+Plg (+Zo). Deformation is localized in broad C' and C SB formed by a fine-grained (0.1 - 0.8 μm) mixture of Plg+Amph (+Zo). The onset of mineral reactions in the 700°C experiments shows that reaction kinetics and diffusional mass transport are fast enough to keep up with the short experimental timescales. While in the 700°C experiments brittle processes kinematically contribute to deformation, fracturing is largely absent at 800°C. Diffusive mass transfer dominates. The very small grain size within SB favours a grain size sensitive deformation mechanism. Due to the presence of water (and relatively high supported stresses), dissolution-precipitation creep is interpreted to be the dominant strain accommodating mechanism. From the change of Amph coronas around Px clasts with strain, we can determine that Amph is re-dissolved at high stress sites while growing in low stress sites, showing the ability of Amph to

  20. MECHANICS OF DYNAMIC POWDER COMPACTION PROCESS

    OpenAIRE

    Nurettin YAVUZ

    1996-01-01

    In recent years, interest in dynamic compaction methods of metal powders has increased due to the need to improve compaction properties and to increase production rates of compacts. In this paper, review of dynamic and explosive compaction of metal powders are given. An attempt is made to get a better understanding of the compaction process with the mechanicis of powder compaction.