WorldWideScience

Sample records for dynamic correlation effects

  1. Dynamical correlation effects in a weakly correlated material: Inelastic x-ray scattering and photoemission spectra of beryllium

    Science.gov (United States)

    Seidu, Azimatu; Marini, Andrea; Gatti, Matteo

    2018-03-01

    Beryllium is a weakly correlated simple metal. Still we find that dynamical correlation effects, beyond the independent-particle picture, are necessary to successfully interpret the electronic spectra measured by inelastic x-ray scattering (IXS) and photoemission spectroscopies (PES). By combining ab initio time-dependent density-functional theory (TDDFT) and many-body Green's function theory in the G W approximation (G W A ), we calculate the dynamic structure factor, the quasiparticle (QP) properties and PES spectra of bulk Be. We show that band-structure effects (i.e., due to interaction with the crystal potential) and QP lifetimes (LT) are both needed in order to explain the origin of the measured double-peak features in the IXS spectra. A quantitative agreement with experiment is obtained only when LT are supplemented to the adiabatic local-density approximation (ALDA) of TDDFT. Besides the valence band, PES spectra display a satellite, a signature of dynamical correlation due to the coupling of QPs and plasmons, which we are able to reproduce thanks to the combination of the G W A for the self-energy with the cumulant expansion of the Green's function.

  2. Detecting subnetwork-level dynamic correlations.

    Science.gov (United States)

    Yan, Yan; Qiu, Shangzhao; Jin, Zhuxuan; Gong, Sihong; Bai, Yun; Lu, Jianwei; Yu, Tianwei

    2017-01-15

    The biological regulatory system is highly dynamic. The correlations between many functionally related genes change over different biological conditions. Finding dynamic relations on the existing biological network may reveal important regulatory mechanisms. Currently no method is available to detect subnetwork-level dynamic correlations systematically on the genome-scale network. Two major issues hampered the development. The first is gene expression profiling data usually do not contain time course measurements to facilitate the analysis of dynamic relations, which can be partially addressed by using certain genes as indicators of biological conditions. Secondly, it is unclear how to effectively delineate subnetworks, and define dynamic relations between them. Here we propose a new method named LANDD (Liquid Association for Network Dynamics Detection) to find subnetworks that show substantial dynamic correlations, as defined by subnetwork A is concentrated with Liquid Association scouting genes for subnetwork B. The method produces easily interpretable results because of its focus on subnetworks that tend to comprise functionally related genes. Also, the collective behaviour of genes in a subnetwork is a much more reliable indicator of underlying biological conditions compared to using single genes as indicators. We conducted extensive simulations to validate the method's ability to detect subnetwork-level dynamic correlations. Using a real gene expression dataset and the human protein-protein interaction network, we demonstrate the method links subnetworks of distinct biological processes, with both confirmed relations and plausible new functional implications. We also found signal transduction pathways tend to show extensive dynamic relations with other functional groups. The R package is available at https://cran.r-project.org/web/packages/LANDD CONTACTS: yunba@pcom.edu, jwlu33@hotmail.com or tianwei.yu@emory.eduSupplementary information: Supplementary data

  3. Interaction effects on dynamic correlations in noncondensed Bose gases

    NARCIS (Netherlands)

    Bezett, A.; Van Driel, H. J.; Mink, M. P.; Stoof, H. T C; Duine, R. A.

    2014-01-01

    We consider dynamic, i.e., frequency-dependent, correlations in noncondensed ultracold atomic Bose gases. In particular, we consider the single-particle correlation function and its power spectrum. We compute this power spectrum for a one-component Bose gas, and we show how it depends on the

  4. Dynamical effects of electron-hole correlation and giant quantum attenuation of ultrasound in semimetals

    International Nuclear Information System (INIS)

    Kuramoto, Y.

    1982-01-01

    The giant quantum attenuation of ultrasound in bismuth and other semimetals is noticeably enhanced when certain pair of Landau subbands of electrons and holes participate simultaneously in an attenuation peak. A theoretical analysis is presented which emphasizes importance of dynamical effects of the electron-hole correlation. In the temperature range between 1K and 4K covered by most experiments, the correlation effect is found to be weak on the real part of the relevant response function which gives change in sound velocity. This implies that equilibrium properties of the system are not much influenced by the correlation effect. Nonetheless, the electron-hole correlation is shown to have a drastic consequence on the imaginary part of the response function probed by the ultrasonic attenuation. Proposal for experiment is advanced to discriminate relative importance of this exciton-like correlation from that of repulsive correlation between carriers with the same charge. (orig.)

  5. A cumulant functional for static and dynamic correlation

    International Nuclear Information System (INIS)

    Hollett, Joshua W.; Hosseini, Hessam; Menzies, Cameron

    2016-01-01

    A functional for the cumulant energy is introduced. The functional is composed of a pair-correction and static and dynamic correlation energy components. The pair-correction and static correlation energies are functionals of the natural orbitals and the occupancy transferred between near-degenerate orbital pairs, rather than the orbital occupancies themselves. The dynamic correlation energy is a functional of the statically correlated on-top two-electron density. The on-top density functional used in this study is the well-known Colle-Salvetti functional. Using the cc-pVTZ basis set, the functional effectively models the bond dissociation of H 2 , LiH, and N 2 with equilibrium bond lengths and dissociation energies comparable to those provided by multireference second-order perturbation theory. The performance of the cumulant functional is less impressive for HF and F 2 , mainly due to an underestimation of the dynamic correlation energy by the Colle-Salvetti functional.

  6. Uncertain Dynamics, Correlation Effects, and Robust Investment Decisions

    DEFF Research Database (Denmark)

    Flor, Christian Riis; Hesel, Søren

    2015-01-01

    We analyze a firm's investment problem when the dynamics of project value and investment cost are uncertain. We provide an explicit solution using a robust method for an ambiguity averse firm taking this into account. Ambiguity aversion regarding a common risk factor impacts differently than...... ambiguity aversion regarding investment cost residual risk. Correlation between project value and investment cost matters; ambiguity aversion regarding common risk can decrease the investment probability only if correlation is positive. Ambiguity aversion regarding residual risk always increases...... the investment probability. When only project value is risky, volatility can monotonically decrease the investment threshold; this does not hold with the multiple prior method....

  7. Two-dimensional optical correlation spectroscopy applied to liquid/glass dynamics

    OpenAIRE

    Lazonder, Kees; Pshenichnikov, Maxim S.; Wiersma, Douwe A.; Corkum, Paul; Jonas, David M.; Miller, R.J. Dwayne.; Weiner, Andrew M.

    2007-01-01

    Correlation spectroscopy was used to study the effects of temperature and phase changes on liquid and glass solvent dynamics. By assessing the eccentricity of the elliptic shape of a 2D optical correlation spectrum the value of the underlying frequency-frequency correlation function can be retrieved through a very simple relationship. This method yielded both intuitive clues and a quantitative measure of the dynamics of the system.

  8. Fokker-type dynamics with three-body correlations

    International Nuclear Information System (INIS)

    Salas, A.; Sanchez-Ron, J.M.

    1981-01-01

    Dynamical systems of N point particles without internal degrees of freedom are studied. Their equations of motion are derived from a Fokker-type variational principle with n-body correlations (n = 2,3,...,N), with special emphasis on the case n = 3. The distinction between n-body correlation and n-body effective force is analyzed in detail, with the help of an example. Maximal sets of independent three-body Poincare-invariant scalars are given. An example of three-body correlation formally similar to the usual two-body long-range scalar correlation is given and discussed. (author)

  9. Dynamic adjustments of cognitive control: oscillatory correlates of the conflict adaptation effect.

    Science.gov (United States)

    Pastötter, Bernhard; Dreisbach, Gesine; Bäuml, Karl-Heinz T

    2013-12-01

    It is a prominent idea that cognitive control mediates conflict adaptation, in that response conflict in a previous trial triggers control adjustments that reduce conflict in a current trial. In the present EEG study, we investigated the dynamics of cognitive control in a response-priming task by examining the effects of previous trial conflict on intertrial and current trial oscillatory brain activities, both on the electrode and the source level. Behavioral results showed conflict adaptation effects for RTs and response accuracy. Physiological results showed sustained intertrial effects in left parietal theta power, originating in the left inferior parietal cortex, and midcentral beta power, originating in the left and right (pre)motor cortex. Moreover, physiological analysis revealed a current trial conflict adaptation effect in midfrontal theta power, originating in the ACC. Correlational analyses showed that intertrial effects predicted conflict-induced midfrontal theta power in currently incongruent trials. In addition, conflict adaptation effects in midfrontal theta power and RTs were positively related. Together, these findings point to a dynamic cognitive control system that, as a function of previous trial type, up- and down-regulates attention and preparatory motor activities in anticipation of the next trial.

  10. Local Descriptors of Dynamic and Nondynamic Correlation.

    Science.gov (United States)

    Ramos-Cordoba, Eloy; Matito, Eduard

    2017-06-13

    Quantitatively accurate electronic structure calculations rely on the proper description of electron correlation. A judicious choice of the approximate quantum chemistry method depends upon the importance of dynamic and nondynamic correlation, which is usually assesed by scalar measures. Existing measures of electron correlation do not consider separately the regions of the Cartesian space where dynamic or nondynamic correlation are most important. We introduce real-space descriptors of dynamic and nondynamic electron correlation that admit orbital decomposition. Integration of the local descriptors yields global numbers that can be used to quantify dynamic and nondynamic correlation. Illustrative examples over different chemical systems with varying electron correlation regimes are used to demonstrate the capabilities of the local descriptors. Since the expressions only require orbitals and occupation numbers, they can be readily applied in the context of local correlation methods, hybrid methods, density matrix functional theory, and fractional-occupancy density functional theory.

  11. Dynamical and Bose-Einstein correlations in hadronization

    International Nuclear Information System (INIS)

    Scholten, O.; Wu, H.C.

    1993-01-01

    Pion correlations in the hadronization process are studied. A distinction is made between 'dynamical', due to the mechanism of the fragmentation scheme, and Bose-Einstein correlations, due to the statistics. It is found that in a string hadronization model not based on the usage of fragmentation functions, the dynamical correlations are at least as important as statistical correlation for identical charged pions. Other correlation functions are dominated by resonance decay. The importance of dynamical correlations imply that a pure chaotic assumption for the hadronization process is not applicable and thus that observed correlations should not be interpreted as measuring the spatial and temporal extent of sources. Comparisons are made with data from hadronic (e + , e - ) annihilation. (orig.)

  12. Dynamical correlations in finite nuclei: A simple method to study tensor effects

    International Nuclear Information System (INIS)

    Dellagiacoma, F.; Orlandini, G.; Traini, M.

    1983-01-01

    Dynamical correlations are introduced in finite nuclei by changing the two-body density through a phenomenological method. The role of tensor and short-range correlations in nuclear momentum distribution, electric form factor and two-body density of 4 He is investigated. The importance of induced tensor correlations in the total photonuclear cross section is reinvestigated providing a successful test of the method proposed here. (orig.)

  13. Nonperturbative stochastic dynamics driven by strongly correlated colored noise

    Science.gov (United States)

    Jing, Jun; Li, Rui; You, J. Q.; Yu, Ting

    2015-02-01

    We propose a quantum model consisting of two remote qubits interacting with two correlated colored noises and establish an exact stochastic Schrödinger equation for this open quantum system. It is shown that the quantum dynamics of the qubit system is profoundly modulated by the mutual correlation between baths and the bath memory capability through dissipation and fluctuation. We report a physical effect on generating inner correlation and entanglement of two distant qubits arising from the strong bath-bath correlation.

  14. Thermal behavior of dynamic magnetizations, hysteresis loop areas and correlations of a cylindrical Ising nanotube in an oscillating magnetic field within the effective-field theory and the Glauber-type stochastic dynamics approach

    International Nuclear Information System (INIS)

    Deviren, Bayram; Keskin, Mustafa

    2012-01-01

    The dynamical aspects of a cylindrical Ising nanotube in the presence of a time-varying magnetic field are investigated within the effective-field theory with correlations and Glauber-type stochastic approach. Temperature dependence of the dynamic magnetizations, dynamic total magnetization, hysteresis loop areas and correlations are investigated in order to characterize the nature of dynamic transitions as well as to obtain the dynamic phase transition temperatures and compensation behaviors. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and core, i.e., five different types of compensation behaviors in the Néel classification nomenclature exist in the system. -- Highlights: ► Kinetic cylindrical Ising nanotube is investigated using the effective-field theory. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► The effects of the exchange interactions have been studied in detail. ► Five different types of compensation behaviors have been found. ► Some characteristic phenomena are found depending on ratio of physical parameters.

  15. Thermal behavior of dynamic magnetizations, hysteresis loop areas and correlations of a cylindrical Ising nanotube in an oscillating magnetic field within the effective-field theory and the Glauber-type stochastic dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-02-20

    The dynamical aspects of a cylindrical Ising nanotube in the presence of a time-varying magnetic field are investigated within the effective-field theory with correlations and Glauber-type stochastic approach. Temperature dependence of the dynamic magnetizations, dynamic total magnetization, hysteresis loop areas and correlations are investigated in order to characterize the nature of dynamic transitions as well as to obtain the dynamic phase transition temperatures and compensation behaviors. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and core, i.e., five different types of compensation behaviors in the Néel classification nomenclature exist in the system. -- Highlights: ► Kinetic cylindrical Ising nanotube is investigated using the effective-field theory. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► The effects of the exchange interactions have been studied in detail. ► Five different types of compensation behaviors have been found. ► Some characteristic phenomena are found depending on ratio of physical parameters.

  16. Extended Møller-Plesset perturbation theory for dynamical and static correlations

    International Nuclear Information System (INIS)

    Tsuchimochi, Takashi; Van Voorhis, Troy

    2014-01-01

    We present a novel method that appropriately handles both dynamical and static electron correlations in a balanced manner, using a perturbation theory on a spin-extended Hartree-Fock (EHF) wave function reference. While EHF is a suitable candidate for degenerate systems where static correlation is ubiquitous, it is known that most of dynamical correlation is neglected in EHF. In this work, we derive a perturbative correction to a fully spin-projected self-consistent wave function based on second-order Møller-Plesset perturbation theory (MP2). The proposed method efficiently captures the ability of EHF to describe static correlation in degeneracy, combined with MP2's ability to treat dynamical correlation effects. We demonstrate drastic improvements on molecular ground state and excited state potential energy curves and singlet-triplet splitting energies over both EHF and MP2 with similar computational effort to the latter

  17. Dynamic polarization in paramagnetic solids and microscopic correlation functions

    International Nuclear Information System (INIS)

    Boucher, Jean-Paul

    1972-01-01

    The different effects of Dynamic Nuclear Polarization in paramagnetic solids are described by means of a single thermodynamic formalism. In the case of large exchange interactions, the Overhauser effect correlated with nuclear relaxation time measurements can provide a way of studying correlation functions between electronic spins. This method is used to study the low-frequency behaviour of the microscopic spectral density which should diverge as ω → 0, in the case of a linear exchange chain. (author) [fr

  18. Memory Effects and Nonequilibrium Correlations in the Dynamics of Open Quantum Systems

    Science.gov (United States)

    Morozov, V. G.

    2018-01-01

    We propose a systematic approach to the dynamics of open quantum systems in the framework of Zubarev's nonequilibrium statistical operator method. The approach is based on the relation between ensemble means of the Hubbard operators and the matrix elements of the reduced statistical operator of an open quantum system. This key relation allows deriving master equations for open systems following a scheme conceptually identical to the scheme used to derive kinetic equations for distribution functions. The advantage of the proposed formalism is that some relevant dynamical correlations between an open system and its environment can be taken into account. To illustrate the method, we derive a non-Markovian master equation containing the contribution of nonequilibrium correlations associated with energy conservation.

  19. Correlation between noise and dynamics of cavitation bubbles

    International Nuclear Information System (INIS)

    Chahine, G.L.; Courbierre, P.; Garnaud, P.

    1979-01-01

    A correlation between bubble dynamics and emitted noise is made using high-speed photography and two differently located hydrophones. The effect of the proximity of a solid wall is investigated. An amplitude and time analysis is performed and damage observations are made by means of a scanning electron microscope

  20. Flexible Bayesian Dynamic Modeling of Covariance and Correlation Matrices

    KAUST Repository

    Lan, Shiwei

    2017-11-08

    Modeling covariance (and correlation) matrices is a challenging problem due to the large dimensionality and positive-definiteness constraint. In this paper, we propose a novel Bayesian framework based on decomposing the covariance matrix into variance and correlation matrices. The highlight is that the correlations are represented as products of vectors on unit spheres. We propose a variety of distributions on spheres (e.g. the squared-Dirichlet distribution) to induce flexible prior distributions for covariance matrices that go beyond the commonly used inverse-Wishart prior. To handle the intractability of the resulting posterior, we introduce the adaptive $\\\\Delta$-Spherical Hamiltonian Monte Carlo. We also extend our structured framework to dynamic cases and introduce unit-vector Gaussian process priors for modeling the evolution of correlation among multiple time series. Using an example of Normal-Inverse-Wishart problem, a simulated periodic process, and an analysis of local field potential data (collected from the hippocampus of rats performing a complex sequence memory task), we demonstrated the validity and effectiveness of our proposed framework for (dynamic) modeling covariance and correlation matrices.

  1. System–environment correlations and non-Markovian dynamics

    International Nuclear Information System (INIS)

    Pernice, A; Helm, J; Strunz, W T

    2012-01-01

    We determine the total state dynamics of a dephasing open quantum system using the standard environment of harmonic oscillators. Of particular interest are random unitary approaches to the same reduced dynamics and system–environment correlations in the full model. Concentrating on a model with an at times negative dephasing rate, the issue of ‘non-Markovianity’ will also be addressed. Crucially, given the quantum environment, the appearance of non-Markovian dynamics turns out to be accompanied by a loss of system–environment correlations. Depending on the initial purity of the qubit state, these system–environment correlations may be purely classical over the whole relevant time scale, or there may be intervals of genuine system–environment entanglement. In the latter case, we see no obvious relation between the build-up or decay of these quantum correlations and ‘non-Markovianity’. (paper)

  2. String effects on Fermi-Dirac correlation measurements

    International Nuclear Information System (INIS)

    Duran Delgado, R.M.; Gustafson, G.; Loennblad, L.

    2007-01-01

    We investigate some recent measurements of Fermi-Dirac correlations by the LEP collaborations indicating surprisingly small source radii for the production of baryons in e + e - annihilation at the Z 0 peak. In hadronization models there is besides the Fermi-Dirac correlation effect also a strong dynamical (anti-) correlation. We demonstrate that the extraction of the pure FD effect is highly dependent on a realistic Monte Carlo event generator, both for separation of those dynamical correlations that are not related to Fermi-Dirac statistics, and for corrections of the data and background subtractions. Although the model can be tuned to well reproduce single particle distributions, there are large model uncertainties when it comes to correlations between identical baryons. We therefore, unfortunately, have to conclude that it is at present not possible to draw any firm conclusion about the source radii relevant for baryon production at LEP. (orig.)

  3. Dynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model.

    Science.gov (United States)

    Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo

    2012-11-13

    The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed.

  4. Electron correlation effects on geometries and 19F shieldings of fluorobenzenes

    International Nuclear Information System (INIS)

    Webb, G.A.; Karadakov, P.B.; England, J.A.

    2000-01-01

    In order to include the effects of electron correlation in ab initio molecular orbital calculations it is necessary to go beyond the single determinant Hartree-Fock (HF) level of theory. In the present investigation the influences of both dynamic and non-dynamic correlation effects on the optimised geometries and 19 F nuclear shielding calculations of the twelve fluorobenzenes are reported.The non-dynamic electron correlation effects are represented by complete-active space self-consistent field (CASSCF) calculations. Second- and fourth-order Moller-Plesset (MP2 and MP4) calculations are used to describe the dynamic electron correlation effects. Some density-functional (DFT) results are also reported which do not distinguish between dynamic and non-dynamic electron correlation. Following the correlated geometry optimisations 19 F nuclear shielding calculations were performed using the gauge-included atomic orbitals (GIAO) procedure, these were undertaken with wave functions which include various levels of electron correlation including HF, CASSCF and MP2. For the calculations of the optimised geometries, and some of the nuclear shieldings the 6-13G** basis set s used whereas the locally-dense [6-13G** on C and H and 6-311++G(2d,2p) on F] set is used for some of the shielding calculations. A comparison of the results of HF shielding calculations using other basis sets is included. Comparison of the calculated geometry and shielding results with relevant, reported, experimental data is made. (author)

  5. Correlated electron dynamics and memory in time-dependent density functional theory

    International Nuclear Information System (INIS)

    Thiele, Mark

    2009-01-01

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  6. Correlated electron dynamics and memory in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Mark

    2009-07-28

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  7. Probing electron correlation and nuclear dynamics in Momentum Space

    International Nuclear Information System (INIS)

    Deleuze, M S; Hajgato, B; Morini, F; Knippenberg, S

    2010-01-01

    Orbital imaging experiments employing Electron Momentum Spectroscopy are subject to many complications, such as distorted wave effects, conformational mobility in the electronic ground state, ultra-fast nuclear dynamics in the final state, or a dispersion of the ionization intensity over electronically excited (shake-up) configurations of the cation. The purpose of the present contribution is to illustrate how a proper treatment of these complications enables us to probe in momentum space the consequences of electron correlation and nuclear dynamics in neutral and cationic states.

  8. Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.

    Science.gov (United States)

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2014-07-17

    Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.

  9. Gold, oil, and stocks: Dynamic correlations

    Czech Academy of Sciences Publication Activity Database

    Baruník, Jozef; Kočenda, Evžen; Vácha, Lukáš

    2016-01-01

    Roč. 42, č. 1 (2016), s. 186-201 ISSN 1059-0560 R&D Projects: GA ČR GA14-24129S Institutional support: RVO:67985556 Keywords : Financial markets * Time-frequency dynamics * High-frequency data * Dynamic correlation * Financial crisis * Wavelets Subject RIV: AH - Economics Impact factor: 1.261, year: 2016 http://library.utia.cas.cz/separaty/2015/E/barunik-0449082.pdf

  10. Revealing time bunching effect in single-molecule enzyme conformational dynamics.

    Science.gov (United States)

    Lu, H Peter

    2011-04-21

    In this perspective, we focus our discussion on how the single-molecule spectroscopy and statistical analysis are able to reveal enzyme hidden properties, taking the study of T4 lysozyme as an example. Protein conformational fluctuations and dynamics play a crucial role in biomolecular functions, such as in enzymatic reactions. Single-molecule spectroscopy is a powerful approach to analyze protein conformational dynamics under physiological conditions, providing dynamic perspectives on a molecular-level understanding of protein structure-function mechanisms. Using single-molecule fluorescence spectroscopy, we have probed T4 lysozyme conformational motions under the hydrolysis reaction of a polysaccharide of E. coli B cell walls by monitoring the fluorescence resonant energy transfer (FRET) between a donor-acceptor probe pair tethered to T4 lysozyme domains involving open-close hinge-bending motions. Based on the single-molecule spectroscopic results, molecular dynamics simulation, a random walk model analysis, and a novel 2D statistical correlation analysis, we have revealed a time bunching effect in protein conformational motion dynamics that is critical to enzymatic functions. Bunching effect implies that conformational motion times tend to bunch in a finite and narrow time window. We show that convoluted multiple Poisson rate processes give rise to the bunching effect in the enzymatic reaction dynamics. Evidently, the bunching effect is likely common in protein conformational dynamics involving in conformation-gated protein functions. In this perspective, we will also discuss a new approach of 2D regional correlation analysis capable of analyzing fluctuation dynamics of complex multiple correlated and anti-correlated fluctuations under a non-correlated noise background. Using this new method, we are able to map out any defined segments along the fluctuation trajectories and determine whether they are correlated, anti-correlated, or non-correlated; after which, a

  11. Weak diffusion limits of dynamic conditional correlation models

    DEFF Research Database (Denmark)

    Hafner, Christian M.; Laurent, Sebastien; Violante, Francesco

    The properties of dynamic conditional correlation (DCC) models are still not entirely understood. This paper fills one of the gaps by deriving weak diffusion limits of a modified version of the classical DCC model. The limiting system of stochastic differential equations is characterized...... by a diffusion matrix of reduced rank. The degeneracy is due to perfect collinearity between the innovations of the volatility and correlation dynamics. For the special case of constant conditional correlations, a non-degenerate diffusion limit can be obtained. Alternative sets of conditions are considered...

  12. Correlations and symmetry of interactions influence collective dynamics of molecular motors

    International Nuclear Information System (INIS)

    Celis-Garza, Daniel; Teimouri, Hamid; Kolomeisky, Anatoly B

    2015-01-01

    Enzymatic molecules that actively support many cellular processes, including transport, cell division and cell motility, are known as motor proteins or molecular motors. Experimental studies indicate that they interact with each other and they frequently work together in large groups. To understand the mechanisms of collective behavior of motor proteins we study the effect of interactions in the transport of molecular motors along linear filaments. It is done by analyzing a recently introduced class of totally asymmetric exclusion processes that takes into account the intermolecular interactions via thermodynamically consistent approach. We develop a new theoretical method that allows us to compute analytically all dynamic properties of the system. Our analysis shows that correlations play important role in dynamics of interacting molecular motors. Surprisingly, we find that the correlations for repulsive interactions are weaker and more short-range than the correlations for the attractive interactions. In addition, it is shown that symmetry of interactions affect dynamic properties of molecular motors. The implications of these findings for motor proteins transport are discussed. Our theoretical predictions are tested by extensive Monte Carlo computer simulations. (paper)

  13. Financialization, Crisis and Commodity Correlation Dynamics

    OpenAIRE

    Annastiina Silvennoinen; Susan Thorp

    2010-01-01

    We study bi-variate conditional volatility and correlation dynamics for individual commodity futures and financial assets from May 1990-July 2009 using DSTCC-GARCH (Silvennoinen and Terasvirta 2009). These models allow correlation to vary smoothly between extreme states via transition functions driven by indicators of market conditions. Expected stock volatility and money manager open interest in futures markets are relevant transition variables. Results point to increasing integration betwee...

  14. Cumulant approach to dynamical correlation functions at finite temperatures

    International Nuclear Information System (INIS)

    Tran Minhtien.

    1993-11-01

    A new theoretical approach, based on the introduction of cumulants, to calculate thermodynamic averages and dynamical correlation functions at finite temperatures is developed. The method is formulated in Liouville instead of Hilbert space and can be applied to operators which do not require to satisfy fermion or boson commutation relations. The application of the partitioning and projection methods for the dynamical correlation functions is discussed. The present method can be applied to weakly as well as to strongly correlated systems. (author). 9 refs

  15. Explicit role of dynamical and nondynamical electron correlation on singlet-triplet splitting in carbenes

    International Nuclear Information System (INIS)

    Seal, Prasenjit; Chakrabarti, Swapan

    2007-01-01

    Density functional theoretical studies have been performed on carbene systems to determine the singlet-triplet splitting and also to explore the role of electron correlation. Using an approximate method of separation of dynamical and nondynamical correlation, it is found that dynamical and nondynamical electron correlation stabilizes the singlet state relative to the triplet for halo carbenes in both BLYP and B3LYP methods. Calculations performed on higher homologues of methylene suggest that beyond CH(CH 3 ), both the electron correlations have leveling effect in stabilizing the singlet state relative to the triplet. It has also been observed while dynamical electron correlation fails to provide any substantial degree of stabilization to the singlet states of higher homologues of methylene in B3LYP method, an opposite trend is observed for nondynamical counterpart. Among the larger systems studied (9-triptycyl)(α-naphthyl)-carbene has the highest stability of the triplet state whereas bis-imidazol-2-ylidenes has the most stable singlet state. Interestingly, the values of the dynamical electron correlation for each state of each system studied are different for the two methods used. The reason behind this apparent discrepancy lies in the fact that the coefficients of the LYP part in B3LYP and BLYP functionals are different

  16. Gating based on internal/external signals with dynamic correlation updates

    International Nuclear Information System (INIS)

    Wu Huanmei; Zhao Qingya; Berbeco, Ross I; Nishioka, Seiko; Shirato, Hiroki; Jiang, Steve B

    2008-01-01

    Precise localization of mobile tumor positions in real time is critical to the success of gated radiotherapy. Tumor positions are usually derived from either internal or external surrogates. Fluoroscopic gating based on internal surrogates, such as implanted fiducial markers, is accurate however requiring a large amount of imaging dose. Gating based on external surrogates, such as patient abdominal surface motion, is non-invasive however less accurate due to the uncertainty in the correlation between tumor location and external surrogates. To address these complications, we propose to investigate an approach based on hybrid gating with dynamic internal/external correlation updates. In this approach, the external signal is acquired at high frequency (such as 30 Hz) while the internal signal is sparsely acquired (such as 0.5 Hz or less). The internal signal is used to validate and update the internal/external correlation during treatment. Tumor positions are derived from the external signal based on the newly updated correlation. Two dynamic correlation updating algorithms are introduced. One is based on the motion amplitude and the other is based on the motion phase. Nine patients with synchronized internal/external motion signals are simulated retrospectively to evaluate the effectiveness of hybrid gating. The influences of different clinical conditions on hybrid gating, such as the size of gating windows, the optimal timing for internal signal acquisition and the acquisition frequency are investigated. The results demonstrate that dynamically updating the internal/external correlation in or around the gating window will reduce false positive with relatively diminished treatment efficiency. This improvement will benefit patients with mobile tumors, especially greater for early stage lung cancers, for which the tumors are less attached or freely floating in the lung.

  17. Gating based on internal/external signals with dynamic correlation updates

    Energy Technology Data Exchange (ETDEWEB)

    Wu Huanmei [Purdue School of Engineering and Technology, Indiana University School of Informatics, IUPUI, Indianapolis, IN (United States); Zhao Qingya [School of Health Sciences, Purdue University, West Lafayette, IN (United States); Berbeco, Ross I [Department of Radiation Oncology, Dana-Farber/Brigham and Womens Cancer Center and Harvard Medical School, Boston, MA (United States); Nishioka, Seiko [NTT East-Japan Sapporo Hospital, Sapporo (Japan); Shirato, Hiroki [Hokkaido University Graduate School of Medicine, Sapporo (Japan); Jiang, Steve B [Department of Radiation Oncology, School of Medicine, University of California, San Diego, CA (United States)], E-mail: hw9@iupui.edu, E-mail: sbjiang@ucsd.edu

    2008-12-21

    Precise localization of mobile tumor positions in real time is critical to the success of gated radiotherapy. Tumor positions are usually derived from either internal or external surrogates. Fluoroscopic gating based on internal surrogates, such as implanted fiducial markers, is accurate however requiring a large amount of imaging dose. Gating based on external surrogates, such as patient abdominal surface motion, is non-invasive however less accurate due to the uncertainty in the correlation between tumor location and external surrogates. To address these complications, we propose to investigate an approach based on hybrid gating with dynamic internal/external correlation updates. In this approach, the external signal is acquired at high frequency (such as 30 Hz) while the internal signal is sparsely acquired (such as 0.5 Hz or less). The internal signal is used to validate and update the internal/external correlation during treatment. Tumor positions are derived from the external signal based on the newly updated correlation. Two dynamic correlation updating algorithms are introduced. One is based on the motion amplitude and the other is based on the motion phase. Nine patients with synchronized internal/external motion signals are simulated retrospectively to evaluate the effectiveness of hybrid gating. The influences of different clinical conditions on hybrid gating, such as the size of gating windows, the optimal timing for internal signal acquisition and the acquisition frequency are investigated. The results demonstrate that dynamically updating the internal/external correlation in or around the gating window will reduce false positive with relatively diminished treatment efficiency. This improvement will benefit patients with mobile tumors, especially greater for early stage lung cancers, for which the tumors are less attached or freely floating in the lung.

  18. Dynamical correlations for circular ensembles of random matrices

    International Nuclear Information System (INIS)

    Nagao, Taro; Forrester, Peter

    2003-01-01

    Circular Brownian motion models of random matrices were introduced by Dyson and describe the parametric eigenparameter correlations of unitary random matrices. For symmetric unitary, self-dual quaternion unitary and an analogue of antisymmetric Hermitian matrix initial conditions, Brownian dynamics toward the unitary symmetry is analyzed. The dynamical correlation functions of arbitrary number of Brownian particles at arbitrary number of times are shown to be written in the forms of quaternion determinants, similarly as in the case of Hermitian random matrix models

  19. Dynamic evolution of cross-correlations in the Chinese stock market.

    Directory of Open Access Journals (Sweden)

    Fei Ren

    Full Text Available The analysis of cross-correlations is extensively applied for the understanding of interconnections in stock markets and the portfolio risk estimation. Current studies of correlations in Chinese market mainly focus on the static correlations between return series, and this calls for an urgent need to investigate their dynamic correlations. Our study aims to reveal the dynamic evolution of cross-correlations in the Chinese stock market, and offer an exact interpretation for the evolution behavior. The correlation matrices constructed from the return series of 367 A-share stocks traded on the Shanghai Stock Exchange from January 4, 1999 to December 30, 2011 are calculated over a moving window with a size of 400 days. The evolutions of the statistical properties of the correlation coefficients, eigenvalues, and eigenvectors of the correlation matrices are carefully analyzed. We find that the stock correlations are significantly increased in the periods of two market crashes in 2001 and 2008, during which only five eigenvalues significantly deviate from the random correlation matrix, and the systemic risk is higher in these volatile periods than calm periods. By investigating the significant contributors of the deviating eigenvectors in different time periods, we observe a dynamic evolution behavior in business sectors such as IT, electronics, and real estate, which lead the rise (drop before (after the crashes. Our results provide new perspectives for the understanding of the dynamic evolution of cross-correlations in the Chines stock markets, and the result of risk estimation is valuable for the application of risk management.

  20. Dynamic evolution of cross-correlations in the Chinese stock market.

    Science.gov (United States)

    Ren, Fei; Zhou, Wei-Xing

    2014-01-01

    The analysis of cross-correlations is extensively applied for the understanding of interconnections in stock markets and the portfolio risk estimation. Current studies of correlations in Chinese market mainly focus on the static correlations between return series, and this calls for an urgent need to investigate their dynamic correlations. Our study aims to reveal the dynamic evolution of cross-correlations in the Chinese stock market, and offer an exact interpretation for the evolution behavior. The correlation matrices constructed from the return series of 367 A-share stocks traded on the Shanghai Stock Exchange from January 4, 1999 to December 30, 2011 are calculated over a moving window with a size of 400 days. The evolutions of the statistical properties of the correlation coefficients, eigenvalues, and eigenvectors of the correlation matrices are carefully analyzed. We find that the stock correlations are significantly increased in the periods of two market crashes in 2001 and 2008, during which only five eigenvalues significantly deviate from the random correlation matrix, and the systemic risk is higher in these volatile periods than calm periods. By investigating the significant contributors of the deviating eigenvectors in different time periods, we observe a dynamic evolution behavior in business sectors such as IT, electronics, and real estate, which lead the rise (drop) before (after) the crashes. Our results provide new perspectives for the understanding of the dynamic evolution of cross-correlations in the Chines stock markets, and the result of risk estimation is valuable for the application of risk management.

  1. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function

    DEFF Research Database (Denmark)

    Lacevic, N.; Starr, F. W.; Schrøder, Thomas

    2003-01-01

    correlation function g4(r,t) and corresponding "structure factor" S4(q,t) which measure the spatial correlations between the local liquid density at two points in space, each at two different times, and so are sensitive to dynamical heterogeneity. We study g4(r,t) and S4(q,t) via molecular dynamics......Relaxation in supercooled liquids above their glass transition and below the onset temperature of "slow" dynamics involves the correlated motion of neighboring particles. This correlated motion results in the appearance of spatially heterogeneous dynamics or "dynamical heterogeneity." Traditional...... two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density...

  2. Effective equations for the precession dynamics of electron spins and electron–impurity correlations in diluted magnetic semiconductors

    International Nuclear Information System (INIS)

    Cygorek, M; Axt, V M

    2015-01-01

    Starting from a quantum kinetic theory for the spin dynamics in diluted magnetic semiconductors, we derive simplified equations that effectively describe the spin transfer between carriers and magnetic impurities for an arbitrary initial impurity magnetization. Taking the Markov limit of these effective equations, we obtain good quantitative agreement with the full quantum kinetic theory for the spin dynamics in bulk systems at high magnetic doping. In contrast, the standard rate description where the carrier–dopant interaction is treated according to Fermi’s golden rule, which involves the assumption of a short memory as well as a perturbative argument, has been shown previously to fail if the impurity magnetization is non-zero. The Markov limit of the effective equations is derived, assuming only a short memory, while higher order terms are still accounted for. These higher order terms represent the precession of the carrier–dopant correlations in the effective magnetic field due to the impurity spins. Numerical calculations show that the Markov limit of our effective equations reproduces the results of the full quantum kinetic theory very well. Furthermore, this limit allows for analytical solutions and for a physically transparent interpretation. (paper)

  3. Asymmetric correlation of sovereign bond yield dynamics in the Eurozone

    Directory of Open Access Journals (Sweden)

    Dajcman Silvo

    2013-01-01

    Full Text Available This paper examines the symmetry of correlation of sovereign bond yield dynamics between eight Eurozone countries (Austria, Belgium, France, Germany, Ireland, Italy, Portugal, and Spain in the period from January 3, 2000 to August 31, 2011. Asymmetry of correlation is investigated pair-wise by applying the test of Yongmiao Hong, Jun Tu, and Guofu Zhou (2007. Whereas the test of Hong, Tu, and Zhou (2007 is static, the present paper provides also a dynamic version of the test and identifies time periods when the correlation of Eurozone sovereign bond yield dynamics became asymmetric. We identified seven pairs of sovereign bond markets for which the null hypothesis of symmetry in correlation of sovereign bond yield dynamics can be rejected. Calculating rolling-window exceedance correlation, we found that the time-varying upper- (i.e. for positive yield changes and lower-tail correlations (i.e. for negative yield changes for pair-wise observed sovereign bond markets normally follow each other closely, yet during some time periods (for most pair-wise observed countries, these periods are around the September 11 attack on the New York City WTC and around the start of the Greek debt crisis the difference in correlation does increase. The results show that the upper- and lower-tail correlation was symmetric before the Eurozone debt crisis for most of the pair-wise observed sovereign bond markets but has become much less symmetric since then.

  4. Thermal effects in the hadronic and photonic multiplicity distributions and correlations: a thermo-field dynamic approach

    International Nuclear Information System (INIS)

    Bambah, Bindu A.; Mogurampally, Naveen Kumar

    2016-01-01

    The existence of the Quark Gluon Plasma (QGP) requires that in the collision of heavy ions an initial fireball is formed which has a lifetime larger than typical hadronic time scale of 10"−"2"3 sec and that the temperature and volume of the fireball is sufficient to ensure that the Quark Hadron phase transition predicted by statistical QCD is achieved. Then the pions and photons emitted from this hot fire ball may carry information of the temperature and life time of the emitting region, and this may manifest itself in the correlation functions and multiplicities which can be modified by finite temperature. Thus it is important to find ways of incorporating finite temperature effects in multiplicity distributions and correlations. The Thermo field formalism is particularly useful in the description of parametric dynamical systems in which squeezing of quantum fluctuations is important

  5. Stochastic GARCH dynamics describing correlations between stocks

    Science.gov (United States)

    Prat-Ortega, G.; Savel'ev, S. E.

    2014-09-01

    The ARCH and GARCH processes have been successfully used for modelling price dynamics such as stock returns or foreign exchange rates. Analysing the long range correlations between stocks, we propose a model, based on the GARCH process, which is able to describe the main characteristics of the stock price correlations, including the mean, variance, probability density distribution and the noise spectrum.

  6. Environment and initial state engineered dynamics of quantum and classical correlations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng-Zhi, E-mail: czczwang@outlook.com; Li, Chun-Xian; Guo, Yu; Lu, Geng-Biao; Ding, Kai-He

    2016-11-15

    Based on an open exactly solvable system coupled to an environment with nontrivial spectral density, we connect the features of quantum and classical correlations with some features of the environment, initial states of the system, and the presence of initial system–environment correlations. Some interesting features not revealed before are observed by changing the structure of environment, the initial states of system, and the presence of initial system–environment correlations. The main results are as follows. (1) Quantum correlations exhibit temporary freezing and permanent freezing even at high temperature of the environment, for which the necessary and sufficient conditions are given by three propositions. (2) Quantum correlations display a transition from temporary freezing to permanent freezing by changing the structure of environment. (3) Quantum correlations can be enhanced all the time, for which the condition is put forward. (4) The one-to-one dependency relationship between all kinds of dynamic behaviors of quantum correlations and the initial states of the system as well as environment structure is established. (5) In the presence of initial system–environment correlations, quantum correlations under local environment exhibit temporary multi-freezing phenomenon. While under global environment they oscillate, revive, and damp, an explanation for which is given. - Highlights: • Various interesting behaviors of quantum and classical correlations are observed in an open exactly solvable model. • The important effects of the bath structure on quantum and classical correlations are revealed. • The one-to-one correspondence between the type of dynamical behavior of quantum discord and the initial state is given. • Quantum correlations are given in the presence of initial qubits–bath correlations.

  7. Environment and initial state engineered dynamics of quantum and classical correlations

    International Nuclear Information System (INIS)

    Wang, Cheng-Zhi; Li, Chun-Xian; Guo, Yu; Lu, Geng-Biao; Ding, Kai-He

    2016-01-01

    Based on an open exactly solvable system coupled to an environment with nontrivial spectral density, we connect the features of quantum and classical correlations with some features of the environment, initial states of the system, and the presence of initial system–environment correlations. Some interesting features not revealed before are observed by changing the structure of environment, the initial states of system, and the presence of initial system–environment correlations. The main results are as follows. (1) Quantum correlations exhibit temporary freezing and permanent freezing even at high temperature of the environment, for which the necessary and sufficient conditions are given by three propositions. (2) Quantum correlations display a transition from temporary freezing to permanent freezing by changing the structure of environment. (3) Quantum correlations can be enhanced all the time, for which the condition is put forward. (4) The one-to-one dependency relationship between all kinds of dynamic behaviors of quantum correlations and the initial states of the system as well as environment structure is established. (5) In the presence of initial system–environment correlations, quantum correlations under local environment exhibit temporary multi-freezing phenomenon. While under global environment they oscillate, revive, and damp, an explanation for which is given. - Highlights: • Various interesting behaviors of quantum and classical correlations are observed in an open exactly solvable model. • The important effects of the bath structure on quantum and classical correlations are revealed. • The one-to-one correspondence between the type of dynamical behavior of quantum discord and the initial state is given. • Quantum correlations are given in the presence of initial qubits–bath correlations.

  8. Instanton effects on CP-violating gluonic correlators

    Science.gov (United States)

    Mori, Shingo; Frison, Julien; Kitano, Ryuichiro; Matsufuru, Hideo; Yamada, Norikazu

    2018-03-01

    In order to better understand the role played by instantons behind nonperturbative dynamics, we investigate the instanton contributions to the gluonic two point correlation functions in the SU(2) YM theory. Pseudoscalar-scalar gluonic correlation functions are calculated on the lattice at various temperatures and compared with the instanton calculus. We discuss how the instanton effects emerge or disappear with temperature and try to provide the interpretation behind it.

  9. New features of entanglement dynamics with initial system–bath correlations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lin [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Zou, Jian, E-mail: zoujian@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); He, Zhi; Li, Jun-Gang; Shao, Bin [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wu, Lian-Ao [Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), PO Box 644, 48080 Bilbao (Spain)

    2012-02-06

    We investigate the influence of initial correlations between two qubits and a family of baths on the entanglement dynamics of these two qubits. We show that initial system–bath correlations can effectively avoid the occurrence of entanglement sudden death, and for the initial states with quantum correlations the entanglement between two qubits can be larger than its initial value. Significantly, we find that there exist initial states which we called entanglement preserving states, such that, although the state of the qubit subsystem evolves the entanglement of two qubits does not evolves at all. -- Highlights: ► We obtain analytically solutions of two qubits interacting with a family of baths. ► Having initial quantum correlation with the bath, the system can gain entanglement. ► For some initial states though the system evolves, the entanglement remain the same.

  10. Quantum Zeno and anti-Zeno effects on quantum and classical correlations

    International Nuclear Information System (INIS)

    Francica, F.; Plastina, F.; Maniscalco, S.

    2010-01-01

    In this paper we study the possibility of modifying the dynamics of both quantum correlations, such as entanglement and discord, and classical correlations of an open bipartite system by means of the quantum Zeno effect. We consider two qubits coupled to a common boson reservoir at zero temperature. This model describes, for example, two atoms interacting with a quantized mode of a lossy cavity. We show that when the frequencies of the two atoms are symmetrically detuned from that of the cavity mode, oscillations between the Zeno and anti-Zeno regimes occur. We also calculate analytically the time evolution of both classical correlations and quantum discord, and we compare the Zeno dynamics of entanglement with the Zeno dynamics of classical correlations and discord.

  11. The dynamic correlation between policy uncertainty and stock market returns in China

    Science.gov (United States)

    Yang, Miao; Jiang, Zhi-Qiang

    2016-11-01

    The dynamic correlation is examined between government's policy uncertainty and Chinese stock market returns in the period from January 1995 to December 2014. We find that the stock market is significantly correlated to policy uncertainty based on the results of the Vector Auto Regression (VAR) and Structural Vector Auto Regression (SVAR) models. In contrast, the results of the Dynamic Conditional Correlation Generalized Multivariate Autoregressive Conditional Heteroscedasticity (DCC-MGARCH) model surprisingly show a low dynamic correlation coefficient between policy uncertainty and market returns, suggesting that the fluctuations of each variable are greatly influenced by their values in the preceding period. Our analysis highlights the understanding of the dynamical relationship between stock market and fiscal and monetary policy.

  12. Slow dynamics in an azopolymer molecular layer studied by x-ray photon correlation spectroscopy

    International Nuclear Information System (INIS)

    Orsi, D.; Fluerasu, A.; Cristofolini, L.; Fontana, M.P.; Pontecorvo, E.; Caronna, C.; Zontone, F.; Madsen, A.

    2010-01-01

    We report the results of x-ray photon correlation spectroscopy (XPCS) experiments on multilayers of a photosensitive azo-polymer which can be softened by photoisomerization. Time correlation functions have been measured at different temperatures and momentum transfers (q) and under different illumination conditions (dark, UV or visible). The correlation functions are well described by the Kohlrausch-Williams-Watts (KWW) form with relaxation times that are proportional to q -1 . The characteristic relaxation times follow the same Vogel-Fulcher-Tammann law describing the bulk viscosity of this polymer. The out-of-equilibrium relaxation dynamics following a UV photoperturbation are accelerated, which is in agreement with a fluidification effect previously measured by rheology. The transient dynamics are characterized by two times correlation function, and dynamical heterogeneity is evidenced by calculating the variance χ of the degree of correlation as a function of ageing time. A clear peak in χ appears at a well defined time τ C which scales with q -1 and with the ageing time, in a similar fashion as previously reported in colloidal suspensions (O. Dauchot et al. Phys. Rev. Lett. 95 265701 (2005)). From an accurate analysis of the correlation functions we could demonstrate a temperature and light dependent cross-over from compressed KWW to simple exponential behavior.

  13. The dynamics of correlated novelties.

    Science.gov (United States)

    Tria, F; Loreto, V; Servedio, V D P; Strogatz, S H

    2014-07-31

    Novelties are a familiar part of daily life. They are also fundamental to the evolution of biological systems, human society, and technology. By opening new possibilities, one novelty can pave the way for others in a process that Kauffman has called "expanding the adjacent possible". The dynamics of correlated novelties, however, have yet to be quantified empirically or modeled mathematically. Here we propose a simple mathematical model that mimics the process of exploring a physical, biological, or conceptual space that enlarges whenever a novelty occurs. The model, a generalization of Polya's urn, predicts statistical laws for the rate at which novelties happen (Heaps' law) and for the probability distribution on the space explored (Zipf's law), as well as signatures of the process by which one novelty sets the stage for another. We test these predictions on four data sets of human activity: the edit events of Wikipedia pages, the emergence of tags in annotation systems, the sequence of words in texts, and listening to new songs in online music catalogues. By quantifying the dynamics of correlated novelties, our results provide a starting point for a deeper understanding of the adjacent possible and its role in biological, cultural, and technological evolution.

  14. Correlation effects on spin-polarized electron-hole quantum bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Saini, L. K., E-mail: drlalitsaini75@gmail.com; Sharma, R. O., E-mail: sharmarajesh0387@gmail.com [Department of Applied Physics, S. V. National Institute of Technology, Surat – 395 007 (India); Nayak, Mukesh G. [Department of Physics, Silvassa College (Silvassa Institute of Higher Learning), Silvassa 396 230 (India)

    2016-05-06

    We present a numerical calculation for the intra- and interlayer pair-correlation functions, g{sub ll’}(r), of spin-polarized electron-hole quantum bilayers at zero temperature. The calculations of g{sub ll’}(r) are performed by including electron correlations within the dynamical version of the self-consistent mean-field approximation of Singwi, Tosi, Land and Sjölander (qSTLS). Our study reveals that the critical layer density decreases (increases) due to the inclusion of finite width (mass-asymmetry) effect during the phase-transition from charge-density wave to Wigner crystal ground-state by yielding the pronounced oscillatory behavior ing{sub ll}(r). The results are compared with recent findings of spin-polarized electron-hole quantum bilayers with mass-symmetry and zero width effects. To highlight the importance of dynamical character of correlations, we have also compared our results with the STLS results.

  15. Spin-density correlations in the dynamic spin-fluctuation theory: Comparison with polarized neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, N.B., E-mail: melnikov@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Reser, B.I., E-mail: reser@imp.uran.ru [Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Paradezhenko, G.V., E-mail: gparadezhenko@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2016-08-01

    To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory, we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local moments are found in good agreement with results of polarized neutron scattering experiment over a wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with temperature.

  16. Correlation Dynamics in East Asian Financial Markets

    NARCIS (Netherlands)

    Kuper, Gerard; Lestano, L

    2014-01-01

    This paper examines the dynamic relationship between stock returns and exchange rate changes using daily data from January 3, 1994 - September 27, 2013 for six East Asian countries: Indonesia, Malaysia, the Philippines, Singapore, South Korea and Thailand. We estimate conditional correlations using

  17. The Correlated Dynamics of Micron-Scale Cantilevers in a Viscous Fluid

    Science.gov (United States)

    Robbins, Brian A.

    A number of microcantilever systems of fundamental importance are explored using theoretical and numerical methods to quantify and provide physical insights into the dynamics of experimentally accessible systems that include a variety of configurations and viscous fluids. It is first shown that the correlated dynamics of both a laterally and vertically offset cantilever pair can be accurately predicted by numerical simulations. This is verified by comparing the correlated dynamics yielded by numerical simulations with experimental measurement. It is also demonstrated that in order to obtain these accurate predictions, geometric details of the cantilever must be included in the numerical simulation to directly reflect the experimental cantilever. A microrheology technique that utilizes the fluctuation-dissipation theorem is proposed. It is shown that by including the frequency dependence of the fluid damping, improvements in accuracy of the predictions of the rheological properties of the surrounding fluid are observed over current techniques. The amplitude spectrum of a 2-D cantilever in a power-law fluid is studied. The resulting amplitude spectrum yielded a curve similar to an overdamped system. It is observed that the amplitude and noise spectrum yield the same qualitative response for a 2-D cantilever in a shear-thinning, power-law fluid. The correlated dynamics of a tethered vertically offset cantilever pair is investigated. It is shown that for a range of stiffness ratios, which is the ratio of the spring constant of the tethering relative to the cantilever spring constant, the change in the correlated dynamics of a Hookean spring tethered cantilever pair can be seen in the presence of fluid coupling. The dynamics of a spring-mass tethered, vertically offset cantilever pair is qualitatively studied by simplifying the model to an array of springs and masses. The resulting study found that the correlated dynamics of the displacement of mass of the tethered

  18. An airloads theory for morphing airfoils in dynamic stall with experimental correlation

    Science.gov (United States)

    Ahaus, Loren A.

    Helicopter rotor blades frequently encounter dynamic stall during normal flight conditions, limiting the applicability of classical thin-airfoil theory at large angles of attack. Also, it is evident that because of the largely different conditions on the advancing and retreating sides of the rotor, future rotorcraft may incorporate dynamically morphing airfoils (trailing-edge aps, dynamic camber, dynamic droop, etc.). Reduced-order aerodynamic models are needed for preliminary design and ight simulation. A unified model for predicting the airloads on a morphing airfoil in dynamic stall is presented, consisting of three components. First, a linear airloads theory allows for arbitrary airfoil deformations consistent with a morphing airfoil. Second, to capture the effects of the wake, the airloads theory is coupled to an induced ow model. Third, the overshoot and time delay associated with dynamic stall are modeled by a second-order dynamic filter, along the lines of the ONERA dynamic stall model. This paper presents a unified airloads model that allows arbitrary airfoil morphing with dynamic stall. Correlations with experimental data validate the theory.

  19. Dynamics of Correlation Structure in Stock Market

    Directory of Open Access Journals (Sweden)

    Maman Abdurachman Djauhari

    2014-01-01

    Full Text Available In this paper a correction factor for Jennrich’s statistic is introduced in order to be able not only to test the stability of correlation structure, but also to identify the time windows where the instability occurs. If Jennrich’s statistic is only to test the stability of correlation structure along predetermined non-overlapping time windows, the corrected statistic provides us with the history of correlation structure dynamics from time window to time window. A graphical representation will be provided to visualize that history. This information is necessary to make further analysis about, for example, the change of topological properties of minimal spanning tree. An example using NYSE data will illustrate its advantages.

  20. Asymmetric correlations in the ozone concentration dynamics of the Mexico City Metropolitan Area

    Science.gov (United States)

    Meraz, M.; Alvarez-Ramirez, J.; Echeverria, J. C.

    2017-04-01

    Mexico City is a megalopolis with severe pollution problems caused by vehicles and industrial activity. This condition imposes important risks to human health and economic activity. Based on hourly-sampled data during the last decade, in a recent work (Meraz et al., 2015) we showed that the pollutant dynamics in Mexico City exhibits long-term and scale-dependent persistence effects resulting from the combination of pollutants generation by vehicles and removal by advection mechanisms. In this work, we analyzed the dynamics of ozone, a key component reflecting the degree of atmospheric contamination, to determine if its long-term correlations are asymmetric in relation to the actual concentration trend (increasing or decreasing). The analysis is conducted with detrended fluctuation analysis. The results showed that the average ozone dynamics is uncorrelated when the concentration is increasing. In contrast, the ozone dynamics shows long-term anti-persistence effects when the concentration is decreasing.

  1. Dynamic Correlation between Stock Market Returns and Crude Oil Prices: Evidence from a Developing Economy

    Directory of Open Access Journals (Sweden)

    Emenike O. Kalu

    2015-10-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Modeling the correlation of assets returns volatilities across different markets or segments of a market has practical value for portfolio selection and diversification, market regulation, and risk management. This paper therefore evaluates the nature of time-varying correlation between volatilities of stock market and crude oil returns in Nigeria using Dynamic Conditional Correlation-Generalised Autoregressive Conditional Heteroscedasticity (DCC-GARCH model. Results from DCC-GARCH (1,1 model show evidence of volatility clustering and persistence in Nigeria stock market and crude oil returns. The results also show that there is no dynamic conditional correlation in ARCH effects between stock market returns and crude oil prices in Nigeria. The results further show that there is strong evidence of time-varying volatility correlation between stock market and crude oil returns volatility. The findings will help shape policy-making in risk management and market regulation in Nigeria.

  2. Probing heterogeneous dynamics from spatial density correlation in glass-forming liquids.

    Science.gov (United States)

    Li, Yan-Wei; Zhu, You-Liang; Sun, Zhao-Yan

    2016-12-01

    We numerically investigate the connection between spatial density correlation and dynamical heterogeneity in glass-forming liquids. We demonstrate that the cluster size defined by the spatial aggregation of densely packed particles (DPPs) can better capture the difference between the dynamics of the Lennard-Jones glass model and the Weeks-Chandler-Andersen truncation model than the commonly used pair correlation functions. More interestingly, we compare the mobility of DPPs and loosely packed particles, and we find that high local density correlates well with slow dynamics in systems with relatively hard repulsive interactions but links to mobile ones in the system with soft repulsive interactions at one relaxation time scale. Our results show clear evidence that the above model dependence behavior stems from the hopping motion of DPPs at the end of the caging stage due to the compressive nature of soft repulsive spheres, which activates the dynamics of DPPs in the α relaxation stage.

  3. Modeling Correlation Effects in Nickelates with Slave Particles

    Science.gov (United States)

    Georgescu, Alexandru Bogdan; Ismail-Beigi, Sohrab

    Nickelate interfaces display interesting electronic properties including orbital ordering similar to that of cuprate superconductors and thickness dependent metal-insulator transitions. One-particle band theory calculations do not include dynamic localized correlation effects on the nickel sites and thus often incorrectly predict metallic systems or incorrect ARPES spectra. Building on two previous successful slave-particle treatments of local correlations, we present a generalized slave-particle method that includes prior models and allows us to produce new intermediate models. The computational efficiency of these slave-boson methods means that one can readily study correlation effects in complex heterostructures. We show some predictions of these methods for the electronic structure of bulk and thin film nickelates. Work supported by NSF Grant MRSEC DMR-1119826.

  4. Dynamical correlations for vicious random walk with a wall

    International Nuclear Information System (INIS)

    Nagao, Taro

    2003-01-01

    A one-dimensional system of nonintersecting Brownian particles is constructed as the diffusion scaling limit of Fisher's vicious random walk model. N Brownian particles start from the origin at time t=0 and undergo mutually avoiding motion until a finite time t=T. Dynamical correlation functions among the walkers are exactly evaluated in the case with a wall at the origin. Taking an asymptotic limit N→∞, we observe discontinuous transitions in the dynamical correlations. It is further shown that the vicious walk model with a wall is equivalent to a parametric random matrix model describing the crossover between the Bogoliubov-deGennes universality classes

  5. Time-varying coefficient vector autoregressions model based on dynamic correlation with an application to crude oil and stock markets

    International Nuclear Information System (INIS)

    Lu, Fengbin; Qiao, Han; Wang, Shouyang; Lai, Kin Keung; Li, Yuze

    2017-01-01

    This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor’s 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model.

  6. Time-varying coefficient vector autoregressions model based on dynamic correlation with an application to crude oil and stock markets

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Fengbin, E-mail: fblu@amss.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China); Qiao, Han, E-mail: qiaohan@ucas.ac.cn [School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190 (China); Wang, Shouyang, E-mail: sywang@amss.ac.cn [School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190 (China); Lai, Kin Keung, E-mail: mskklai@cityu.edu.hk [Department of Management Sciences, City University of Hong Kong (Hong Kong); Li, Yuze, E-mail: richardyz.li@mail.utoronto.ca [Department of Industrial Engineering, University of Toronto (Canada)

    2017-01-15

    This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor’s 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model.

  7. Correlation theory of crystal field and anisotropic exchange effects

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1985-01-01

    A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds....... The theory gives explicitly a temperature dependent renormalization of both the crystal field and the interactions, and a damping of the excitations and in addition a central park component. The general theory is illustrated by a discussion of the singlet-doublet system. The correlation effects...

  8. Correlation effects in the iron pnictides

    International Nuclear Information System (INIS)

    Si Qimiao; Abrahams, Elihu; Dai Jianhui; Zhu Jianxin

    2009-01-01

    One of the central questions about the iron pnictides concerns the extent to which their electrons are strongly correlated. Here, we address this issue through the phenomenology of the charge transport and dynamics, the single-electron excitation spectrum, and magnetic ordering and dynamics. We outline the evidence that the parent compounds, while metallic, have electron interactions that are sufficiently strong to produce incipient Mott physics. In other words, in terms of the strength of electron correlations compared with the kinetic energy, the iron pnictides are closer to intermediately coupled systems lying at the boundary between itinerancy and localization, such as V 2 O 3 or Se-doped NiS 2 , rather than to simple antiferromagnetic metals like Cr. This level of electronic correlations produces a new small parameter for controlled theoretical analysis, namely the fraction of the single-electron spectral weight that lies in the coherent part of the excitation spectrum. Using this expansion parameter, we construct the effective low-energy Hamiltonian and discuss its implications for the magnetic order and magnetic quantum criticality. Finally, this approach sharpens the notion of magnetic frustration for such a metallic system, and brings about a multiband matrix t-J 1 -J 2 model for the carrier-doped iron pnictides.

  9. Dynamics of electricity market correlations

    Science.gov (United States)

    Alvarez-Ramirez, J.; Escarela-Perez, R.; Espinosa-Perez, G.; Urrea, R.

    2009-06-01

    Electricity market participants rely on demand and price forecasts to decide their bidding strategies, allocate assets, negotiate bilateral contracts, hedge risks, and plan facility investments. However, forecasting is hampered by the non-linear and stochastic nature of price time series. Diverse modeling strategies, from neural networks to traditional transfer functions, have been explored. These approaches are based on the assumption that price series contain correlations that can be exploited for model-based prediction purposes. While many works have been devoted to the demand and price modeling, a limited number of reports on the nature and dynamics of electricity market correlations are available. This paper uses detrended fluctuation analysis to study correlations in the demand and price time series and takes the Australian market as a case study. The results show the existence of correlations in both demand and prices over three orders of magnitude in time ranging from hours to months. However, the Hurst exponent is not constant over time, and its time evolution was computed over a subsample moving window of 250 observations. The computations, also made for two Canadian markets, show that the correlations present important fluctuations over a seasonal one-year cycle. Interestingly, non-linearities (measured in terms of a multifractality index) and reduced price predictability are found for the June-July periods, while the converse behavior is displayed during the December-January period. In terms of forecasting models, our results suggest that non-linear recursive models should be considered for accurate day-ahead price estimation. On the other hand, linear models seem to suffice for demand forecasting purposes.

  10. Structural predictions for Correlated Electron Materials Using the Functional Dynamical Mean Field Theory Approach

    Science.gov (United States)

    Haule, Kristjan

    2018-04-01

    The Dynamical Mean Field Theory (DMFT) in combination with the band structure methods has been able to address reach physics of correlated materials, such as the fluctuating local moments, spin and orbital fluctuations, atomic multiplet physics and band formation on equal footing. Recently it is getting increasingly recognized that more predictive ab-initio theory of correlated systems needs to also address the feedback effect of the correlated electronic structure on the ionic positions, as the metal-insulator transition is almost always accompanied with considerable structural distortions. We will review recently developed extension of merger between the Density Functional Theory (DFT) and DMFT method, dubbed DFT+ embedded DMFT (DFT+eDMFT), whichsuccessfully addresses this challenge. It is based on the stationary Luttinger-Ward functional to minimize the numerical error, it subtracts the exact double-counting of DFT and DMFT, and implements self-consistent forces on all atoms in the unit cell. In a few examples, we will also show how the method elucidated the important feedback effect of correlations on crystal structure in rare earth nickelates to explain the mechanism of the metal-insulator transition. The method showed that such feedback effect is also essential to understand the dynamic stability of the high-temperature body-centered cubic phase of elemental iron, and in particular it predicted strong enhancement of the electron-phonon coupling over DFT values in FeSe, which was very recently verified by pioneering time-domain experiment.

  11. A local dynamic correlation function from inelastic neutron scattering

    International Nuclear Information System (INIS)

    McQueeney, R.J.

    1997-01-01

    Information about local and dynamic atomic correlations can be obtained from inelastic neutron scattering measurements by Fourier transform of the Q-dependent intensity oscillations at a particular frequency. A local dynamic structure function, S(r,ω), is defined from the dynamic scattering function, S(Q,ω), such that the elastic and frequency-integrated limits correspond to the average and instantaneous pair-distribution functions, respectively. As an example, S(r,ω) is calculated for polycrystalline aluminum in a model where atomic motions are entirely due to harmonic phonons

  12. Stationarity and Invertibility of a Dynamic Correlation Matrix

    NARCIS (Netherlands)

    M.J. McAleer (Michael)

    2017-01-01

    textabstractOne of the most widely-used multivariate conditional volatility models is the dynamic conditional correlation (or DCC) specification. However, the underlying stochastic process to derive DCC has not yet been established, which has made problematic the derivation of asymptotic

  13. Fibroadenomas of the breast: histopathological/dynamic contrast-enhanced MR correlation

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, R. [Dept. of Radiology, Inst. Gustave Roussy, 94 - Villejuif (France)]|[CIERM, Hopital Bicetre, 94 - Le Kremin-Bicetre (France); Garnier, C. [Dept. of Radiology, Inst. Gustave Roussy, 94 - Villejuif (France)]|[CIERM, Hopital Bicetre, 94 - Le Kremin-Bicetre (France); Meingan, P. [Dept. of Radiology, Inst. Gustave Roussy, 94 - Villejuif (France)]|[CIERM, Hopital Bicetre, 94 - Le Kremin-Bicetre (France); Zemoura, L. [Dept. of Histopathology C, Inst. Gustave Roussy, 94 - Villejuif (France); Lucidarme, O. [Dept. of Radiology, Hopital Salpetriere, 75 - Paris (France); Guinebretiere, J.M. [Dept. of Histopathology C, Inst. Gustave Roussy, 94 - Villejuif (France); Tardivon, A.A. [Dept. of Radiology, Inst. Gustave Roussy, 94 - Villejuif (France)]|[CIERM, Hopital Bicetre, 94 - Le Kremin-Bicetre (France); Arriagada, R. [Breast Cancer Study Group, Inst. Gustave Roussy, 94 - Villejuif, (France)

    1995-12-31

    A total of 22 women with fibroadenomas had preoperative dynamic MR study (T1-weighted images every 47 s after injection of Gd-DOTA). Their age, hormonal status, breast MR studies and histopathological slides were retrospectively reviewed. Eleven pre- (n = 2) or post-menopausal (n = 9) women showed no early contrast enhancement. The absence of early contrast enhancement correlated with hyalin stromal component. Eleven pre- (n = 7) or post-menopausal (n = 4) women showed focal (n = 9) or diffuse (n = 2) early contrast enhancement. Early focal contrast enhancement correlated with myxoid (n = 9), mixed hyalin/myxoid (n = 1) or hyalin (n = 1) fibroadenomas. Early diffuse contrast enhancement of the breast correlated with myxoid (n = 1) or hyalin (n = 1) stromal component associated with proliferative fibrocystic disease of the breast parenchyma. The presence of contrast enhancement correlated with myxoid fibroadenomas, whereas absence of contrast enhancement correlated with hyalin fibroadenomas. As hyalin fibroadenomas occurs in post-menopausal women, the diagnostic accuracy of dynamic MRI may be improved in this age group. (orig.)

  14. Fibroadenomas of the breast: histopathological/dynamic contrast-enhanced MR correlation

    International Nuclear Information System (INIS)

    Gilles, R.; Garnier, C.; Meingan, P.; Zemoura, L.; Lucidarme, O.; Guinebretiere, J.M.; Tardivon, A.A.; Arriagada, R.

    1995-01-01

    A total of 22 women with fibroadenomas had preoperative dynamic MR study (T1-weighted images every 47 s after injection of Gd-DOTA). Their age, hormonal status, breast MR studies and histopathological slides were retrospectively reviewed. Eleven pre- (n = 2) or post-menopausal (n = 9) women showed no early contrast enhancement. The absence of early contrast enhancement correlated with hyalin stromal component. Eleven pre- (n = 7) or post-menopausal (n = 4) women showed focal (n = 9) or diffuse (n = 2) early contrast enhancement. Early focal contrast enhancement correlated with myxoid (n = 9), mixed hyalin/myxoid (n 1) or hyalin (n = 1) fibroadenomas. Early diffuse contrast enhancement of the breast correlated with myxoid (n = 1) or hyalin (n = 1) stromal component associated with proliferative fibrocystic disease of the breast parenchyma. The presence of contrast enhancement correlated with myxoid fibroadenomas, whereas absence of contrast enhancement correlated with hyalin fibroadenomas. As hyalin fibroadenomas occurs in post-menopausal women, the diagnostic accuracy of dynamic MRI may be improved in this age group. (orig.)

  15. Ultrafast dynamics of correlated electrons

    International Nuclear Information System (INIS)

    Rettig, Laurenz

    2012-01-01

    This work investigates the ultrafast electron dynamics in correlated, low-dimensional model systems using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES) directly in the time domain. In such materials, the strong electron-electron (e-e) correlations or coupling to other degrees of freedom such as phonons within the complex many-body quantum system lead to new, emergent properties that are characterized by phase transitions into broken-symmetry ground states such as magnetic, superconducting or charge density wave (CDW) phases. The dynamical processes related to order like transient phase changes, collective excitations or the energy relaxation within the system allow deeper insight into the complex physics governing the emergence of the broken-symmetry state. In this work, several model systems for broken-symmetry ground states and for the dynamical charge balance at interfaces have been studied. In the quantum well state (QWS) model system Pb/Si(111), the charge transfer across the Pb/Si interface leads to an ultrafast energetic stabilization of occupied QWSs, which is the result of an increase of the electronic confinement to the metal film. In addition, a coherently excited surface phonon mode is observed. In antiferromagnetic (AFM) Fe pnictide compounds, a strong momentum-dependent asymmetry of electron and hole relaxation rates allows to separate the recovery dynamics of the AFM phase from electron-phonon (e-ph) relaxation. The strong modulation of the chemical potential by coherent phonon modes demonstrates the importance of e-ph coupling in these materials. However, the average e-ph coupling constant is found to be small. The investigation of the excited quasiparticle (QP) relaxation dynamics in the high-T c 4 superconductor Bi 2 Sr 2 CaCu 2 O 8+δ reveals a striking momentum and fluence independence of the QP life times. In combination with the momentum-dependent density of excited QPs, this demonstrates the suppression of momentum

  16. Time-varying coefficient vector autoregressions model based on dynamic correlation with an application to crude oil and stock markets.

    Science.gov (United States)

    Lu, Fengbin; Qiao, Han; Wang, Shouyang; Lai, Kin Keung; Li, Yuze

    2017-01-01

    This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor's 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Time Allocation in Social Networks: Correlation Between Social Structure and Human Communication Dynamics

    Science.gov (United States)

    Miritello, Giovanna; Lara, Rubén; Moro, Esteban

    Recent research has shown the deep impact of the dynamics of human interactions (or temporal social networks) on the spreading of information, opinion formation, etc. In general, the bursty nature of human interactions lowers the interaction between people to the extent that both the speed and reach of information diffusion are diminished. Using a large database of 20 million users of mobile phone calls we show evidence this effect is not homogeneous in the social network but in fact, there is a large correlation between this effect and the social topological structure around a given individual. In particular, we show that social relations of hubs in a network are relatively weaker from the dynamical point than those that are poorer connected in the information diffusion process. Our results show the importance of the temporal patterns of communication when analyzing and modeling dynamical process on social networks.

  18. Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application

    International Nuclear Information System (INIS)

    Semenov, Dmitry V.; Nippolainen, Ervin; Kamshilin, Alexei A.; Miridonov, Serguei V.

    2008-01-01

    In this paper statistical properties of spatially filtered dynamic speckles are considered. This phenomenon was not sufficiently studied yet while spatial filtering is an important instrument for speckles velocity measurements. In case of spatial filtering speckle velocity information is derived from the modulation frequency of filtered light power which is measured by photodetector. Typical photodetector output is represented by a narrow-band random noise signal which includes non-informative intervals. Therefore more or less precious frequency measurement requires averaging. In its turn averaging implies uncorrelated samples. However, conducting research we found that correlation is typical property not only of dynamic speckle patterns but also of spatially filtered speckles. Using spatial filtering the correlation is observed as a response of measurements provided to the same part of the object surface or in case of simultaneously using several adjacent photodetectors. Found correlations can not be explained using just properties of unfiltered dynamic speckles. As we demonstrate the subject of this paper is important not only from pure theoretical point but also from the point of applied speckle metrology. E.g. using single spatial filter and an array of photodetector can greatly improve accuracy of speckle velocity measurements

  19. Salivary gland masses. Dynamic MR imaging and pathologic correlation

    International Nuclear Information System (INIS)

    Park, Jinho; Inoue, Shingo; Ishizuka, Yasuhito; Shindo, Hiroaki; Kawanishi, Masayuki; Kakizaki, Dai; Abe, Kimihiko; Ebihara, Yoshiro

    1997-01-01

    To evaluate the efficiency of dynamic contrast-enhanced magnetic resonance imaging (MRI) for the diagnosis of salivary gland masses. We retrospectively examined 19 salivary gland masses that were pathologically diagnosed by surgical operation or biopsy. We obtained T1- and T2-weighted images on MRI, performed dynamic studies on each mass and examined the correlation between enhancement patterns and pathological findings. Four enhancement patterns were recognized on contrast-enhanced MRI: type 1 showed marked, homogeneous enhancement; type 2 slights, homogeneous enhancement; type 3 marginal enhancement; and type 4 poor enhancement of the mass. Most pleomorphic adenomas had a type 1 enhancement pattern, but two had a type 2 pattern. Pathologically, each mass enhancement pattern had different tumor cell and matrix components. Warthin's tumor generally showed the type 4 pattern. Primary malignant tumors of the salivary gland all showed the type 3 pattern, and pathological specimens showed many tumor cells along the marginal portion of the tumor. One inflammatory cyst and one Warthin's tumor also showed the type 3 pattern. Except for metastatic renal cell carcinoma, the enhancement patterns of late phase images and dynamic study images were the same. Dynamic MRI added little diagnostic information about salivary gland masses, but the contrast-enhanced MR features correlated well with the pathological findings. (author)

  20. Correlation of dynamic parameter modification and ASET sensitivity in a shunt voltage reference

    International Nuclear Information System (INIS)

    Roche, N.J.H.; Buchner, S.P.; Warner, J.H.; McMorrow, D.; Dusseau, L.; Boch, J.; Saigne, F.; Kruckmeyer, K.; Auriel, G.; Azais, B.

    2012-01-01

    Analog Single Event Transients (ASETs) in two different shunt voltage references used in power management systems are investigated. Little has been published regarding how the dynamic parameter changes induced by external circuit design, such as time constant, damping coefficient or natural frequency affect ASET shapes. Modifications of the dynamic parameters of the circuit are measured by step response measurement. A correlation between dynamic parameters and ASET laser testing results is proposed. This study establishes the correlation between the dynamic parameters of a shunt voltage reference and ASET parameters such as pulse duration, and positive and negative amplitude. (authors)

  1. Ultrafast dynamics of correlated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rettig, Laurenz

    2012-07-09

    This work investigates the ultrafast electron dynamics in correlated, low-dimensional model systems using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES) directly in the time domain. In such materials, the strong electron-electron (e-e) correlations or coupling to other degrees of freedom such as phonons within the complex many-body quantum system lead to new, emergent properties that are characterized by phase transitions into broken-symmetry ground states such as magnetic, superconducting or charge density wave (CDW) phases. The dynamical processes related to order like transient phase changes, collective excitations or the energy relaxation within the system allow deeper insight into the complex physics governing the emergence of the broken-symmetry state. In this work, several model systems for broken-symmetry ground states and for the dynamical charge balance at interfaces have been studied. In the quantum well state (QWS) model system Pb/Si(111), the charge transfer across the Pb/Si interface leads to an ultrafast energetic stabilization of occupied QWSs, which is the result of an increase of the electronic confinement to the metal film. In addition, a coherently excited surface phonon mode is observed. In antiferromagnetic (AFM) Fe pnictide compounds, a strong momentum-dependent asymmetry of electron and hole relaxation rates allows to separate the recovery dynamics of the AFM phase from electron-phonon (e-ph) relaxation. The strong modulation of the chemical potential by coherent phonon modes demonstrates the importance of e-ph coupling in these materials. However, the average e-ph coupling constant is found to be small. The investigation of the excited quasiparticle (QP) relaxation dynamics in the high-T{sub c}4 superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} reveals a striking momentum and fluence independence of the QP life times. In combination with the momentum-dependent density of excited QPs, this demonstrates the

  2. Slow Aging Dynamics and Avalanches in a Gold-Cadmium Alloy Investigated by X-Ray Photon Correlation Spectroscopy

    International Nuclear Information System (INIS)

    Mueller, L.; Waldorf, M.; Klemradt, U.; Gutt, C.; Gruebel, G.; Madsen, A.; Finlayson, T. R.

    2011-01-01

    Results of a x-ray photon correlation spectroscopy experiment on the very weakly first order martensitic transformation of a Au 50.5 Cd 49.5 single crystal are presented. Slow non-equilibrium-dynamics are observed in a narrow temperature interval in the direct vicinity of the otherwise athermal phase transformation. These dynamics are associated with the martensite-aging effect. The dynamical aging is accompanied by an avalanchelike behavior which is identified with an incubation-time phenomenon.

  3. Slow aging dynamics and avalanches in a gold-cadmium alloy investigated by x-ray photon correlation spectroscopy.

    Science.gov (United States)

    Müller, L; Waldorf, M; Gutt, C; Grübel, G; Madsen, A; Finlayson, T R; Klemradt, U

    2011-09-02

    Results of a x-ray photon correlation spectroscopy experiment on the very weakly first order martensitic transformation of a Au50.5Cd49.5 single crystal are presented. Slow non-equilibrium-dynamics are observed in a narrow temperature interval in the direct vicinity of the otherwise athermal phase transformation. These dynamics are associated with the martensite-aging effect. The dynamical aging is accompanied by an avalanchelike behavior which is identified with an incubation-time phenomenon.

  4. Thermal quantum time-correlation functions from classical-like dynamics

    Science.gov (United States)

    Hele, Timothy J. H.

    2017-07-01

    Thermal quantum time-correlation functions are of fundamental importance in quantum dynamics, allowing experimentally measurable properties such as reaction rates, diffusion constants and vibrational spectra to be computed from first principles. Since the exact quantum solution scales exponentially with system size, there has been considerable effort in formulating reliable linear-scaling methods involving exact quantum statistics and approximate quantum dynamics modelled with classical-like trajectories. Here, we review recent progress in the field with the development of methods including centroid molecular dynamics , ring polymer molecular dynamics (RPMD) and thermostatted RPMD (TRPMD). We show how these methods have recently been obtained from 'Matsubara dynamics', a form of semiclassical dynamics which conserves the quantum Boltzmann distribution. We also apply the Matsubara formalism to reaction rate theory, rederiving t → 0+ quantum transition-state theory (QTST) and showing that Matsubara-TST, like RPMD-TST, is equivalent to QTST. We end by surveying areas for future progress.

  5. Dynamics of Three-Body Correlations in Quenched Unitary Bose Gases

    Science.gov (United States)

    Colussi, V. E.; Corson, J. P.; D'Incao, J. P.

    2018-03-01

    We investigate dynamical three-body correlations in the Bose gas during the earliest stages of evolution after a quench to the unitary regime. The development of few-body correlations is theoretically observed by determining the two- and three-body contacts. We find that the growth of three-body correlations is gradual compared to two-body correlations. The three-body contact oscillates coherently, and we identify this as a signature of Efimov trimers. We show that the growth of three-body correlations depends nontrivially on parameters derived from both the density and Efimov physics. These results demonstrate the violation of scaling invariance of unitary bosonic systems via the appearance of log-periodic modulation of three-body correlations.

  6. Dynamic phase diagrams of the Ising metamagnet in an oscillating magnetic field within the effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2010-07-12

    Dynamic aspects of a two-sublattice Ising metamagnet on honeycomb, square and hexagonal lattices under the presence of a time-dependent oscillating external magnetic field are studied by using the effective-field theory with correlations. The set of effective-field dynamic equations is derived by employing Glauber transition rates. The phases in the system are obtained by solving these dynamic equations. The thermal behavior of the dynamic staggered magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. The phase diagrams are constructed in two different planes, and exhibit dynamic tricritical behavior, which strongly depends on interaction parameters. In order to investigate the spin correlation effect on the dynamic phase diagrams of the system, the results are also given within the framework of the dynamic mean-field approximation.

  7. Dynamic phase diagrams of the Ising metamagnet in an oscillating magnetic field within the effective-field theory

    International Nuclear Information System (INIS)

    Deviren, Bayram; Keskin, Mustafa

    2010-01-01

    Dynamic aspects of a two-sublattice Ising metamagnet on honeycomb, square and hexagonal lattices under the presence of a time-dependent oscillating external magnetic field are studied by using the effective-field theory with correlations. The set of effective-field dynamic equations is derived by employing Glauber transition rates. The phases in the system are obtained by solving these dynamic equations. The thermal behavior of the dynamic staggered magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. The phase diagrams are constructed in two different planes, and exhibit dynamic tricritical behavior, which strongly depends on interaction parameters. In order to investigate the spin correlation effect on the dynamic phase diagrams of the system, the results are also given within the framework of the dynamic mean-field approximation.

  8. Dynamics of correlation-frozen antinodal quasiparticles in superconducting cuprates

    Science.gov (United States)

    Cilento, Federico; Manzoni, Giulia; Sterzi, Andrea; Peli, Simone; Ronchi, Andrea; Crepaldi, Alberto; Boschini, Fabio; Cacho, Cephise; Chapman, Richard; Springate, Emma; Eisaki, Hiroshi; Greven, Martin; Berciu, Mona; Kemper, Alexander F.; Damascelli, Andrea; Capone, Massimo; Giannetti, Claudio; Parmigiani, Fulvio

    2018-01-01

    Many puzzling properties of high–critical temperature (Tc) superconducting (HTSC) copper oxides have deep roots in the nature of the antinodal quasiparticles, the elementary excitations with wave vector parallel to the Cu–O bonds. These electronic states are most affected by the onset of antiferromagnetic correlations and charge instabilities, and they host the maximum of the anisotropic superconducting gap and pseudogap. We use time-resolved extreme-ultraviolet photoemission with proper photon energy (18 eV) and time resolution (50 fs) to disclose the ultrafast dynamics of the antinodal states in a prototypical HTSC cuprate. After photoinducing a nonthermal charge redistribution within the Cu and O orbitals, we reveal a dramatic momentum-space differentiation of the transient electron dynamics. Whereas the nodal quasiparticle distribution is heated up as in a conventional metal, new quasiparticle states transiently emerge at the antinodes, similarly to what is expected for a photoexcited Mott insulator, where the frozen charges can be released by an impulsive excitation. This transient antinodal metallicity is mapped into the dynamics of the O-2p bands, thus directly demonstrating the intertwining between the low- and high-energy scales that is typical of correlated materials. Our results suggest that the correlation-driven freezing of the electrons moving along the Cu–O bonds, analogous to the Mott localization mechanism, constitutes the starting point for any model of high-Tc superconductivity and other exotic phases of HTSC cuprates. PMID:29507885

  9. Correlative study of dynamic MRI and tumor angiogenesis in gastric carcinoma

    International Nuclear Information System (INIS)

    Tang Qunfeng; Shen Junkang; Feng Yizhong; Qian Minghui; Chai Yuhai

    2004-01-01

    Objective: To investigate the correlation between the dynamic MRI enhancement characteristics and tumor angiogenesis in gastric carcinoma. Methods: Histopathological slides of 30 patients underwent CD34 and vascular endothelial growth factor (VEGF) immunohistochemical staining. Microvessel density (MVD) and VEGF protein expression were analyzed with their relationship to pathological features. The dynamic MRI characteristics, including the maximum contrast enhancement ratio (CERmax), were correlatively studied with MVD and VEGF expression. Results: In 30 cases, MVD was 13.00 to 68.25 per vision field with an average of 42.95 ±14.79. The low expression rate of VEGF was 30% (9/30), while the high expression rate of VEGF was 70% (21/30). MVD and VEGF expression correlated with lymph node metastasis (P>0.05), but their relationships to the degree of differentiation and depth of invasion were not significant (P>0.05). MVD was related to TNM-staging of gastric carcinoma (P>0.05). The expression of VEGF between the stage I and IV had significant differences (P>0.05). MVD was higher in VEGF-high expression than in VEGF-low expression [(47.30 ± 14.16) per vision versus (32.81 ± 11.25) per vision]. CERmax was significantly correlated with MVD (r=0.556, P=0.0014). The distribution features and shape of microvessels within gastric carcinoma were related to the enhancement characteristics such as irregular enhancement and delaminated enhancement. The correlation between CERmax and expression of VEGF was not significant (t=-0.847, P=0.404). Conclusion: The manifestations on dynamic MR images can reflect the distribution features and shape of microvessels within gastric carcinoma. Dynamic MR imaging may prove to be a valuable means in estimating the MVD of gastric carcinoma noninvasively, and further predicting the biological behavior of gastric carcinoma and judging the prognosis. (authors)

  10. Towards a formal definition of static and dynamic electronic correlations.

    Science.gov (United States)

    Benavides-Riveros, Carlos L; Lathiotakis, Nektarios N; Marques, Miguel A L

    2017-05-24

    Some of the most spectacular failures of density-functional and Hartree-Fock theories are related to an incorrect description of the so-called static electron correlation. Motivated by recent progress in the N-representability problem of the one-body density matrix for pure states, we propose a method to quantify the static contribution to the electronic correlation. By studying several molecular systems we show that our proposal correlates well with our intuition of static and dynamic electron correlation. Our results bring out the paramount importance of the occupancy of the highest occupied natural spin-orbital in such quantification.

  11. Correlating contact line capillarity and dynamic contact angle hysteresis in surfactant-nanoparticle based complex fluids

    Science.gov (United States)

    Harikrishnan, A. R.; Dhar, Purbarun; Agnihotri, Prabhat K.; Gedupudi, Sateesh; Das, Sarit K.

    2018-04-01

    Dynamic wettability and contact angle hysteresis can be correlated to shed insight onto any solid-liquid interaction. Complex fluids are capable of altering the expected hysteresis and dynamic wetting behavior due to interfacial interactions. We report the effect of capillary number on the dynamic advancing and receding contact angles of surfactant-based nanocolloidal solutions on hydrophilic, near hydrophobic, and superhydrophobic surfaces by performing forced wetting and de-wetting experiments by employing the embedded needle method. A segregated study is performed to infer the contributing effects of the constituents and effects of particle morphology. The static contact angle hysteresis is found to be a function of particle and surfactant concentrations and greatly depends on the nature of the morphology of the particles. An order of estimate of line energy and a dynamic flow parameter called spreading factor and the transient variations of these parameters are explored which sheds light on the dynamics of contact line movement and response to perturbation of three-phase contact. The Cox-Voinov-Tanner law was found to hold for hydrophilic and a weak dependency on superhydrophobic surfaces with capillary number, and even for the complex fluids, with a varying degree of dependency for different fluids.

  12. Evaluation of permanent deformation of CRM-reinforced SMA and its correlation with dynamic stiffness and dynamic creep.

    Science.gov (United States)

    Mashaan, Nuha Salim; Karim, Mohamed Rehan

    2013-01-01

    Today, rapid economic and industrial growth generates increasing amounts of waste materials such as waste tyre rubber. Attempts to inspire a green technology which is more environmentally friendly that can produce economic value are a major consideration in the utilization of waste materials. The aim of this study is to evaluate the effect of waste tyre rubber (crumb rubber modifier (CRM)), in stone mastic asphalt (SMA 20) performance. The virgin bitumen (80/100) penetration grade was used, modified with crumb rubber at four different modification levels, namely, 6%, 12%, 16%, and 20% by weight of the bitumen. The testing undertaken on the asphalt mix comprises the indirect tensile (dynamic stiffness), dynamic creep, and wheel tracking tests. By the experimentation, the appropriate amount of CRM was found to be 16% by weight of bitumen. The results show that the addition of CRM into the mixture has an obvious significant effect on the performance properties of SMA which could improve the mixture's resistance against permanent deformation. Further, higher correlation coefficient was obtained between the rut depth and permanent strain as compared to resilient modulus; thus dynamic creep test might be a more reliable test in evaluating the rut resistance of asphalt mixture.

  13. Evaluation of Permanent Deformation of CRM-Reinforced SMA and Its Correlation with Dynamic Stiffness and Dynamic Creep

    Directory of Open Access Journals (Sweden)

    Nuha Salim Mashaan

    2013-01-01

    Full Text Available Today, rapid economic and industrial growth generates increasing amounts of waste materials such as waste tyre rubber. Attempts to inspire a green technology which is more environmentally friendly that can produce economic value are a major consideration in the utilization of waste materials. The aim of this study is to evaluate the effect of waste tyre rubber (crumb rubber modifier (CRM, in stone mastic asphalt (SMA 20 performance. The virgin bitumen (80/100 penetration grade was used, modified with crumb rubber at four different modification levels, namely, 6%, 12%, 16%, and 20% by weight of the bitumen. The testing undertaken on the asphalt mix comprises the indirect tensile (dynamic stiffness, dynamic creep, and wheel tracking tests. By the experimentation, the appropriate amount of CRM was found to be 16% by weight of bitumen. The results show that the addition of CRM into the mixture has an obvious significant effect on the performance properties of SMA which could improve the mixture's resistance against permanent deformation. Further, higher correlation coefficient was obtained between the rut depth and permanent strain as compared to resilient modulus; thus dynamic creep test might be a more reliable test in evaluating the rut resistance of asphalt mixture.

  14. Global study of quadrupole correlation effects

    International Nuclear Information System (INIS)

    Bender, M.; Bertsch, G.F.; Heenen, P.-H.

    2006-01-01

    We discuss the systematics of ground-state quadrupole correlations of binding energies and mean-square charge radii for all even-even nuclei, from 16 O up to the superheavies, for which data are available. To that aim we calculate their correlated J=0 ground state by means of the angular-momentum and particle-number projected generator coordinate method, using the axial mass quadrupole moment as the generator coordinate and self-consistent mean-field states restricted only by axial, parity, and time-reversal symmetries. The calculation is performed within the framework of a nonrelativistic self-consistent mean-field model by use of the same Skyrme interaction SLy4 and to a density-dependent pairing force to generate the mean-field configurations and to mix them. These are the main conclusions of our study: (i) The quadrupole correlation energy varies between a few 100 keV and about 5.5 MeV. It is affected by shell closures, but varies only slightly with mass and asymmetry. (ii) Projection on angular momentum J=0 provides the major part of the energy gain of up to about 4 MeV; all nuclei in the study, including doubly magic ones, gain energy by deformation. (iii) The mixing of projected states with different intrinsic axial deformations adds a few 100 keV up to 1.5 MeV to the correlation energy. (iv) Typically nuclei below mass A≤60 have a larger correlation energy than static deformation energy whereas the heavier deformed nuclei have larger static deformation energy than correlation energy. (v) Inclusion of the quadrupole correlation energy improves the description of mass systematics, particularly around shell closures, and of differential quantities, namely two-nucleon separation energies and two-nucleon gaps. The correlation energy provides an explanation of 'mutually enhanced magicity'. (vi) The correlation energy tends to decrease the shell effect on binding energies around magic numbers, but the magnitude of the suppression is not large enough to explain

  15. Dynamic enhanced MRI of the subacromial bursa: correlation with arthroscopic and histological findings

    International Nuclear Information System (INIS)

    Matsuzaki, S.; Yoneda, M.; Kobayashi, Y.; Fukushima, S.; Wakitani, S.

    2003-01-01

    Objective: To assess dynamic MRI with Gd-DTPA enhancement for evaluating inflammatory changes in the subacromial bursa. Design and patients: We detected the signal intensity changes in dynamic MRI of the subacromial bursa, and confirmed these macroscopically by arthroscopy and histologically. The signal intensity was measured using built-in software, and the enhancement ratio (E ratio) was calculated from dynamic MR images. In addition, as a parameter of the rate of the increase in the signal intensity from 0 to 80 s, the mean increase per second in the E ratio was obtained as the coefficient of enhancement (CE). The correlation was studied of the E ratio and CE with the arthroscopic findings (redness, villous formation, thickening and adhesion), and of the E ratio and CE with the histological findings (capillary proliferation, papillary hyperplasia, fibrosis and inflammatory cell infiltration) of the subacromial bursa. Of patients with shoulder pain, this study included those with rotator cuff injury; patients with rheumatoid arthritis or pitching shoulder disorders were excluded. There were 27 patients (15 men, 12 women) ranging in age from 25 to 73 years (mean 49.1 years). Dynamic MRI of the shoulder was also performed on the healthy side of 10 patients and in five normal young volunteers. Results and conclusions: Changes in signal intensity on dynamic MRI were measured in the subacromial bursa. The E ratio (80 s) and CE (0-80 s) were significantly correlated with redness and villous formation as arthroscopic findings, positively correlated with capillary proliferation and papillary hyperplasia as histological findings (p < 0.05), and negatively correlated with fibrosis as a histological finding (p < 0.05) in the subacromial bursa. The patterns of dynamic curves were well correlated with the bursoscopic and histological findings of the synovium of the subacromial bursa. Dynamic MRI appears to correlate with inflammatory activity of synovium of the subacromial

  16. Neural correlates of the perception of dynamic versus static facial expressions of emotion.

    Science.gov (United States)

    Kessler, Henrik; Doyen-Waldecker, Cornelia; Hofer, Christian; Hoffmann, Holger; Traue, Harald C; Abler, Birgit

    2011-04-20

    This study investigated brain areas involved in the perception of dynamic facial expressions of emotion. A group of 30 healthy subjects was measured with fMRI when passively viewing prototypical facial expressions of fear, disgust, sadness and happiness. Using morphing techniques, all faces were displayed as still images and also dynamically as a film clip with the expressions evolving from neutral to emotional. Irrespective of a specific emotion, dynamic stimuli selectively activated bilateral superior temporal sulcus, visual area V5, fusiform gyrus, thalamus and other frontal and parietal areas. Interaction effects of emotion and mode of presentation (static/dynamic) were only found for the expression of happiness, where static faces evoked greater activity in the medial prefrontal cortex. Our results confirm previous findings on neural correlates of the perception of dynamic facial expressions and are in line with studies showing the importance of the superior temporal sulcus and V5 in the perception of biological motion. Differential activation in the fusiform gyrus for dynamic stimuli stands in contrast to classical models of face perception but is coherent with new findings arguing for a more general role of the fusiform gyrus in the processing of socially relevant stimuli.

  17. Dynamics analysis of SIR epidemic model with correlation coefficients and clustering coefficient in networks.

    Science.gov (United States)

    Zhang, Juping; Yang, Chan; Jin, Zhen; Li, Jia

    2018-07-14

    In this paper, the correlation coefficients between nodes in states are used as dynamic variables, and we construct SIR epidemic dynamic models with correlation coefficients by using the pair approximation method in static networks and dynamic networks, respectively. Considering the clustering coefficient of the network, we analytically investigate the existence and the local asymptotic stability of each equilibrium of these models and derive threshold values for the prevalence of diseases. Additionally, we obtain two equivalent epidemic thresholds in dynamic networks, which are compared with the results of the mean field equations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Vortex dynamics and correlated disorder in high-{Tc} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Vinokur, V.M.

    1993-08-01

    We develop a theory for the vortex motion in the presence of correlated disorder in the form of the twin boundaries and columnar defects. Mapping vortex trajectories onto boson world lines enables us to establish the duality of the vortex transport in the systems with correlated disorder and hopping conductivity of charged particles in 2D systems. A glassy-like dynamics of the vortex lines with zero linear-resistivity and strongly nonlinear current-voltage behavior as V {proportional_to} exp[{minus} const/J{sup {mu}}] in a Bose glass state is predicted.

  19. Influence of multi-exciton correlations on nonlinear polariton dynamics in semiconductor microcavities

    International Nuclear Information System (INIS)

    Wen, P; Nelson, Keith A; Christmann, G; Baumberg, J J

    2013-01-01

    Using two-dimensional spectroscopy, we resolve multi-polariton coherences in quantum wells embedded inside a semiconductor microcavity and elucidate how multi-exciton correlations mediate polariton nonlinear dynamics. We find that polariton correlation strengths depend on spectral overlap with the biexciton resonance and that up to at least four polaritons can be correlated, a higher-order correlation than observed to date among excitons in bare quantum wells. The high-order correlations can be attributed to coupling through the cavity mode, although the role of high-order Coulomb correlations cannot be excluded. (paper)

  20. Correlated proton-electron hole dynamics in protonated water clusters upon extreme ultraviolet photoionization

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2016-07-01

    Full Text Available The ultrafast nuclear and electronic dynamics of protonated water clusters H+(H2On after extreme ultraviolet photoionization is investigated. In particular, we focus on cluster cations with n = 3, 6, and 21. Upon ionization, two positive charges are present in the cluster related to the excess proton and the missing electron, respectively. A correlation is found between the cluster's geometrical conformation and initial electronic energy with the size of the final fragments produced. For situations in which the electron hole and proton are initially spatially close, the two entities become correlated and separate in a time-scale of 20 to 40 fs driven by strong non-adiabatic effects.

  1. Correlated proton-electron hole dynamics in protonated water clusters upon extreme ultraviolet photoionization

    Science.gov (United States)

    Li, Zheng; Vendrell, Oriol

    2016-01-01

    The ultrafast nuclear and electronic dynamics of protonated water clusters H+(H2O)n after extreme ultraviolet photoionization is investigated. In particular, we focus on cluster cations with n = 3, 6, and 21. Upon ionization, two positive charges are present in the cluster related to the excess proton and the missing electron, respectively. A correlation is found between the cluster's geometrical conformation and initial electronic energy with the size of the final fragments produced. For situations in which the electron hole and proton are initially spatially close, the two entities become correlated and separate in a time-scale of 20 to 40 fs driven by strong non-adiabatic effects. PMID:26798842

  2. Time-varying correlations in global real estate markets: A multivariate GARCH with spatial effects approach

    Science.gov (United States)

    Gu, Huaying; Liu, Zhixue; Weng, Yingliang

    2017-04-01

    The present study applies the multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) with spatial effects approach for the analysis of the time-varying conditional correlations and contagion effects among global real estate markets. A distinguishing feature of the proposed model is that it can simultaneously capture the spatial interactions and the dynamic conditional correlations compared with the traditional MGARCH models. Results reveal that the estimated dynamic conditional correlations have exhibited significant increases during the global financial crisis from 2007 to 2009, thereby suggesting contagion effects among global real estate markets. The analysis further indicates that the returns of the regional real estate markets that are in close geographic and economic proximities exhibit strong co-movement. In addition, evidence of significantly positive leverage effects in global real estate markets is also determined. The findings have significant implications on global portfolio diversification opportunities and risk management practices.

  3. Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory

    Science.gov (United States)

    Rohringer, G.; Hafermann, H.; Toschi, A.; Katanin, A. A.; Antipov, A. E.; Katsnelson, M. I.; Lichtenstein, A. I.; Rubtsov, A. N.; Held, K.

    2018-04-01

    Strong electronic correlations pose one of the biggest challenges to solid state theory. Recently developed methods that address this problem by starting with the local, eminently important correlations of dynamical mean field theory (DMFT) are reviewed. In addition, nonlocal correlations on all length scales are generated through Feynman diagrams, with a local two-particle vertex instead of the bare Coulomb interaction as a building block. With these diagrammatic extensions of DMFT long-range charge, magnetic, and superconducting fluctuations as well as (quantum) criticality can be addressed in strongly correlated electron systems. An overview is provided of the successes and results achieved, mainly for model Hamiltonians, and an outline is given of future prospects for realistic material calculations.

  4. Exact time-dependent exchange-correlation potentials for strong-field electron dynamics

    International Nuclear Information System (INIS)

    Lein, Manfred; Kuemmel, Stephan

    2005-01-01

    By solving the time-dependent Schroedinger equation and inverting the time-dependent Kohn-Sham scheme we obtain the exact time-dependent exchange-correlation potential of density-functional theory for the strong-field dynamics of a correlated system. We demonstrate that essential features of the exact exchange-correlation potential can be related to derivative discontinuities in stationary density-functional theory. Incorporating the discontinuity in a time-dependent density-functional calculation greatly improves the description of the ionization process

  5. Spatial Correlation of PAN UWB-MIMO Channel Including User Dynamics

    DEFF Research Database (Denmark)

    Wang, Yu; Kovacs, Istvan Zsolt; Pedersen, Gert Frølund

    . It is found the channel shows spatial correlated wideband power, and spatial uncorrelated complex channel coefficients at different frequencies and delays with respect to a correlation coefficient threshold of 0.7. The Kronecker model is proved not suitable for the investigated scenarios. The MIMO UWB channel......In this paper we present and analyze spatial correlation properties of indoor 4x2 MIMO UWB channels in personal area network (PAN) scenarios. The presented results are based on measurement of radio links between an access point like device and a hand held or belt mounted device with dynamic user...

  6. Observation of dynamic atom-atom correlation in liquid helium in real space.

    Science.gov (United States)

    Dmowski, W; Diallo, S O; Lokshin, K; Ehlers, G; Ferré, G; Boronat, J; Egami, T

    2017-05-04

    Liquid 4 He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom-atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4 He atoms in the Bose-Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDF peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom-atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.

  7. Nuclear many-body correlation dynamics--a nonperturbative approach in quantum many-body theory

    International Nuclear Information System (INIS)

    Wang Shunjin

    1996-01-01

    Based on the experimental results and theoretical experience in nuclear physics, the article has explored the basic physical ideas and theoretical methods in nuclear and quantum many-body correlation dynamics. The main theoretical results and important applications are introduced briefly. The paper addresses the fundamental ingredients and physical interpretation of theoretical results in a comprehensive way. Recent new results about correlation dynamics in quantum field theories are also presented. The perspectives of further application are viewed. (91 refs.)

  8. Ultrafast dynamics of Coulomb correlated excitons in GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Mycek, M.A. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1995-12-01

    The author measures the transient nonlinear optical response of room temperature excitons in gallium arsenide quantum wells via multi-wave mixing experiments. The dynamics of the resonantly excited excitons is directly reflected by the ultrafast decay of the induced nonlinear polarization, which radiates the detected multi-wave mixing signal. She characterizes this ultrafast coherent emission in both amplitude and phase, using time- and frequency-domain measurement techniques, to better understand the role of Coulomb correlation in these systems. To interpret the experimental results, the nonlinear optical response of a dense medium is calculated using a model including Coulomb interaction. She contributes three new elements to previous theoretical and experimental studies of these systems. First, surpassing traditional time-integrated measurements, she temporally resolves the amplitude of the ultrafast coherent emission. Second, in addition to measuring the third-order four-wave mixing signal, she also investigates the fifth-order six-wave mixing response. Third, she characterizes the ultrafast phase dynamics of the nonlinear emission using interferometric techniques with an unprecedented resolution of approximately 140 attoseconds. The author finds that effects arising from Coulomb correlation dominate the nonlinear optical response when the density of excitons falls below 3 {times} 10{sup 11} cm{sup {minus}2}, the saturation density. These signatures of Coulomb correlation are investigated for increasing excitation density to gradually screen the interactions and test the validity of the model for dense media. The results are found to be qualitatively consistent with both the predictions of the model and with numerical solutions to the semiconductor Bloch equations. Importantly, the results also indicate current experimental and theoretical limitations, which should be addressed in future research.

  9. Effective Perron-Frobenius eigenvalue for a correlated random map

    Science.gov (United States)

    Pool, Roman R.; Cáceres, Manuel O.

    2010-09-01

    We investigate the evolution of random positive linear maps with various type of disorder by analytic perturbation and direct simulation. Our theoretical result indicates that the statistics of a random linear map can be successfully described for long time by the mean-value vector state. The growth rate can be characterized by an effective Perron-Frobenius eigenvalue that strongly depends on the type of correlation between the elements of the projection matrix. We apply this approach to an age-structured population dynamics model. We show that the asymptotic mean-value vector state characterizes the population growth rate when the age-structured model has random vital parameters. In this case our approach reveals the nontrivial dependence of the effective growth rate with cross correlations. The problem was reduced to the calculation of the smallest positive root of a secular polynomial, which can be obtained by perturbations in terms of Green’s function diagrammatic technique built with noncommutative cumulants for arbitrary n -point correlations.

  10. Non-local correlations within dynamical mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang

    2009-03-15

    The contributions from the non-local fluctuations to the dynamical mean field theory (DMFT) were studied using the recently proposed dual fermion approach. Straight forward cluster extensions of DMFT need the solution of a small cluster, where all the short-range correlations are fully taken into account. All the correlations beyond the cluster scope are treated in the mean-field level. In the dual fermion method, only a single impurity problem needs to be solved. Both the short and long-range correlations could be considered on equal footing in this method. The weak-coupling nature of the dual fermion ensures the validity of the finite order diagram expansion. The one and two particle Green's functions calculated from the dual fermion approach agree well with the Quantum Monte Carlo solutions, and the computation time is considerably less than with the latter method. The access of the long-range order allows us to investigate the collective behavior of the electron system, e.g. spin wave excitations. (orig.)

  11. Non-local correlations within dynamical mean field theory

    International Nuclear Information System (INIS)

    Li, Gang

    2009-03-01

    The contributions from the non-local fluctuations to the dynamical mean field theory (DMFT) were studied using the recently proposed dual fermion approach. Straight forward cluster extensions of DMFT need the solution of a small cluster, where all the short-range correlations are fully taken into account. All the correlations beyond the cluster scope are treated in the mean-field level. In the dual fermion method, only a single impurity problem needs to be solved. Both the short and long-range correlations could be considered on equal footing in this method. The weak-coupling nature of the dual fermion ensures the validity of the finite order diagram expansion. The one and two particle Green's functions calculated from the dual fermion approach agree well with the Quantum Monte Carlo solutions, and the computation time is considerably less than with the latter method. The access of the long-range order allows us to investigate the collective behavior of the electron system, e.g. spin wave excitations. (orig.)

  12. Nonlinear stochastic exclusion financial dynamics modeling and time-dependent intrinsic detrended cross-correlation

    Science.gov (United States)

    Zhang, Wei; Wang, Jun

    2017-09-01

    In attempt to reproduce price dynamics of financial markets, a stochastic agent-based financial price model is proposed and investigated by stochastic exclusion process. The exclusion process, one of interacting particle systems, is usually thought of as modeling particle motion (with the conserved number of particles) in a continuous time Markov process. In this work, the process is utilized to imitate the trading interactions among the investing agents, in order to explain some stylized facts found in financial time series dynamics. To better understand the correlation behaviors of the proposed model, a new time-dependent intrinsic detrended cross-correlation (TDI-DCC) is introduced and performed, also, the autocorrelation analyses are applied in the empirical research. Furthermore, to verify the rationality of the financial price model, the actual return series are also considered to be comparatively studied with the simulation ones. The comparison results of return behaviors reveal that this financial price dynamics model can reproduce some correlation features of actual stock markets.

  13. Correlation of energy balance method to dynamic pipe rupture analysis

    International Nuclear Information System (INIS)

    Kuo, H.H.; Durkee, M.

    1983-01-01

    When using an energy balance approach in the design of pipe rupture restraints for nuclear power plants, the NRC specifies in its Standard Review Plan 3.6.2 that the input energy to the system must be multiplied by a factor of 1.1 unless a lower value can be justified. Since the energy balance method is already quite conservative, an across-the-board use of 1.1 to amplify the energy input appears unneccessary. The paper's purpose is to show that this 'correlation factor' could be substantially less than unity if certain design parameters are met. In this paper, result of nonlinear dynamic analyses were compared to the results of the corresponding analyses based on the energy balance method which assumes constant blowdown forces and rigid plastic material properties. The appropriate correlation factors required to match the energy balance results with the dynamic analyses results were correlated to design parameters such as restraint location from the break, yield strength of the energy absorbing component, and the restraint gap. It is shown that the correlation factor is related to a single nondimensional design parameter and can be limited to a value below unity if appropriate design parameters are chosen. It is also shown that the deformation of the restraints can be related to dimensionless system parameters. This, therefore, allows the maximum restraint deformation to be evaluated directly for design purposes. (orig.)

  14. Carbon Nanotube-Epoxy Nanocomposites: Correlation and Integration of Dynamic Impedance, Dielectric, and Mechanical Analyses

    Directory of Open Access Journals (Sweden)

    O. Moudam

    2013-01-01

    Full Text Available This study focuses on the characterization of MWNT-epoxy composites for different MWNT concentrations of 0–7 wt% by correlating different dynamic analysis techniques, including DMA, impedance, and DEA. An optimum composition was established at 0.1 wt% MWNTs corresponding to the best MWNT dispersion which resulted in the formation of an optimum MWNT network. The addition of this low fraction of MWNTs in epoxy resulted in stiffening the molecular structure and suppressing certain molecular transitions, raising the dielectric constant especially in the low-to-medium frequency range, raising the electrical conductivity especially at the high frequencies, and increasing the electromagnetic shielding effectiveness. The 0.1% MWNT-epoxy nanocomposite switched the electromagnetic shielding behaviour from being a very effective absorber at low frequencies to being an effective reflector at high frequencies. Finally, the Nyquist plot derived from the dynamic impedance spectroscopy proved most useful at providing evidence of multiple size distribution of MWNT agglomerates.

  15. Heterogeneous dynamics of ionic liquids: A four-point time correlation function approach

    Science.gov (United States)

    Liu, Jiannan; Willcox, Jon A. L.; Kim, Hyung J.

    2018-05-01

    Many ionic liquids show behavior similar to that of glassy systems, e.g., large and long-lasted deviations from Gaussian dynamics and clustering of "mobile" and "immobile" groups of ions. Herein a time-dependent four-point density correlation function—typically used to characterize glassy systems—is implemented for the ionic liquids, choline acetate, and 1-butyl-3-methylimidazolium acetate. Dynamic correlation beyond the first ionic solvation shell on the time scale of nanoseconds is found in the ionic liquids, revealing the cooperative nature of ion motions. The traditional solvent, acetonitrile, on the other hand, shows a much shorter length-scale that decays after a few picoseconds.

  16. Instantons: Dynamical mass generation, chiral ward identities and the topological charge correlation function

    International Nuclear Information System (INIS)

    McDougall, N.A.

    1983-01-01

    When dynamical mass generation resulting from the breakdown of chiral symmetry is taken into account, instanton dynamics treated within the dilute gas approximation may satisfy the constraints on the quark condensates and the topological charge correlation function derived by Crewther from an analysis of the chiral Ward identities assuming the absence of a physical axial U(1) Goldstone boson. From a consideration of the contribution of the eta' to the topological charge correlation function, a relationship is derived in which msub(eta') 2 fsub(eta') 2 is proportional to the vacuum energy density. (orig.)

  17. Random operators disorder effects on quantum spectra and dynamics

    CERN Document Server

    Aizenman, Michael

    2015-01-01

    This book provides an introduction to the mathematical theory of disorder effects on quantum spectra and dynamics. Topics covered range from the basic theory of spectra and dynamics of self-adjoint operators through Anderson localization-presented here via the fractional moment method, up to recent results on resonant delocalization. The subject's multifaceted presentation is organized into seventeen chapters, each focused on either a specific mathematical topic or on a demonstration of the theory's relevance to physics, e.g., its implications for the quantum Hall effect. The mathematical chapters include general relations of quantum spectra and dynamics, ergodicity and its implications, methods for establishing spectral and dynamical localization regimes, applications and properties of the Green function, its relation to the eigenfunction correlator, fractional moments of Herglotz-Pick functions, the phase diagram for tree graph operators, resonant delocalization, the spectral statistics conjecture, and rela...

  18. Signals of dynamical and statistical process from IMF-IMF correlation function

    Science.gov (United States)

    Pagano, E. V.; Acosta, L.; Auditore, L.; Baran, V.; Cap, T.; Cardella, G.; Colonna, M.; De Luca, S.; De Filippo, E.; Dell'Aquila, D.; Francalanza, L.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Maiolino, C.; Martorana, N. S.; Norella, S.; Pagano, A.; Papa, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Rosato, E.; Russotto, P.; Siwek-Wilczyńska, K.; Trifiro, A.; Trimarchi, M.; Verde, G.; Vigilante, M.; Wilczyńsky, J.

    2017-11-01

    In this paper we briefly discuss about a novel application of the IMF-IMF correlation function to the physical case of binary massive projectile-like (PLF) splitting for dynamical and statistical breakup/fission in heavy ion collisions at Fermi energy. Theoretical simulations are also shown for comparisons with the data. These preliminary results have been obtained for the reverse kinematics reaction 124Sn + 64Ni at 35 AMeV that was studied using the forward part of CHIMERA detector. In that reaction a strong competition between a dynamical and a statistical components and its evolution with the charge asymmetry of the binary break up was already shown. In this work we show that the IMF-IMF correlation function can be used to pin down the timescale of the fragments production in binary fission-like phenomena. We also made simulations with the CoMDII model in order to compare to the experimental IMF-IMF correlation function. In future we plan to extend these studies to different reaction mechanisms and nuclear systems and to compare with different theoretical transport simulations.

  19. Correlated Levy Noise in Linear Dynamical Systems

    International Nuclear Information System (INIS)

    Srokowski, T.

    2011-01-01

    Linear dynamical systems, driven by a non-white noise which has the Levy distribution, are analysed. Noise is modelled by a specific stochastic process which is defined by the Langevin equation with a linear force and the Levy distributed symmetric white noise. Correlation properties of the process are discussed. The Fokker-Planck equation driven by that noise is solved. Distributions have the Levy shape and their width, for a given time, is smaller than for processes in the white noise limit. Applicability of the adiabatic approximation in the case of the linear force is discussed. (author)

  20. Memory effects in nonadiabatic molecular dynamics at metal surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Schiøtz, Jakob

    2010-01-01

    We study the effect of temporal correlation in a Langevin equation describing nonadiabatic dynamics at metal surfaces. For a harmonic oscillator, the Langevin equation preserves the quantum dynamics exactly and it is demonstrated that memory effects are needed in order to conserve the ground state...... energy of the oscillator. We then compare the result of Langevin dynamics in a harmonic potential with a perturbative master equation approach and show that the Langevin equation gives a better description in the nonperturbative range of high temperatures and large friction. Unlike the master equation......, this approach is readily extended to anharmonic potentials. Using density functional theory, we calculate representative Langevin trajectories for associative desorption of N-2 from Ru(0001) and find that memory effects lower the dissipation of energy. Finally, we propose an ab initio scheme to calculate...

  1. Dynamical manifestations of quantum chaos: correlation hole and bulge

    Science.gov (United States)

    Torres-Herrera, E. J.; Santos, Lea F.

    2017-10-01

    A main feature of a chaotic quantum system is a rigid spectrum where the levels do not cross. We discuss how the presence of level repulsion in lattice many-body quantum systems can be detected from the analysis of their time evolution instead of their energy spectra. This approach is advantageous to experiments that deal with dynamics, but have limited or no direct access to spectroscopy. Dynamical manifestations of avoided crossings occur at long times. They correspond to a drop, referred to as correlation hole, below the asymptotic value of the survival probability and to a bulge above the saturation point of the von Neumann entanglement entropy and the Shannon information entropy. By contrast, the evolution of these quantities at shorter times reflects the level of delocalization of the initial state, but not necessarily a rigid spectrum. The correlation hole is a general indicator of the integrable-chaos transition in disordered and clean models and as such can be used to detect the transition to the many-body localized phase in disordered interacting systems. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

  2. Instantons: Dynamical mass generation, chiral ward identities and the topological charge correlation function

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, N.A. (Oxford Univ. (UK). Dept. of Theoretical Physics)

    1983-01-10

    When dynamical mass generation resulting from the breakdown of chiral symmetry is taken into account, instanton dynamics treated within the dilute gas approximation may satisfy the constraints on the quark condensates and the topological charge correlation function derived by Crewther from an analysis of the chiral Ward identities assuming the absence of a physical axial U(1) Goldstone boson. From a consideration of the contribution of the eta' to the topological charge correlation function, a relationship is derived in which msub(eta')/sup 2/fsub(eta')/sup 2/ is proportional to the vacuum energy density.

  3. Wavepacket dynamics in one-dimensional system with long-range correlated disorder

    Science.gov (United States)

    Yamada, Hiroaki S.

    2018-03-01

    We numerically investigate dynamical property in the one-dimensional tight-binding model with long-range correlated disorder having power spectrum 1 /fα (α: spectrum exponent) generated by Fourier filtering method. For relatively small α MSD) of the initially localized wavepacket shows ballistic spread and localizes as time elapses. It is shown that α-dependence of the dynamical localization length determined by the MSD exhibits a simple scaling law in the localization regime for the relatively weak disorder strength W. Furthermore, scaled MSD by the dynamical localization length almost obeys an universal function from the ballistic to the localization regime in the various combinations of the parameters α and W.

  4. Langevin Dynamics with Spatial Correlations as a Model for Electron-Phonon Coupling

    Science.gov (United States)

    Tamm, A.; Caro, M.; Caro, A.; Samolyuk, G.; Klintenberg, M.; Correa, A. A.

    2018-05-01

    Stochastic Langevin dynamics has been traditionally used as a tool to describe nonequilibrium processes. When utilized in systems with collective modes, traditional Langevin dynamics relaxes all modes indiscriminately, regardless of their wavelength. We propose a generalization of Langevin dynamics that can capture a differential coupling between collective modes and the bath, by introducing spatial correlations in the random forces. This allows modeling the electronic subsystem in a metal as a generalized Langevin bath endowed with a concept of locality, greatly improving the capabilities of the two-temperature model. The specific form proposed here for the spatial correlations produces a physical wave-vector and polarization dependency of the relaxation produced by the electron-phonon coupling in a solid. We show that the resulting model can be used for describing the path to equilibration of ions and electrons and also as a thermostat to sample the equilibrium canonical ensemble. By extension, the family of models presented here can be applied in general to any dense system, solids, alloys, and dense plasmas. As an example, we apply the model to study the nonequilibrium dynamics of an electron-ion two-temperature Ni crystal.

  5. Effect of static scatterers in laser speckle contrast imaging: an experimental study on correlation and contrast

    Science.gov (United States)

    Vaz, Pedro G.; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, João

    2018-01-01

    Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolution. Most LSCI systems, including commercial devices, can perform only qualitative blood flow evaluation, which is a major limitation of this technique. There are several factors that prevent the utilization of LSCI as a quantitative technique. Among these factors, we can highlight the effect of static scatterers. The goal of this work was to study the influence of differences in static and dynamic scatterer concentration on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with various concentrations of static and dynamic scatterers. It was found that the laser speckle correlation could be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterer velocity, which is a fundamental characteristic to be used in contrast correction.

  6. CONTIN XPCS: Software for Inverse Transform Analysis of X-Ray Photon Correlation Spectroscopy Dynamics.

    Science.gov (United States)

    Andrews, Ross N; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan

    2018-02-01

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) both reveal dynamics using coherent scattering, but X-rays permit investigating of dynamics in a much more diverse array of materials. Heterogeneous dynamics occur in many such materials, and we showed how classic tools employed in analysis of heterogeneous DLS dynamics extend to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. This work presents the software implementation of inverse transform analysis of XPCS data called CONTIN XPCS, an extension of traditional CONTIN that accommodates dynamics encountered in equilibrium XPCS measurements.

  7. Evaluation of static and dynamic MRI for assessing response of bone sarcomas to preoperative chemotherapy: Correlation with histological necrosis

    International Nuclear Information System (INIS)

    Amit, Priyadarshi; Malhotra, Atul; Kumar, Rahul; Kumar, Lokesh; Patro, Dilip Kumar; Elangovan, Sundar

    2015-01-01

    Preoperative chemotherapy plays a key role in management of bone sarcomas. Postoperative evaluation of histological necrosis has been the gold standard method of assessing response to preoperative chemotherapy. This study was done to evaluate the efficacy of static and dynamic magnetic resonance imaging (MRI) for assessing response preoperatively. Our study included 14 patients (12 osteosarcomas and 2 malignant fibrous histiocytomas) with mean age of 21.8 years, treated with preoperative chemotherapy followed by surgery. They were evaluated with static and dynamic MRI twice, before starting chemotherapy and again prior to surgery. Change in tumor volume and slope of signal intensity - time curve were calculated and correlated with percentage of histological necrosis using Pearson correlation test. The change in dynamic MRI slope was significant (P = 0.001). Also, ≥60% reduction in slope of the curve proved to be an indicator of good histological response [positive predictive value (PPV) =80%]. Change in tumor volume failed to show significant correlation (P = 0.071). Although it showed high negative predictive value (NPV = 85.7%), PPV was too low (PPV = 57.14%). Dynamic MRI correctly predicts histological necrosis after administration of preoperative chemotherapy to bone sarcomas. Hence, it can be used as a preoperative indicator of response to neoadjuvant chemotherapy. On the other hand, volumetric assessment by static MRI is not an effective predictor of histological necrosis. This study proves the superiority of dynamic contrast-enhanced study over volumetric study by MRI

  8. A dynamic random effects multinomial logit model of household car ownership

    DEFF Research Database (Denmark)

    Bue Bjørner, Thomas; Leth-Petersen, Søren

    2007-01-01

    Using a large household panel we estimate demand for car ownership by means of a dynamic multinomial model with correlated random effects. Results suggest that the persistence in car ownership observed in the data should be attributed to both true state dependence and to unobserved heterogeneity...... (random effects). It also appears that random effects related to single and multiple car ownership are correlated, suggesting that the IIA assumption employed in simple multinomial models of car ownership is invalid. Relatively small elasticities with respect to income and car costs are estimated...

  9. Dynamic phase transitions and dynamic phase diagrams in the kinetic spin-5/2 Blume–Capel model in an oscillating external magnetic field: Effective-field theory and the Glauber-type stochastic dynamics approach

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Keskin, Mustafa; Deviren, Bayram

    2012-01-01

    Using an effective field theory with correlations, we study a kinetic spin-5/2 Blume–Capel model with bilinear exchange interaction and single-ion crystal field on a square lattice. The effective-field dynamic equation is derived by employing the Glauber transition rates. First, the phases in the kinetic system are obtained by solving this dynamic equation. Then, the thermal behavior of the dynamic magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. Finally, we present the phase diagrams in two planes, namely (T/zJ, h 0 /zJ) and (T/zJ, D/zJ), where T absolute temperature, h 0 , the amplitude of the oscillating field, D, crystal field interaction or single-ion anisotropy constant and z denotes the nearest-neighbor sites of the central site. The phase diagrams exhibit four fundamental phases and ten mixed phases which are composed of binary, ternary and tetrad combination of fundamental phases, depending on the crystal field interaction parameter. Moreover, the phase diagrams contain a dynamic tricritical point (T), a double critical end point (B), a multicritical point (A) and zero-temperature critical point (Z). - Highlights: ► The effective-field theory is used to study the kinetic spin-5/2 Ising Blume–Capel model. ► Time variations of average order parameter have been studied to find phases in the system. ► The dynamic magnetization, hysteresis loop area and correlation have been calculated. ► The dynamic phase boundaries of the system depend on D/zJ. ► The dynamic phase diagrams are presented in the (T/zJ, h 0 /zJ) and (D/zJ, T/zJ) planes.

  10. Dynamic phase transitions and dynamic phase diagrams in the kinetic spin-5/2 Blume-Capel model in an oscillating external magnetic field: Effective-field theory and the Glauber-type stochastic dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Ertas, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey)

    2012-04-15

    Using an effective field theory with correlations, we study a kinetic spin-5/2 Blume-Capel model with bilinear exchange interaction and single-ion crystal field on a square lattice. The effective-field dynamic equation is derived by employing the Glauber transition rates. First, the phases in the kinetic system are obtained by solving this dynamic equation. Then, the thermal behavior of the dynamic magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. Finally, we present the phase diagrams in two planes, namely (T/zJ, h{sub 0}/zJ) and (T/zJ, D/zJ), where T absolute temperature, h{sub 0}, the amplitude of the oscillating field, D, crystal field interaction or single-ion anisotropy constant and z denotes the nearest-neighbor sites of the central site. The phase diagrams exhibit four fundamental phases and ten mixed phases which are composed of binary, ternary and tetrad combination of fundamental phases, depending on the crystal field interaction parameter. Moreover, the phase diagrams contain a dynamic tricritical point (T), a double critical end point (B), a multicritical point (A) and zero-temperature critical point (Z). - Highlights: Black-Right-Pointing-Pointer The effective-field theory is used to study the kinetic spin-5/2 Ising Blume-Capel model. Black-Right-Pointing-Pointer Time variations of average order parameter have been studied to find phases in the system. Black-Right-Pointing-Pointer The dynamic magnetization, hysteresis loop area and correlation have been calculated. Black-Right-Pointing-Pointer The dynamic phase boundaries of the system depend on D/zJ. Black-Right-Pointing-Pointer The dynamic phase diagrams are presented in the (T/zJ, h{sub 0}/zJ) and (D/zJ, T/zJ) planes.

  11. Dynamic Functional Connectivity States Between the Dorsal and Ventral Sensorimotor Networks Revealed by Dynamic Conditional Correlation Analysis of Resting-State Functional Magnetic Resonance Imaging.

    Science.gov (United States)

    Syed, Maleeha F; Lindquist, Martin A; Pillai, Jay J; Agarwal, Shruti; Gujar, Sachin K; Choe, Ann S; Caffo, Brian; Sair, Haris I

    2017-12-01

    Functional connectivity in resting-state functional magnetic resonance imaging (rs-fMRI) has received substantial attention since the initial findings of Biswal et al. Traditional network correlation metrics assume that the functional connectivity in the brain remains stationary over time. However, recent studies have shown that robust temporal fluctuations of functional connectivity among as well as within functional networks exist, challenging this assumption. In this study, these dynamic correlation differences were investigated between the dorsal and ventral sensorimotor networks by applying the dynamic conditional correlation model to rs-fMRI data of 20 healthy subjects. k-Means clustering was used to determine an optimal number of discrete connectivity states (k = 10) of the sensorimotor system across all subjects. Our analysis confirms the existence of differences in dynamic correlation between the dorsal and ventral networks, with highest connectivity found within the ventral motor network.

  12. A structural dynamic factor model for the effects of monetary policy estimated by the EM algorithm

    DEFF Research Database (Denmark)

    Bork, Lasse

    This paper applies the maximum likelihood based EM algorithm to a large-dimensional factor analysis of US monetary policy. Specifically, economy-wide effects of shocks to the US federal funds rate are estimated in a structural dynamic factor model in which 100+ US macroeconomic and financial time...... series are driven by the joint dynamics of the federal funds rate and a few correlated dynamic factors. This paper contains a number of methodological contributions to the existing literature on data-rich monetary policy analysis. Firstly, the identification scheme allows for correlated factor dynamics...... as opposed to the orthogonal factors resulting from the popular principal component approach to structural factor models. Correlated factors are economically more sensible and important for a richer monetary policy transmission mechanism. Secondly, I consider both static factor loadings as well as dynamic...

  13. Coherent effects on two-photon correlation and directional emission of two two-level atoms

    International Nuclear Information System (INIS)

    Ooi, C. H. Raymond; Kim, Byung-Gyu; Lee, Hai-Woong

    2007-01-01

    Sub- and superradiant dynamics of spontaneously decaying atoms are manifestations of collective many-body systems. We study the internal dynamics and the radiation properties of two atoms in free space. Interesting results are obtained when the atoms are separated by less than half a wavelength of the atomic transition, where the dipole-dipole interaction gives rise to new coherent effects, such as (a) coherence between two intermediate collective states, (b) oscillations in the two-photon correlation G (2) , (c) emission of two photons by one atom, and (d) the loss of directional correlation. We compare the population dynamics during the two-photon emission process with the dynamics of single-photon emission in the cases of a Λ and a V scheme. We compute the temporal correlation and angular correlation of two successively emitted photons using the G (2) for different values of atomic separation. We find antibunching when the atomic separation is a quarter wavelength λ/4. Oscillations in the temporal correlation provide a useful feature for measuring subwavelength atomic separation. Strong directional correlation between two emitted photons is found for atomic separation larger than a wavelength. We also compare the directionality of a photon spontaneously emitted by the two atoms prepared in phased-symmetric and phased-antisymmetric entangled states vertical bar ±> k 0 =e ik 0 ·r 1 vertical bar a 1 ,b 2 >±e ik 0 ·r 2 vertical bar b 1 ,a 2 > by a laser pulse with wave vector k 0 . Photon emission is directionally suppressed along k 0 for the phased-antisymmetric state. The directionality ceases for interatomic distances less than λ/2

  14. Effects of noise on convergent game-learning dynamics

    International Nuclear Information System (INIS)

    Sanders, James B T; Galla, Tobias; Shapiro, Jonathan L

    2012-01-01

    We study stochastic effects on the lagging anchor dynamics, a reinforcement learning algorithm used to learn successful strategies in iterated games, which is known to converge to Nash points in the absence of noise. The dynamics is stochastic when players only have limited information about their opponents’ strategic propensities. The effects of this noise are studied analytically in the case where it is small but finite, and we show that the statistics and correlation properties of fluctuations can be computed to a high accuracy. We find that the system can exhibit quasicycles, driven by intrinsic noise. If players are asymmetric and use different parameters for their learning, a net payoff advantage can be achieved due to these stochastic oscillations around the deterministic equilibrium. (paper)

  15. Stopping dynamics of ions passing through correlated honeycomb clusters

    Science.gov (United States)

    Balzer, Karsten; Schlünzen, Niclas; Bonitz, Michael

    2016-12-01

    A combined nonequilibrium Green functions-Ehrenfest dynamics approach is developed that allows for a time-dependent study of the energy loss of a charged particle penetrating a strongly correlated system at zero and finite temperatures. Numerical results are presented for finite inhomogeneous two-dimensional Fermi-Hubbard models, where the many-electron dynamics in the target are treated fully quantum mechanically and the motion of the projectile is treated classically. The simulations are based on the solution of the two-time Dyson (Keldysh-Kadanoff-Baym) equations using the second-order Born, third-order, and T -matrix approximations of the self-energy. As application, we consider protons and helium nuclei with a kinetic energy between 1 and 500 keV/u passing through planar fragments of the two-dimensional honeycomb lattice and, in particular, examine the influence of electron-electron correlations on the energy exchange between projectile and electron system. We investigate the time dependence of the projectile's kinetic energy (stopping power), the electron density, the double occupancy, and the photoemission spectrum. Finally, we show that, for a suitable choice of the Hubbard model parameters, the results for the stopping power are in fair agreement with ab initio simulations for particle irradiation of single-layer graphene.

  16. Multifractal analysis of the long-range correlations in the cardiac dynamics of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Vitanov, Nikolay K.; Yankulova, Elka D.

    2006-01-01

    By means of the multifractal detrended fluctuation analysis (MFDFA) we investigate long-range correlations in the interbeat time series of heart activity of Drosophila melanogaster-the classical object of research in genetics. Our main investigation tool are the fractal spectra f(α) and h(q) by means of which we trace the correlation properties of Drosophila heartbeat dynamics for three consequent generations of species. We observe that opposite to the case of humans the time series of the heartbeat activity of healthy Drosophila do not have scaling properties. Time series from species with genetic defects can be long-range correlated. Different kinds of genetic heart defects lead to different shape of the fractal spectra. The fractal heartbeat dynamics of Drosophila is transferred from generation to generation

  17. Dynamic Hebbian Cross-Correlation Learning Resolves the Spike Timing Dependent Plasticity Conundrum

    Directory of Open Access Journals (Sweden)

    Tjeerd V. olde Scheper

    2018-01-01

    Full Text Available Spike Timing-Dependent Plasticity has been found to assume many different forms. The classic STDP curve, with one potentiating and one depressing window, is only one of many possible curves that describe synaptic learning using the STDP mechanism. It has been shown experimentally that STDP curves may contain multiple LTP and LTD windows of variable width, and even inverted windows. The underlying STDP mechanism that is capable of producing such an extensive, and apparently incompatible, range of learning curves is still under investigation. In this paper, it is shown that STDP originates from a combination of two dynamic Hebbian cross-correlations of local activity at the synapse. The correlation of the presynaptic activity with the local postsynaptic activity is a robust and reliable indicator of the discrepancy between the presynaptic neuron and the postsynaptic neuron's activity. The second correlation is between the local postsynaptic activity with dendritic activity which is a good indicator of matching local synaptic and dendritic activity. We show that this simple time-independent learning rule can give rise to many forms of the STDP learning curve. The rule regulates synaptic strength without the need for spike matching or other supervisory learning mechanisms. Local differences in dendritic activity at the synapse greatly affect the cross-correlation difference which determines the relative contributions of different neural activity sources. Dendritic activity due to nearby synapses, action potentials, both forward and back-propagating, as well as inhibitory synapses will dynamically modify the local activity at the synapse, and the resulting STDP learning rule. The dynamic Hebbian learning rule ensures furthermore, that the resulting synaptic strength is dynamically stable, and that interactions between synapses do not result in local instabilities. The rule clearly demonstrates that synapses function as independent localized

  18. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy

    International Nuclear Information System (INIS)

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-01-01

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins. (paper)

  19. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy

    Science.gov (United States)

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-03-01

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.

  20. Effects of Protein-pheromone Complexation on Correlated Chemical Shift Modulations

    International Nuclear Information System (INIS)

    Perazzolo, Chiara; Wist, Julien; Loth, Karine; Poggi, Luisa; Homans, Steve; Bodenhausen, Geoffrey

    2005-01-01

    Major urinary protein (MUP) is a pheromone-carrying protein of the lipocalin family. Previous studies by isothermal titration calorimetry (ITC) show that the affinity of MUP for the pheromone 2-methoxy-3-isobutylpyrazine (IBMP) is mainly driven by enthalpy, with a small unfavourable entropic contribution. Entropic terms can be attributed in part to changes in internal motions of the protein upon binding. Slow internal motions can lead to correlated or anti-correlated modulations of the isotropic chemical shifts of carbonyl C' and amide N nuclei. Correlated chemical shift modulations (CSM/CSM) in MUP have been determined by measuring differences of the transverse relaxation rates of zero- and double-quantum coherences ZQC{C'N} and DQC{C'N}, and by accounting for the effects of correlated fluctuations of dipole-dipole couplings (DD/DD) and chemical shift anisotropies (CSA/CSA). The latter can be predicted from tensor parameters of C' and N nuclei that have been determined in earlier work. The effects of complexation on slow time-scale protein dynamics can be determined by comparing the temperature dependence of the relaxation rates of APO-MUP (i.e., without ligand) and HOLO-MUP (i.e., with IBMP as a ligand)

  1. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation

    International Nuclear Information System (INIS)

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2015-01-01

    Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance

  2. Dynamic 68Ga-DOTATOC PET/CT and static image in NET patients. Correlation of parameters during PRRT.

    Science.gov (United States)

    Van Binnebeek, Sofie; Koole, Michel; Terwinghe, Christelle; Baete, Kristof; Vanbilloen, Bert; Haustermans, Karine; Clement, Paul M; Bogaerts, Kris; Verbruggen, Alfons; Nackaerts, Kris; Van Cutsem, Eric; Verslype, Chris; Mottaghy, Felix M; Deroose, Christophe M

    2016-06-28

    To investigate the relationship between the dynamic parameters (Ki) and static image-derived parameters of 68Ga-DOTATOC-PET, to determine which static parameter best reflects underlying somatostatin-receptor-expression (SSR) levels on neuroendocrine tumours (NETs). 20 patients with metastasized NETs underwent a dynamic and static 68Ga-DOTATOC-PET before PRRT and at 7 and 40 weeks after the first administration of 90Y-DOTATOC (in total 4 cycles were planned); 175 lesions were defined and analyzed on the dynamic as well as static scans. Quantitative analysis was performed using the software PMOD. One to five target lesions per patient were chosen and delineated manually on the baseline dynamic scan and further, on the corresponding static 68Ga-DOTATOC-PET and the dynamic and static 68Ga-DOTATOC-PET at the other time-points; SUVmax and SUVmean of the lesions was assessed on the other six scans. The input function was retrieved from the abdominal aorta on the images. Further on, Ki was calculated using the Patlak-Plot. At last, 5 reference regions for normalization of SUVtumour were delineated on the static scans resulting in 5 ratios (SUVratio). SUVmax and SUVmean of the tumoural lesions on the dynamic 68Ga-DOTATOC-PET had a very strong correlation with the corresponding parameters in the static scan (R²: 0.94 and 0.95 respectively). SUVmax, SUVmean and Ki of the lesions showed a good linear correlation; the SUVratios correlated poorly with Ki. A significantly better correlation was noticed between Ki and SUVtumour(max and mean) (p dynamic parameter Ki correlates best with the absolute SUVtumour, SUVtumour best reflects underlying SSR-levels in NETs.

  3. Impact of exchange-correlation effects on the IV characteristics of a molecular junction

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer

    2008-01-01

    The role of exchange-correlation effects in nonequilibrium quantum transport through molecular junctions is assessed by analyzing the IV curve of a generic two-level model using self-consistent many-body perturbation theory (second Born and GW approximations) on the Keldysh contour. It is demonst...... of dynamic correlations introduces quasiparticle (QP) scattering which in turn broadens the molecular resonances. The broadening increases strongly with bias and can have a large impact on the calculated IV characteristic....

  4. Accounting for many-body correlation effects in the calculation of the valence band photoelectron emission spectra of ferromagnets

    International Nuclear Information System (INIS)

    Minar, J.; Chadov, S.; Ebert, H.; Chioncel, L.; Lichtenstein, A.; De Nadai, C.; Brookes, N.B.

    2005-01-01

    The influence of dynamical correlation effects on the valence band photoelectron emission of ferromagnetic Fe, Co and Ni has been investigated. Angle-resolved as well as angle-integrated valence band photoelectron emission spectra were calculated on the basis of the one-particle Green's function, which was obtained by using the fully relativistic Korringa-Kohn-Rostoker method. The correlation effects have been included in terms of the electronic self-energy which was calculated self-consistently within Dynamical Mean-Field Theory (DMFT). In addition a theoretical approach to calculate high-energy angle-resolved valence band photoelectron emission spectra is presented

  5. Dynamic correlation of photo-excited electrons: Anomalous levels induced by light–matter coupling

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiankai [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); Song, Bo, E-mail: bosong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China)

    2014-04-01

    Nonlinear light–matter coupling plays an important role in many aspects of modern physics, such as spectroscopy, photo-induced phase transition, light-based devices, light-harvesting systems, light-directed reactions and bio-detection. However, excited states of electrons are still unclear for nano-structures and molecules in a light field. Our studies unexpectedly present that light can induce anomalous levels in the electronic structure of a donor–acceptor nanostructure with the help of the photo-excited electrons transferring dynamically between the donor and the acceptor. Furthermore, the physics underlying is revealed to be the photo-induced dynamical spin–flip correlation among electrons. These anomalous levels can significantly enhance the electron current through the nanostructure. These findings are expected to contribute greatly to the understanding of the photo-excited electrons with dynamic correlations, which provides a push to the development and application of techniques based on photosensitive molecules and nanostructures, such as light-triggered molecular devices, spectroscopic analysis, bio-molecule detection, and systems for solar energy conversion.

  6. Collective spin correlations and entangled state dynamics in coupled quantum dots

    Science.gov (United States)

    Maslova, N. S.; Arseyev, P. I.; Mantsevich, V. N.

    2018-02-01

    Here we demonstrate that the dynamics of few-electron states in a correlated quantum-dot system coupled to an electronic reservoir is governed by the symmetry properties of the total system leading to the collective behavior of all the electrons. Time evolution of two-electron states in a correlated double quantum dot after coupling to the reservoir has been analyzed by means of kinetic equations for pseudoparticle occupation numbers with constraint on possible physical states. It was revealed that the absolute value of the spin correlation function and the degree of entanglement for two-electron states could considerably increase after coupling to the reservoir. The obtained results demonstrate the possibility of a controllable tuning of both the spin correlation function and the concurrence value in a coupled quantum-dot system by changing of the gate voltage applied to the barrier separating the dots.

  7. Correlated particle dynamics in concentrated quasi-two-dimensional suspensions

    International Nuclear Information System (INIS)

    Diamant, H; Cui, B; Lin, B; Rice, S A

    2005-01-01

    We investigate theoretically and experimentally how the hydrodynamically correlated lateral motion of particles in a suspension confined between two surfaces is affected by the suspension concentration. Despite the long range of the correlations (decaying as 1/r 2 with the inter-particle distance r), the concentration effect is present only at short inter-particle distances for which the static pair correlation is nonuniform. This is in sharp contrast with the effect of hydrodynamic screening in unconfined suspensions, where increasing the concentration changes the prefactor of the large-distance correlation

  8. Dynamical properties of a tumor growth system in the presence of immunization and colored cross-correlated noises

    International Nuclear Information System (INIS)

    Jia Zhenglin; Mei Dongcheng

    2010-01-01

    We investigate the effects of the noise parameters and immunization strength β on the dynamical properties of a tumor growth system with both immunization and colored cross-correlated noises. The analytical expressions for the associated relaxation time T C and the normalized correlation function C(s) are derived by means of the projection operator method. The results indicate that: (i) T C as a function of the multiplicative noise intensity α shows resonance-like behavior, i.e. the curves of T C versus α exhibit a single-peak structure and its peak position changes with increasing correlation strength between noises λ, the autocorrelation time of multiplicative noise τ 1 , the autocorrelation time of additive noise τ 2 and the cross-correlation time τ 3 . This behavior can be understood in terms of the noise-enhanced stability effect and the influence of the memory effects on it. (ii) The increasing λ, τ 1 , τ 2 and the additive noise intensity D slow down the fluctuation decay of the tumor population, whereas the increasing τ 3 and β speed it up. (iii) C(s) increases as λ, τ 1 , τ 2 and β increase, while it decreases with τ 3 increasing. Our study shows that the effects of some noise parameters on tumor growth can be modified due to the presence of the immunization effect.

  9. Dynamical properties of a tumor growth system in the presence of immunization and colored cross-correlated noises

    Science.gov (United States)

    Jia, Zheng-Lin; Mei, Dong-Cheng

    2010-05-01

    We investigate the effects of the noise parameters and immunization strength β on the dynamical properties of a tumor growth system with both immunization and colored cross-correlated noises. The analytical expressions for the associated relaxation time TC and the normalized correlation function C(s) are derived by means of the projection operator method. The results indicate that: (i) TC as a function of the multiplicative noise intensity α shows resonance-like behavior, i.e. the curves of TC versus α exhibit a single-peak structure and its peak position changes with increasing correlation strength between noises λ, the autocorrelation time of multiplicative noise τ1, the autocorrelation time of additive noise τ2 and the cross-correlation time τ3. This behavior can be understood in terms of the noise-enhanced stability effect and the influence of the memory effects on it. (ii) The increasing λ, τ1, τ2 and the additive noise intensity D slow down the fluctuation decay of the tumor population, whereas the increasing τ3 and β speed it up. (iii) C(s) increases as λ, τ1, τ2 and β increase, while it decreases with τ3 increasing. Our study shows that the effects of some noise parameters on tumor growth can be modified due to the presence of the immunization effect.

  10. One- and two-particle correlation functions in the dynamical quantum cluster approach

    International Nuclear Information System (INIS)

    Hochkeppel, Stephan

    2008-01-01

    This thesis is dedicated to a theoretical study of the 1-band Hubbard model in the strong coupling limit. The investigation is based on the Dynamical Cluster Approximation (DCA) which systematically restores non-local corrections to the Dynamical Mean Field approximation (DMFA). The DCA is formulated in momentum space and is characterised by a patching of the Brillouin zone where momentum conservation is only recovered between two patches. The approximation works well if k-space correlation functions show a weak momentum dependence. In order to study the temperature and doping dependence of the spin- and charge excitation spectra, we explicitly extend the Dynamical Cluster Approximation to two-particle response functions. The full irreducible two-particle vertex with three momenta and frequencies is approximated by an effective vertex dependent on the momentum and frequency of the spin and/or charge excitations. The effective vertex is calculated by using the Quantum Monte Carlo method on the finite cluster whereas the analytical continuation of dynamical quantities is performed by a stochastic version of the maximum entropy method. A comparison with high temperature auxiliary field quantum Monte Carlo data serves as a benchmark for our approach to two-particle correlation functions. Our method can reproduce basic characteristics of the spin- and charge excitation spectrum. Near and beyond optimal doping, our results provide a consistent overall picture of the interplay between charge, spin and single-particle excitations: a collective spin mode emerges at optimal doping and sufficiently low temperatures in the spin response spectrum and exhibits the energy scale of the magnetic exchange interaction J. Simultaneously, the low energy single-particle excitations are characterised by a coherent quasiparticle with bandwidth J. The origin of the quasiparticle can be quite well understood in a picture of a more or less antiferromagnetic ordered background in which holes

  11. Effects of Protein-pheromone Complexation on Correlated Chemical Shift Modulations

    Energy Technology Data Exchange (ETDEWEB)

    Perazzolo, Chiara; Wist, Julien [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland); Loth, Karine; Poggi, Luisa [Ecole Normale Superieure, Departement de chimie, associe au CNRS (France); Homans, Steve [University of Leeds, School of Biochemistry and Microbiology (United Kingdom); Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland)], E-mail: Geoffrey.Bodenhausen@ens.fr

    2005-12-15

    Major urinary protein (MUP) is a pheromone-carrying protein of the lipocalin family. Previous studies by isothermal titration calorimetry (ITC) show that the affinity of MUP for the pheromone 2-methoxy-3-isobutylpyrazine (IBMP) is mainly driven by enthalpy, with a small unfavourable entropic contribution. Entropic terms can be attributed in part to changes in internal motions of the protein upon binding. Slow internal motions can lead to correlated or anti-correlated modulations of the isotropic chemical shifts of carbonyl C' and amide N nuclei. Correlated chemical shift modulations (CSM/CSM) in MUP have been determined by measuring differences of the transverse relaxation rates of zero- and double-quantum coherences ZQC{l_brace}C'N{r_brace} and DQC{l_brace}C'N{r_brace}, and by accounting for the effects of correlated fluctuations of dipole-dipole couplings (DD/DD) and chemical shift anisotropies (CSA/CSA). The latter can be predicted from tensor parameters of C' and N nuclei that have been determined in earlier work. The effects of complexation on slow time-scale protein dynamics can be determined by comparing the temperature dependence of the relaxation rates of APO-MUP (i.e., without ligand) and HOLO-MUP (i.e., with IBMP as a ligand)

  12. Effect of the Magnus force on skyrmion relaxation dynamics

    Science.gov (United States)

    Brown, Barton L.; Täuber, Uwe C.; Pleimling, Michel

    2018-01-01

    We perform systematic Langevin molecular dynamics simulations of interacting skyrmions in thin films. The interplay between the Magnus force, the repulsive skyrmion-skyrmion interaction, and the thermal noise yields different regimes during nonequilibrium relaxation. In the noise-dominated regime, the Magnus force enhances the disordering effects of the thermal noise. In the Magnus-force-dominated regime, the Magnus force cooperates with the skyrmion-skyrmion interaction to yield a dynamic regime with slow decaying correlations. These two regimes are characterized by different values of the aging exponent. In general, the Magnus force accelerates the approach to the steady state.

  13. Contagion and Dynamic Correlation of the Main European Stock Index Futures Markets: A Time-frequency Approach

    OpenAIRE

    Tiberiu Albulescu , Claudiu; Goyeau , Daniel; Tiwari , Aviral ,

    2015-01-01

    International audience; In this paper, we examine the financial contagion and dynamic correlation between three European stock index futures, namely FTSE 100, DAX 30 and CAC 40. For this purpose we resort to a continuous wavelet transform framework and we cover the aftermath of the sovereign debt crisis period. More precisely, we analyze the power spectrum of the series, the wavelet coherency and the average dynamic correlation before and after turbulence episodes occurred after the outburst ...

  14. Exponential smoothing weighted correlations

    Science.gov (United States)

    Pozzi, F.; Di Matteo, T.; Aste, T.

    2012-06-01

    In many practical applications, correlation matrices might be affected by the "curse of dimensionality" and by an excessive sensitiveness to outliers and remote observations. These shortcomings can cause problems of statistical robustness especially accentuated when a system of dynamic correlations over a running window is concerned. These drawbacks can be partially mitigated by assigning a structure of weights to observational events. In this paper, we discuss Pearson's ρ and Kendall's τ correlation matrices, weighted with an exponential smoothing, computed on moving windows using a data-set of daily returns for 300 NYSE highly capitalized companies in the period between 2001 and 2003. Criteria for jointly determining optimal weights together with the optimal length of the running window are proposed. We find that the exponential smoothing can provide more robust and reliable dynamic measures and we discuss that a careful choice of the parameters can reduce the autocorrelation of dynamic correlations whilst keeping significance and robustness of the measure. Weighted correlations are found to be smoother and recovering faster from market turbulence than their unweighted counterparts, helping also to discriminate more effectively genuine from spurious correlations.

  15. Dynamical pairing correlations in rotating nuclei

    International Nuclear Information System (INIS)

    Szymanski, Z.

    1985-01-01

    When the atomic nucleus rotates fast enough the static pair correlations may be destroyed. In this situation the pair-vibrations become an important manifestation of the short-range attractive pairing force. The influence of this effect on nuclear properties at high spin is discussed. (orig.)

  16. Effective long wavelength scalar dynamics in de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Ian; Rigopoulos, Gerasimos, E-mail: ian.moss@newcastle.ac.uk, E-mail: gerasimos.rigopoulos@ncl.ac.uk [School of Mathematics and Statistics, Newcastle University, Herschel Building, Newcastle upon Tyne, NE1 7RU U.K. (United Kingdom)

    2017-05-01

    We discuss the effective infrared theory governing a light scalar's long wavelength dynamics in de Sitter spacetime. We show how the separation of scales around the physical curvature radius k / a ∼ H can be performed consistently with a window function and how short wavelengths can be integrated out in the Schwinger-Keldysh path integral formalism. At leading order, and for time scales Δ t >> H {sup −1}, this results in the well-known Starobinsky stochastic evolution. However, our approach allows for the computation of quantum UV corrections, generating an effective potential on which the stochastic dynamics takes place. The long wavelength stochastic dynamical equations are now second order in time, incorporating temporal scales Δ t ∼ H {sup −1} and resulting in a Kramers equation for the probability distribution—more precisely the Wigner function—in contrast to the more usual Fokker-Planck equation. This feature allows us to non-perturbatively evaluate, within the stochastic formalism, not only expectation values of field correlators, but also the stress-energy tensor of φ.

  17. Dynamic correlations between heart and brain rhythm during Autogenic meditation

    OpenAIRE

    Kim, Dae-Keun; Lee, Kyung-Mi; Kim, Jongwha; Whang, Min-Cheol; Kang, Seung Wan

    2013-01-01

    This study is aimed to determine significant physiological parameters of brain and heart under meditative state, both in each activities and their dynamic correlations. Electrophysiological changes in response to meditation were explored in 12 healthy volunteers who completed 8 weeks of a basic training course in autogenic meditation. Heart coherence, representing the degree of ordering in oscillation of heart rhythm intervals, increased significantly during meditation. Relative EEG alpha pow...

  18. Maxwell–Stefan diffusion and dynamical correlation in molten LiF-KF: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Richa Naja, E-mail: ltprichanaja@gmail.com; Chakraborty, Brahmananda; Ramaniah, Lavanya M. [High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-85 (India)

    2016-05-23

    In this work our main objective is to compute Dynamical correlations, Onsager coefficients and Maxwell-Stefan (MS) diffusivities for molten salt LiF-KF mixture at various thermodynamic states through Green–Kubo formalism for the first time. The equilibrium molecular dynamics (MD) simulations were performed using BHM potential for LiF–KF mixture. The velocity autocorrelations functions involving Li ions reflect the endurance of cage dynamics or backscattering with temperature. The magnitude of Onsager coefficients for all pairs increases with increase in temperature. Interestingly most of the Onsager coefficients has almost maximum magnitude at the eutectic composition indicating the most dynamic character of the eutectic mixture. MS diffusivity hence diffusion for all ion pairs increases in the system with increasing temperature. Smooth variation of the diffusivity values denies any network formation in the mixture. Also, the striking feature is the noticeable concentration dependence of MS diffusivity between cation-cation pair, Đ{sub Li-K} which remains negative for most of the concentration range but changes sign to become positive for higher LiF concentration. The negative MS diffusivity is acceptable as it satisfies the non-negative entropy constraint governed by 2{sup nd} law of thermodynamics. This high diffusivity also vouches the candidature of molten salt as a coolant.

  19. Spatio-temporal correlations in models of collective motion ruled by different dynamical laws.

    Science.gov (United States)

    Cavagna, Andrea; Conti, Daniele; Giardina, Irene; Grigera, Tomas S; Melillo, Stefania; Viale, Massimiliano

    2016-11-15

    Information transfer is an essential factor in determining the robustness of biological systems with distributed control. The most direct way to study the mechanisms ruling information transfer is to experimentally observe the propagation across the system of a signal triggered by some perturbation. However, this method may be inefficient for experiments in the field, as the possibilities to perturb the system are limited and empirical observations must rely on natural events. An alternative approach is to use spatio-temporal correlations to probe the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. Here we test this method on models of collective behaviour in their deeply ordered phase by using ground truth data provided by numerical simulations in three dimensions. We compare two models characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertial dynamics and the inertial spin model, characterized by an underdamped inertial dynamics. By using dynamic finite-size scaling, we show that spatio-temporal correlations are able to distinguish unambiguously the diffusive information transfer mechanism of the Vicsek model from the linear mechanism of the inertial spin model.

  20. A study of trapped ion dynamics by photon-correlation and pulse-probe techniques

    International Nuclear Information System (INIS)

    Rink, J.; Dholakia, K.; Zs, G.; Horvath, K.; Hernandez-Pozos, J. L.; Power, W.; Segal, D. M.; Thompson, R. C.; Walker, T.

    1995-01-01

    We demonstrate non-evasive methods for observing ion and ion cloud oscillation frequencies in a quadrupole ion trap. These trap resonances are measured for small clouds using a photon correlation technique. For large clouds the rotation frequency can be detected with the help of an additional pulsed probe laser. We show applications of the photon correlation method such as estimating the dynamic properties of a combined trap and detecting ion crystals

  1. Dynamical pairwise entanglement and two-point correlations in the three-ligand spin-star structure

    Science.gov (United States)

    Motamedifar, M.

    2017-10-01

    We consider the three-ligand spin-star structure through homogeneous Heisenberg interactions (XXX-3LSSS) in the framework of dynamical pairwise entanglement. It is shown that the time evolution of the central qubit ;one-particle; state (COPS) brings about the generation of quantum W states at periodical time instants. On the contrary, W states cannot be generated from the time evolution of a ligand ;one-particle; state (LOPS). We also investigate the dynamical behavior of two-point quantum correlations as well as the expectation values of the different spin-components for each element in the XXX-3LSSS. It is found that when a W state is generated, the same value of the concurrence between any two arbitrary qubits arises from the xx and yy two-point quantum correlations. On the opposite, zz quantum correlation between any two qubits vanishes at these time instants.

  2. Single-level dynamic spiral CT of hepatocellular carcinoma: correlation between imaging features and tumor angiogenesis

    International Nuclear Information System (INIS)

    Chen Weixia; Min Pengqiu; Song Bin; Xiao Bangliang; Liu Yan; Wang Wendong; Chen Xian; Xu Jianying

    2001-01-01

    Objective: To investigate the correlation of the enhancement imaging features of hepatocellular carcinoma (HCC) and relevant parameters revealed by single-level dynamic spiral CT scanning with tumor microvessel counting (MVC). Methods: The study included 26 histopathologically proven HCC patients. Target-slice dynamic scanning and portal venous phase scanning were performed for all patients. The time-density curves were generated with measurement of relevant parameters including: peak value (PV) and contrast enhancement ratio (CER), and the gross enhancement morphology analyzed. Histopathological slides were carefully prepared for the standard F8RA and VEGF immunohistochemical staining and tumor microvessel counting and calculation of VEGF expression percentage of tumor cells. The enhancement imaging features of HCC lesions were correlatively studied with tumor MVC and VEGF expression. Results: Peak value of HCC lesions were 7.9 to 75.2 HU, CER were 3.8% to 36.0%. MVC were 6 to 91, and the VEGF expression percentage were 32.1% to 78.3%. The PV and CER were significantly correlated with tumor tissue MVC (r = 0.508 and 0.423, P < 0.01 and 0.05 respectively). There were no correlations between PV and CER and VEGF expression percentage. Both the patterns of time-density curve and the gross enhancement morphology of HCC lesions were also correlated with tumor MVC, and reflected the distribution characteristics of tumor microvessels within HCC lesions. A close association was found between the likelihood of intrahepatic metastasis of HCC lesions with densely enhanced pseudo capsules and the presence of rich tumor microvessels within these pseudo capsules. Conclusion: The parameters and the enhancement imaging features of HCC lesions on target-slice dynamic scanning are correlated with tumor MVC, and can reflect the distribution characteristics of tumor microvessels within HCC lesions. Dynamic spiral CT scanning is a valuable means to assess the angiogenic activity and

  3. Routes, dynamics, and correlates of cochlear inflammation in terminal and recovering experimental meningitis

    DEFF Research Database (Denmark)

    Cayé-Thomasen, Per; Worsøe, Lise; Brandt, Christian Thomas

    2009-01-01

    OBJECTIVES/HYPOTHESIS: To examine the routes, dynamics and correlates of cochlear inflammation in meningitis to provide information on the pathogenesis of the associated hearing loss and indications for rational pharmacotherapeutical intervention. STUDY DESIGN: A well-established rat model...... with inflammatory cells via cochlear aqueduct, whereas the endolymphatic space was infiltrated from the spiral ligament. Rosenthal's canal was infiltrated through osseous spiral lamina canaliculi. In the untreated group, the degree of inflammation correlated with time of death, whereas antibiotic treatment reversed...... this development. Perilymphatic inflammation correlated significantly with the CSF leukocyte count, whereas endolymphatic inflammation correlated with spiral ligament inflammation. CONCLUSIONS: Meningogenic inflammation of the rat cochlea occurs via the cochlear aqueduct and the spiral ligament capillary bed...

  4. Thermalization dynamics of two correlated bosonic quantum wires after a split

    Science.gov (United States)

    Huber, Sebastian; Buchhold, Michael; Schmiedmayer, Jörg; Diehl, Sebastian

    2018-04-01

    Cherently splitting a one-dimensional Bose gas provides an attractive, experimentally established platform to investigate many-body quantum dynamics. At short enough times, the dynamics is dominated by the dephasing of single quasiparticles, and well described by the relaxation towards a generalized Gibbs ensemble corresponding to the free Luttinger theory. At later times on the other hand, the approach to a thermal Gibbs ensemble is expected for a generic, interacting quantum system. Here, we go one step beyond the quadratic Luttinger theory and include the leading phonon-phonon interactions. By applying kinetic theory and nonequilibrium Dyson-Schwinger equations, we analyze the full relaxation dynamics beyond dephasing and determine the asymptotic thermalization process in the two-wire system for a symmetric splitting protocol. The major observables are the different phonon occupation functions and the experimentally accessible coherence factor, as well as the phase correlations between the two wires. We demonstrate that, depending on the splitting protocol, the presence of phonon collisions can have significant influence on the asymptotic evolution of these observables, which makes the corresponding thermalization dynamics experimentally accessible.

  5. Reliability and Correlation of Static and Dynamic Foot Arch Measurement in a Healthy Pediatric Population.

    Science.gov (United States)

    Scholz, Timo; Zech, Astrid; Wegscheider, Karl; Lezius, Susanne; Braumann, Klaus-Michael; Sehner, Susanne; Hollander, Karsten

    2017-09-01

    Measurement of the medial longitudinal foot arch in children is a controversial topic, as there are many different methods without a definite standard procedure. The purpose of this study was to 1) investigate intraday and interrater reliability regarding dynamic arch index and static arch height, 2) explore the correlation between both arch indices, and 3) examine the variation of the medial longitudinal arch at two different times of the day. Eighty-six children (mean ± SD age, 8.9 ± 1.9 years) participated in the study. Dynamic footprint data were captured with a pedobarographic platform. For static arch measurements, a specially constructed caliper was used to assess heel-to-toe length and dorsum height. A mixed model was established to determine reliability and variation. Reliability was found to be excellent for the static arch height index in sitting (intraday, 0.90; interrater, 0.80) and standing positions (0.88 and 0.85) and for the dynamic arch index (both 1.00). There was poor correlation between static and dynamic assessment of the medial longitudinal arch (standing dynamic arch index, r = -0.138; sitting dynamic arch index, r = -0.070). Static measurements were found to be significantly influenced by the time of day (P body mass index (P mind. For clinical purposes, static and dynamic arch data should be interpreted separately.

  6. Correlation effects in the quench-induced phase separation dynamics of a two species ultracold quantum gas

    Science.gov (United States)

    Mistakidis, S. I.; Katsimiga, G. C.; Kevrekidis, P. G.; Schmelcher, P.

    2018-04-01

    We explore the quench dynamics of a binary Bose–Einstein condensate crossing the miscibility–immiscibility threshold and vice versa, both within and in particular beyond the mean-field approximation. Increasing the interspecies repulsion leads to the filamentation of the density of each species, involving shorter wavenumbers and longer spatial scales in the many-body (MB) approach. These filaments appear to be strongly correlated and exhibit domain-wall structures. Following the reverse quench process multiple dark–antidark solitary waves are spontaneously generated and subsequently found to decay in the MB scenario. We simulate single-shot images to connect our findings to possible experimental realizations. Finally, the growth rate of the variance of a sample of single-shots probes the degree of entanglement inherent in the system.

  7. Dynamic behaviors of spin-1/2 bilayer system within Glauber-type stochastic dynamics based on the effective-field theory

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Kantar, Ersin; Keskin, Mustafa

    2014-01-01

    The dynamic phase transitions (DPTs) and dynamic phase diagrams of the kinetic spin-1/2 bilayer system in the presence of a time-dependent oscillating external magnetic field are studied by using Glauber-type stochastic dynamics based on the effective-field theory with correlations for the ferromagnetic/ferromagnetic (FM/FM), antiferromagnetic/ferromagnetic (AFM/FM) and antiferromagnetic/antiferromagnetic (AFM/AFM) interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams for the amplitude of the oscillating field versus temperature were presented. The results are compared with the results of the same system within Glauber-type stochastic dynamics based on the mean-field theory. - Highlights: • The Ising bilayer system is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a re-entrant behavior

  8. Dynamic behaviors of spin-1/2 bilayer system within Glauber-type stochastic dynamics based on the effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet; Kantar, Ersin, E-mail: ersinkantar@erciyes.edu.tr; Keskin, Mustafa

    2014-05-01

    The dynamic phase transitions (DPTs) and dynamic phase diagrams of the kinetic spin-1/2 bilayer system in the presence of a time-dependent oscillating external magnetic field are studied by using Glauber-type stochastic dynamics based on the effective-field theory with correlations for the ferromagnetic/ferromagnetic (FM/FM), antiferromagnetic/ferromagnetic (AFM/FM) and antiferromagnetic/antiferromagnetic (AFM/AFM) interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams for the amplitude of the oscillating field versus temperature were presented. The results are compared with the results of the same system within Glauber-type stochastic dynamics based on the mean-field theory. - Highlights: • The Ising bilayer system is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a re-entrant behavior.

  9. Correlation Networks from Flows. The Case of Forced and Time-Dependent Advection-Diffusion Dynamics.

    Directory of Open Access Journals (Sweden)

    Liubov Tupikina

    Full Text Available Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network's structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet.

  10. Towards a First-Principles Determination of Effective Coulomb Interactions in Correlated Electron Materials: Role of Intershell Interactions.

    Science.gov (United States)

    Seth, Priyanka; Hansmann, Philipp; van Roekeghem, Ambroise; Vaugier, Loig; Biermann, Silke

    2017-08-04

    The determination of the effective Coulomb interactions to be used in low-energy Hamiltonians for materials with strong electronic correlations remains one of the bottlenecks for parameter-free electronic structure calculations. We propose and benchmark a scheme for determining the effective local Coulomb interactions for charge-transfer oxides and related compounds. Intershell interactions between electrons in the correlated shell and ligand orbitals are taken into account in an effective manner, leading to a reduction of the effective local interactions on the correlated shell. Our scheme resolves inconsistencies in the determination of effective interactions as obtained by standard methods for a wide range of materials, and allows for a conceptual understanding of the relation of cluster model and dynamical mean field-based electronic structure calculations.

  11. Effects of Telecoupling on Global Vegetation Dynamics

    Science.gov (United States)

    Viña, A.; Liu, J.

    2016-12-01

    With the ever increasing trend in telecoupling processes, such as international trade, all countries around the world are becoming more interdependent. However, the effects of this growing interdependence on vegetation (e.g., shifts in the geographic extent and distribution) remain unknown even though vegetation dynamics are crucially important for food production, carbon sequestration, provision of other ecosystem services, and biodiversity conservation. In this study we evaluate the effects of international trade on the spatio-temporal trajectories of vegetation at national and global scales, using vegetation index imagery collected over more than three decades by the Advanced Very High Resolution Radiometer (AVHRR) satellite sensor series together with concurrent national and international data on international trade (and its associated movement of people, goods, services and information). The spatio-temporal trajectories of vegetation are obtained using the scale of fluctuation technique, which is based on the decomposition of the AVHRR image time series to obtain information on its spatial dependence structure over time. Similar to the correlation length, the scale of fluctuation corresponds to the range over which fluctuations in the vegetation index are spatially correlated. Results indicate that global vegetation has changed drastically over the last three decades. These changes are not uniform across space, with hotspots in active trading countries. This study not only has direct implications for understanding global vegetation dynamics, but also sheds important insights on the complexity of human-nature interactions across telecoupled systems.

  12. Dynamical interplay between pairing and quadrupole correlations in odd-mass nuclei

    International Nuclear Information System (INIS)

    Kaneko, Kazunari; Takada, Kenjiro; Sakata, Fumihiko; Tazaki, Shigeru.

    1982-01-01

    Study of the dynamical interplay between pairing and quadrupole correlations in odd-mass nuclei has been developed. One of the purposes of this paper is to predict that the new collective excited states may exist system-atically in odd-mass nuclei. Other purpose is to discuss a new collective band structure on the top of a unique-parity one-quasiparticle state. Through the numerical calculations, it has been clarified that the dynamical mutual interplay between the pairing and the quadrupole degrees of freedom played an important role in the odd-mass transitional nuclei to bring about the new type of collective states. The results of calculation were compared with the experimental data. (Kato, T.)

  13. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    Science.gov (United States)

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  14. Effect of simple solutes on the long range dipolar correlations in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Baul, Upayan, E-mail: upayanb@imsc.res.in; Anishetty, Ramesh, E-mail: ramesha@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113 (India); Kanth, J. Maruthi Pradeep, E-mail: jmpkanth@gmail.com [Vectra LLC, Mount Road, Chennai 600006 (India)

    2016-03-14

    Intermolecular correlations in liquid water at ambient conditions have generally been characterized through short range density fluctuations described through the atomic pair distribution functions. Recent numerical and experimental results have suggested that such a description of order or structure in liquid water is incomplete and there exist considerably longer ranged orientational correlations in water that can be studied through dipolar correlations. In this study, using large scale classical, atomistic molecular dynamics simulations using TIP4P-Ew and TIP3P models of water, we show that salts such as sodium chloride (NaCl), potassium chloride (KCl), caesium chloride (CsCl), and magnesium chloride (MgCl{sub 2}) have a long range effect on the dipolar correlations, which cannot be explained by the notion of structure making and breaking by dissolved ions. Observed effects are explained through orientational stratification of water molecules around ions and their long range coupling to the global hydrogen bond network by virtue of the sum rule for water. The observations for single hydrophilic solutes are contrasted with the same for a single methane (CH{sub 4}) molecule. We observe that even a single small hydrophobe can result in enhancement of long range orientational correlations in liquid water, contrary to the case of dissolved ions, which have been observed to have a reducing effect. The observations from this study are discussed in the context of hydrophobic effect.

  15. Brain dynamics that correlate with effects of learning on auditory distance perception

    Directory of Open Access Journals (Sweden)

    Matthew G. Wisniewski

    2014-12-01

    Full Text Available Accuracy in auditory distance perception can improve with practice and varies for sounds differing in familiarity. Here, listeners were trained to judge the distances of English, Bengali, and backwards speech sources pre-recorded at near (2-m and far (30-m distances. Listeners’ accuracy was tested before and after training. Improvements from pre-test to post-test were greater for forward speech, demonstrating a learning advantage for forward speech sounds. Independent component (IC processes identified in electroencephalographic (EEG data collected during pre- and post-testing revealed three clusters of ICs across subjects with stimulus-locked spectral perturbations related to learning and accuracy. One cluster exhibited a transient stimulus-locked increase in 4-8 Hz power (theta event-related synchronization; ERS that was smaller after training and largest for backwards speech. For a left temporal cluster, 8-12 Hz decreases in power (alpha event-related desynchronization; ERD were greatest for English speech and less prominent after training. In contrast, a cluster of IC processes centered at or near anterior portions of the medial frontal cortex showed learning-related enhancement of sustained increases in 10-16 Hz power (upper-alpha/low-beta ERS. The degree of this enhancement was positively correlated with the degree of behavioral improvements. Results suggest that neural dynamics in non-auditory cortical areas support distance judgments. Further, frontal cortical networks associated with attentional and/or working memory processes appear to play a role in perceptual learning for source distance.

  16. Correlation between electron-irradiation defects and applied stress in graphene: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Kida, Shogo; Yamamoto, Masaya; Kawata, Hiroaki; Hirai, Yoshihiko; Yasuda, Masaaki, E-mail: yasuda@pe.osakafu-u.ac.jp [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Tada, Kazuhiro [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, Toyama 939-8630 (Japan)

    2015-09-15

    Molecular dynamics (MD) simulations are performed to study the correlation between electron irradiation defects and applied stress in graphene. The electron irradiation effect is introduced by the binary collision model in the MD simulation. By applying a tensile stress to graphene, the number of adatom-vacancy (AV) and Stone–Wales (SW) defects increase under electron irradiation, while the number of single-vacancy defects is not noticeably affected by the applied stress. Both the activation and formation energies of an AV defect and the activation energy of an SW defect decrease when a tensile stress is applied to graphene. Applying tensile stress also relaxes the compression stress associated with SW defect formation. These effects induced by the applied stress cause the increase in AV and SW defect formation under electron irradiation.

  17. Many-body Tunneling and Nonequilibrium Dynamics of Doublons in Strongly Correlated Quantum Dots.

    Science.gov (United States)

    Hou, WenJie; Wang, YuanDong; Wei, JianHua; Zhu, ZhenGang; Yan, YiJing

    2017-05-30

    Quantum tunneling dominates coherent transport at low temperatures in many systems of great interest. In this work we report a many-body tunneling (MBT), by nonperturbatively solving the Anderson multi-impurity model, and identify it a fundamental tunneling process on top of the well-acknowledged sequential tunneling and cotunneling. We show that the MBT involves the dynamics of doublons in strongly correlated systems. Proportional to the numbers of dynamical doublons, the MBT can dominate the off-resonant transport in the strongly correlated regime. A T 3/2 -dependence of the MBT current on temperature is uncovered and can be identified as a fingerprint of the MBT in experiments. We also prove that the MBT can support the coherent long-range tunneling of doublons, which is well consistent with recent experiments on ultracold atoms. As a fundamental physical process, the MBT is expected to play important roles in general quantum systems.

  18. Ion Correlation Effects in Salt-Doped Block Copolymers

    Science.gov (United States)

    Brown, Jonathan R.; Seo, Youngmi; Hall, Lisa M.

    2018-03-01

    We apply classical density functional theory to study how salt changes the microphase morphology of diblock copolymers. Polymers are freely jointed and one monomer type favorably interacts with ions, to account for the selective solvation that arises from different dielectric constants of the microphases. By including correlations from liquid state theory of an unbound reference fluid, the theory can treat chain behavior, microphase separation, ion correlations, and preferential solvation, at the same coarse-grained level. We show good agreement with molecular dynamics simulations.

  19. Micropillar displacements by cell traction forces are mechanically correlated with nuclear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingsen; Makhija, Ekta; Hameed, F.M. [Mechanobiology Institute, National University of Singapore (Singapore); Shivashankar, G.V., E-mail: shiva.gvs@gmail.com [Mechanobiology Institute, National University of Singapore (Singapore); Department of Biological Sciences, National University of Singapore (Singapore)

    2015-05-29

    Cells sense physical cues at the level of focal adhesions and transduce them to the nucleus by biochemical and mechanical pathways. While the molecular intermediates in the mechanical links have been well studied, their dynamic coupling is poorly understood. In this study, fibroblast cells were adhered to micropillar arrays to probe correlations in the physical coupling between focal adhesions and nucleus. For this, we used novel imaging setup to simultaneously visualize micropillar deflections and EGFP labeled chromatin structure at high spatial and temporal resolution. We observed that micropillar deflections, depending on their relative positions, were positively or negatively correlated to nuclear and heterochromatin movements. Our results measuring the time scales between micropillar deflections and nucleus centroid displacement are suggestive of a strong elastic coupling that mediates differential force transmission to the nucleus. - Highlights: • Correlation between focal adhesions and nucleus studied using novel imaging setup. • Micropillar and nuclear displacements were measured at high resolution. • Correlation timescales show strong elastic coupling between cell edge and nucleus.

  20. Long-Range Correlations and Memory in the Dynamics of Internet Interdomain Routing.

    Directory of Open Access Journals (Sweden)

    Maksim Kitsak

    Full Text Available Data transfer is one of the main functions of the Internet. The Internet consists of a large number of interconnected subnetworks or domains, known as Autonomous Systems (ASes. Due to privacy and other reasons the information about what route to use to reach devices within other ASes is not readily available to any given AS. The Border Gateway Protocol (BGP is responsible for discovering and distributing this reachability information to all ASes. Since the topology of the Internet is highly dynamic, all ASes constantly exchange and update this reachability information in small chunks, known as routing control packets or BGP updates. In the view of the quick growth of the Internet there are significant concerns with the scalability of the BGP updates and the efficiency of the BGP routing in general. Motivated by these issues we conduct a systematic time series analysis of BGP update rates. We find that BGP update time series are extremely volatile, exhibit long-term correlations and memory effects, similar to seismic time series, or temperature and stock market price fluctuations. The presented statistical characterization of BGP update dynamics could serve as a basis for validation of existing and developing better models of Internet interdomain routing.

  1. Dynamic Phase Transitions In The Spin-2 Ising System Under An Oscillating Magnetic Field Within The Effective-Field Theory

    International Nuclear Information System (INIS)

    Ertas, Mehmet; Keskin, Mustafa; Deviren, Bayram

    2010-01-01

    The dynamic phase transitions are studied in the spin-2 Ising model under a time-dependent oscillating magnetic field by using the effective-field theory with correlations. The effective-field dynamic equation is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic order parameter and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are presented in (T/zJ, h/zJ) plane.

  2. Effective capacity of correlated MISO channels

    KAUST Repository

    Zhong, Caijun

    2011-06-01

    This paper presents an analytical performance investigation of the capacity limits of correlated multiple-input single-output (MISO) channels in the presence of quality-of-service (QoS) requirements. Exact closed-form expression for the effective capacity of correlated MISO channels is derived. In addition, simple expressions are obtained at the asymptotic high and low signal-to-noise ratio (SNR) regimes, which provide insights into the impact of various system parameters on the effective capacity of the system. Also, a complete characterization of the impact of spatial correlation on the effective capacity is provided with the aid of a majorization theory result. The findings suggest that antenna correlation reduce the effective capacity of the channels. Moreover, a stringent QoS requirement causes a significant reduction in the effective capacity but this can be effectively alleviated by increasing the number of antennas. © 2011 IEEE.

  3. System dynamics modelling and simulating the effects of intellectual capital on economic growth

    Directory of Open Access Journals (Sweden)

    Ivona Milić Beran

    2015-10-01

    Full Text Available System dynamics modelling is one of the best scientific methods for modelling complex, nonlinear natural, economic and technical system dynamics as it enables both monitoring and assessment of the effects of intellectual capital on economic growth. Intellectual capital is defined as “the ability to transform knowledge and intangible assets into resources to create wealth for a company and a country.” Transformation of knowledge is crucial. Knowledge increases a country’s wealth only if its importance is recognized and applied differently from existing work practices. The aim of this paper is to show the efficiency of modelling system dynamics and simulating the effects of intellectual capital on economic growth. A computer simulation provided a mathematical model, providing practical insight into the dynamic behavior of the observed system, i.e. the analysis of economic growth and observation of mutual correlation between individual parameters. The results of the simulation are presented in graphical form. The dynamic model of the effects of intellectual capital on Croatia’s economic growth has been verified by comparing simulation results with existing data on economic growth.

  4. The multiphonon method as a dynamical approach to octupole correlations in deformed nuclei

    International Nuclear Information System (INIS)

    Piepenbring, R.

    1986-09-01

    The octupole correlations in nuclei are studied within the framework of the multiphonon method which is mainly the exact diagonalization of the total Hamiltonian in the space spanned by collective phonons. This treatment takes properly into account the Pauli principle. It is a microscopic approach based on a reflection symmetry of the potential. The spectroscopic properties of double even and odd-mass nuclei are nicely reproduced. The multiphonon method appears as a dynamical approach to octupole correlations in nuclei which can be compared to other models based on stable octupole deformation. 66 refs

  5. Dynamical Analysis of Stock Market Instability by Cross-correlation Matrix

    Science.gov (United States)

    Takaishi, Tetsuya

    2016-08-01

    We study stock market instability by using cross-correlations constructed from the return time series of 366 stocks traded on the Tokyo Stock Exchange from January 5, 1998 to December 30, 2013. To investigate the dynamical evolution of the cross-correlations, crosscorrelation matrices are calculated with a rolling window of 400 days. To quantify the volatile market stages where the potential risk is high, we apply the principal components analysis and measure the cumulative risk fraction (CRF), which is the system variance associated with the first few principal components. From the CRF, we detected three volatile market stages corresponding to the bankruptcy of Lehman Brothers, the 2011 Tohoku Region Pacific Coast Earthquake, and the FRB QE3 reduction observation in the study period. We further apply the random matrix theory for the risk analysis and find that the first eigenvector is more equally de-localized when the market is volatile.

  6. Dynamical Analysis of Stock Market Instability by Cross-correlation Matrix

    International Nuclear Information System (INIS)

    Takaishi, Tetsuya

    2016-01-01

    We study stock market instability by using cross-correlations constructed from the return time series of 366 stocks traded on the Tokyo Stock Exchange from January 5, 1998 to December 30, 2013. To investigate the dynamical evolution of the cross-correlations, crosscorrelation matrices are calculated with a rolling window of 400 days. To quantify the volatile market stages where the potential risk is high, we apply the principal components analysis and measure the cumulative risk fraction (CRF), which is the system variance associated with the first few principal components. From the CRF, we detected three volatile market stages corresponding to the bankruptcy of Lehman Brothers, the 2011 Tohoku Region Pacific Coast Earthquake, and the FRB QE3 reduction observation in the study period. We further apply the random matrix theory for the risk analysis and find that the first eigenvector is more equally de-localized when the market is volatile. (paper)

  7. Correlated relativistic dynamics and nuclear effects in dielectronic and visible spectra of highly charged ions

    International Nuclear Information System (INIS)

    Harman, Z.; Artemyev, A.N.; Crespo Lopez-Urrutia, J.R.

    2008-01-01

    Dielectronic recombination and visible emission spectra are investigated theoretically and experimentally. Spectra of x-rays emitted from electron beam ion trap plasmas allow the study of correlation and quantum electrodynamic effects in relativistic few-body systems. In the visible range, exploring the forbidden M1 transitions in Be- and B-like argon ions provides one new insights into the relativistic modelling of isotope shift effects and extend the scope of bound-electron g factor measurements to few-electron ions. (author)

  8. Relaxation dynamics in the presence of pulse multiplicative noise sources with different correlation properties

    Science.gov (United States)

    Kargovsky, A. V.; Chichigina, O. A.; Anashkina, E. I.; Valenti, D.; Spagnolo, B.

    2015-10-01

    The relaxation dynamics of a system described by a Langevin equation with pulse multiplicative noise sources with different correlation properties is considered. The solution of the corresponding Fokker-Planck equation is derived for Gaussian white noise. Moreover, two pulse processes with regulated periodicity are considered as a noise source: the dead-time-distorted Poisson process and the process with fixed time intervals, which is characterized by an infinite correlation time. We find that the steady state of the system is dependent on the correlation properties of the pulse noise. An increase of the noise correlation causes the decrease of the mean value of the solution at the steady state. The analytical results are in good agreement with the numerical ones.

  9. The Dynamic Cross-Correlations between Mass Media News, New Media News, and Stock Returns

    Directory of Open Access Journals (Sweden)

    Zuochao Zhang

    2018-01-01

    Full Text Available We investigate the dynamic cross-correlations between mass media news, new media news, and stock returns for the SSE 50 Index in Chinese stock market by employing the MF-DCCA method. The empirical results show that (1 there exist power-law cross-correlations between two types of news as well as between news and its corresponding SSE 50 Index return; (2 the cross-correlations between mass media news and SSE 50 Index returns show larger multifractality and more complicated structures; (3 mass media news and new media news have both complementary and competitive relationships; (4 with the rolling window analysis, we further find that there is a general increasing trend for the cross-correlations between the two types of news as well as the cross-correlations between news and returns and this trend becomes more persistent over time.

  10. Dynamic Aftershock Triggering Correlated with Cyclic Loading in the Slip Direction

    Science.gov (United States)

    Hardebeck, J.

    2014-12-01

    Dynamic stress changes have been shown to contribute to aftershock triggering, but the physical triggering mechanisms are not fully understood. Some proposed mechanisms are based on dynamic stress loading of the target fault in a direction that encourages earthquake slip (e.g. dynamic Coulomb stress triggering), while other mechanisms are based on fault weakening due to shaking. If dynamic stress loading in the fault slip direction plays a role in aftershock triggering, we would expect to see a relationship between the dynamic stress orientations and the aftershock focal mechanisms. Alternatively, if dynamic stress change triggering functions only through a fault weakening mechanism that is independent of the slip direction of the target fault, no such relationship is expected. I study aftershock sequences of 4 M≥6.7 mainshocks in southern California, and find a small but significant relationship between modeled dynamic stress direction and aftershock focal mechanisms. The mainshock dynamic stress changes have two observed impacts: changing the focal mechanisms in a given location to favor those aligned with the dynamic stress change, and changing the spatial distribution of seismicity to favor locations where the dynamic stress change aligns with the background stress. The aftershock focal mechanisms are significantly more aligned with the dynamic stress changes than the preshock mechanisms for only the first 0.5-1 year following most mainshocks, although for at least 10 years following Hector Mine. Dynamic stress effects on focal mechanisms are best observed at long periods (30-60 sec). Dynamic stress effects are only observed when using metrics based on repeated stress cycling in the same direction, for example considering the dominant stress orientation over the full time series, and not for the peak dynamic stress. These results imply that dynamic aftershock triggering operates at least in part through cyclic loading in the direction of fault slip, although

  11. Aspects of electron correlations in the cuprate superconductors

    International Nuclear Information System (INIS)

    Brenig, W.

    1995-01-01

    We review concepts and effects of electron correlations in the copper-oxide superconductors. The purpose of this article is twofold. First, we provide an overview of results of various electron spectroscopies, Raman scattering and optical conductivity studies with a particular emphasis on experiments which identify the charge and spin correlations relevant to the cuprates. Second, we focus on microscopic theories of the single-particle excitations, and the charge and spin dynamics in the normal state of cuprates considering those models which incorporate strong electron correlations. The single-particle spectrum of the three-band Hubbard model is reviewed and related to results of electron spectroscopy. The carrier dynamics in the t-J model and the one-band Hubbard model at low doping is discussed in detail. We examine approaches which describe the single-particle excitations of correlated electron systems at finite doping. Theories of the static and dynamic magnetic correlations are considered and we speculate on the consequences of the spin dynamics for Raman scattering and the optical conductivity. Finally, selected phenomenological ideas are reviewed. ((orig.))

  12. Couplings between hierarchical conformational dynamics from multi-time correlation functions and two-dimensional lifetime spectra: Application to adenylate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Junichi [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585 (Japan); Takada, Shoji [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585 (Japan); Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Saito, Shinji, E-mail: shinji@ims.ac.jp [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585 (Japan); The Graduate University for Advanced Studies, Okazaki 444-8585 (Japan)

    2015-06-07

    An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchical conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.

  13. Diffusion-weighted imaging and dynamic contrast-enhanced MRI of experimental breast cancer bone metastases – A correlation study with histology

    Energy Technology Data Exchange (ETDEWEB)

    Merz, Maximilian [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg (Germany); Seyler, Lisa; Bretschi, Maren; Semmler, Wolfhard [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Bäuerle, Tobias, E-mail: tobias.baeuerle@uk-erlangen.de [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Institute of Radiology, University Medical Center Erlangen, Palmsanlage 5, 90154 Erlangen (Germany)

    2015-04-15

    Purpose: To validate imaging parameters from diffusion-weighted imaging and dynamic contrast-enhanced MRI with immunohistology and to non-invasively assess microstructure of experimental breast cancer bone metastases. Materials and methods: Animals bearing breast cancer bone metastases were imaged in a clinical 1.5 T MRI scanner. HASTE sequences were performed to calculate apparent diffusion coefficients. Saturation recovery turbo FLASH sequences were conducted while infusing 0.1 mmol/l Gd–DTPA for dynamic contrast-enhanced MRI to quantify parameters amplitude A and exchange rate constant k{sub ep}. After imaging, bone metastases were analyzed immunohistologically. Results: We found correlations of the apparent diffusion coefficients from diffusion-weighted imaging with tumor cellularity as assessed with cell nuclei staining. Histological vessel maturity was correlated negatively with parameters A and k{sub ep} from dynamic contrast-enhanced MRI. Tumor size correlated inversely with cell density and vessel permeability as well as positively with mean vessel calibers. Parameters from the rim of bone metastases differed significantly from values of the center. Conclusion: In vivo diffusion-weighted imaging and dynamic contrast-enhanced MRI in experimental bone metastases provide information about tumor cellularity and vascularity and correlate well with immunohistology.

  14. Spatio-temporal image correlation spectroscopy and super-resolution microscopy to quantify molecular dynamics in T cells.

    Science.gov (United States)

    Ashdown, George W; Owen, Dylan M

    2018-02-02

    Many cellular processes are regulated by the spatio-temporal organisation of signalling complexes, cytoskeletal components and membranes. One such example is at the T cell immunological synapse where the retrograde flow of cortical filamentous (F)-actin from the synapse periphery drives signalling protein microclusters towards the synapse centre. The density of this mesh however, makes visualisation and analysis of individual actin fibres difficult due to the resolution limit of conventional microscopy. Recently, super-resolution methods such as structured illumination microscopy (SIM) have surpassed this resolution limit. Here, we apply SIM to better visualise the dense cortical actin meshwork in T cell synapses formed against activating, antibody-coated surfaces and image under total-internal reflection fluorescence (TIRF) illumination. To analyse the observed molecular flows, and the relationship between them, we apply spatio-temporal image correlation spectroscopy (STICS) and its cross-correlation variant (STICCS). We show that the dynamic cortical actin mesh can be visualised with unprecedented detail and that STICS/STICCS can output accurate, quantitative maps of molecular flow velocity and directionality from such data. We find that the actin flow can be disrupted using small molecule inhibitors of actin polymerisation. This combination of imaging and quantitative analysis may provide an important new tool for researchers to investigate the molecular dynamics at cellular length scales. Here we demonstrate the retrograde flow of F-actin which may be important for the clustering and dynamics of key signalling proteins within the plasma membrane, a phenomenon which is vital to correct T cell activation and therefore the mounting of an effective immune response. Copyright © 2018. Published by Elsevier Inc.

  15. Intra-lesional spatial correlation of static and dynamic FET-PET parameters with MRI-based cerebral blood volume in patients with untreated glioma

    Energy Technology Data Exchange (ETDEWEB)

    Goettler, Jens; Preibisch, Christine [TU Muenchen, Department of Neuroradiology, Klinikum rechts der Isar, Munich (Germany); TU Muenchen, TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Munich (Germany); Lukas, Mathias; Mustafa, Mona; Schwaiger, Markus; Pyka, Thomas [TU Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Kluge, Anne; Kaczmarz, Stephan; Zimmer, Claus [TU Muenchen, Department of Neuroradiology, Klinikum rechts der Isar, Munich (Germany); Gempt, Jens; Ringel, Florian; Meyer, Bernhard [TU Muenchen, Department of Neurosurgery, Klinikum rechts der Isar, Munich (Germany); Foerster, Stefan [TU Muenchen, TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Munich (Germany); TU Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Klinikum Bayreuth, Department of Nuclear Medicine, Bayreuth (Germany)

    2017-03-15

    {sup 18}F-fluorethyltyrosine-(FET)-PET and MRI-based relative cerebral blood volume (rCBV) have both been used to characterize gliomas. Recently, inter-individual correlations between peak static FET-uptake and rCBV have been reported. Herein, we assess the local intra-lesional relation between FET-PET parameters and rCBV. Thirty untreated glioma patients (27 high-grade) underwent simultaneous PET/MRI on a 3 T hybrid scanner obtaining structural and dynamic susceptibility contrast sequences. Static FET-uptake and dynamic FET-slope were correlated with rCBV within tumour hotspots across patients and intra-lesionally using a mixed-effects model to account for inter-individual variation. Furthermore, maximal congruency of tumour volumes defined by FET-uptake and rCBV was determined. While the inter-individual relationship between peak static FET-uptake and rCBV could be confirmed, our intra-lesional, voxel-wise analysis revealed significant positive correlations (median r = 0.374, p < 0.0001). Similarly, significant inter- and intra-individual correlations were observed between FET-slope and rCBV. However, rCBV explained only 12% of the static and 5% of the dynamic FET-PET variance and maximal overlap of respective tumour volumes was 37% on average. Our results show that the relation between peak values of MR-based rCBV and static FET-uptake can also be observed intra-individually on a voxel basis and also applies to a dynamic FET parameter, possibly determining hotspots of higher biological malignancy. However, just a small part of the FET-PET signal variance is explained by rCBV and tumour volumes determined by the two modalities showed only moderate overlap. These findings indicate that FET-PET and MR-based rCBV provide both congruent and complimentary information on glioma biology. (orig.)

  16. Interpretation of photocurrent correlation measurements used for ultrafast photoconductive switch characterization

    DEFF Research Database (Denmark)

    Jacobsen, R. H.; Birkelund, Karen; Holst, T.

    1996-01-01

    of the switch. By using both photocurrent measurements and terahertz spectroscopy we verify the importance of space-charge effects on the carrier dynamics. Photocurrent nonlinearities and coherent effects are discussed as they appear in the correlation signals. An analysis based on a simple model allows......Photocurrent correlation measurements used for the characterization of ultrafast photoconductive switches based on GaAs and silicon-on-sapphire are demonstrated. The correlation signal arises from the interplay of the photoexcited carriers, the dynamics of the bias field and a subsequent recharging...

  17. Emergent Gauge Fields and Their Nonperturbative Effects in Correlated Electrons

    Science.gov (United States)

    Kim, Ki-Seok; Tanaka, Akihiro

    The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner's and Anderson's physical pictures, where the former is based on momentum-space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high Tc superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner's description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner's paradigm. In this review article we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high Tc cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the nonperturbative

  18. Intra-lesional spatial correlation of static and dynamic FET-PET parameters with MRI-based cerebral blood volume in patients with untreated glioma.

    Science.gov (United States)

    Göttler, Jens; Lukas, Mathias; Kluge, Anne; Kaczmarz, Stephan; Gempt, Jens; Ringel, Florian; Mustafa, Mona; Meyer, Bernhard; Zimmer, Claus; Schwaiger, Markus; Förster, Stefan; Preibisch, Christine; Pyka, Thomas

    2017-03-01

    18 F-fluorethyltyrosine-(FET)-PET and MRI-based relative cerebral blood volume (rCBV) have both been used to characterize gliomas. Recently, inter-individual correlations between peak static FET-uptake and rCBV have been reported. Herein, we assess the local intra-lesional relation between FET-PET parameters and rCBV. Thirty untreated glioma patients (27 high-grade) underwent simultaneous PET/MRI on a 3 T hybrid scanner obtaining structural and dynamic susceptibility contrast sequences. Static FET-uptake and dynamic FET-slope were correlated with rCBV within tumour hotspots across patients and intra-lesionally using a mixed-effects model to account for inter-individual variation. Furthermore, maximal congruency of tumour volumes defined by FET-uptake and rCBV was determined. While the inter-individual relationship between peak static FET-uptake and rCBV could be confirmed, our intra-lesional, voxel-wise analysis revealed significant positive correlations (median r = 0.374, p dynamic FET-PET variance and maximal overlap of respective tumour volumes was 37% on average. Our results show that the relation between peak values of MR-based rCBV and static FET-uptake can also be observed intra-individually on a voxel basis and also applies to a dynamic FET parameter, possibly determining hotspots of higher biological malignancy. However, just a small part of the FET-PET signal variance is explained by rCBV and tumour volumes determined by the two modalities showed only moderate overlap. These findings indicate that FET-PET and MR-based rCBV provide both congruent and complimentary information on glioma biology.

  19. Hydrogen bonding in protic ionic liquids: structural correlations, vibrational spectroscopy, and rotational dynamics of liquid ethylammonium nitrate

    Science.gov (United States)

    Zentel, Tobias; Overbeck, Viviane; Michalik, Dirk; Kühn, Oliver; Ludwig, Ralf

    2018-02-01

    The properties of the hydrogen bonds in ethylammonium nitrate (EAN) are analyzed by using molecular dynamics simulations and infrared as well as nuclear magnetic resonance experiments. EAN features a flexible three-dimensional network of hydrogen bonds with moderate strengths, which makes it distinct from related triethylammonium-based ionic liquids. First, the network’s flexibility is manifested in a not very pronounced correlation of the hydrogen bond geometries, which is caused by rapid interchanges of bonding partners. The large flexibility of the network also leads to a substantial broadening of the mid-IR absorption band, with the contributions due to N-H stretching motions ranging from 2800 to 3250 cm-1. Finally, the different dynamics are also seen in the rotational correlation of the N-H bond vector, where a correlation time as short as 16.1 ps is observed.

  20. Correlative investigation of dynamic contrast CT and positron emission tomography with 18-fluorodeoxy glucose standardized uptake value in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Ding Qiyong; Hua Yanqing; Zhu Feng; Mao Dingbiao; Ge Xiaojun; Zhang Guozhen; Guan Yihui; Zhao Jun

    2005-01-01

    Objective: To explore the correlation of dynamic enhanced CT attenuation and 18-fluorodeoxy glucose ( 18 F-FDG) standardized uptake value (SUV) in non-small cell lung cancer (NSCLC). Methods: Twenty-eight NSCLC patients and 13 patients with benign nodules (28 male, 13 female; age range 15-79 years, median 57 years; the diameter range from 0.8-4.0 cm, mean 2.2 cm) were examined on Siemens biograph sensation 16 PET-CT with 18 F-FDG. Dynamic enhanced CT scan was performed on Siemens sensation 16 PET-CT or 16 slice CT in 23 patients and other 18 patients had the results of dynamic CT from other hospitals. The mean CT attenuation of ROI on precontrast and postcontrast multi-phase images, the maxium and average SUV of 18 F-FDG were respectively measured. The correlation between the peak attenuation (A PA ) and SUV was analyzed with pearson correlation coefficient test. Results: The CT A PA between NSCLC and benign nodules had no significance difference (t=1.374, P=0.189). The difference of maximum and average SUV between NSCLC and benignity were significant (t=-3.972, P PA , maximum SUV (7.23 ± 4.38), and average SUV (4.93±3.53) (r=-0.040, P=0.839 and r=0.056, P=0.778). Conclusion: There is no correlation between A PA and SUV in NSCLC. SUV is probably not suitable for the evaluation of the effects of anti-angiogenesis therapy. (authors)

  1. Automated Processing of Dynamic Contrast-Enhanced MRI: Correlation of Advanced Pharmacokinetic Metrics with Tumor Grade in Pediatric Brain Tumors.

    Science.gov (United States)

    Vajapeyam, S; Stamoulis, C; Ricci, K; Kieran, M; Poussaint, T Young

    2017-01-01

    Pharmacokinetic parameters from dynamic contrast-enhanced MR imaging have proved useful for differentiating brain tumor grades in adults. In this study, we retrospectively reviewed dynamic contrast-enhanced perfusion data from children with newly diagnosed brain tumors and analyzed the pharmacokinetic parameters correlating with tumor grade. Dynamic contrast-enhanced MR imaging data from 38 patients were analyzed by using commercially available software. Subjects were categorized into 2 groups based on pathologic analyses consisting of low-grade (World Health Organization I and II) and high-grade (World Health Organization III and IV) tumors. Pharmacokinetic parameters were compared between the 2 groups by using linear regression models. For parameters that were statistically distinct between the 2 groups, sensitivity and specificity were also estimated. Eighteen tumors were classified as low-grade, and 20, as high-grade. Transfer constant from the blood plasma into the extracellular extravascular space (K trans ), rate constant from extracellular extravascular space back into blood plasma (K ep ), and extracellular extravascular volume fraction (V e ) were all significantly correlated with tumor grade; high-grade tumors showed higher K trans , higher K ep , and lower V e . Although all 3 parameters had high specificity (range, 82%-100%), K ep had the highest specificity for both grades. Optimal sensitivity was achieved for V e , with a combined sensitivity of 76% (compared with 71% for K trans and K ep ). Pharmacokinetic parameters derived from dynamic contrast-enhanced MR imaging can effectively discriminate low- and high-grade pediatric brain tumors. © 2017 by American Journal of Neuroradiology.

  2. Dynamics of tripartite quantum correlations and decoherence in flux qubit systems under local and non-local static noise

    Science.gov (United States)

    Arthur, Tsamouo Tsokeng; Martin, Tchoffo; Fai, Lukong Cornelius

    2018-06-01

    We investigate the dynamics of entanglement, decoherence and quantum discord in a system of three non-interacting superconducting flux qubits (fqubits) initially prepared in a Greenberger-Horne-Zeilinger (GHZ) state and subject to static noise in different, bipartite and common environments, since it is recognized that different noise configurations generally lead to completely different dynamical behavior of physical systems. The noise is modeled by randomizing the single fqubit transition amplitude. Decoherence and quantum correlations dynamics are strongly affected by the purity of the initial state, type of system-environment interaction and the system-environment coupling strength. Specifically, quantum correlations can persist when the fqubits are commonly coupled to a noise source, and reaches a saturation value respective to the purity of the initial state. As the number of decoherence channels increases (bipartite and different environments), decoherence becomes stronger against quantum correlations that decay faster, exhibiting sudden death and revival phenomena. The residual entanglement can be successfully detected by means of suitable entanglement witness, and we derive a necessary condition for entanglement detection related to the tunable and non-degenerated energy levels of fqubits. In accordance with the current literature, our results further suggest the efficiency of fqubits over ordinary ones, as far as the preservation of quantum correlations needed for quantum processing purposes is concerned.

  3. Do Sustainable Stocks Offer Diversification Benefits for Conventional Portfolios? An Empirical Analysis of Risk Spillovers and Dynamic Correlations

    Directory of Open Access Journals (Sweden)

    Mehmet Balcilar

    2017-10-01

    Full Text Available This paper explores the potential diversification benefits of socially responsible investments for conventional stock portfolios by examining the risk spillovers and dynamic correlations between conventional and sustainability stock indexes from a number of regions. We observe significant unidirectional volatility transmissions from conventional to sustainable equities, suggesting that the criteria applied for socially responsible investments do not necessarily shield these securities from common market shocks. While significant dynamic correlations are observed between sustainable and conventional stocks, particularly in Europe, the analysis of both in- and out-of-sample dynamic portfolios suggests that supplementing conventional stock portfolios with sustainable counterparts improves the risk/return profile of stock portfolios in all regions. The findings overall suggest that sustainable investments can indeed provide diversification gains for conventional stock portfolios globally.

  4. Breast MR imaging: correlation of high resolution dynamic MR findings with prognostic factors

    International Nuclear Information System (INIS)

    Lee, Shin Ho; Cho, Nariya; Chung, Hye Kyung; Kim, Seung Ja; Cho, Kyung Soo; Moon, Woo Kyung; Cho, Joo Hee

    2005-01-01

    We wanted to correlate the kinetic and morphologic MR findings of invasive breast cancer with the classical and molecular prognostic factors. Eighty-seven patients with invasive ductal carcinoma NOS underwent dynamic MR imaging at 1.5 T, and with using the T1-weighted 3D FLASH technique. The morphologic findings (shape, margin, internal enhancement of the mass or the enhancement distribution and the internal enhancement of any non-mass lesion) and the kinetic findings (the initial phase and the delayed phase of the time-signal. Intensity curve) were interpreted using a ACR BI-RADS-MRI lexicon. We correlate MR findings with histopathologic prognostic factors (tumor size, lymph node status and tumor grade) and the immunohistochemically detected biomarkers (ER, PR, ρ 53, c-erbB-2, EGFR and Ki-67). Univariate and multivariate statistical analyses were than performed. Among the MR findings, a spiculated margin, rim enhancement and washout were significantly correlated with the prognostic factors. A spiculated margin was independently associated with the established predictors of a good prognosis (a lower histologic and nuclear grade, positive ER and PR) and rim enhancement was associated with a poor prognosis (a higher histologic and nuclear grade, negative ER and PR). Wash out was a independent predictor of Ki-67 activity. Some of the findings of high resolution dynamic MR imaging were associated with the prognostic factors, and these findings may predict the prognosis of breast cancer

  5. Collective dynamics of populations of weakly correlated filaments of incoherent white light

    International Nuclear Information System (INIS)

    Guo, Jinxin; Sheridan, John T; Saravanamuttu, Kalaichelvi

    2013-01-01

    We examined the dynamics of two populations of self-trapped filaments of spatially and temporally incoherent white light. The populations consisted of (i) independent filaments generated through self-trapping of incandescent speckles, and (ii) co-dependent filaments created through modulation instability of a broad incandescent beam. Both filament populations were positionally stable in conditions where individual pairs of self-trapped beams interact strongly. Both also acquired significantly broad intensity distributions, which were independent of their parent optical fields; a small but persistent number of high-intensity filaments was identified in both cases. These studies provide accessible routes to weakly correlated ensembles, insight into their collective behaviour such as self-stabilization and self-selected intensity distributions, and reveal intriguing similarities between the dynamics of two populations of different origins. (paper)

  6. Dynamical correlation functions of the quadratic coupling spin-Boson model

    Science.gov (United States)

    Zheng, Da-Chuan; Tong, Ning-Hua

    2017-06-01

    The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method. We focus on the dynamical auto-correlation functions {C}O(ω ), with the operator \\hat{O} taken as {\\hat{{{σ }}}}x, {\\hat{{{σ }}}}z, and \\hat{X}, respectively. In the weak-coupling regime α qualitatively, showing enhanced dephasing at the spin flip point. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB921704), the National Natural Science Foundation of China (Grant No. 11374362), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 15XNLQ03).

  7. Partial scan artifact reduction (PSAR) for the assessment of cardiac perfusion in dynamic phase-correlated CT.

    Science.gov (United States)

    Stenner, Philip; Schmidt, Bernhard; Bruder, Herbert; Allmendinger, Thomas; Haberland, Ulrike; Flohr, Thomas; Kachelriess, Marc

    2009-12-01

    Cardiac CT achieves its high temporal resolution by lowering the scan range from 2pi to pi plus fan angle (partial scan). This, however, introduces CT-value variations, depending on the angular position of the pi range. These partial scan artifacts are of the order of a few HU and prevent the quantitative evaluation of perfusion measurements. The authors present the new algorithm partial scan artifact reduction (PSAR) that corrects a dynamic phase-correlated scan without a priori information. In general, a full scan does not suffer from partial scan artifacts since all projections in [0, 2pi] contribute to the data. To maintain the optimum temporal resolution and the phase correlation, PSAR creates an artificial full scan pn(AF) by projectionwise averaging a set of neighboring partial scans pn(P) from the same perfusion examination (typically N approximately 30 phase-correlated partial scans distributed over 20 s and n = 1, ..., N). Corresponding to the angular range of each partial scan, the authors extract virtual partial scans pn(V) from the artificial full scan pn(AF). A standard reconstruction yields the corresponding images fn(P), fn(AF), and fn(V). Subtracting the virtual partial scan image fn(V) from the artificial full scan image fn(AF) yields an artifact image that can be used to correct the original partial scan image: fn(C) = fn(P) - fn(V) + fn(AF), where fn(C) is the corrected image. The authors evaluated the effects of scattered radiation on the partial scan artifacts using simulated and measured water phantoms and found a strong correlation. The PSAR algorithm has been validated with a simulated semianthropomorphic heart phantom and with measurements of a dynamic biological perfusion phantom. For the stationary phantoms, real full scans have been performed to provide theoretical reference values. The improvement in the root mean square errors between the full and the partial scans with respect to the errors between the full and the corrected scans is

  8. Partial scan artifact reduction (PSAR) for the assessment of cardiac perfusion in dynamic phase-correlated CT

    International Nuclear Information System (INIS)

    Stenner, Philip; Schmidt, Bernhard; Bruder, Herbert; Allmendinger, Thomas; Haberland, Ulrike; Flohr, Thomas; Kachelriess, Marc

    2009-01-01

    Purpose: Cardiac CT achieves its high temporal resolution by lowering the scan range from 2π to π plus fan angle (partial scan). This, however, introduces CT-value variations, depending on the angular position of the π range. These partial scan artifacts are of the order of a few HU and prevent the quantitative evaluation of perfusion measurements. The authors present the new algorithm partial scan artifact reduction (PSAR) that corrects a dynamic phase-correlated scan without a priori information. Methods: In general, a full scan does not suffer from partial scan artifacts since all projections in [0, 2π] contribute to the data. To maintain the optimum temporal resolution and the phase correlation, PSAR creates an artificial full scan p n AF by projectionwise averaging a set of neighboring partial scans p n P from the same perfusion examination (typically N≅30 phase-correlated partial scans distributed over 20 s and n=1,...,N). Corresponding to the angular range of each partial scan, the authors extract virtual partial scans p n V from the artificial full scan p n AF . A standard reconstruction yields the corresponding images f n P , f n AF , and f n V . Subtracting the virtual partial scan image f n V from the artificial full scan image f n AF yields an artifact image that can be used to correct the original partial scan image: f n C =f n P -f n V +f n AF , where f n C is the corrected image. Results: The authors evaluated the effects of scattered radiation on the partial scan artifacts using simulated and measured water phantoms and found a strong correlation. The PSAR algorithm has been validated with a simulated semianthropomorphic heart phantom and with measurements of a dynamic biological perfusion phantom. For the stationary phantoms, real full scans have been performed to provide theoretical reference values. The improvement in the root mean square errors between the full and the partial scans with respect to the errors between the full and the

  9. Forward-backward correlations in pp interactions in a dual model

    International Nuclear Information System (INIS)

    Fialkowsky, K.; Kotanski, A.; Uniwersytet Jagiellonski, Krakow

    1982-01-01

    Forward-backward correlations in lepton and hadron induced processes are compared according to the dual model. It is indicated that the effect of the chain energy spread in hadron processes is important. After including this effect the model is shown to explain the forward-backward correlations in pp data assuming no dynamical correlations within a single chain. (orig.)

  10. Additive N-step Markov chains as prototype model of symbolic stochastic dynamical systems with long-range correlations

    International Nuclear Information System (INIS)

    Mayzelis, Z.A.; Apostolov, S.S.; Melnyk, S.S.; Usatenko, O.V.; Yampol'skii, V.A.

    2007-01-01

    A theory of symbolic dynamic systems with long-range correlations based on the consideration of the binary N-step Markov chains developed earlier in Phys Rev Lett 2003;90:110601 is generalized to the biased case (non-equal numbers of zeros and unities in the chain). In the model, the conditional probability that the ith symbol in the chain equals zero (or unity) is a linear function of the number of unities (zeros) among the preceding N symbols. The correlation and distribution functions as well as the variance of number of symbols in the words of arbitrary length L are obtained analytically and verified by numerical simulations. A self-similarity of the studied stochastic process is revealed and the similarity group transformation of the chain parameters is presented. The diffusion Fokker-Planck equation governing the distribution function of the L-words is explored. If the persistent correlations are not extremely strong, the distribution function is shown to be the Gaussian with the variance being nonlinearly dependent on L. An equation connecting the memory and correlation function of the additive Markov chain is presented. This equation allows reconstructing a memory function using a correlation function of the system. Effectiveness and robustness of the proposed method is demonstrated by simple model examples. Memory functions of concrete coarse-grained literary texts are found and their universal power-law behavior at long distances is revealed

  11. Additive N-step Markov chains as prototype model of symbolic stochastic dynamical systems with long-range correlations

    Energy Technology Data Exchange (ETDEWEB)

    Mayzelis, Z.A. [Department of Physics, Kharkov National University, 4 Svoboda Sq., Kharkov 61077 (Ukraine); Apostolov, S.S. [Department of Physics, Kharkov National University, 4 Svoboda Sq., Kharkov 61077 (Ukraine); Melnyk, S.S. [A. Ya. Usikov Institute for Radiophysics and Electronics, Ukrainian Academy of Science, 12 Proskura Street, 61085 Kharkov (Ukraine); Usatenko, O.V. [A. Ya. Usikov Institute for Radiophysics and Electronics, Ukrainian Academy of Science, 12 Proskura Street, 61085 Kharkov (Ukraine)]. E-mail: usatenko@ire.kharkov.ua; Yampol' skii, V.A. [A. Ya. Usikov Institute for Radiophysics and Electronics, Ukrainian Academy of Science, 12 Proskura Street, 61085 Kharkov (Ukraine)

    2007-10-15

    A theory of symbolic dynamic systems with long-range correlations based on the consideration of the binary N-step Markov chains developed earlier in Phys Rev Lett 2003;90:110601 is generalized to the biased case (non-equal numbers of zeros and unities in the chain). In the model, the conditional probability that the ith symbol in the chain equals zero (or unity) is a linear function of the number of unities (zeros) among the preceding N symbols. The correlation and distribution functions as well as the variance of number of symbols in the words of arbitrary length L are obtained analytically and verified by numerical simulations. A self-similarity of the studied stochastic process is revealed and the similarity group transformation of the chain parameters is presented. The diffusion Fokker-Planck equation governing the distribution function of the L-words is explored. If the persistent correlations are not extremely strong, the distribution function is shown to be the Gaussian with the variance being nonlinearly dependent on L. An equation connecting the memory and correlation function of the additive Markov chain is presented. This equation allows reconstructing a memory function using a correlation function of the system. Effectiveness and robustness of the proposed method is demonstrated by simple model examples. Memory functions of concrete coarse-grained literary texts are found and their universal power-law behavior at long distances is revealed.

  12. Dynamic phase transitions and dynamic phase diagrams of the spin-2 Blume-Capel model under an oscillating magnetic field within the effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ertas, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-03-15

    The dynamic phase transitions are studied in the kinetic spin-2 Blume-Capel model under a time-dependent oscillating magnetic field using the effective-field theory with correlations. The effective-field dynamic equation for the average magnetization is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic magnetization and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are constructed in the reduced temperature and magnetic field amplitude plane and are of seven fundamental types. Phase diagrams contain the paramagnetic (P), ferromagnetic-2 (F{sub 2}) and three coexistence or mixed phase regions, namely the F{sub 2}+P, F{sub 1}+P and F{sub 2}+F{sub 1}+P, which strongly depend on the crystal-field interaction (D) parameter. The system also exhibits the dynamic tricritical behavior. - Highlights: Black-Right-Pointing-Pointer Dynamic phase transitions are studied in spin-2 BC model using EFT. Black-Right-Pointing-Pointer Dynamic phase diagrams are constructed in (T/zJ, h/zJ) plane. Black-Right-Pointing-Pointer Seven fundamental types of dynamic phase diagrams are found in the system. Black-Right-Pointing-Pointer System exhibits dynamic tricritical behavior.

  13. Multicomponent diffusion in molten salt LiF-BeF{sub 2}: Dynamical correlations and Maxwell–Stefan diffusivities

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Brahmananda, E-mail: brahma@barc.gov.in; Ramaniah, Lavanya M. [High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2015-06-24

    Applying Green–Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied the dynamic correlation, Onsager coeeficients and Maxwell–Stefan (MS) Diffusivities of molten salt LiF-BeF{sub 2}, which is used as coolant in high temperature reactor. All the diffusive flux correlations show back-scattering or cage dynamics which becomes pronouced at higher temperature. Although the MS diffusivities are expected to depend very lightly on the composition due to decoupling of thermodynamic factor, the diffusivity Đ{sub Li-F} and Đ{sub Be-F} decreases sharply for higher concentration of LiF and BeF{sub 2} respectively. Interestingly, all three MS diffusivities have highest magnitude for eutectic mixture at 1000K (except Đ{sub Be-F} at lower LiF mole fraction) which is desirable from coolant point of view. Although the diffusivity for positive-positive ion pair is negative it is not in violation of the second law of thermodynamics as it satisfies the non-negative entropic constraints.

  14. Correlations in double parton distributions: perturbative and non-perturbative effects

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, Matteo; Scopetta, Sergio [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia andIstituto Nazionale di Fisica Nucleare, Sezione di Perugia, via A. Pascoli, I-06123 Perugia (Italy); Traini, Marco [Institut de Physique Théorique CEA-Saclay, F-91191 Gif-sur-Yvette (France); INFN - TIFPA, Dipartimento di Fisica, Università degli Studi di Trento,Via Sommarive 14, I-38123 Povo (Trento) (Italy); Vento, Vicente [Departament de Física Teòrica, Universitat de València and Institut de Física Corpuscular,Consejo Superior de Investigaciones Científicas, 46100 Carrer del Dr. Moliner 50 València (Spain)

    2016-10-12

    The correct description of Double Parton Scattering (DPS), which represents a background in several channels for the search of new Physics at the LHC, requires the knowledge of double parton distribution functions (dPDFs). These quantities represent also a novel tool for the study of the three-dimensional nucleon structure, complementary to the possibilities offered by electromagnetic probes. In this paper we analyze dPDFs using Poincaré covariant predictions obtained by using a Light-Front constituent quark model proposed in a recent paper, and QCD evolution. We study to what extent factorized expressions for dPDFs, which neglect, at least in part, two-parton correlations, can be used. We show that they fail in reproducing the calculated dPDFs, in particular in the valence region. Actually measurable processes at existing facilities occur at low longitudinal momenta of the interacting partons; to have contact with these processes we have analyzed correlations between pairs of partons of different kind, finding that, in some cases, they are strongly suppressed at low longitudinal momenta, while for other distributions they can be sizeable. For example, the effect of gluon-gluon correlations can be as large as 20 %. We have shown that these behaviors can be understood in terms of a delicate interference of non-perturbative correlations, generated by the dynamics of the model, and perturbative ones, generated by the model independent evolution procedure. Our analysis shows that at LHC kinematics two-parton correlations can be relevant in DPS, and therefore we address the possibility to study them experimentally.

  15. Effect of pairing on nuclear dynamics

    International Nuclear Information System (INIS)

    Scamps, Guillaume

    2014-01-01

    Pairing correlations is an essential component for the description of the atomic nuclei. The effects of pairing on static property of nuclei are now well known. In this thesis, the effect of pairing on nuclear dynamics is investigated. Theories that includes pairing are benchmarked in a model case. The TDHF+BCS theory turns out to be a good compromise between the physics taken into account and the numerical cost. This TDHF+BCS theory was retained for realistic calculations. Nevertheless, the application of pairing in the BCS approximation may induce new problems due to (1) the particle number symmetry breaking, (2) the non-conservation of the continuity equation. These difficulties are analysed in detail and solutions are proposed. In this thesis, a 3 dimensional TDHF+BCS code is developed to simulate the nuclear dynamic. Applications to giant resonances show that pairing modify only the low lying peaks. The high lying collective components are only affected by the initial conditions. An exhaustive study of the giant quadrupole resonances with the TDHF+BCS theory is performed on more than 700 spherical or deformed nuclei. Is is shown that the TDHF+BCS theory reproduces well the collective energy of the resonance. After validation on the small amplitude limit problem, the approach was applied to study nucleon transfer in heavy ion reactions. A new method to extract transfer probabilities is introduced. It is demonstrated that pairing significantly increases the two-nucleon transfer probability. (author) [fr

  16. Particle correlations in high-multiplicity reactions

    International Nuclear Information System (INIS)

    Hayot, Fernand.

    1976-01-01

    A comprehensive review of the results obtained in the study of short range correlations in high-multiplicity events is presented: introduction of the fundamental short-range order hypothesis, introduction of clusters in nondiffractive events (only the production of identical, independent, and neutral clusters was considered); search for short range dynamical effects between particles coming from the decay of a same cluster by studying two-particle rapidity correlations in inclusive and semi-inclusive experiments; study of transverse momentum correlations [fr

  17. An approach for generating trajectory-based dynamics which conserves the canonical distribution in the phase space formulation of quantum mechanics. II. Thermal correlation functions.

    Science.gov (United States)

    Liu, Jian; Miller, William H

    2011-03-14

    We show the exact expression of the quantum mechanical time correlation function in the phase space formulation of quantum mechanics. The trajectory-based dynamics that conserves the quantum canonical distribution-equilibrium Liouville dynamics (ELD) proposed in Paper I is then used to approximately evaluate the exact expression. It gives exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits. Various methods have been presented for the implementation of ELD. Numerical tests of the ELD approach in the Wigner or Husimi phase space have been made for a harmonic oscillator and two strongly anharmonic model problems, for each potential autocorrelation functions of both linear and nonlinear operators have been calculated. It suggests ELD can be a potentially useful approach for describing quantum effects for complex systems in condense phase.

  18. Effects of temporal correlations in social multiplex networks.

    Science.gov (United States)

    Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2017-08-17

    Multi-layered networks represent a major advance in the description of natural complex systems, and their study has shed light on new physical phenomena. Despite its importance, however, the role of the temporal dimension in their structure and function has not been investigated in much detail so far. Here we study the temporal correlations between layers exhibited by real social multiplex networks. At a basic level, the presence of such correlations implies a certain degree of predictability in the contact pattern, as we quantify by an extension of the entropy and mutual information analyses proposed for the single-layer case. At a different level, we demonstrate that temporal correlations are a signature of a 'multitasking' behavior of network agents, characterized by a higher level of switching between different social activities than expected in a uncorrelated pattern. Moreover, temporal correlations significantly affect the dynamics of coupled epidemic processes unfolding on the network. Our work opens the way for the systematic study of temporal multiplex networks and we anticipate it will be of interest to researchers in a broad array of fields.

  19. Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: Experimental study

    Science.gov (United States)

    Soltani, Omid; Akbari, Mohammad

    2016-10-01

    In this paper, the effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid is examined. The experiments carried out in the solid volume fraction range of 0 to 1.0% under the temperature ranging from 30 °C to 60 °C. The results showed that the hybrid nanofluid behaves as a Newtonian fluid for all solid volume fractions and temperatures considered. The measurements also indicated that the dynamic viscosity increases with increasing the solid volume fraction and decreases with the temperature rising. The relative viscosity revealed that when the solid volume fraction enhances from 0.1 to 1%, the dynamic viscosity increases up to 168%. Finally, using experimental data, in order to predict the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluids, a new correlation has been suggested. The comparisons between the correlation outputs and experimental results showed that the suggested correlation has an acceptable accuracy.

  20. Redundant correlation effect on personalized recommendation

    Science.gov (United States)

    Qiu, Tian; Han, Teng-Yue; Zhong, Li-Xin; Zhang, Zi-Ke; Chen, Guang

    2014-02-01

    The high-order redundant correlation effect is investigated for a hybrid algorithm of heat conduction and mass diffusion (HHM), through both heat conduction biased (HCB) and mass diffusion biased (MDB) correlation redundancy elimination processes. The HCB and MDB algorithms do not introduce any additional tunable parameters, but keep the simple character of the original HHM. Based on two empirical datasets, the Netflix and MovieLens, the HCB and MDB are found to show better recommendation accuracy for both the overall objects and the cold objects than the HHM algorithm. Our work suggests that properly eliminating the high-order redundant correlations can provide a simple and effective approach to accurate recommendation.

  1. Dynamic and static correlation functions in the inhomogeneous Hartree-Fock-state approach with random-phase-approximation fluctuations

    International Nuclear Information System (INIS)

    Lorenzana, J.; Grynberg, M.D.; Yu, L.; Yonemitsu, K.; Bishop, A.R.

    1992-11-01

    The ground state energy, and static and dynamic correlation functions are investigated in the inhomogeneous Hartree-Fock (HF) plus random phase approximation (RPA) approach applied to a one-dimensional spinless fermion model showing self-trapped doping states at the mean field level. Results are compared with homogeneous HF and exact diagonalization. RPA fluctuations added to the generally inhomogeneous HF ground state allows the computation of dynamical correlation functions that compare well with exact diagonalization results. The RPA correction to the ground state energy agrees well with the exact results at strong and weak coupling limits. We also compare it with a related quasi-boson approach. The instability towards self-trapped behaviour is signaled by a RPA mode with frequency approaching zero. (author). 21 refs, 10 figs

  2. Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics

    Science.gov (United States)

    Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatté, Michael E.

    2016-01-01

    As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blends exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device's current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.

  3. Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics

    Directory of Open Access Journals (Sweden)

    Yifei Wang

    2016-02-01

    Full Text Available As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex. Here, we show that exciplex recombination in blends exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device’s current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.

  4. Dynamics of Coulomb correlations in semiconductors in high magnetic fields

    International Nuclear Information System (INIS)

    Fromer, Neil Alan

    2002-01-01

    Current theories have been successful in explaining many nonlinear optical experiments in undoped semiconductors. However, these theories require a ground state which is assumed to be uncorrelated. Strongly correlated systems of current interest, such as a two dimensional electron gas in a high magnetic field, cannot be explained in this manner because the correlations in the ground state and the low energy collective excitations cause a breakdown of the conventional techniques. We perform ultrafast time-resolved four-wave mixing on $n$-modulation doped quantum wells, which contain a quasi-two dimensional electron gas, in a large magnetic field, when only a single Landau level is excited and also when two levels are excited together. We find evidence for memory effects and as strong coupling between the Landau levels induced by the electron gas. We compare our results with simulations based on a new microscopic approach capable of treating the collective effects and correlations of the doped electrons, and find a good qualitative agreement. By looking at the individual contributions to the model, we determine that the unusual correlation effects seen in the experiments are caused by the scattering of photo-excited electron-hole pairs with the electron gas, leading to new excited states which are not present in undoped semiconductors, and also by exciton-exciton interactions mediated by the long-lived collective excitations of the electron gas, inter-Landau level magnetoplasmons

  5. Electronic correlations in insulators, metals and superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sentef, Michael Andreas

    2010-12-03

    In this thesis dynamical mean-field methods in combination with a continuous-time quantum Monte Carlo impurity solver are used to study selected open problems of condensed matter theory. These problems comprise the effect of correlations and their quantification in covalent band insulators, non-local correlation effects and their intriguing consequences in frustrated two-dimensional systems, and a phenomenological approach to investigate temperature-dependent transport in graphene in the presence of disorder. (orig.)

  6. Electronic correlations in insulators, metals and superconductors

    International Nuclear Information System (INIS)

    Sentef, Michael Andreas

    2010-01-01

    In this thesis dynamical mean-field methods in combination with a continuous-time quantum Monte Carlo impurity solver are used to study selected open problems of condensed matter theory. These problems comprise the effect of correlations and their quantification in covalent band insulators, non-local correlation effects and their intriguing consequences in frustrated two-dimensional systems, and a phenomenological approach to investigate temperature-dependent transport in graphene in the presence of disorder. (orig.)

  7. Dynamic correlations between heart and brain rhythm during Autogenic meditation

    Science.gov (United States)

    Kim, Dae-Keun; Lee, Kyung-Mi; Kim, Jongwha; Whang, Min-Cheol; Kang, Seung Wan

    2013-01-01

    This study is aimed to determine significant physiological parameters of brain and heart under meditative state, both in each activities and their dynamic correlations. Electrophysiological changes in response to meditation were explored in 12 healthy volunteers who completed 8 weeks of a basic training course in autogenic meditation. Heart coherence, representing the degree of ordering in oscillation of heart rhythm intervals, increased significantly during meditation. Relative EEG alpha power and alpha lagged coherence also increased. A significant slowing of parietal peak alpha frequency was observed. Parietal peak alpha power increased with increasing heart coherence during meditation, but no such relationship was observed during baseline. Average alpha lagged coherence also increased with increasing heart coherence during meditation, but weak opposite relationship was observed at baseline. Relative alpha power increased with increasing heart coherence during both meditation and baseline periods. Heart coherence can be a cardiac marker for the meditative state and also may be a general marker for the meditative state since heart coherence is strongly correlated with EEG alpha activities. It is expected that increasing heart coherence and the accompanying EEG alpha activations, heart brain synchronicity, would help recover physiological synchrony following a period of homeostatic depletion. PMID:23914165

  8. Dynamic correlations between heart and brain rhythm during Autogenic meditation.

    Science.gov (United States)

    Kim, Dae-Keun; Lee, Kyung-Mi; Kim, Jongwha; Whang, Min-Cheol; Kang, Seung Wan

    2013-01-01

    This study is aimed to determine significant physiological parameters of brain and heart under meditative state, both in each activities and their dynamic correlations. Electrophysiological changes in response to meditation were explored in 12 healthy volunteers who completed 8 weeks of a basic training course in autogenic meditation. Heart coherence, representing the degree of ordering in oscillation of heart rhythm intervals, increased significantly during meditation. Relative EEG alpha power and alpha lagged coherence also increased. A significant slowing of parietal peak alpha frequency was observed. Parietal peak alpha power increased with increasing heart coherence during meditation, but no such relationship was observed during baseline. Average alpha lagged coherence also increased with increasing heart coherence during meditation, but weak opposite relationship was observed at baseline. Relative alpha power increased with increasing heart coherence during both meditation and baseline periods. Heart coherence can be a cardiac marker for the meditative state and also may be a general marker for the meditative state since heart coherence is strongly correlated with EEG alpha activities. It is expected that increasing heart coherence and the accompanying EEG alpha activations, heart brain synchronicity, would help recover physiological synchrony following a period of homeostatic depletion.

  9. Comparison of nanoparticle diffusion using fluorescence correlation spectroscopy and differential dynamic microscopy within concentrated polymer solutions

    Science.gov (United States)

    Shokeen, Namita; Issa, Christopher; Mukhopadhyay, Ashis

    2017-12-01

    We studied the diffusion of nanoparticles (NPs) within aqueous entangled solutions of polyethylene oxide (PEO) by using two different optical techniques. Fluorescence correlation spectroscopy, a method widely used to investigate nanoparticle dynamics in polymer solution, was used to measure the long-time diffusion coefficient (D) of 25 nm radius particles within high molecular weight, Mw = 600 kg/mol PEO in water solutions. Differential dynamic microscopy (DDM) was used to determine the wave-vector dependent dynamics of NPs within the same polymer solutions. Our results showed good agreement between the two methods, including demonstration of normal diffusion and almost identical diffusion coefficients obtained by both techniques. The research extends the scope of DDM to study the dynamics and rheological properties of soft matter at a nanoscale. The measured diffusion coefficients followed a scaling theory, which can be explained by the coupling between polymer dynamics and NP motion.

  10. Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition.

    Science.gov (United States)

    Glazyrin, K; Pourovskii, L V; Dubrovinsky, L; Narygina, O; McCammon, C; Hewener, B; Schünemann, V; Wolny, J; Muffler, K; Chumakov, A I; Crichton, W; Hanfland, M; Prakapenka, V B; Tasnádi, F; Ekholm, M; Aichhorn, M; Vildosola, V; Ruban, A V; Katsnelson, M I; Abrikosov, I A

    2013-03-15

    We discover that hcp phases of Fe and Fe(0.9)Ni(0.1) undergo an electronic topological transition at pressures of about 40 GPa. This topological change of the Fermi surface manifests itself through anomalous behavior of the Debye sound velocity, c/a lattice parameter ratio, and Mössbauer center shift observed in our experiments. First-principles simulations within the dynamic mean field approach demonstrate that the transition is induced by many-electron effects. It is absent in one-electron calculations and represents a clear signature of correlation effects in hcp Fe.

  11. Excitonic dynamical Franz-Keldysh effect

    DEFF Research Database (Denmark)

    Nordstrøm, K.B.; Johnsen, Kristinn; Allen, S.J.

    1998-01-01

    The dynamical Franz-Keldysh effect is exposed by exploring near-band-gap absorption in the presence of intense THz electric fields. It bridges the gap between the de Franz-Keldysh effect and multiphoton absorption and competes with the THz ac Stark effect in shifting the energy of the excitonic...... resonance. A theoretical model which includes the strong THz field nonperturbatively via a nonequilibrium Green functions technique is able to describe the dynamical Franz-Keldysh effect in the presence of excitonic absorption....

  12. Electron-gamma directional correlations; Correlations directionnelles electron-gamma

    Energy Technology Data Exchange (ETDEWEB)

    Gerholm, T R [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-10-01

    The theory of the angular correlation between conversion electrons and gamma rays is briefly outlined. The experimental methods used for the study of the electron-gamma correlation are described. The effects of the formation of a hole and the hyperfine structure magnetic coupling dependent on time are then considered. The experimental results showed that the attenuations found for different metallic media plainly conform to a simple quadrupolar interaction mechanism. For a source surrounded by an insulator, however, the results show that a rapidly disappearing coupling occurs as a supplement to the quadrupolar interaction mechanism. This coupling attenuates the angular correlation by about 75% of the non-perturbed value. It was concluded that for an intermediate half life of the level of the order of the nanosecond, the attenuations produced by the secondary effects of the hole formation can not be completely neglected. The metallic media considered were Ag, Au, Al, and Ga. In the study of E2 conversion processes, the radical matrix elements governing the E2 conversion process in the 412-KeV transition of {sup 198}Hg were determined. The results exclude the presence of dynamic contributions within the limits of experimental error. The values b{sub 2} (E2) and {alpha}-k (E2) obtained indirectly from the experimentally determined b{sub 4} particle parameter are in complete agreement with the theoretical values obtained by applying the corrections due to the shielding effect and to the finite dimension of the nucleus and excluding the dynamic contributions. The value for the internal conversion coefficient was also in good agreement. Experimental results from the intensity ratios between the peak and the continuum, however, seem to show significant deviations with respect to other experimental and theoretical values. There is good agreement between experimental and theoretical results on the internal conversion of {sup 203}Tl, {sup 201}Tl, and {sup 181}Ta. The theory

  13. Partial scan artifact reduction (PSAR) for the assessment of cardiac perfusion in dynamic phase-correlated CT

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, Philip; Schmidt, Bernhard; Bruder, Herbert; Allmendinger, Thomas; Haberland, Ulrike; Flohr, Thomas; Kachelriess, Marc [Institute of Medical Physics, Henkestrasse 91, 91052 Erlangen (Germany); Siemens AG, Healthcare Sector, Siemensstrasse 1, 91301 Forchheim (Germany); Institute of Medical Physics, Henkestrasse. 91, 91052 Erlangen (Germany)

    2009-12-15

    Purpose: Cardiac CT achieves its high temporal resolution by lowering the scan range from 2{pi} to {pi} plus fan angle (partial scan). This, however, introduces CT-value variations, depending on the angular position of the {pi} range. These partial scan artifacts are of the order of a few HU and prevent the quantitative evaluation of perfusion measurements. The authors present the new algorithm partial scan artifact reduction (PSAR) that corrects a dynamic phase-correlated scan without a priori information. Methods: In general, a full scan does not suffer from partial scan artifacts since all projections in [0, 2{pi}] contribute to the data. To maintain the optimum temporal resolution and the phase correlation, PSAR creates an artificial full scan p{sub n}{sup AF} by projectionwise averaging a set of neighboring partial scans p{sub n}{sup P} from the same perfusion examination (typically N{approx_equal}30 phase-correlated partial scans distributed over 20 s and n=1,...,N). Corresponding to the angular range of each partial scan, the authors extract virtual partial scans p{sub n}{sup V} from the artificial full scan p{sub n}{sup AF}. A standard reconstruction yields the corresponding images f{sub n}{sup P}, f{sub n}{sup AF}, and f{sub n}{sup V}. Subtracting the virtual partial scan image f{sub n}{sup V} from the artificial full scan image f{sub n}{sup AF} yields an artifact image that can be used to correct the original partial scan image: f{sub n}{sup C}=f{sub n}{sup P}-f{sub n}{sup V}+f{sub n}{sup AF}, where f{sub n}{sup C} is the corrected image. Results: The authors evaluated the effects of scattered radiation on the partial scan artifacts using simulated and measured water phantoms and found a strong correlation. The PSAR algorithm has been validated with a simulated semianthropomorphic heart phantom and with measurements of a dynamic biological perfusion phantom. For the stationary phantoms, real full scans have been performed to provide theoretical reference

  14. Pair correlation of super-deformed rotation band

    International Nuclear Information System (INIS)

    Shimizu, Yoshio

    1989-01-01

    The effect of pair correlation, one of the most important residual interactions associated with the super-deformed rotation band, is discussed in terms of the characteristics of the rotation band (its effect on the moment of inertia in particular), and the tunneling into an normal deformed state in relation to its effect on the angular momentum dependence of the potential energy plane as a function of the deformation. The characteristics of the rotation band is discussed in terms of the kinematic and dynamic momenta of inertia. It is shown that the pair correlation in a super-deformed rotation band acts to decrease the former and increase the latter momentum mainly due to dynamic pair correlation. A theoretical approach that takes this effect into account can provide results that are consistent with measured momenta, although large differences can occur in some cases. Major conflicts include a large measured kinetic momentum of inertia compared to the theoretical value, and the absence of the abnormality (shape increase) generally seen in low-spin experiments. The former seems likely to be associated with the method of measuring the angular momentum. (N.K.)

  15. The influence of interparticle correlations and self-assembly on the dynamic initial magnetic susceptibility spectra of ferrofluids

    International Nuclear Information System (INIS)

    Ivanov, A.O.; Kantorovich, S.S.; Elfimova, E.A.; Zverev, V.S.; Sindt, J.O.; Camp, P.J.

    2017-01-01

    Using computer simulations and a mean-field theoretical approach, we study how the growth in dipolar interparticle correlations manifests itself in the frequency-dependent initial magnetic susceptibility of a ferrofluid. Our recently developed theory gives the correct single-particle Debye-theory results in the low-concentration, non-interacting regime; and it yields the exact leading-order contributions from interparticle correlations. The susceptibility spectra are analysed in terms of the low-frequency behaviours of the real and imaginary parts, and the position of the peak in the imaginary part. By comparing the theoretical predictions to the results from Brownian dynamics simulations, it is possible to identify the conditions where correlations are important, but where self-assembly has not developed. We also provide a qualitative explanation for the behaviour of spectra beyond the mean-field limit. - Highlights: • The interparticle interaction influences the dynamic susceptibility spectra of magnetic fluids. • The imaginary part maximum shifts to lower frequencies due to the dipolar interparticle interaction. • Chain formation should influence the susceptibility spectrum by shifting the absorption peak to lower frequencies.

  16. The influence of interparticle correlations and self-assembly on the dynamic initial magnetic susceptibility spectra of ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.O., E-mail: alexey.ivanov@urfu.ru [Institute of Mathematics and Computer Sciences, Ural Federal University, Lenin Avenue 51, 620000 Ekaterinburg (Russian Federation); Kantorovich, S.S. [Institute of Mathematics and Computer Sciences, Ural Federal University, Lenin Avenue 51, 620000 Ekaterinburg (Russian Federation); Faculty of Physics, University of Vienna, Sensengasse 8, 1090 Vienna (Austria); Elfimova, E.A.; Zverev, V.S. [Institute of Mathematics and Computer Sciences, Ural Federal University, Lenin Avenue 51, 620000 Ekaterinburg (Russian Federation); Sindt, J.O. [School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, Scotland (United Kingdom); Camp, P.J. [Institute of Mathematics and Computer Sciences, Ural Federal University, Lenin Avenue 51, 620000 Ekaterinburg (Russian Federation); School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, Scotland (United Kingdom)

    2017-06-01

    Using computer simulations and a mean-field theoretical approach, we study how the growth in dipolar interparticle correlations manifests itself in the frequency-dependent initial magnetic susceptibility of a ferrofluid. Our recently developed theory gives the correct single-particle Debye-theory results in the low-concentration, non-interacting regime; and it yields the exact leading-order contributions from interparticle correlations. The susceptibility spectra are analysed in terms of the low-frequency behaviours of the real and imaginary parts, and the position of the peak in the imaginary part. By comparing the theoretical predictions to the results from Brownian dynamics simulations, it is possible to identify the conditions where correlations are important, but where self-assembly has not developed. We also provide a qualitative explanation for the behaviour of spectra beyond the mean-field limit. - Highlights: • The interparticle interaction influences the dynamic susceptibility spectra of magnetic fluids. • The imaginary part maximum shifts to lower frequencies due to the dipolar interparticle interaction. • Chain formation should influence the susceptibility spectrum by shifting the absorption peak to lower frequencies.

  17. Correlations in Relaxed Clusters of Galaxies

    Directory of Open Access Journals (Sweden)

    Babyk Iu.

    2014-03-01

    Full Text Available The correlations among different quantities in galaxy clusters, observed by Newman et al. (2013a,b, are investigated. We find an anti-correlation among the slope α, the effective radius, Re, and a correlation among the core radius rcore and Re. Moreover, the mass inside 100 kpc (mainly dark matter is correlated with the mass inside 5 kpc (mainly baryons. The listed correlations can be understood in a two phase formation model: the first dissipative phase forming the brightest cluster galaxies, and the second dissipationless phase, in which the inner density profile is flattened by the interaction of baryonic clumps and the dark matter halo through dynamical friction.

  18. Effective-field theory for dynamic phase diagrams of the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kocakaplan, Yusuf [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2013-12-15

    Dynamic phase diagrams are presented for the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field by use of the effective-field theory with correlations. The dynamic equation of the average magnetization is obtained for the square lattice by utilizing the Glauber-type stochastic process. Dynamic phase diagrams are presented in the reduced temperature and the magnetic field amplitude plane. We also investigated the effect of longitudinal field frequency. Finally, the discussion and comparison of the phase diagrams are given. - Highlights: • Dynamic behaviors in the spin-3/2 Blume–Capel system is investigated by the effective-field theory based on the Glauber-type stochastic dynamics. • The dynamic phase transitions and dynamic phase diagrams are obtained. • The effects of the longitudinal field frequency on the dynamic phase diagrams of the system are investigated. • Dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and several critical points as well as a re-entrant behavior.

  19. Effective-field theory for dynamic phase diagrams of the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Kocakaplan, Yusuf; Keskin, Mustafa

    2013-01-01

    Dynamic phase diagrams are presented for the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field by use of the effective-field theory with correlations. The dynamic equation of the average magnetization is obtained for the square lattice by utilizing the Glauber-type stochastic process. Dynamic phase diagrams are presented in the reduced temperature and the magnetic field amplitude plane. We also investigated the effect of longitudinal field frequency. Finally, the discussion and comparison of the phase diagrams are given. - Highlights: • Dynamic behaviors in the spin-3/2 Blume–Capel system is investigated by the effective-field theory based on the Glauber-type stochastic dynamics. • The dynamic phase transitions and dynamic phase diagrams are obtained. • The effects of the longitudinal field frequency on the dynamic phase diagrams of the system are investigated. • Dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and several critical points as well as a re-entrant behavior

  20. How structure determines correlations in neuronal networks.

    Directory of Open Access Journals (Sweden)

    Volker Pernice

    2011-05-01

    Full Text Available Networks are becoming a ubiquitous metaphor for the understanding of complex biological systems, spanning the range between molecular signalling pathways, neural networks in the brain, and interacting species in a food web. In many models, we face an intricate interplay between the topology of the network and the dynamics of the system, which is generally very hard to disentangle. A dynamical feature that has been subject of intense research in various fields are correlations between the noisy activity of nodes in a network. We consider a class of systems, where discrete signals are sent along the links of the network. Such systems are of particular relevance in neuroscience, because they provide models for networks of neurons that use action potentials for communication. We study correlations in dynamic networks with arbitrary topology, assuming linear pulse coupling. With our novel approach, we are able to understand in detail how specific structural motifs affect pairwise correlations. Based on a power series decomposition of the covariance matrix, we describe the conditions under which very indirect interactions will have a pronounced effect on correlations and population dynamics. In random networks, we find that indirect interactions may lead to a broad distribution of activation levels with low average but highly variable correlations. This phenomenon is even more pronounced in networks with distance dependent connectivity. In contrast, networks with highly connected hubs or patchy connections often exhibit strong average correlations. Our results are particularly relevant in view of new experimental techniques that enable the parallel recording of spiking activity from a large number of neurons, an appropriate interpretation of which is hampered by the currently limited understanding of structure-dynamics relations in complex networks.

  1. Studying multifragmentation dynamics at intermediate energies using two-fragment correlations

    International Nuclear Information System (INIS)

    Sangster, T.C.; Britt, H.C.; Namboodiri, M.N.

    1993-01-01

    One of the most challenging topics in Nuclear Physics is the multifragmentation at moderate excitation energies in large nuclear systems. Although the idea that multifragmentation is analogous to a liquid-gas like phase transition is not new, it has only been recently that highly exclusive experimental measurements have been coupled with sophisticated theoretical models like QMD and BUU/VUU to explore reaction dynamics and the process of fragment formation. Indeed, much of what is known about multifragmentation has resulted from the study of complex correlations present in both the experimental data and theoretical calculations. One of the most crucial questions in the ongoing debate concerning the liquid-gas analogy is the differentiation between simultaneous and sequential fragment emission. Clearly, the phase transition analogy breaks down if fragments are emitted sequentially as in an evaporative process. There have been a number of two-fragment correlation results published recently (including those presented in this paper) which attempt to put limits on the emission timescale using three-body Coulomb trajectory calculations with explicit emission times for sequential decays from a fixed source density. These results have been generally consistent and indicate that intermediate mass fragment (IMF) emission is nearly simultaneous in medium energy heavy ion collisions. Only very recently have calculations been performed which approach this question from the other extreme: simultaneous emission from a variable density source. When considered together, these results argue favorably for a simultaneous multifragmentation. In this paper the authors present comprehensive results on two-fragment correlations for heavy systems at intermediate energies

  2. Realized Bond-Stock Correlation: Macroeconomic Announcement Effects

    DEFF Research Database (Denmark)

    Christiansen, Charlotte; Ranaldo, Angelo

    2005-01-01

    We investigate the effects of macroeconomic announcements on the realized correlation between bond and stock returns. Our results deliver insights into the dominating drivers of bond-stock comovements. We find that it is not so much the surprise component of the announcement, but the mere fact...... that an announcement occurs that influences the realized bond-stock correlation. The impact of macroeconomic announcements varies across the business cycle. Announcement effects are highly dependent on the sign of the realized bond-stock correlation which has recently gone from positive to negative. Macroeconomic...

  3. Enhancing pattern of gastric carcinoma at dynamic incremental CT: correlation with gross and histologic findings

    International Nuclear Information System (INIS)

    Shin, Hong Seop; Lee, Dong Ho; Kim, Yoon Hwa; Ko, Young Tae; Lim, Joo Won; Yoon, Yup

    1996-01-01

    To evaluate the enhancing pattern of gastric carcinomas at dynamic incremental CT and to correlate it with pathologic findings. We retrospectively evaluated the enhancement pattern of stomach cancer on dynamic incremental CT of the 78 patients. All the lesions had been pathologically proved after surgery. The enhancement pattern was categorized as good or poor in the early phase;homogeneous, heterogeneous or ring enhancement;the presence or absence of delayed enhancement. There were 16 cases of early gastric cancer (EGC), and 62 cases of advanced gastric cancer(AGC). The Borrmann type of AGC were 1(n=1), 2(n=20), 3=(n=32), 4(n=8) and 5(n=1). The histologic patterns of AGC were tubular(n=49), signet ring cell(n=10), and mucinous(n=3). The enhancing patterns were compared with gross and histologic findings and delayed enhancement was correlated with pathologic evidence of desmoplasia. Good enhancement of tumor was seen in 24/41cases (58.5%) with AGC Borrmann type 3-5, in 6/21(28.6%) with AGC Borrmann type 1-2, and in 3/16(18.8%) with EGC (P<.05). By histologic pattern, good enhancement of tumor was seen in 8/10(80%) with signet ring cell type, in 21/49(42.9%) with tubular type, and in 1/3(33.3%) with mucinous type(P<.05). EGC was homogeneously enhanced in 14/16cases (87.5%), but AGC was heterogeneously enhanced in 33/62(53.2%), respectively(P<.01). There was no significant correlation between delayed enhancement and the presence of desmoplasia. AGC Borrmann type 3-5 and signet ring cell type have a tendency to show good enhancement and EGC is more homogeneously enhanced at dynamic incremental CT

  4. Kinetic analysis of dynamic 18F-fluoromisonidazole PET correlates with radiation treatment outcome in head-and-neck cancer

    Directory of Open Access Journals (Sweden)

    Paulsen Frank

    2005-12-01

    Full Text Available Abstract Background Hypoxia compromises local control in patients with head-and-neck cancer (HNC. In order to determine the value of [18F]-fluoromisonidazole (Fmiso with regard to tumor hypoxia, a patient study with dynamic Fmiso PET was performed. For a better understanding of tracer uptake and distribution, a kinetic model was developed to analyze dynamic Fmiso PET data. Methods For 15 HNC patients, dynamic Fmiso PET examinations were performed prior to radiotherapy (RT treatment. The data was analyzed using a two compartment model, which allows the determination of characteristic hypoxia and perfusion values. For different parameters, such as patient age, tumor size and standardized uptake value, the correlation to treatment outcome was tested using the Wilcoxon-Mann-Whitney U-test. Statistical tests were also performed for hypoxia and perfusion parameters determined by the kinetic model and for two different metrics based on these parameters. Results The kinetic Fmiso analysis extracts local hypoxia and perfusion characteristics of a tumor tissue. These parameters are independent quantities. In this study, different types of characteristic hypoxia-perfusion patterns in tumors could be identified. The clinical verification of the results, obtained on the basis of the kinetic analysis, showed a high correlation of hypoxia-perfusion patterns and RT treatment outcome (p = 0.001 for this initial patient group. Conclusion The presented study established, that Fmiso PET scans may benefit from dynamic acquisition and analysis by a kinetic model. The pattern of distribution of perfusion and hypoxia in the tissue is correlated to local control in HNC.

  5. Boundary information inflow enhances correlation in flocking.

    Science.gov (United States)

    Cavagna, Andrea; Giardina, Irene; Ginelli, Francesco

    2013-04-19

    The most conspicuous trait of collective animal behavior is the emergence of highly ordered structures. Less obvious to the eye, but perhaps more profound a signature of self-organization, is the presence of long-range spatial correlations. Experimental data on starling flocks in 3D show that the exponent ruling the decay of the velocity correlation function, C(r)~1/r(γ), is extremely small, γflocks. The effect of the dynamical field is to create an information inflow from border to bulk that triggers long-range spin-wave modes, thus giving rise to an anomalously long-ranged correlation. The biological origin of this phenomenon can be either exogenous-information produced by environmental perturbations is transferred from boundary to bulk of the flock-or endogenous-the flock keeps itself in a constant state of dynamical excitation that is beneficial to correlation and collective response.

  6. Variations in annual water-energy balance and their correlations with vegetation and soil moisture dynamics: A case study in the Wei River Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shengzhi; Huang, Qiang; Leng, Guoyong; Zhao, Menglong; Meng, Erhao

    2017-03-01

    It is of importance to investigate watershed water-energy balance variations and to explore their correlations with vegetation and soil moisture dynamics, which helps better understand the interplays between underlying surface dynamics and the terrestrial water cycle. The heuristic segmentation method was adopted to identify change points in the parameter to series in Fu's equation belonging to the Budyko framework in the Wei River Basin (WRB) and its sub-basins aiming to examine the validity of stationary assumptions. Additionally, the cross wavelet analysis was applied to explore the correlations between vegetation and soil moisture dynamics and to variations. Results indicated that (1) the omega variations in the WRB are significant, with some change points identified except for the sub-basin above Zhangjiashan, implying that the stationarity of omega series in the WRB is invalid except for the sub-basin above Zhangjiashan; (2) the correlations between soil moisture series and to series are weaker than those between Normalized Difference Vegetation Index (NDVI) series and omega series; (3) vegetation dynamics show significantly negative correlations with omega variations in 1983-2003 with a 4-8 year signal in the whole WRB, and both vegetation and soil moisture dynamics exert strong impacts on the parameter omega changes. This study helps understanding the interactions between underlying land surface dynamics and watershed water-energy balance. (C) 2017 Elsevier B.V. All rights reserved.

  7. Mapping the dynamical organization of the cell nucleus through fluorescence correlation spectroscopy.

    Science.gov (United States)

    Stortz, Martin; Angiolini, Juan; Mocskos, Esteban; Wolosiuk, Alejandro; Pecci, Adali; Levi, Valeria

    2018-05-01

    The hierarchical organization of the cell nucleus into specialized open reservoirs and the nucleoplasm overcrowding impose restrictions to the mobility of biomolecules and their interactions with nuclear targets. These properties determine that many nuclear functions such as transcription, replication, splicing or DNA repair are regulated by complex, dynamical processes that do not follow simple rules. Advanced fluorescence microscopy tools and, in particular, fluorescence correlation spectroscopy (FCS) provide complementary and exquisite information on the dynamics of fluorescent labeled molecules moving through the nuclear space and are helping us to comprehend the complexity of the nuclear structure. Here, we describe how FCS methods can be applied to reveal the dynamical organization of the nucleus in live cells. Specifically, we provide instructions for the preparation of cellular samples with fluorescent tagged proteins and detail how FCS can be easily instrumented in commercial confocal microscopes. In addition, we describe general rules to set the parameters for one and two-color experiments and the required controls for these experiments. Finally, we review the statistical analysis of the FCS data and summarize the use of numerical simulations as a complementary approach that helps us to understand the complex matrix of molecular interactions network within the nucleus. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Microscopic dynamical Casimir effect

    Science.gov (United States)

    Souza, Reinaldo de Melo e.; Impens, François; Neto, Paulo A. Maia

    2018-03-01

    We consider an atom in its ground state undergoing a nonrelativistic oscillation in free space. The interaction with the electromagnetic quantum vacuum leads to two effects to leading order in perturbation theory. When the mechanical frequency is larger than the atomic transition frequency, the dominant effect is the motion-induced transition to an excited state with the emission of a photon carrying the excess energy. We compute the angular distribution of emitted photons and the excitation rate. On the other hand, when the mechanical frequency is smaller than the transition frequency, the leading-order effect is the parametric emission of photon pairs, which constitutes the microscopic counterpart of the dynamical Casimir effect. We discuss the properties of the microscopic dynamical Casimir effect and build a connection with the photon production by an oscillating macroscopic metallic mirror.

  9. Dynamic magnetic hysteresis behavior and dynamic phase transition in the spin-1 Blume-Capel model

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-03-15

    The nature (time variation) of response magnetization m(wt) of the spin-1 Blume-Capel model in the presence of a periodically varying external magnetic field h(wt) is studied by employing the effective-field theory (EFT) with correlations as well as the Glauber-type stochastic dynamics. We determine the time variations of m(wt) and h(wt) for various temperatures, and investigate the dynamic magnetic hysteresis behavior. We also investigate the temperature dependence of the dynamic magnetization, hysteresis loop area and correlation near the transition point in order to characterize the nature (first- or second-order) of the dynamic transitions as well as obtain the dynamic phase transition temperatures. The hysteresis loops are obtained for different reduced temperatures and we find that the areas of the loops are decreasing with the increasing of the reduced temperatures. We also present the dynamic phase diagrams and compare the results of the EFT with the results of the dynamic mean-field approximation. The phase diagrams exhibit many dynamic critical points, such as tricritical ( Bullet ), zero-temperature critical (Z), triple (TP) and multicritical (A) points. According to values of Hamiltonian parameters, besides the paramagnetic (P), ferromagnetic (F) fundamental phases, one coexistence or mixed phase region, (F+P) and the reentrant behavior exist in the system. The results are in good agreement with some experimental and theoretical results. - Highlights: Black-Right-Pointing-Pointer Kinetic spin-1 Blume-Capel model is studied using the effective-field theory. Black-Right-Pointing-Pointer We investigated the dynamic magnetic hysteresis behavior. Black-Right-Pointing-Pointer Dynamic magnetization, hysteresis loop area and correlation are investigated. Black-Right-Pointing-Pointer System exhibits tricritical, zero-temperature, triple and multicritical points. Black-Right-Pointing-Pointer We present the dynamic phase diagrams and compare the results of the EFT

  10. CAGO: a software tool for dynamic visual comparison and correlation measurement of genome organization.

    Directory of Open Access Journals (Sweden)

    Yi-Feng Chang

    Full Text Available CAGO (Comparative Analysis of Genome Organization is developed to address two critical shortcomings of conventional genome atlas plotters: lack of dynamic exploratory functions and absence of signal analysis for genomic properties. With dynamic exploratory functions, users can directly manipulate chromosome tracks of a genome atlas and intuitively identify distinct genomic signals by visual comparison. Signal analysis of genomic properties can further detect inconspicuous patterns from noisy genomic properties and calculate correlations between genomic properties across various genomes. To implement dynamic exploratory functions, CAGO presents each genome atlas in Scalable Vector Graphics (SVG format and allows users to interact with it using a SVG viewer through JavaScript. Signal analysis functions are implemented using R statistical software and a discrete wavelet transformation package waveslim. CAGO is not only a plotter for generating complex genome atlases, but also a platform for exploring genome atlases with dynamic exploratory functions for visual comparison and with signal analysis for comparing genomic properties across multiple organisms. The web-based application of CAGO, its source code, user guides, video demos, and live examples are publicly available and can be accessed at http://cbs.ym.edu.tw/cago.

  11. Dynamics and rheology under continuous shear flow studied by x-ray photon correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fluerasu, Andrei [Brookhaven National Laboratory, NSLS-II, Upton, NY 11973 (United States); Kwasniewski, Pawel; Caronna, Chiara; Madsen, Anders [European Synchrotron Radiation Facility, ID10 (Troika), Grenoble 38043 (France); Destremaut, Fanny; Salmon, Jean-Baptiste [LOF, UMR 5258 CNRS-Rhodia Bordeaux 1, 33608 Pessac (France)], E-mail: fluerasu@bnl.gov

    2010-03-15

    X-ray photon correlation spectroscopy (XPCS) has emerged as a unique technique allowing the measurement of dynamics of materials on mesoscopic lengthscales. One of the most common problems associated with the use of bright x-ray beams is beam-induced radiation damage, and this is likely to become an even more limiting factor at future synchrotron and free-electron laser sources. Flowing the sample during data acquisition is one of the simplest methods allowing the radiation damage to be limited. In addition to distributing the dose over many different scatterers, the method also enables new functionalities such as time-resolved studies. Here, we further develop a recently proposed experimental technique that combines XPCS and continuously flowing samples. More specifically, we use a model colloidal suspension to show how the macroscopic advective response to flow and the microscopic dissipative dynamics (diffusion) can be quantified from the x-ray data. Our results show very good quantitative agreement with a Poisseuille-flow hydrodynamical model combined with Brownian mechanics. The method has many potential applications, e.g. in the study of dynamics of glasses and gels under continuous shear/flow, protein aggregation processes and the interplay between dynamics and rheology in complex fluids.

  12. Dynamic correlations between heart and brain rhythm during Autogenic meditation

    Directory of Open Access Journals (Sweden)

    Daekeun eKim

    2013-07-01

    Full Text Available This study is aimed to determine significant physiological parameters of brain and heart under meditative state, both in each activities and their dynamic correlations. Electrophysiological changes in response to meditation were explored in 12 healthy volunteers who completed 8 weeks of a basic training course in autogenic meditation. Heart coherence, representing the degree of ordering in oscillation of heart rhythm intervals, increased significantly during meditation. Relative EEG alpha power and alpha lagged coherence also increased. A significant slowing of parietal peak alpha frequency was observed. Parietal peak alpha power increased with increasing heart coherence during meditation, but no such relationship was observed during baseline. Average alpha lagged coherence also increased with increasing heart coherence during meditation, but, again, no significant relationship was observed at baseline. Relative alpha power increased with increasing heart coherence during both meditation and baseline periods. Heart coherence can be a cardiac marker for the meditative state and also may be a general marker for the meditative state since heart coherence is strongly correlated with EEG alpha activities. It is expected that increasing heart coherence and the accompanying EEG alpha activations, heart brain synchronicity, would help recover physiological synchrony following a period of homeostatic depletion.

  13. First-principles study of strong correlation effects in pyrochlore iridates

    Energy Technology Data Exchange (ETDEWEB)

    Shinaoka, Hiroshi [Department of Physics, Saitama University (Japan); Hoshino, Shintaro [Department of Basic Science, The University of Tokyo (Japan); Troyer, Matthias [Theoretische Physik, ETH Zuerich (Switzerland); Werner, Philipp [Department of Physics, University of Fribourg (Switzerland)

    2016-07-01

    The pyrochlore iridates A{sub 2}Ir{sub 2}O{sub 7} (A=Pr, Nd, Y, etc.) are an ideal system to study fascinating phenomena induced by strong electron correlations and spin-orbit coupling. In this talk, we study strong correlation effects in the prototype compound Y{sub 2}Ir{sub 2}O{sub 7} using the local density approximation and dynamical mean-field theory (LDA+DMFT). We map out the phase diagram in the space of temperature, onsite Coulomb repulsion U, and filling. Consistent with experiments, we find that an all-in/all-out ordered insulating phase is stable for realistic values of U. We reveal the importance of the hybridization between j{sub eff} = 1/2 and j{sub eff} = 3/2 states under the Coulomb interaction and trigonal crystal field. We demonstrate a substantial band narrowing in the paramagnetic metallic phase and non-Fermi liquid behavior in the electron/hole doped system originating from long-lived quasi-spin moments induced by nearly flat bands. We further compare our results with recent experimental results of Eu{sub 2}Ir{sub 2}O{sub 7} under hydrostatic pressure.

  14. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy.

    Science.gov (United States)

    Laňková, Martina; Humpolíčková, Jana; Vosolsobě, Stanislav; Cit, Zdeněk; Lacek, Jozef; Čovan, Martin; Čovanová, Milada; Hof, Martin; Petrášek, Jan

    2016-04-01

    A number of fluorescence microscopy techniques are described to study dynamics of fluorescently labeled proteins, lipids, nucleic acids, and whole organelles. However, for studies of plant plasma membrane (PM) proteins, the number of these techniques is still limited because of the high complexity of processes that determine the dynamics of PM proteins and the existence of cell wall. Here, we report on the usage of raster image correlation spectroscopy (RICS) for studies of integral PM proteins in suspension-cultured tobacco cells and show its potential in comparison with the more widely used fluorescence recovery after photobleaching method. For RICS, a set of microscopy images is obtained by single-photon confocal laser scanning microscopy (CLSM). Fluorescence fluctuations are subsequently correlated between individual pixels and the information on protein mobility are extracted using a model that considers processes generating the fluctuations such as diffusion and chemical binding reactions. As we show here using an example of two integral PM transporters of the plant hormone auxin, RICS uncovered their distinct short-distance lateral mobility within the PM that is dependent on cytoskeleton and sterol composition of the PM. RICS, which is routinely accessible on modern CLSM instruments, thus represents a valuable approach for studies of dynamics of PM proteins in plants.

  15. Non-orthogonal internally contracted multi-configurational perturbation theory (NICPT): Dynamic electron correlation for large, compact active spaces

    Science.gov (United States)

    Kähler, Sven; Olsen, Jeppe

    2017-11-01

    A computational method is presented for systems that require high-level treatments of static and dynamic electron correlation but cannot be treated using conventional complete active space self-consistent field-based methods due to the required size of the active space. Our method introduces an efficient algorithm for perturbative dynamic correlation corrections for compact non-orthogonal MCSCF calculations. In the algorithm, biorthonormal expansions of orbitals and CI-wave functions are used to reduce the scaling of the performance determining step from quadratic to linear in the number of configurations. We describe a hierarchy of configuration spaces that can be chosen for the active space. Potential curves for the nitrogen molecule and the chromium dimer are compared for different configuration spaces. Already the most compact spaces yield qualitatively correct potentials that with increasing size of configuration spaces systematically approach complete active space results.

  16. Quantum correlations dynamics of three-qubit states coupled to an XY spin chain: Role of coupling strengths

    International Nuclear Information System (INIS)

    Yin Shao-Ying; Song Jie; Xu Xue-Xin; Zhou Ke-Ya; Liu Shu-Tian; Liu Qing-Xin

    2017-01-01

    We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more robust, even larger nonzero quantum correlations can be obtained by tailoring the coupling strengths between the qubits and the environment. For a mixed state consisting of the GHZ and W states, the dynamics of entanglement and quantum discord can characterize the critical point of quantum phase transition. Remarkably, a large nonzero quantum discord is generally retained, while the nonzero entanglement can only be obtained as the system-environment coupling satisfies certain conditions. We also find that the impact of each qubit’s coupling strength on the quantum correlation dynamics strongly depends on the variation schemes of the system-environment couplings. (paper)

  17. Electronic Structure of Strongly Correlated Materials

    CERN Document Server

    Anisimov, Vladimir

    2010-01-01

    Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.

  18. Dynamic contrast-enhanced MRI of benign prostatic hyperplasia and prostatic carcinoma: correlation with angiogenesis

    International Nuclear Information System (INIS)

    Ren, J.; Huan, Y.; Wang, H.; Chang, Y.-J.; Zhao, H.-T.; Ge, Y.-L.; Liu, Y.; Yang, Y.

    2008-01-01

    Aim: To investigate the diagnostic and differential diagnostic values of dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) in prostatic diseases, and to investigate the correlation between the parameters of SI-T curves and angiogenesis. Materials and methods: Twenty-one patients with proven prostatic carcinoma (Pca) and 29 patients with proven benign prostatic hyperplasia (BPH) were examined using DCE MRI. Diagnostic characteristics for differentiation were examined using threshold values for maximum peak time, enhancement degree, and enhancement rate. Then, the signal intensity-time curves (SI-T curves) were analysed, and the correlations between the parameters of SI-T curves and the expression levels of vascular endothelial growth factor (VEGF) and microvascular density (MVD) were investigated. All patients underwent prostatectomy. DCE MRI and histological findings were correlated. Results: Pca showed stronger enhancement with an earlier peak time, higher enhancement, and enhancement rate (p 2 = 13.57, P < 0.005). The VEGF and MVD expression levels of Pca were higher than those of BPH. Peak time was negatively correlated with the expression levels of VEGF and MVD, whereas the enhancement degree and enhancement rate showed positive correlations (Pearson correlation, p < 0.05). Conclusion: Based on T2-weighted imaging, DCE MRI curves can help to differentiate benign from malignant prostate tissue. In the present study the type C curve was rarely seen with malignant disease, but these results need confirmation

  19. Connectivity effects in the dynamic model of neural networks

    International Nuclear Information System (INIS)

    Choi, J; Choi, M Y; Yoon, B-G

    2009-01-01

    We study, via extensive Monte Carlo calculations, the effects of connectivity in the dynamic model of neural networks, to observe that the Mattis-state order parameter increases with the number of coupled neurons. Such effects appear more pronounced when the average number of connections is increased by introducing shortcuts in the network. In particular, the power spectra of the order parameter at stationarity are found to exhibit power-law behavior, depending on how the average number of connections is increased. The cluster size distribution of the 'memory-unmatched' sites also follows a power law and possesses strong correlations with the power spectra. It is further observed that the distribution of waiting times for neuron firing fits roughly to a power law, again depending on how neuronal connections are increased

  20. Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron

    Directory of Open Access Journals (Sweden)

    C. P. Chui

    2014-03-01

    Full Text Available Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence.

  1. Dynamics of a discoordination game with classical and quantum correlations

    International Nuclear Information System (INIS)

    Oezdemir, Sahin Kaya; Shimamura, Junichi; Morikoshi, Fumiaki; Imoto, Nobuyuki

    2004-01-01

    Effects of classical/quantum correlations and operations in simultaneous move games are analyzed using a discoordination game, known as Samaritan's dilemma, in which there is no Nash equilibrium (NE) when played with classical pure strategies. We show that although the dilemma can be resolved with quantum operations provided that there is a shared classically correlated state between the players, it is only in the presence of entanglement that the players can receive the highest possible payoff sums

  2. Correlation, Breit and quantum electrodynamics effects on energy level and transition properties of W54+ ion

    International Nuclear Information System (INIS)

    Ding, X.; Sun, R.; Dong, C.; Koike, F.; Kato, D.; Murakami, I.; Sakaue, H.A.

    2017-01-01

    The electron correlation effects and Breit interaction as well as Quantum Electro-Dynamics (QED) effects were expected to have important contribution to the energy level and transition properties of heavy highly charged ions. The study of W 54+ ion provide necessary reference data for the fusion plasma physics as tungsten was chosen to be used as the armour material of the divertor of the ITER project. The ground states [Ne]3s 2 3p 6 3d 2 and first excited states [Ne]3s 2 3p 5 3d 3 of W 54+ ion have been studied by using Multi-Configuration Dirac-Fock method with the implementation of Grasp2K package. A restricted active space method was employed to investigate the correlation contribution from different models. The Breit interaction and QED effects were taken into account in the relativistic configuration interaction calculation with the converged wavefunction. It is found that the correlation contribution from 3s and 3p orbital have important contribution to the energy level, transition wavelength and probability of the ground and the first excited state of W 54+ ion. (authors)

  3. Spatial and temporal correlation in dynamic, multi-electron quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Godunov, A.L.; McGuire, J.H.; Shakov, Kh.Kh. [Department of Physics, Tulane University, New Orleans, LA (United States); Ivanov, P.B.; Shipakov, V.A. [Troitsk Institute for Innovation and Fusion Research, Troitsk (Russian Federation); Merabet, H.; Bruch, R.; Hanni, J. [Department of Physics, University of Nevada Reno, Reno, NV (United States)

    2001-12-28

    Cross sections for ionization with excitation and for double excitation in helium are evaluated in a full second Born calculation. These full second Born calculations are compared to calculations in the independent electron approximation, where spatial correlation between the electrons is removed. Comparison is also made to calculations in the independent time approximation, where time correlation between the electrons is removed. The two-electron transitions considered here are caused by interactions with incident protons and electrons with velocities ranging between 2 and 10 au. Good agreement is found between our full calculations and experiment, except for the lowest velocities, where higher Born terms are expected to be significant. Spatial electron correlation, arising from internal electron-electron interactions, and time correlation, arising from time ordering of the external interactions, can both give rise to observable effects. Our method may be used for photon impact. (author)

  4. Generalized correlation integral vectors: A distance concept for chaotic dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Haario, Heikki, E-mail: heikki.haario@lut.fi [School of Engineering Science, Lappeenranta University of Technology, Lappeenranta (Finland); Kalachev, Leonid, E-mail: KalachevL@mso.umt.edu [Department of Mathematical Sciences, University of Montana, Missoula, Montana 59812-0864 (United States); Hakkarainen, Janne [Earth Observation Unit, Finnish Meteorological Institute, Helsinki (Finland)

    2015-06-15

    Several concepts of fractal dimension have been developed to characterise properties of attractors of chaotic dynamical systems. Numerical approximations of them must be calculated by finite samples of simulated trajectories. In principle, the quantities should not depend on the choice of the trajectory, as long as it provides properly distributed samples of the underlying attractor. In practice, however, the trajectories are sensitive with respect to varying initial values, small changes of the model parameters, to the choice of a solver, numeric tolerances, etc. The purpose of this paper is to present a statistically sound approach to quantify this variability. We modify the concept of correlation integral to produce a vector that summarises the variability at all selected scales. The distribution of this stochastic vector can be estimated, and it provides a statistical distance concept between trajectories. Here, we demonstrate the use of the distance for the purpose of estimating model parameters of a chaotic dynamic model. The methodology is illustrated using computational examples for the Lorenz 63 and Lorenz 95 systems, together with a framework for Markov chain Monte Carlo sampling to produce posterior distributions of model parameters.

  5. Octupole correlation effects in nuclei

    International Nuclear Information System (INIS)

    Chasman, R.R.

    1992-01-01

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions

  6. Emotional effects of dynamic textures

    NARCIS (Netherlands)

    Toet, A.; Henselmans, M.; Lucassen, M.P.; Gevers, T.

    2011-01-01

    This study explores the effects of various spatiotemporal dynamic texture characteristics on human emotions. The emotional experience of auditory (eg, music) and haptic repetitive patterns has been studied extensively. In contrast, the emotional experience of visual dynamic textures is still largely

  7. Multireference second order perturbation theory with a simplified treatment of dynamical correlation.

    Science.gov (United States)

    Xu, Enhua; Zhao, Dongbo; Li, Shuhua

    2015-10-13

    A multireference second order perturbation theory based on a complete active space configuration interaction (CASCI) function or density matrix renormalized group (DMRG) function has been proposed. This method may be considered as an approximation to the CAS/A approach with the same reference, in which the dynamical correlation is simplified with blocked correlated second order perturbation theory based on the generalized valence bond (GVB) reference (GVB-BCPT2). This method, denoted as CASCI-BCPT2/GVB or DMRG-BCPT2/GVB, is size consistent and has a similar computational cost as the conventional second order perturbation theory (MP2). We have applied it to investigate a number of problems of chemical interest. These problems include bond-breaking potential energy surfaces in four molecules, the spectroscopic constants of six diatomic molecules, the reaction barrier for the automerization of cyclobutadiene, and the energy difference between the monocyclic and bicyclic forms of 2,6-pyridyne. Our test applications demonstrate that CASCI-BCPT2/GVB can provide comparable results with CASPT2 (second order perturbation theory based on the complete active space self-consistent-field wave function) for systems under study. Furthermore, the DMRG-BCPT2/GVB method is applicable to treat strongly correlated systems with large active spaces, which are beyond the capability of CASPT2.

  8. Effect of spatially correlated noise on stochastic synchronization in globally coupled FitzHugh-Nagumo neuron systems

    Directory of Open Access Journals (Sweden)

    Yange Shao

    2014-01-01

    Full Text Available The phenomenon of stochastic synchronization in globally coupled FitzHugh-Nagumo (FHN neuron system subjected to spatially correlated Gaussian noise is investigated based on dynamical mean-field approximation (DMA and direct simulation (DS. Results from DMA are in good quantitative or qualitative agreement with those from DS for weak noise intensity and larger system size. Whether the consisting single FHN neuron is staying at the resting state, subthreshold oscillatory regime, or the spiking state, our investigation shows that the synchronization ratio of the globally coupled system becomes higher as the noise correlation coefficient increases, and thus we conclude that spatial correlation has an active effect on stochastic synchronization, and the neurons can achieve complete synchronization in the sense of statistics when the noise correlation coefficient tends to one. Our investigation also discloses that the noise spatial correlation plays the same beneficial role as the global coupling strength in enhancing stochastic synchronization in the ensemble. The result might be useful in understanding the information coding mechanism in neural systems.

  9. Non equilibrium effects in nuclear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Papa, M.; Arena, N.; Cardella, G.; Lanzano, G.; Filippo, E. de; Lanzalone, G.; Pagano, A.; Pirrone, S.; Politi, G. [Catania Univ., INFN Catania and Dipartimento di Fisica e Astronomia (Italy); Amorini, F.; Anzalone, A.; Bonasera, A.; Cavallaro, S.; Di Pietro, A.; Figuera, P.; Giustolisi, F.; Iacono Manno, M.; La Guidara, E.; Maiolino, C.; Porto, F.; Rizzo, F.; Sperduto, M.L. [Catania Univ., INFN-LNS and Dipartimento di Fisica e Astronomia (Italy); Auditore, L.; Trifiro, A.; Trimarchi, M. [Messina Univ., INFN and Dipartimento di Fisica (Italy)

    2003-07-01

    A Constraint Molecular Dynamics (CoMD) approach is used to study dynamical effects related to both the average dynamics and the fluctuations around it. Data obtained in the REVERSE and in TRASMARAD experiments were compared with the theoretical simulations. The concept of temperature, as derived from a fully dynamical description of the GDR (giant dipole resonance) mode, is also discussed. In this contribution we have discussed the comparison between the CoMD model and two classes of phenomena, induced by heavy ion collisions. The first one is related to the IMF (intermediate mass fragment) production in semi-peripheral collisions for the {sup 124}Sn + {sup 64}Ni system at 35 MeV/nucleon. The comparison put in evidence clear preequilibrium effects in the fragment production mechanism which are essentially related to the behavior of the average dynamics. The second one concerns the high {gamma}-ray productions, due to dipolar resonant mechanisms, in the {sup 40}Ca + {sup 48}Ca system at 25 MeV/nucleon. In this case the comparisons with the model allows to put in evidence preequilibrium effects related both to the average dynamics and to the fluctuating one.

  10. Protecting Quantum Correlation from Correlated Amplitude Damping Channel

    Science.gov (United States)

    Huang, Zhiming; Zhang, Cai

    2017-08-01

    In this work, we investigate the dynamics of quantum correlation measured by measurement-induced nonlocality (MIN) and local quantum uncertainty (LQU) in correlated amplitude damping (CAD) channel. We find that the memory parameter brings different influences on MIN and LQU. In addition, we propose a scheme to protect quantum correlation by executing prior weak measurement (WM) and post-measurement reversal (MR). However, better protection of quantum correlation by the scheme implies a lower success probability (SP).

  11. Interpretation of quasi-static and dynamic tensile behavior by digital image correlation technique in TWinning Induced Plasticity (TWIP) and low-carbon steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Minju; Park, Jaeyeong; Sohn, Seok Su; Kim, Hyoung Seop [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Nack J. [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Lee, Sunghak, E-mail: shlee@postech.ac.kr [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2017-05-02

    In this study, dynamic tensile tests were conducted on TWinning Induced Plasticity (TWIP) and low-carbon (LC) steel sheets at a strain rate of 1500–2000/s by using a split Hopkinson tensile bar, and deformation mechanisms related with improvement of dynamic tensile properties were investigated by a digital image correlation (DIC) technique. The dynamic tensile strength was higher than the quasi-static tensile strength in both TWIP and LC sheets, while the dynamic elongation was same to the quasi-static elongation in the TWIP sheet and was much lower than the quasi-static elongation in the LC sheet. According to the DIC results of the dynamically tensioned TWIP sheet, the homogeneous deformation occurred before the necking at the strain of 47.4%. This indicated that the dynamic deformation processes were almost similar to the quasi-static ones as the TWIP sheet was homogeneously deformed in the initial and intermediate deformation stages. This could be explained by deformation mechanisms including twinning, in consideration of favorable effect of increased twinning on tensile properties under the dynamic loading. On the other hand, the dynamically tensioned LC sheet was rapidly deformed and fractured as the necking was intensified in a narrow strain-concentrated region. The present DIC technique is an outstanding method for detailed dynamic deformation analyses, and provides an important idea for practical safety analyses of automotive steel sheets.

  12. Ultrafast dynamics of laser-pulse excited semiconductors: non-Markovian quantum kinetic equations with nonequilibrium correlations

    Directory of Open Access Journals (Sweden)

    V.V.Ignatyuk

    2004-01-01

    Full Text Available Non-Markovian kinetic equations in the second Born approximation are derived for a two-zone semiconductor excited by a short laser pulse. Both collision dynamics and running nonequilibrium correlations are taken into consideration. The energy balance and relaxation of the system to equilibrium are discussed. Results of numerical solution of the kinetic equations for carriers and phonons are presented.

  13. Dynamics effects on a wooden footbridge

    Directory of Open Access Journals (Sweden)

    Vašková Veronika

    2017-01-01

    Full Text Available The timber is the current trend for the construction of many footbridges because of many reasons as price, aesthetics and ecology. Most of these structures are designed using simple static models and massive elements. However, there are implemented more complicated constructions including suspended footbridge in Příbor in Czech Republic. This construction with efficient use of material is more susceptible to dynamic effect. The article describes monitoring of dynamics effects at the construction with result of installation dynamics dampers.

  14. Point defects and diffusion in alloys: correlation effects

    International Nuclear Information System (INIS)

    Barbe, Vincent

    2006-01-01

    Kinetic models in alloys aim at predicting the transport properties of a system starting from the microscopic jump frequencies of defects. Such properties are of prior importance in systems which stay out of equilibrium for a long time, as for example irradiated alloys in nuclear reactors. We hereby propose several developments of the recent self-consistent mean field (SCMF) kinetic theory, which deals particularly with the correlation effects due to the coupling of atomic and defect fluxes. They are taken into account through a non-equilibrium distribution function of the system, which is derived from the time evolution of small clusters (of two or more atoms or defects). We therefore introduce a set of 'dynamic' interactions called effective Hamiltonian. The SCMF theory is extended to treat high jump frequency ratios for the vacancy mechanism, as well as the transport through interstitial defects. We use in both cases an atomic model which accounts for the thermodynamic properties of the alloy, as e.g. the short-range order. Those models are eventually applied to predict the diffusion properties in two model alloys of nuclear interest: the concentrated Fe-Ni-Cr solid solution and the dilute Fe(P) alloy. We present adapted atomic models and compare our predictions to experimental data. (author)

  15. Correlations in the Parton Recombination Model

    Energy Technology Data Exchange (ETDEWEB)

    Bass, S.A. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); RIKEN BNL Research Center, Brookhaven Nat. Lab., Upton, NY 11973 (United States); Fries, R.J. [School of Physics and Astronomy, Univ. of Minnesota, Minneapolis, MN 55455 (United States); Mueller, B. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States)

    2006-08-07

    We describe how parton recombination can address the recent measurement of dynamical jet-like two particle correlations. In addition we discuss the possible effect realistic light-cone wave-functions including higher Fock-states may have on the well-known elliptic flow valence-quark number scaling law.

  16. Dynamical Franz-Keldysh Effect

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka; Johnsen, Kristinn

    1996-01-01

    We introduce and analyze the properties of dynamical Franz-Keldysh effect, i.e., the change of density of states, or absorption spectra, of semiconductors under the influence of time-dependent electric fields. In the case of a harmonic time dependence, we predict the occurrence of significant fin...... structure, both below and above the zero-field band gap, which should be experimentally observable.......We introduce and analyze the properties of dynamical Franz-Keldysh effect, i.e., the change of density of states, or absorption spectra, of semiconductors under the influence of time-dependent electric fields. In the case of a harmonic time dependence, we predict the occurrence of significant fine...

  17. Generalized Langevin dynamics of a nanoparticle using a finite element approach: Thermostating with correlated noise

    Science.gov (United States)

    Uma, B.; Swaminathan, T. N.; Ayyaswamy, P. S.; Eckmann, D. M.; Radhakrishnan, R.

    2011-09-01

    A direct numerical simulation (DNS) procedure is employed to study the thermal motion of a nanoparticle in an incompressible Newtonian stationary fluid medium with the generalized Langevin approach. We consider both the Markovian (white noise) and non-Markovian (Ornstein-Uhlenbeck noise and Mittag-Leffler noise) processes. Initial locations of the particle are at various distances from the bounding wall to delineate wall effects. At thermal equilibrium, the numerical results are validated by comparing the calculated translational and rotational temperatures of the particle with those obtained from the equipartition theorem. The nature of the hydrodynamic interactions is verified by comparing the velocity autocorrelation functions and mean square displacements with analytical results. Numerical predictions of wall interactions with the particle in terms of mean square displacements are compared with analytical results. In the non-Markovian Langevin approach, an appropriate choice of colored noise is required to satisfy the power-law decay in the velocity autocorrelation function at long times. The results obtained by using non-Markovian Mittag-Leffler noise simultaneously satisfy the equipartition theorem and the long-time behavior of the hydrodynamic correlations for a range of memory correlation times. The Ornstein-Uhlenbeck process does not provide the appropriate hydrodynamic correlations. Comparing our DNS results to the solution of an one-dimensional generalized Langevin equation, it is observed that where the thermostat adheres to the equipartition theorem, the characteristic memory time in the noise is consistent with the inherent time scale of the memory kernel. The performance of the thermostat with respect to equilibrium and dynamic properties for various noise schemes is discussed.

  18. Cross-correlation and time history analysis of laser dynamic specklegram imaging for quality evaluation and assessment of certain seasonal fruits and vegetables

    Science.gov (United States)

    Samuel, Boni; Retheesh, R.; Zaheer Ansari, Md; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2017-10-01

    Quality evaluation of fruits and vegetables is of great concern as there is a shortage of unadulterated items on the market. Even unadulterated fruits and vegetables, especially those with soft tissue, cannot be stored for longer times due to physical and chemical changes. Moreover, damage can occur during harvest and in the post-harvest period, while preserving or transporting the fruits and vegetables. This work describes the use of a laser dynamic speckle imaging technique as a powerful optoelectronic tool for the quality evaluation of certain seasonal fruits and vegetables in an Indian market. A simple optical configuration was designed for developing the dynamic speckle imagining system to record dynamic specklegrams of the specimens under different conditions. These images were analysed using a cross-correlation function and the temporal history of specklegrams. The technique can be effectively adapted to the industrial environment and would be beneficial for all stakeholders in the field.

  19. DMFT at 25. Infinite dimensions. Lecutre notes of the Autumn school on correlated electrons 2014

    International Nuclear Information System (INIS)

    Pavarini, Eva; Koch, Erik; Vollhardt, Dieter; Lichtenstein, Alexander

    2014-01-01

    The following topics were dealt with: From Gutzwiller functions to dynamical mean-field theory, electronic structure of correlated materials, materials from an atonic viewpoint beyond the Landau paradigm, development of the LDA+DMFT approach, projectors and interactions, linear response functions, continuous-time QMC solvers for electronic systems in fermionic and bosonic baths, quantum cluster methods, making use of elf-energy functionals in the variational cluster approximation, dynamic vertex approximation, functional renormalization group approach to interacting Fermi systems, correlated electron dynamics and nonequilibrium dynamical mean-field theory, the one-step ARPES model, photoemission spectroscopy, correlation effects and electronic dimer formation in Ti 2 O 3 . (HSI)

  20. Hygrothermal effects on dynamic mechanical snalysis and fracture behavior of polymeric composites

    Directory of Open Access Journals (Sweden)

    Michelle Leali Costa

    2005-09-01

    Full Text Available Polymer composites used above their glass transition temperatures Tg present a substantial degradation of physical properties; therefore a material's glass transition temperature and its change with moisture absorption are of practical importance. Little attention has been paid to the role of the adhesive bonding between the reinforcing fiber and matrix, particularly for BMI matrix. In this work the effect of moisture on the dynamic mechanical behavior and the fiber/matrix interface was investigated. Two systems were evaluated: carbon fabric/epoxy and carbon fabric/bismaleimide laminates. The results demonstrated that the moisture absorbed by the laminates causes either reversible or irreversible plasticization of the matrix. The humidity combined with the temperature effects may cause significant changes in the Tg matrix and toughness affecting the laminate strength. Moisture absorption was correlated to the fracture mode of the laminate demonstrating the deleterious effect of moisture on the interface. This leads to debonding between fiber and matrix. This behavior was investigated by scanning electron microscopy and dynamic mechanical analysis.

  1. Effects of Perfectly Correlated and Anti-Correlated Noise in a Logistic Growth Model

    International Nuclear Information System (INIS)

    Zhang Li; Cao Li

    2011-01-01

    The logistic growth model with correlated additive and multiplicative Gaussian white noise is used to analyze tumor cell population. The effects of perfectly correlated and anti-correlated noise on the stationary properties of tumor cell population are studied. As in both cases the diffusion coefficient has zero point in real number field, some special features of the system are arisen. It is found that in both cases, the increase of the multiplicative noise intensity cause tumor cell extinction. In the perfectly anti-correlated case, the stationary probability distribution as a function of tumor cell population exhibit two extrema. (general)

  2. Effect of Galactosylceramide on the Dynamics of Cholesterol-Rich Lipid Membranes

    DEFF Research Database (Denmark)

    Hall, A.; Rog, T.; Vattulainen, I.

    2011-01-01

    We use atom-scale molecular dynamics simulations to clarify the role of glycosphingolipids in the dynamics of cholesterol-rich lipid rafts. To this end, we consider lipid membranes that contain varying. amounts of galactosylceramide (GalCer), sphingomyelin, cholesterol, and phosphatidylcholine....... The results indicate that increasing the portion of GalCer molecules greatly slows down the lateral diffusion, Only 5-10 mol % of GalCer causes a decrease of almost an order of magnitude compared to corresponding membranes without GalCer. The slowing down is not related to interdigitation, which becomes...... weaker with increasing GalCer concentration. Instead, the decrease in diffusion is found to correlate with the increasing number of hydrogen bonds formed between GalCer and the phospholipid molecules, which is also observed to have other effects, such as to increase the friction between the membrane...

  3. Phi-s correlation and dynamic time warping - Two methods for tracking ice floes in SAR images

    Science.gov (United States)

    Mcconnell, Ross; Kober, Wolfgang; Kwok, Ronald; Curlander, John C.; Pang, Shirley S.

    1991-01-01

    The authors present two algorithms for performing shape matching on ice floe boundaries in SAR (synthetic aperture radar) images. These algorithms quickly produce a set of ice motion and rotation vectors that can be used to guide a pixel value correlator. The algorithms match a shape descriptor known as the Phi-s curve. The first algorithm uses normalized correlation to match the Phi-s curves, while the second uses dynamic programming to compute an elastic match that better accommodates ice floe deformation. Some empirical data on the performance of the algorithms on Seasat SAR images are presented.

  4. Boundary Information Inflow Enhances Correlation in Flocking

    Science.gov (United States)

    Cavagna, Andrea; Giardina, Irene; Ginelli, Francesco

    2013-04-01

    The most conspicuous trait of collective animal behavior is the emergence of highly ordered structures. Less obvious to the eye, but perhaps more profound a signature of self-organization, is the presence of long-range spatial correlations. Experimental data on starling flocks in 3D show that the exponent ruling the decay of the velocity correlation function, C(r)˜1/rγ, is extremely small, γ≪1. This result can neither be explained by equilibrium field theory nor by off-equilibrium theories and simulations of active systems. Here, by means of numerical simulations and theoretical calculations, we show that a dynamical field applied to the boundary of a set of Heisenberg spins on a 3D lattice gives rise to a vanishing exponent γ, as in starling flocks. The effect of the dynamical field is to create an information inflow from border to bulk that triggers long-range spin-wave modes, thus giving rise to an anomalously long-ranged correlation. The biological origin of this phenomenon can be either exogenous—information produced by environmental perturbations is transferred from boundary to bulk of the flock—or endogenous—the flock keeps itself in a constant state of dynamical excitation that is beneficial to correlation and collective response.

  5. Short-ranged radial and tensor correlations in nuclear many-body systems

    International Nuclear Information System (INIS)

    Neff, T.; Feldmeier, H.

    2003-01-01

    The unitary correlation operator method (UCOM) is applied to realistic potentials. The effects of tensor correlations are investigated. The resulting phase shift equivalent correlated interactions are used in the no-core shell model for light nuclei and for mean-field calculations in the Fermionic Molecular Dynamics model for nuclei up to mass A=48. (orig.)

  6. Influence of pairing correlations on the probability and dynamics of tunneling through the barrier in fission and fusion of complex nuclei

    International Nuclear Information System (INIS)

    Lazarev, Yu.A.

    1986-01-01

    An analytically solvable model is used to study the potential barrier penetrability in the case when the gap parameter Δ is treated as a dynamical variable governed by the least action principle. It is found that, as compared to the standard (BCS) approach, the dynamical treatment of pairing results in a considerably weakened dependence of the fission barrier penetrability on the intensity of pairing correlations in the initial state (Δ 0 ), on the barrier height, and on the energy of the initial state. On this basis, a more adequate explanation is proposed for typical order-of-magnitude values of the empirical hidrance factors for groun-state spontaneous fission of odd nuclei. It is also shown that a large enhancement of superfluidity in tunneling - the inherent effect of the dynamical treatment of pairing - strongly facilitates deeply subbarier fusion of complex nuclei. Finally, an analysis is given for the probability of spontaneous fission from K-isomeric quasiparticle (q-p) states in even-even heavy nuclei. The relative change of the partial spontaneous fission half-life in going from the ground-state to a high-spin q-p isomeric state, T* sf /T sf , is found to be strongly dependent on whether or not there takes place the dynamically induced enhancement of superfluidity in tunneling. Measurements of T* sf /T sf provide thus a unique possibility of verifying theoretical predictions about the strong, inverse-square Δ dependence of the effective inertia associated with large-scale subbarrier rearrangements of nuclei

  7. Correlated nuclear and electronic dynamics in photoionized systems studied by quantum and mixed quantum-classical approaches

    International Nuclear Information System (INIS)

    Li, Zheng

    2014-09-01

    The advent of free electron lasers and high harmonic sources enables the investigation of electronic and nuclear dynamics of molecules and solids with atomic spatial resolution and femtosecond/attosecond time resolution, using bright and ultrashort laser pulses of frequency from terahertz to hard x-ray range. With the help of ultrashort laser pulses, the nuclear and electronic dynamics can be initiated, monitored and actively controlled at the typical time scale in the femtosecond to attosecond realm. Meanwhile, theoretical tools are required to describe the underlying mechanism. This doctoral thesis focuses on the development of theoretical tools based on full quantum mechanical multiconfiguration time-dependent Hartree (MCTDH) and mixed quantum classical approaches, which can be applied to describe the dynamical behavior of gas phase molecules and strongly correlated solids in the presence of ultrashort laser pulses. In the first part of this thesis, the focus is on the motion of electron holes in gas phase molecular ions created by extreme ultraviolet (XUV) photoionization and watched by spectroscopic approaches. The XUV photons create electron-hole in the valence orbitals of molecules by photoionization, the electron hole, as a positively charged quasi-particle, can then interact with the nuclei and the rest of electrons, leading to coupled non-Born-Oppenheimer dynamics. I present our study on electron-hole relaxation dynamics in valence ionized molecular ions of moderate size, using quantum wave packet and mixed quantum-classical approaches, using photoionized [H + (H 2 O) n ] + molecular ion as example. We have shown that the coupled motion of the electron-hole and the nuclei can be mapped out with femtosecond resolution by core-level x-ray transient absorption spectroscopy. Furthermore, in specific cases, the XUV photon can create a coherent electron hole, that can maintain its coherence to time scales of ∝ 1 picosecond. Employing XUV pump - IR probe

  8. Statistical against dynamical PLF fission as seen by the IMF-IMF correlation functions and comparisons with CoMD model

    Science.gov (United States)

    Pagano, E. V.; Acosta, L.; Auditore, L.; Cap, T.; Cardella, G.; Colonna, M.; De Filippo, E.; Geraci, E.; Gnoffo, B.; Lanzalone, G.; Maiolino, C.; Martorana, N.; Pagano, A.; Papa, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Trifiro’, A.; Trimarchi, M.; Siwek-Wilczynska, K.

    2018-05-01

    In nuclear reactions at Fermi energies two and multi particles intensity interferometry correlation methods are powerful tools in order to pin down the characteristic time scale of the emission processes. In this paper we summarize an improved application of the fragment-fragment correlation function in the specific physics case of heavy projectile-like (PLF) binary massive splitting in two fragments of intermediate mass(IMF). Results are shown for the reverse kinematics reaction 124 Sn+64 Ni at 35 AMeV that has been investigated by using the forward part of CHIMERA multi-detector. The analysis was performed as a function of the charge asymmetry of the observed couples of IMF. We show a coexistence of dynamical and statistical components as a function of the charge asymmetry. Transport CoMD simulations are compared with the data in order to pin down the timescale of the fragments production and the relevant ingredients of the in medium effective interaction used in the transport calculations.

  9. Effects of correlations and fees in random multiplicative environments: Implications for portfolio management

    Science.gov (United States)

    Alper, Ofer; Somekh-Baruch, Anelia; Pirvandy, Oz; Schaps, Malka; Yaari, Gur

    2017-08-01

    Geometric Brownian motion (GBM) is frequently used to model price dynamics of financial assets, and a weighted average of multiple GBMs is commonly used to model a financial portfolio. Diversified portfolios can lead to an increased exponential growth compared to a single asset by effectively reducing the effective noise. The sum of GBM processes is no longer a log-normal process and has a complex statistical properties. The nonergodicity of the weighted average process results in constant degradation of the exponential growth from the ensemble average toward the time average. One way to stay closer to the ensemble average is to maintain a balanced portfolio: keep the relative weights of the different assets constant over time. To keep these proportions constant, whenever assets values change, it is necessary to rebalance their relative weights, exposing this strategy to fees (transaction costs). Two strategies that were suggested in the past for cases that involve fees are rebalance the portfolio periodically and rebalance it in a partial way. In this paper, we study these two strategies in the presence of correlations and fees. We show that using periodic and partial rebalance strategies, it is possible to maintain a steady exponential growth while minimizing the losses due to fees. We also demonstrate how these redistribution strategies perform in a phenomenal way on real-world market data, despite the fact that not all assumptions of the model hold in these real-world systems. Our results have important implications for stochastic dynamics in general and to portfolio management in particular, as we show that there is a superior alternative to the common buy-and-hold strategy, even in the presence of correlations and fees.

  10. Effects of correlations and fees in random multiplicative environments: Implications for portfolio management.

    Science.gov (United States)

    Alper, Ofer; Somekh-Baruch, Anelia; Pirvandy, Oz; Schaps, Malka; Yaari, Gur

    2017-08-01

    Geometric Brownian motion (GBM) is frequently used to model price dynamics of financial assets, and a weighted average of multiple GBMs is commonly used to model a financial portfolio. Diversified portfolios can lead to an increased exponential growth compared to a single asset by effectively reducing the effective noise. The sum of GBM processes is no longer a log-normal process and has a complex statistical properties. The nonergodicity of the weighted average process results in constant degradation of the exponential growth from the ensemble average toward the time average. One way to stay closer to the ensemble average is to maintain a balanced portfolio: keep the relative weights of the different assets constant over time. To keep these proportions constant, whenever assets values change, it is necessary to rebalance their relative weights, exposing this strategy to fees (transaction costs). Two strategies that were suggested in the past for cases that involve fees are rebalance the portfolio periodically and rebalance it in a partial way. In this paper, we study these two strategies in the presence of correlations and fees. We show that using periodic and partial rebalance strategies, it is possible to maintain a steady exponential growth while minimizing the losses due to fees. We also demonstrate how these redistribution strategies perform in a phenomenal way on real-world market data, despite the fact that not all assumptions of the model hold in these real-world systems. Our results have important implications for stochastic dynamics in general and to portfolio management in particular, as we show that there is a superior alternative to the common buy-and-hold strategy, even in the presence of correlations and fees.

  11. Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order

    Science.gov (United States)

    Morozovska, A. N.; Eliseev, E. A.

    2010-02-01

    The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.

  12. Exceptional points and quantum correlations in precise measurements

    International Nuclear Information System (INIS)

    Thilagam, A

    2012-01-01

    We examine the physical manifestations of exceptional points and passage times in a two-level system which is subjected to quantum measurements and which admits a non-Hermitian description. Using an effective Hamiltonian acting in the two-dimensional space spanned by the evolving initial and final states, the effects of highly precise quantum measurements in which the monitoring device interferes significantly with the evolution dynamics of the monitored two-level system is analyzed. The dynamics of a multipartite system consisting of the two-level system, a source of external potential and the measurement device is examined using correlation measures such as entanglement and non-classical quantum correlations. Results show that the quantum correlations between the monitored (monitoring) systems is considerably decreased (increased) as the measurement precision nears the exceptional point, at which the passage time is half of the measurement duration. The results indicate that the underlying mechanism by which the non-classical correlations of quantum systems are transferred from one subsystem to another may be better revealed via use of geometric approaches. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  13. Effects of dynamical quarks in UKQCD simulations

    International Nuclear Information System (INIS)

    Allton, Chris

    2002-01-01

    Recent results from the UKQCD Collaboration's dynamical simulations are presented. The main feature of these ensembles is that they have a fixed lattice spacing and volume, but varying sea quark mass from infinite (corresponding to the quenched simulation) down to roughly that of the strange quark mass. The main aim of this work is to uncover dynamical quark effects from these 'matched' ensembles. We obtain some evidence of dynamical quark effects in the static quark potential with less effects in the hadronic spectrum

  14. Dynamic RSA: Examining parasympathetic regulatory dynamics via vector-autoregressive modeling of time-varying RSA and heart period.

    Science.gov (United States)

    Fisher, Aaron J; Reeves, Jonathan W; Chi, Cyrus

    2016-07-01

    Expanding on recently published methods, the current study presents an approach to estimating the dynamic, regulatory effect of the parasympathetic nervous system on heart period on a moment-to-moment basis. We estimated second-to-second variation in respiratory sinus arrhythmia (RSA) in order to estimate the contemporaneous and time-lagged relationships among RSA, interbeat interval (IBI), and respiration rate via vector autoregression. Moreover, we modeled these relationships at lags of 1 s to 10 s, in order to evaluate the optimal latency for estimating dynamic RSA effects. The IBI (t) on RSA (t-n) regression parameter was extracted from individual models as an operationalization of the regulatory effect of RSA on IBI-referred to as dynamic RSA (dRSA). Dynamic RSA positively correlated with standard averages of heart rate and negatively correlated with standard averages of RSA. We propose that dRSA reflects the active downregulation of heart period by the parasympathetic nervous system and thus represents a novel metric that provides incremental validity in the measurement of autonomic cardiac control-specifically, a method by which parasympathetic regulatory effects can be measured in process. © 2016 Society for Psychophysiological Research.

  15. Allee effects on population dynamics with delay

    International Nuclear Information System (INIS)

    Celik, C.; Merdan, H.; Duman, O.; Akin, O.

    2008-01-01

    In this paper, we study the stability analysis of equilibrium points of population dynamics with delay when the Allee effect occurs at low population density. Mainly, our mathematical results and numerical simulations point to the stabilizing effect of the Allee effects on population dynamics with delay

  16. Correlation effects in a discrete quantum random walk

    International Nuclear Information System (INIS)

    Stang, J B; Rezakhani, A T; Sanders, B C

    2009-01-01

    We introduce memory-dependent discrete-time quantum random walk models by adding uncorrelated memory terms and also by modifying the Hamiltonian of the walker to include couplings with memory-keeping agents. We next study numerically the correlation effects in these models. We also propose a correlation exponent as a relevant and promising tool for investigation of correlation or memory (hence non-Markovian) effects. Our analysis can easily be applied to more realistic models in which different regimes may emerge because of competition between different underlying physical mechanisms

  17. Time dependence of entropy flux and entropy production for a dynamical system driven by noises with coloured cross-correlation

    Institute of Scientific and Technical Information of China (English)

    Xie Wen-Xian; Xu Wei; Cai Li

    2007-01-01

    This paper shows the Fokker-Planck equation of a dynamical system driven by coloured cross-correlated white noises in the absence and presence of a small external force. Based on the Fokker-Planck equation and the definition of Shannon's information entropy, the time dependence of entropy flux and entropy production can be calculated. The present results can be used to explain the extremal behaviour of time dependence of entropy flux and entropy production in view of the dissipative parameter γ of the system, coloured cross-correlation time τ and coloured cross-correlation strength λ.

  18. Development of Test-Analysis Models (TAM) for correlation of dynamic test and analysis results

    Science.gov (United States)

    Angelucci, Filippo; Javeed, Mehzad; Mcgowan, Paul

    1992-01-01

    The primary objective of structural analysis of aerospace applications is to obtain a verified finite element model (FEM). The verified FEM can be used for loads analysis, evaluate structural modifications, or design control systems. Verification of the FEM is generally obtained as the result of correlating test and FEM models. A test analysis model (TAM) is very useful in the correlation process. A TAM is essentially a FEM reduced to the size of the test model, which attempts to preserve the dynamic characteristics of the original FEM in the analysis range of interest. Numerous methods for generating TAMs have been developed in the literature. The major emphasis of this paper is a description of the procedures necessary for creation of the TAM and the correlation of the reduced models with the FEM or the test results. Herein, three methods are discussed, namely Guyan, Improved Reduced System (IRS), and Hybrid. Also included are the procedures for performing these analyses using MSC/NASTRAN. Finally, application of the TAM process is demonstrated with an experimental test configuration of a ten bay cantilevered truss structure.

  19. Tracheomalacia before and after aortosternopexy: dynamic and quantitative assessment by electron-beam computed tomography with clinical correlation

    International Nuclear Information System (INIS)

    Kao, S.C.S.; Kimura, K.; Smith, W.L.; Sato, Y.

    1995-01-01

    To correlate the dynamics of tracheal collapse with clinical upper airway obstruction before and after aortosternopexy, seven boys and three girls (mean age, 10 months) underwent dynamic evaluation of the trachea by electron-beam computed tomography (EBCT). The site, extent, and severity of collapse were correlated with symptomatology and details of operative procedure. When >50% area collapse was used as the criterion for tracheomalacia, segmental involvement occurred above the aortic arch in all patients, extending to the aortic arch level in only four. Tracheomalacia involved two or fewer 8-mm levels in seven patients and more than two levels in three. Eight patients underwent one aortosternopexy procedure, resulting in clinical improvement in six and correlating well with EBCT findings. Of the remaining two patients who had single aortosternopexy and did not show clinical and radiographic improvement, one required operative repair of a vascular ring and the other continued to have recurrent respiratory tract infections. On the basis of EBCT findings, two patients required additional innominate arteriopexies: One improved, and the other remained symptomatic, requiring tracheostomy. EBCT is a noninvasive modality that allows preoperative diagnosis of tracheomalacia. More importantly, the operative decision and technique are guided by an objective and quantitative assessment of tracheal collapse. (orig.)

  20. Inverse Ising inference with correlated samples

    International Nuclear Information System (INIS)

    Obermayer, Benedikt; Levine, Erel

    2014-01-01

    Correlations between two variables of a high-dimensional system can be indicative of an underlying interaction, but can also result from indirect effects. Inverse Ising inference is a method to distinguish one from the other. Essentially, the parameters of the least constrained statistical model are learned from the observed correlations such that direct interactions can be separated from indirect correlations. Among many other applications, this approach has been helpful for protein structure prediction, because residues which interact in the 3D structure often show correlated substitutions in a multiple sequence alignment. In this context, samples used for inference are not independent but share an evolutionary history on a phylogenetic tree. Here, we discuss the effects of correlations between samples on global inference. Such correlations could arise due to phylogeny but also via other slow dynamical processes. We present a simple analytical model to address the resulting inference biases, and develop an exact method accounting for background correlations in alignment data by combining phylogenetic modeling with an adaptive cluster expansion algorithm. We find that popular reweighting schemes are only marginally effective at removing phylogenetic bias, suggest a rescaling strategy that yields better results, and provide evidence that our conclusions carry over to the frequently used mean-field approach to the inverse Ising problem. (paper)

  1. Selection effects on GRB spectral-energy correlations

    International Nuclear Information System (INIS)

    Nava, Lara; Ghirlanda, Giancarlo; Ghisellini, Gabriele

    2009-01-01

    Instrumental selection effects can act upon the estimates of the peak energy E peak obs , the fluence F and the peak flux P of GRBs. If this were the case, then the correlations involving the corresponding rest frame quantities (i.e. E peak , E obs and the peak luminosity L iso ) would be questioned. We estimated, as a function of E peak obs , the minimum peak flux necessary to trigger a GRB and the minimum fluence a burst must have to determine the value of E peak obs by considering different instruments (BATSE, Swift, BeppoSAX). We find that the latter dominates over the former. We then study the E peak obs -fluence (and flux) correlation in the observer plane. GRBs with redshift show well defined E peak obs -F and E peak obs -P correlations: in this planes the selection effects are present, but do not determine the found correlations. This is not true for Swift GRBs with redshift, for which the spectral analysis threshold does affect their distribution in the observer planes. Extending the sample to GRBs without z, we still find a significant E peak obs -F correlation, although with a larger scatter than that defined by GRBs with redshift. We find that 6% are outliers of the Amati correlation. The E peak obs -P correlation of GRBs with or without redshift is the same and no outlier is found among bursts without redshift.

  2. Confinement Effects on Host Chain Dynamics in Polymer Nanocomposite Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kyle J. [Department; Glynos, Emmanouil [Department; Maroulas, Serafeim-Dionysios [Department; Narayanan, Suresh [Advanced; Sakellariou, Georgios [Department; Green, Peter F. [Department; National

    2017-09-06

    Incorporating nanoparticles (NPs) within a polymer host to create polymer nanocomposites (PNCs) while having the effect of increasing the functionality (e.g.: sensing, energy conversion) of these materials, introduces additional complications with regard to the processing-morphology-function behavior. A primary challenge is to understand and control the viscosity of a PNC with decreasing film thickness confinement for nanoscale applications. Using a combination of X-ray photon correlation spectroscopy (XPCS) and X-ray standing wave based resonance enhanced XPCS to study the dynamics of neat poly-2-vinyl pyridine (P2VP) chains and the nanoparticle dynamics, respectively, we identified a new mechanism that dictates the viscosity of PNC films in the nanoscale regime. We show that while the viscosities of neat P2VP films as thin as 50 nm remained the same as the bulk, PNC films containing P2VP brush-coated gold NPs, spaced 50 nm apart, exhibited unprecedented increases in viscosities of over an order of magnitude. For thicker films or more widely separated NPs, the chain dynamics and viscosities were equal to the bulk values. These results -NP proximities and suppression of their dynamics -suggest a new mechanism by which the viscosities of polymeric liquids could be controlled for 2D and 3D nanoscale applications.

  3. Signatures of correlated excitonic dynamics in two-dimensional spectroscopy of the Fenna-Matthew-Olson photosynthetic complex

    International Nuclear Information System (INIS)

    Caram, Justin R.; Lewis, Nicholas H. C.; Fidler, Andrew F.; Engel, Gregory S.

    2012-01-01

    Long-lived excitonic coherence in photosynthetic proteins has become an exciting area of research because it may provide design principles for enhancing the efficiency of energy transfer in a broad range of materials. In this publication, we provide new evidence that long-lived excitonic coherence in the Fenna-Mathew-Olson pigment-protein (FMO) complex is consistent with the assumption of cross correlation in the site basis, indicating that each site shares bath fluctuations. We analyze the structure and character of the beating crosspeak between the two lowest energy excitons in two-dimensional (2D) electronic spectra of the FMO Complex. To isolate this dynamic signature, we use the two-dimensional linear prediction Z-transform as a platform for filtering coherent beating signatures within 2D spectra. By separating signals into components in frequency and decay rate representations, we are able to improve resolution and isolate specific coherences. This strategy permits analysis of the shape, position, character, and phase of these features. Simulations of the crosspeak between excitons 1 and 2 in FMO under different regimes of cross correlation verify that statistically independent site fluctuations do not account for the elongation and persistence of the dynamic crosspeak. To reproduce the experimental results, we invoke near complete correlation in the fluctuations experienced by the sites associated with excitons 1 and 2. This model contradicts ab initio quantum mechanic/molecular mechanics simulations that observe no correlation between the energies of individual sites. This contradiction suggests that a new physical model for long-lived coherence may be necessary. The data presented here details experimental results that must be reproduced for a physical model of quantum coherence in photosynthetic energy transfer.

  4. Dynamics-based selective 2D 1H/1H chemical shift correlation spectroscopy under ultrafast MAS conditions

    Science.gov (United States)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-01

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of 1H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of 1H/1H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  5. Dynamics-based selective 2D 1H/1H chemical shift correlation spectroscopy under ultrafast MAS conditions

    International Nuclear Information System (INIS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-01-01

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of 1 H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of 1 H/ 1 H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials

  6. Application of ultra-small-angle X-ray scattering / X-ray photon correlation spectroscopy to relate equilibrium or non-equilibrium dynamics to microstructure

    Science.gov (United States)

    Allen, Andrew; Zhang, Fan; Levine, Lyle; Ilavsky, Jan

    2013-03-01

    Ultra-small-angle X-ray scattering (USAXS) can probe microstructures over the nanometer-to-micrometer scale range. Through use of a small instrument entrance slit, X-ray photon correlation spectroscopy (XPCS) exploits the partial coherence of an X-ray synchrotron undulator beam to provide unprecedented sensitivity to the dynamics of microstructural change. In USAXS/XPCS studies, the dynamics of local structures in a scale range of 100 nm to 1000 nm can be related to an overall hierarchical microstructure extending from 1 nm to more than 1000 nm. Using a point-detection scintillator mode, the equilibrium dynamics at ambient temperature of small particles (which move more slowly than nanoparticles) in aqueous suspension have been quantified directly for the first time. Using a USAXS-XPCS scanning mode for non-equilibrium dynamics incipient processes within dental composites have been elucidated, prior to effects becoming detectable using any other technique. Use of the Advanced Photon Source, an Office of Science User Facility operated for the United States Department of Energy (U.S. DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

  7. Effect of Dynamic Meditation on Mental Health.

    Science.gov (United States)

    Iqbal, Naved; Singh, Archana; Aleem, Sheema

    2016-02-01

    Although traditional meditation has been found to be effective in improving physical and mental health of subjects, there was a paucity of research of the effect of active or dynamic meditation on these variables. Therefore, the present study was aimed at studying the effect of dynamic meditation on mental health of the subjects. Total sample of the present study comprised 60 subjects, 30 each in experimental and control group. Subjects in experimental group were given 21-day training in dynamic meditation. Mental health of the experimental and control group subjects was measured in pre- and post-condition with the help of Mental Health Inventory developed by Jagadish and Srivastava (Mental Health inventory, Manovaigyanik Parikshan Sansthan, Varanasi, 1983). Obtained data were analyzed with the help of ANCOVA. In post-condition, experimental group scored better than control group on integration of personality, autonomy and environmental mastery. Effect sizes of dynamic meditation on these dimensions of mental health were large. However, experimental group and control group did not differ significantly on positive self-evaluation, perception of reality and group-oriented attitude dimensions of mental health in post-condition. Overall, dynamic meditation training was effective in improving mental health of the subjects.

  8. On the quantum dynamical foundations of collision terms

    International Nuclear Information System (INIS)

    Nemes, M.C.; Toledo Piza, A.F.R. de

    1981-08-01

    Collision terms are non-unitary corrections usually added to mean field descriptions in order to describe dissipative effects. Derivations of collision terms usually include assumptions which lack an explicit connection with a fully quantum dynamical description. Quantum dynamical foundations of collision terms are examined: they are shown to reflect the dynamics of quantum correlations. A careful study of the non-unitary aspects of the evolution of quantum correlations leads naturally to an unambiguous definition of a collision term. This collision term is shown to obey a non-linear pre-master equation, whose derivation is fully quantum-mechanical. Moreover, it is shown that quantum correlations also yield an unitary correction to the mean field description, which could be absorbed in a suitable redefinition of the mean field. Formal expressions for these corrections are derived and their connection with memory effects exhibited explicitely. The typical time of evaluation of quantum correlations allows for an analytical expression for the 'lifetime of mean field descriptions'. Finally, a quantum mechanical point of view for 'irreversibility' in deep inelastic is discussed. (Author) [pt

  9. Coulomb repulsion and correlation strength in LaFeAsO from density functional and dynamical mean-field theories

    Czech Academy of Sciences Publication Activity Database

    Anisimov, V.I.; Korotin, D. M.; Korotin, M. A.; Kozhevnikov, A, V.; Kuneš, Jan; Shorikov, A.O.; Skornyakov, S.L.; Streltsov, S. V.

    2009-01-01

    Roč. 21, č. 7 (2009), 075602/1-075602/7 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100521 Keywords : iron pnictide * electronic correlations * dynamical mean-field theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.964, year: 2009

  10. A wide variety of dynamic contrast-enhanced MR appearances of breast cancer: Pathologic correlation study

    International Nuclear Information System (INIS)

    Onishi, Masayuki; Furukawa, Akira; Takahashi, Masashi; Murata, Kiyoshi

    2008-01-01

    Purpose: The aim of this study was to elucidate the characteristic magnetic resonance (MR) appearance of breast cancers, as well as, its variations and to investigate the pathology providing different patterns of dynamic-MR appearances. Materials and methods: Fifty-two women with cancer underwent mastectomy (52 tumors resected) and had MR imaging at our institution between April 2001 and March 2004. MR images of T1WI, T2WI, dynamic-MRI and contrast-enhanced T1WI were obtained and evaluated. Dynamic-MR images were correlated with pathological findings. Results: Common MR appearance of breast cancer was a focal mass either with irregular or spiculated margins with similar signal intensity on T1WI as and similar to higher signal intensity on T2WI compared to the normal mammary gland. On static contrast-enhanced T1WI, apparent enhancement was typically observed. On dynamic MRI, tumor-rim-enhancement on an early phase image and washout enhancement pattern on dynamic images, both characteristic for breast cancer, were observed, however, the prevalence of them was relatively low, which could be explained by the variation of histopathology among breast cancer nodules. Conclusion: In diagnosing breast masses on MRI, as well as the common and characteristic findings of breast cancer, the variations of MR findings and their underlying histopathology should also be considered

  11. The Effect of Teeth Clenching on Dynamic Balance at Jump-Landing: A Pilot Study.

    Science.gov (United States)

    Nakamura, Tomomasa; Yoshida, Yuriko; Churei, Hiroshi; Aizawa, Junya; Hirohata, Kenji; Ohmi, Takehiro; Ohji, Shunsuke; Takahashi, Toshiyuki; Enomoto, Mitsuhiro; Ueno, Toshiaki; Yagishita, Kazuyoshi

    2017-07-01

    The aim of this study was to analyze the effect of teeth clenching on dynamic balance at jump landing. Twenty-five healthy subjects performed jump-landing tasks with or without teeth clenching. The first 3 trials were performed with no instruction; subsequently, subjects were ordered to clench at the time of landing in the following 3 trials. We collected the data of masseter muscle activity by electromyogram, the maximum vertical ground reaction force (vGRFmax) and center of pressure (CoP) parameters by force plate during jump-landing. According to the clenching status of control jump-landing, all participants were categorized into a spontaneous clenching group and no clenching group, and the CoP data were compared. The masseter muscle activity was correlated with vGRFmax during anterior jump-landing, while it was not correlated with CoP. In comparisons between the spontaneous clenching and the no clenching group during anterior jump-landing, the spontaneous clenching group showed harder landing and the CoP area became larger than the no clenching group. There were no significant differences between pre- and postintervention in both spontaneous clenching and no clenching groups. The effect of teeth clenching on dynamic balance during jump-landing was limited.

  12. Correlation between High Resolution Dynamic MR Features and Prognostic Factors in Breast Cancer

    International Nuclear Information System (INIS)

    Lee, Shin Ho; Cho, Nariya; Kim, Seung Ja; Cho, Kyung Soo; Ko, Eun Sook; Moon, Woo Kyung; Cha, Joo Hee

    2008-01-01

    To correlate high resolution dynamic MR features with prognostic factors in breast cancer. One hundred and ninety-four women with invasive ductal carcinomas underwent dynamic MR imaging using T1-weighted three dimensional fast low-angle shot (3D-FLASH) sequence within two weeks prior to surgery. Morphological and kinetic MR features were determined based on the breast imaging and reporting data system (BI-RADS) MR imaging lexicon. Histological specimens were analyzed for tumor size, axillary lymph node status, histological grade, expression of estrogen receptor (ER), expression of progesterone receptor (PR), and expression of p53, c-erbB-2, and Ki-67. Correlations between the MR features and prognostic factors were determined using the Pearson x 2 test, linear-by-linear association, and logistic regression analysis. By multivariate analysis, a spiculated margin was a significant, independent predictor of a lower histological grade (p < 0.001), and lower expression of Ki-67 (p = 0.007). Rim enhancement was significant, independent predictor of a higher histological grade (p < 0.001), negative expression of ER (p 0.001), negative expression of PR (p < 0.001) and a larger tumor size (p = 0.006). A washout curve may predict a higher level of Ki-67 (p = 0.05). Most of the parameters of the initial enhancement phase cannot predict the status of the prognostic factors. Only the enhancement ratio may predict a larger tumor size (p 0.05). Of the BI-RADS-MR features, a spiculated margin may predict favorable prognosis, whereas rim enhancement or washout may predict unfavorable prognosis of breast cancer

  13. Testing the effects of adolescent alcohol use on adult conflict-related theta dynamics.

    Science.gov (United States)

    Harper, Jeremy; Malone, Stephen M; Iacono, William G

    2017-11-01

    Adolescent alcohol use (AAU) is associated with brain anomalies, but less is known about long-term neurocognitive effects. Despite theoretical models linking AAU to diminished cognitive control, empirical work testing this relationship with specific cognitive control neural correlates (e.g., prefrontal theta-band EEG dynamics) remains scarce. A longitudinal twin design was used to test the hypothesis that greater AAU is associated with reduced conflict-related EEG theta-band dynamics in adulthood, and to examine the genetic/environmental etiology of this association. In a large (N=718) population-based prospective twin sample, AAU was assessed at ages 11/14/17. Twins completed a flanker task at age 29 to elicit EEG theta-band medial frontal cortex (MFC) power and medial-dorsal prefrontal cortex (MFC-dPFC) connectivity. Two complementary analytic methods (cotwin control analysis; biometric modeling) were used to disentangle the genetic/shared environmental risk towards AAU from possible alcohol exposure effects on theta dynamics. AAU was negatively associated with adult cognitive control-related theta-band MFC power and MFC-dPFC functional connectivity. Genetic influences primarily underlie these associations. Findings provide strong evidence that genetic factors underlie the comorbidity between AAU and diminished cognitive control-related theta dynamics in adulthood. Conflict-related theta-band dynamics appear to be candidate brain-based endophenotypes/mechanisms for AAU. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  14. Atomic electron correlations in intense laser fields

    International Nuclear Information System (INIS)

    DiMauro, L.F.; Sheehy, B.; Walker, B.; Agostini, P.A.

    1998-01-01

    This talk examines two distinct cases in strong optical fields where electron correlation plays an important role in the dynamics. In the first example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two-level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although their ability to describe the one-electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unclear

  15. Improvement of a new rotation function for molecular replacement by designing new scoring functions and dynamic correlation coefficient

    Science.gov (United States)

    Jiang, Fan; Ding, Wei

    2010-10-01

    A previously published new rotation function has been improved by using a dynamic correlation coefficient as well as two new scoring functions of relative entropy and mean-square-residues to make the rotation function more robust and independent of a specific set of weights for scoring and ranking. The previously described new rotation function calculates the rotation function of molecular replacement by matching the search model directly with the Patterson vector map. The signal-to-noise ratio for the correct match was increased by averaging all the matching peaks. Several matching scores were employed to evaluate the goodness of matching. These matching scores were then combined into a single total score by optimizing a set of weights using the linear regression method. It was found that there exists an optimal set of weights that can be applied to the global rotation search and the correct solution can be ranked in the top 100 or less. However, this set of optimal weights in general is dependent on the search models and the crystal structures with different space groups and cell parameters. In this work, we try to solve this problem by designing a dynamic correlation coefficient. It is shown that the dynamic correlation coefficient works for a variety of space groups and cell parameters in the global search of rotation function. We also introduce two new matching scores: relative entropy and mean-square-residues. Last but not least, we discussed a valid method for the optimization of the adjustable parameters for matching vectors.

  16. Improvement of a new rotation function for molecular replacement by designing new scoring functions and dynamic correlation coefficient

    International Nuclear Information System (INIS)

    Fan, Jiang; Wei, Ding

    2010-01-01

    A previously published new rotation function has been improved by using a dynamic correlation coefficient as well as two new scoring functions of relative entropy and mean-square-residues to make the rotation function more robust and independent of a specific set of weights for scoring and ranking. The previously described new rotation function calculates the rotation function of molecular replacement by matching the search model directly with the Patterson vector map. The signal-to-noise ratio for the correct match was increased by averaging all the matching peaks. Several matching scores were employed to evaluate the goodness of matching. These matching scores were then combined into a single total score by optimizing a set of weights using the linear regression method. It was found that there exists an optimal set of weights that can be applied to the global rotation search and the correct solution can be ranked in the top 100 or less. However, this set of optimal weights in general is dependent on the search models and the crystal structures with different space groups and cell parameters. In this work, we try to solve this problem by designing a dynamic correlation coefficient. It is shown that the dynamic correlation coefficient works for a variety of space groups and cell parameters in the global search of rotation function. We also introduce two new matching scores: relative entropy and mean-square-residues. Last but not least, we discussed a valid method for the optimization of the adjustable parameters for matching vectors. (condensed matter: structure, thermal and mechanical properties)

  17. Long-range correlations and fractal dynamics in C. elegans: Changes with aging and stress

    Science.gov (United States)

    Alves, Luiz G. A.; Winter, Peter B.; Ferreira, Leonardo N.; Brielmann, Renée M.; Morimoto, Richard I.; Amaral, Luís A. N.

    2017-08-01

    Reduced motor control is one of the most frequent features associated with aging and disease. Nonlinear and fractal analyses have proved to be useful in investigating human physiological alterations with age and disease. Similar findings have not been established for any of the model organisms typically studied by biologists, though. If the physiology of a simpler model organism displays the same characteristics, this fact would open a new research window on the control mechanisms that organisms use to regulate physiological processes during aging and stress. Here, we use a recently introduced animal-tracking technology to simultaneously follow tens of Caenorhabdits elegans for several hours and use tools from fractal physiology to quantitatively evaluate the effects of aging and temperature stress on nematode motility. Similar to human physiological signals, scaling analysis reveals long-range correlations in numerous motility variables, fractal properties in behavioral shifts, and fluctuation dynamics over a wide range of timescales. These properties change as a result of a superposition of age and stress-related adaptive mechanisms that regulate motility.

  18. Local density inhomogeneities and dynamics in supercritical water: A molecular dynamics simulation approach.

    Science.gov (United States)

    Skarmoutsos, Ioannis; Samios, Jannis

    2006-11-02

    Molecular dynamics atomistic simulations in the canonical ensemble (NVT-MD) have been used to investigate the "Local Density Inhomogeneities and their Dynamics" in pure supercritical water. The simulations were carried out along a near-critical isotherm (Tr = T/Tc = 1.03) and for a wide range of densities below and above the critical one (0.2 rho(c) - 2.0 rho(c)). The results obtained reveal the existence of significant local density augmentation effects, which are found to be sufficiently larger in comparison to those reported for nonassociated fluids. The time evolution of the local density distribution around each molecule was studied in terms of the appropriate time correlation functions C(Delta)rhol(t). It is found that the shape of these functions changes significantly by increasing the density of the fluid. Finally, the local density reorganization times for the first and second coordination shell derived from these correlations exhibit a decreasing behavior by increasing the density of the system, signifying the density effect upon the dynamics of the local environment around each molecule.

  19. Correlations in hadron-hadron interactions at high energy

    International Nuclear Information System (INIS)

    Nguyen Huu Khanh

    1978-01-01

    Some main features of the experimental results on the correlations in hadron-hadron interactions at high energy are considered. Particular attention is paid to the long-range correlation, short-range correlation and Bose-Einstein effect. Long-range correlations are confirmed by the variation of the number of charged particles produced in the final state depending on energy, violation of Koba-Nielsen- Olesen scaling and the analysis of correlation betWeen the numbers of charged particles emitted in the forward and backward hemispheres. Short-range correlations are discussed from the point of view of ISR pp, 195 GeV/c pN and 32 GeV/c k + p experiments. Bose-Einstein effects are studied up to now only between pions. Pions are not produced directly but from the decay of heavier objects. Some experimental results seem to support the evidence for dynamical long-range correlations. Most of the data are compatible with the independent cluster model

  20. Parameter studies on the effect of pulse shape on the dynamic plastic deformation of a hexagon

    International Nuclear Information System (INIS)

    Youngdahl, C.K.

    1973-10-01

    Results of a parameter study on the dynamic plastic response of a hexagonal subassembly duct subjected to an internal pressure pulse of arbitrary shape are presented. Plastic distortion of the cross section and large-deformation geometric effects that result in redistribution of the internal forces between bending and membrane stresses in the hexagon wall are included in the analytical model. Correlation procedures are established for relating permanent plastic deformation to simple properties of the pressure pulse, for both the small- and large-deformation ranges. Characteristic response times are determined, and the dynamic load factor for large-deformation plastic response is computed

  1. Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhiming, E-mail: 465609785@qq.com [School of Economics and Management, Wuyi University, Jiangmen 529020 (China); Situ, Haozhen, E-mail: situhaozhen@gmail.com [College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642 (China)

    2017-02-15

    In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangled initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.

  2. Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field

    International Nuclear Information System (INIS)

    Huang, Zhiming; Situ, Haozhen

    2017-01-01

    In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangled initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.

  3. The impact of marriage and parenthood on male body mass index: Static and dynamic effects.

    Science.gov (United States)

    Syrda, Joanna

    2017-08-01

    Numerous cross-sectional studies investigated the link between marital status and BMI in the context of competing social science theories (marriage market, marriage selection, marriage protection and social obligation), frequently offering conflicting theoretical predictions and conflicting empirical findings. This study analysed the effects of marriage, divorce, pregnancy, and parenthood on male BMI in a longitudinal setting, avoiding the estimation bias of cross-sectional studies and allowing for an analysis of BMI fluctuation over time and the dynamic effects of these events. Using the Panel Study of Income Dynamics 1999-2013 dataset (N = 8729), this study was the first to employ a dynamic panel-data estimation to examine the static and dynamic effects of marriage, divorce, and fatherhood on male BMI. The study showed that married men have higher BMI, but marital status changes largely drove this static effect, namely, an increase in BMI in the period following marriage, and a decrease in BMI preceding and following divorce. Thus, this study found marked evidence in support of the marriage market and social obligation theories' predictions about male BMI, and supports neither marriage protection theory nor marriage selection theory. Wives' pregnancies had no significant effect on BMI; instead, men tend to have higher BMI in the periods following childbirth. Finally, analyses showed marked contemporaneous correlations between husband and wife BMI over the course of marriage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Time evolution of quenched state and correlation to glassy effects

    International Nuclear Information System (INIS)

    Kilic, K.; Kilic, A.; Altinkok, A.; Yetis, H.; Cetin, O.; Durust, Y.

    2005-01-01

    In this work, dynamic changes generated by the driving current were studied in superconducting bulk polycrystalline YBCO sample via transport relaxation measurements (V-t curves). The evolution of nonlinear V-t curves was interpreted in terms of the formation of resistive and nonresistive flow channels and the spatial reorganization of the transport current in a multiply connected network of weak-link structure. The dynamic re-organization of driving current could cause an enhancement or suppression in the superconducting order parameter due to the magnitude of the driving current and coupling strength of weak-link structure along with the chemical and anisotropic states of the sample as the time proceeds. A nonzero voltage decaying with time, correlated to the quenched state, was recorded when the magnitude of initial driving current is reduced to a finite value. It was found that, after sufficiently long waiting time, the evolution of the quenched state could result in a superconducting state, depending on the magnitude of the driving current and temperature. We showed that the decays in voltage over time are consistent with an exponential time dependence which is related to the glassy state. Further, the effect of doping of organic material Bis dimethyl-glyoximato Copper (II) to YBCO could be monitored apparently via the comparison of the V-t curves corresponding to doped and undoped YBCO samples

  5. Correlation dynamics and international diversification benefits

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Errunza, Vihang; Jacobs, Kris

    2014-01-01

    that it is possible to model co-movements for many countries simultaneously using BEKK, DCC, and DECO models. Empirically, we find that correlations have trended upward significantly for both DMs and EMs. Based on a time-varying measure of diversification benefits, we find that it is not possible to circumvent...... the increasing correlations in a long-only portfolio by adjusting the portfolio weights over time. However, we do find some evidence that adding EMs to a DM-only portfolio increases diversification benefits....

  6. Correlation Dynamics and International Diversification Benefits

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Errunza, Vihang R.; Jacobs, Kris

    that it is possible to model co-movements for many countries simultaneously using BEKK, DCC, and DECO models. Empirically, we find that correlations have significantly trended upward for both DMs and EMs. Based on a time-varying measure of diversification benefit, we find that it is not possible in a long......-only portfolio to circumvent the increasing correlations by adjusting the portfolio weights over time. However, we do find some evidence that adding EMs to a DM-only portfolio increases diversification benefits....

  7. The dynamic conditional relationship between stock market returns and implied volatility

    Science.gov (United States)

    Park, Sung Y.; Ryu, Doojin; Song, Jeongseok

    2017-09-01

    Using the dynamic conditional correlation multivariate generalized autoregressive conditional heteroskedasticity (DCC-MGARCH) model, we empirically examine the dynamic relationship between stock market returns (KOSPI200 returns) and implied volatility (VKOSPI), as well as their statistical mechanics, in the Korean market, a representative and leading emerging market. We consider four macroeconomic variables (exchange rates, risk-free rates, term spreads, and credit spreads) as potential determinants of the dynamic conditional correlation between returns and volatility. Of these macroeconomic variables, the change in exchange rates has a significant impact on the dynamic correlation between KOSPI200 returns and the VKOSPI, especially during the recent financial crisis. We also find that the risk-free rate has a marginal effect on this dynamic conditional relationship.

  8. Aging of a hard-sphere glass: effect of the microscopic dynamics

    International Nuclear Information System (INIS)

    Puertas, Antonio M

    2010-01-01

    We present simulations of the aging of a quasi-hard-sphere glass, with Newtonian and Brownian microscopic dynamics. The system is equilibrated at the desired density (above the glass transition in hard spheres) with short-range attractions, which are removed at t = 0. The structural part of the decay of the density correlation function can be time rescaled to collapse onto a master function independent of the waiting time, t w , and the timescale follows a power law with t w , with exponent z ∼ 0.89; the non-ergodicity parameter is larger than that of the glass transition point (the localization length is smaller) and oscillates in harmony with S q . The aging with both microscopic dynamics is identical, except for a scale factor from the age in Newtonian to the age in Brownian dynamics. This factor is approximately the same as that which scales the α-decay of the correlation function in fluids close to the glass transition.

  9. Multi-scaled normal mode analysis method for dynamics simulation of protein-membrane complexes: A case study of potassium channel gating motion correlations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaokun; Han, Min; Ming, Dengming, E-mail: dming@fudan.edu.cn [Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai (China)

    2015-10-07

    Membrane proteins play critically important roles in many cellular activities such as ions and small molecule transportation, signal recognition, and transduction. In order to fulfill their functions, these proteins must be placed in different membrane environments and a variety of protein-lipid interactions may affect the behavior of these proteins. One of the key effects of protein-lipid interactions is their ability to change the dynamics status of membrane proteins, thus adjusting their functions. Here, we present a multi-scaled normal mode analysis (mNMA) method to study the dynamics perturbation to the membrane proteins imposed by lipid bi-layer membrane fluctuations. In mNMA, channel proteins are simulated at all-atom level while the membrane is described with a coarse-grained model. mNMA calculations clearly show that channel gating motion can tightly couple with a variety of membrane deformations, including bending and twisting. We then examined bi-channel systems where two channels were separated with different distances. From mNMA calculations, we observed both positive and negative gating correlations between two neighboring channels, and the correlation has a maximum as the channel center-to-center distance is close to 2.5 times of their diameter. This distance is larger than recently found maximum attraction distance between two proteins embedded in membrane which is 1.5 times of the protein size, indicating that membrane fluctuation might impose collective motions among proteins within a larger area. The hybrid resolution feature in mNMA provides atomic dynamics information for key components in the system without costing much computer resource. We expect it to be a conventional simulation tool for ordinary laboratories to study the dynamics of very complicated biological assemblies. The source code is available upon request to the authors.

  10. Spatio-temporal environmental correlation and population variability in simple metacommunities.

    Directory of Open Access Journals (Sweden)

    Lasse Ruokolainen

    Full Text Available Natural populations experience environmental conditions that vary across space and over time. This variation is often correlated between localities depending on the geographical separation between them, and different species can respond to local environmental fluctuations similarly or differently, depending on their adaptation. How this emerging structure in environmental correlation (between-patches and between-species affects spatial community dynamics is an open question. This paper aims at a general understanding of the interactions between the environmental correlation structure and population dynamics in spatial networks of local communities (metacommunities, by studying simple two-patch, two-species systems. Three different pairs of interspecific interactions are considered: competition, consumer-resource interaction, and host-parasitoid interaction. While the results paint a relatively complex picture of the effect of environmental correlation, the interaction between environmental forcing, dispersal, and local interactions can be understood via two mechanisms. While increasing between-patch environmental correlation couples immigration and local densities (destabilising effect, the coupling between local populations under increased between-species environmental correlation can either amplify or dampen population fluctuations, depending on the patterns in density dependence. This work provides a unifying framework for modelling stochastic metacommunities, and forms a foundation for a better understanding of population responses to environmental fluctuations in natural systems.

  11. Correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules and tumor size

    Directory of Open Access Journals (Sweden)

    Chenshi ZHANG

    2008-02-01

    Full Text Available Background and Objective The solitary pulmonary nodules (SPNs is one of the most common findings on chest radiographs. It becomes possible to provide more accurately quantitative information about blood flow patterns of solitary pulmonary nodules (SPNs with multi-slice spiral computed tomography (MSCT. The aim of this study is to evaluate the correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules and tumor size. Methods 68 patients with maliagnant solitary pulmonary nodules (SPNs (diameter <=4 cmunderwent multi-location dynamic contrast material-enhanced (nonionic contrast material was administrated via the antecubital vein at a rate of 4mL/s by an autoinjector, 4*5mm or 4*2.5mm scanning mode with stable table were performed. serial CT. Precontrast and postcontrast attenuation on every scan was recorded. Perfusion (PSPN, peak height (PHSPNratio of peak height of the SPN to that of the aorta (SPN-to-A ratioand mean transit time(MTT were calculated. The correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules and tumor size were assessed by means of linear regression analysis. Results No significant correlations were found between the tumor size and each of the peak height (PHSPN ratio of peak height of the SPN to that of the aorta (SPN-to-A ratio perfusion(PSPNand mean transit time (r=0.18, P=0.14; r=0.20,P=0.09; r=0.01, P=0.95; r=0.01, P=0.93. Conclusion No significant correlation is found between the tumor size and each of the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules.

  12. Effects of pair correlation functions on intermolecular nuclear relaxation by translational and rotational diffusion in liquids

    International Nuclear Information System (INIS)

    Fries, P.

    1978-01-01

    In order to study the intermolecular relaxation due to magnetic dipolar interactions, we calculate the spectral densities resulting from random translational and rotational motions of spherical molecules carrying off-centre spins. The relative translational motion is treated in the frame-work of a general diffusion equation (the Smoluchowski equation) which takes into account the existence of effective forces between the molecules. This model implies a pair correlation function. i.e. a non unifom relative distribution of the molecules. The analytical calculations are carried out by taking correctly into account the hard sphere boundary conditions for the molecules. Explicit numerical calculations of the spectral densities are performed using finite difference methods and the pair correlation function of Verlet and Weiss obtained by computer experiments. The resulting calculations allow one to interpret the relaxation exhibited by benzene and some of its monohalogen derivatives which has been measured by Jonas et al. at various pressures. The effects of pair correlation and eccentricity contribute to a noticeable enhancement of the spectral densities, especially as the frequency increases. The translational correlation times calculated from the Stokes formula and those deduced from intermolecular relaxation studies are compared. It is shown that in order to distinguish which of the dynamical models is appropriate, measurements must be made as a function of frequency [fr

  13. Schemes of detecting nuclear spin correlations by dynamical decoupling based quantum sensing

    Science.gov (United States)

    Ma, Wen-Long Ma; Liu, Ren-Bao

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical decoupling (DD) enhanced diamond quantum sensing has enabled NMR of single nuclear spins and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the frequency fingerprints of target nuclear spins. Such schemes, however, cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear spin clusters. Here we show that the first limitation can be overcome by using wavefunction fingerprints of target nuclear spins, which is much more sensitive than the ''frequency fingerprints'' to weak hyperfine interaction between the targets and a sensor, while the second one can be overcome by a new design of two-dimensional DD sequences composed of two sets of periodic DD sequences with different periods, which can be independently set to match two different transition frequencies. Our schemes not only offer an approach to breaking the resolution limit set by ''frequency gradients'' in conventional MRI, but also provide a standard approach to correlation spectroscopy for single-molecule NMR.

  14. Quantification of synovistis by MRI: correlation between dynamic and static gadolinium-enhanced magnetic resonance imaging and microscopic and macroscopic signs of synovial inflammation

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Stoltenberg, M; Løvgreen-Nielsen, P

    1998-01-01

    injection, as the highest correlation coefficients to histologic inflammation were observed in this interval. Dynamic MRI can be used to determine synovial inflammation. Evaluation of large synovial areas one-half to one minute after Gd injection best reflects joint inflammation....... as at the four biopsy sites, and compared to synovial pathology. The rate of early enhancement of the total synovial membrane of the preselected slice, determined by dynamic MRI, was highly correlated with microscopic evidence of active inflammation (Spearman p = 0.73; p ... knees with and without synovial inflammation with a high predictive value (0.81-0.90). Moderate and severe inflammation could not be differentiated. The early enhancement rate was correlated with histologic features of active inflammation, particularly vessel proliferation and mononuclear leucocyte...

  15. Dynamics of regulatory T-cells during pregnancy: effect of HIV infection and correlations with other immune parameters.

    Directory of Open Access Journals (Sweden)

    Kelly Richardson

    Full Text Available Regulatory T cells (Treg increase in the context of HIV infection and pregnancy. We studied Treg subpopulations in HIV-infected and uninfected women during pregnancy and their relationship with inflammation, activation and cell-mediated immunity (CMI.Blood obtained from 20 HIV-infected and 18 uninfected women during early and late gestation was used to measure Treg and activated T cells (Tact by flow cytometry; plasma cytokines and inflammatory markers by ELISA and chemoluminescence; and CMI against varicella-zoster virus (VZV by lymphocyte proliferation.Compared with uninfected women, HIV-infected participants had higher frequencies of Treg subpopulations in early pregnancy, including CD4+CD25+FoxP3+%, CD8+CD25+FoxP3+%, CD4+TGFβ+% and CD4+IL10+%. In contrast, Treg frequencies were lower during late pregnancy in HIV-infected compared with uninfected women, including CD8+TGFβ+%, CD4+CTLA4+% and CD8+CTLA4+%. VZV-CMI, which was lower in HIV-infected compared with uninfected pregnant women, was inversely correlated with CD4+FoxP3+%, CD8+FoxP3+% and CD8+TGFβ+% in HIV-infected, but not in uninfected pregnant women. β₂-microglobulin, neopterin, IL1, IL4, IL8, IL10, IFNγ and TNFα plasma concentrations as well as Tact were higher in HIV-infected compared with uninfected women throughout pregnancy. In HIV-infected, but not in uninfected women, inflammatory, Th1, Th2 and regulatory cytokines increased with higher Treg%, suggesting that inflammation and regulation have a common pathophysiologic origin in the context of HIV infection. In HIV-infected and more commonly in uninfected pregnant women, higher Treg% correlated with lower Tact%. We conclude that Treg have different dynamics during pregnancy in HIV-infected and uninfected women. Higher levels of inflammatory cytokines and lower Treg% during late pregnancy in HIV-infected women may contribute to their increased incidence of maternal-fetal morbidity.

  16. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    Science.gov (United States)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  17. Dynamic scaling in natural swarms

    Science.gov (United States)

    Cavagna, Andrea; Conti, Daniele; Creato, Chiara; Del Castello, Lorenzo; Giardina, Irene; Grigera, Tomas S.; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano

    2017-09-01

    Collective behaviour in biological systems presents theoretical challenges beyond the borders of classical statistical physics. The lack of concepts such as scaling and renormalization is particularly problematic, as it forces us to negotiate details whose relevance is often hard to assess. In an attempt to improve this situation, we present here experimental evidence of the emergence of dynamic scaling laws in natural swarms of midges. We find that spatio-temporal correlation functions in different swarms can be rescaled by using a single characteristic time, which grows with the correlation length with a dynamical critical exponent z ~ 1, a value not found in any other standard statistical model. To check whether out-of-equilibrium effects may be responsible for this anomalous exponent, we run simulations of the simplest model of self-propelled particles and find z ~ 2, suggesting that natural swarms belong to a novel dynamic universality class. This conclusion is strengthened by experimental evidence of the presence of non-dissipative modes in the relaxation, indicating that previously overlooked inertial effects are needed to describe swarm dynamics. The absence of a purely dissipative regime suggests that natural swarms undergo a near-critical censorship of hydrodynamics.

  18. Quantum interference induced by initial system–environment correlations

    International Nuclear Information System (INIS)

    Man, Zhong-Xiao; Smirne, Andrea; Xia, Yun-Jie; Vacchini, Bassano

    2012-01-01

    We investigate the quantum interference induced by a relative phase in the correlated initial state of a system which consists in a two-level atom interacting with a damped mode of the radiation field. We show that the initial relative phase has significant effects on both the evolution of the atomic excited-state population and the information flow between the atom and the reservoir, as quantified by the trace distance. Furthermore, by considering two two-level atoms interacting with a common damped mode of the radiation field, we highlight how initial relative phases can affect the subsequent entanglement dynamics. -- Highlights: ► We study the effect of initial correlations in system–bath excitation transfer. ► We study the information flow from the bath to the system via the trace distance. ► We show how entanglement dynamics can be controlled via initial relative phases.

  19. Effect of Correlated Noises in a Genetic Model

    International Nuclear Information System (INIS)

    Li, Zhang; Li, Cao

    2010-01-01

    The Stratonovich stochastic differential equation is used to analyze genotype selection in the presence of correlated Gaussian white noises. We study the steady state properties of the genotype selection and discuss the effects of the correlated noises. It is found that the degree of correlation of the noises can be used to select one type of genes from another type of mixing genes. The strong selection of genes caused by a large value of multiplicative noise intensity can be weakened by the intensive negative correlation. (general)

  20. Dynamics of the edge excitations in the FQH effects

    International Nuclear Information System (INIS)

    Wen, X.G.

    1994-01-01

    Fractional quantum Hall effects (FQHE) discovered by Tsui, Stormer and Gossard open a new era in theory of strongly correlated system. In the first time the authors have to completely abandon the theories based on the single-body picture and use an intrinsic many-body theory proposed by Laughlin and others to describe the FQHE. Due to the repulsive interaction, the strongly correlated FQH liquid is an incompressible state despite the first Landau level is only partially filled. All the bulk excitations in the FQH states have finite energy gaps. The FQH states and insulators are similar in the sense that both states have finite energy gap and short ranged electron propagators. Because of this similarity, it is puzzling that the FQH systems apparently have very different transport properties than ordinary insulators. Halperin first point out that the integral quantum Hall (IQH) states contain gapless edge excitations. Although the electronic states in the bulk are localized, the electronic states at the edge of the sample are extended. Therefore the nontrivial transport properties of the IQH states come from the gapless edge excitations. Such an edge transport picture has been supported by many experiments. One also found that the edge excitations in the IQH states are described by a chiral 1D Fermi liquid theory. Here, the authors review the dynamical theory of the edge excitations in the FQH effects

  1. Effect of in-medium nucleon-nucleon cross section on proton-proton momentum correlation in intermediate-energy heavy-ion collisions

    Science.gov (United States)

    Wang, Ting-Ting; Ma, Yu-Gang; Zhang, Chun-Jian; Zhang, Zheng-Qiao

    2018-03-01

    The proton-proton momentum correlation function from different rapidity regions is systematically investigated for the Au + Au collisions at different impact parameters and different energies from 400 A MeV to 1500 A MeV in the framework of the isospin-dependent quantum molecular dynamics model complemented by the Lednický-Lyuboshitz analytical method. In particular, the in-medium nucleon-nucleon cross-section dependence of the correlation function is brought into focus, while the impact parameter and energy dependence of the momentum correlation function are also explored. The sizes of the emission source are extracted by fitting the momentum correlation functions using the Gaussian source method. We find that the in-medium nucleon-nucleon cross section obviously influences the proton-proton momentum correlation function, which is from the whole-rapidity or projectile or target rapidity region at smaller impact parameters, but there is no effect on the mid-rapidity proton-proton momentum correlation function, which indicates that the emission mechanism differs between projectile or target rapidity and mid-rapidity protons.

  2. Implications of the effective one-component analysis of pair correlations in colloidal fluids with polydispersity

    Science.gov (United States)

    Pond, Mark J.; Errington, Jeffrey R.; Truskett, Thomas M.

    2011-09-01

    Partial pair-correlation functions of colloidal suspensions with continuous polydispersity can be challenging to characterize from optical microscopy or computer simulation data due to inadequate sampling. As a result, it is common to adopt an effective one-component description of the structure that ignores the differences between particle types. Unfortunately, whether this kind of simplified description preserves or averages out information important for understanding the behavior of the fluid depends on the degree of polydispersity and can be difficult to assess, especially when the corresponding multicomponent description of the pair correlations is unavailable for comparison. Here, we present a computer simulation study that examines the implications of adopting an effective one-component structural description of a polydisperse fluid. The square-well model that we investigate mimics key aspects of the experimental behavior of suspended colloids with short-range, polymer-mediated attractions. To characterize the partial pair-correlation functions and thermodynamic excess entropy of this system, we introduce a Monte Carlo sampling strategy appropriate for fluids with a large number of pseudo-components. The data from our simulations at high particle concentrations, as well as exact theoretical results for dilute systems, show how qualitatively different trends between structural order and particle attractions emerge from the multicomponent and effective one-component treatments, even with systems characterized by moderate polydispersity. We examine consequences of these differences for excess-entropy based scalings of shear viscosity, and we discuss how use of the multicomponent treatment reveals similarities between the corresponding dynamic scaling behaviors of attractive colloids and liquid water that the effective one-component analysis does not capture.

  3. Beyond Ehrenfest: correlated non-adiabatic molecular dynamics

    International Nuclear Information System (INIS)

    Horsfield, Andrew P; Bowler, D R; Fisher, A J; Todorov, Tchavdar N; Sanchez, Cristian G

    2004-01-01

    A method for introducing correlations between electrons and ions that is computationally affordable is described. The central assumption is that the ionic wavefunctions are narrow, which makes possible a moment expansion for the full density matrix. To make the problem tractable we reduce the remaining many-electron problem to a single-electron problem by performing a trace over all electronic degrees of freedom except one. This introduces both one- and two-electron quantities into the equations of motion. Quantities depending on more than one electron are removed by making a Hartree-Fock approximation. Using the first-moment approximation, we perform a number of tight binding simulations of the effect of an electric current on a mobile atom. The classical contribution to the ionic kinetic energy exhibits cooling and is independent of the bias. The quantum contribution exhibits strong heating, with the heating rate proportional to the bias. However, increased scattering of electrons with increasing ionic kinetic energy is not observed. This effect requires the introduction of the second moment

  4. Correlation Functions in Open Quantum-Classical Systems

    Directory of Open Access Journals (Sweden)

    Chang-Yu Hsieh

    2013-12-01

    Full Text Available Quantum time correlation functions are often the principal objects of interest in experimental investigations of the dynamics of quantum systems. For instance, transport properties, such as diffusion and reaction rate coefficients, can be obtained by integrating these functions. The evaluation of such correlation functions entails sampling from quantum equilibrium density operators and quantum time evolution of operators. For condensed phase and complex systems, where quantum dynamics is difficult to carry out, approximations must often be made to compute these functions. We present a general scheme for the computation of correlation functions, which preserves the full quantum equilibrium structure of the system and approximates the time evolution with quantum-classical Liouville dynamics. Several aspects of the scheme are discussed, including a practical and general approach to sample the quantum equilibrium density, the properties of the quantum-classical Liouville equation in the context of correlation function computations, simulation schemes for the approximate dynamics and their interpretation and connections to other approximate quantum dynamical methods.

  5. Effective capacity of correlated MISO channels

    KAUST Repository

    Zhong, Caijun; Ratnarajah, Tharm; Wong, Kaikit; Alouini, Mohamed-Slim

    2011-01-01

    This paper presents an analytical performance investigation of the capacity limits of correlated multiple-input single-output (MISO) channels in the presence of quality-of-service (QoS) requirements. Exact closed-form expression for the effective

  6. Magnetic order, magnetic correlations, and spin dynamics in the pyrochlore antiferromagnet Er2Ti2O7

    Science.gov (United States)

    Dalmas de Réotier, P.; Yaouanc, A.; Chapuis, Y.; Curnoe, S. H.; Grenier, B.; Ressouche, E.; Marin, C.; Lago, J.; Baines, C.; Giblin, S. R.

    2012-09-01

    Er2Ti2O7 is believed to be a realization of an XY antiferromagnet on a frustrated lattice of corner-sharing regular tetrahedra. It is presented as an example of the order-by-disorder mechanism in which fluctuations lift the degeneracy of the ground state, leading to an ordered state. Here we report detailed measurements of the low-temperature magnetic properties of Er2Ti2O7, which displays a second-order phase transition at TN≃1.2 K with coexisting short- and long-range orders. Magnetic susceptibility studies show that there is no spin-glass-like irreversible effect. Heat capacity measurements reveal that the paramagnetic critical exponent is typical of a 3-dimensional XY magnet while the low-temperature specific heat sets an upper limit on the possible spin-gap value and provides an estimate for the spin-wave velocity. Muon spin relaxation measurements show the presence of spin dynamics in the nanosecond time scale down to 21 mK. This time range is intermediate between the shorter time characterizing the spin dynamics in Tb2Sn2O7, which also displays long- and short-range magnetic order, and the time scale typical of conventional magnets. Hence the ground state is characterized by exotic spin dynamics. We determine the parameters of a symmetry-dictated Hamiltonian restricted to the spins in a tetrahedron, by fitting the paramagnetic diffuse neutron scattering intensity for two reciprocal lattice planes. These data are recorded in a temperature region where the assumption that the correlations are limited to nearest neighbors is fair.

  7. Full-scale locomotive dynamic collision testing and correlations : offset collisions between a locomotive and a covered hopper car (test 4).

    Science.gov (United States)

    2011-09-01

    This report presents the test results and finite element correlations of a full-scale dynamic collision test with rail vehicles as part of the Federal Railroad Administrations research program on improved crashworthiness of locomotive structures. ...

  8. Correlation theory applied to the static and dynamic properties of EuO and EuS

    International Nuclear Information System (INIS)

    Lindgard, P.A.

    1981-10-01

    The paramagnetic scattering was recently measured for EuO. It was found that spin-wave-like excitations develop for wave vectors approaching the zone boundary. The spectrum was found to be well described by damped harmonic oscillators (also called the two-pole-approximation). This approximation was used previously in the correlation theory primarily to calculate static properties. Selfconsistent dynamic and static calculations have been performed for EuO, which is an ideal Heisenberg magnet with significant second nearest neighbor interaction (J 2 = J/sub 1/5). The two-pole approximation describes accurately the correlation range, the static susceptibility and the qualitative behavior of the dynamic properties (i.e., the wave vector at which peaks appear in the spectrum as a function of temperature). However, in order to also obtain the correct frequency scale it is necessary to use a cut-off of the spectrum at high frequencies, which cannot be seen experimentally, but which significantly influences the frequency moments. It was found that the finite J 2 has significant importance for a comparison between theory and experiment. It is concluded that the calculation for a simple cubic n.n. magnet by Hubbard does not describe the EuO data accurately, neither with respect to lineshape nor frequency scale. Significant differences are to be expected between EuO and EuS having opposite sign for J 2

  9. Non-Markovian reduced dynamics based upon a hierarchical effective-mode representation

    Energy Technology Data Exchange (ETDEWEB)

    Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt (Germany); Martinazzo, Rocco [Dipartimento di Chimica, Universita degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom)

    2012-10-14

    A reduced dynamics representation is introduced which is tailored to a hierarchical, Mori-chain type representation of a bath of harmonic oscillators which are linearly coupled to a subsystem. We consider a spin-boson system where a single effective mode is constructed so as to absorb all system-environment interactions, while the residual bath modes are coupled bilinearly to the primary mode and among each other. Using a cumulant expansion of the memory kernel, correlation functions for the primary mode are obtained, which can be suitably approximated by truncated chains representing the primary-residual mode interactions. A series of reduced-dimensional bath correlation functions is thus obtained, which can be expressed as Fourier-Laplace transforms of spectral densities that are given in truncated continued-fraction form. For a master equation which is second order in the system-bath coupling, the memory kernel is re-expressed in terms of local-in-time equations involving auxiliary densities and auxiliary operators.

  10. Advanced gastric cancer. The findings of delayed phase dynamic CT and radiologic-histopathologic correlation

    International Nuclear Information System (INIS)

    Monzawa, Shuichi; Omata, Kosaku; Nakazima, Hiroto; Yokosuka, Noriko; Ito, Atuko; Araki, Tsutomu

    2000-01-01

    The aim of this study was to describe delayed phase dynamic CT findings of advanced (T2-T4) gastric cancer and to correlate with histopathologic findings. Quadruple phase dynamic CT including delayed imaging taken five minutes after the start of injection of contrast material was performed in 43 patients with 45 advanced gastric cancer and 20 control subjects with no gastric lesions. On delayed phase CT scans, the attenuation of the gastric wall was equal to or lower than that of the liver parenchyma in the control subjects, therefore, the presence of higher attenuation in the gastric wall was considered to be abnormal and defined as delayed enhancement. Histopathologic findings in the tumors showing delayed enhancement were compared with those in the tumors without this feature. Delayed enhancement was seen in 26 (57%) of the 45 tumors. Eleven of 25 differentiated-type tumors and 15 of 20 undifferentiated-type tumors showed delayed enhancement (p<.05). Delayed enhancement was seen in one of five medullary type tumors, in 11 of 25 intermediate-type tumors, and in 14 of 15 scirrhous-type tumors (p<.005). Delayed enhancement was frequently seen in the tumors with abundant fibrous tissue stroma. Delayed phase dynamic CT may be useful for the characterization of advanced gastric cancer. (author)

  11. Statistical modeling of the Internet traffic dynamics: To which extent do we need long-term correlations?

    Science.gov (United States)

    Markelov, Oleg; Nguyen Duc, Viet; Bogachev, Mikhail

    2017-11-01

    Recently we have suggested a universal superstatistical model of user access patterns and aggregated network traffic. The model takes into account the irregular character of end user access patterns on the web via the non-exponential distributions of the local access rates, but neglects the long-term correlations between these rates. While the model is accurate for quasi-stationary traffic records, its performance under highly variable and especially non-stationary access dynamics remains questionable. In this paper, using an example of the traffic patterns from a highly loaded network cluster hosting the website of the 1998 FIFA World Cup, we suggest a generalization of the previously suggested superstatistical model by introducing long-term correlations between access rates. Using queueing system simulations, we show explicitly that this generalization is essential for modeling network nodes with highly non-stationary access patterns, where neglecting long-term correlations leads to the underestimation of the empirical average sojourn time by several decades under high throughput utilization.

  12. A Spalart-Allmaras local correlation-based transition model for Thermo-fuid dynamics

    Science.gov (United States)

    D'Alessandro, V.; Garbuglia, F.; Montelpare, S.; Zoppi, A.

    2017-11-01

    The study of innovative energy systems often involves complex fluid flows problems and the Computational Fluid-Dynamics (CFD) is one of the main tools of analysis. It is important to put in evidence that in several energy systems the flow field experiences the laminar-to-turbulent transition. Direct Numerical Simulations (DNS) or Large Eddy Simulation (LES) are able to predict the flow transition but they are still inapplicable to the study of real problems due to the significant computational resources requirements. Differently standard Reynolds Averaged Navier Stokes (RANS) approaches are not always reliable since they assume a fully turbulent regime. In order to overcome this drawback in the recent years some locally formulated transition RANS models have been developed. In this work, we present a local correlation-based transition approach adding two equations that control the laminar-toturbulent transition process -γ and \\[\\overset{}{\\mathop{{{\\operatorname{Re}}θ, \\text{t}}}} \\] - to the well-known Spalart-Allmaras (SA) turbulence model. The new model was implemented within OpenFOAM code. The energy equation is also implemented in order to evaluate the model performance in thermal-fluid dynamics applications. In all the considered cases a very good agreement between numerical and experimental data was observed.

  13. Density functional theory and dynamical mean-field theory. A way to model strongly correlated systems

    International Nuclear Information System (INIS)

    Backes, Steffen

    2017-04-01

    The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non

  14. Density functional theory and dynamical mean-field theory. A way to model strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Backes, Steffen

    2017-04-15

    The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non

  15. The Effect of Overskilling Dynamics on Wages

    Science.gov (United States)

    Mavromaras, Kostas; Mahuteau, Stephane; Sloane, Peter; Wei, Zhang

    2013-01-01

    We use a random-effects dynamic probit model to estimate the effect of overskilling dynamics on wages. We find that overskilling mismatch is common and more likely among those who have been overskilled in the past. It is also highly persistent, in a manner that is inversely related to educational level. Yet, the wages of university graduates are…

  16. Finite-correlation-time effects in the kinematic dynamo problem

    International Nuclear Information System (INIS)

    Schekochihin, Alexander A.; Kulsrud, Russell M.

    2001-01-01

    Most of the theoretical results on the kinematic amplification of small-scale magnetic fluctuations by turbulence have been confined to the model of white-noise-like (δ-correlated in time) advecting turbulent velocity field. In this work, the statistics of the passive magnetic field in the diffusion-free regime are considered for the case when the advecting flow is finite-time correlated. A new method is developed that allows one to systematically construct the correlation-time expansion for statistical characteristics of the field such as its probability density function or the complete set of its moments. The expansion is valid provided the velocity correlation time is smaller than the characteristic growth time of the magnetic fluctuations. This expansion is carried out up to first order in the general case of a d-dimensional arbitrarily compressible advecting flow. The growth rates for all moments of the magnetic-field strength are derived. The effect of the first-order corrections due to the finite correlation time is to reduce these growth rates. It is shown that introducing a finite correlation time leads to the loss of the small-scale statistical universality, which was present in the limit of the δ-correlated velocity field. Namely, the shape of the velocity time-correlation profile and the large-scale spatial structure of the flow become important. The latter is a new effect, that implies, in particular, that the approximation of a locally-linear shear flow does not fully capture the effect of nonvanishing correlation time. Physical applications of this theory include the small-scale kinematic dynamo in the interstellar medium and protogalactic plasmas

  17. The pseudocapsule in hepatocellular carcinoma: correlation between dynamic MR imaging and pathology

    International Nuclear Information System (INIS)

    Grazioli, L.; Stanga, C.; Dettori, E.; Gallo, C.; Matricardi, L.; Chiesa, A.; Olivetti, L.; Fugazzola, C.; Giacobbe, A.; Benetti, A.

    1999-01-01

    Nodular hepatocellular carcinoma (HCC) is characterized by the presence of a pseudocapsule (constructed usually from connective fibrous tissue) that appears hypointense on T1- and T2-weighted spin-echo (SE) and gradient-echo (GE) MR imaging sequences without a contrast medium. The presence of vascular structures inside the tumor, which are verified by histological exam, affects enhancement of the PC after administrating the contrast medium: The impregnation is more evident in the dynamic study but also persists on the delayed T1-weighted SE images. The accuracy of MR in detecting the pseudocapsule of HCC and contrast enhancement of the pseudocapsule during dynamic studies were evaluated and related to pathological findings. Thirty-seven HCC were examined in 33 patients and afterwards resected. In capsulated nodules, besides usual hematoxylin, eosin, and trichrome stainings, histochemical and immunohistochemical methods were performed. On a 1.5-T MR unit, T1- and T2-weighted SE and GE FLASH 2D sequences after intravenous injection of Gd-DTPA (dynamic study) were used. In a later phase, T1-weighted SE sequences were repeated. Histologically, the pseudocapsule (thickness 0.2-6 mm) was present in 26 of 37 nodules (70 %). The dynamic study was the most suitable technique to show the pseudocapsule, which was recognized in 80.7 % (21 of 26 nodules). In 5 of 26 cases, the pseudocapsule, not demonstrated by MR, was thinner than 0.4 mm. In 16 of 21 cases, in the early portal phase (30-60 s), the pseudocapsule had an early enhancement, which was more evident later; in 5 of 21 cases the enhancement was observed only in the late portal phase (1-2 min). At histological examination, 14 of 16 pseudocapsules with early enhancement showed a more prominent vasculature than those with enhancement in the equilibrium phase. Magnetic resonance was a reliable tool in demonstrating the pseudocapsule of HCC. The histological examination demonstrated a good correlation between the

  18. Noninvasive measurement of dynamic correlation functions

    CSIR Research Space (South Africa)

    Uhrich, P

    2017-08-01

    Full Text Available an impor- tant role in many theoretical approaches, including fluctuation- dissipation theorems and the Kubo formula [1], optical coherence [2], glassy dynamics and aging [3], and many more. In a classical (non-quantum-mechanical) system, a straightforward...

  19. Correlation between hedonic liking and facial expression measurement using dynamic affective response representation.

    Science.gov (United States)

    Zhi, Ruicong; Wan, Jingwei; Zhang, Dezheng; Li, Weiping

    2018-06-01

    Emotional reactions towards products play an essential role in consumers' decision making, and are more important than rational evaluation of sensory attributes. It is crucial to understand consumers' emotion, and the relationship between sensory properties, human liking and choice. There are many inconsistencies between Asian and Western consumers in the usage of hedonic scale, as well as the intensity of facial reactions, due to different culture and consuming habits. However, very few studies discussed the facial responses characteristics of Asian consumers during food consumption. In this paper, explicit liking measurement (hedonic scale) and implicit emotional measurement (facial expressions) were evaluated to judge the consumers' emotions elicited by five types of juices. The contributions of this study included: (1) Constructed the relationship model between hedonic liking and facial expressions analyzed by face reading technology. Negative emotions "sadness", "anger", and "disgust" showed noticeable high negative correlation tendency to hedonic scores. The "liking" hedonic scores could be characterized by positive emotion "happiness". (2) Several emotional intensity based parameters, especially dynamic parameter, were extracted to describe the facial characteristic in sensory evaluation procedure. Both amplitude information and frequency information were involved in the dynamic parameters to remain more information of the emotional responses signals. From the comparison of four types of emotional descriptive parameters, the maximum parameter and dynamic parameter were suggested to be utilized for representing emotional state and intensities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Effective dynamics along given reaction coordinates, and reaction rate theory.

    Science.gov (United States)

    Zhang, Wei; Hartmann, Carsten; Schütte, Christof

    2016-12-22

    In molecular dynamics and related fields one considers dynamical descriptions of complex systems in full (atomic) detail. In order to reduce the overwhelming complexity of realistic systems (high dimension, large timescale spread, limited computational resources) the projection of the full dynamics onto some reaction coordinates is examined in order to extract statistical information like free energies or reaction rates. In this context, the effective dynamics that is induced by the full dynamics on the reaction coordinate space has attracted considerable attention in the literature. In this article, we contribute to this discussion: we first show that if we start with an ergodic diffusion process whose invariant measure is unique then these properties are inherited by the effective dynamics. Then, we give equations for the effective dynamics, discuss whether the dominant timescales and reaction rates inferred from the effective dynamics are accurate approximations of such quantities for the full dynamics, and compare our findings to results from approaches like Mori-Zwanzig, averaging, or homogenization. Finally, by discussing the algorithmic realization of the effective dynamics, we demonstrate that recent algorithmic techniques like the "equation-free" approach and the "heterogeneous multiscale method" can be seen as special cases of our approach.

  1. Effects of degree correlation on scale-free gradient networks

    International Nuclear Information System (INIS)

    Pan Guijun; Yan Xiaoqing; Ma Weichuan; Luo Yihui; Huang Zhongbing

    2010-01-01

    We have studied the effects of degree correlation on congestion pressure in scale-free gradient networks. It is observed that the jamming coefficient J is insensitive to the degree correlation coefficient r for assortative and strongly disassortative scale-free networks, and J markedly decreases with an increase in r for weakly disassortative scale-free networks. We have also investigated the effects of degree correlation on the topology structure of scale-free gradient networks, and discussed the relation between the topology structure properties and transport efficiency of gradient networks.

  2. Dynamical mean-field theory and path integral renormalisation group calculations of strongly correlated electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, D.B.

    2007-02-15

    The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)

  3. Dynamical mean-field theory and path integral renormalisation group calculations of strongly correlated electronic states

    International Nuclear Information System (INIS)

    Heilmann, D.B.

    2007-02-01

    The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)

  4. Dynamic magnetizations and dynamic phase transitions in a transverse cylindrical Ising nanowire

    International Nuclear Information System (INIS)

    Deviren, Bayram; Ertaş, Mehmet; Keskin, Mustafa

    2012-01-01

    In this paper, we extend the paper of Kaneyoshi (2010 J. Magn. Magn. Mater. 322 3410-5) to investigate the dynamic magnetizations and dynamic phase transitions of a transverse cylindrical Ising nanowire system by using the effective field theory with correlations and the Glauber-type stochastic dynamics under a time-dependent oscillating external magnetic field. The dynamic effective field equations for the average longitudinal and transverse magnetizations on the surface shell and core are derived by using the Glauber transition rates. Temperature dependences of the dynamic longitudinal magnetizations, the transverse magnetizations and the total magnetizations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system is strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, four different types of compensation behaviors in the Néel classification nomenclature exist in the system. The results are compared with some theoretical works and good overall agreement is observed. (paper)

  5. Effective capacity of multiple antenna channels: Correlation and keyhole

    KAUST Repository

    Zhong, Caijun

    2012-01-01

    In this study, the authors derive the effective capacity limits for multiple antenna channels which quantify the maximum achievable rate with consideration of link-layer delay-bound violation probability. Both correlated multiple-input single-output and multiple-input multiple-output keyhole channels are studied. Based on the closed-form exact expressions for the effective capacity of both channels, the authors look into the asymptotic high and low signal-to-noise ratio regimes, and derive simple expressions to gain more insights. The impact of spatial correlation on effective capacity is also characterised with the aid of a majorisation theory result. It is revealed that antenna correlation reduces the effective capacity of the channels and a stringent quality-of-service requirement causes a severe reduction in the effective capacity but can be alleviated by increasing the number of antennas. © 2012 The Institution of Engineering and Technology.

  6. Separating Real and Apparent Effects of Cloud, Humidity, and Dynamics on Aerosol Optical Thickness near Cloud Edges

    Science.gov (United States)

    Jeong, Myeong-Jae; Li, Zhanqing

    2010-01-01

    Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.

  7. Colloquium: Non-Markovian dynamics in open quantum systems

    Science.gov (United States)

    Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano

    2016-04-01

    The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of

  8. Correlation between dynamic contrast-enhanced MRI and quantitative histopathologic microvascular parameters in organ-confined prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Niekerk, Cornelis G. van; Laak, Jeroen A.W.M. van der; Kaa, Christina A.H. de [Radboud University Medical Centre, Department of Pathology, P.O. Box 9101, Nijmegen (Netherlands); Hambrock, Thomas; Huisman, Henk-Jan; Barentsz, Jelle O. [Radboud University Medical Centre, Department of Radiology, Nijmegen (Netherlands); Witjes, J.A. [Radboud University Medical Centre, Department of Urology, Nijmegen (Netherlands)

    2014-10-15

    To correlate pharmacokinetic parameters of 3-T dynamic contrast-enhanced (DCE-)MRI with histopathologic microvascular and lymphatic parameters in organ-confined prostate cancer. In 18 patients with unilateral peripheral zone (pT2a) tumours who underwent DCE-MRI prior to radical prostatectomy (RP), the following pharmacokinetic parameters were assessed: permeability surface area volume transfer constant (K{sup trans}), extravascular extracellular volume (Ve) and rate constant (K{sub ep}). In the RP sections blood and lymph vessels were visualised immunohistochemically and automatically examined and analysed. Parameters assessed included microvessel density (MVD), area (MVA) and perimeter (MVP) as well as lymph vessel density (LVD), area (LVA) and perimeter (LVP). A negative correlation was found between age and K{sup trans} and K{sub ep} for tumour (r = -0.60, p = 0.009; r = -0.67, p = 0.002) and normal (r = -0.54, p = 0.021; r = -0.46, p = 0.055) tissue. No correlation existed between absolute values of microvascular parameters from histopathology and DCE-MRI. In contrast, the ratio between tumour and normal tissue (correcting for individual microvascularity variations) significantly correlated between K{sub ep} and MVD (r = 0.61, p = 0.007) and MVP (r = 0.54, p = 0.022). The lymphovascular parameters showed only a correlation between LVA and K{sub ep} (r = -0.66, p = 0.003). Significant correlations between DCE-MRI and histopathologic parameters were found when correcting for interpatient variations in microvascularity. (orig.)

  9. Effects of correlations and disorder in quantum wires

    International Nuclear Information System (INIS)

    Neilson, D.; Thakur, J.S.

    1998-01-01

    We calculate electron-electron correlation effects in a one-dimensional electron liquid at low densities using the self-consistent scheme of Singwi, Tosi, Land and Sjolander (STLS). We determine the static structure factor S(q) and plasmon dispersion for different electron densities. We also include the effects of disorder and calculate the dependence of correlation effects on the electron scattering rate off disorder. Using the scattering rate 7 we determine transport properties like the mean-free path, the peak mobility and the boundary between weak and strong localisation phases. We note a relation between the peak mobility and this boundary. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  10. How can the heat transfer correlations for finned-tubes influence the numerical simulation of the dynamic behavior of a heat recovery steam generator?

    International Nuclear Information System (INIS)

    Walter, H.; Hofmann, R.

    2011-01-01

    This paper presents the results of a theoretical investigation on the influence of different heat transfer correlations for finned-tubes to the dynamic behavior of a heat recovery steam generator (HRSG). The investigation was done for a vertical type natural circulation HRSG with 3 pressure stages under hot start-up and shutdown conditions. For the calculation of the flue gas-side heat transfer coefficient the well known correlations for segmented finned-tubes according to Schmidt, VDI and ESCOA TM (traditional and revised) as well as a new correlation, which was developed at the Institute for Energy Systems and Thermodynamics, are used. The simulation results show a good agreement in the overall behavior of the boiler between the different correlations. But there are still some important differences found in the detail analysis of the boiler behavior. - Research highlights: → Numerical simulation is performed to explore the influence of different heat transfer correlations for finned-tubes to the dynamic behavior of a heat recovery steam generator. → Differences in the steam generator behavior are found. → In the worst case the boiler can lead to unfavorable operation conditions, e.g. reverse flow.

  11. Depth perception not found in human observers for static or dynamic anti-correlated random dot stereograms.

    Directory of Open Access Journals (Sweden)

    Paul B Hibbard

    Full Text Available One of the greatest challenges in visual neuroscience is that of linking neural activity with perceptual experience. In the case of binocular depth perception, important insights have been achieved through comparing neural responses and the perception of depth, for carefully selected stimuli. One of the most important types of stimulus that has been used here is the anti-correlated random dot stereogram (ACRDS. In these stimuli, the contrast polarity of one half of a stereoscopic image is reversed. While neurons in cortical area V1 respond reliably to the binocular disparities in ACRDS, they do not create a sensation of depth. This discrepancy has been used to argue that depth perception must rely on neural activity elsewhere in the brain. Currently, the psychophysical results on which this argument rests are not clear-cut. While it is generally assumed that ACRDS do not support the perception of depth, some studies have reported that some people, some of the time, perceive depth in some types of these stimuli. Given the importance of these results for understanding the neural correlates of stereopsis, we studied depth perception in ACRDS using a large number of observers, in order to provide an unambiguous conclusion about the extent to which these stimuli support the perception of depth. We presented observers with random dot stereograms in which correlated dots were presented in a surrounding annulus and correlated or anti-correlated dots were presented in a central circular region. While observers could reliably report the depth of the central region for correlated stimuli, we found no evidence for depth perception in static or dynamic anti-correlated stimuli. Confidence ratings for stereoscopic perception were uniformly low for anti-correlated stimuli, but showed normal variation with disparity for correlated stimuli. These results establish that the inability of observers to perceive depth in ACRDS is a robust phenomenon.

  12. Depth perception not found in human observers for static or dynamic anti-correlated random dot stereograms.

    Science.gov (United States)

    Hibbard, Paul B; Scott-Brown, Kenneth C; Haigh, Emma C; Adrain, Melanie

    2014-01-01

    One of the greatest challenges in visual neuroscience is that of linking neural activity with perceptual experience. In the case of binocular depth perception, important insights have been achieved through comparing neural responses and the perception of depth, for carefully selected stimuli. One of the most important types of stimulus that has been used here is the anti-correlated random dot stereogram (ACRDS). In these stimuli, the contrast polarity of one half of a stereoscopic image is reversed. While neurons in cortical area V1 respond reliably to the binocular disparities in ACRDS, they do not create a sensation of depth. This discrepancy has been used to argue that depth perception must rely on neural activity elsewhere in the brain. Currently, the psychophysical results on which this argument rests are not clear-cut. While it is generally assumed that ACRDS do not support the perception of depth, some studies have reported that some people, some of the time, perceive depth in some types of these stimuli. Given the importance of these results for understanding the neural correlates of stereopsis, we studied depth perception in ACRDS using a large number of observers, in order to provide an unambiguous conclusion about the extent to which these stimuli support the perception of depth. We presented observers with random dot stereograms in which correlated dots were presented in a surrounding annulus and correlated or anti-correlated dots were presented in a central circular region. While observers could reliably report the depth of the central region for correlated stimuli, we found no evidence for depth perception in static or dynamic anti-correlated stimuli. Confidence ratings for stereoscopic perception were uniformly low for anti-correlated stimuli, but showed normal variation with disparity for correlated stimuli. These results establish that the inability of observers to perceive depth in ACRDS is a robust phenomenon.

  13. Substituent effects on dynamics at conical intersections: Allene and methyl allenes

    Energy Technology Data Exchange (ETDEWEB)

    Neville, Simon P. [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Wang, Yanmei [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Boguslavskiy, Andrey E.; Stolow, Albert, E-mail: albert.stolow@nrc-cnrc.gc.ca [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa ON K1N 6N5 (Canada); Schuurman, Michael S., E-mail: michael.schuurman@nrc-cnrc.gc.ca [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada)

    2016-01-07

    We report a joint experimental and theoretical study on the ultrafast excited state dynamics of allene and a series of its methylated analogues (1,2-butadiene, 1,1-dimethylallene, and tetramethylallene) in order to elucidate the conical intersection mediated dynamics that give rise to ultrafast relaxation to the ground electronic state. We use femtosecond time-resolved photoelectron spectroscopy (TRPES) to probe the coupled electronic-vibrational dynamics following UV excitation at 200 nm (6.2 eV). Ab initio multiple spawning (AIMS) simulations are employed to determine the mechanistic details of two competing dynamical pathways to the ground electronic state. In all molecules, these pathways are found to involve as follows: (i) twisting about the central allenic C–C–C axis followed by pyramidalization at one of the terminal carbon atoms and (ii) bending of allene moiety. Importantly, the AIMS trajectory data were used for ab initio simulations of the TRPES, permitting direct comparison with experiment. For each molecule, the decay of the TRPES signal is characterized by short (30 fs, 52 fs, 23 fs) and long (1.8 ps, 3.5 ps, [306 fs, 18 ps]) time constants for 1,2-butadiene, 1,1-dimethylallene, and tetramethylallene, respectively. However, AIMS simulations show that these time constants are only loosely related to the evolution of electronic character and actually more closely correlate to large amplitude motions on the electronic excited state, modulating the instantaneous vertical ionization potentials. Furthermore, the fully substituted tetramethylallene is observed to undergo qualitatively different dynamics, as displacements involving the relatively massive methyl groups impede direct access to the conical intersections which give rise to the ultrafast relaxation dynamics observed in the other species. These results show that the branching between the “twisting” and “bending” pathways can be modified via the selective methylation of the terminal

  14. Correlation analysis of quantum fluctuations and repulsion effects of classical dynamics in SU(3) model

    International Nuclear Information System (INIS)

    Fujiwara, Shigeyasu; Sakata, Fumihiko

    2003-01-01

    In many quantum systems, random matrix theory has been used to characterize quantum level fluctuations, which is known to be a quantum correspondent to a regular-to-chaos transition in classical systems. We present a new qualitative analysis of quantum and classical fluctuation properties by exploiting correlation coefficients and variances. It is shown that the correlation coefficient of the quantum level density is roughly inversely proportional relation to the variance of consecutive phase-space point spacings on the Poincare section plane. (author)

  15. Molecular dynamics simulations of Gay-Berne nematic liquid crystal: Elastic properties from direct correlation functions

    International Nuclear Information System (INIS)

    Stelzer, J.; Trebin, H.R.; Longa, L.

    1994-08-01

    We report NVT and NPT molecular dynamics simulations of a Gay-Berne nematic liquid crystal using generalization of recently proposed algorithm by Toxvaerd [Phys. Rev. E47, 343, 1993]. On the basis of these simulations the Oseen-Zoher-Frank elastic constants K 11 , K 22 and K 33 as well as the surface constants K 13 and K 24 have been calculated within the framework of the direct correlation function approach of Lipkin et al. [J. Chem. Phys. 82, 472 (1985)]. The angular coefficients of the direct pair correlation function, which enter the final formulas, have been determined from the computer simulation data for the pair correlation function of the nematic by combining the Ornstein-Zernike relation and the Wienier-Hopf factorization scheme. The unoriented nematic approximation has been assumed when constructing the reference, isotropic state of Lipkin et al. By an extensive study of the model over a wide range of temperatures, densities and pressures a very detailed information has been provided about elastic behaviour of the Gay-Berne nematic. Interestingly, it is found that the results for the surface elastic constants are qualitatively different than those obtained with the help of analytical approximations for the isotropic, direct pair correlation function. For example, the values of the surface elastic constants are negative and an order of magnitude smaller than the bulk elasticity. (author). 30 refs, 9 figs

  16. Spatial Correlation Of Streamflows: An Analytical Approach

    Science.gov (United States)

    Betterle, A.; Schirmer, M.; Botter, G.

    2016-12-01

    The interwoven space and time variability of climate and landscape properties results in complex and non-linear hydrological response of streamflow dynamics. Understanding how meteorologic and morphological characteristics of catchments affect similarity/dissimilarity of streamflow timeseries at their outlets represents a scientific challenge with application in water resources management, ecological studies and regionalization approaches aimed to predict streamflows in ungauged areas. In this study, we establish an analytical approach to estimate the spatial correlation of daily streamflows in two arbitrary locations within a given hydrologic district or river basin at seasonal and annual time scales. The method is based on a stochastic description of the coupled streamflow dynamics at the outlet of two catchments. The framework aims to express the correlation of daily streamflows at two locations along a river network as a function of a limited number of physical parameters characterizing the main underlying hydrological drivers, that include climate conditions, precipitation regime and catchment drainage rates. The proposed method portrays how heterogeneity of climate and landscape features affect the spatial variability of flow regimes along river systems. In particular, we show that frequency and intensity of synchronous effective rainfall events in the relevant contributing catchments are the main driver of the spatial correlation of daily discharge, whereas only pronounced differences in the drainage rate of the two basins bear a significant effect on the streamflow correlation. The topological arrangement of the two outlets also influences the underlying streamflow correlation, as we show that nested catchments tend to maximize the spatial correlation of flow regimes. The application of the method to a set of catchments in the South-Eastern US suggests the potential of the proposed tool for the characterization of spatial connections of flow regimes in the

  17. Full-scale locomotive dynamic crash testing and correlations : locomotive consist colliding with steel coil truck at grade crossing (test 3).

    Science.gov (United States)

    2011-09-01

    This report presents the test results and finite element correlations of a full-scale dynamic collision between a locomotive and a highway truck loaded with two heavy steel coils. The locomotive consist was moving at 58 miles per hour before it struc...

  18. Physics of the Kitaev Model: Fractionalization, Dynamic Correlations, and Material Connections

    Science.gov (United States)

    Hermanns, M.; Kimchi, I.; Knolle, J.

    2018-03-01

    Quantum spin liquids have fascinated condensed matter physicists for decades because of their unusual properties such as spin fractionalization and long-range entanglement. Unlike conventional symmetry breaking, the topological order underlying quantum spin liquids is hard to detect experimentally. Even theoretical models are scarce for which the ground state is established to be a quantum spin liquid. The Kitaev honeycomb model and its generalizations to other tricoordinated lattices are chief counterexamples - they are exactly solvable, harbor a variety of quantum spin liquid phases, and are also relevant for certain transition metal compounds including the polymorphs of (Na,Li)2IrO3 iridates and RuCl3. In this review, we give an overview of the rich physics of the Kitaev model, including two-dimensional and three-dimensional fractionalization as well as dynamic correlations and behavior at finite temperatures. We discuss the different materials and argue how the Kitaev model physics can be relevant even though most materials show magnetic ordering at low temperatures.

  19. Intracellular localization and dynamics of Hypericin loaded PLLA nanocarriers by image correlation spectroscopy.

    Science.gov (United States)

    Penjweini, Rozhin; Deville, Sarah; D'Olieslaeger, Lien; Berden, Mandy; Ameloot, Marcel; Ethirajan, Anitha

    2015-11-28

    The study of cell-nanoparticle interactions is an important aspect for understanding drug delivery using nanocarriers. In this regard, advances in fluorescence based microscopy are useful for the investigation of temporal and spatial behavior of nanoparticles (NPs) within the intracellular environment. In this work, we focus on the delivery of the naturally-occurring hydrophobic photosensitizer Hypericin in human lung carcinoma A549 cells by using biodegradable poly L-lactic acid NPs. For the first time, Hypericin containing NPs are prepared by combining the miniemulsion technique with the solvent evaporation method. This approach yields an efficient loading of the NPs with Hypericin and allows for additional cargo molecules. To monitor the release of Hypercin from the NPs, an additional fluorescent lipophilic dye Coumarin-6 is incorporated in the NPs. Temporal and spatiotemporal image correlation spectroscopy is used to determine the fate of the NPs carrying the potential cargo. Both directed and non-directed motions are detected. By using image cross-correlation spectroscopy and specific fluorescent labeling of endosomes, lysosomes and mitochondria, the dynamics of the cargo loaded NPs in association with the organelles is studied. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Dynamical local field, compressibility, and frequency sum rules for quasiparticles

    International Nuclear Information System (INIS)

    Morawetz, Klaus

    2002-01-01

    The finite temperature dynamical response function including the dynamical local field is derived within a quasiparticle picture for interacting one-, two-, and three-dimensional Fermi systems. The correlations are assumed to be given by a density-dependent effective mass, quasiparticle energy shift, and relaxation time. The latter one describes disorder or collisional effects. This parametrization of correlations includes local-density functionals as a special case and is therefore applicable for density-functional theories. With a single static local field, the third-order frequency sum rule can be fulfilled simultaneously with the compressibility sum rule by relating the effective mass and quasiparticle energy shift to the structure function or pair-correlation function. Consequently, solely local-density functionals without taking into account effective masses cannot fulfill both sum rules simultaneously with a static local field. The comparison to the Monte Carlo data seems to support such a quasiparticle picture

  1. A revision of the fishtail effect in YBa{sub 2}Cu{sub 3}O{sub 7−δ} crystals and its connection with vortex dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica and CONICET, Av. General Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Pasquini, G., E-mail: pasquini@df.uba.ar [Departamento de Física, FCEyN, Universidad de Buenos Aires and IFIBA, CONICET, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina)

    2015-01-15

    Highlights: • A critical revision of the accepted fishtail magnetization picture in YBCO crystals. • In slightly underdoped YBCO crystals the fishtail has a dynamic origin. • We show correlation between fishtail magnetization, Peak Effect and history effects. • We propose that the fishtail indicates a crossover between two plastic creep regimes. - Abstract: The fishtail magnetization observed in many type II superconductors has been investigated since the earliest nineties and associated with different phase transitions and dynamic crossovers in complex vortex matter. In systems without a sharp order–disorder phase transition, the fishtail has been related with a crossover from elastic to plastic vortex creep regimes. In this paper we perform a critical revision of this accepted picture. We show that, in slightly underdoped YBa{sub 2}Cu{sub 3}O{sub 7−δ} single crystals, there is a clear correlation between the fishtail magnetization and the Peak Effect observed in ac experiments with the associated history effects. We propose that both features are originated in the same dynamic crossover, between two plastic creep regimes. The proposed picture can also apply to other system, as those belonging to same families of iron-based pnictides.

  2. Nonequilibrium self-energy functional theory. Accessing the real-time dynamics of strongly correlated fermionic lattice systems

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Felix

    2016-07-05

    The self-energy functional theory (SFT) is extended to the nonequilibrium case and applied to the real-time dynamics of strongly correlated lattice-fermions. Exploiting the basic structure of the well established equilibrium theory the entire formalism is reformulated in the language of Keldysh-Matsubara Green's functions. To this end, a functional of general nonequilibrium self-energies is constructed which is stationary at the physical point where it moreover yields the physical grand potential of the initial thermal state. Nonperturbative approximations to the full self-energy can be constructed by reducing the original lattice problem to smaller reference systems and varying the functional on the space of the respective trial self-energies, which are parametrized by the reference system's one-particle parameters. Approximations constructed in this way can be shown to respect the macroscopic conservation laws related to the underlying symmetries of the original lattice model. Assuming thermal equilibrium, the original SFT is recovered from the extended formalism. However, in the general case, the nonequilibrium variational principle comprises functional derivatives off the physical parameter space. These can be carried out analytically to derive inherently causal conditional equations for the optimal physical parameters of the reference system and a computationally realizable propagation scheme is set up. As a benchmark for the numerical implementation the variational cluster approach is applied to the dynamics of a dimerized Hubbard model after fast ramps of its hopping parameters. Finally, the time-evolution of a homogeneous Hubbard model after sudden quenches and ramps of the interaction parameter is studied by means of a dynamical impurity approximation with a single bath site. Sharply separated by a critical interaction at which fast relaxation to a thermal final state is observed, two differing response regimes can be distinguished, where the

  3. TURBULENT DYNAMICS IN SOLAR FLARE SHEET STRUCTURES MEASURED WITH LOCAL CORRELATION TRACKING

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, D. E., E-mail: mckenzie@physics.montana.edu [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717-3840 (United States)

    2013-03-20

    High-resolution observations of the Sun's corona in extreme ultraviolet and soft X-rays have revealed a new world of complexity in the sheet-like structures connecting coronal mass ejections (CMEs) to the post-eruption flare arcades. This article presents initial findings from an exploration of dynamic flows in two flares observed with Hinode/XRT and SDO/AIA. The flows are observed in the hot ({approx}> 10 MK) plasma above the post-eruption arcades and measured with local correlation tracking. The observations demonstrate significant shears in velocity, giving the appearance of vortices and stagnations. Plasma diagnostics indicate that the plasma {beta} exceeds unity in at least one of the studied events, suggesting that the coronal magnetic fields may be significantly affected by the turbulent flows. Although reconnection models of eruptive flares tend to predict a macroscopic current sheet in the region between the CME and the flare arcade, it is not yet clear whether the observed sheet-like structures are identifiable as the current sheets or 'thermal halos' surrounding the current sheets. Regardless, the relationship between the turbulent motions and the embedded magnetic field is likely to be complicated, involving dynamic fluid processes that produce small length scales in the current sheet. Such processes may be crucial for triggering, accelerating, and/or prolonging reconnection in the corona.

  4. Studies od radioactive decay after-effects by the method of perturbed angular γγ-correlation

    International Nuclear Information System (INIS)

    Shpinkova, L.G.

    2002-01-01

    One of the methods applied for electron capture (Ec) after-effects studied is the time differential perturbed angular γγ-correlation (Tdpa( technique, which allows investigating hyperfine interactions of electromagnetic moments of nuclei with extranuclear fields created by electrons and ions around the probe atom in the studied matrix. After-effects can differentially affect the observed angular correlation and, thus, be studied by this method. The experiments performed so far with different nuclei in different matrixes showed that the after-effects are not important in TDPAC studies of metallic systems because of a considerable lag caused by a finite lifetime of the initial state of the γγ-cascade and the fast relaxation due to conduction electrons. In insulators and oxides. the after-effects should be taken into account while interpreting experimental data . A problem of molecular dynamic studies in liquids obscured by after-effects was also mentioned in the literature. A possibility of molecule disintegration caused by EC after-effects, initiated by the Auger-process was studied for 111 In-complexes with diethylenetriaminepentaacetic acid in neutral aqueous solutions. The results of the work showed directly that the AC after-effects could cause the metal-legand complexes disintegration. The observation of the non-equilibrium fraction with presumably high transient gradients caused by both a relaxation from the highly ionised state od 111 Cd (the daughter nucleus in the EC decay of 111 In) and rearrangement of the chemical bonds allowed assessing the time required for these transient processes (before complex disintegration or complex relaxation to the equilibrium state)

  5. Charge-carrier dynamics and Coulomb effects in semiconductor tetrapods

    International Nuclear Information System (INIS)

    Mauser, Christian

    2011-01-01

    In this thesis the Coulomb interaction and its influence on localization effects and dynamics of charge carriers in semiconductor nanocrystals were studied. In the studied nanostructures it deals with colloidal tetrapod heterostructures, which consist of a cadmium selenide (CdSe) core and four tetraedrical grown cadmium sulfide (CdS) respectively cadmium telluride (CdTe) legs, which exhibit a type-I respectively type-II band transition. The dynamics and interactions were studied by means of photoluminescence (PL) and absorption measurements both on the ensemble and on single nanoparticles, as well as time-resolved PL and transient absorption spectroscopy. Additionally theoretical simulations of the wave-function distributions were performed, which are based on the effective-mass approximation. The special band structure of the CdSe/CdS tetrapods offers a unique possibility to study the Coulomb interaction. The flat conduction band in these heterostructures makes the electron via the Coulomb interaction sensitive to the localization position of the hole within the structure. The valence band has instead a potential maximum in the CdSe, which leads to a directed localization of the hole and the photoluminescence of the core. Polarization-resolved measurements showed hereby an anisotropy of the photoluminescence, which could be explained by means of simulations of the wave-function distribution with an asymmetry at the branching point. Charge-carrier localization occur mainly both in longer structures and in trap states in the CdS leg and can be demonstrated in form of a dual emission from a nanocrystal. The charge-carrier dynamics of electron and hole in tetrapods is indeed coupled by the Coulomb interaction, however it cannot be completely described in an exciton picture. The coupled dynamics and the Coulomb interaction were studied concerning a possible influence of the geometry in CdSe/CdS nanorods and compared with those of the tetrapods. The interactions of the

  6. Topological properties and correlation effects in oxide heterostructures

    Science.gov (United States)

    Okamoto, Satoshi

    2015-03-01

    Transition-metal oxides (TMOs) have long been one of the main subjects of material science because of their novel functionalities such as high-Tc superconductivity in cuprates and the colossal magnetoresistance effect in manganites. In recent years, we have seen tremendous developments in thin film growth techniques with the atomic precision, resulting in the discovery of a variety of electronic states in TMO heterostructures. These developments motivate us to explore the possibility of novel quantum states of matter such as topological insulators (TIs) in TMO heterostructures. In this talk, I will present our systematic theoretical study on unprecedented electronic states in TMO heterostructures. An extremely simple but crucial observation is that, when grown along the [111] crystallographic axis, bilayers of perovskite TMOs form buckled honeycomb lattices of transition-metal ions, similar to graphene. Thus, with the relativistic spin-orbit coupling and proper band filling, two-dimensional TI states or spin Hall insulators are anticipated. Based on tight-binding modeling and density-functional theory calculations, possible candidate materials for TIs are identified. By means of the dynamical-mean-field theory and a slave-boson mean field theory, correlation effects, characteristics of TMOs, are also examined. I will further discuss future prospects in topological phenomena in TMO heterostructures and related systems. The author thanks D. Xiao, W. Zhu, Y. Ran, R. Arita, Y. Nomura and N. Nagaosa for their fruitful discussions and collaboration. This work is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  7. Nonlinear Dynamics of Silicon Nanowire Resonator Considering Nonlocal Effect.

    Science.gov (United States)

    Jin, Leisheng; Li, Lijie

    2017-12-01

    In this work, nonlinear dynamics of silicon nanowire resonator considering nonlocal effect has been investigated. For the first time, dynamical parameters (e.g., resonant frequency, Duffing coefficient, and the damping ratio) that directly influence the nonlinear dynamics of the nanostructure have been derived. Subsequently, by calculating their response with the varied nonlocal coefficient, it is unveiled that the nonlocal effect makes more obvious impacts at the starting range (from zero to a small value), while the impact of nonlocal effect becomes weaker when the nonlocal term reaches to a certain threshold value. Furthermore, to characterize the role played by nonlocal effect in exerting influence on nonlinear behaviors such as bifurcation and chaos (typical phenomena in nonlinear dynamics of nanoscale devices), we have calculated the Lyapunov exponents and bifurcation diagram with and without nonlocal effect, and results shows the nonlocal effect causes the most significant effect as the device is at resonance. This work advances the development of nanowire resonators that are working beyond linear regime.

  8. Effect of colored noise on the critical dynamics of the Time-Dependent Landau-Ginzburg Model A

    International Nuclear Information System (INIS)

    Korutcheva, E.; Rubia, J. de la

    1999-08-01

    By using the dynamical renormalization-group method, we show that the introduction of an additive colored noise with weak long-range correlations in the Time-Dependent Landau-Ginzburg Model A, does not give perturbative corrections for the dynamical critical exponent at least up to order O(ε 2 ). This result differs for a system with random quenched impurities, where a similar type of impurity correlation leads to corrections even of order O(ε). (author)

  9. The effect of external magnetic field changing on the correlated quantum dot dynamics

    Science.gov (United States)

    Mantsevich, V. N.; Maslova, N. S.; Arseyev, P. I.

    2018-06-01

    The non-stationary response of local magnetic moment to abrupt switching "on" and "off" of external magnetic field was studied for a single-level quantum dot (QD) coupled to a reservoir. We found that transient processes look different for the shallow and deep localized energy level. It was demonstrated that for deep energy level the relaxation rates of the local magnetic moment strongly differ in the case of magnetic field switching "on" or "off". Obtained results can be applied in the area of dynamic memory devices stabilization in the presence of magnetic field.

  10. Density matrix renormalization group with efficient dynamical electron correlation through range separation

    DEFF Research Database (Denmark)

    Hedegård, Erik D.; Knecht, Stefan; Kielberg, Jesper Skau

    2015-01-01

    We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electroncorrelation...... effects in multiconfigurational electronic structure problems....

  11. Dynamic brain glucose metabolism identifies anti-correlated cortical-cerebellar networks at rest.

    Science.gov (United States)

    Tomasi, Dardo G; Shokri-Kojori, Ehsan; Wiers, Corinde E; Kim, Sunny W; Demiral, Şukru B; Cabrera, Elizabeth A; Lindgren, Elsa; Miller, Gregg; Wang, Gene-Jack; Volkow, Nora D

    2017-12-01

    It remains unclear whether resting state functional magnetic resonance imaging (rfMRI) networks are associated with underlying synchrony in energy demand, as measured by dynamic 2-deoxy-2-[ 18 F]fluoroglucose (FDG) positron emission tomography (PET). We measured absolute glucose metabolism, temporal metabolic connectivity (t-MC) and rfMRI patterns in 53 healthy participants at rest. Twenty-two rfMRI networks emerged from group independent component analysis (gICA). In contrast, only two anti-correlated t-MC emerged from FDG-PET time series using gICA or seed-voxel correlations; one included frontal, parietal and temporal cortices, the other included the cerebellum and medial temporal regions. Whereas cerebellum, thalamus, globus pallidus and calcarine cortex arose as the strongest t-MC hubs, the precuneus and visual cortex arose as the strongest rfMRI hubs. The strength of the t-MC linearly increased with the metabolic rate of glucose suggesting that t-MC measures are strongly associated with the energy demand of the brain tissue, and could reflect regional differences in glucose metabolism, counterbalanced metabolic network demand, and/or differential time-varying delivery of FDG. The mismatch between metabolic and functional connectivity patterns computed as a function of time could reflect differences in the temporal characteristics of glucose metabolism as measured with PET-FDG and brain activation as measured with rfMRI.

  12. Hexagonal type Ising nanowire with mixed spins: Some dynamic behaviors

    International Nuclear Information System (INIS)

    Kantar, Ersin; Kocakaplan, Yusuf

    2015-01-01

    The dynamic behaviors of a mixed spin (1/2–1) hexagonal Ising nanowire (HIN) with core–shell structure in the presence of a time dependent magnetic field are investigated by using the effective-field theory with correlations based on the Glauber-type stochastic dynamics (DEFT). According to the values of interaction parameters, temperature dependence of the dynamic magnetizations, the hysteresis loop areas and the dynamic correlations are investigated to characterize the nature (first- or second-order) of the dynamic phase transitions (DPTs). Dynamic phase diagrams, including compensation points, are also obtained. Moreover, from the thermal variations of the dynamic total magnetization, the five compensation types can be found under certain conditions, namely the Q-, R-, S-, P-, and N-types. - Highlights: • Dynamic behaviors of mixed spin HIN system are obtained within the EFT. • The system exhibits i, p and nm fundamental phases. • The dynamic phase diagrams are presented in (h, T), (D, T), (Δ S , T) and (r, T) planes. • The dynamic phase diagrams exhibit the dynamic tricritical point (TCP). • Different dynamic compensation types are obtained

  13. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    International Nuclear Information System (INIS)

    Deviren, Bayram; Kantar, Ersin; Keskin, Mustafa

    2012-01-01

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Néel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: ► The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► We studied both the FM and AFM interactions within the EFT with correlations. ► Some characteristic phenomena are found depending on the interaction parameters. ► We obtained five different types of compensation behaviors and reentrant behavior.

  14. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Kantar, Ersin [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-07-15

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Neel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: Black-Right-Pointing-Pointer The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. Black-Right-Pointing-Pointer The dynamic magnetizations, hysteresis loop areas and correlations are calculated. Black-Right-Pointing-Pointer We studied both the FM and AFM interactions within the EFT with correlations. Black-Right-Pointing-Pointer Some characteristic phenomena are found depending on the interaction parameters. Black-Right-Pointing-Pointer We obtained five different types of compensation behaviors and reentrant behavior.

  15. Dynamic contrast-enhanced MR of the prostatic cancer and benign prostatic hyperplasia: correlation with angiogenesis

    International Nuclear Information System (INIS)

    Ni Xinchu; Shen Junkang; Lu Zhian; Zhou Lijuan; Yang Xiaochun; Wang Guanzhong; Zhang Caiyuan; Wang Shuizhen; Qian Minghui; Chan Yuxi; Qian Nong; Xiang Jianpo; Pan Changjie; Rong Weiliang; Chen Jianguo

    2005-01-01

    Objective: To evaluate the role of dynamic contrast-enhanced magnetic resonance imaging (MRI) in the diagnose of prostatic cancer and benign prostatic hyperplasia (BPH), and to determine the correlation between dynamic MRI findings with angiogenesis. Methods: Thirty-two cases of prostatic cancer and 40 cases of BPH underwent dynamic contrast-enhanced MRI. All the patients in this study were diagnosed by histopathology. The results of dynamic contrast-enhanced MRI were evaluated by early-phase enhancement parameters and time-signal intensity curves (SI-T curves), and the curves were classified according to their shapes as type I, which had steady enhancement; type II, plateau of signal intensity; and type III, washout of signal intensity. The pathologic specimens of region of interest (ROI ) were obtained, and HE staining, immunohistochemical vascular endothelial growth factor (VEGF), and microvessel density (MVD) measurements were performed. The relationships among dynamic contrast-enhanced MRI features, VEGF, and MVD expression were analyzed. Results: In the early-phase enhancement parameters of dynamic contrast-enhanced MRI, onset time, maximum signal intensity, and early-phase enhancement rate differed between prostatic cancer and BPH (P<0.01, 0.05, 0.01), but there were some overlaps between them. The intermediate and late post-contrast periods were characterized with the lesion SI-T curves. The SI-T curve of prostatic cancer was mainly type III (21 cases). Type II could be seen in both prostatic cancer (8 cases) and BPH (19 cases). Type I most appeared in BPH (18 cases). The distributions proved to have significant difference (P<0.001). The mean VEGF and MVD level of 32 prostatic cancer patients were significantly higher than those of 40 BPH patients (P<0.001). MVD level of prostatic cancer and BPH showed an association with VEGF level (P<0.01). The maximum signal intensity and early-phase enhancement rate in both prostatic cancer and BPH showed an association

  16. A study of highly correlated classical and quantum fluids

    International Nuclear Information System (INIS)

    Clements, B.E.

    1988-01-01

    We have determined, by molecular dynamics simulation, the l = 0, 2, 4, and 6 Legendre coefficients of the static pair-pair correlation function Q(r,r'), the dynamic pair-pair correlation function Q(r,r';t) and the dynamic four point correlation function S 4 (k, -k,q, -q;t). The interaction potential was taken to be Lennard-Jones. The simulation was carried out at two different values of density and temperature; one coinciding with that of liquid argon near its triple point and the other coinciding with high density argon at room temperature. We argue that an important contribution to the pair-pair correlation function comes from the thee-body correlations. We find that the Legendre coefficients of Q(r,r') provide strong evidence that, upon freezing, the resulting crystalline structure will be a close-packed structure. A study of dynamical fluctuations characterized by Legendre coefficients of the dynamic pair-pair correlation function support this assertion. Finally, we provide a discussion on a decoupling scheme, used in the literature, to approximate the static and dynamic four point correlation function. A variational calculation with the Penrose-Reatto-Chester-Jastrow density matrix is used to study the finite temperature properties of Bose quantum fluids. This analysis provides a systematic method for adding correction terms to the density matrix approach of Campbell, Ristig, Kurten and Senger. We find that the excitation spectrum for the elementary excitations has the proper temperature dependence in contrast to earlier calculations

  17. Dynamic MRI of breast fibroadenoma: pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Ki Keun; Hahm, Jin kyeung; Yoon, Pyong Ho; Jeong, Eun Kee [Yonsei University, College of Medicine, Seoul (Korea, Republic of)

    1995-09-15

    To analyze the dynamic MR imaging of breast fibroadenoma according to the histologic type for differentiation from breast carcinoma. Dynamic MR images of 26 lesions from 22 breasts in 19 patients showing atypical clinical features or film mammogram and ultrasound manifestations were performed. We analyzed the speed and the maximal amount of contrast enhancement and the patterns, such as shape, border, and internal signal intensity, among the histologic types during five minutes after contrast injection. The speed and maximal amount of contrast enhancement of fibroadenoma were in descending order of myxoid, sclerotic, glandular, and calcified types. Among these, the value of maximal amount of contrast enhancement of myxoid and sclerotic type were more than 700 NU, but only myxoid type was enhanced more than 700 NU within the first 1 minute after contrast injection, similar to the findings of carcinoma. In general, fibroadenoma showed the tendency of smooth surface(69%), well-defined border(88%) with safety rim, and internal homogeneous signal intensity(65%). However, sclerotic type of fibroadenoma had relatively high incidence of heterogeneous internal signal intensity(78%) after Gd-DTPA injection. Dynamic MR imaging of atypical breast fibroadenoma mimicking breast malignancy was very useful in differentiation it from carcinoma and had the benefit of classifying fibroadenoma according to its histologic types.

  18. Dynamic MRI of breast fibroadenoma: pathologic correlation

    International Nuclear Information System (INIS)

    Oh, Ki Keun; Hahm, Jin kyeung; Yoon, Pyong Ho; Jeong, Eun Kee

    1995-01-01

    To analyze the dynamic MR imaging of breast fibroadenoma according to the histologic type for differentiation from breast carcinoma. Dynamic MR images of 26 lesions from 22 breasts in 19 patients showing atypical clinical features or film mammogram and ultrasound manifestations were performed. We analyzed the speed and the maximal amount of contrast enhancement and the patterns, such as shape, border, and internal signal intensity, among the histologic types during five minutes after contrast injection. The speed and maximal amount of contrast enhancement of fibroadenoma were in descending order of myxoid, sclerotic, glandular, and calcified types. Among these, the value of maximal amount of contrast enhancement of myxoid and sclerotic type were more than 700 NU, but only myxoid type was enhanced more than 700 NU within the first 1 minute after contrast injection, similar to the findings of carcinoma. In general, fibroadenoma showed the tendency of smooth surface(69%), well-defined border(88%) with safety rim, and internal homogeneous signal intensity(65%). However, sclerotic type of fibroadenoma had relatively high incidence of heterogeneous internal signal intensity(78%) after Gd-DTPA injection. Dynamic MR imaging of atypical breast fibroadenoma mimicking breast malignancy was very useful in differentiation it from carcinoma and had the benefit of classifying fibroadenoma according to its histologic types

  19. Electron-ion correlation effects in ion-atom single ionization

    Energy Technology Data Exchange (ETDEWEB)

    Colavecchia, F.D.; Garibotti, C.R. [Centro Atomico Bariloche and Consejo Nacional de Investigaciones Cientificas y Tecnicas, 8400 San Carlos de Bariloche (Argentina); Gasaneo, G. [Departamento de Fisica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2000-06-28

    We study the effect of electron-ion correlation in single ionization processes of atoms by ion impact. We present a distorted wave model where the final state is represented by a correlated function solution of a non-separable three-body continuum Hamiltonian, that includes electron-ion correlation as coupling terms of the wave equation. A comparison of the electronic differential cross sections computed with this model with other theories and experimental data reveals that the influence of the electron-ion correlation is more significant for low energy emitted electrons. (author). Letter-to-the-editor.

  20. Measurement of zero power reactor dynamic response by cross correlation method; Merenje dinamickog odziva reaktora nulte snage kros korelacionom metodom

    Energy Technology Data Exchange (ETDEWEB)

    Kostic, Lj; Petrovic, M [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1969-07-15

    Pulse response is comprehensive description of linear system dynamics. In this paper, cross correlation method was used for measuring the response of zero power reactor. Reactor system was perturbed by pseudo-random signal, which was cross correlated with the reactor signal responding to this perturbation on the digital ZUSE Z-23 computer. Cross-correlation functions were measured for different positions of stochastic oscillator and ionization chamber in the critical system. From numerical processing of performed experimental data, it was concluded that a more powerful faster computer would be needed for processing statistical experiments. In that case it would be possible to obtain information about spatial effects in the reactor and propagation of neutron waves in the multiplication medium. Impulsni odziv je potpuni opis dinamike linearnog sistema. Za merenje impulsnog odziva nultog reaktora, u ovom radu, koriscena je kros korelaciona metoda. Reaktorski sistem je perturbovan pseudoslucajnim signalom, koji je u digitalnom racunaru ZUSE Z-23 kroskorelisan sa signalom odziva reaktora na ove perturbacije. Merene su kroskorelacione funkcije za razlicite polozaje stohastickog oscilatora i jonizacione komore u kriticnom sistemu. Iz numericki obradjivanih eksperimenta namece se kao zakljucak da bi za obradu statistickih eksperimenata kod nultih reaktora bio potreban racunar veceg kapaciteta i brzine. U tom slucaju bi se iz ovako postavljenog eksperimenta moglo doci i do informacija o prostornim efektima u reaktoru i prostiranju neutronskih talasa kroz multiplikativnu sredinu. (author)

  1. Structure in sheared supercooled liquids: Dynamical rearrangements of an effective system of icosahedra.

    Science.gov (United States)

    Pinney, Rhiannon; Liverpool, Tanniemola B; Royall, C Patrick

    2016-12-21

    We consider a binary Lennard-Jones glassformer whose super-Arrhenius dynamics are correlated with the formation of particles organized into icosahedra under simple steady state shear. We recast this glassformer as an effective system of icosahedra [Pinney et al., J. Chem. Phys. 143, 244507 (2015)]. From the observed population of icosahedra in each steady state, we obtain an effective temperature which is linearly dependent on the shear rate in the range considered. Upon shear banding, the system separates into a region of high shear rate and a region of low shear rate. The effective temperatures obtained in each case show that the low shear regions correspond to a significantly lower temperature than the high shear regions. Taking a weighted average of the effective temperature of these regions (weight determined by region size) yields an estimate of the effective temperature which compares well with an effective temperature based on the global mesocluster population of the whole system.

  2. Retrieval of Effective Correlation Length and Snow Water Equivalent from Radar and Passive Microwave Measurements

    Directory of Open Access Journals (Sweden)

    Juha Lemmetyinen

    2018-01-01

    satellite mission concepts focused on retrieving SWE, exploiting existing methods for retrieval of snow microstructural parameters, as employed within the ESA (European Space Agency GlobSnow SWE product. Using radar alone, a seasonally optimized value of effective correlation length to parameterize retrievals of SWE was sufficient to provide an accuracy of <25 mm (unbiased Root-Mean Square Error using certain frequency combinations. A temporally dynamic value, derived from e.g., physical snow models, is necessary to further improve retrieval skill, in particular for snow regimes with larger temporal variability in snow microstructure and a more pronounced layered structure.

  3. Geometric correlations and multifractals

    International Nuclear Information System (INIS)

    Amritkar, R.E.

    1991-07-01

    There are many situations where the usual statistical methods are not adequate to characterize correlations in the system. To characterize such situations we introduce mutual correlation dimensions which describe geometric correlations in the system. These dimensions allow us to distinguish between variables which are perfectly correlated with or without a phase lag, variables which are uncorrelated and variables which are partially correlated. We demonstrate the utility of our formalism by considering two examples from dynamical systems. The first example is about the loss of memory in chaotic signals and describes auto-correlations while the second example is about synchronization of chaotic signals and describes cross-correlations. (author). 19 refs, 6 figs

  4. Environmental radiations and childhood dynamic statistics

    International Nuclear Information System (INIS)

    Sakka, Masatoshi

    1981-01-01

    In Fukushima prefecture the first nuclear power plant attained criticality in 1971. Since then 6 reactors have been in operation. Increasing concern is the possible adverse effects due to ionizing radiations released from nuclear reactors. As the radiation level around the nuclear power plants is usually low, induced effects are necessarily delayed ones which require tens of years to appear. Among other tissues, embryos and foetuses are most radiosensitive and induced effects result in the change of childhood dynamic statistics. In this report dynamic statistics including stillbirth, perinatal death, neonatal death, infant death, 3rd year examinations were surveyed in 18 health centers in the prefecture from 1961 to 1979. Environmental radiation levels in each district (health centers) were compared and were arranged in order, 1, 2, ... etc. Dynamic statistics were also compared for each district and were arranged in order. Order correlation coefficients were calculated and a linearity between radiation level and health status was tested. No significant values were obtained ranging from 0.66 to -0.43 of correlation coefficients. Still birth decreased 4.4%/y since 1963 and neonatal death decreased 6.7%/y and infant death also decreased 8.7%/y since 1957 on an average. These decreases were negatively correlated with the proliferation of water supply service, sewage service and increase of physicians in 18 districts including 2 which are under continuous observation of environmental radiations released from nuclear power plants. Childhood dynamic statistics have been turning better in the last 10 years in prefecture with the difference of 47 mR/y (lowest values of 56 mR/y on an average in 3 prefectures and highest of 103 mR/y in 4 ones). Environmental radiation may initiate adverse effects on prenatal lives but the hygienic improvement in recent years must extinguish the promotion of the adverse effects. This may be a plausible explanation. (author)

  5. Non-classical Correlations and Quantum Coherence in Mixed Environments

    Science.gov (United States)

    Hu, Zheng-Da; Wei, Mei-Song; Wang, Jicheng; Zhang, Yixin; He, Qi-Liang

    2018-05-01

    We investigate non-classical correlations (entanglement and quantum discord) and quantum coherence for an open two-qubit system each independently coupled to a bosonic environment and a spin environment, respectively. The modulating effects of spin environment and bosonic environment are respectively explored. A relation among the quantum coherence, quantum discord and classical correlation is found during the sudden transition phenomenon. We also compare the case of mixed environments with that of the same environments, showing that the dynamics is dramatically changed.

  6. Surface correlation effects in two-band strongly correlated slabs.

    Science.gov (United States)

    Esfahani, D Nasr; Covaci, L; Peeters, F M

    2014-02-19

    Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/center to center/surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.

  7. How proteins modify water dynamics

    Science.gov (United States)

    Persson, Filip; Söderhjelm, Pär; Halle, Bertil

    2018-06-01

    Much of biology happens at the protein-water interface, so all dynamical processes in this region are of fundamental importance. Local structural fluctuations in the hydration layer can be probed by 17O magnetic relaxation dispersion (MRD), which, at high frequencies, measures the integral of a biaxial rotational time correlation function (TCF)—the integral rotational correlation time. Numerous 17O MRD studies have demonstrated that this correlation time, when averaged over the first hydration shell, is longer than in bulk water by a factor 3-5. This rotational perturbation factor (RPF) has been corroborated by molecular dynamics simulations, which can also reveal the underlying molecular mechanisms. Here, we address several outstanding problems in this area by analyzing an extensive set of molecular dynamics data, including four globular proteins and three water models. The vexed issue of polarity versus topography as the primary determinant of hydration water dynamics is resolved by establishing a protein-invariant exponential dependence of the RPF on a simple confinement index. We conclude that the previously observed correlation of the RPF with surface polarity is a secondary effect of the correlation between polarity and confinement. Water rotation interpolates between a perturbed but bulk-like collective mechanism at low confinement and an exchange-mediated orientational randomization (EMOR) mechanism at high confinement. The EMOR process, which accounts for about half of the RPF, was not recognized in previous simulation studies, where only the early part of the TCF was examined. Based on the analysis of the experimentally relevant TCF over its full time course, we compare simulated and measured RPFs, finding a 30% discrepancy attributable to force field imperfections. We also compute the full 17O MRD profile, including the low-frequency dispersion produced by buried water molecules. Computing a local RPF for each hydration shell, we find that the

  8. Dynamic plasma screening effects on atomic collisions in dense plasmas

    International Nuclear Information System (INIS)

    Young-Dae Jung

    1999-01-01

    Dynamic plasma screening effects are investigated on electron-ion collisional excitation and Coulomb Bremsstrahlung processes in dense plasmas. The electron-ion interaction potential is considered by introduction of the plasma dielectric function. The straight-ling trajectory method is applied to the path of the projectile electron. The transition probability including the dynamic plasma screening effect is found to be always greater than that including the static plasma screening effects. It is found that the differential Bremsstrahlung radiation cross section including the dynamic plasma screening effect is also greater than that including the static plasma screening effect. When the projectile velocity is smaller than the electron thermal velocity, the dynamic polarization screening effect becomes the static plasma screening effect. However, when the projectile velocity is greater than the electron thermal velocity, the interaction potential is almost unshielded

  9. SO(8) fermion dynamical symmetry and strongly correlated quantum Hall states in monolayer graphene

    Science.gov (United States)

    Wu, Lian-Ao; Murphy, Matthew; Guidry, Mike

    2017-03-01

    A formalism is presented for treating strongly correlated graphene quantum Hall states in terms of an SO(8) fermion dynamical symmetry that includes pairing as well as particle-hole generators. The graphene SO(8) algebra is isomorphic to an SO(8) algebra that has found broad application in nuclear physics, albeit with physically very different generators, and exhibits a strong formal similarity to SU(4) symmetries that have been proposed to describe high-temperature superconductors. The well-known SU(4) symmetry of quantum Hall ferromagnetism for single-layer graphene is recovered as one subgroup of SO(8), but the dynamical symmetry structure associated with the full set of SO(8) subgroup chains extends quantum Hall ferromagnetism and allows analytical many-body solutions for a rich set of collective states exhibiting spontaneously broken symmetry that may be important for the low-energy physics of graphene in strong magnetic fields. The SO(8) symmetry permits a natural definition of generalized coherent states that correspond to symmetry-constrained Hartree-Fock-Bogoliubov solutions, or equivalently a microscopically derived Ginzburg-Landau formalism, exhibiting the interplay between competing spontaneously broken symmetries in determining the ground state.

  10. Correlations in clusters and related systems. New perspectives on the many-body problem

    International Nuclear Information System (INIS)

    Connerade, J.P.

    1996-01-01

    The contents of the present volume are the proceedings of an Adriatico Research Conference, held at the International Centre for Theoretical Physics in Trieste from 26 to 29 July 1994. The theme of the conference covered many aspects of cooperative effects, beginning with giant resonances in many-electron systems, and particularly in new objects such as metallic clusters, in which collective electron dynamics are a novel feature. The relationship of these resonances with comparable features in nuclear and solid state physics was extensively discussed. Related effects, such as instabilities of valence both in clusters and in solids were explored. Clusters allow one to track the evolution of certain properties from the free atom to the solid state limits as a function of size. The giant resonances concerned not only intra-atomic excitations, but also correlated motions of all delocalized electrons within the cluster. Other systems with unusual properties, such as negative ions, in which correlations play an important role, were also considered. Finally, dynamical effects and the possible interactions between electron-electron correlations and high laser fields were envisaged

  11. Correlation between computer-aided dynamic gadolinium-enhanced MRI assessment of inflammation and semi-quantitative synovitis and bone marrow oedema scores of the wrist in patients with rheumatoid arthritis--a cohort study

    DEFF Research Database (Denmark)

    Boesen, Mikael; Kubassova, Olga; Bouert, Rasmus

    2012-01-01

    Objective. To test the correlation between assessment of inflammation using dynamic contrast-enhanced MRI (DCE-MRI) analysed by a novel computer-aided approach and semi-quantitative scores of synovitis and bone marrow oedema (BME) using the OMERACT-RA MRI Scoring (RAMRIS) system, in the wrist...... extended region of interest (ROI) placed around the wrist joint (semi-automated approach) and (iii) within a small ROI placed in the area with most visual enhancement (semi-automated approach). Time spent on each procedure was noted. Spearman's rank correlation test was applied to assess the correlation...... between RAMRIS and the computer-generated dynamic parameters. Results. RAMRIS synovitis (range 2-9), BME (range 0-39) and the dynamic parameters reflecting the number of enhancing voxels were significantly correlated, especially when an extended ROI around the wrist was used (¿¿=¿0.74; P¿...

  12. Chromospheric scaling laws, width-luminosity correlations, and the Wilson-Bappu effect

    International Nuclear Information System (INIS)

    Ayres, T.R.

    1979-01-01

    Simple scaling laws are developed to explain the thickness and mean electron density of late-type stellar chromospheres in an effort to understand why the emission cores of effectively thick resonance lines such as Ca II H and K broaden with increasing stellar luminosity (the Wilson-Bappu effect). It is shown that stellar chromospheres become thicker in mass column density as stellar gravity g decreases and that the mean chromospheric electric density n/sub e/ decreases if the chromospheric heating dF/dm is constant with height and if the total heating F/sup tot/ is independent of g. It is also shown that chromospheres becomes thicker and the mean electron density becomes larger than the total chromospheric heating increases. The predicted behavior of the K 1 minimum separation and full width at half-maximum of the Ca II emission core (W 0 ) based on the derived scaling laws agree quantitatively with the observed correlations of these widths with fundamental stellar parameters, particularly surface gravity. In addition, the predicted behavior of the K 2 peak separation and base emission width with increasing chromospheric heating is consistent with the behavior of the Ca II emission core shapes in solar plages. The analytical arguments suggest that the Wilson-Bappu effect is largely a consequence of hydrostatic equilibrium rather than chromospheric dynamics

  13. Accounting for Missing Correlation Coefficients in Fixed-Effects MASEM.

    Science.gov (United States)

    Jak, Suzanne; Cheung, Mike W-L

    2018-01-01

    Meta-analytic structural equation modeling (MASEM) is increasingly applied to advance theories by synthesizing existing findings. MASEM essentially consists of two stages. In Stage 1, a pooled correlation matrix is estimated based on the reported correlation coefficients in the individual studies. In Stage 2, a structural model (such as a path model) is fitted to explain the pooled correlations. Frequently, the individual studies do not provide all the correlation coefficients between the research variables. In this study, we modify the currently optimal MASEM-method to deal with missing correlation coefficients, and compare its performance with existing methods. This study is the first to evaluate the performance of fixed-effects MASEM methods under different levels of missing correlation coefficients. We found that the often used univariate methods performed very poorly, while the multivariate methods performed well overall.

  14. Effects of Exponential Trends on Correlations of Stock Markets

    Directory of Open Access Journals (Sweden)

    Ai-Jing Lin

    2014-01-01

    Full Text Available Detrended fluctuation analysis (DFA is a scaling analysis method used to estimate long-range power-law correlation exponents in time series. In this paper, DFA is employed to discuss the long-range correlations of stock market. The effects of exponential trends on correlations of Hang Seng Index (HSI are investigated with emphasis. We find that the long-range correlations and the positions of the crossovers of lower order DFA appear to have no immunity to the additive exponential trends. Further, our analysis suggests that an increase in the DFA order increases the efficiency of eliminating on exponential trends. In addition, the empirical study shows that the correlations and crossovers are associated with DFA order and magnitude of exponential trends.

  15. Particle Correlations at LEP

    CERN Document Server

    Kress, Thomas

    2002-01-01

    Particle correlations are extensively studied to obtain information about the dynamics of hadron production. From 1989 to 2000 the four LEP collaborations recorded more than 16 million hadronic Z0 decays and several thousand W+W- events. In Z0 decays, two-particle correlations were analysed in detail to study Bose-Einstein and Fermi-Dirac correlations for various particle species. In fully-hadronic W+W- decays, particle correlations were used to study whether the two W bosons decay independently. A review of selected results is presented.

  16. Dynamic hysteresis behaviors in the kinetic Ising system on triangular lattice

    Science.gov (United States)

    Kantar, Ersin; Ertaş, Mehmet

    2018-04-01

    We studied dynamic hysteresis behaviors of the spin-1 Blume-Capel (BC) model in a triangular lattice by means of the effective-field theory (EFT) with correlations and using Glauber-type stochastic dynamics. The effects of the exchange interaction (J), crystal field (D), temperature (T) and oscillating frequency (w) on the hysteresis behaviors of the BC model in a triangular lattice are investigated in detail. Results are compared with some other dynamic studies and quantitatively good agreement is found.

  17. Genomic Model with Correlation Between Additive and Dominance Effects.

    Science.gov (United States)

    Xiang, Tao; Christensen, Ole Fredslund; Vitezica, Zulma Gladis; Legarra, Andres

    2018-05-09

    Dominance genetic effects are rarely included in pedigree-based genetic evaluation. With the availability of single nucleotide polymorphism markers and the development of genomic evaluation, estimates of dominance genetic effects have become feasible using genomic best linear unbiased prediction (GBLUP). Usually, studies involving additive and dominance genetic effects ignore possible relationships between them. It has been often suggested that the magnitude of functional additive and dominance effects at the quantitative trait loci are related, but there is no existing GBLUP-like approach accounting for such correlation. Wellmann and Bennewitz showed two ways of considering directional relationships between additive and dominance effects, which they estimated in a Bayesian framework. However, these relationships cannot be fitted at the level of individuals instead of loci in a mixed model and are not compatible with standard animal or plant breeding software. This comes from a fundamental ambiguity in assigning the reference allele at a given locus. We show that, if there has been selection, assigning the most frequent as the reference allele orients the correlation between functional additive and dominance effects. As a consequence, the most frequent reference allele is expected to have a positive value. We also demonstrate that selection creates negative covariance between genotypic additive and dominance genetic values. For parameter estimation, it is possible to use a combined additive and dominance relationship matrix computed from marker genotypes, and to use standard restricted maximum likelihood (REML) algorithms based on an equivalent model. Through a simulation study, we show that such correlations can easily be estimated by mixed model software and accuracy of prediction for genetic values is slightly improved if such correlations are used in GBLUP. However, a model assuming uncorrelated effects and fitting orthogonal breeding values and dominant

  18. Dynamic effects of diabatization in distillation columns

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens

    2013-01-01

    The dynamic effects of diabatization in distillation columns are investigated in simulation emphasizing the heat-integrated distillation column (HIDiC). A generic, dynamic, first-principle model has been formulated, which is flexible enough to describe various diabatic distillation configurations....... Dynamic Relative Gain Array and Singular Value Analysis have been applied in a comparative study of a conventional distillation column and a HIDiC. The study showed increased input-output coupling due to diabatization. Feasible SISO control structures for the HIDiC were also found and control...

  19. Dynamics of shearing force and its correlations with chemical compositions and dry matter digestibility of stylo ( stem

    Directory of Open Access Journals (Sweden)

    Xuejuan Zi

    2017-12-01

    Full Text Available Objective The study explored the dynamics of shearing force and its correlation with chemical compositions and in vitro dry matter digestibility (IVDMD of stylo. Methods The shearing force, diameter, linear density, chemical composition, and IVDMD of different height stylo stem were investigated. Linear regression analysis was done to determine the relationships between the shearing force and cut height, diameter, chemical composition, or IVDMD. Results The results showed that shearing force of stylo stem increased with plant height increasing and the crude protein (CP content and IVDMD decreased but fiber content increased over time, resulting in decreased forage value. In addition, tall stem had greater shearing force than short stem. Moreover, shearing force is positively correlated with stem diameter, linear density and fiber fraction, but negatively correlated with CP content and IVDMD. Conclusion Overall, shearing force is an indicator more direct, easier and faster to measure than chemical composition and digestibility for evaluation of forage nutritive value related to animal performance. Therefore, it can be used to evaluate the nutritive value of stylo.

  20. On the importance of excited state dynamic response electron correlation in polarizable embedding methods.

    Science.gov (United States)

    Eriksen, Janus J; Sauer, Stephan P A; Mikkelsen, Kurt V; Jensen, Hans J Aa; Kongsted, Jacob

    2012-09-30

    We investigate the effect of including a dynamic reaction field at the lowest possible ab inito wave function level of theory, namely the Hartree-Fock (HF) self-consistent field level within the polarizable embedding (PE) formalism. We formulate HF based PE within the linear response theory picture leading to the PE-random-phase approximation (PE-RPA) and bridge the expressions to a second-order polarization propagator approximation (SOPPA) frame such that dynamic reaction field contributions are included at the RPA level in addition to the static response described at the SOPPA level but with HF induced dipole moments. We conduct calculations on para-nitro-aniline and para-nitro-phenolate using said model in addition to dynamic PE-RPA and PE-CAM-B3LYP. We compare the results to recently published PE-CCSD data and demonstrate how the cost effective SOPPA-based model successfully recovers a great portion of the inherent PE-RPA error when the observable is the solvatochromic shift. We furthermore demonstrate that whenever the change in density resulting from the ground state-excited state electronic transition in the solute is not associated with a significant change in the electric field, dynamic response contributions formulated at the HF level of theory manage to capture the majority of the system response originating from derivative densities. Copyright © 2012 Wiley Periodicals, Inc.

  1. Correlation of Dynamic PET and Gene Array Data in Patients with Gastrointestinal Stromal Tumors

    Directory of Open Access Journals (Sweden)

    Ludwig G. Strauss

    2012-01-01

    Full Text Available Introduction. The results obtained with dynamic PET (dPET were compared to gene expression data obtained in patients with gastrointestinal stromal tumors (GIST. The primary aim was to assess the association of the dPET results and gene expression data. Material and Methods. dPET was performed following the injection of F-18-fluorodeoxyglucose (FDG in 22 patients with GIST. All patients were examined prior to surgery for staging purpose. Compartment and noncompartment models were used for the quantitative evaluation of the dPET examinations. Gene array data were based on tumor specimen obtained by surgery after the PET examinations. Results. The data analysis revealed significant correlations for the dPET parameters and the expression of zinc finger genes (znf43, znf85, znf91, znf189. Furthermore, the transport of FDG (k1 was associated with VEGF-A. The cell cycle gene cyclin-dependent kinase inhibitor 1C was correlated with the maximum tracer uptake (SUVmax in the tumors. Conclusions. The data demonstrate a dependency of the tracer kinetics on genes associated with prognosis in GIST. Furthermore, angiogenesis and cell proliferation have an impact on the tracer uptake.

  2. BBGKY hierarchy and dynamics of correlations

    International Nuclear Information System (INIS)

    Polishchuk, D.O.

    2010-01-01

    We derive the BBGKY hierarchy for the Fermi and Bose many-particle systems, using the von Neumann hierarchy for the correlation operators. The solution of the Cauchy problem of the formulated hierarchy in the case of an n-body interaction potential is constructed in the space of sequences of trace-class operators.

  3. Multicomponent diffusion in molten salt NaF-ZrF{sub 4}: Dynamical correlations and Maxwell–Stefan diffusivities

    Energy Technology Data Exchange (ETDEWEB)

    Baig, Mohammad Saad, E-mail: saad110baig@gmail.com; Chakraborty, Brahmananda; Ramaniah, Lavanya M. [High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-85 (India)

    2016-05-23

    NaF-ZrF{sub 4} is used as a waste incinerator and as a coolant in Generation IV reactors.Structural and dynamical properties of molten NaF-ZrF{sub 4} system were studied along with Onsagercoefficients and Maxwell–Stefan (MS) Diffusivities applying Green–Kubo formalism and molecular dynamics (MD) simulations. The zirconium ions are found to be 8 fold coordinated with fluoride ions for all temperatures and concentrations. All the diffusive flux correlations show back-scattering. Even though the MS diffusivities are expected to depend very lightly on the composition because of decoupling of thermodynamic factor, the diffusivity Đ{sub Na-F} shows interesting behavior with the increase in concentration of ZrF{sub 4}. This is because of network formation in NaF-ZrF{sub 4}. Positive entropy constraints have been plotted to authenticate negative diffusivities observed.

  4. Free electron laser small signal dynamics and inclusion of electron-beam energy phase correlation

    International Nuclear Information System (INIS)

    Dattoli, G.; Giannessi, L.; Ottaviani, P. L.

    1998-01-01

    In this paper are analyzed the problems associated with the generation of coherent radiation by an e-beam, traversing an undulator magnet, with an initial energy-phase correlation. The mechanism of the process are explained and the role played by the bunching is clarified. The effect of the correlation on the stimulated part of the emission is also discussed [it

  5. Massively parallel simulations of strong electronic correlations: Realistic Coulomb vertex and multiplet effects

    Science.gov (United States)

    Baumgärtel, M.; Ghanem, K.; Kiani, A.; Koch, E.; Pavarini, E.; Sims, H.; Zhang, G.

    2017-07-01

    We discuss the efficient implementation of general impurity solvers for dynamical mean-field theory. We show that both Lanczos and quantum Monte Carlo in different flavors (Hirsch-Fye, continuous-time hybridization- and interaction-expansion) exhibit excellent scaling on massively parallel supercomputers. We apply these algorithms to simulate realistic model Hamiltonians including the full Coulomb vertex, crystal-field splitting, and spin-orbit interaction. We discuss how to remove the sign problem in the presence of non-diagonal crystal-field and hybridization matrices. We show how to extract the physically observable quantities from imaginary time data, in particular correlation functions and susceptibilities. Finally, we present benchmarks and applications for representative correlated systems.

  6. Friction tensor for a pair of Brownian particles: Spurious finite-size effects and molecular dynamics estimates

    International Nuclear Information System (INIS)

    Bocquet, L.; Hansen, J.P.; Piasecki, J.

    1997-01-01

    In this work, we show that in any finite system, the binary friction tenser for two Brownian particles cannot be directly estimated from an evaluation of the microscopic Green Kubo formula, involving the time integral of force-force autocorrelation functions. This pitfall is associated with a subtle inversion of the thermodynamic and long-time limits and leads to spurious results for the estimates of the friction matrix based on molecular dynamics simulations. Starting from a careful analysis of the coupled Langevin equations for two interacting Brownian particles, we derive a method to circumvent these effects and extract the binary friction tenser from the correlation function matrix of the instantaneous forces exerted by the bath particles on the fixed Brownian particles, and from the relaxation of the total momentum of the bath in a finite system. The general methodology is applied to the case of two hard or soft Brownian spheres in a bath of light particles. Numerical estimates of the relevant correlation functions and of the resulting self and mutual components of the matrix of friction tensors are obtained by molecular dynamics simulations for various spacings between the Brownian particles

  7. Expansion Effects on Back-to-Back Correlations

    International Nuclear Information System (INIS)

    Padula, S.S.; Krein, G.; Csoergo, T.; Hama, Y.; Panda, P.K.

    2004-01-01

    The back-to-back correlations (BBC) of particle-antiparticle pairs, signalling in-medium mass modification, are studied in a finite size thermalized medium. The width of BBC function is explicitly evaluated in the case of a nonrelativistic spherically symmetric expanding fireball. The effect of the flow is to reduce the BBC signal as compared to the case of non flow. Nevertheless, a significant signal survives finite-time emission plus expansion effects

  8. Partial Thermalization of Correlations in pA and AA collisionss

    Science.gov (United States)

    Gavin, Sean; Moschelli, George; Zin, Christopher

    2017-09-01

    Correlations born before the onset of hydrodynamic flow can leave observable traces on the final state particles. Measurement of these correlations can yield important information on the isotropization and thermalization process. Starting with Israel-Stewart hydrodynamics and Boltzmann-like kinetic theory in the presence of dynamic Langevin noise, we derive new partial differential equations for two-particle correlation functions. To illustrate how these equations can be used, we study the effect of thermalization on long range correlations. We show quite generally that two particle correlations at early times depend on S, the average probability that a parton suffers no interactions. We extract S from transverse momentum fluctuations measured in Pb+Pb collisions and predict the degree of partial thermalization in pA experiments. NSF-PHY-1207687.

  9. Correlated effective field theory in transition metal compounds

    International Nuclear Information System (INIS)

    Mukhopadhyay, Subhasis; Chatterjee, Ibha

    2004-01-01

    Mean field theory is good enough to study the physical properties at higher temperatures and in higher dimensions. It explains the critical phenomena in a restricted sense. Near the critical temperatures, when fluctuations become important, it may not give the correct results. Similarly in low dimensions, the correlations become important and the mean field theory seems to be inadequate to explain the physical phenomena. At low-temperatures too, the quantum correlations become important and these effects are to be treated in an appropriate way. In 1974, Prof. M.E. Lines of Bell Laboratories, developed a theory which goes beyond the mean field theory and is known as the correlated effective field (CEF) theory. It takes into account the fluctuations in a semiempirical way. Lines and his collaborators used this theory to explain the short-range correlations and their anisotropy in the paramagnetic phase. Later Suzuki et al., Chatterjee and Desai, Mukhopadhyay and Chatterjee applied this theory to the magnetically ordered phase and a tremendous success of the theory has been found in real systems. The success of the CEF theory is discussed in this review. In order to highlight the success of this theory, earlier effective field theories and their improvements over mean field theories e.g., Bethe-Peierls-Weiss method, reaction field approximation, etc., are also discussed in this review for completeness. The beauty of the CEF theory is that it is mean field-like, but captures the essential physics of real systems to a great extent. However, this is a weak correlated theory and as a result is inappropriate for the metallic phase when strong correlations become important. In recent times, transition metal oxides become important due to the discovery of the high-temperature superconductivity and the colossal magnetoresistance phenomena. These oxides seem to be Mott insulators and undergo an insulator to metal transition by applying magnetic field, pressure and by changing

  10. A simple method for identifying parameter correlations in partially observed linear dynamic models.

    Science.gov (United States)

    Li, Pu; Vu, Quoc Dong

    2015-12-14

    Parameter estimation represents one of the most significant challenges in systems biology. This is because biological models commonly contain a large number of parameters among which there may be functional interrelationships, thus leading to the problem of non-identifiability. Although identifiability analysis has been extensively studied by analytical as well as numerical approaches, systematic methods for remedying practically non-identifiable models have rarely been investigated. We propose a simple method for identifying pairwise correlations and higher order interrelationships of parameters in partially observed linear dynamic models. This is made by derivation of the output sensitivity matrix and analysis of the linear dependencies of its columns. Consequently, analytical relations between the identifiability of the model parameters and the initial conditions as well as the input functions can be achieved. In the case of structural non-identifiability, identifiable combinations can be obtained by solving the resulting homogenous linear equations. In the case of practical non-identifiability, experiment conditions (i.e. initial condition and constant control signals) can be provided which are necessary for remedying the non-identifiability and unique parameter estimation. It is noted that the approach does not consider noisy data. In this way, the practical non-identifiability issue, which is popular for linear biological models, can be remedied. Several linear compartment models including an insulin receptor dynamics model are taken to illustrate the application of the proposed approach. Both structural and practical identifiability of partially observed linear dynamic models can be clarified by the proposed method. The result of this method provides important information for experimental design to remedy the practical non-identifiability if applicable. The derivation of the method is straightforward and thus the algorithm can be easily implemented into a

  11. The Relevance of the Dynamic Stall Effect for Transient

    DEFF Research Database (Denmark)

    Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte

    2005-01-01

    This article describes a methodology to quantify the influence of dynamic stall on transient fault operations of active-stall turbines. The model of the dynamic stall effect is introduced briefly. The behaviour of the dynamic stall model during a transient fault operation is described mathematica...

  12. Effects of stressor characteristics on early warning signs of critical transitions and "critical coupling" in complex dynamical systems.

    Science.gov (United States)

    Blume, Steffen O P; Sansavini, Giovanni

    2017-12-01

    Complex dynamical systems face abrupt transitions into unstable and catastrophic regimes. These critical transitions are triggered by gradual modifications in stressors, which push the dynamical system towards unstable regimes. Bifurcation analysis can characterize such critical thresholds, beyond which systems become unstable. Moreover, the stochasticity of the external stressors causes small-scale fluctuations in the system response. In some systems, the decomposition of these signal fluctuations into precursor signals can reveal early warning signs prior to the critical transition. Here, we present a dynamical analysis of a power system subjected to an increasing load level and small-scale stochastic load perturbations. We show that the auto- and cross-correlations of bus voltage magnitudes increase, leading up to a Hopf bifurcation point, and further grow until the system collapses. This evidences a gradual transition into a state of "critical coupling," which is complementary to the established concept of "critical slowing down." Furthermore, we analyze the effects of the type of load perturbation and load characteristics on early warning signs and find that gradient changes in the autocorrelation provide early warning signs of the imminent critical transition under white-noise but not for auto-correlated load perturbations. Furthermore, the cross-correlation between all voltage magnitude pairs generally increases prior to and beyond the Hopf bifurcation point, indicating "critical coupling," but cannot provide early warning indications. Finally, we show that the established early warning indicators are oblivious to limit-induced bifurcations and, in the case of the power system model considered here, only react to an approaching Hopf bifurcation.

  13. Electron correlation effects on the d-d excitations in NiO

    NARCIS (Netherlands)

    de Graaf, C; Broer, R.; Nieuwpoort, WC

    1996-01-01

    The partly filled 3d shell in solid transition metal compounds is quite localized on the transition metal ion and gives rise to large electron correlation effects. With the recently developed CASSCF/CASPT2 approach electron correlation effects can be accounted for efficiently. The CASSCF step

  14. Correlated random walks induced by dynamical wavefunction collapse

    Science.gov (United States)

    Bedingham, Daniel

    2015-03-01

    Wavefunction collapse models modify Schrödinger's equation so that it describes the collapse of a superposition of macroscopically distinguishable states as a genuine physical process [PRA 42, 78 (1990)]. This provides a basis for the resolution of the quantum measurement problem. An additional generic consequence of the collapse mechanism is that it causes particles to exhibit a tiny random diffusive motion. Furthermore, the diffusions of two sufficiently nearby particles are positively correlated -- it is more likely that the particles diffuse in the same direction than would happen if they behaved independently [PRA 89, 032713 (2014)]. The use of this effect is proposed as an experimental test of wave function collapse models in which pairs of nanoparticles are simultaneously released from nearby traps and allowed a brief period of free fall. The random displacements of the particles are then measured. The experiment must be carried out at sufficiently low temperature and pressure for the collapse effects to dominate over the ambient environmental noise. It is argued that these constraints can be satisfied by current technologies for a large class of viable wavefunction collapse models. Work supported by the Templeton World Charity Foundation.

  15. Correlation effects on transition probabilities in Mo vi

    International Nuclear Information System (INIS)

    Froese Fischer, Charlotte

    2011-01-01

    The effect of correlation on transition probabilities for transitions in Mo vi from 4p 6 4d 2 D and 4p 6 5s 2 S to 4p 6 4f, 4p 6 5p, 4p 6 5f, 4p 5 4d 2 with J = 1/2-7/2 is investigated. Non-relativistic correlation studies show the near degeneracy of 4p 5 4d 2 ( 3 F) 2 F o and 4p 5 4d 2 ( 1 G) 2 F o configuration state functions and their strong interaction with 4p 6 5f 2 F o . The multiconfiguration Dirac-Hartree-Fock method is used to include relativistic effects and correlation simultaneously. Wavefunction composition is compared with other theory and with the least-squares fitted values recently published by Reader (2010 J. Phys. B: At. Mol. Opt. Phys. 43 074024). Transition probability data are provided along with data required for accessing accuracy. Results are compared with other published values.

  16. Conditional Correlation Models of Autoregressive Conditional Heteroskedasticity with Nonstationary GARCH Equations

    DEFF Research Database (Denmark)

    Amado, Cristina; Teräsvirta, Timo

    -run and the short-run dynamic behaviour of the volatilities. The structure of the conditional correlation matrix is assumed to be either time independent or to vary over time. We apply our model to pairs of seven daily stock returns belonging to the S&P 500 composite index and traded at the New York Stock Exchange......In this paper we investigate the effects of careful modelling the long-run dynamics of the volatilities of stock market returns on the conditional correlation structure. To this end we allow the individual unconditional variances in Conditional Correlation GARCH models to change smoothly over time...... by incorporating a nonstationary component in the variance equations. The modelling technique to determine the parametric structure of this time-varying component is based on a sequence of specification Lagrange multiplier-type tests derived in Amado and Teräsvirta (2011). The variance equations combine the long...

  17. The Effect of Error Correlation on Interfactor Correlation in Psychometric Measurement

    Science.gov (United States)

    Westfall, Peter H.; Henning, Kevin S. S.; Howell, Roy D.

    2012-01-01

    This article shows how interfactor correlation is affected by error correlations. Theoretical and practical justifications for error correlations are given, and a new equivalence class of models is presented to explain the relationship between interfactor correlation and error correlations. The class allows simple, parsimonious modeling of error…

  18. Electrical detection of magnetization dynamics via spin rectification effects

    Energy Technology Data Exchange (ETDEWEB)

    Harder, Michael, E-mail: michael.harder@umanitoba.ca; Gui, Yongsheng, E-mail: ysgui@physics.umanitoba.ca; Hu, Can-Ming, E-mail: hu@physics.umanitoba.ca

    2016-11-23

    The purpose of this article is to review the current status of a frontier in dynamic spintronics and contemporary magnetism, in which much progress has been made in the past decade, based on the creation of a variety of micro and nanostructured devices that enable electrical detection of magnetization dynamics. The primary focus is on the physics of spin rectification effects, which are well suited for studying magnetization dynamics and spin transport in a variety of magnetic materials and spintronic devices. Intended to be intelligible to a broad audience, the paper begins with a pedagogical introduction, comparing the methods of electrical detection of charge and spin dynamics in semiconductors and magnetic materials respectively. After that it provides a comprehensive account of the theoretical study of both the angular dependence and line shape of electrically detected ferromagnetic resonance (FMR), which is summarized in a handbook format easy to be used for analysing experimental data. We then review and examine the similarity and differences of various spin rectification effects found in ferromagnetic films, magnetic bilayers and magnetic tunnel junctions, including a discussion of how to properly distinguish spin rectification from the spin pumping/inverse spin Hall effect generated voltage. After this we review the broad applications of rectification effects for studying spin waves, nonlinear dynamics, domain wall dynamics, spin current, and microwave imaging. We also discuss spin rectification in ferromagnetic semiconductors. The paper concludes with both historical and future perspectives, by summarizing and comparing three generations of FMR spectroscopy which have been developed for studying magnetization dynamics.

  19. Generalized hydrodynamic correlations and fractional memory functions

    Science.gov (United States)

    Rodríguez, Rosalio F.; Fujioka, Jorge

    2015-12-01

    A fractional generalized hydrodynamic (GH) model of the longitudinal velocity fluctuations correlation, and its associated memory function, for a complex fluid is analyzed. The adiabatic elimination of fast variables introduces memory effects in the transport equations, and the dynamic of the fluctuations is described by a generalized Langevin equation with long-range noise correlations. These features motivate the introduction of Caputo time fractional derivatives and allows us to calculate analytic expressions for the fractional longitudinal velocity correlation function and its associated memory function. Our analysis eliminates a spurious constant term in the non-fractional memory function found in the non-fractional description. It also produces a significantly slower power-law decay of the memory function in the GH regime that reduces to the well-known exponential decay in the non-fractional Navier-Stokes limit.

  20. Analyzing the Cross-Correlation Between Onshore and Offshore RMB Exchange Rates Based on Multifractal Detrended Cross-Correlation Analysis (MF-DCCA)

    Science.gov (United States)

    Xie, Chi; Zhou, Yingying; Wang, Gangjin; Yan, Xinguo

    We use the multifractal detrended cross-correlation analysis (MF-DCCA) method to explore the multifractal behavior of the cross-correlation between exchange rates of onshore RMB (CNY) and offshore RMB (CNH) against US dollar (USD). The empirical data are daily prices of CNY/USD and CNH/USD from May 1, 2012 to February 29, 2016. The results demonstrate that: (i) the cross-correlation between CNY/USD and CNH/USD is persistent and its fluctuation is smaller when the order of fluctuation function is negative than that when the order is positive; (ii) the multifractal behavior of the cross-correlation between CNY/USD and CNH/USD is significant during the sample period; (iii) the dynamic Hurst exponents obtained by the rolling windows analysis show that the cross-correlation is stable when the global economic situation is good and volatile in bad situation; and (iv) the non-normal distribution of original data has a greater effect on the multifractality of the cross-correlation between CNY/USD and CNH/USD than the temporary correlation.

  1. Time-dependent reduced density matrix functional theory applied to laser-driven, correlated two-electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins; Kapoor, Varun; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Time-dependent density functional theory (TDDFT) with known and practicable exchange-correlation potentials does not capture highly correlated electron dynamics such as single-photon double ionization, autoionization, or nonsequential ionization. Time-dependent reduced density matrix functional theory (TDRDMFT) may remedy these problems. The key ingredients in TDRDMFT are the natural orbitals (NOs), i.e., the eigenfunctions of the one-body reduced density matrix (1-RDM), and the occupation numbers (OCs), i.e., the respective eigenvalues. The two-body reduced density matrix (2-RDM) is then expanded in NOs, and equations of motion for the NOs can be derived. If the expansion coefficients of the 2-RDM were known exactly, the problem at hand would be solved. In practice, approximations have to be made. We study the prospects of TDRDMFT following a top-down approach. We solve the exact two-electron time-dependent Schroedinger equation for a model Helium atom in intense laser fields in order to study highly correlated phenomena such as the population of autoionizing states or single-photon double ionization. From the exact wave function we calculate the exact NOs, OCs, the exact expansion coefficients of the 2-RDM, and the exact potentials in the equations of motion. In that way we can identify how many NOs and which level of approximations are necessary to capture such phenomena.

  2. Effects of strong and electromagnetic correlations on neutrino interactions in dense matter

    International Nuclear Information System (INIS)

    Reddy, S.; Prakash, M.; Lattimer, J.M.; Reddy, S.; Pons, J.A.

    1999-01-01

    An extensive study of the effects of correlations on both charged and neutral current weak interaction rates in dense matter is performed. Both strong and electromagnetic correlations are considered. The propagation of particle-hole interactions in the medium plays an important role in determining the neutrino mean free paths. The effects due to Pauli blocking and density, spin, and isospin correlations in the medium significantly reduce the neutrino cross sections. As a result of the lack of experimental information at high density, these correlations are necessarily model dependent. For example, spin correlations in nonrelativistic models are found to lead to larger suppressions of neutrino cross sections compared to those of relativistic models. This is due to the tendency of the nonrelativistic models to develop spin instabilities. Notwithstanding the above caveats, and the differences between nonrelativistic and relativistic approaches such as the spin- and isospin-dependent interactions and the nucleon effective masses, suppressions of order 2 - 3, relative to the case in which correlations are ignored, are obtained. Neutrino interactions in dense matter are especially important for supernova and early neutron star evolution calculations. The effects of correlations for protoneutron star evolution are calculated. Large effects on the internal thermodynamic properties of protoneutron stars, such as the temperature, are found. These translate into significant early enhancements in the emitted neutrino energies and fluxes, especially after a few seconds. At late times, beyond about 10 s, the emitted neutrino fluxes decrease more rapidly compared to simulations without the effects of correlations, due to the more rapid onset of neutrino transparency in the protoneutron star. copyright 1999 The American Physical Society

  3. Changes in the physical properties of the dynamic layer and its correlation with permeate quality in a self-forming dynamic membrane bioreactor.

    Science.gov (United States)

    Guan, Dao; Dai, Ji; Watanabe, Yoshimasa; Chen, Guanghao

    2018-09-01

    The self-forming dynamic membrane bioreactor (SFDMBR) is a biological wastewater treatment technology based on the conventional membrane bioreactor (MBR) with membrane material modification to a large pore size (30-100 μm). This modification requires a dynamic layer formed by activated sludge to provide effective filtration function for high-quality permeate production. The properties of the dynamic layer are therefore important for permeate quality in SFDMBRs. The interaction between the structure of the dynamic layer and the performance of SFDMBRs is little known but understandably complex. To elucidate the interaction, a lab-scale SFDMBR system coupled with a nylon woven mesh as the supporting material was operated. After development of a mature dynamic layer, excellent solid-liquid separation was achieved, as evidenced by a low permeate turbidity of less than 2 NTU. The permeate turbidity stayed below this level for nearly 80 days. In the fouling phase, the dynamic layer was compressed with an increase in the trans-membrane pressure and the quality of the permeate kept deteriorating until the turbidity exceeded 10 NTU. The investigation revealed that the majority of permeate particles were dissociated from the dynamic layer on the back surface of the supporting material, which is caused by the compression, breakdown, and dissociation of the dynamic layer. This phenomenon was observed directly in experiment instead of model prediction or conjecture for the first time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Nonequilibrium Physics at Short Time Scales: Formation of Correlations

    International Nuclear Information System (INIS)

    Peliti, L

    2005-01-01

    It is a happy situation when similar concepts and theoretical techniques can be applied to widely different physical systems because of a deep similarity in the situations being studied. The book illustrates this well; it focuses on the description of correlations in quantum systems out of equilibrium at very short time scales, prompted by experiments with short laser pulses in semiconductors, and in complex reactions in heavy nuclei. In both cases the experiments are characterized by nonlinear dynamics and by strong correlations out of equilibrium. In some systems there are also important finite-size effects. The book comprises several independent contributions of moderate length, and I sometimes felt that a more intensive effort in cross-coordination of the different contributions could have been of help. It is divided almost equally between theory and experiment. In the theoretical part, there is a thorough discussion both of the kinematic aspects (description of correlations) and the dynamical ones (evaluation of correlations). The experimental part is naturally divided according to the nature of the system: the interaction of pulsed lasers with matter on the one hand, and the correlations in finite-size systems (nanoparticles and nuclei) on the other. There is also a discussion on the dynamics of superconductors, a subject currently of great interest. Although an effort has been made to keep each contribution self-contained, I must admit that reading level is uneven. However, there are a number of thorough and stimulating contributions that make this book a useful introduction to the topic at the level of graduate students or researchers acquainted with quantum statistical mechanics. (book review)

  5. Effect of chemical composition on the flocculation dynamics of latex-based synthetic activated sludge

    International Nuclear Information System (INIS)

    Tan Phong Nguyen; Hankins, Nicholas P.; Hilal, Nidal

    2007-01-01

    This study investigates the effect of calcium, alginate, fibrous cellulose, and pH on the flocculation dynamics and final properties of synthetic activated sludges. A laboratory-scale batch reactor, fed with standard synthetic sludges was used. The effects of varying calcium concentration (5-25 mM), alginate concentration (25-125 mg/L), fibrous cellulose concentration (0.2-0.8 g/L) and pH (3-9) on the sludge characteristics were studied by varying one parameter whilst keeping the others constant. The results from experiments indicated that the calcium, alginate, fibrous cellulose, and pH had the critical effect on the aggregation rate, flocs size, and made the improvement of the final properties of sludge. Dynamic measurements have established the optimum conditions for floc formation and can accurately reflect the state of formation of the synthetic activated sludge flocs. These correlate well with measurements of settleability and turbidity of the synthetic activated sludge. The results of this study support the bonding theory and indicate that formation of cations-polymer complexes and polymer gelation are important means of flocculation. The development of synthetic activated sludges is suggested also to be a possible surrogate for studying the final properties of activated sludge

  6. Allee effects on population dynamics in continuous (overlapping) case

    International Nuclear Information System (INIS)

    Merdan, H.; Duman, O.; Akin, O.; Celik, C.

    2009-01-01

    This paper presents the stability analysis of equilibrium points of a continuous population dynamics with delay under the Allee effect which occurs at low population density. The mathematical results and numerical simulations show the stabilizing role of the Allee effects on the stability of the equilibrium point of this population dynamics.

  7. Di-jet production and angular correlations in DIS at NLO

    International Nuclear Information System (INIS)

    Jaliflian-Marian, J.

    2016-01-01

    Angular correlations are a sensitive probe of the dynamics of QCD at high energy. In particular azimuthal angular correlations between two hadrons produced in Deeply Inelastic Scattering (DIS) of a virtual photon on a hadron or nucleus offer the best environment in which to investigate high gluon density (gluon saturation) effects expected to arise at small x. Here we give a progress report on our derivation of Next to Leading Order (NLO) corrections to di-jet (di-hadron) production in DIS. (author)

  8. Expansion effects on back-to-back correlations

    Energy Technology Data Exchange (ETDEWEB)

    Padula, S.S.; Krein, G. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)]. E-mail: padula@ift.unesp.br; Csoerg, T.; Panda, P.K. [Central Research Institute for Physics (KFKI), Budapest (Hungary). Research Institute for Particle and Nuclear Physics (RMKI); Hama, Y. [Santa Catarina Univ., Florianopolis, SC (Brazil). Centro de Ciencias Fisicas e Matematicas. Dept. de Fisica

    2004-07-01

    The back-to-back correlations (BBC) of particle-antiparticle pairs, signalling in-medium mass modification, are studied in a finite size thermalized medium. The width of BBC function is explicitly evaluated in the case of a nonrelativistic spherically symmetric expanding fireball. The effect of the flow is to reduce the BBC signal as compared to the case of non flow. Nevertheless, a significant signal survives finite-time emission plus expansion effects. (author)

  9. Expansion effects on back-to-back correlations

    International Nuclear Information System (INIS)

    Padula, S.S.; Krein, G.; Csoerg, T.; Panda, P.K.; Hama, Y.

    2004-01-01

    The back-to-back correlations (BBC) of particle-antiparticle pairs, signalling in-medium mass modification, are studied in a finite size thermalized medium. The width of BBC function is explicitly evaluated in the case of a nonrelativistic spherically symmetric expanding fireball. The effect of the flow is to reduce the BBC signal as compared to the case of non flow. Nevertheless, a significant signal survives finite-time emission plus expansion effects. (author)

  10. Effects of magnetic correlation on the electric properties in multiferroic materials

    International Nuclear Information System (INIS)

    Zhai, Liang-Jun; Wang, Huai-Yu

    2015-01-01

    The effects of magnetic correlation on the electric properties in the multiferroic materials are studied, where the phase transition temperature of the magnetic subsystem T m is lower than that of the electric subsystem T e . A Heisenberg-type Hamiltonian and a transverse Ising model are employed to describe the ferromagnetic and ferroelectric subsystems, respectively. We find that the magnetic correlation can influence the electric properties above the T m , and magnetic transverse and longitudinal correlations have opposite functions. In the curves of temperature dependence of polarization, kinks appear at T m which is dominated by the sharp change of decreasing rate of the magnetic correlation. The kinks can be eliminated by an external magnetic field. The magnetic transverse and longitudinal correlations play contrary roles on the manipulation of polarization by the external magnetic field. - Highlights: • Both magnetic longitudinal and transverse correlations can influence the electric subsystem through magnetoelectric (ME) coupling at any temperature. • The magnetic longitudinal and transverse correlations have contrary effects in influencing the phase transition temperature of electric subsystem. • The electric phase transition temperature decrease with the ME coupling strength, while it was not so by mean-field theory. • An external field can make the influence smoother around the transition point, and can enhance the electric polarization. • Magnetic longitudinal and transverse correlations have contrary effects on the manipulation of polarization by magnetic field at temperature above the magnetic phase transition point

  11. An asymptotic theory for cross-correlation between auto-correlated sequences and its application on neuroimaging data.

    Science.gov (United States)

    Zhou, Yunyi; Tao, Chenyang; Lu, Wenlian; Feng, Jianfeng

    2018-04-20

    Functional connectivity is among the most important tools to study brain. The correlation coefficient, between time series of different brain areas, is the most popular method to quantify functional connectivity. Correlation coefficient in practical use assumes the data to be temporally independent. However, the time series data of brain can manifest significant temporal auto-correlation. A widely applicable method is proposed for correcting temporal auto-correlation. We considered two types of time series models: (1) auto-regressive-moving-average model, (2) nonlinear dynamical system model with noisy fluctuations, and derived their respective asymptotic distributions of correlation coefficient. These two types of models are most commonly used in neuroscience studies. We show the respective asymptotic distributions share a unified expression. We have verified the validity of our method, and shown our method exhibited sufficient statistical power for detecting true correlation on numerical experiments. Employing our method on real dataset yields more robust functional network and higher classification accuracy than conventional methods. Our method robustly controls the type I error while maintaining sufficient statistical power for detecting true correlation in numerical experiments, where existing methods measuring association (linear and nonlinear) fail. In this work, we proposed a widely applicable approach for correcting the effect of temporal auto-correlation on functional connectivity. Empirical results favor the use of our method in functional network analysis. Copyright © 2018. Published by Elsevier B.V.

  12. Towards TDDFT for Strongly Correlated Materials

    Directory of Open Access Journals (Sweden)

    Shree Ram Acharya

    2016-09-01

    Full Text Available We present some details of our recently-proposed Time-Dependent Density-Functional Theory (TDDFT for strongly-correlated materials in which the exchange-correlation (XC kernel is derived from the charge susceptibility obtained using Dynamical Mean-Field Theory (the TDDFT + DMFT approach. We proceed with deriving the expression for the XC kernel for the one-band Hubbard model by solving DMFT equations via two approaches, the Hirsch–Fye Quantum Monte Carlo (HF-QMC and an approximate low-cost perturbation theory approach, and demonstrate that the latter gives results that are comparable to the exact HF-QMC solution. Furthermore, through a variety of applications, we propose a simple analytical formula for the XC kernel. Additionally, we use the exact and approximate kernels to examine the nonhomogeneous ultrafast response of two systems: a one-band Hubbard model and a Mott insulator YTiO3. We show that the frequency dependence of the kernel, i.e., memory effects, is important for dynamics at the femtosecond timescale. We also conclude that strong correlations lead to the presence of beats in the time-dependent electric conductivity in YTiO3, a feature that could be tested experimentally and that could help validate the few approximations used in our formulation. We conclude by proposing an algorithm for the generalization of the theory to non-linear response.

  13. Correlation dynamics in East Asian financial markets

    NARCIS (Netherlands)

    Lestano, L; Kuper, Gerard H.

    2016-01-01

    We examine the dynamic relationship between stock returns and exchange rate changes using daily data from January 1994 to September 2013 for six East Asian countries. We use the multivariate GARCH-DCC model in order to disclose the relationship between stock markets and foreign exchange markets

  14. Social contagions on correlated multiplex networks

    Science.gov (United States)

    Wang, Wei; Cai, Meng; Zheng, Muhua

    2018-06-01

    The existence of interlayer degree correlations has been disclosed by abundant multiplex network analysis. However, how they impose on the dynamics of social contagions are remain largely unknown. In this paper, we propose a non-Markovian social contagion model in multiplex networks with inter-layer degree correlations to delineate the behavior spreading, and develop an edge-based compartmental (EBC) theory to describe the model. We find that multiplex networks promote the final behavior adoption size. Remarkably, it can be observed that the growth pattern of the final behavior adoption size, versus the behavioral information transmission probability, changes from discontinuous to continuous once decreasing the behavior adoption threshold in one layer. We finally unravel that the inter-layer degree correlations play a role on the final behavior adoption size but have no effects on the growth pattern, which is coincidence with our prediction by using the suggested theory.

  15. Quantum theory for the dynamic structure factor in correlated two-component systems in nonequilibrium: Application to x-ray scattering

    Science.gov (United States)

    Vorberger, J.; Chapman, D. A.

    2018-01-01

    We present a quantum theory for the dynamic structure factors in nonequilibrium, correlated, two-component systems such as plasmas or warm dense matter. The polarization function, which is needed as the input for the calculation of the structure factors, is calculated in nonequilibrium based on a perturbation expansion in the interaction strength. To make our theory applicable for x-ray scattering, a generalized Chihara decomposition for the total electron structure factor in nonequilibrium is derived. Examples are given and the influence of correlations and exchange on the structure and the x-ray-scattering spectrum are discussed for a model nonequilibrium distribution, as often encountered during laser heating of materials, as well as for two-temperature systems.

  16. Quantum theory for the dynamic structure factor in correlated two-component systems in nonequilibrium: Application to x-ray scattering.

    Science.gov (United States)

    Vorberger, J; Chapman, D A

    2018-01-01

    We present a quantum theory for the dynamic structure factors in nonequilibrium, correlated, two-component systems such as plasmas or warm dense matter. The polarization function, which is needed as the input for the calculation of the structure factors, is calculated in nonequilibrium based on a perturbation expansion in the interaction strength. To make our theory applicable for x-ray scattering, a generalized Chihara decomposition for the total electron structure factor in nonequilibrium is derived. Examples are given and the influence of correlations and exchange on the structure and the x-ray-scattering spectrum are discussed for a model nonequilibrium distribution, as often encountered during laser heating of materials, as well as for two-temperature systems.

  17. Coherence and correlation in doubly excited heliumlike atoms

    International Nuclear Information System (INIS)

    Burgdoerfer, J.; Morgenstern, R.

    1988-01-01

    We analyze properties of the density matrix of doubly excited two-electron systems formed in inelastic collisions. Formulas for the two-particle joint angular probability density, the angular correlation function, and the reduced single-particle density are derived. Of particular interest is the interplay between the intrinsic correlations of the stationary two-electron state and collisionally induced coherences. We focus on its effects on the correlated and single-particle motion of the electrons. If one chooses approximate stationary wave functions reflecting the approximate O(4) x O(4)contains(4) dynamical symmetry, a simple quasiclassical interpretation of coherence and correlation in terms of shapes and modes of the relative motion of Kepler orbits can be given. The present description is applied to recent experimental results by Van der Straten and Morgenstern [Comments At. Mol. Phys. 19, 243 (1986)

  18. Extreme electron correlation effects on the electric properties of atomic anions

    International Nuclear Information System (INIS)

    Canuto, S.

    1994-01-01

    The contribution of the electron correlation effects to the calculated dipole polarizability and hyper-polarizability of the first-row atomic anions is calculated and analyzed. It is shown that the total correlation contribution to the dipole hyperpolarizability is extremely large with the Hartree-Fock model accounting for only a small fraction of the accurate result. The linear and, more pronounced, the nonlinear response of atomic anions to the application of an electric field emphatically shows the effects of the correlated motion of the electrons

  19. Clustering Effects on Dynamics in Ionomer Solutions: A Neutron Spin Echo Insight

    Science.gov (United States)

    Perahia, Dvora; Wijesinghe, Sidath; Senanayake, Manjula; Wickramasinghe, Anuradhi; Mohottalalage, Supun S.; Ohl, Michael

    Ionizable blocks in ionomers associate into aggregates serving as physical cross-links and concurrently form transport pathways. The dynamics of ionomers underline their functionality. Incorporating small numbers of ionic groups into polymers significantly constraint their dynamics. Recent computational studies demonstrated a direct correlation between ionic cluster morphology and polymer dynamics. Here using neutron spin echo, we probe the segmental dynamics of polystyrene sulfonate (PSS) as the degree of sulfonation of the PSS and the solution dielectrics are varied. Specifically, 20Wt% PSS of 11,000 g/mol with polydispersity of 1.02 with 3% and 9% sulfonation were studies in toluene (dielectric constant ɛ = 2.8), a good solvent for polystyrene, and with 5Wt% of ethanol (ɛ = 24.3l) added. The dynamic structure factor S(q,t) was analyzed with a single exponential except for a limited q range where two time constants associated with constraint and mobile segments were detected. S(q,t) exhibits several distinctive time and length scales for the dynamics with a crossover appearing at the length scale of the ionic clusters. NSF DMR 1611136.

  20. Correlation Functions in Open Quantum-Classical Systems

    OpenAIRE

    Hsieh, Chang-Yu; Kapral, Raymond

    2013-01-01

    Quantum time correlation functions are often the principal objects of interest in experimental investigations of the dynamics of quantum systems. For instance, transport properties, such as diffusion and reaction rate coefficients, can be obtained by integrating these functions. The evaluation of such correlation functions entails sampling from quantum equilibrium density operators and quantum time evolution of operators. For condensed phase and complex systems, where quantum dynamics is diff...

  1. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?

    Science.gov (United States)

    Murphy, Kevin; Birn, Rasmus M; Handwerker, Daniel A; Jones, Tyler B; Bandettini, Peter A

    2009-02-01

    Low-frequency fluctuations in fMRI signal have been used to map several consistent resting state networks in the brain. Using the posterior cingulate cortex as a seed region, functional connectivity analyses have found not only positive correlations in the default mode network but negative correlations in another resting state network related to attentional processes. The interpretation is that the human brain is intrinsically organized into dynamic, anti-correlated functional networks. Global variations of the BOLD signal are often considered nuisance effects and are commonly removed using a general linear model (GLM) technique. This global signal regression method has been shown to introduce negative activation measures in standard fMRI analyses. The topic of this paper is whether such a correction technique could be the cause of anti-correlated resting state networks in functional connectivity analyses. Here we show that, after global signal regression, correlation values to a seed voxel must sum to a negative value. Simulations also show that small phase differences between regions can lead to spurious negative correlation values. A combination breath holding and visual task demonstrates that the relative phase of global and local signals can affect connectivity measures and that, experimentally, global signal regression leads to bell-shaped correlation value distributions, centred on zero. Finally, analyses of negatively correlated networks in resting state data show that global signal regression is most likely the cause of anti-correlations. These results call into question the interpretation of negatively correlated regions in the brain when using global signal regression as an initial processing step.

  2. Marketing Communications Effectiveness in Small and Medium Enterprises (SMEs in Bandung

    Directory of Open Access Journals (Sweden)

    Asep Suryana

    2001-12-01

    Full Text Available The objectives of the study were: (1 To know the dynamics of Small and middle Scale Industry (SMSI in Kabupaten Bandun; (2 Individual effectivity on SMSI in KabupatenBandung; (3 Marketing communication management effectivity on SMSI in Kabupaten Bandung; (4 The correlation between organization dynamics level and individual effectivity on SMSI organization in Kabupaten Bandung; (5 The correlation between organization dynamics level and effectivity of marketing communication management on SMSI in Kabupaten Bandung; and (6 The correlation between individual effectivity level and effectivity of marketing communication management on SMSI in Kabupaten Bandung. The methodology used in this study was Survey Methods, to conducted the manager and workers of Small Scale Industry in Kabupaten Bandung as population target. The sample size was 60 respondents selected randomly based on sampling Random sample, technique. The results of the study showed that: (1 The dynamics of SMSI organization concerning on anatomy, structure, and process organization was effective; (2 the individual on SMSI organization concerning on motivation, attitude, aptitude, temperament, and role perception was effective; (3 The effectivity of marketing communication management on SMSI in Kabupaten Bandung concerning on planning, actuating, controlling, and marketing communication mix was effective; (4 The correlation between the dynamics organization level and individual effectivity on organization SMSI was significan; (5 The correlation between the dynamics organization level and effectivity of marketing communication management on SMSI in Kabupaten Bandung, was significan; and (6 The correlaton between individual effectivity on organization and effectivity of marketing communication managementon SMSI in Kabupaten Bandung was significant.

  3. Permeability to macromolecular contrast media quantified by dynamic MRI correlates with tumor tissue assays of vascular endothelial growth factor (VEGF)

    International Nuclear Information System (INIS)

    Cyran, Clemens C.; Sennino, Barbara; Fu, Yanjun; Rogut, Victor; Shames, David M.; Chaopathomkul, Bundit; Wendland, Michael F.; McDonald, Donald M.; Brasch, Robert C.; Raatschen, Hans-Juergen

    2012-01-01

    Purpose: To correlate dynamic MRI assays of macromolecular endothelial permeability with microscopic area–density measurements of vascular endothelial growth factor (VEGF) in tumors. Methods and material: This study compared tumor xenografts from two different human cancer cell lines, MDA-MB-231 tumors (n = 5), and MDA-MB-435 (n = 8), reported to express respectively higher and lower levels of VEGF. Dynamic MRI was enhanced by a prototype macromolecular contrast medium (MMCM), albumin-(Gd-DTPA)35. Quantitative estimates of tumor microvascular permeability (K PS ; μl/min × 100 cm 3 ), obtained using a two-compartment kinetic model, were correlated with immunohistochemical measurements of VEGF in each tumor. Results: Mean K PS was 2.4 times greater in MDA-MB-231 tumors (K PS = 58 ± 30.9 μl/min × 100 cm 3 ) than in MDA-MB-435 tumors (K PS = 24 ± 8.4 μl/min × 100 cm 3 ) (p < 0.05). Correspondingly, the area–density of VEGF in MDA-MB-231 tumors was 2.6 times greater (27.3 ± 2.2%, p < 0.05) than in MDA-MB-435 cancers (10.5 ± 0.5%, p < 0.05). Considering all tumors without regard to cell type, a significant positive correlation (r = 0.67, p < 0.05) was observed between MRI-estimated endothelial permeability and VEGF immunoreactivity. Conclusion: Correlation of MRI assays of endothelial permeability to a MMCM and VEGF immunoreactivity of tumors support the hypothesis that VEGF is a major contributor to increased macromolecular permeability in cancers. When applied clinically, the MMCM-enhanced MRI approach could help to optimize the appropriate application of VEGF-inhibiting therapy on an individual patient basis.

  4. Effects of mobility on ordering dynamics

    International Nuclear Information System (INIS)

    Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2009-01-01

    Models of ordering dynamics allow us to understand natural systems in which an initially disordered population homogenizes some traits via local interactions. The simplest of these models, with wide applications ranging from evolutionary to social dynamics, are the Voter and Moran processes, usually defined in terms of static or randomly mixed individuals that interact with a neighbor to copy or modify a discrete trait. Here we study the effects of diffusion in Voter/Moran processes by proposing a generalization of ordering dynamics in a metapopulation framework, in which individuals are endowed with mobility and diffuse through a spatial structure represented as a graph of patches upon which interactions take place. We show that diffusion dramatically affects the time to reach the homogeneous state, independently of the underlying network's topology, while the final consensus emerges through different local/global mechanisms, depending on the mobility strength. Our results highlight the crucial role played by mobility in ordering processes and set up a general framework that allows its effect to be studied on a large class of models, with implications in the understanding of evolutionary and social phenomena. (letter)

  5. Dynamic contrast-enhanced MR imaging of the rectum: Correlations between single-section and whole-tumor histogram analyses.

    Science.gov (United States)

    Choi, M H; Oh, S N; Park, G E; Yeo, D-M; Jung, S E

    2018-05-10

    To evaluate the interobserver and intermethod correlations of histogram metrics of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters acquired by multiple readers using the single-section and whole-tumor volume methods. Four DCE parameters (K trans , K ep , V e , V p ) were evaluated in 45 patients (31 men and 14 women; mean age, 61±11 years [range, 29-83 years]) with locally advanced rectal cancer using pre-chemoradiotherapy (CRT) MRI. Ten histogram metrics were extracted using two methods of lesion selection performed by three radiologists: the whole-tumor volume method for the whole tumor on axial section-by-section images and the single-section method for the entire area of the tumor on one axial image. The interobserver and intermethod correlations were evaluated using the intraclass correlation coefficients (ICCs). The ICCs showed excellent interobserver and intermethod correlations in most of histogram metrics of the DCE parameters. The ICCs among the three readers were > 0.7 (Phistogram metrics, except for the minimum and maximum. The intermethod correlations for most of the histogram metrics were excellent for each radiologist, regardless of the differences in the radiologists' experience. The interobserver and intermethod correlations for most of the histogram metrics of the DCE parameters are excellent in rectal cancer. Therefore, the single-section method may be a potential alternative to the whole-tumor volume method using pre-CRT MRI, despite the fact that the high agreement between the two methods cannot be extrapolated to post-CRT MRI. Copyright © 2018 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  6. Gamma-ray Burst Prompt Correlations: Selection and Instrumental Effects

    Science.gov (United States)

    Dainotti, M. G.; Amati, L.

    2018-05-01

    The prompt emission mechanism of gamma-ray bursts (GRB) even after several decades remains a mystery. However, it is believed that correlations between observable GRB properties, given their huge luminosity/radiated energy and redshift distribution extending up to at least z ≈ 9, are promising possible cosmological tools. They also may help to discriminate among the most plausible theoretical models. Nowadays, the objective is to make GRBs standard candles, similar to supernovae (SNe) Ia, through well-established and robust correlations. However, differently from SNe Ia, GRBs span over several order of magnitude in their energetics, hence they cannot yet be considered standard candles. Additionally, being observed at very large distances, their physical properties are affected by selection biases, the so-called Malmquist bias or Eddington effect. We describe the state of the art on how GRB prompt correlations are corrected for these selection biases to employ them as redshift estimators and cosmological tools. We stress that only after an appropriate evaluation and correction for these effects, GRB correlations can be used to discriminate among the theoretical models of prompt emission, to estimate the cosmological parameters and to serve as distance indicators via redshift estimation.

  7. On the zero temperature limit of the Kubo-transformed quantum time correlation function

    Science.gov (United States)

    Hernández de la Peña, Lisandro

    2014-04-01

    The zero temperature limit of several quantum time correlation functions is analysed. It is shown that while the canonical quantum time correlation function retains the full dynamical information as temperature approaches zero, the Kubo-transformed and the thermally symmetrised quantum time correlation functions lose all dynamical information at this limit. This is shown to be a consequence of the projection onto the ground state, via the limiting process of the quantities ? and ?, either together as a product, or separately. Although these findings would seem to suggest that finite-temperature methods commonly used to estimate Kubo correlation functions would be incapable of retaining any ground state dynamics, we propose a route for recovering in principle all dynamical information at the ground state. It is first shown that the usual frequency space relation between canonical and Kubo correlation functions also holds for microcanonical time correlation functions. Since the Kubo-transformed microcanonical correlation function can be obtained from the usual finite-temperature function by including a projection onto the corresponding microcanonical ensemble, finite-temperature methods, properly modified to incorporate such a constraint, can be used to capture full quantum dynamics at any arbitrary energy state, including the ground state. This approach is illustrated with the application of centroid dynamics to the ground state dynamics of the harmonic oscillator.

  8. Apparent Diffusion Coefficient and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Pancreatic Cancer: Characteristics and Correlation With Histopathologic Parameters.

    Science.gov (United States)

    Ma, Wanling; Li, Na; Zhao, Weiwei; Ren, Jing; Wei, Mengqi; Yang, Yong; Wang, Yingmei; Fu, Xin; Zhang, Zhuoli; Larson, Andrew C; Huan, Yi

    2016-01-01

    To clarify diffusion and perfusion abnormalities and evaluate correlation between apparent diffusion coefficient (ADC), MR perfusion and histopathologic parameters of pancreatic cancer (PC). Eighteen patients with PC underwent diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Parameters of DCE-MRI and ADC of cancer and non-cancerous tissue were compared. Correlation between the rate constant that represents transfer of contrast agent from the arterial blood into the extravascular extracellular space (K, volume of the extravascular extracellular space per unit volume of tissue (Ve), and ADC of PC and histopathologic parameters were analyzed. The rate constant that represents transfer of contrast agent from the extravascular extracellular space into blood plasma, K, tissue volume fraction occupied by vascular space, and ADC of PC were significantly lower than nontumoral pancreases. Ve of PC was significantly higher than that of nontumoral pancreas. Apparent diffusion coefficient and K values of PC were negatively correlated to fibrosis content and fibroblast activation protein staining score. Fibrosis content was positively correlated to Ve. Apparent diffusion coefficient values and parameters of DCE-MRI can differentiate PC from nontumoral pancreases. There are correlations between ADC, K, Ve, and fibrosis content of PC. Fibroblast activation protein staining score of PC is negatively correlated to ADC and K. Apparent diffusion coefficient, K, and Ve may be feasible to predict prognosis of PC.

  9. Correlated continuous time random walks: combining scale-invariance with long-range memory for spatial and temporal dynamics

    International Nuclear Information System (INIS)

    Schulz, Johannes H P; Chechkin, Aleksei V; Metzler, Ralf

    2013-01-01

    Standard continuous time random walk (CTRW) models are renewal processes in the sense that at each jump a new, independent pair of jump length and waiting time are chosen. Globally, anomalous diffusion emerges through scale-free forms of the jump length and/or waiting time distributions by virtue of the generalized central limit theorem. Here we present a modified version of recently proposed correlated CTRW processes, where we incorporate a power-law correlated noise on the level of both jump length and waiting time dynamics. We obtain a very general stochastic model, that encompasses key features of several paradigmatic models of anomalous diffusion: discontinuous, scale-free displacements as in Lévy flights, scale-free waiting times as in subdiffusive CTRWs, and the long-range temporal correlations of fractional Brownian motion (FBM). We derive the exact solutions for the single-time probability density functions and extract the scaling behaviours. Interestingly, we find that different combinations of the model parameters lead to indistinguishable shapes of the emerging probability density functions and identical scaling laws. Our model will be useful for describing recent experimental single particle tracking data that feature a combination of CTRW and FBM properties. (paper)

  10. THE ATACAMA COSMOLOGY TELESCOPE: DYNAMICAL MASSES AND SCALING RELATIONS FOR A SAMPLE OF MASSIVE SUNYAEV-ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTERS ,

    International Nuclear Information System (INIS)

    Sifón, Cristóbal; Barrientos, L. Felipe; González, Jorge; Infante, Leopoldo; Dünner, Rolando; Menanteau, Felipe; Hughes, John P.; Baker, Andrew J.; Hasselfield, Matthew; Marriage, Tobias A.; Crichton, Devin; Gralla, Megan B.; Addison, Graeme E.; Dunkley, Joanna; Battaglia, Nick; Bond, J. Richard; Hajian, Amir; Das, Sudeep; Devlin, Mark J.; Hilton, Matt

    2013-01-01

    We present the first dynamical mass estimates and scaling relations for a sample of Sunyaev-Zel'dovich effect (SZE) selected galaxy clusters. The sample consists of 16 massive clusters detected with the Atacama Cosmology Telescope (ACT) over a 455 deg 2 area of the southern sky. Deep multi-object spectroscopic observations were taken to secure intermediate-resolution (R ∼ 700-800) spectra and redshifts for ≈60 member galaxies on average per cluster. The dynamical masses M 200c of the clusters have been calculated using simulation-based scaling relations between velocity dispersion and mass. The sample has a median redshift z = 0.50 and a median mass M 200c ≅12×10 14 h 70 -1 M sun with a lower limit M 200c ≅6×10 14 h 70 -1 M sun , consistent with the expectations for the ACT southern sky survey. These masses are compared to the ACT SZE properties of the sample, specifically, the match-filtered central SZE amplitude y 0 -tilde, the central Compton parameter y 0 , and the integrated Compton signal Y 200c , which we use to derive SZE-mass scaling relations. All SZE estimators correlate with dynamical mass with low intrinsic scatter (∼< 20%), in agreement with numerical simulations. We explore the effects of various systematic effects on these scaling relations, including the correlation between observables and the influence of dynamically disturbed clusters. Using the three-dimensional information available, we divide the sample into relaxed and disturbed clusters and find that ∼50% of the clusters are disturbed. There are hints that disturbed systems might bias the scaling relations, but given the current sample sizes, these differences are not significant; further studies including more clusters are required to assess the impact of these clusters on the scaling relations

  11. Exchange-dynamics of a neutral hydrophobic dye in micellar solutions studied by Fluorescence Correlation Spectroscopy.

    Science.gov (United States)

    Bordello, Jorge; Novo, Mercedes; Al-Soufi, Wajih

    2010-05-15

    The dynamics of the exchange of the moderately hydrophobic neutral dye Coumarine 152 between the aqueous phase and the phase formed by neutral Triton X-100 micelles is studied by Fluorescence Correlation Spectroscopy. The changes in the photophysical properties of the dye in presence of the micelles are discussed. The low quantum yield, the low saturation threshold and the necessary high energetic excitation of this dye requires a careful selection of the experimental conditions in order to obtain dynamic and diffusional properties with reasonable precision. It is shown that the contrast between the brightness of free and bound dye has a strong influence on the sensitivity of the FCS experiment. The entry rate constant of the dye to the micelles, k(+)=(0.8±0.3)×10(10) M(-1) s(-1), is very near to the diffusion controlled limit. The high association equilibrium constant of K=(129±3)×10(3) M(-1) is mainly determined by the low exit rate constant, k(-)=(0.6±0.2)×10(5) s(-1). Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Angiogenesis in hepatocellular carcinoma: correlation of single-level dynamic spiral CT scans in arterial phase and expression of α-smooth muscle actin

    International Nuclear Information System (INIS)

    Liu Yan; Min Pengqiu; Chen Weixia; Zhang Lin

    2005-01-01

    Objective: To investigate the correlation between the single-level dynamic spiral CT scans (SDCT) of hepatocellular carcinoma (HCC) in arterial phase (AP) and the immunohistochemistry expression of α-smooth muscle actin (ASMA). Methods: 33 cases of suspected HCC undergoing spiral CT plain scan of the whole liver, the single-level dynamic scan of the target level of lesion in AP and finally the whole liver scan in portal-venous phase before operations and proved after were included into the study. After the SDCT, a time-density curve (T-DC) was drawn according to the density change of the region of interest (ROI) of the tumor parenchyma with some parameters calculated, and signs of enhancement evaluated. Slices of post-operation specimen underwent hemotoxylin-eosin (HE) and ASMA immunohistochemistry staining. Then the slices were evaluated with emphases on the ASMA-positive neovasculatures in the parenchyma and mesenchyma of carcinomas, and the average count in a low microscopic field (x 100) was recorded (5 low microscopic field were observed and then an average was calculated.). Finally the immunohistochemistry and histologic results were correlated with image findings. Results: According to the PV of the tumor parenchyma, T-DC was divided into type I, II and III in which the criteria were PV>80, 40 HU< PV< 80 HU and PV<40 HU respectively. In the 33 cases, type I, II and III of T-DC were 3, 17 and 13 cases with PV of 103.30, 57.65 and 33.55 HU respectively. In ASMA immunohistochemistry study, ASMA-positive neovasculatures were devided into type A with a thick wall and B with a thin wall. The mean count of neovasculatures of tumor parenchyma in type I, II and III of T-DC were 10, 4.59 and 1 respectively. Statistically, different types of T-DC were significantly correlated with the count of neovasculatures in the parenchyma of carcinomas (r=-0.567, P<0.01). Homogeneous and inhomogeneous enhancement of carcinomas during SDCT in AP were correlated with the

  13. Correlated Dirac semimetallic state with unusual positive magnetoresistance in strain-free perovskite SrIrO3

    Science.gov (United States)

    Fujioka, J.; Okawa, T.; Yamamoto, A.; Tokura, Y.

    2017-03-01

    We investigated magnetotransport properties and charge dynamics of strain-free perovskite SrIrO3. Both the longitudinal and transverse magnetoresistivity (MR) are significantly enhanced with decreasing temperature, in accord with the evolution of the Dirac semimetallic state. The electron correlation effect in the Dirac state shows up as a dramatic change in charge dynamics with temperature and as an enhanced paramagnetic susceptibility. We propose that the field-induced topological transition of the Dirac node coupled to the enhanced paramagnetism causes the unique MR of correlated Dirac electrons.

  14. Varying parameter models to accommodate dynamic promotion effects

    NARCIS (Netherlands)

    Foekens, E.W.; Leeflang, P.S.H.; Wittink, D.R.

    1999-01-01

    The purpose of this paper is to examine the dynamic effects of sales promotions. We create dynamic brand sales models (for weekly store-level scanner data) by relating store intercepts and a brand's own price elasticity to a measure of the cumulated previous price discounts - amount and time - for

  15. Correlation of immunosuppression scheme with renal graft complications detected by dynamic renal scintigraphy

    International Nuclear Information System (INIS)

    Martins, Flavia Paiva Proenca; Gutfilen, Bianca

    2001-01-01

    Dynamic renal scintigraphy allows the diagnosis of complications in patients submitted to organ transplantation, such as perfusion abnormalities, acute tubular necrosis and rejection. In this study we employed 99m Tc-DTPA scintigraphy to study patients submitted to kidney transplantation. The results obtained and the clinical findings were conjunctively analyzed in order to detect graft rejection or other complications. The type of immunosuppressive scheme used was also correlated with the observed complications. Fifty-five patients submitted to kidney transplantation from 1989 to 1999 were evaluated. All patients with nephrotoxicity received a 3-drug immunosuppressive scheme. In this study, acute rejection was the most frequent complication (40.4%) observed following transplantation. Thirteen of 15 recipients of cadaveric kidney grafts presented acute tubular necrosis. Only one false-positive case was observed when scintigraphy and clinical findings were not concordant. We suggest carrying out renal scintigraphy to follow-up post-transplantation patients. (author)

  16. Effect of Static-Dynamic Coupling Loading on Fracture Toughness and Failure Characteristics in Marble

    Directory of Open Access Journals (Sweden)

    Z. Q. Yin

    2014-03-01

    Full Text Available Fracture experiments in a notched semi-circular bend configuration were conducted to test the dynamic fracture toughness of a marble under static-dynamic coupling load using a modified split Hopkinson pressure bar. The fracture process of the specimen was monitored using a high speed (HS camera. Based on digital image correlation (DIC and strain gauges, the full-field strain fields and time-to-fracture of the marble were measured under static-dynamic coupling load. Experimental results show that dynamic fracture toughness was well determined, and the HS-DIC technique provides reliable full-field strain fields in the specimens under static-dynamic coupling loads. The failure characteristics of the marble under external impact were affected obviously by pre-compression stress. Increase of axial pre-compression stress was helpful to improve the crack propagation velocity, and dynamic crack initiation toughness was decreased.

  17. The spatiotemporal dynamic analysis of the implied market information and characteristics of the correlation coefficient matrix of the international crude oil price returns

    International Nuclear Information System (INIS)

    Tian, Lixin; Ding, Zhenqi; Zhen, Zaili; Wang, Minggang

    2016-01-01

    The international crude oil market plays a crucial role in economies, and the studies of the correlation, risk and synchronization of the international crude oil market have important implications for the security and stability of the country, avoidance of business risk and people's daily lives. We investigate the information and characteristics of the international crude oil market (1999-2015) based on the random matrix theory (RMT). Firstly, we identify richer information in the largest eigenvalues deviating from RMT predictions for the international crude oil market; the international crude oil market can be roughly divided into ten different periods by the methods of eigenvectors and characteristic combination, and the implied market information of the correlation coefficient matrix is advanced. Secondly, we study the characteristics of the international crude oil market by the methods of system risk entropy, dynamic synchronous ratio, dynamic non-synchronous ratio and dynamic clustering algorithm. The results show that the international crude oil market is full of risk. The synchronization of the international crude oil market is very strong, and WTI and Brent occupy a very important position in the international crude oil market. (orig.)

  18. The spatiotemporal dynamic analysis of the implied market information and characteristics of the correlation coefficient matrix of the international crude oil price returns

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Lixin [Jiangsu University, Energy Development and Environmental Protection Strategy Research Center, Zhenjiang, Jiangsu (China); Nanjing Normal University, School of Mathematical Sciences, Nanjing, Jiangsu (China); Ding, Zhenqi; Zhen, Zaili [Jiangsu University, Energy Development and Environmental Protection Strategy Research Center, Zhenjiang, Jiangsu (China); Wang, Minggang [Nanjing Normal University, School of Mathematical Sciences, Nanjing, Jiangsu (China)

    2016-08-15

    The international crude oil market plays a crucial role in economies, and the studies of the correlation, risk and synchronization of the international crude oil market have important implications for the security and stability of the country, avoidance of business risk and people's daily lives. We investigate the information and characteristics of the international crude oil market (1999-2015) based on the random matrix theory (RMT). Firstly, we identify richer information in the largest eigenvalues deviating from RMT predictions for the international crude oil market; the international crude oil market can be roughly divided into ten different periods by the methods of eigenvectors and characteristic combination, and the implied market information of the correlation coefficient matrix is advanced. Secondly, we study the characteristics of the international crude oil market by the methods of system risk entropy, dynamic synchronous ratio, dynamic non-synchronous ratio and dynamic clustering algorithm. The results show that the international crude oil market is full of risk. The synchronization of the international crude oil market is very strong, and WTI and Brent occupy a very important position in the international crude oil market. (orig.)

  19. Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics

    International Nuclear Information System (INIS)

    Axt, V M; Kuhn, T

    2004-01-01

    interaction mechanisms is involved in forming new types of correlations. Examples are coupled plasmon-phonon and Bloch-phonon oscillations. The results reviewed in this paper clearly reveal the central role of many-particle correlations and coherences for the ultrafast dynamics of dense semiconductor systems. Both the presence of strong correlation effects and the formation of coherences in a genuine many-particle system have important implications for the controllability of optical signals from this class of materials, which is of utmost importance for applications in present-day and future optoelectronic devices

  20. Regorafenib effects on human colon carcinoma xenografts monitored by dynamic contrast-enhanced computed tomography with immunohistochemical validation.

    Directory of Open Access Journals (Sweden)

    Clemens C Cyran

    Full Text Available To investigate dynamic contrast-enhanced computed tomography for monitoring the effects of regorafenib on experimental colon carcinomas in rats by quantitative assessments of tumor microcirculation parameters with immunohistochemical validation.Colon carcinoma xenografts (HT-29 implanted subcutaneously in female athymic rats (n = 15 were imaged at baseline and after a one-week treatment with regorafenib by dynamic contrast-enhanced computed tomography (128-slice dual-source computed tomography. The therapy group (n = 7 received regorafenib daily (10 mg/kg bodyweight. Quantitative parameters of tumor microcirculation (plasma flow, mL/100 mL/min, endothelial permeability (PS, mL/100 mL/min, and tumor vascularity (plasma volume, % were calculated using a 2-compartment uptake model. Dynamic contrast-enhanced computed tomography parameters were validated with immunohistochemical assessments of tumor microvascular density (CD-31, tumor cell apoptosis (TUNEL, and proliferation (Ki-67.Regorafenib suppressed tumor vascularity (15.7±5.3 to 5.5±3.5%; p<0.05 and tumor perfusion (12.8±2.3 to 8.8±2.9 mL/100 mL/min; p = 0.063. Significantly lower microvascular density was observed in the therapy group (CD-31; 48±10 vs. 113±25, p<0.05. In regorafenib-treated tumors, significantly more apoptotic cells (TUNEL; 11844±2927 vs. 5097±3463, p<0.05 were observed. Dynamic contrast-enhanced computed tomography tumor perfusion and tumor vascularity correlated significantly (p<0.05 with microvascular density (CD-31; r = 0.84 and 0.66 and inversely with apoptosis (TUNEL; r = -0.66 and -0.71.Regorafenib significantly suppressed tumor vascularity (plasma volume quantified by dynamic contrast-enhanced computed tomography in experimental colon carcinomas in rats with good-to-moderate correlations to an immunohistochemical gold standard. Tumor response biomarkers assessed by dynamic contrast-enhanced computed tomography may be a promising future

  1. The dynamic and indirect spatial effects of neighborhood conditions on land value, spatial panel dynamic econometrics model

    Science.gov (United States)

    Fitriani, Rahma; Sumarminingsih, Eni; Astutik, Suci

    2017-05-01

    Land value is the product of past decision of its use leading to its value, as well as the value of the surrounded land. It is also affected by the local characteristic and the spillover development demand of the previous time period. The effect of each factor on land value will have dynamic and spatial virtues. Thus, a spatial panel dynamic model is used to estimate the particular effects. The model will be useful for predicting the future land value or the effect of implemented policy on land value. The objective of this paper is to derive the dynamic and indirect spatial marginal effects of the land characteristic and the spillover development demand on land value. Each effect is the partial derivative of the expected land value based on the spatial dynamic model with respect to each variable, by considering different time period and different location. The results indicate that the instant change of local or neighborhood characteristics on land value affect the local and the immediate neighborhood land value. However, the longer the change take place, the effect will spread further, not only on the immediate neighborhood.

  2. Novel Approaches to Spectral Properties of Correlated Electron Materials: From Generalized Kohn-Sham Theory to Screened Exchange Dynamical Mean Field Theory

    Science.gov (United States)

    Delange, Pascal; Backes, Steffen; van Roekeghem, Ambroise; Pourovskii, Leonid; Jiang, Hong; Biermann, Silke

    2018-04-01

    The most intriguing properties of emergent materials are typically consequences of highly correlated quantum states of their electronic degrees of freedom. Describing those materials from first principles remains a challenge for modern condensed matter theory. Here, we review, apply and discuss novel approaches to spectral properties of correlated electron materials, assessing current day predictive capabilities of electronic structure calculations. In particular, we focus on the recent Screened Exchange Dynamical Mean-Field Theory scheme and its relation to generalized Kohn-Sham Theory. These concepts are illustrated on the transition metal pnictide BaCo2As2 and elemental zinc and cadmium.

  3. Electron correlation in single-electron capture from helium by fast protons

    International Nuclear Information System (INIS)

    Purkait, M

    2012-01-01

    The differential and total cross sections for single charge exchange in p-He collisions have been calculated within the framework of four-body boundary corrected continuum intermediate state (BCCIS-4B) approximation. The effect of dynamic electron correlations is explicitly taken into account through the complete perturbation potentials.

  4. Correlation of histology and dynamic MR imaging (MRI) of intracranial meningiomas with a 0.5 Tesla MR system

    International Nuclear Information System (INIS)

    Maruiwa, Hikaru; Abe, Toshi; Kojima, Kazuyuki; Nishimura, Hiroshi; Hirohata, Masaru; Shigemori, Minoru

    1996-01-01

    In 33 histologically verified intracranial meningiomas, the correlation between the pattern of the time-signal intensity curve (TIC) from dynamic MR imaging and the histological subtypes were studied. The patterns of TIC for meningiomas were classified into two types: type A with a steep rise to a peak within a short time; type B with a slow rise to a peak followed by a plateau. Of the 16 meningiomas of the meningothelial type, 14 (87%) were type A on the TIC. On the contrary, all of the fibroblastic meningiomas were type B. The others had an almost equal distribution between the two types. These results indicate that dynamic MRI does not always have a predictive value for the histological subtype of an intracranial meningioma or for the histological architecture of the meningothelial or fibroblastic components. (author)

  5. Isotopic spin effect in three-pion Bose-Einstein correlations

    International Nuclear Information System (INIS)

    Suzuki, N.

    1998-01-01

    Bose-Einstein (BE) correlations of identical particles in multiple production processes are extensively studied last years because they give an information on the space-time region of interaction. The basic effect is analogous to Hanbury-Brown - Twiss (HBT) interferometry in optics and suggests statistical production of the particles (mainly π mesons). The possible presence of coherent pionic component (for example, in the case of disoriented chiral condensate formation) modifies the HBT effect. On the other hand, the pions (contrary to photons) are subject to isotopic spin (and electric charge) conservation and so they can not be emitted independently. While the corresponding change of the statistical part is not essential for large multiplicities, the coherent part changes substantially when isotopic spin conservation is taken into account. BE correlations of the pions in the presence of both statistical and coherent components are reconsidered taking into account isotopic spin conservation in the coherent part. That will result in appearance of additional contribution to pionic correlation function. (author)

  6. Dynamic simulation for effective workforce management in new product development

    Directory of Open Access Journals (Sweden)

    M. Mutingi

    2012-10-01

    Full Text Available Effective planning and management of workforce for new product development (NPD projects is a great challenge to many organisations, especially in the presence of engineering changes during the product development process. The management objective in effective workforce management is to recruit, develop and deploy the right people at the right place at the right time so as to fulfill organizational objectives. In this paper, we propose a dynamic simulation model to address the workforce management problem in a typical NPD project consisting of design, prototyping, and production phases. We assume that workforce demand is a function of project work remaining and the current available skill pool. System dynamics simulation concepts are used to capture the causality relationships and feedback loops in the workforce system from a systems thinking. The evaluation of system dynamics simulation reveals the dynamic behaviour in NPD workforce management systems and shows how adaptive dynamic recruitment and training decisions can effectively balance the workforce system during the NPD process.

  7. Effects of regularisation priors on dynamic PET Data

    International Nuclear Information System (INIS)

    Caldeira, Liliana; Scheins, Juergen; Silva, Nuno da; Gaens, Michaela; Shah, N Jon

    2014-01-01

    Dynamic PET provides temporal information about tracer uptake. However, each PET frame has usually low statistics, resulting in noisy images. The goal is to study effects of prior regularisation on dynamic PET data. Quantification and noise in image-domain and time-domain as well as impact on parametric images is assessed.

  8. Correlation effects driven by reduced dimensionality in magnetic ...

    Indian Academy of Sciences (India)

    2015-06-02

    Jun 2, 2015 ... Keywords. Magnetic surface alloys; electronic structure; surface reconstructions; correlation ..... While atomic multiplet effects are not directly visible as fine structure, they ..... [19] W L O' Brien, J Zhang and B P Tonner, J. Phys.

  9. ALUMINUM CHLORIDE EFFECT ON Ca2+,Mg(2+)-ATPase ACTIVITY AND DYNAMIC PARAMETERS OF SKELETAL MUSCLE CONTRACTION.

    Science.gov (United States)

    Nozdrenko, D M; Abramchuk, O M; Soroca, V M; Miroshnichenko, N S

    2015-01-01

    We studied enzymatic activity and measured strain-gauge contraction properties of the frog Rana temporaria m. tibialis anterior muscle fascicles during the action of aluminum chloride solution. It was shown that AlCl3 solutions did not affect the dynamic properties of skeletal muscle preparation in concentrations less than 10(-4) M Increasing the concentration of AlCl3 to 10(-2) M induce complete inhibition of muscle contraction. A linear correlation between decrease in Ca2+,Mg(2+)-ATPase activity of sarcoplasmic reticulum and the investigated concentrations range of aluminum chloride was observed. The reduction in the dynamic contraction performance and the decrease Ca2+,Mg(2+)-ATPase activity of the sarcoplasmic reticulum under the effect of the investigated AlCl3 solution were minimal in pre-tetanus period of contraction.

  10. Aluminum chloride effect on Ca(2+,Mg(2+-ATPase activity and dynamic parameters of skeletal muscle contraction

    Directory of Open Access Journals (Sweden)

    D. M. Nozdrenko

    2015-10-01

    Full Text Available We studied enzymatic activity and measured strain-gauge contraction properties of the frog Rana temporaria m. tibialis anterior muscle fascicles during the action of aluminum chloride solution. It was shown that AlCl3 solutions did not affect the dynamic properties of skeletal muscle preparation in concentrations less than 10-4 M. Increasing the concentration of AlCl3 to 10-2 M induce complete inhibition of muscle contraction. A linear correlation between decrease in Ca2+,Mg2+-ATPase activity of sarcoplasmic reticulum and the investigated concentrations range of aluminum chloride was observed. The reduction in the dynamic contraction performance and the decrease Ca2+,Mg2+-ATPase activity of the sarcoplasmic reticulum under the effect of the investigated AlCl3 solution were minimal in pre-tetanus period of contraction.

  11. Correlation effects of third-order perturbation in the extended Hubbard model

    International Nuclear Information System (INIS)

    Wei, G.Z.; Nie, H.Q.; Li, L.; Zhang, K.Y.

    1989-01-01

    Using the local approach, a third-order perturbation calculation has been performed to investigate the effects of intra-atomic electron correlation and electron and spin correlation between nearest neighbour sites in the extended Hubbard model. It was found that significant correction of the third order over the second order results and, in comparison with the results of the third-order perturbation where only the intra-atomic electron correlation is included, the influence of the electron and spin correlation between nearest neighbour sites on the correlation energy is non-negligible. 17 refs., 3 figs

  12. Quantum dust magnetosonic waves with spin and exchange correlation effects

    Energy Technology Data Exchange (ETDEWEB)

    Maroof, R.; Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics, Shahdra Valley Road, Islamabad 44000 (Pakistan)

    2016-01-15

    Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.)

  13. Quantum dust magnetosonic waves with spin and exchange correlation effects

    Science.gov (United States)

    Maroof, R.; Mushtaq, A.; Qamar, A.

    2016-01-01

    Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.).

  14. A phenomenological approach to modeling chemical dynamics in nonlinear and two-dimensional spectroscopy.

    Science.gov (United States)

    Ramasesha, Krupa; De Marco, Luigi; Horning, Andrew D; Mandal, Aritra; Tokmakoff, Andrei

    2012-04-07

    We present an approach for calculating nonlinear spectroscopic observables, which overcomes the approximations inherent to current phenomenological models without requiring the computational cost of performing molecular dynamics simulations. The trajectory mapping method uses the semi-classical approximation to linear and nonlinear response functions, and calculates spectra from trajectories of the system's transition frequencies and transition dipole moments. It rests on identifying dynamical variables important to the problem, treating the dynamics of these variables stochastically, and then generating correlated trajectories of spectroscopic quantities by mapping from the dynamical variables. This approach allows one to describe non-Gaussian dynamics, correlated dynamics between variables of the system, and nonlinear relationships between spectroscopic variables of the system and the bath such as non-Condon effects. We illustrate the approach by applying it to three examples that are often not adequately treated by existing analytical models--the non-Condon effect in the nonlinear infrared spectra of water, non-Gaussian dynamics inherent to strongly hydrogen bonded systems, and chemical exchange processes in barrier crossing reactions. The methods described are generally applicable to nonlinear spectroscopy throughout the optical, infrared and terahertz regions.

  15. Coulomb drag in electron-hole bilayer: Mass-asymmetry and exchange correlation effects

    Science.gov (United States)

    Arora, Priya; Singh, Gurvinder; Moudgil, R. K.

    2018-04-01

    Motivated by a recent experiment by Zheng et al. [App. Phys. Lett. 108, 062102 (2016)] on coulomb drag in electron-hole and hole-hole bilayers based on GaAs/AlGaAs semiconductor heterostructure, we investigate theoretically the influence of mass-asymmetry and temperature-dependence of correlations on the drag rate. The correlation effects are dealt with using the Vignale-Singwi effective inter-layer interaction model which includes correlations through local-field corrections to the bare coulomb interactions. However, in this work, we have incorporated only the intra-layer correlations using the temperature-dependent Hubbard approximation. Our results display a reasonably good agreement with the experimental data. However, it is crucial to include both the electron-hole mass-asymmetry and temperature-dependence of correlations. Mass-asymmetry and correlations are found to result in a substantial enhancement of drag resistivity.

  16. Mott-Hubbard transition and Anderson localization: A generalized dynamical mean-field theory approach

    International Nuclear Information System (INIS)

    Kuchinskii, E. Z.; Nekrasov, I. A.; Sadovskii, M. V.

    2008-01-01

    The DOS, the dynamic (optical) conductivity, and the phase diagram of a strongly correlated and strongly disordered paramagnetic Anderson-Hubbard model are analyzed within the generalized dynamical mean field theory (DMFT + Σ approximation). Strong correlations are taken into account by the DMFT, and disorder is taken into account via an appropriate generalization of the self-consistent theory of localization. The DMFT effective single-impurity problem is solved by a numerical renormalization group (NRG); we consider the three-dimensional system with a semielliptic DOS. The correlated metal, Mott insulator, and correlated Anderson insulator phases are identified via the evolution of the DOS and dynamic conductivity, demonstrating both the Mott-Hubbard and Anderson metal-insulator transition and allowing the construction of the complete zero-temperature phase diagram of the Anderson-Hubbard model. Rather unusual is the possibility of a disorder-induced Mott insulator-to-metal transition

  17. On the dynamic effects of foreign aid on corruption

    OpenAIRE

    Simplice Asongu

    2015-01-01

    We assemble more pieces on the puzzle of the aid-corruption nexus. In essence, we extend the debate on the effect of foreign aid on corruption by providing evidence on dynamic effects of wealth, legal origin, religious-domination, regional proximity, openness to sea, natural resources and politico-economic stability. The empirical evidence from dynamic panel GMM estimation is based on 53 African countries for the period 1996-2010. The findings show that the positive effect of foreign aid on c...

  18. Comparison of dynamical aspects of nonadiabatic electron, proton, and proton-coupled electron transfer reactions

    International Nuclear Information System (INIS)

    Hatcher, Elizabeth; Soudackov, Alexander; Hammes-Schiffer, Sharon

    2005-01-01

    The dynamical aspects of a model proton-coupled electron transfer (PCET) reaction in solution are analyzed with molecular dynamics simulations. The rate for nonadiabatic PCET is expressed in terms of a time-dependent probability flux correlation function. The impact of the proton donor-acceptor and solvent dynamics on the probability flux is examined. The dynamical behavior of the probability flux correlation function is dominated by a solvent damping term that depends on the energy gap correlation function. The proton donor-acceptor motion does not impact the dynamical behavior of the probability flux correlation function but does influence the magnitude of the rate. The approximations previously invoked for the calculation of PCET rates are tested. The effects of solvent damping on the proton donor-acceptor vibrational motion are found to be negligible, and the short-time solvent approximation, in which only equilibrium fluctuations of the solvent are considered, is determined to be valid for these types of reactions. The analysis of PCET reactions is compared to previous analyses of single electron and proton transfer reactions. The dynamical behavior is qualitatively similar for all three types of reactions, but the time scale of the decay of the probability flux correlation function is significantly longer for single proton transfer than for PCET and single electron transfer due to a smaller solvent reorganization energy for proton transfer

  19. Temporal correlations and structural memory effects in break junction measurements

    DEFF Research Database (Denmark)

    Magyarkuti, A.; Lauritzen, Kasper Primdal; Balogh, Zoltan Imre

    2017-01-01

    that correlations between the opening and subsequent closing traces may indicate structural memory effects in atomic-sized metallic and molecular junctions. Applying these methods on measured and simulated gold metallic contacts as a test system, we show that the surface diffusion induced flattening of the broken......-molecule junctions, we demonstrate pronounced contact memory effects and recovery of the molecule for junctions breaking before atomic chains are formed. However, if chains are pulled the random relaxation of the chain and molecule after rupture prevents opening-closing correlations....

  20. International Space Station Model Correlation Analysis

    Science.gov (United States)

    Laible, Michael R.; Fitzpatrick, Kristin; Hodge, Jennifer; Grygier, Michael

    2018-01-01

    This paper summarizes the on-orbit structural dynamic data and the related modal analysis, model validation and correlation performed for the International Space Station (ISS) configuration ISS Stage ULF7, 2015 Dedicated Thruster Firing (DTF). The objective of this analysis is to validate and correlate the analytical models used to calculate the ISS internal dynamic loads and compare the 2015 DTF with previous tests. During the ISS configurations under consideration, on-orbit dynamic measurements were collected using the three main ISS instrumentation systems; Internal Wireless Instrumentation System (IWIS), External Wireless Instrumentation System (EWIS) and the Structural Dynamic Measurement System (SDMS). The measurements were recorded during several nominal on-orbit DTF tests on August 18, 2015. Experimental modal analyses were performed on the measured data to extract modal parameters including frequency, damping, and mode shape information. Correlation and comparisons between test and analytical frequencies and mode shapes were performed to assess the accuracy of the analytical models for the configurations under consideration. These mode shapes were also compared to earlier tests. Based on the frequency comparisons, the accuracy of the mathematical models is assessed and model refinement recommendations are given. In particular, results of the first fundamental mode will be discussed, nonlinear results will be shown, and accelerometer placement will be assessed.