WorldWideScience

Sample records for dynamic contact problem

  1. Solution procedure of dynamical contact problems with friction

    Science.gov (United States)

    Abdelhakim, Lotfi

    2017-07-01

    Dynamical contact is one of the common research topics because of its wide applications in the engineering field. The main goal of this work is to develop a time-stepping algorithm for dynamic contact problems. We propose a finite element approach for elastodynamics contact problems [1]. Sticking, sliding and frictional contact can be taken into account. Lagrange multipliers are used to enforce non-penetration condition. For the time discretization, we propose a scheme equivalent to the explicit Newmark scheme. Each time step requires solving a nonlinear problem similar to a static friction problem. The nonlinearity of the system of equation needs an iterative solution procedure based on Uzawa's algorithm [2][3]. The applicability of the algorithm is illustrated by selected sample numerical solutions to static and dynamic contact problems. Results obtained with the model have been compared and verified with results from an independent numerical method.

  2. Computational study of a dynamic contact problem

    Directory of Open Access Journals (Sweden)

    Jigarkumar Patel

    2013-10-01

    Full Text Available In this article, we describe a computational framework to study the influence of a normal crack on the dynamics of a cantilever beam; i.e., changes in its natural frequency, amplitude and period of vibration, etc.

  3. Mixed Finite Element Method for Static and Dynamic Contact Problems with Friction and Initial Gaps

    Directory of Open Access Journals (Sweden)

    Lanhao Zhao

    2014-01-01

    Full Text Available A novel mixed finite element method is proposed for static and dynamic contact problems with friction and initial gaps. Based on the characteristic of local nonlinearity for the problem, the system of forces acting on the contactor is divided into two parts: external forces and contact forces. The displacement of structure is chosen as the basic variable and the nodal contact force in contact region under local coordinate system is selected as the iteration variable to confine the nonlinear iteration process in the potential contact surface which is more numerically efficient. In this way, the sophisticated contact nonlinearity is revealed by the variety of the contact forces which are determined by the external load and the contact state stick, slip, or separation. Moreover, in the case of multibody contact problem, the flexibility matrix is symmetric and sparse; thus, the iterative procedure becomes easily carried out and much more economical. In the paper, both the finite element formulations and the iteration process are given in detail for static and dynamic contact problems. Four examples are included to demonstrate the accuracy and applicability of the presented method.

  4. Dynamic contact problem with adhesion and damage between thermo-electro-elasto-viscoplastic bodies

    Science.gov (United States)

    Hadj ammar, Tedjani; Saïdi, Abdelkader; Azeb Ahmed, Abdelaziz

    2017-05-01

    We study of a dynamic contact problem between two thermo-electro-elasto-viscoplastic bodies with damage and adhesion. The contact is frictionless and is modeled with normal compliance condition. We derive variational formulation for the model and prove an existence and uniqueness result of the weak solution. The proof is based on arguments of evolutionary variational inequalities, parabolic inequalities, differential equations, and fixed point theorem.

  5. Existence of solutions for the dynamic frictional contact problem of isotropic viscoelastic bodies

    Czech Academy of Sciences Publication Activity Database

    Eck, C.; Jarušek, Jiří

    2003-01-01

    Roč. 53, č. 2 (2003), s. 157-181 ISSN 0362-546X R&D Projects: GA AV ČR IAA1075005; GA AV ČR IAA1075707 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : dynamic contact problem * parabolic equation * Coulomb law of friction Subject RIV: BA - General Mathematics Impact factor: 0.354, year: 2003

  6. A dynamic elastic-visco-plastic unilateral contact problem with normal damped response and Coulomb friction

    Czech Academy of Sciences Publication Activity Database

    Eck, Ch.; Jarušek, Jiří; Sofonea, M.

    2010-01-01

    Roč. 21, č. 3 (2010), s. 229-251 ISSN 0956-7925 R&D Projects: GA AV ČR IAA100750802 Institutional research plan: CEZ:AV0Z10190503 Keywords : elastic-vosco plastic material * dynamic contact problem * normal damped response * unilateral constraint * Coulomb friction * weak solution * penalitazion * smoothing Subject RIV: BA - General Mathematics Impact factor: 1.480, year: 2010 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7675484&fileId=S0956792510000045

  7. On the solvability of dynamic elastic-visco-plastic contact problems with adhesion

    Czech Academy of Sciences Publication Activity Database

    Jarušek, Jiří; Sofonea, M.

    2009-01-01

    Roč. 1, č. 2 (2009), s. 191-214 ISSN 2066-6594 R&D Projects: GA AV ČR IAA100750802 Institutional research plan: CEZ:AV0Z10190503 Keywords : elastic-visco-plastic material * dynamic process * frictionless contact * normal compliance * Signorini condition * adhesion * variational formulation * weak solution * a priori estimates Subject RIV: BA - General Mathematics

  8. On the solvability of dynamic elastic-visco-plastic contact problems

    Czech Academy of Sciences Publication Activity Database

    Jarušek, Jiří; Sofonea, M.

    2008-01-01

    Roč. 88, č. 1 (2008), s. 3-22 ISSN 0044-2267 R&D Projects: GA AV ČR IAA1075402 Institutional research plan: CEZ:AV0Z10190503 Keywords : elastic-visco-plastic material * dynamic process * frictionless contact Subject RIV: BA - General Mathematics Impact factor: 0.644, year: 2008

  9. Analysis of a Dynamic Viscoelastic Contact Problem with Normal Compliance, Normal Damped Response, and Nonmonotone Slip Rate Dependent Friction

    Directory of Open Access Journals (Sweden)

    Mikaël Barboteu

    2016-01-01

    Full Text Available We consider a mathematical model which describes the dynamic evolution of a viscoelastic body in frictional contact with an obstacle. The contact is modelled with a combination of a normal compliance and a normal damped response law associated with a slip rate-dependent version of Coulomb’s law of dry friction. We derive a variational formulation and an existence and uniqueness result of the weak solution of the problem is presented. Next, we introduce a fully discrete approximation of the variational problem based on a finite element method and on an implicit time integration scheme. We study this fully discrete approximation schemes and bound the errors of the approximate solutions. Under regularity assumptions imposed on the exact solution, optimal order error estimates are derived for the fully discrete solution. Finally, after recalling the solution of the frictional contact problem, some numerical simulations are provided in order to illustrate both the behavior of the solution related to the frictional contact conditions and the theoretical error estimate result.

  10. Dynamics of a belt-drive system using a linear complementarity problem for the belt pulley contact description

    Science.gov (United States)

    Čepon, Gregor; Boltežar, Miha

    2009-01-01

    The aim of this study was to develop an efficient and realistic numerical model in order to predict the dynamic response of belt drives. The belt was modeled as a planar beam element based on an absolute nodal coordinate formulation. A viscoelastic material was adopted for the belt and the corresponding damping and stiffness matrices were determined. The belt-pulley contact was formulated as a linear complementarity problem together with a penalty method. This made it possible for us to accurately predict the contact forces, including the stick and slip zones between the belt and the pulley. The belt-drive model was verified by comparing it with the available analytical solutions. A good agreement was found. Finally, the applicability of the method was demonstrated by considering non-steady belt-drive operating conditions.

  11. Existence and uniqueness results for a class of dynamic elasto-plastic contact problems

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Petrov, A.

    2013-01-01

    Roč. 408, č. 1 (2013), s. 125-139 ISSN 0022-247X R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : contact with friction * elasto-plasticity * hysteresis operators Subject RIV: BA - General Mathematics Impact factor: 1.119, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022247X13004952

  12. Scalable algorithms for contact problems

    CERN Document Server

    Dostál, Zdeněk; Sadowská, Marie; Vondrák, Vít

    2016-01-01

    This book presents a comprehensive and self-contained treatment of the authors’ newly developed scalable algorithms for the solutions of multibody contact problems of linear elasticity. The brand new feature of these algorithms is theoretically supported numerical scalability and parallel scalability demonstrated on problems discretized by billions of degrees of freedom. The theory supports solving multibody frictionless contact problems, contact problems with possibly orthotropic Tresca’s friction, and transient contact problems. It covers BEM discretization, jumping coefficients, floating bodies, mortar non-penetration conditions, etc. The exposition is divided into four parts, the first of which reviews appropriate facets of linear algebra, optimization, and analysis. The most important algorithms and optimality results are presented in the third part of the volume. The presentation is complete, including continuous formulation, discretization, decomposition, optimality results, and numerical experimen...

  13. Contact dynamics math model

    Science.gov (United States)

    Glaese, John R.; Tobbe, Patrick A.

    1986-01-01

    The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.

  14. On the solutions of a dynamic contact problem for a thermoelastic von Kármán plate

    Czech Academy of Sciences Publication Activity Database

    Bock, I.; Jarušek, Jiří; Šilhavý, Miroslav

    2016-01-01

    Roč. 32, December (2016), s. 111-135 ISSN 1468-1218 R&D Projects: GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985840 Keywords : thermoelastic plate * unilateral dynamic contact * rigid obstacle Subject RIV: BA - General Mathematics Impact factor: 1.659, year: 2016 http://www.sciencedirect.com/science/article/pii/S146812181630013X

  15. On the solutions of a dynamic contact problem for a thermoelastic von Kármán plate

    Czech Academy of Sciences Publication Activity Database

    Bock, I.; Jarušek, Jiří; Šilhavý, Miroslav

    2016-01-01

    Roč. 32, December (2016), s. 111-135 ISSN 1468-1218 R&D Projects: GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985840 Keywords : thermoelastic plate * unilateral dynamic contact * rigid obstacle Subject RIV: BA - General Mathematics Impact factor: 1.659, year: 2016 http://www. science direct.com/ science /article/pii/S146812181630013X

  16. Dynamics of Railway Vehicles and Rail/Wheel Contact

    DEFF Research Database (Denmark)

    True, Hans

    2007-01-01

    In these notes the fundamentals of the mechanics of rail/wheel contact and deterministic vehicle dynamics is explained. Chapter 1 describes the kinematics and dynamics of rail/wheel contact. Chapter 2 explains why vehicle dynamics must be treated as a nonlinear dynamic problem and how the model p...

  17. Granular contact dynamics using mathematical programming methods

    DEFF Research Database (Denmark)

    Krabbenhoft, K.; Lyamin, A. V.; Huang, J.

    2012-01-01

    granular contact dynamics formulation uses an implicit time discretization, thus allowing for large time steps. Moreover, in the limit of an infinite time step, the general dynamic formulation reduces to a static formulation that is useful in simulating common quasi-static problems such as triaxial tests...... and similar laboratory experiments. A significant portion of the paper is dedicated to exploring the consequences of the associated frictional sliding rule implied by the variational formulation adopted. In this connection, a new interior-point algorithm for general linear complementarity problems...

  18. Unilateral contact problems variational methods and existence theorems

    CERN Document Server

    Eck, Christof; Krbec, Miroslav

    2005-01-01

    The mathematical analysis of contact problems, with or without friction, is an area where progress depends heavily on the integration of pure and applied mathematics. This book presents the state of the art in the mathematical analysis of unilateral contact problems with friction, along with a major part of the analysis of dynamic contact problems without friction. Much of this monograph emerged from the authors'' research activities over the past 10 years and deals with an approach proven fruitful in many situations. Starting from thin estimates of possible solutions, this approach is based on an approximation of the problem and the proof of a moderate partial regularity of the solution to the approximate problem. This in turn makes use of the shift (or translation) technique - an important yet often overlooked tool for contact problems and other nonlinear problems with limited regularity. The authors pay careful attention to quantification and precise results to get optimal bounds in sufficient conditions f...

  19. Quaternionic contact Einstein structures and the quaternionic contact Yamabe problem

    International Nuclear Information System (INIS)

    Ivanov, S.; Minchev, I.; Vassilev, D.

    2006-12-01

    The paper is a study of the conformal geometry of quaternionic contact manifolds with the associated Biquard connection. We give a partial solution of the quaternionic contact Yamabe problem on the quaternionic sphere. It is shown that the torsion of the Biquard connection vanishes exactly when the trace-free part of the horizontal Ricci tensor of the Biquard connection is zero and this occurs precisely on 3-Sasakian manifolds. In particular, the scalar curvature of the Biquard connection with vanishing torsion is a global constant. We consider interesting classes of functions on hypercomplex manifold and their restrictions to hypersurfaces. We show a '3-Hamiltonian form' of infinitesimal automorphisms of quaternionic contact structures and transformations preserving the trace-free part of the horizontal Ricci tensor of the Biquard connection. All conformal deformations sending the standard flat torsion-free quaternionic contact structure on the quaternionic Heisenberg group to a quaternionic contact structure with vanishing trace-free part of the horizontal Ricci tensor of the Biquard connection are explicitly described. (author)

  20. Dynamic contact with Signorini's condition and slip rate dependent friction

    Directory of Open Access Journals (Sweden)

    Kenneth Kuttler

    2004-06-01

    Full Text Available Existence of a weak solution for the problem of dynamic frictional contact between a viscoelastic body and a rigid foundation is established. Contact is modelled with the Signorini condition. Friction is described by a slip rate dependent friction coefficient and a nonlocal and regularized contact stress. The existence in the case of a friction coefficient that is a graph, which describes the jump from static to dynamic friction, is established, too. The proofs employ the theory of set-valued pseudomonotone operators applied to approximate problems and a priori estimates.

  1. Moving contact line problem: Advances and perspectives

    Directory of Open Access Journals (Sweden)

    Yapu Zhao

    2014-01-01

    Full Text Available The solid-liquid interface, which is ubiquitous in nature and our daily life, plays fundamental roles in a variety of physical-chemical-biological-mechanical phenomena, for example in lubrication, crystal growth, and many biological reactions that govern the building of human body and the functioning of brain. A surge of interests in the moving contact line (MCL problem, which is still going on today, can be traced back to 1970s primarily because of the existence of the “Huh-Scriven paradox”. This paper, mainly from a solid mechanics perspective, describes very briefly the multidisciplinary nature of the MCL problem, then summarizes some major advances in this exciting research area, and some future directions are presented.

  2. A Continuous Approach of the Contact Dynamics

    Directory of Open Access Journals (Sweden)

    Petre P.Teodorescu

    2013-09-01

    Full Text Available Ther paper is devoted to the analysis of a sonic composite under dynamic contact with friction loading, by using LISA (local interaction simulation approach. LISA is an an efficient tool for the numerical simulation of the acoustic wave propagation in heterogeneous material specimens, in particular those with sharp boundaries between different materials, like in sonic composites. Boundary conditions are introduced to contain contact interfaces with frictional slips.

  3. Testing and Modeling of Contact Problems in Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    As a part of the efforts towards a professional and reliable numerical tool for resistance welding engineers, this Ph.D. project is dedicated to refining the numerical models related to the interface behavior. An FE algorithm for the contact problems in resistance welding has been developed...... in this work, dealing with the coupled mechanical-electrical-thermal contact problems. The penalty method is used to impose the contact conditions in the electrical and thermal contact, as well as frictionless contact and sticking contact in the mechanical model. A node-segment contact element is the basis...

  4. The Contact Dynamics method: A nonsmooth story

    Science.gov (United States)

    Dubois, Frédéric; Acary, Vincent; Jean, Michel

    2018-03-01

    When velocity jumps are occurring, the dynamics is said to be nonsmooth. For instance, in collections of contacting rigid bodies, jumps are caused by shocks and dry friction. Without compliance at the interface, contact laws are not only non-differentiable in the usual sense but also multi-valued. Modeling contacting bodies is of interest in order to understand the behavior of numerous mechanical systems such as flexible multi-body systems, granular materials or masonry. These granular materials behave puzzlingly either like a solid or a fluid and a description in the frame of classical continuous mechanics would be welcome though far to be satisfactory nowadays. Jean-Jacques Moreau greatly contributed to convex analysis, functions of bounded variations, differential measure theory, sweeping process theory, definitive mathematical tools to deal with nonsmooth dynamics. He converted all these underlying theoretical ideas into an original nonsmooth implicit numerical method called Contact Dynamics (CD); a robust and efficient method to simulate large collections of bodies with frictional contacts and impacts. The CD method offers a very interesting complementary alternative to the family of smoothed explicit numerical methods, often called Distinct Elements Method (DEM). In this paper developments and improvements of the CD method are presented together with a critical comparative review of advantages and drawbacks of both approaches. xml:lang="fr"

  5. On the problems of non-smooth railway vehicle dynamics

    DEFF Research Database (Denmark)

    Thomsen, Per Grove; True, Hans

    2005-01-01

    Railway vehicle dynamics is inherently a problem of nonlinear dynamics. The unavoidable nonlinearities stem from the rail/wheel contact geometry and the stress/strain velocity relation in the rail/wheel contact surface. In addition motion delimiters and dry friction contact between elements...

  6. Contact Geometry of Mesoscopic Thermodynamics and Dynamics

    Directory of Open Access Journals (Sweden)

    Miroslav Grmela

    2014-03-01

    Full Text Available The time evolution during which macroscopic systems reach thermodynamic equilibrium states proceeds as a continuous sequence of contact structure preserving transformations maximizing the entropy. This viewpoint of mesoscopic thermodynamics and dynamics provides a unified setting for the classical equilibrium and nonequilibrium thermodynamics, kinetic theory, and statistical mechanics. One of the illustrations presented in the paper is a new version of extended nonequilibrium thermodynamics with fluxes as extra state variables.

  7. On Finite Element Computations of Contact Problems in Micropolar Elasticity

    OpenAIRE

    Eremeyev, Victor A.; Skrzat, Andrzej; Stachowicz, Feliks

    2016-01-01

    Within the linear micropolar elasticity we discuss the development of new finite element and its implementation in commercial software. Here we implement the developed 8-node hybrid isoparametric element into ABAQUS and perform solutions of contact problems. We consider the contact of polymeric stamp modelled within the micropolar elasticity with an elastic substrate. The peculiarities of modelling of contact problems with a user defined finite element in ABAQUS are discussed. The provided co...

  8. Inequivalence of interior and exterior dynamical problems

    International Nuclear Information System (INIS)

    Santilli, R.M.

    1991-09-01

    We begin a series of notes with the review of the historical distinction by Lagrange, Hamilton, Jacobi and other Founding Fathers of analytic dynamics, between the exteriordynamical problem, consisting of motion in vacuum under action-at-a-distance interactions, and the interior dynamical problem, consisting of motion within a resistive medium with the additional presence of contact, nonlinear, nonlocal and nonhamiltonian internal forces. After recalling some of the historical reasons that led to the contemporary, virtually complete restriction of research to the exterior problem, we show that the interior dynamical problem cannot be reduced to the exterior one. This establishes the open character of the central objective of these notes: the identification of the space-time symmetries and relativities that are applicable to interior, nonlinear, nonlocal and nonhamiltonian systems. (author). 29 refs

  9. Dynamic Multi-Rigid-Body Systems with Concurrent Distributed Contacts: Theory and Examples

    International Nuclear Information System (INIS)

    TRINKLE, JEFFREY C.; TZITZOURIS, J.A.; PANG, J.S.

    2001-01-01

    Consider a system of rigid bodies with multiple concurrent contacts. The multi-rigid-body contact problem is to predict the accelerations of the bodies and the normal friction loads acting at the contacts. This paper presents theoretical results for the multi-rigid-body contact problem under the assumptions that one or more contacts occur over locally planar, finite regions and that friction forces are consistent with the maximum work inequality. Existence and uniqueness results are presented for this problem under mild assumptions on the system inputs. In addition, the performance of two different time-stepping methods for integrating the dynamics are compared on two simple multi-body systems

  10. On the 3D normal tire/off-road vibro-contact problem with friction

    Science.gov (United States)

    Munteanu, Ligia; Chiroiu, Veturia; Brişan, Cornel; Dumitriu, Dan; Sireteanu, Tudor; Petre, Simona

    2015-03-01

    In this paper, a virtual experiment concerning driving on off-roads is investigated via 3D normal vibro-contact problem with friction. The dynamic road concept is introduced in order to characterize a particular stretch of road by total longitudinal, lateral, and normal forces and their geometric distributions in the contact patches. The off-road profiles are built by image sonification technique. The cross-sectional curves of off-roads before and after deformation, the contact between the tire and the road, the distribution of contact and friction forces in the contact domain, the natural frequencies and modes when the tire is in ground contact, are estimated. The approach is exercised on two particular problems and results compare favorably to existing analytical and numerical solutions. The feasibility of image sonification technique is useful to build a low-cost virtual reality environment with an increased degree of realism for driving simulators and higher user flexibility.

  11. The problem of Newton dynamics

    International Nuclear Information System (INIS)

    Roman Roldan, R.

    1998-01-01

    The problem of the teaching of Newton's principles of dynamics at High School level is addressed. Some usages, reasoning and wording, are pointed as the responsible for the deficient results which are revealed in the background of the first year University students in Physics. A methodology based on simplifying the common vocabulary is proposed in order to provide to the students with a clearer view of the dynamic problems. Some typical examples are shown which illustrate the proposal. (Author)

  12. Divide and Conquer Approach to Contact Map Overlap Problem Using 2D-Pattern Mining of Protein Contact Networks.

    Science.gov (United States)

    Koneru, Suvarna Vani; Bhavani, Durga S

    2015-01-01

    A novel approach to Contact Map Overlap (CMO) problem is proposed using the two dimensional clusters present in the contact maps. Each protein is represented as a set of the non-trivial clusters of contacts extracted from its contact map. The approach involves finding matching regions between the two contact maps using approximate 2D-pattern matching algorithm and dynamic programming technique. These matched pairs of small contact maps are submitted in parallel to a fast heuristic CMO algorithm. The approach facilitates parallelization at this level since all the pairs of contact maps can be submitted to the algorithm in parallel. Then, a merge algorithm is used in order to obtain the overall alignment. As a proof of concept, MSVNS, a heuristic CMO algorithm is used for global as well as local alignment. The divide and conquer approach is evaluated for two benchmark data sets that of Skolnick and Ding et al. It is interesting to note that along with achieving saving of time, better overlap is also obtained for certain protein folds.

  13. Patient compliance and its influence on contact lens wearing problems.

    Science.gov (United States)

    Collins, M J; Carney, L G

    1986-12-01

    One hundred consecutively presenting patients, fifty from each of two contact lens clinics, were questioned about the procedures encountered in care and maintenance of their contact lenses and asked to demonstrate their use of those procedures. Their clinic records were then analyzed for the occurrence of signs and symptoms that were related potentially to noncompliance with instructions and procedures, and that could not be otherwise explained. Only 26% of patients were fully complaint. Noncompliance with instructions was related strongly to the occurrence of signs and symptoms indicative of potential wearing problems. Improvements in the level of patient compliance with instructions is likely to bring about increased patient success with contact lens wearing.

  14. Simulation Study of AC Contactor Dynamic Contacts Contact Pressure Based on ADAMS

    Directory of Open Access Journals (Sweden)

    Gu Yungao

    2015-01-01

    Full Text Available A multi-body dynamics simulation model of CJ20-25 AC contactor was established with Pro/E(Pro/Engineerin this paper. A coupling simulation with machine, electric, magnetic on the contactor has been achieved in this model. Dynamic parameters which were called use the secondary development technology of ADAMS. The dynamic contact pressure signal of an AC contactor was obtained with ADAMS’s own simultaneous solution such as electromagnetic suction, kinematics and dynamics equations. The simulation results and actual measurement of contactor contact pressure signals are very similar. However, the complexity of the measured contacts vibration is greater than the simulation results because the actual working condition is more complex. This result provides a theoretical foundation to the dynamic contacts contact pressure test.

  15. Solution of Contact Problems for Nonlinear Gao Beam and Obstacle

    Directory of Open Access Journals (Sweden)

    J. Machalová

    2015-01-01

    Full Text Available Contact problem for a large deformed beam with an elastic obstacle is formulated, analyzed, and numerically solved. The beam model is governed by a nonlinear fourth-order differential equation developed by Gao, while the obstacle is considered as the elastic foundation of Winkler’s type in some distance under the beam. The problem is static without a friction and modeled either using Signorini conditions or by means of normal compliance contact conditions. The problems are then reformulated as optimal control problems which is useful both for theoretical aspects and for solution methods. Discretization is based on using the mixed finite element method with independent discretization and interpolations for foundation and beam elements. Numerical examples demonstrate usefulness of the presented solution method. Results for the nonlinear Gao beam are compared with results for the classical Euler-Bernoulli beam model.

  16. Analysis of a Unilateral Contact Problem with Normal Compliance

    Directory of Open Access Journals (Sweden)

    Touzaline Arezki

    2014-06-01

    Full Text Available The paper deals with the study of a quasistatic unilateral contact problem between a nonlinear elastic body and a foundation. The contact is modelled with a normal compliance condition associated to unilateral constraint and the Coulomb's friction law. The adhesion between contact surfaces is taken into account and is modelled with a surface variable, the bonding field, whose evolution is described by a first-order differential equation. We establish a variational formulation of the mechanical problem and prove an existence and uniqueness result in the case where the coefficient of friction is bounded by a certain constant. The technique of the proof is based on arguments of time-dependent variational inequalities, differential equations and fixed-point theorem.

  17. Dynamical problem of micropolar viscoelasticity

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    The dynamic problem in micropolar viscoelastic medium has been investigated by employing eigen value approach after applying Laplace and Fourier transformations. An example of infinite space with concentrated force at the origin has been presented to illustrate the application of the approach. The integral transforms ...

  18. Reversibility in dynamic coordination problems

    Czech Academy of Sciences Publication Activity Database

    Kováč, Eugen; Steiner, Jakub

    -, č. 374 (2008), s. 1-50 ISSN 1211-3298 R&D Projects: GA MŠk LC542 Institutional research plan: CEZ:AV0Z70850503 Keywords : dynamic coordination problems * global games * Laplacian belief Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp374.pdf

  19. Simulation of unilateral contact problems departing from the classical boundary problems

    International Nuclear Information System (INIS)

    Frey, S.L.; Sampaio, R.; Gama, R.M.S. da.

    1989-08-01

    A numerical algorithm is proposed for simulating unilateral contact problems under the classical elasticity point of view. This simple algorithm may be employed by engineers with a minimum knowledge on classical elasticity. (A.C.A.S.) [pt

  20. On topological derivatives for contact problems in elasticity

    Czech Academy of Sciences Publication Activity Database

    Giusti, S.M.; Sokolowski, S.; Stebel, Jan

    2015-01-01

    Roč. 165, č. 1 (2015), s. 279-294 ISSN 0022-3239 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : topological derivative * static frictionless contact problem * asymptotic analysis Subject RIV: BA - General Mathematics Impact factor: 1.160, year: 2015 http://link.springer.com/article/10.1007%2Fs10957-014-0594-7

  1. Numerical algorithms for contact problems in linear elastostatics

    International Nuclear Information System (INIS)

    Barbosa, H.J.C.; Feijoo, R.A.

    1984-01-01

    In this work contact problems in linear elasticity are analysed by means of Finite Elements and Mathematical Programming Techniques. The principle of virtual work leads in this case to a variational inequality which in turn is equivalent, for Hookean materials and infinitesimal strains, to the minimization of the total potential energy over the set of all admissible virtual displacements. The use of Gauss-Seidel algorithm with relaxation and projection and also Lemke's algorithm and Uzawa's algorithm for solving the minimization problem is discussed. Finally numerical examples are presented. (Author) [pt

  2. Apparent and microscopic dynamic contact angles in confined flows

    Science.gov (United States)

    Omori, Takeshi; Kajishima, Takeo

    2017-11-01

    An abundance of empirical correlations between a dynamic contact angle and a capillary number representing a translational velocity of a contact line have been provided for the last decades. The experimentally obtained dynamic contact angles are inevitably apparent contact angles but often undistinguished from microscopic contact angles formed right on the wall. As Bonn et al. ["Wetting and spreading," Rev. Mod. Phys. 81, 739-805 (2009)] pointed out, however, most of the experimental studies simply report values of angles recorded at some length scale which is quantitatively unknown. It is therefore hard to evaluate or judge the physical validity and the generality of the empirical correlations. The present study is an attempt to clear this clutter regarding the dynamic contact angle by measuring both the apparent and the microscopic dynamic contact angles from the identical data sets in a well-controlled manner, by means of numerical simulation. The numerical method was constructed so that it reproduced the fine details of the flow with a moving contact line predicted by molecular dynamics simulations [T. Qian, X. Wang, and P. Sheng, "Molecular hydrodynamics of the moving contact line in two-phase immiscible flows," Commun. Comput. Phys. 1, 1-52 (2006)]. We show that the microscopic contact angle as a function of the capillary number has the same form as Blake's molecular-kinetic model [T. Blake and J. Haynes, "Kinetics of liquid/liquid displacement," J. Colloid Interface Sci. 30, 421-423 (1969)], regardless of the way the flow is driven, the channel width, the mechanical properties of the receding fluid, and the value of the equilibrium contact angle under the conditions where the Reynolds and capillary numbers are small. We have also found that the apparent contact angle obtained by the arc-fitting of the interface behaves surprisingly universally as claimed in experimental studies in the literature [e.g., X. Li et al., "An experimental study on dynamic pore

  3. Universality in dynamic wetting dominated by contact-line friction.

    Science.gov (United States)

    Carlson, Andreas; Bellani, Gabriele; Amberg, Gustav

    2012-04-01

    We report experiments on the rapid contact-line motion present in the early stages of capillary-driven spreading of drops on dry solid substrates. The spreading data fail to follow a conventional viscous or inertial scaling. By integrating experiments and simulations, we quantify a contact-line friction μ(f) which is seen to limit the speed of the rapid dynamic wetting. A scaling based on this contact-line friction is shown to yield a universal curve for the evolution of the contact-line radius as a function of time, for a range of fluid viscosities, drop sizes, and surface wettabilities.

  4. Friction modelling of preloaded tube contact dynamics

    International Nuclear Information System (INIS)

    Hassan, M.A.; Rogers, R.J.

    2005-01-01

    Many loosely supported components are subjected to flow-induced vibration leading to localized wear. Life prediction depends on robust and accurate modelling of the nonlinear dynamics as the components interact with their supports. The output of such analysis is the component dynamic response and impact forces, including friction forces during stick-slip motions. Such results are used to determine the normal work rates, which are utilized to predict fretting wear damage. Accurate estimates of these parameters are essential. This paper presents simulations of a loosely supported fuel-channel tube subject to turbulence excitation. The effects of tube/support clearance and preload are investigated. Several friction models, including velocity-limited, spring-damper and force-balance are utilized. A comparison of these models is carried out to investigate their accuracy. The results show good agreement with experimental work rates when a simple iterative procedure to update the friction forces is used

  5. Friction modelling of preloaded tube contact dynamics

    International Nuclear Information System (INIS)

    Hassan, M.A.; Rogers, R.J.

    2004-01-01

    Many loosely supported components are subjected to flow-induced vibration leading to localized wear. Life prediction depends on robust and accurate modelling of the nonlinear dynamics as the components interact with their supports. The output of such analysis is the component dynamic response and impact forces, including friction forces during stick-slip motions. Such results are used to determine the normal work rates, which are utilized to predict fretting wear damage. Accurate estimates of these parameters are essential. This paper presents simulations of a loosely supported fuel-channel tube subject to turbulence excitation. The effects of tube/support clearance and preload are investigated. Several friction models, including velocity-limited, spring-damper, and force-balance are utilized. A comparison of these models is carried out to investigate their accuracy. The results show good agreement with experimental work rates when a simple iterative procedure to update the friction forces is used. (authors)

  6. Compliant contact versus rigid contact: A comparison in the context of granular dynamics

    Science.gov (United States)

    Pazouki, Arman; Kwarta, Michał; Williams, Kyle; Likos, William; Serban, Radu; Jayakumar, Paramsothy; Negrut, Dan

    2017-10-01

    We summarize and numerically compare two approaches for modeling and simulating the dynamics of dry granular matter. The first one, the discrete-element method via penalty (DEM-P), is commonly used in the soft matter physics and geomechanics communities; it can be traced back to the work of Cundall and Strack [P. Cundall, Proc. Symp. ISRM, Nancy, France 1, 129 (1971); P. Cundall and O. Strack, Geotechnique 29, 47 (1979), 10.1680/geot.1979.29.1.47]. The second approach, the discrete-element method via complementarity (DEM-C), considers the grains perfectly rigid and enforces nonpenetration via complementarity conditions; it is commonly used in robotics and computer graphics applications and had two strong promoters in Moreau and Jean [J. J. Moreau, in Nonsmooth Mechanics and Applications, edited by J. J. Moreau and P. D. Panagiotopoulos (Springer, Berlin, 1988), pp. 1-82; J. J. Moreau and M. Jean, Proceedings of the Third Biennial Joint Conference on Engineering Systems and Analysis, Montpellier, France, 1996, pp. 201-208]. The DEM-P and DEM-C are manifestly unlike each other: They use different (i) approaches to model the frictional contact problem, (ii) sets of model parameters to capture the physics of interest, and (iii) classes of numerical methods to solve the differential equations that govern the dynamics of the granular material. Herein, we report numerical results for five experiments: shock wave propagation, cone penetration, direct shear, triaxial loading, and hopper flow, which we use to compare the DEM-P and DEM-C solutions. This exercise helps us reach two conclusions. First, both the DEM-P and DEM-C are predictive, i.e., they predict well the macroscale emergent behavior by capturing the dynamics at the microscale. Second, there are classes of problems for which one of the methods has an advantage. Unlike the DEM-P, the DEM-C cannot capture shock-wave propagation through granular media. However, the DEM-C is proficient at handling arbitrary grain

  7. Compliant contact versus rigid contact: A comparison in the context of granular dynamics.

    Science.gov (United States)

    Pazouki, Arman; Kwarta, Michał; Williams, Kyle; Likos, William; Serban, Radu; Jayakumar, Paramsothy; Negrut, Dan

    2017-10-01

    We summarize and numerically compare two approaches for modeling and simulating the dynamics of dry granular matter. The first one, the discrete-element method via penalty (DEM-P), is commonly used in the soft matter physics and geomechanics communities; it can be traced back to the work of Cundall and Strack [P. Cundall, Proc. Symp. ISRM, Nancy, France 1, 129 (1971); P. Cundall and O. Strack, Geotechnique 29, 47 (1979)GTNQA80016-850510.1680/geot.1979.29.1.47]. The second approach, the discrete-element method via complementarity (DEM-C), considers the grains perfectly rigid and enforces nonpenetration via complementarity conditions; it is commonly used in robotics and computer graphics applications and had two strong promoters in Moreau and Jean [J. J. Moreau, in Nonsmooth Mechanics and Applications, edited by J. J. Moreau and P. D. Panagiotopoulos (Springer, Berlin, 1988), pp. 1-82; J. J. Moreau and M. Jean, Proceedings of the Third Biennial Joint Conference on Engineering Systems and Analysis, Montpellier, France, 1996, pp. 201-208]. The DEM-P and DEM-C are manifestly unlike each other: They use different (i) approaches to model the frictional contact problem, (ii) sets of model parameters to capture the physics of interest, and (iii) classes of numerical methods to solve the differential equations that govern the dynamics of the granular material. Herein, we report numerical results for five experiments: shock wave propagation, cone penetration, direct shear, triaxial loading, and hopper flow, which we use to compare the DEM-P and DEM-C solutions. This exercise helps us reach two conclusions. First, both the DEM-P and DEM-C are predictive, i.e., they predict well the macroscale emergent behavior by capturing the dynamics at the microscale. Second, there are classes of problems for which one of the methods has an advantage. Unlike the DEM-P, the DEM-C cannot capture shock-wave propagation through granular media. However, the DEM-C is proficient at handling

  8. Dynamic Model of Contact Interface between Stator and Rotor

    Directory of Open Access Journals (Sweden)

    ZengHui Zhao

    2013-01-01

    Full Text Available Based on the equivalent principle, a linear spring contact model was established for the friction layer between stator and rotor. Different contact conditions were described by a distance index δ. Detailed analysis of the nonlinear contact behavior especially the static and dynamic slipping was carried on using a space-time equation. A contact deflection angle was proposed to quantitatively express the influence of friction force on the output performance. A more precision simulation model was established based on the theoretical analysis, and influences of different preload pressures and elastic modulus Em of friction layer on output performance were analyzed. The results showed the simulation results had very good consistency with experimental results, and the model could well reflect the output characteristics of contact interface.

  9. Solution to Hertzian Contact Problem between Wheel and Rail for Small Radius of Curvature

    NARCIS (Netherlands)

    Soemantri, Satryo; Puja, Wiratmaja; Budiwantoro, Bagus; Parwata, Made; Schipper, Dirk J.

    2010-01-01

    There have been several attempts to solve Hertz equation for curved surface contact problem. One application of Hertzian contact problem is to determine the contact properties between wheel and rail. It is important to understand the contact between wheel and rail so that excessive wear can be

  10. Comparison between FEBio and Abaqus for biphasic contact problems.

    Science.gov (United States)

    Meng, Qingen; Jin, Zhongmin; Fisher, John; Wilcox, Ruth

    2013-09-01

    Articular cartilage plays an important role in the function of diarthrodial joints. Computational methods have been used to study the biphasic mechanics of cartilage, and Abaqus has been one of the most widely used commercial software packages for this purpose. A newly developed open-source finite element solver, FEBio, has been developed specifically for biomechanical applications. The aim of this study was to undertake a direct comparison between FEBio and Abaqus for some practical contact problems involving cartilage. Three model types, representing a porous flat-ended indentation test, a spherical-ended indentation test, and a conceptual natural joint contact model, were compared. In addition, a parameter sensitivity study was also performed for the spherical-ended indentation test to investigate the effects of changes in the input material properties on the model outputs, using both FEBio and Abaqus. Excellent agreement was found between FEBio and Abaqus for all of the model types and across the range of material properties that were investigated.

  11. Solutions of dissimilar material singularity and contact problems

    International Nuclear Information System (INIS)

    Yang, Y.

    2003-09-01

    Due to the mismatch of the material properties of joined components, after a homogeneous temperature change or under a mechanical loading, very high stresses occur near the intersection of the interface and the outer surface, or near the intersection of two interfaces. For most material combinations and joint geometries, there exists even a stress singularity. These high stresses may cause fracture of the joint. The investigation of the stress situation near the singular point, therefore, is of great interest. Especially, the relationship between the singular stress exponent, the material data and joint geometry is important for choosing a suitable material combination and joint geometry. In this work, the singular stress field is described analytically in case of the joint having a real and a complex eigenvalue. Solutions of different singularity problems are given, which are two dissimilar materials joint with free edges; dissimilar materials joint with edge tractions; joint with interface corner; joint with a given displacement at one edge; cracks in dissimilar materials joint; contact problem in dissimilar materials and logarithmic stress singularity. For an arbitrary joint geometry and material combination, the stress singular exponent, the angular function and the regular stress term can be calculated analytically. The stress intensity factors for a finite joint can be determined applying numerical methods, e.g. the finite element method (FEM). The method to determine more than one stress intensity factor is presented. The characteristics of the eigenvalues and the stress intensity factors are shown for different joint conditions. (orig.)

  12. Measure Advancing, Receding and Dynamic Contact Angles of granular materials in a close column

    Science.gov (United States)

    Callegari, Gerardo; Li, Minglu; Moghtadernejad, Sara; Drazer, German

    2017-11-01

    Wetting properties of granular materials are usually obtained by the Washburn column technique. One problem is that the effective contact angle measured is dynamic and variable. The open column technique also allows to measure static advancing contact angle when the interface stops because the driving capillary pressure is balanced by the hydrostatic pressure. However, when particle diameters are in the range of tens of microns the static condition cannot be achieved at practical heights. Also, the open column device cannot be used to measure receding contact angles or contact angles of non-wetting liquids. Dynamics of a close column filled with granular material of different particle sizes where the liquid mass, the enclosed air pressure and the front position are monitored as a function of time is studied. Contact angle is calculated in dynamic and advancing static conditions. Then, a Syringe pump is used to increase the pressure inside the column so that the receding contact angle can also be studied. Supplementary experiments with a reference liquid that completely wets the powder are performed. Using a second liquid decouples the properties of the bed from the result and allows to measure the contact angles without making assumptions on the pore size or geometry.

  13. Evolutionary computation for dynamic optimization problems

    CERN Document Server

    Yao, Xin

    2013-01-01

    This book provides a compilation on the state-of-the-art and recent advances of evolutionary computation for dynamic optimization problems. The motivation for this book arises from the fact that many real-world optimization problems and engineering systems are subject to dynamic environments, where changes occur over time. Key issues for addressing dynamic optimization problems in evolutionary computation, including fundamentals, algorithm design, theoretical analysis, and real-world applications, are presented. "Evolutionary Computation for Dynamic Optimization Problems" is a valuable reference to scientists, researchers, professionals and students in the field of engineering and science, particularly in the areas of computational intelligence, nature- and bio-inspired computing, and evolutionary computation.

  14. A parallel algorithm for transient solid dynamics simulations with contact detection

    International Nuclear Information System (INIS)

    Attaway, S.; Hendrickson, B.; Plimpton, S.; Gardner, D.; Vaughan, C.; Heinstein, M.; Peery, J.

    1996-01-01

    Solid dynamics simulations with Lagrangian finite elements are used to model a wide variety of problems, such as the calculation of impact damage to shipping containers for nuclear waste and the analysis of vehicular crashes. Using parallel computers for these simulations has been hindered by the difficulty of searching efficiently for material surface contacts in parallel. A new parallel algorithm for calculation of arbitrary material contacts in finite element simulations has been developed and implemented in the PRONTO3D transient solid dynamics code. This paper will explore some of the issues involved in developing efficient, portable, parallel finite element models for nonlinear transient solid dynamics simulations. The contact-detection problem poses interesting challenges for efficient implementation of a solid dynamics simulation on a parallel computer. The finite element mesh is typically partitioned so that each processor owns a localized region of the finite element mesh. This mesh partitioning is optimal for the finite element portion of the calculation since each processor must communicate only with the few connected neighboring processors that share boundaries with the decomposed mesh. However, contacts can occur between surfaces that may be owned by any two arbitrary processors. Hence, a global search across all processors is required at every time step to search for these contacts. Load-imbalance can become a problem since the finite element decomposition divides the volumetric mesh evenly across processors but typically leaves the surface elements unevenly distributed. In practice, these complications have been limiting factors in the performance and scalability of transient solid dynamics on massively parallel computers. In this paper the authors present a new parallel algorithm for contact detection that overcomes many of these limitations

  15. Probing into frictional contact dynamics by ultrasound and electrical simulations

    Directory of Open Access Journals (Sweden)

    Changshan Jin

    2014-12-01

    Full Text Available Friction arises in the interface of friction pair, and therefore, it is difficult to detect it. Ultrasonic means, as a NDT, is the correct alternative. This paper introduces a means of detecting dynamic contact and an interpretation of behaviors of dry friction. It has been determined that frictional surfaces have a specific property of dynamic response hardening (DRH. Dynamic response forces and oscillation arise during static–kinetic transition process. While the contact zone of sliding surfaces appears “hard” in motion, it appears “soft” at rest. Consequently, a separation of the surfaces occurs and the real area of contact is decreased as sliding velocity increases. This is the cause of F–v descent phenomenon. When the friction comes to a rest, the remaining process of DRH and micro-oscillation do not disappear instantaneously, instead they gradually return to their original static position. The contact area, therefore, is increased by rest period (F–T ascent characteristics. Based on analogies between a solid unit (η–m–k and an R-L-C circuit, the DRH is demonstrated by electrical simulations.

  16. Research on the Problem of Spur Gear Teeth Contact in the Car Gear Box

    Directory of Open Access Journals (Sweden)

    Viktor Skrickij

    2011-04-01

    Full Text Available The article presents research on the problem of two gear contact in the car gearbox. Contact stiffness is evaluated for the whole period of mesh. Also, contact stresses are evaluated in the contact place. The presented method can be used for calculating spur gear.Article in Lithuanian

  17. WEAK SOLVABILITY FOR A CLASS OF CONTACT PROBLEMS

    Directory of Open Access Journals (Sweden)

    Andaluzia Matei

    2010-07-01

    Full Text Available A unilateral frictionless contact model, under the small deformationshypothesis, for static processes is considered. We model the behaviorof the material by a constitutive law stated in a subdifferentialform. The contact is described with Signorini's condition. Our studyfocuses on the weak solvability of the model, based on a weak formulation with dual Lagrange multipliers

  18. Effects of material properties on soft contact dynamics

    International Nuclear Information System (INIS)

    Khurshid, A.; Malik, M.A.; Ghafoor, A.

    2009-01-01

    The superiority of deformable human fingertips as compared to hard robot gripper fingers for grasping and manipulation has led to a number of investigations with robot hands employing elastomers or materials such as fluids or powders beneath a membrane at the fingertips. In this paper, to analyze the stability of dynamic control of an object grasped between two soft fingertips through a soft interface using the viscoelastic material between the manipulating fingers and a manipulated object is modeled through bond graph method (BGM). The fingers are made viscoelastic by using springs and dampers. Detailed bond graph modeling (BGM) of the contact phenomenon with two soft-finger contacts considered to be placed against each other on the opposite sides of the grasped object as is generally the case in a manufacturing environment is presented. The stiffness of the springs is exploited in order to achieve the stability in the soft-grasping which includes friction between the soft finger contact surfaces and the object, The paper also analyses stability of dynamic control through a soft interface between a manipulating finger and a manipulated object. It is shown in the paper that the system stability depends on the visco-elastic material properties of the soft interface. Method of root locus is used to analyze this phenomenon. The paper shows how the weight of the object coming downward is controlled by the friction between the fingers and the object during the application of contact forces by varying the damping and the stiffness in the soft finger. (author)

  19. Pore-scale modeling of moving contact line problems in immiscible two-phase flow.

    Science.gov (United States)

    Kucala, A.; Noble, D.; Martinez, M. J.

    2016-12-01

    Two immiscible fluids in static equilibrium form a common interface along a solid surface, characterized as the static contact (wetting) angle and is a function of surface geometry, intermolecular forces, and interfacial surface energies manifested as interfacial tension. This static configuration may become perturbed due to external force imbalances (mass injection, pressure gradients, buoyancy, etc.) and the contact line location and interface curvature becomes dynamic. Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. The moving two-phase interface is tracked using the level set method and discretized with the conformal decomposition finite element method (CDFEM), allowing for surface tension effects to be computed at the exact interface location. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

  20. Techniques for contact and contact with friction problems; Tecnicas para problemas de contacto y contacto con friccion

    Energy Technology Data Exchange (ETDEWEB)

    Velandia Arana, Gonzalo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1989-12-31

    Different numerical techniques are presented based in the finite element method to obtain numerical solutions to contact and contact with friction problems between solid bodies, and compared between each other. [Espanol] Se presentan diferentes tecnicas numericas basadas en el metodo de elementos finitos para la obtencion de soluciones numericas de problemas de contacto y contacto con friccion entre cuerpos solidos, y se comparan entre si.

  1. Solved problems in dynamical systems and control

    CERN Document Server

    Tenreiro-Machado, J; Valério, Duarte; Galhano, Alexandra M

    2016-01-01

    This book presents a collection of exercises on dynamical systems, modelling and control. Each topic covered includes a summary of the theoretical background, problems with solutions, and further exercises.

  2. The development of contact force construction in the dynamic-contact task of cycling [corrected].

    Science.gov (United States)

    Brown, Nicholas A T; Jensen, Jody L

    2003-01-01

    Purposeful movement requires that an individual produce appropriate joint torques to accelerate segments, and when environmental contact is involved, to develop task-appropriate contact forces. Developmental research has been confined largely to the mastery of unconstrained movement skills (pointing, kicking). The purpose of this study was to study the developmental progression that characterizes the interaction of muscular and non-muscular forces in tasks constrained by contact with the environment. Seven younger children (YC, 6-8 years), 7 older children (OC, 9-11 years) and 7 adults (AD) pedaled an ergometer (80 rpm) at an anthropometrically scaled cycling power. Resultant forces measured at the pedal's surface were decomposed into muscle, inertia and gravity components. Muscle pedal forces were further examined in terms of the underlying lower extremity joint torques and kinematic weights that constitute the muscular component of the pedal force. Data showed children applied muscle forces to the pedal in a significantly different manner compared to adults, and that this was due to the children's lower segmental mass and inertia. The children adjusted the contribution of the proximal joint muscle torques to compensate for reduced contributions to the resultant pedal force by gravitational and inertial components. These data show that smaller segmental mass and inertia limit younger children's ability to construct the dynamic-contact task of cycling in an adult-like form. On the basis of these results, however, the children's response was not "immature". Rather, the results show a task-appropriate adaptation to lower segmental mass and inertia. Copyright 2002 Elsevier Science Ltd.

  3. An implicit and explicit solver for contact problems

    NARCIS (Netherlands)

    Schutte, J.H.; Dannenberg, J.F.; Wijnant, Ysbrand H.; de Boer, Andries; Sas, P; Bergen, B.

    2010-01-01

    The interaction of rolling tyres with road surfaces is one of the major contributions to road traffic noise. The generation mechanisms of tyre/road noise are usually separated in structure borne and airborne noise. In both mechanisms the contact zone is important. In order to reduce tyre/road noise

  4. Solving Dynamic Traveling Salesman Problem Using Dynamic Gaussian Process Regression

    Directory of Open Access Journals (Sweden)

    Stephen M. Akandwanaho

    2014-01-01

    Full Text Available This paper solves the dynamic traveling salesman problem (DTSP using dynamic Gaussian Process Regression (DGPR method. The problem of varying correlation tour is alleviated by the nonstationary covariance function interleaved with DGPR to generate a predictive distribution for DTSP tour. This approach is conjoined with Nearest Neighbor (NN method and the iterated local search to track dynamic optima. Experimental results were obtained on DTSP instances. The comparisons were performed with Genetic Algorithm and Simulated Annealing. The proposed approach demonstrates superiority in finding good traveling salesman problem (TSP tour and less computational time in nonstationary conditions.

  5. Planar dynamical systems selected classical problems

    CERN Document Server

    Liu, Yirong; Huang, Wentao

    2014-01-01

    This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. This book is intended for graduate students, post-doctors and researchers in the area of theories and applications of dynamical systems. For all engineers who are interested the theory of dynamical systems, it is also a reasona

  6. A frictional contact problem for an electro-viscoelastic body

    Directory of Open Access Journals (Sweden)

    Mircea Sofonea

    2007-12-01

    Full Text Available A mathematical model which describes the quasistatic frictional contact between a piezoelectric body and a deformable conductive foundation is studied. A nonlinear electro-viscoelastic constitutive law is used to model the piezoelectric material. Contact is described with the normal compliance condition, a version of Coulomb's law of dry friction, and a regularized electrical conductivity condition. A variational formulation of the model, in the form of a coupled system for the displacements and the electric potential, is derived. The existence of a unique weak solution of the model is established under a smallness assumption on the surface conductance. The proof is based on arguments of evolutionary variational inequalities and fixed points of operators.

  7. Modeling and analysis of linearized wheel-rail contact dynamics

    International Nuclear Information System (INIS)

    Soomro, Z.

    2014-01-01

    The dynamics of the railway vehicles are nonlinear and depend upon several factors including vehicle speed, normal load and adhesion level. The presence of contaminants on the railway track makes them unpredictable too. Therefore in order to develop an effective control strategy it is important to analyze the effect of each factor on dynamic response thoroughly. In this paper a linearized model of a railway wheel-set is developed and is later analyzed by varying the speed and adhesion level by keeping the normal load constant. A wheel-set is the wheel-axle assembly of a railroad car. Patch contact is the study of the deformation of solids that touch each other at one or more points. (author)

  8. Current-induced dynamics in carbon atomic contacts

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Gunst, Tue; Brandbyge, Mads

    2011-01-01

    carbon chain connecting electrically gated graphene electrodes. This illustrates how the device stability can be predicted solely from the modes obtained from the Langevin equation, including the current-induced forces. We point out that the gate offers control of the current, independent of the bias...... of molecular-scale contacts. Systems based on molecules bridging electrically gated graphene electrodes may offer an interesting test-bed for these effects. Results: We employ a semi-classical Langevin approach in combination with DFT calculations to study the current-induced vibrational dynamics of an atomic...... voltage, which can be used to explore current-induced vibrational instabilities due the NC/BP forces. Furthermore, using tight-binding and the Brenner potential we illustrate how Langevin-type molecular-dynamics calculations including the Joule heating effect for the carbon-chain systems can be performed...

  9. Static semicoercive normal compliance contact problem with limited interpenetration

    Czech Academy of Sciences Publication Activity Database

    Jarušek, Jiří

    2015-01-01

    Roč. 66, č. 5 (2015), s. 2161-2172 ISSN 0044-2275 R&D Projects: GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985840 Keywords : contact * limited interpenetration * friction Subject RIV: BA - General Mathematics Impact factor: 1.560, year: 2015 http://link.springer.com/article/10.1007%2Fs00033-015-0539-5

  10. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    Directory of Open Access Journals (Sweden)

    Collins Natalie

    2009-10-01

    Full Text Available Abstract Background Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Methods Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 ± 3.5 years. The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. Results A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p R2 = 0.76, p Conclusion The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region.

  11. Acanthamoeba keratitis and contact lens wear: static or increasing problem?

    Science.gov (United States)

    Foulks, Gary N

    2007-11-01

    The occurrence of Acanthamoeba keratitis is increasing in the United States because of an expanding population at risk of infection and sporadic outbreaks of infection. Such outbreaks are the result of lapses in contact lens wear and care and of alterations in water quality and water treatment procedures. Although improved techniques in diagnosis are available, better identification of infection alone does not explain an increase in the observed occurrence of the disease. Likewise, there does not appear to be an increase in the virulence or infectivity of the amoebae. Strategies for prevention, including patient education, improved decontaminating agents, maintenance of water treatment standards, and possible immunization of subjects at risk, are needed.

  12. Implementation of the eXtended Finite Element Method (X-FEM) in Frictional Contact Problems

    Science.gov (United States)

    Khoei, A. R.; Anahid, M.; Yadegaran, I.; Nikbakht, M.

    2007-05-01

    Numerical modeling of engineering contact problems is one of the most difficult and demanding tasks in computational mechanics. In this paper, the extended finite element method is employed to simulate the presence of discontinuities caused by frictional contact based on the penalty approach. The FEM approximation is enriched by applying additional terms to simulate the frictional behavior of contact between two bodies. The penalty method, which is one of the most commonly used techniques for contact problems, is used to model the penetration between two contacting boundaries and the normal contact force is related to the penetration by a penalty parameter. Finally, numerical examples are presented to demonstrate the applicability of the XFEM in modeling of frictional contact behavior.

  13. The inverse problem for definition of the shape of a molten contact bridge

    Science.gov (United States)

    Kharin, Stanislav N.; Sarsengeldin, Merey M.

    2017-09-01

    The paper presents the results of investigation of bridging phenomenon occurring at opening of electrical contacts. The mathematical model describing the dynamics of metal molten bridge takes into account the Thomson effect. It is based on the system of partial differential equations for temperature and electrical fields of the bridge in the domain containing two moving unknown boundaries. One of them is an interface between liquid and solid zones of the bridge and should be found by the solution of the corresponding Stefan problem. The second free boundary corresponds to the shape of the visible part of a bridge. Its definition is an inverse problem, for which solution it is necessary to find minimum of the energy consuming for the formation of the shape of a quasi-stationary bridge. Three components of this energy, namely surface tension, pinch effect and gravitation, are defined by the functional which minimum gives the required shape of the bridge. The solution of corresponding variation problem is found by the reduction of the problem to the solution of the system of ordinary differential equations. Calculated values of the voltage of the bridge rupture for various metals are in a good agreement with the experimental data. The criteria responsible for the mechanism of molten bridge rupture are introduced in the paper.

  14. Nonsmooth Newton method for Fischer function reformulation of contact force problems for interactive rigid body simulation

    DEFF Research Database (Denmark)

    Silcowitz, Morten; Niebe, Sarah Maria; Erleben, Kenny

    2009-01-01

    contact response. In this paper, we present a new approach to contact force determination. We reformulate the contact force problem as a nonlinear root search problem, using a Fischer function. We solve this problem using a generalized Newton method. Our new Fischer - Newton method shows improved......n interactive physical simulation, contact forces are applied to prevent rigid bodies from penetrating each other. Accurate contact force determination is a computationally hard problem. Thus, in practice one trades accuracy for performance. The result is visual artifacts such as viscous or damped...... qualities for specific configurations where the most widespread alternative, the Projected Gauss-Seidel method, fails. Experiments show superior convergence properties of the exact Fischer - Newton method....

  15. Hybrid Predictive Control for Dynamic Transport Problems

    CERN Document Server

    Núñez, Alfredo A; Cortés, Cristián E

    2013-01-01

    Hybrid Predictive Control for Dynamic Transport Problems develops methods for the design of predictive control strategies for nonlinear-dynamic hybrid discrete-/continuous-variable systems. The methodology is designed for real-time applications, particularly the study of dynamic transport systems. Operational and service policies are considered, as well as cost reduction. The control structure is based on a sound definition of the key variables and their evolution. A flexible objective function able to capture the predictive behaviour of the system variables is described. Coupled with efficient algorithms, mainly drawn from the area of computational intelligence, this is shown to optimize performance indices for real-time applications. The framework of the proposed predictive control methodology is generic and, being able to solve nonlinear mixed-integer optimization problems dynamically, is readily extendable to other industrial processes. The main topics of this book are: ●hybrid predictive control (HPC) ...

  16. Sommerfeld's formula and uniqueness for the boundary value contact problems

    CERN Document Server

    Andronov, I V

    1998-01-01

    The expression of the acoustic field scattered on an infinite elastic plate with an arbitrary compact inhomogeneity in terms of the analytic continuation of its scattering diagram is found. This formula allows the uniqueness of the solution for the scattering problem to be proved. The connection of the formula with the Rayleigh hypothesis is discussed. (author). Letter-to-the-editor

  17. Contact problem for a composite material with nacre inspired microstructure

    Science.gov (United States)

    Berinskii, Igor; Ryvkin, Michael; Aboudi, Jacob

    2017-12-01

    Bi-material composites with nacre inspired brick and mortar microstructures, characterized by stiff elements of one phase with high aspect ratio separated by thin layers of the second one, are considered. Such microstructure is proved to provide an efficient solution for the problem of a crack arrest. However, contrary to the case of a homogeneous material, an external pressure, applied to a part of the composite boundary, can cause significant tensile stresses which increase the danger of crack nucleation. Investigation of the influence of microstructure parameters on the magnitude of tensile stresses is performed by means of the classical Flamant-like problem of an orthotropic half-plane subjected to a normal external distributed loading. Adequate analysis of this problem represents a serious computational task due to the geometry of the considered layout and the high contrast between the composite constituents. This difficulty is presently circumvented by deriving a micro-to-macro analysis in the framework of which an analytical solution of the auxiliary elasticity problem, followed by the discrete Fourier transform and the higher-order theory are employed. As a result, full scale continuum modeling of both composite constituents without employing any simplifying assumptions is presented. In the framework of the present proposed modeling, the influence of stiff elements aspect ratio on the overall stress distribution is demonstrated.

  18. Current-induced dynamics in carbon atomic contacts

    Directory of Open Access Journals (Sweden)

    Jing-Tao Lü

    2011-12-01

    Full Text Available Background: The effect of electric current on the motion of atoms still poses many questions, and several mechanisms are at play. Recently there has been focus on the importance of the current-induced nonconservative forces (NC and Berry-phase derived forces (BP with respect to the stability of molecular-scale contacts. Systems based on molecules bridging electrically gated graphene electrodes may offer an interesting test-bed for these effects.Results: We employ a semi-classical Langevin approach in combination with DFT calculations to study the current-induced vibrational dynamics of an atomic carbon chain connecting electrically gated graphene electrodes. This illustrates how the device stability can be predicted solely from the modes obtained from the Langevin equation, including the current-induced forces. We point out that the gate offers control of the current, independent of the bias voltage, which can be used to explore current-induced vibrational instabilities due the NC/BP forces. Furthermore, using tight-binding and the Brenner potential we illustrate how Langevin-type molecular-dynamics calculations including the Joule heating effect for the carbon-chain systems can be performed. Molecular dynamics including current-induced forces enables an energy redistribution mechanism among the modes, mediated by anharmonic interactions, which is found to be vital in the description of the electrical heating.Conclusion: We have developed a semiclassical Langevin equation approach that can be used to explore current-induced dynamics and instabilities. We find instabilities at experimentally relevant bias and gate voltages for the carbon-chain system.

  19. Real-time visualization of dynamic particle contact failures

    Energy Technology Data Exchange (ETDEWEB)

    Parab, Niranjan D.; Hudspeth, Matthew; Claus, Ben; Guo, Zherui; Sun, Tao; Fezzaa, Kamel; Chen, Weinong W.

    2017-01-01

    Granular materials are widely used to resist impact and blast. Under these dynamic loadings, the constituent particles in the granular system fracture. To study the fracture mechanisms in brittle particles under dynamic compressive loading, a high speed X-ray phase contrast imaging setup was synchronized with a Kolsky bar apparatus. Controlled compressive loading was applied on two contacting particles using the Kolsky bar apparatus and fracture process was captured using the high speed X-ray imaging setup. Five different particles were investigated: soda-lime glass, polycrystalline silica (silicon dioxide), polycrystalline silicon, barium titanate glass, and yttrium stabilized zirconia. For both soda lime glass and polycrystalline silica particles, one of the particles fragmented explosively, thus breaking into many small pieces. For Silicon and barium titanate glass particles, a finite number of cracks were observed in one of the particles causing it to fracture. For yttrium stabilized zirconia particles, a single meridonial crack developed in one of the particles, breaking it into two parts.

  20. Hospital contacts with alcohol problems prior to liver cirrhosis or pancreatitis diagnosis

    DEFF Research Database (Denmark)

    Askgaard, Gro; Neermark, Søren; Leon, David A.

    2017-01-01

    AIM To evaluate prior hospital contacts with alcohol problems in patients with alcoholic liver cirrhosis and pancreatitis. METHODS This was a register-based study of all patients diagnosed with alcoholic liver cirrhosis or pancreatitis during 2008-2012 in Denmark. Hospital contacts with alcohol p...... alcoholic liver cirrhosis or pancreatitis with preventive interventions in the hospital setting....

  1. A system-approach to the elastohydrodynamic lubrication point-contact problem

    Science.gov (United States)

    Lim, Sang Gyu; Brewe, David E.

    1991-01-01

    The classical EHL (elastohydrodynamic lubrication) point contact problem is solved using a new system-approach, similar to that introduced by Houpert and Hamrock for the line-contact problem. Introducing a body-fitted coordinate system, the troublesome free-boundary is transformed to a fixed domain. The Newton-Raphson method can then be used to determine the pressure distribution and the cavitation boundary subject to the Reynolds boundary condition. This method provides an efficient and rigorous way of solving the EHL point contact problem with the aid of a supercomputer and a promising method to deal with the transient EHL point contact problem. A typical pressure distribution and film thickness profile are presented and the minimum film thicknesses are compared with the solution of Hamrock and Dowson. The details of the cavitation boundaries for various operating parameters are discussed.

  2. A frictional contact problem with damage and adhesion for an electro elastic-viscoplastic body

    Directory of Open Access Journals (Sweden)

    Adel Aissaoui

    2014-01-01

    Full Text Available We consider a quasistatic frictional contact problem for an electro elastic-viscopalastic body with damage and adhestion. The contact is modelled with normal compliance. The adhesion of the contact surfaces is taken into account and modelled by a surface variable. We derive variational formulation for the model which is in the form of a system involving the displacement field, the electric potential field, the damage field and the adhesion field. We prove the existence of a unique weak solution to the problem. The proof is based on arguments of time-dependent variational inequalities, parabolic inequalities, differential equations and fixed point.

  3. Dynamics of contact line depinning during droplet evaporation based on thermodynamics.

    Science.gov (United States)

    Yu, Dong In; Kwak, Ho Jae; Doh, Seung Woo; Ahn, Ho Seon; Park, Hyun Sun; Kiyofumi, Moriyama; Kim, Moo Hwan

    2015-02-17

    For several decades, evaporation phenomena have been intensively investigated for a broad range of applications. However, the dynamics of contact line depinning during droplet evaporation has only been inductively inferred on the basis of experimental data and remains unclear. This study focuses on the dynamics of contact line depinning during droplet evaporation based on thermodynamics. Considering the decrease in the Gibbs free energy of a system with different evaporation modes, a theoretical model was developed to estimate the receding contact angle during contact line depinning as a function of surface conditions. Comparison of experimentally measured and theoretically modeled receding contact angles indicated that the dynamics of contact line depinning during droplet evaporation was caused by the most favorable thermodynamic process encountered during constant contact radius (CCR mode) and constant contact angle (CCA mode) evaporation to rapidly reach an equilibrium state during droplet evaporation.

  4. Cellular automatons applied to gas dynamic problems

    Science.gov (United States)

    Long, Lyle N.; Coopersmith, Robert M.; Mclachlan, B. G.

    1987-01-01

    This paper compares the results of a relatively new computational fluid dynamics method, cellular automatons, with experimental data and analytical results. This technique has been shown to qualitatively predict fluidlike behavior; however, there have been few published comparisons with experiment or other theories. Comparisons are made for a one-dimensional supersonic piston problem, Stokes first problem, and the flow past a normal flat plate. These comparisons are used to assess the ability of the method to accurately model fluid dynamic behavior and to point out its limitations. Reasonable results were obtained for all three test cases, but the fundamental limitations of cellular automatons are numerous. It may be misleading, at this time, to say that cellular automatons are a computationally efficient technique. Other methods, based on continuum or kinetic theory, would also be very efficient if as little of the physics were included.

  5. Existence of solutions for quasistatic problems of unilateral contact with nonlocal friction for nonlinear elastic materials

    Directory of Open Access Journals (Sweden)

    Alain Mignot

    2005-09-01

    Full Text Available This paper shows the existence of a solution of the quasi-static unilateral contact problem with nonlocal friction law for nonlinear elastic materials. We set up a variational incremental problem which admits a solution, when the friction coefficient is small enough, and then by passing to the limit with respect to time we obtain a solution.

  6. Risk for alcoholic liver cirrhosis after an initial hospital contact with alcohol problems

    DEFF Research Database (Denmark)

    Askgaard, Gro; Leon, David A; Kjaer, Mette S

    2017-01-01

    Alcoholic liver cirrhosis is usually preceded by many years of heavy drinking, in which cessation in drinking could prevent the disease. Alcohol problems are not consistently managed in hospital patients. We followed all Danish patients with an initial hospital contact with alcohol problems (into...

  7. A Class of time-fractional hemivariational inequalities with application to frictional contact problem

    Science.gov (United States)

    Zeng, Shengda; Migórski, Stanisław

    2018-03-01

    In this paper a class of elliptic hemivariational inequalities involving the time-fractional order integral operator is investigated. Exploiting the Rothe method and using the surjectivity of multivalued pseudomonotone operators, a result on existence of solution to the problem is established. Then, this abstract result is applied to provide a theorem on the weak solvability of a fractional viscoelastic contact problem. The process is quasistatic and the constitutive relation is modeled with the fractional Kelvin-Voigt law. The friction and contact conditions are described by the Clarke generalized gradient of nonconvex and nonsmooth functionals. The variational formulation of this problem leads to a fractional hemivariational inequality.

  8. Brain dynamics of mathematical problem solving.

    Science.gov (United States)

    Lin, Chun-Ling; Jung, Melody; Wu, Ying Choon; Lin, Chin-Teng; She, Hsiao-Ching

    2012-01-01

    The purpose of this study is to examine brain activities of participants solving mental math problems. The research investigated how problem difficulty affected the subjects' responses and electroencephalogram (EEG) in different brain regions. In general, it was found that solution latencies (SL) to the math problems increased with difficulty. The EEG results showed that across subjects, the right-central beta, left-parietal theta, left-occipital theta and alpha, right-parietal alpha and beta, medial-frontal beta and medial central theta power decreased as task difficulty increased. This study further explored the effects of problem-solving performance on the EEG. Slow solvers exhibited greater frontal theta activities in the right hemisphere, whereas an inverse pattern of hemispheric asymmetry was found in fast solvers. Furthermore, analyses of spatio-temporal brain dynamics during problem solving show progressively stronger alpha- and beta-power suppression and theta-power augmentation as subjects were reaching a solution. These findings provide a better understanding of cortical activities mediating math-based problem solving and knowledge acquisition that can ultimately benefit math learning and education.

  9. Dynamic Flow Management Problems in Air Transportation

    Science.gov (United States)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  10. Continuum mechanics at the atomic scale : Insights into non-adhesive contacts using molecular dynamics simulations

    NARCIS (Netherlands)

    Solhjoo, Soheil; Vakis, Antonis I.

    2016-01-01

    Classical molecular dynamics (MD) simulations were performed to study non-adhesive contact at the atomic scale. Starting from the case of Hertzian contact, it was found that the reduced Young’s modulus E* for shallow indentations scales as a function of, both, the indentation depth and the contact

  11. INSTRUMENTS AND METHODS OF INVESTIGATION: Solid-solid thermal contact problems: current understanding

    Science.gov (United States)

    Mesnyankin, Sergei Yu; Vikulov, Aleksei G.; Vikulov, Dmitrii G.

    2009-09-01

    The past 40 years of theoretical and experimental research on contact heat transfer are reviewed. Thermophysical and mechanical processes involved in heat flow propagation through various kinds of solid-solid joints are considered. Analytical and semiempirical expressions are presented, which simulate these processes both under vacuum conditions and in the presence of a heat-conducting medium in gaps. Reasons for the experimentally examined heat flux rectification are explained. Studies on thermal contact under a nonstationary regime are covered, as is the possibility of applying classical heat conduction theory to describing the contact thermal properties. A thermodynamic interpretation of the thermal contact resistance is suggested and basic approaches to the study of contact phenomena are described. The heat conduction in nanosystems is briefly reviewed. Theoretical problems yet to be solved are pointed out and possible solution methods suggested.

  12. Evolutionary variational inequalities arising in quasistatic frictional contact problems for elastic materials

    Directory of Open Access Journals (Sweden)

    Dumitru Motreanu

    1999-01-01

    normal compliance and a version of Coulomb's law of dry friction, for which we prove the existence of a weak solution. We then consider a problem of bilateral contact with Tresca's friction law and a problem involving a simplified version of Coulomb's friction law. For these two problems we prove the existence, the uniqueness and the Lipschitz continuous dependence of the weak solution with respect to the data.

  13. On a solvability of hydro-mechanical problem based on contact problem with visco-plastic friction in Bingham rheology

    Czech Academy of Sciences Publication Activity Database

    Nedoma, Jiří; Tomášek, Luboš

    2008-01-01

    Roč. 218, č. 1 (2008), s. 116-124 ISSN 0377-0427 Institutional research plan: CEZ:AV0Z10300504 Keywords : visco-plasticity * Bingham rheology * contact problems with friction * variational inequalities * FEM * geomechanics * hydromechanics Subject RIV: BA - General Mathematics Impact factor: 1.048, year: 2008

  14. A 'conveyor belt' model for the dynamic contact angle

    International Nuclear Information System (INIS)

    Volpe C, Della; Siboni, S

    2011-01-01

    The familiar Young contact angle measurement of a liquid at equilibrium on a solid is a fundamental aspect of capillary phenomena. But in the real world it is not so easy to observe it. This is due to the roughness and/or heterogeneity of real surfaces, which typically are not perfectly planar and chemically homogeneous. What can be easily detected, and in a repeatable way, are advancing and receding contact angles. In this paper, we discuss a simple model which accounts for the onset of advancing and receding contact angles measured by the Wilhelmy microbalance, one of the most powerful techniques for contact angle measurements. The model also explains the experimental observation that advancing and receding contact angles become closer to each other when the system is gently 'shaken', by supplying mechanical energy in an appropriate way. The model may be pedagogically useful in introducing students and teachers to aspects of capillary phenomena which are not usually discussed in basic physics courses.

  15. A frictional contact problem with wear involving elastic-viscoplastic materials with damage and thermal effects

    Directory of Open Access Journals (Sweden)

    Abdelmoumene Djabi

    2015-05-01

    Full Text Available We consider a mathematical problem for quasistatic contact between a thermo-elastic-viscoplastic body with damage and an obstacle. The contact is frictional and bilateral with a moving rigid foundation which results in the wear of the contacting surface. We employ the thermo-elasticviscoplastic with damage constitutive law for the material. The damage of the material caused by elastic deformations. The evolution of the damage is described by an inclusion of parabolic type. The problem is formulated as a coupled system of an elliptic variational inequality for the displacement, a parabolic variational inequality for the damage and the heat equation for the temperature. We establish a variational formulation for the model and we prove the existence of a unique weak solution to the problem. The proof is based on a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed point arguments.

  16. History-Dependent Problems with Applications to Contact Models for Elastic Beams

    Energy Technology Data Exchange (ETDEWEB)

    Bartosz, Krzysztof; Kalita, Piotr; Migórski, Stanisław; Ochal, Anna, E-mail: ochal@ii.uj.edu.pl [Jagiellonian University, Faculty of Mathematics and Computer Science (Poland); Sofonea, Mircea [Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (France)

    2016-02-15

    We prove an existence and uniqueness result for a class of subdifferential inclusions which involve a history-dependent operator. Then we specialize this result in the study of a class of history-dependent hemivariational inequalities. Problems of such kind arise in a large number of mathematical models which describe quasistatic processes of contact. To provide an example we consider an elastic beam in contact with a reactive obstacle. The contact is modeled with a new and nonstandard condition which involves both the subdifferential of a nonconvex and nonsmooth function and a Volterra-type integral term. We derive a variational formulation of the problem which is in the form of a history-dependent hemivariational inequality for the displacement field. Then, we use our abstract result to prove its unique weak solvability. Finally, we consider a numerical approximation of the model, solve effectively the approximate problems and provide numerical simulations.

  17. Investigation of the Dynamic Contact Angle Using a Direct Numerical Simulation Method.

    Science.gov (United States)

    Zhu, Guangpu; Yao, Jun; Zhang, Lei; Sun, Hai; Li, Aifen; Shams, Bilal

    2016-11-15

    A large amount of residual oil, which exists as isolated oil slugs, remains trapped in reservoirs after water flooding. Numerous numerical studies are performed to investigate the fundamental flow mechanism of oil slugs to improve flooding efficiency. Dynamic contact angle models are usually introduced to simulate an accurate contact angle and meniscus displacement of oil slugs under a high capillary number. Nevertheless, in the oil slug flow simulation process, it is unnecessary to introduce the dynamic contact angle model because of a negligible change in the meniscus displacement after using the dynamic contact angle model when the capillary number is small. Therefore, a critical capillary number should be introduced to judge whether the dynamic contact model should be incorporated into simulations. In this study, a direct numerical simulation method is employed to simulate the oil slug flow in a capillary tube at the pore scale. The position of the interface between water and the oil slug is determined using the phase-field method. The capacity and accuracy of the model are validated using a classical benchmark: a dynamic capillary filling process. Then, different dynamic contact angle models and the factors that affect the dynamic contact angle are analyzed. The meniscus displacements of oil slugs with a dynamic contact angle and a static contact angle (SCA) are obtained during simulations, and the relative error between them is calculated automatically. The relative error limit has been defined to be 5%, beyond which the dynamic contact angle model needs to be incorporated into the simulation to approach the realistic displacement. Thus, the desired critical capillary number can be determined. A three-dimensional universal chart of critical capillary number, which functions as static contact angle and viscosity ratio, is given to provide a guideline for oil slug simulation. Also, a fitting formula is presented for ease of use.

  18. The Finite Deformation Dynamic Sphere Test Problem

    Energy Technology Data Exchange (ETDEWEB)

    Versino, Daniele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brock, Jerry Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    In this manuscript we describe test cases for the dynamic sphere problem in presence of finite deformations. The spherical shell in exam is made of a homogeneous, isotropic or transverse isotropic material and elastic and elastic-plastic material behaviors are considered. Twenty cases, (a) to (t), are thus defined combining material types and boundary conditions. The inner surface radius, the outer surface radius and the material's density are kept constant for all the considered test cases and their values are ri = 10mm, ro = 20mm and p = 1000Kg/m3 respectively.

  19. On the physically based modeling of surface tension and moving contact lines with dynamic contact angles on the continuum scale

    NARCIS (Netherlands)

    Huber, M.; Keller, F.; Säckel, W.; Hirschler, M.; Kunz, P.; Hassanizadeh, S.M.; Nieken, U.

    2016-01-01

    The description of wetting phenomena is a challenging problem on every considerable length-scale. The behavior of interfaces and contact lines on the continuum scale is caused by intermolecular interactions like the Van der Waals forces. Therefore, to describe surface tension and the resulting

  20. Solving graph problems with dynamic computation structures

    Science.gov (United States)

    Babb, Jonathan W.; Frank, Matthew; Agarwal, Anant

    1996-10-01

    We introduce dynamic computation structures (DCS), a compilation technique to produce dynamic code for reconfigurable computing. DCS specializes directed graph instances into user-level hardware for reconfigurable architectures. Several problems such as shortest path and transitive closure exhibit the general properties of closed semirings, an algebraic structure for solving directed paths. Motivating our application domain choice of closed semiring problems is the fact that logic emulation software already maps a special case of directed graphs, namely logic netlists, onto arrays of field programmable gate arrays (FPGA). A certain type of logic emulation software called virtual wires further allows an FPGA array to be viewed as a machine-independent computing fabric. Thus, a virtual wires compiler, coupled with front-end commercial behavioral logic synthesis software, enables automatic behavioral compilation into a multi-FPGA computing fabric. We have implemented a DCS front-end compiler to parallelize the entire inner loop of the classic Bellman-Ford algorithm into synthesizable behavioral verilog. Leveraging virtual wire compilation and behavioral synthesis, we have automatically generated designs of 14 to 261 FPGAs from a single graph instance. We achieve speedups proportional to the number of graph edges - - from 10X to almost 400X versus a 125 SPECint SparcStation 10.

  1. Efficient numerical methods for the large-scale, parallel solution of elastoplastic contact problems

    KAUST Repository

    Frohne, Jörg

    2015-08-06

    © 2016 John Wiley & Sons, Ltd. Quasi-static elastoplastic contact problems are ubiquitous in many industrial processes and other contexts, and their numerical simulation is consequently of great interest in accurately describing and optimizing production processes. The key component in these simulations is the solution of a single load step of a time iteration. From a mathematical perspective, the problems to be solved in each time step are characterized by the difficulties of variational inequalities for both the plastic behavior and the contact problem. Computationally, they also often lead to very large problems. In this paper, we present and evaluate a complete set of methods that are (1) designed to work well together and (2) allow for the efficient solution of such problems. In particular, we use adaptive finite element meshes with linear and quadratic elements, a Newton linearization of the plasticity, active set methods for the contact problem, and multigrid-preconditioned linear solvers. Through a sequence of numerical experiments, we show the performance of these methods. This includes highly accurate solutions of a three-dimensional benchmark problem and scaling our methods in parallel to 1024 cores and more than a billion unknowns.

  2. Three-dimensional problems of the hydrodynamic interaction between bodies in a viscous fluid in the vicinity of their contact

    Czech Academy of Sciences Publication Activity Database

    Petrov, A. G.; Kharlamov, Alexander A.

    2013-01-01

    Roč. 48, č. 5 (2013), s. 577-587 ISSN 0015-4628 R&D Projects: GA ČR(CZ) GA103/09/2066 Grant - others:Development of the Scientific Potential of the Higher Schoo(RU) 2.1.2/3604; Russian Foundation for Basic Research(RU) 11- 01-005355 Institutional support: RVO:67985874 Keywords : lubrication layer theory * viscous and inviscid fluids * thin layer * vicinity of a contact * three-dimensional problems Subject RIV: BK - Fluid Dynamics Impact factor: 0.320, year: 2013

  3. On a free-surface problem with moving contact line: From variational principles to stable numerical approximations

    Science.gov (United States)

    Fumagalli, Ivan; Parolini, Nicola; Verani, Marco

    2018-02-01

    We analyze a free-surface problem described by time-dependent Navier-Stokes equations. Surface tension, capillary effects and wall friction are taken into account in the evolution of the system, influencing the motion of the contact line - where the free surface hits the wall - and of the dynamics of the contact angle. The differential equations governing the phenomenon are first derived from the variational principle of minimum reduced dissipation, and then discretized by means of the ALE approach. The numerical properties of the resulting scheme are investigated, drawing a parallel with the physical properties holding at the continuous level. Some instability issues are addressed in detail, in the case of an explicit treatment of the geometry, and novel additional terms are introduced in the discrete formulation in order to damp the instabilities. Numerical tests assess the suitability of the approach, the influence of the parameters, and the effectiveness of the new stabilizing terms.

  4. Finite-Element Analysis of Contact Problems in Thermoelasticity. The Semi-Coercive Case

    Czech Academy of Sciences Publication Activity Database

    Nedoma, Jiří

    1994-01-01

    Roč. 50, 1/2/3 (1994), s. 411-423 ISSN 0377-0427. [International Congress on Computational and Applied Mathematics /5./. Leuven, 27.07.1992-01.08.1992] Keywords : variational inequality * contact problem * thermoelasticity * geodynamics * biomechanics Impact factor: 0.349, year: 1994

  5. Numerical Solution of the Contact Problem. Application to a Simple Model of the Human Hip Joint

    Czech Academy of Sciences Publication Activity Database

    Bartoš, M.; Kestřánek, Zdeněk

    1995-01-01

    Roč. 63, 1/3 (1995), s. 439-447 ISSN 0377-0427. [Modelling'94. Prague, 29.08.1994-02.09.1994] R&D Projects: GA ČR GA308/95/0304 Grant - others:COPERNICUS(XE) 94-00820 Keywords : contact problem * finite element method * mathematical programming Impact factor: 0.373, year: 1995

  6. Primal and Dual Penalty Methods for Contact Problems with Geometrical Non-linearities

    Czech Academy of Sciences Publication Activity Database

    Vondrák, V.; Dostál, Z.; Dobiáš, Jiří; Pták, Svatopluk

    -, č. 5 (2005), s. 449-450 ISSN 1617-7061. [GAMM Annual Meeting 2005. Luxembourg, 28.03.2005-01.04.2005] R&D Projects: GA ČR(CZ) GA101/05/0423 Institutional research plan: CEZ:AV0Z20760514 Keywords : primal penalty * dual penalty * contact problem Subject RIV: BA - General Mathematics

  7. Solvability of Static Contact Problems with Coulomb Friction for Orthotropic Material

    Czech Academy of Sciences Publication Activity Database

    Eck, C.; Jarušek, Jiří

    2008-01-01

    Roč. 93, č. 1 (2008), s. 93-104 ISSN 0374-3535 R&D Projects: GA AV ČR IAA1075402 Institutional research plan: CEZ:AV0Z10190503 Keywords : contact problem * Coulomb friction * orthotropic elasticity Subject RIV: BA - General Mathematics Impact factor: 1.277, year: 2008

  8. Total FETI based algorithm for contact problems with additional non-linearities

    Czech Academy of Sciences Publication Activity Database

    Dobiáš, Jiří; Pták, Svatopluk; Dostál, Z.; Vondrák, V.

    2010-01-01

    Roč. 41, č. 1 (2010), s. 46-51 ISSN 0965-9978 R&D Projects: GA ČR GA101/05/0423 Institutional research plan: CEZ:AV0Z20760514 Keywords : contact problem * finite element method * domain decomposition Subject RIV: JC - Computer Hardware ; Software Impact factor: 1.004, year: 2010

  9. Contact Problem of Disk on Shaft Fixed by Induction Shrink Fit

    Czech Academy of Sciences Publication Activity Database

    Ulrych, B.; Kotlan, V.; Doležel, Ivo

    2012-01-01

    Roč. 88, 12B (2012), s. 32-34 ISSN 0033-2097 Institutional research plan: CEZ:AV0Z20760514 Keywords : induction shrink fit * contact problem * transfer of torque Subject RIV: BA - General Mathematics Impact factor: 0.244, year: 2011

  10. Diffusive Dynamics of Contact Formation in Disordered Polypeptides

    Science.gov (United States)

    Zerze, Gül H.; Mittal, Jeetain; Best, Robert B.

    2016-02-01

    Experiments measuring contact formation between probes in disordered chains provide information on the fundamental time scales relevant to protein folding. However, their interpretation usually relies on one-dimensional (1D) diffusion models, as do many experiments probing a single distance. Here, we use all-atom molecular simulations to capture both the time scales of contact formation, as well as the scaling with peptide length for tryptophan triplet quenching experiments, revealing the sensitivity of the experimental quenching times to the configurational space explored by the chain. We find a remarkable consistency between the results of the full calculation and from Szabo-Schulten-Schulten theory applied to a 1D diffusion model, supporting the validity of such models. The significant reduction in diffusion coefficient at the small probe separations which most influence quenching rate, suggests that contact formation and Förster resonance energy transfer correlation experiments provide complementary information on diffusivity.

  11. Beyond Problem-Based Learning: Using Dynamic PBL in Chemistry

    Science.gov (United States)

    Overton, Tina L.; Randles, Christopher A.

    2015-01-01

    This paper describes the development and implementation of a novel pedagogy, dynamic problem-based learning. The pedagogy utilises real-world problems that evolve throughout the problem-based learning activity and provide students with choice and different data sets. This new dynamic problem-based learning approach was utilised to teach…

  12. The dynamic contact area of elastomers at different velocities

    NARCIS (Netherlands)

    Khafidh, Muhammad; Rodriguez, N.V.; Masen, Marc Arthur; Schipper, Dirk J.

    2016-01-01

    The friction in tribo-systems that contain viscoelastic materials, such as elastomers, is relevant for a large number of applications. Examples include tyres, hoses, transmission and conveyor belts. To quantify the friction in these applications, one must first understand the contact behaviour of

  13. Contact activity and dynamics of the social core

    DEFF Research Database (Denmark)

    Mones, Enys; Stopczynski, Arkadiusz; Jørgensen, Sune Lehmann

    2017-01-01

    Humans interact through numerous communication channels to build and maintain social connections: they meet face-to-face, make phone calls or send text messages, and interact via social media. Although it is known that the network of physical contacts, for example, is distinct from the network ar...

  14. A class of fractional differential hemivariational inequalities with application to contact problem

    Science.gov (United States)

    Zeng, Shengda; Liu, Zhenhai; Migorski, Stanislaw

    2018-04-01

    In this paper, we study a class of generalized differential hemivariational inequalities of parabolic type involving the time fractional order derivative operator in Banach spaces. We use the Rothe method combined with surjectivity of multivalued pseudomonotone operators and properties of the Clarke generalized gradient to establish existence of solution to the abstract inequality. As an illustrative application, a frictional quasistatic contact problem for viscoelastic materials with adhesion is investigated, in which the friction and contact conditions are described by the Clarke generalized gradient of nonconvex and nonsmooth functionals, and the constitutive relation is modeled by the fractional Kelvin-Voigt law.

  15. Interethnic contacts : a dynamic analysis of interaction between immigrants and natives in Western countries

    NARCIS (Netherlands)

    Martinovic, B.

    2010-01-01

    This book studies social integration of immigrants (i.e. contacts between immigrants and natives in leisure time) from a dynamic perspective. The central objective is to examine how such interethnic contacts change during the immigrants’ stay in the host country (do they increase, stagnate or

  16. Problems of group dynamics in problem based learning sessions.

    Science.gov (United States)

    Ahmed, Zafar

    2014-01-01

    Beneficial effects of Problem Based Learning (PBL) in medical education are often emphasized. However, there is another side of the coin. This study was conducted to find out frequency of PBL group problems in our setup and the influence of these problems on students' learning. We also compared the perception of students and tutors as regard to frequency and level of hindrance caused by these problems in PBL sessions. This cross sectional study was conducted at Foundation University Medical College, Islamabad. 100 students of 3rd year MBBS of 2011 and their 17 PBL tutors were asked to fill a questionnaire. They were asked to rank the factors according to frequency (perceived frequency) and according to the level of hindrance to learning these factors are causing. All data was entered and analysed using SPSS-12. Students ranked "Dominant student" as the most important problem and. "Psychosocial factors" as the least important problem. Tutors ranked "Quiet student" as the-most important problem and "Personality clash" as the least important factor. Student's ranked "Dominant student" as the problem causes most hindrance and "Quiet student" as the problem causing least hindrance. Tutors ranked "Lack of commitment" as the problem causing most hindrance and "Personality clash" as the problem causing least hindrance. There was good agreement between the students and the tutors on all the factors regarding important problem except "Lateness, absenteeism" (p = 0.04) and "Personality clash" (p = 0.001). Similarly there was good agreement between the students and the tutors on all the factors regarding hindrance except "Lack of commitment" (p = 0.015) and "Personality clash" (p = 0.023). The present study showed that from both students' and tutors' perspectives, the ranking of most important problems that can disturb PBL session function and the level of hindrance they cause were statistically similar for majority of the problems.

  17. Response and Reliability Problems of Dynamic Systems

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present thesis consists of selected parts of the work performed by the author on stochastic dynamics and reliability theory of dynamically excited structures primarily during the period 1986-1996.......The present thesis consists of selected parts of the work performed by the author on stochastic dynamics and reliability theory of dynamically excited structures primarily during the period 1986-1996....

  18. A parametric study of contact problem on a large size flange

    International Nuclear Information System (INIS)

    Mukherjee, A.B.; Narayanan, T.; Dhondkar, J.K.; Mehra, V.K.

    1989-01-01

    Continuous change of contact point on gasket face with the application of bolt load makes it a non-linear problem. Thus the geometric non-linearity of the structure is simulated and a stress distribution over the gasket face is presented in this paper. The paper also describes the use of taper on the gasket face to reduce the stress peaking and to optimize the gasket face separation

  19. Shape Optimization in Three-Dimensional Contact Problems with Coulomb Friction

    Czech Academy of Sciences Publication Activity Database

    Beremlijski, P.; Haslinger, J.; Kočvara, Michal; Kučera, R.; Outrata, Jiří

    2009-01-01

    Roč. 20, č. 1 (2009), s. 416-444 ISSN 1052-6234 R&D Projects: GA AV ČR IAA100750802; GA AV ČR IAA1075402 Grant - others:European Commision(XE) FP6 - 30717; GA ČR(CZ) GA201/07/0294 Institutional research plan: CEZ:AV0Z10750506 Keywords : shape optimization * contact problems * Coulomb friction Subject RIV: BA - General Mathematics Impact factor: 1.429, year: 2009

  20. A finite-element model for moving contact line problems in immiscible two-phase flow

    Science.gov (United States)

    Kucala, Alec

    2017-11-01

    Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). The macroscale movement of the contact line is dependent on the molecular interactions occurring at the three-phase interface, however most MCL problems require resolution at the meso- and macro-scale. A phenomenological model must be developed to account for the microscale interactions, as resolving both the macro- and micro-scale would render most problems computationally intractable. Here, a model for the moving contact line is presented as a weak forcing term in the Navier-Stokes equation and applied directly at the location of the three-phase interface point. The moving interface is tracked with the level set method and discretized using the conformal decomposition finite element method (CDFEM), allowing for the surface tension and the wetting model to be computed at the exact interface location. A variety of verification test cases for simple two- and three-dimensional geometries are presented to validate the current MCL model, which can exhibit grid independence when a proper scaling for the slip length is chosen. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  1. Modelling of contact problems involved in ensuring the safety of rail transport

    Directory of Open Access Journals (Sweden)

    Edward Rydygier

    2013-12-01

    Full Text Available Background: Mathematical modelling aids diagnostics the track and rolling stock, as it often for technical reasons it is not possible to obtain a complete set of measurement data required to diagnose the rail and wheel deformation caused by the impact of a rail vehicle on the track. The important issue in a railway diagnostics is to study the effects of contact wheel and rail. Diagnostics investigations of track and rolling stock have a fundamental role in ensuring the safety of transport of passengers and goods. The aim of the study presented in the paper was to develop simulation methods of mathematical modelling of the wheel-rail system useful in the diagnostics of the track and a railway vehicle. Methods: In the paper two ways of modelling were presented and discussed. One of these ways is the method which consists in reducing the contact issue to field issue and solving the identification of the field source in 2-D system. Also presented a different method designed on the basis of the methods using one period energy concept. This method is adapted for modelling the dynamics of the contact wheel-rail for the normal force. It has been shown that the developed modelling methods to effectively support the study on the effects of mechanical and thermal of contact wheel-rail and contribute to the safety of operations.  Results and conclusions:  In the case of field sources identifications two specific issues were examined: the issue of rail torsion and the identification of heat sources in the rail due to exposure the rolling contact wheel-rail. In the case of the method using one period energy concept it was demonstrated the usefulness of this method to the study of energy processes in the contact wheel-rail under the normal periodic force. The future direction of research is to establish cooperation with research teams entrusted with the diagnostic measurements of track and rolling stock.  

  2. Characterization of spreadability of nonaqueous ethylcellulose gel matrices using dynamic contact angle.

    Science.gov (United States)

    Chow, Keat Theng; Chan, Lai Wah; Heng, Paul W S

    2008-08-01

    This study reports the characterization of spreadability of nonaqueous ethylcellulose (EC) gel matrices intended for topical drug delivery using a newly developed method based on dynamic contact angle. EC solutions were prepared using three grades of EC and propylene glycol dicaprylate/dicaprate. Dynamic contact angles of sessile drops of EC solutions on silicone elastomer were measured using a dynamic contact angle analyzer equipped with axisymmetric drop shape analysis-profile. Roughness of silicone elastomer, viscosity of EC solutions and compressibility of semisolid EC gels were determined by the atomic force microscope, cone-and-plate rheometer and tensile tester, respectively. The silicone elastomer employed as a substrate was demonstrated to have similar hydrophilic/lipophilic properties as the human skin. Spreadability of EC solutions was dependent on EC concentration, polymeric chain length and polydispersity. EC gel spreadability was governed by viscosity and the extent of gel-substrate interaction. From the apparent contact angle values, most EC gel formulations tested were found to be moderately spreadable. Linear correlation observed between spreading parameter and compressibility of EC gel verified the applicability of dynamic contact angle to characterize EC gel spreadability. Thus, the feasibility of employing dynamic contact angle as an alternative technique to measure gel spreadability was demonstrated. The spreadability demonstrated by EC gel would facilitate application on the skin indicating its potential usefulness as a topical dosage form.

  3. Measuring dynamic social contacts in a rehabilitation hospital: effect of wards, patient and staff characteristics.

    Science.gov (United States)

    Duval, Audrey; Obadia, Thomas; Martinet, Lucie; Boëlle, Pierre-Yves; Fleury, Eric; Guillemot, Didier; Opatowski, Lulla; Temime, Laura

    2018-01-26

    Understanding transmission routes of hospital-acquired infections (HAI) is key to improve their control. In this context, describing and analyzing dynamic inter-individual contact patterns in hospitals is essential. In this study, we used wearable sensors to detect Close Proximity Interactions (CPIs) among patients and hospital staff in a 200-bed long-term care facility over 4 months. First, the dynamic CPI data was described in terms of contact frequency and duration per individual status or activity and per ward. Second, we investigated the individual factors associated with high contact frequency or duration using generalized linear mixed-effect models to account for inter-ward heterogeneity. Hospital porters and physicians had the highest daily number of distinct contacts, making them more likely to disseminate HAI among individuals. Conversely, contact duration was highest between patients, with potential implications in terms of HAI acquisition risk. Contact patterns differed among hospital wards, reflecting varying care patterns depending on reason for hospitalization, with more frequent contacts in neurologic wards and fewer, longer contacts in geriatric wards. This study is the first to report proximity-sensing data informing on inter-individual contacts in long-term care settings. Our results should help better understand HAI spread, parameterize future mathematical models, and propose efficient control strategies.

  4. Dynamic strain measurements in a sliding microstructured contact

    International Nuclear Information System (INIS)

    Bennewitz, Roland; David, Jonathan; Lannoy, Charles-Francois de; Drevniok, Benedict; Hubbard-Davis, Paris; Miura, Takashi; Trichtchenko, Olga

    2008-01-01

    A novel experiment is described which measures the tangential strain development across the contact between a PDMS (polydimethylsiloxane) block and a glass surface during the initial stages of sliding. The surface of the PDMS block has been microfabricated to take the form of a regular array of pyramidal tips at 20 μm separation. Tangential strain is measured by means of light scattering from the interface between the block and surface. Three phases are observed in all experiments: initial shear deformation of the whole PDMS block, a pre-sliding tangential compression of the tip array with stepwise increase of the compressive strain, and sliding in stick-slip movements as revealed by periodic variation of the strain. The stick-slip sliding between the regular tip array and the randomly rough counter surface always takes on the periodicity of the tip array. The fast slip can cause either a sudden increase or a sudden decrease in compressive strain

  5. Experimentally-based optimization of contact parameters in dynamics simulation of humanoid robots

    NARCIS (Netherlands)

    Vivian, Michele; Reggiani, Monica; Sartori, Massimo

    2013-01-01

    With this work we introduce a novel methodology for the simulation of walking of a humanoid robot. Motion capture technology is used to calibrate the dynamics engine internal parameters and validate the simulated motor task. Results showed the calibrated contact model allows predicting dynamically

  6. Dynamics of liquid solidification thermal resistance of contact layer

    CERN Document Server

    Lipnicki, Zygmunt

    2017-01-01

    This monograph comprehensively describes phenomena of heat flow during phase change as well as the dynamics of liquid solidification, i.e. the development of a solidified layer. The book provides the reader with basic knowledge for practical designs, as well as with equations which describe processes of energy transformation. The target audience primarily comprises researchers and experts in the field of heat flow, but the book may also be beneficial for both practicing engineers and graduate students.

  7. A reduction-based exact algorithm for the contact map overlap problem.

    Science.gov (United States)

    Xie, Wei; Sahinidis, Nikolaos V

    2007-06-01

    Aligning proteins based on their structural similarity is a fundamental problem in molecular biology with applications in many settings, including structure classification, database search, function prediction, and assessment of folding prediction methods. Structural alignment can be done via several methods, including contact map overlap (CMO) maximization that aligns proteins in a way that maximizes the number of common residue contacts. In this paper, we develop a reduction-based exact algorithm for the CMO problem. Our approach solves CMO directly rather than after transformation to other combinatorial optimization problems. We exploit the mathematical structure of the problem in order to develop a number of efficient lower bounding, upper bounding, and reduction schemes. Computational experiments demonstrate that our algorithm runs significantly faster than existing exact algorithms and solves some hard CMO instances that were not solved in the past. In addition, the algorithm produces protein clusters that are in excellent agreement with the SCOP classification. An implementation of our algorithm is accessible as an on-line server at http://eudoxus.scs.uiuc.edu/cmos/cmos.html.

  8. Modified Contact Line Dynamics about a Surface-Piercing Hydrofoil

    Science.gov (United States)

    Grivel, Morgane; Jeon, David; Gharib, Morteza

    2016-11-01

    The contact line around a surface-piercing hydrofoil is modified by introducing alternating hydrophobic and hydrophilic bands along one side of the body. These bands are either aligned perpendicular or parallel to the flow direction. The other side of the hydrofoil is un-patterned and retains its original, uniformly hydrophilic properties. The hydrofoil is mounted onto air bearings, such that it can freely move side-to-side in the water tunnel. A force sensor is attached to the setup via a universal joint in order to measure the forces acting on the body for several Reynolds numbers (ranging from 104 to 105) and angles of attack (ranging from -10o to 10o) . Cameras are also used to record the resulting flow structures and free surface elevation. The generation of wave trains and an altered free-surface elevation (also associated with the generation of surface waves) are observed over a wide range flow conditions. Force measurements elucidate how introducing these flow features impacts the forces acting on the hydrofoil, specifically with regards to the generation of lateral forces due to the asymmetric wetting conditions on either side of the hydrofoil. Work is funded by ONR Grant N00014-11-1-0031 and NSF GRFP Grant DGE-1144469.

  9. Analysing Stagecoach Network Problem Using Dynamic ...

    African Journals Online (AJOL)

    The stagecoach problem is a special type of network analysis problem in which the cities (nodes) are arranged in stages. By such human or natural arrangement, a journey from City 1 in stage 1 to City n in stage n involves visiting only one city in each intermediate stage. The stagecoach problem involves the determination ...

  10. Solving Optimization Problems with Dynamic Geometry Software: The Airport Problem

    Science.gov (United States)

    Contreras, José

    2014-01-01

    This paper describes how the author's students (in-service and pre-service secondary mathematics teachers) enrolled in college geometry courses use the Geometers' Sketchpad (GSP) to gain insight to formulate, confirm, test, and refine conjectures to solve the classical airport problem for triangles. The students are then provided with strategic…

  11. A stable and optimally convergent LaTIn-CutFEM algorithm for multiple unilateral contact problems

    Science.gov (United States)

    Claus, Susanne; Kerfriden, Pierre

    2018-02-01

    In this paper, we propose a novel unfitted finite element method for the simulation of multiple body contact. The computational mesh is generated independently of the geometry of the interacting solids, which can be arbitrarily complex. The key novelty of the approach is the combination of elements of the CutFEM technology, namely the enrichment of the solution field via the definition of overlapping fictitious domains with a dedicated penalty-type regularisation of discrete operators, and the LaTIn hybrid-mixed formulation of complex interface conditions. Furthermore, the novel P1-P1 discretisation scheme that we propose for the unfitted LaTIn solver is shown to be stable, robust and optimally convergent with mesh refinement. Finally, the paper introduces a high-performance 3D level-set/CutFEM framework for the versatile and robust solution of contact problems involving multiple bodies of complex geometries, with more than two bodies interacting at a single point.

  12. Flow Visualization in Evaporating Liquid Drops and Measurement of Dynamic Contact Angles and Spreading Rate

    Science.gov (United States)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    A new hybrid optical system, consisting of reflection-refracted shadowgraphy and top-view photography, is used to visualize flow phenomena and simultaneously measure the spreading and instant dynamic contact angle in a volatile-liquid drop on a nontransparent substrate. Thermocapillary convection in the drop, induced by evaporation, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this unique technique clearly reveal that thermocapillary convection strongly affects the spreading process and the characteristics of dynamic contact angle of the drop. Comprehensive information of a sessile drop, including the local contact angle along the periphery, the instability of the three-phase contact line, and the deformation of the drop shape is obtained and analyzed.

  13. Contact point generation for convex polytopes in interactive rigid body dynamics

    DEFF Research Database (Denmark)

    Silcowitz-Hansen, Morten; Abel, Sarah Maria Niebe; Erleben, Kenny

    When computing contact forces in rigid body dynamics systems, most state-of-the-art solutions use iterative methods such as the projected Gauss–Seidel (PGS) method. Methods such as the PGS method are preferred for their robustness. However, the time-critical nature of interactive applications...... for convex polytopes. A novel contact point generation method is presented, which is based on growth distances and Gauss maps. We demonstrate improvements when using our method in the context of interactive rigid body simulation...

  14. In vivo patellofemoral contact mechanics during active extension using a novel dynamic MRI-based methodology.

    Science.gov (United States)

    Borotikar, B S; Sheehan, F T

    2013-12-01

    To establish an in vivo, normative patellofemoral (PF) cartilage contact mechanics database acquired during voluntary muscle control using a novel, dynamic, magnetic resonance (MR) imaging-based, computational methodology and validate the contact mechanics sensitivity to the known sub-millimeter methodological accuracies. Dynamic cine phase-contrast and multi-plane cine (MPC) images were acquired while female subjects (n = 20, sample of convenience) performed an open kinetic chain (knee flexion-extension) exercise inside a 3-T MR scanner. Static cartilage models were created from high resolution three-dimensional static MR data and accurately placed in their dynamic pose at each time frame based on the cine-PC (CPC) data. Cartilage contact parameters were calculated based on the surface overlap. Statistical analysis was performed using paired t-test and a one-sample repeated measures ANOVA. The sensitivity of the contact parameters to the known errors in the PF kinematics was determined. Peak mean PF contact area was 228.7 ± 173.6 mm(2) at 40° knee angle. During extension, contact centroid and peak strain locations tracked medially on the femoral and patellar cartilage and were not significantly different from each other. At 25°, 30°, 35°, and 40° of knee extension, contact area was significantly different. Contact area and centroid locations were insensitive to rotational and translational perturbations. This study is a first step towards unfolding the biomechanical pathways to anterior PF pain and osteoarthritis (OA) using dynamic, in vivo, and accurate methodologies. The database provides crucial data for future studies and for validation of, or as an input to, computational models. Published by Elsevier Ltd.

  15. Stability of contact discontinuities to 1-D piston problem for the compressible Euler equations

    Science.gov (United States)

    Ding, Min

    2018-03-01

    We consider 1-D piston problem for the compressible Euler equations when the piston is static relatively to the gas in the tube. By a modified wave front tracking method, we prove that a contact discontinuity is structurally stable under the assumptions that the total variation of the initial data and the perturbation of the piston velocity are both sufficiently small. Meanwhile, we study the asymptotic behavior of the solutions by the generalized characteristic method and approximate conservation law theory as t → + ∞.

  16. Shape Optimization in Contact Problems with Coulomb Friction and a Solution-Dependent Friction Coefficient

    Czech Academy of Sciences Publication Activity Database

    Beremlijski, P.; Outrata, Jiří; Haslinger, Jaroslav; Pathó, R.

    2014-01-01

    Roč. 52, č. 5 (2014), s. 3371-3400 ISSN 0363-0129 R&D Projects: GA ČR(CZ) GAP201/12/0671 Grant - others:GA MŠK(CZ) CZ.1.05/1.1.00/02.0070; GA MŠK(CZ) CZ.1.07/2.3.00/20.0070 Institutional support: RVO:67985556 ; RVO:68145535 Keywords : shape optimization * contact problems * Coulomb friction * solution-dependent coefficient of friction * mathematical programs with equilibrium constraints Subject RIV: BA - General Mathematics Impact factor: 1.463, year: 2014 http://library.utia.cas.cz/separaty/2014/MTR/outrata-0434234.pdf

  17. Modelling and solution of contact problem for infinite plate and cross-shaped embedment

    Directory of Open Access Journals (Sweden)

    O.B. Kozin

    2016-09-01

    Full Text Available Development of efficient methods of determination of an intense-strained state of thin-walled constructional designs with inclusions, reinforcements and other stress raisers is an important problem both with theoretical, and from the practical point of view, considering their wide practical application. Aim: The aim of this research is to develop the analytical mathematical method of studying of an intense-strained state of infinite plate with cross-shaped embedment at a bend. Materials and Methods: The method of boundary elements is an efficient way of the boundary value problems solution for systems of differential equations. The methods based on boundary integral equations get wide application in many branches of science and technique, calculation of plates and shells. One of methods of solution of a numerous class of the integral equations and systems arising on the basis of a method of boundary integral equations is the analytical method of construction of these equations and systems to Riemann problems with their forthcoming decision. Results: The integral equation for the analysis of deflections and the analysis of an intense-strained state of a thin rigid plate with rigid cross-shaped embedment is received. The precise solution of this boundary value problem is received by reduction to a Riemann problem and its forthcoming solution. An asymptotical behavior of contact efforts at the ends of embedment is investigated.

  18. Contact resistance problems applying ERT on low bulk density forested stony soils. Is there a solution?

    Science.gov (United States)

    Deraedt, Deborah; Touzé, Camille; Robert, Tanguy; Colinet, Gilles; Degré, Aurore; Garré, Sarah

    2015-04-01

    Electrical resistivity tomography (ERT) has often been put forward as a promising tool to quantify soil water and solute fluxes in a non-invasive way. In our experiment, we wanted to determine preferential flow processes along a forested hillslope using a saline tracer with ERT. The experiment was conducted in the Houille watershed, subcatchment of the Meuse located in the North of Belgian Ardennes (50° 1'52.6'N, 4° 53'22.5'E). The climate is continental but the soil under spruce (Picea abies (L.) Karst.) and Douglas fire stand (Pseudotsuga menziesii (Mirb.) Franco) remains quite dry (19% WVC in average) during the whole year. The soil is Cambisol and the parent rock is Devonian schist covered with variable thickness of silty loam soil. The soil density ranges from 1.13 to 1.87 g/cm3 on average. The stone content varies from 20 to 89% and the soil depth fluctuates between 70 and 130 cm. The ERT tests took place on June 1st 2012, April 1st, 2nd and 3rd 2014 and May 12th 2014. We used the Terrameter LS 12 channels (ABEM, Sweden) in 2012 test and the DAS-1 (Multi-Phase Technologies, United States) in 2014. Different electrode configurations and arrays were adopted for different dates (transect and grid arrays and Wenner - Schlumberger, Wenner alpha and dipole-dipole configurations). During all tests, we systematically faced technical problems, mainly related to bad electrode contact. The recorded data show values of contact resistance above 14873 Ω (our target value would be below 3000 Ω). Subsequently, we tried to improve the contact by predrilling the soil and pouring water in the electrode holes. The contact resistance improved to 14040 Ω as minimum. The same procedure with liquid mud was then tested to prevent quick percolation of the water from the electrode location. As a result, the lower contact resistance dropped to 11745 Ω. Finally, we applied about 25 litre of saline solution (CaCl2, 0.75g/L) homogeneously on the electrode grid. The minimum value of

  19. The intermittent contact impact problem in piping systems of nuclear reactor

    International Nuclear Information System (INIS)

    Martin, A.; Ricard, A.; Millard, A.

    1981-09-01

    The intermittent contact problem is important in many pipe whip studies, specially as to the safety of nuclear reactors. The impact concept adopted is that of instantaneous impact, so that at the time of impact the two impacting structures instantaneously acquire the same velocity in the impact direction. Energy is dissipated by some mechanism whose spatial and temporal scale is small compared to these scales in the discrete model. This dissipation is associated with local plastic deformation. Different solutions are presented for solving this problem. The first one is a generalization of the modal superposition method, when the nonlinearities of the structure are only due to impact between structural components; the other ones are included in a step by step time history and can take in account geometrical non linearities and of behavior. Some industrial applications in nuclear technology are presented

  20. Discrete Control Processes, Dynamic Games and Multicriterion Control Problems

    Directory of Open Access Journals (Sweden)

    Dumitru Lozovanu

    2002-07-01

    Full Text Available The discrete control processes with state evaluation in time of dynamical system is considered. A general model of control problems with integral-time cost criterion by a trajectory is studied and a general scheme for solving such classes of problems is proposed. In addition the game-theoretical and multicriterion models for control problems are formulated and studied.

  1. An evaluation of quasi-Newton methods for application to FSI problems involving free surface flow and solid body contact

    CSIR Research Space (South Africa)

    Bogaers, Alfred EJ

    2016-09-01

    Full Text Available -surface flow problem with an advancing wave front and a solid-body contact problem. 2 Partitioned FSI Fluid-structure interactions can be defined as a two-field coupled problem, involving a fluid domain Ωf and a solid domain Ωs sharing a common interface ΓFSI...

  2. How the dynamics and structure of sexual contact networks shape pathogen phylogenies.

    Directory of Open Access Journals (Sweden)

    Katy Robinson

    Full Text Available The characteristics of the host contact network over which a pathogen is transmitted affect both epidemic spread and the projected effectiveness of control strategies. Given the importance of understanding these contact networks, it is unfortunate that they are very difficult to measure directly. This challenge has led to an interest in methods to infer information about host contact networks from pathogen phylogenies, because in shaping a pathogen's opportunities for reproduction, contact networks also shape pathogen evolution. Host networks influence pathogen phylogenies both directly, through governing opportunities for evolution, and indirectly by changing the prevalence and incidence. Here, we aim to separate these two effects by comparing pathogen evolution on different host networks that share similar epidemic trajectories. This approach allows use to examine the direct effects of network structure on pathogen phylogenies, largely controlling for confounding differences arising from population dynamics. We find that networks with more heterogeneous degree distributions yield pathogen phylogenies with more variable cluster numbers, smaller mean cluster sizes, shorter mean branch lengths, and somewhat higher tree imbalance than networks with relatively homogeneous degree distributions. However, in particular for dynamic networks, we find that these direct effects are relatively modest. These findings suggest that the role of the epidemic trajectory, the dynamics of the network and the inherent variability of metrics such as cluster size must each be taken into account when trying to use pathogen phylogenies to understand characteristics about the underlying host contact network.

  3. Dynamic analysis of planar mechanical systems with clearance joints using a new nonlinear contact force model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xupeng; Liu, Geng; Ma, Shangjun [Northwestern Polytechnical University, Xi' an (China)

    2016-04-15

    We investigated the dynamic behavior of planar mechanical systems with clearance joints. First, the contact effect in clearance joint was studied using a new nonlinear contact force model, and the rationality of this model was verified by the results of numerical simulations, which are based on a journal and bearing contact model. Then, the dynamic characteristics of a planar slider-crank mechanism with clearance were analyzed based on the new nonlinear contact force model, and the friction effect of clearance joint was also considered using modified Coulomb friction model. Finally, the numerical results of the influence of clearance size on the acceleration of slider are presented, and compared with the published experimental results. The numerical and experimental results show that the new nonlinear contact force model presented in this paper is an effective method to predict the dynamic behavior of planar mechanical system with clearance joints, and appears to be suitable for a wide range of impact situations, especially with low coefficient of restitution.

  4. Molecular Dynamics Analyses on Microscopic Contact Angle - Effect of Wall Atom Configuration

    International Nuclear Information System (INIS)

    Takahiro Ito; Yosuke Hirata; Yutaka Kukita

    2006-01-01

    Boiling or condensing phenomena of liquid on the solid surface is greatly affected by the wetting condition of the liquid to the solid. Although the contact angle is one of the most important parameter to represent the wetting condition, the behavior of the contact angle is not understood well, especially in the dynamic condition. In this study we made molecular dynamics simulations to investigate the microscopic contact angle behavior under several conditions on the numerical density of the wall atoms. In the analyses, when the number density of the wall is lower, the changing rate of the dynamics contact angles for the variation of ΔV was higher than those for the case where the wall density is higher. This is mainly due to the crystallization of the fluid near the wall and subsequent decrease in the slip between the fluid and the wall. The analyses also show that the static contact angle decreases with increase in the number density of the wall. This was mainly induced by the increase in the number density of the wall itself. (authors)

  5. Applications of DSP to Explicit Dynamic FEA Simulations of Elastically-Dominated Impact Problems

    Directory of Open Access Journals (Sweden)

    Ted Diehl

    2000-01-01

    Full Text Available Explicit Dynamic Finite Element techniques are increasingly used for simulating impact events of personal electronic devices such as portable phones and laptop computers. Unfortunately, the elastically-dominated impact behavior of these devices greatly increases the tendency of Explicit Dynamic methods to calculate noisy solutions containing high-frequency ringing, especially for acceleration and contact-force data. For numerous reasons, transient FEA results are often improperly recorded by the analyst, causing corruption by aliasing. If aliasing is avoided, other sources of distortion can still occur. For example, filtering or decimating Explicit Dynamic data typically requires extremely small normalized cutoff frequencies that can cause significant numerical problems for common DSP programs such as MATLAB. This paper presents techniques to combat the unique DSP-related challenges of Explicit Dynamic data and then demonstrates them on a very challenging transient problem of a steel ball impacting a plastic LCD display in a portable phone, correlating simulation and experimental results.

  6. Effects of moving dynamic tyre loads on tyre-pavement contact stresses

    CSIR Research Space (South Africa)

    Steyn, WJvdM

    2002-01-01

    Full Text Available The purpose of this paper is to indicate the effect that moving dynamic tyre loads has on the tyre-pavement contact stresses used in pavement analysis. Traditionally tyre loads (in pavement analysis) are modelled as constant loads applied through...

  7. Boundary-value problems in cosmological dynamics

    Science.gov (United States)

    Nusser, Adi

    2008-08-01

    The dynamics of cosmological gravitating system is governed by the Euler and the Poisson equations. Tiny fluctuations near the big bang singularity are amplified by gravitational instability into the observed structure today. Given the current distribution of galaxies and assuming initial homogeneity, dynamic reconstruction methods have been developed to derive the cosmic density and velocity fields back in time. The reconstruction method described here is based on a least action principle formulation of the dynamics of collisionless particles (representing galaxies). Two observational data sets will be considered. The first is the distribution of galaxies which is assumed to be an fair tracer of the mass density field of the dark matter. The second set is measurements of the peculiar velocities (deviations from pure Hubble flow) of galaxies. Given the first data set, the reconstruction method recovers the associated velocity field which can then be compared with the second data set. This comparison constrains the nature of the dark matter and the relation between mass and light in the Universe.

  8. Imaging magnetisation dynamics in nano-contact spin-torque vortex oscillators exhibiting gyrotropic mode splitting

    International Nuclear Information System (INIS)

    Keatley, Paul Steven; Hicken, Robert James; Sani, Sohrab Redjai; Åkerman, Johan; Hrkac, Gino; Mohseni, Seyed Majid; Dürrenfeld, Philipp

    2017-01-01

    Nano-contact spin-torque vortex oscillators (STVOs) are anticipated to find application as nanoscale sources of microwave emission in future technological applications. Presently the output power and phase stability of individual STVOs are not competitive with existing oscillator technologies. Synchronisation of multiple nano-contact STVOs via magnetisation dynamics has been proposed to enhance the microwave emission. The control of device-to-device variations, such as mode splitting of the microwave emission, is essential if multiple STVOs are to be successfully synchronised. In this work a combination of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM) was used to demonstrate how mode splitting in the microwave emission of STVOs was related to the magnetisation dynamics that are generated. The free-running STVO response to a DC current only was used to identify devices and bias magnetic field configurations for which single and multiple modes of microwave emission were observed. Stroboscopic Kerr images were acquired by injecting a small amplitude RF current to phase lock the free-running STVO response. The images showed that the magnetisation dynamics of a multimode device with moderate splitting could be controlled by the injected RF current so that they exhibit similar spatial character to that of a single mode. Significant splitting was found to result from a complicated equilibrium magnetic state that was observed in Kerr images as irregular spatial characteristics of the magnetisation dynamics. Such dynamics were observed far from the nano-contact and so their presence cannot be detected in electrical measurements. This work demonstrates that TRSKM is a powerful tool for the direct observation of the magnetisation dynamics generated by STVOs that exhibit complicated microwave emission. Characterisation of such dynamics outside the nano-contact perimeter permits a deeper insight into the requirements for optimal phase-locking of

  9. A gradient stable scheme for a phase field model for the moving contact line problem

    KAUST Repository

    Gao, Min

    2012-02-01

    In this paper, an efficient numerical scheme is designed for a phase field model for the moving contact line problem, which consists of a coupled system of the Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition [1,2,4]. The nonlinear version of the scheme is semi-implicit in time and is based on a convex splitting of the Cahn-Hilliard free energy (including the boundary energy) together with a projection method for the Navier-Stokes equations. We show, under certain conditions, the scheme has the total energy decaying property and is unconditionally stable. The linearized scheme is easy to implement and introduces only mild CFL time constraint. Numerical tests are carried out to verify the accuracy and stability of the scheme. The behavior of the solution near the contact line is examined. It is verified that, when the interface intersects with the boundary, the consistent splitting scheme [21,22] for the Navier Stokes equations has the better accuracy for pressure. © 2011 Elsevier Inc.

  10. A DYNAMIC VARIATION PRINCIPLE FOR ELASTIC-FLUID CONTACTS, APPLIED TO ELASTOHYDRODYNAMIC LUBRICATION THEORY

    NARCIS (Netherlands)

    Groesen, E. van; Verstappen, R.W.C.P.

    1990-01-01

    This paper discusses the variational structure of the line contact problem between an elastic medium and a fluid. The equations for the deformation in the elastic material, and for the flow of the viscous fluid are assumed to be determined from an elastic energy E and a power functional P

  11. Dynamic Wheel/Rail Rolling Contact at Singular Defects with Application to Squats

    NARCIS (Netherlands)

    Zhao, X.

    2012-01-01

    Squats, as a kind of short wavelength rail surface defects, have become one of the main rolling contact fatigue problems in railways worldwide. The purpose of this work is to better understand the squatting phenomenon, contribute to reduction and even prevention of squat occurrence, and thereby

  12. A dynamic variation principle for elastic-fluid contacts applied to elasto-hydrodynamic lubrication theory

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Verstappen, R.

    1990-01-01

    This paper discusses the variational structure of the line contact problem between an elastic medium and a fluid. The equations for the deformation in the elastic material, and for the flow of the viscous fluid are assumed to be determined from an elastic energy E and a power functional P

  13. Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Cole, David M.; Hopkins, Mark A.; Ketcham, Stephen A. [Engineer Research and Development Center - Cold Regions Research and Engineering Laboratory, 72 Lyme Rd., Hanover, NH 03755 (United States)

    2013-06-18

    High fidelity treatments of the generation and propagation of seismic waves in naturally occurring granular materials is becoming more practical given recent advancements in our ability to model complex particle shapes and their mechanical interaction. Of particular interest are the grain-scale processes that are activated by impact events and the characteristics of force transmission through grain contacts. To address this issue, we have developed a physics based approach that involves laboratory experiments to quantify the dynamic contact and impact behavior of granular materials and incorporation of the observed behavior indiscrete element models. The dynamic experiments do not involve particle damage and emphasis is placed on measured values of contact stiffness and frictional loss. The normal stiffness observed in dynamic contact experiments at low frequencies (e.g., 10 Hz) are shown to be in good agreement with quasistatic experiments on quartz sand. The results of impact experiments - which involve moderate to extensive levels of particle damage - are presented for several types of naturally occurring granular materials (several quartz sands, magnesite and calcium carbonate ooids). Implementation of the experimental findings in discrete element models is discussed and the results of impact simulations involving up to 5 Multiplication-Sign 105 grains are presented.

  14. Molecular dynamics study of the nanosized droplet spreading: The effect of the contact line forces on the kinetic energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hong Min [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kondaraju, Sasidhar [Department of Mechanical Science, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 751013 (India); Lee, Jung Shin [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Suh, Youngho; Lee, Joonho H. [Samsung Electronics, Mechatronics R& D Center, Hwaseong-si, Gyeonggi-do 445-330 (Korea, Republic of); Lee, Joon Sang, E-mail: joonlee@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2017-07-01

    Highlights: • Contact line forces, including friction and spreading forces are directly calculated. • Overall trends of variations in contact line forces during droplet spreading process show characteristics of contact line forces. • Detail relations of contact line forces and atomic kinetics in the contact line provide a clear evidence of the possible energy dissipation mechanism in droplet spreading process. - Abstract: Recent studies have revealed that contact line forces play an important role in the droplet spreading process. Despite their significance, the physics related to them has been studied only indirectly and the effect of contact line forces is still being disputed. We performed a molecular dynamics simulation and mimicked the droplet spreading process at the nanoscale. Based on the results of the simulation, the contact line forces were directly calculated. We found that the forces acting on the bulk and the contact line region showed different trends. Distinct positive and negative forces, contact line spreading, and friction forces were observed near the contact line. We also observed a strong dependency of the atomic kinetics in the contact line region on the variations in the contact line forces. The atoms of the liquid in the contact line region lost their kinetic energy due to the contact line friction force and became partially immobile on the solid surface. The results of the current study will be useful for understanding the role of the contact line forces on the kinetic energy dissipation in the contact line region.

  15. Dynamics of Surface Reorganization of Poly(methyl methacrylate) in Contact with Water

    Science.gov (United States)

    Horinouchi, Ayanobu; Atarashi, Hironori; Fujii, Yoshihisa; Tanaka, Keiji

    2013-03-01

    New tools for tailor-made diagnostics, such as DNA arrays and tips for micro-total-analysis systems, are generally made from polymers. In these applications, the polymer surface is in contact with a water phase. However, despite the importance of detailed knowledge of the fundamental interactions of polymer interfaces with liquids, such studies are very limited. As an initial benchmark for designing and constructing specialized biomedical surfaces containing polymer, aggregation states and dynamics of chains at the water interface should be systematically examined. We here apply time-resolved contact angle measurement to study the dynamics of the surface reorganization of poly(methyl methacrylate) (PMMA) in contact with water. By doing the measurements at various temperatures, it is possible to discuss the surface dynamics of PMMA based on the apparent activation energy. Also, sum-frequency generation spectroscopy revealed that the surface reorganization involves the conformational changes in the main chain part as well as the side chains. Hence, the dynamics observed here may reflect the segmental motion at the outermost region of the PMMA film, in which water plays as a plasticizer.

  16. Droplets and the three-phase contact line at the nano-scale. Statics and dynamics

    Science.gov (United States)

    Yatsyshin, Petr; Sibley, David; Savva, Nikos; Kalliadasis, Serafim

    2014-11-01

    Understanding the behaviour of the solid-liquid-vapour contact line at the scale of several tens of molecular diameters is important in wetting hydrodynamics with applications in micro- and nano-fluidics, including the design of lab-on-a-chip devices and surfaces with specific wetting properties. Due to the fluid inhomogeneity at the nano-scale, the application of continuum-mechanical approaches is limited, and a natural way to remedy this is to seek descriptions accounting for the non-local molecular-level interactions. Density Functional Theory (DFT) for fluids offers a statistical-mechanical framework based on expressing the free energy of the fluid-solid pair as a functional of the spatially varying fluid density. DFT allows us to investigate small drops deposited on planar substrates whilst keeping track of the microscopic structural details of the fluid. Starting from a model of intermolecular forces, we systematically obtain interfaces, surface tensions, and the microscopic contact angle. Using a dynamic extension of equilibrium DFT, we investigate the diffusion-driven evolution of the three-phase contact line to gain insight into the dynamic behaviour of the microscopic contact angle, which is still under debate.

  17. The shadow map: a general contact definition for capturing the dynamics of biomolecular folding and function.

    Science.gov (United States)

    Noel, Jeffrey K; Whitford, Paul C; Onuchic, José N

    2012-07-26

    Structure-based models (SBMs) are simplified models of the biomolecular dynamics that arise from funneled energy landscapes. We recently introduced an all-atom SBM that explicitly represents the atomic geometry of a biomolecule. While this initial study showed the robustness of the all-atom SBM Hamiltonian to changes in many of the energetic parameters, an important aspect, which has not been explored previously, is the definition of native interactions. In this study, we propose a general definition for generating atomically grained contact maps called "Shadow". The Shadow algorithm initially considers all atoms within a cutoff distance and then, controlled by a screening parameter, discards the occluded contacts. We show that this choice of contact map is not only well behaved for protein folding, since it produces consistently cooperative folding behavior in SBMs but also desirable for exploring the dynamics of macromolecular assemblies since, it distributes energy similarly between RNAs and proteins despite their disparate internal packing. All-atom structure-based models employing Shadow contact maps provide a general framework for exploring the geometrical features of biomolecules, especially the connections between folding and function.

  18. Contributions to thermal and fluid dynamic problems in nuclear technology

    International Nuclear Information System (INIS)

    Mueller, U.; Krebs, L.; Rust, K.

    1984-02-01

    The majority of contributions compiled in this report deals with thermal and fluid dynamic problems in nuclear engineering. Especially problems of heat transfer and cooling are represented which may arise during and afer a loss-of-coolant accident both in light water reactors and in liquid metal cooled fast breeder reactors. Papers on the mass transfer in pressurized water, tribological problems in sodium cooled reactors, the fluid dynamics of pulsed column, and fundamental investigations of convective flows supplement these contributions on problems connected with accidents. Furthermore, a keynote paper presents the individual activities relating to the reliability of reactor components, a field recently included in our research program. Technical solutions to special problems are closely connected to the investigations based on experiments. Therefore, several contributions deal with new developments in technology and measuring techniques. (orig.) [de

  19. Experimental Study on the Dynamic Performance of Water-Lubricated Rubber Bearings with Local Contact

    Directory of Open Access Journals (Sweden)

    Wu Ouyang

    2018-01-01

    Full Text Available Accurate dynamic characteristic coefficients of water-lubricated rubber bearings are necessary to research vibration of ship propulsion system. Due to mixed lubrication state of water-lubricated rubber bearings, normal test rig and identification method are not applicable. This paper establishes a test rig to simulate shaft misalignment and proposes an identification method for water-lubricated rubber bearings, which utilizes rotor unbalanced motion to produce self-excited force rather than artificial excitation. Dynamic performance tests under different conditions are operated. The results show that when rotational speed is less than 700 r/min, even if specific pressure is 0.05 MPa, it is difficult to form complete water film for the rubber bearing which was investigated, and contact friction and collision of the shaft and bearing are frequent. In the mixed lubrication, water film, rubber, and contact jointly determine dynamic characteristics of water-lubricated rubber bearings. The contact condition has a significant effect on the bearing stiffness, and water film friction damping has a significant effect on bearing damping. As for the particular investigated bearing, when rotational speed is in the range of 400~700 r/min and specific pressure is in the range of 0.03~0.07 MPa, bearing stiffness is in the range of 5.6~10.06 N/μm and bearing damping is in the range of 1.25~2.02 Ns/μm.

  20. Parallel solution of sparse one-dimensional dynamic programming problems

    Science.gov (United States)

    Nicol, David M.

    1989-01-01

    Parallel computation offers the potential for quickly solving large computational problems. However, it is often a non-trivial task to effectively use parallel computers. Solution methods must sometimes be reformulated to exploit parallelism; the reformulations are often more complex than their slower serial counterparts. We illustrate these points by studying the parallelization of sparse one-dimensional dynamic programming problems, those which do not obviously admit substantial parallelization. We propose a new method for parallelizing such problems, develop analytic models which help us to identify problems which parallelize well, and compare the performance of our algorithm with existing algorithms on a multiprocessor.

  1. Mental health service use by youths in contact with child welfare: racial disparities by problem type.

    Science.gov (United States)

    Gudiño, Omar G; Martinez, Jonathan I; Lau, Anna S

    2012-10-01

    This study examined racial disparities in mental health service use by problem type (internalizing versus externalizing) for youths in contact with the child welfare system. Participants included 1,693 non-Hispanic white, African-American, and Hispanic youths (ages four to 14) from the National Survey of Child and Adolescent Well-Being, a national probability study of youths who were the subject of investigations of maltreatment by child welfare agencies. Mental health need, assessed at baseline, was considered present if the youth had internalizing or externalizing scores in the clinical range on either the Child Behavior Checklist or the Youth Self-Report. Out patient mental health service use in the subsequent year was assessed prospectively. Children who were removed from the home and those investigated for abuse (versus neglect) were more likely to receive services in the year after the child welfare investigation. Overall, African-American youths were less likely than non-Hispanic white youths to receive mental health services. However, race-ethnicity moderated the association between externalizing need and service use such that African Americans were more likely to receive services when externalizing need was present (26% versus 4%) compared with non-Hispanic white youths (30% versus 14%). Race and ethnicity did not moderate the association between youth internalizing need and service use, but internalizing need was associated with increased probability of service use only for non-Hispanic white youths. Examinations of overall racial disparities in service use may obscure important problem specific disparities. Additional research is needed to identify factors that lead to disparities and to develop strategies for reducing them.

  2. Imaging magnetisation dynamics in nano-contact spin-torque vortex oscillators exhibiting gyrotropic mode splitting

    Science.gov (United States)

    Keatley, Paul Steven; Redjai Sani, Sohrab; Hrkac, Gino; Majid Mohseni, Seyed; Dürrenfeld, Philipp; Åkerman, Johan; Hicken, Robert James

    2017-04-01

    Nano-contact spin-torque vortex oscillators (STVOs) are anticipated to find application as nanoscale sources of microwave emission in future technological applications. Presently the output power and phase stability of individual STVOs are not competitive with existing oscillator technologies. Synchronisation of multiple nano-contact STVOs via magnetisation dynamics has been proposed to enhance the microwave emission. The control of device-to-device variations, such as mode splitting of the microwave emission, is essential if multiple STVOs are to be successfully synchronised. In this work a combination of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM) was used to demonstrate how mode splitting in the microwave emission of STVOs was related to the magnetisation dynamics that are generated. The free-running STVO response to a DC current only was used to identify devices and bias magnetic field configurations for which single and multiple modes of microwave emission were observed. Stroboscopic Kerr images were acquired by injecting a small amplitude RF current to phase lock the free-running STVO response. The images showed that the magnetisation dynamics of a multimode device with moderate splitting could be controlled by the injected RF current so that they exhibit similar spatial character to that of a single mode. Significant splitting was found to result from a complicated equilibrium magnetic state that was observed in Kerr images as irregular spatial characteristics of the magnetisation dynamics. Such dynamics were observed far from the nano-contact and so their presence cannot be detected in electrical measurements. This work demonstrates that TRSKM is a powerful tool for the direct observation of the magnetisation dynamics generated by STVOs that exhibit complicated microwave emission. Characterisation of such dynamics outside the nano-contact perimeter permits a deeper insight into the requirements for optimal phase-locking of

  3. Effects of profile wear on wheel–rail contact conditions and dynamic interaction of vehicle and turnout

    Directory of Open Access Journals (Sweden)

    Jingmang Xu

    2016-01-01

    Full Text Available Severe wear is a common damage mechanism in railway turnouts, which strongly affects the dynamic performance of railway vehicles and maintenance costs of tracks. This article explores the effects of profile wear on contact behaviors in the wheel–rail/switch contact and dynamic interaction, and nominal and measured worn turnout rail profiles are used as boundary conditions of wheel–rail contact. The calculation of the dynamic loads and the resultant contact stresses and internal stresses makes it possible to rationally design railway turnouts and correctly select the material to be applied for their components. For these reasons, the multi-body system SIMPACK and finite element software ANSYS are used to calculate the features of load and subsequently distributions of contact stresses and internal stresses in the regions of wheel–turnout components. The results show that profile wear disturbs the distribution of wheel–rail contact point pairs, changes the positions of wheel–rail contact points along the longitudinal direction, and affects the dynamic interaction of vehicle and turnout. For the measured profile in this article, profile wear aggravates vertical dynamic responses significantly but improves lateral dynamic responses. Profile wear disturbs the normal contact situations between the wheel and switch rail and worsens the stress state of the switch rail.

  4. Dynamics of the conservative and dissipative spin-orbit problem

    CERN Document Server

    Celletti, A; Lega, E

    2006-01-01

    We investigate the dynamics of the spin--orbit coupling under different settings. First we consider the conservative problem, and then we add a dissipative torque as provided by MacDonald's or Darwin's models. By means of frequency analysis and of the computation of the maximum Lyapunov indicator we explore the different dynamical behaviors associated to the main resonances. In particular we focus on the 1:1 and 3:2 resonances in which the Moon and Mercury are actually trapped.

  5. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    International Nuclear Information System (INIS)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-01-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems

  6. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems.

    Science.gov (United States)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  7. Research on Dynamic Modeling and Application of Kinetic Contact Interface in Machine Tool

    Directory of Open Access Journals (Sweden)

    Dan Xu

    2016-01-01

    Full Text Available A method is presented which is a kind of combining theoretic analysis and experiment to obtain the equivalent dynamic parameters of linear guideway through four steps in detail. From statics analysis, vibration model analysis, dynamic experiment, and parameter identification, the dynamic modeling of linear guideway is synthetically studied. Based on contact mechanics and elastic mechanics, the mathematic vibration model and the expressions of basic mode frequency are deduced. Then, equivalent stiffness and damping of guideway are obtained in virtue of single-freedom-degree mode fitting method. Moreover, the investigation above is applied in a certain gantry-type machining center; and through comparing with simulation model and experiment results, both availability and correctness are validated.

  8. Heterogeneous drying and nonmonotonic contact angle dynamics in concentrated film-forming latex drops

    Science.gov (United States)

    Kumar, Subhalakshmi; Katz, Joshua S.; Schroeder, Charles M.

    2017-11-01

    The dynamic drying process is studied in spatially heterogeneous film-forming latex suspensions across a wide range of dispersion concentrations using optical imaging techniques. Systematic changes in latex suspension concentration are found to affect lateral drying heterogeneity and surface topology. A nonmonotonic decay in contact angle is observed at the edges of drying droplets by continuously monitoring evaporation dynamics, which is quantitatively characterized by the peak strain and peak formation time. An analytical model is developed to explain the nonmonotonic contact-angle decay by considering a transient dilational stress imposed on a viscoelastic solid model for the particle network. Importantly, the latex concentration dependence of this phenomenon provides evidence for a smooth transition from fluid-line pinning to fluid-line recession behavior during drying, leading to ringlike to volcanolike deposition patterns, respectively. Using experimental data for drying heterogeneity, we quantitatively explore the influence of Marangoni flow and capillary pressure on drying behavior. Moreover, our results show that latex concentration and particle packing can also be strategically used to reduce contact-line friction, thereby affecting fluid-line recession. Taken together, these results show that studying latex suspensions in seemingly simple droplet geometries provides insight into the emergent spatially heterogeneous viscoelastic properties during film formation.

  9. Contact dermatitis is an unrecognized problem in the construction industry : Comparison of four different assessment methods

    NARCIS (Netherlands)

    Timmerman, Johan G; Heederik, Dick; Spee, Ton; van Rooy, Frits G; Krop, Esmeralda J M; Rustemeyer, Thomas; Smit, Lidwien A M

    2017-01-01

    BACKGROUND: A high contact dermatitis symptoms prevalence has been observed in Dutch construction workers. METHODS: Contact dermatitis was diagnosed by an expert panel using questionnaire data and photographs of 751 subjects' hands. A subset was evaluated by two occupational physicians. Their

  10. Management of irritant contact dermatitis: continuously a problem for patients and dermatologists

    DEFF Research Database (Denmark)

    Andersen, F; Andersen, Klaus Ejner

    2008-01-01

    Skin irritants may induce irritant contact dermatitis (ICD) in various ways but the end result remains the same: a clinical picture which in most cases is practically indistinguishable from allergic contact dermatitis (ACD). A treatment that works for ACD does not necessarily work for ICD...

  11. Well-posedness of problems in fluid dynamics (a fluid-dynamical point of view)

    International Nuclear Information System (INIS)

    Zeytounian, R Kh

    1999-01-01

    The proofs of the existence, uniqueness, smoothness, and stability of solutions of problems in fluid dynamics are needed to give meaning to the equations and corresponding initial and boundary conditions that govern these problems. For any arbitrary reasonable choice of a class of admissible initial data, a problem in fluid dynamics must be well posed (in the Hadamard sense). This means that (a) the problem has a solution for any initial data in this class, (b) this solution is unique for any initial conditions, (c) the solution depends continuously on the initial data. In this paper we give a survey of some aspects of problems on well-posedness from the point of view of fluid dynamics itself; these problems form a very difficult and at the same time important part of fluid mechanics

  12. Dynamic vehicle routing problems: Three decades and counting

    DEFF Research Database (Denmark)

    Psaraftis, Harilaos N.; Wen, Min; Kontovas, Christos A.

    2016-01-01

    Since the late 70s, much research activity has taken place on the class of dynamic vehicle routing problems (DVRP), with the time period after year 2000 witnessing areal explosion in related papers. Our paper sheds more light into work in this area over more than 3 decades by developing a taxonomy...

  13. Non-minimal quintessence: Dynamics and coincidence problem

    Indian Academy of Sciences (India)

    Brans–Dicke scalar–tensor theory provides a conformal coupling of the scalar field with gravity in Einstein's frame. This model is equivalent to an interacting quintessence in which dark matter is coupled to dark energy. This provides a natural mechanism to alleviate the coincidence problem. We investigate the dynamics of ...

  14. On The Algorithm for Dynamic Restoring Control Problems with ...

    African Journals Online (AJOL)

    An algorithm is hereby developed to solve a class of control problems constrained by dynamic restoring type with matrix coefficients numerically. The penalty-multiplier method is evolved to obtain an unconstrained discretized formulation. With the bilinear form expression, an associated operator is constructed via a theorem ...

  15. The Dynamic Multi-Period Vehicle Routing Problem

    DEFF Research Database (Denmark)

    Wen, Min; Cordeau, Jean-Francois; Laporte, Gilbert

    This paper considers the Dynamic Multi-Period Vehicle Routing Problem which deals with the distribution of orders from a depot to a set of customers over a multi-period time horizon. Customer orders and their feasible service periods are dynamically revealed over time. The objectives are to minim......This paper considers the Dynamic Multi-Period Vehicle Routing Problem which deals with the distribution of orders from a depot to a set of customers over a multi-period time horizon. Customer orders and their feasible service periods are dynamically revealed over time. The objectives...... are to minimize total travel costs and customer waiting, and to balance the daily workload over the planning horizon. This problem originates from a large distributor operating in Sweden. It is modeled as a mixed integer linear program, and solved by means of a three-phase heuristic that works over a rolling...... planning horizon. The multi-objective aspect of the problem is handled through a scalar technique approach. Computational results show that our solutions improve upon those of the Swedish distributor....

  16. The dynamic multi-period vehicle routing problem

    DEFF Research Database (Denmark)

    Wen, Min; Cordeau, Jean-Francois; Laporte, Gilbert

    2010-01-01

    This paper considers the Dynamic Multi-Period Vehicle Routing Problem which deals with the distribution of orders from a depot to a set of customers over a multi-period time horizon. Customer orders and their feasible service periods are dynamically revealed over time. The objectives are to minim......This paper considers the Dynamic Multi-Period Vehicle Routing Problem which deals with the distribution of orders from a depot to a set of customers over a multi-period time horizon. Customer orders and their feasible service periods are dynamically revealed over time. The objectives...... are to minimize total travel costs and customer waiting, and to balance the daily workload over the planning horizon. This problem originates from a large distributor operating in Sweden. It is modeled as a mixed integer linear program, and solved by means of a three-phase heuristic that works over a rolling...... planning horizon. The multi-objective aspect of the problem is handled through a scalar technique approach. Computational results show that the proposed approach can yield high quality solutions within reasonable running times....

  17. Topology optimization of dynamics problems with Padé approximants

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2007-01-01

    An efficient procedure for topology optimization of dynamics problems is proposed. The method is based on frequency responses represented by Padé approximants and analytical sensitivity analysis derived using the adjoint method. This gives an accurate approximation of the frequency response over ...

  18. Mathematical and physical problems in nuclear fluid dynamics

    International Nuclear Information System (INIS)

    Agodi, A.; Di Toro, M.

    1985-01-01

    A biased and personal view is presented on the main motivations and results in this area of nuclear research discussed during the workshop on ''Fluid Dynamical Approaches to the Many Body Problem: Fundamental and Mathematical Aspects'', held in Catania from 9 to 11 April 1984

  19. Dynamical convexity of the Euler problem of two fixed centers

    OpenAIRE

    Kim, Seongchan

    2016-01-01

    We give thorough analysis for the rotation functions of the critical orbits from which one can understand bifurcations of periodic orbits. Moreover, we give explicit formulas of the Conley-Zehnder indices of the interior and exterior collision orbits and show that the universal cover of the regularized energy hypersurface of the Euler problem is dynamically convex for energies below the critical Jacobi energy.

  20. Social contact as a strategy for self-stigma reduction in young adults and adolescents with mental health problems.

    Science.gov (United States)

    Martínez-Hidalgo, Mª Nieves; Lorenzo-Sánchez, Elena; López García, Juan José; Regadera, Juan José

    2017-12-13

    This study assessed the effectiveness of a social contact program between young adults and adolescents with and without mental health problems. It was evaluated if the development of a social contact program in a non-segregated space and respecting criteria of contact hypothesis reduced Self-Stigma and Public Stigma and, increased Self-Esteem. A pre-post intervention design was used with a sample of 47 subjects, 25 with different mental health diagnoses (Psychotic Disorder, Anxiety Disorder, Depression, Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder) and 22 without mental health problems, aged between 15 and 35 years. Five workshops of social contact and creativity were carried out during five months with a 2-h weekly meeting. The results analysis revealed a significant reduction in Self-Stigma for participants with mental health problems and may suggest a slight reduction in Public Stigma as well as a slight increase in the level of Self-Esteem of all participants. These findings suggest that programs of this nature reduce Self-Stigma and facilitate social inclusion in young adults and adolescents with and without mental health problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. On a Solvability of Contact Problems with Visco-Plastic Friction in the Thermo-Visco-Plastic Bingham Rheology

    Czech Academy of Sciences Publication Activity Database

    Nedoma, Jiří

    2006-01-01

    Roč. 22, č. 4 (2006), s. 484-499 ISSN 0167-739X Institutional research plan: CEZ:AV0Z10300504 Keywords : unilateral contact problem * local visco- plastic friction * thermo-visco- plastic Bingham rheology * FEM Subject RIV: BA - General Mathematics Impact factor: 0.722, year: 2006

  2. An Overview of Dynamic Contact Resistance Measurement of HV Circuit Breakers

    Science.gov (United States)

    Bhole, A. A.; Gandhare, W. Z.

    2016-06-01

    With the deregulation of the electrical power industry, utilities and service companies are operating in a changing business environment. High voltage circuit breakers are extremely important for the function of modern electric power supply systems. The need to predict the proper function of circuit breaker grew over the years as the transmission networks expanded. The maintenance of circuit breakers deserves special consideration because of their importance for routine switching and for protection of other equipments. Electric transmission system breakups and equipment destruction can occur if a circuit breaker fails to operate because of a lack of preventive maintenance. Dynamic Contact Resistance Measurement (DCRM) is known as an effective technique for assessing the condition of power circuit breakers contacts and operating mechanism. This paper gives a general review about DCRM. It discusses the practical case studies on use of DCRM for condition assessment of high voltage circuit breakers.

  3. Dynamic Contact between a Wire Rope and a Pulley Using Absolute Nodal Coordinate Formulation

    Directory of Open Access Journals (Sweden)

    Shoichiro Takehara

    2016-01-01

    Full Text Available Wire rope and pulley devices are used in various machines. To use these machines more safely, it is necessary to analyze the behavior of the contact between them. In this study, we represent a wire rope by a numerical model of a flexible body. This flexible body is expressed in the absolute nodal coordinate formulation (ANCF, and the model includes the normal contact force and the frictional force between the wire rope and the pulley. The normal contact force is expressed by spring-damper elements, and the frictional force is expressed by the Quinn method. The advantage of the Quinn method is that it reduces the numerical problems associated with the discontinuities in Coulomb friction at zero velocity. By using the numerical model, simulations are performed, and the validity of this model is shown by comparing its results with those of an experiment. Through numerical simulations, we confirm the proposed model for the contact between the wire rope and the pulley. We confirmed that the behavior of the wire rope changes when both the bending elastic modulus of the wire rope and the mass added to each end of the wire rope are changed.

  4. Coupled Motion of Contact Line on Nanoscale Chemically Heterogeneous Surfaces for Improved Bubble Dynamics in Boiling.

    Science.gov (United States)

    Jaikumar, Arvind; Kandlikar, Satish G

    2017-11-16

    We demonstrate that the contact line (CL) motion on energetically heterogeneous solid surfaces occurs in a coupled fashion as against the traditional staggered stick-slip motion. Introducing chemical inhomogeneities at nanoscale induces a local change in dynamic contact angles which manifests as a smooth and continuous motion of the CL. Nanoscale chemically inhomogeneous surfaces comprising of gold, palladium and nickel were generated on copper substrates to demonstrate the underlying CL dynamics. The spatial variations of chemical constituents were mapped using elemental display scanning electron microscope images. Further, the coupled and stick-slip motion was confirmed for a sliding water droplet on these surfaces, and then used in studying the pool boiling bubble dynamics of a single bubble from nucleation to departure. The coupled motion was seen to increase the CL velocity thereby increasing the contribution from transient conduction heat transfer. Consequently, a ~2X increase in the boiling critical heat flux (CHF) was observed. Enhancing the pool boiling performance by introducing nanoscale surface features is an attractive approach in many applications and this work provides a framework and understanding of the CL motion induced through the chemical inhomogeneity effects.

  5. Contact dermatitis is an unrecognized problem in the construction industry: Comparison of four different assessment methods.

    Science.gov (United States)

    Timmerman, Johan G; Heederik, Dick; Spee, Ton; van Rooy, Frits G; Krop, Esmeralda J M; Rustemeyer, Thomas; Smit, Lidwien A M

    2017-10-01

    A high contact dermatitis symptoms prevalence has been observed in Dutch construction workers. Contact dermatitis was diagnosed by an expert panel using questionnaire data and photographs of 751 subjects' hands. A subset was evaluated by two occupational physicians. Their diagnoses were compared to those of the expert panel. In addition, two self-reported questionnaire-based assessment methods were compared to the expert panel evaluation. Associations between contact dermatitis and determinants were assessed using log-binomial regression analysis. Contact dermatitis prevalence was high: 61.4% (expert panel's diagnosis) and 32.9% (self-reported). Agreement between occupational physicians and the expert panel was low but increased after training. Washing hands with solvents and performing job-related tasks at home were related to contact dermatitis. Contact dermatitis prevalence among construction workers is high. Recognition of contact dermatitis by occupational physicians is poor but can be improved by training. Awareness of skin disorders should be raised. © 2017 Wiley Periodicals, Inc.

  6. A New Method Solving Contact/Detach Problem in Fluid and Structure Interaction Simulation with Application in Modeling of a Safety Valve

    Directory of Open Access Journals (Sweden)

    Zheng Guo

    2010-01-01

    Full Text Available A new virtual baffle methodology is implemented to solve contact/detach problem which is often encountered in fluid and structure interaction simulations while using dynamic grids technique. The algorithm is based on tetrahedral unstructured grid, and a zero thickness baffle face is generated between actually contacted two objects. In computation process, this baffle face is divided into two parts representing convective and blocked area, respectively; the area of each part is calculated according to the actual displacement between the two objects. Convective part in a baffle face is treated as inner interface between cells, and on blocked part wall boundary condition is applied; so convective and blocking effect can be achieved on a single baffle face. This methodology can simulate real detaching process starting from contact, that is, zero displacement, while it has no restriction to minimum grid cell size. The methodology is then applied in modeling of a complicated safety valve opening process, involving multidisciplinary fluid and structure interaction and dynamic grids. The results agree well with experimental data, which proves that the virtual baffle method is successful.

  7. Developmental Dynamics of Intergroup Contact and Intergroup Attitudes: Long-Term Effects in Adolescence and Early Adulthood

    NARCIS (Netherlands)

    Wölfer, R.; van Zalk, M.H.W.; Schmid, K.; Hewstone, M.

    2016-01-01

    Intergroup contact represents a powerful way to improve intergroup attitudes and to overcome prejudice and discrimination. However, long-term effects of intergroup contact that consider social network dynamics have rarely been studied at a young age. Study 1 validated an optimized social network

  8. On the dynamic spatial response of a heat exchanger tube with intermittent baffle contacts

    International Nuclear Information System (INIS)

    Rogers, R.J.; Pick, R.J.

    1976-01-01

    Flow-induced vibration in heat exchanger tubes can result in fretting wear at the baffle supports and subsequent tube failure. As one step in correlating the random flow excitation to the rate of fretting wear, this paper presents a dynamic finite element technique for predicting the motions and baffle contact forces of a single heat exchanger tube. Using a modal superposition approach, the modal equations of motion are generated and numerically integrated. The predicted results are compared with experimental data for both planar and spatial vibration of harmonically excited cantilevered beams with a clearance support at the free end. (Auth.)

  9. On some control problems of dynamic of reactor

    Science.gov (United States)

    Baskakov, A. V.; Volkov, N. P.

    2017-12-01

    The paper analyzes controllability of the transient processes in some problems of nuclear reactor dynamics. In this case, the mathematical model of nuclear reactor dynamics is described by a system of integro-differential equations consisting of the non-stationary anisotropic multi-velocity kinetic equation of neutron transport and the balance equation of delayed neutrons. The paper defines the formulation of the linear problem on control of transient processes in nuclear reactors with application of spatially distributed actions on internal neutron sources, and the formulation of the nonlinear problems on control of transient processes with application of spatially distributed actions on the neutron absorption coefficient and the neutron scattering indicatrix. The required control actions depend on the spatial and velocity coordinates. The theorems on existence and uniqueness of these control actions are proved in the paper. To do this, the control problems mentioned above are reduced to equivalent systems of integral equations. Existence and uniqueness of the solution for this system of integral equations is proved by the method of successive approximations, which makes it possible to construct an iterative scheme for numerical analyses of transient processes in a given nuclear reactor with application of the developed mathematical model. Sufficient conditions for controllability of transient processes are also obtained. In conclusion, a connection is made between the control problems and the observation problems, which, by to the given information, allow us to reconstruct either the function of internal neutron sources, or the neutron absorption coefficient, or the neutron scattering indicatrix....

  10. Jacobian projection reduced-order models for dynamic systems with contact nonlinearities

    Science.gov (United States)

    Gastaldi, Chiara; Zucca, Stefano; Epureanu, Bogdan I.

    2018-02-01

    In structural dynamics, the prediction of the response of systems with localized nonlinearities, such as friction dampers, is of particular interest. This task becomes especially cumbersome when high-resolution finite element models are used. While state-of-the-art techniques such as Craig-Bampton component mode synthesis are employed to generate reduced order models, the interface (nonlinear) degrees of freedom must still be solved in-full. For this reason, a new generation of specialized techniques capable of reducing linear and nonlinear degrees of freedom alike is emerging. This paper proposes a new technique that exploits spatial correlations in the dynamics to compute a reduction basis. The basis is composed of a set of vectors obtained using the Jacobian of partial derivatives of the contact forces with respect to nodal displacements. These basis vectors correspond to specifically chosen boundary conditions at the contacts over one cycle of vibration. The technique is shown to be effective in the reduction of several models studied using multiple harmonics with a coupled static solution. In addition, this paper addresses another challenge common to all reduction techniques: it presents and validates a novel a posteriori error estimate capable of evaluating the quality of the reduced-order solution without involving a comparison with the full-order solution.

  11. Computational evaluation of convection schemes in fluid dynamics problems

    Directory of Open Access Journals (Sweden)

    Paulo Laerte Natti

    2012-11-01

    Full Text Available This article provides a computational evaluation of the popular high resolution upwind WACEB, CUBISTA and ADBQUICKEST schemes for solving non-linear fluid dynamics problems. By using the finite difference methodology, the schemes are analyzed and implemented in the context of normalized variables of Leonard. In order to access the performance of the schemes, Riemann problems for 1D Burgers, Euler and shallow water equations are considered. From the numerical results, the schemes are ranked according to their performance in solving these non-linear equations. The best scheme is then applied in the numerical simulation of tridimensional incompressible moving free surface flows.

  12. Analysis of direct contact membrane distillation based on a lumped-parameter dynamic predictive model

    KAUST Repository

    Karam, Ayman M.

    2016-10-03

    Membrane distillation (MD) is an emerging technology that has a great potential for sustainable water desalination. In order to pave the way for successful commercialization of MD-based water desalination techniques, adequate and accurate dynamical models of the process are essential. This paper presents the predictive capabilities of a lumped-parameter dynamic model for direct contact membrane distillation (DCMD) and discusses the results under wide range of steady-state and dynamic conditions. Unlike previous studies, the proposed model captures the time response of the spacial temperature distribution along the flow direction. It also directly solves for the local temperatures at the membrane interfaces, which allows to accurately model and calculate local flux values along with other intrinsic variables of great influence on the process, like the temperature polarization coefficient (TPC). The proposed model is based on energy and mass conservation principles and analogy between thermal and electrical systems. Experimental data was collected to validated the steady-state and dynamic responses of the model. The obtained results shows great agreement with the experimental data. The paper discusses the results of several simulations under various conditions to optimize the DCMD process efficiency and analyze its response. This demonstrates some potential applications of the proposed model to carry out scale up and design studies. © 2016

  13. A Monarch Butterfly Optimization for the Dynamic Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    Shifeng Chen

    2017-09-01

    Full Text Available The dynamic vehicle routing problem (DVRP is a variant of the Vehicle Routing Problem (VRP in which customers appear dynamically. The objective is to determine a set of routes that minimizes the total travel distance. In this paper, we propose a monarch butterfly optimization (MBO algorithm to solve DVRPs, utilizing a greedy strategy. Both migration operation and the butterfly adjusting operator only accept the offspring of butterfly individuals that have better fitness than their parents. To improve performance, a later perturbation procedure is implemented, to maintain a balance between global diversification and local intensification. The computational results indicate that the proposed technique outperforms the existing approaches in the literature for average performance by at least 9.38%. In addition, 12 new best solutions were found. This shows that this proposed technique consistently produces high-quality solutions and outperforms other published heuristics for the DVRP.

  14. Numerical solution of Lord-Shulman thermopiezoelectricity dynamical problem

    Science.gov (United States)

    Stelmashchuk, Vitaliy; Shynkarenko, Heorhiy

    2018-01-01

    Using Lord-Shulman hypothesis we formulate the initial boundary value problem and its corresponding variational problem of a generalized linear thermopiezoelectricity in terms of the displacement, electrical potential, temperature increment and heat flux, which describes the dynamic behavior of the coupled mechanic, electric and heat waves in pyroelectric materials. We construct the corresponding energy balance equation and determine input data regularity for the variational problem, which guarantees the existence, uniqueness and stability of its solution in the problem energy norm. Based on these results, we propose a numerical scheme for solving this problem, which includes spatial finite element semi-discretization and one-step recurrent time integration procedures and generalizes the similar one for classic thermopiezoelectricity problem. We give the sufficient conditions on the values of the scheme parameters which guarantee properties of conservatism and unconditional stability of the scheme. The rest of the article is devoted to the analysis of performed numerical experiments with 1D model problem and their results are then compared with the ones obtained by the other researchers.

  15. Using GPS technology to quantify human mobility, dynamic contacts and infectious disease dynamics in a resource-poor urban environment.

    Science.gov (United States)

    Vazquez-Prokopec, Gonzalo M; Bisanzio, Donal; Stoddard, Steven T; Paz-Soldan, Valerie; Morrison, Amy C; Elder, John P; Ramirez-Paredes, Jhon; Halsey, Eric S; Kochel, Tadeusz J; Scott, Thomas W; Kitron, Uriel

    2013-01-01

    Empiric quantification of human mobility patterns is paramount for better urban planning, understanding social network structure and responding to infectious disease threats, especially in light of rapid growth in urbanization and globalization. This need is of particular relevance for developing countries, since they host the majority of the global urban population and are disproportionally affected by the burden of disease. We used Global Positioning System (GPS) data-loggers to track the fine-scale (within city) mobility patterns of 582 residents from two neighborhoods from the city of Iquitos, Peru. We used ∼2.3 million GPS data-points to quantify age-specific mobility parameters and dynamic co-location networks among all tracked individuals. Geographic space significantly affected human mobility, giving rise to highly local mobility kernels. Most (∼80%) movements occurred within 1 km of an individual's home. Potential hourly contacts among individuals were highly irregular and temporally unstructured. Only up to 38% of the tracked participants showed a regular and predictable mobility routine, a sharp contrast to the situation in the developed world. As a case study, we quantified the impact of spatially and temporally unstructured routines on the dynamics of transmission of an influenza-like pathogen within an Iquitos neighborhood. Temporally unstructured daily routines (e.g., not dominated by a single location, such as a workplace, where an individual repeatedly spent significant amount of time) increased an epidemic's final size and effective reproduction number by 20% in comparison to scenarios modeling temporally structured contacts. Our findings provide a mechanistic description of the basic rules that shape human mobility within a resource-poor urban center, and contribute to the understanding of the role of fine-scale patterns of individual movement and co-location in infectious disease dynamics. More generally, this study emphasizes the need for

  16. Dynamic Scheduling for Cloud Reliability using Transportation Problem

    OpenAIRE

    P. Balasubramanie; S. K. Senthil Kumar

    2012-01-01

    Problem statement: Cloud is purely a dynamic environment and the existing task scheduling algorithms are mostly static and considered various parameters like time, cost, make span, speed, scalability, throughput, resource utilization, scheduling success rate and so on. Available scheduling algorithms are mostly heuristic in nature and more complex, time consuming and does not consider reliability and availability of the cloud computing environment. Therefore there is a need to implement a sch...

  17. Contact in an expanding universe: an instructive exercise in dynamic geometry

    International Nuclear Information System (INIS)

    Zimmerman, Seth

    2010-01-01

    The particular problem solved in this paper is that of calculating the time required to overtake a distant object receding under cosmic expansion, and the speed at which that object is passed. This is a rarely investigated problem leading to some interesting apparent paradoxes. We employ the problem to promote a deeper understanding of the dynamic geometry behind the expansion of space in three eras, especially for physics undergraduates. We do not utilize the standard cosmological formulae, but deliberately take a simpler approach, comprehensible to any student comfortable with differentials. This should offer an intuitive preparation for later courses in general relativity. The paper can be read straight through, or offered to a class in segments as problems to investigate. The overall intention is to leave students with a more tangible grasp of expanding space.

  18. Domain Decomposition for Generalized Unilateral Semi-Coercive Contact Problem with Given Friction in Elasticity

    Czech Academy of Sciences Publication Activity Database

    Daněk, Josef; Hlaváček, Ivan; Nedoma, Jiří

    2005-01-01

    Roč. 68, č. 3 (2005), s. 271-300 ISSN 0378-4754 R&D Projects: GA MPO FT-TA/087 Keywords : domain decomposition * unilateral contact * Tresca's friction model * formulation in displacements * linear finite elements Subject RIV: BA - General Mathematics Impact factor: 0.554, year: 2005

  19. Mixed finite element analysis of semi-coercive unilateral contact problems with given friction

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Ivan

    2007-01-01

    Roč. 52, č. 1 (2007), s. 25-58 ISSN 0862-7940 R&D Projects: GA ČR(CZ) GA201/04/1503 Institutional research plan: CEZ:AV0Z10190503 Keywords : unilateral contact * Tresca´s model of friction * mixed variational formulation Subject RIV: BA - General Mathematics

  20. DT-Planner: an environment for managing dynamic decision problems.

    Science.gov (United States)

    Magni, P; Bellazzi, R

    1997-11-01

    The problem of formulating plans under uncertainty and coping with dynamic decision problems is a major task of both artificial intelligence and control theory applications in medicine. In this paper we will describe a software package, called DT-Planner, designed to represent and solve dynamic decision problems that can be modelled as Markov decision processes, by exploiting a novel graphical formalism, called influence view. An influence view is a directed acyclic graph that depicts the probabilistic relationships between the problem state variables in a generic time transition; additional variables, called event variables, may be added, in order to describe the conditional independencies between state variables. By using the specified conditional independence structure, an influence view may allow a parsimonious specification of a Markov decision process. DT-Planner lets the user specify and manage models through a user-friendly graphical interface, and implements efficient for policy determination algorithms. DT-Planner is written in C with Open Interface libraries and can be obtained, for non commercial use, via anonymous ftp without charge.

  1. Patch testing with markers of fragrance contact allergy. Do clinical tests correspond to patients' self-reported problems?

    DEFF Research Database (Denmark)

    Johansen, J D; Andersen, T F; Veien, Niels

    1997-01-01

    significant association was found between reporting a history of visible skin symptoms from using scented products and a positive patch test to the fragrance mix, whereas no such relationship could be established to the Peru balsam in univariate or multivariate analysis. Our results suggest that the role...... of Peru balsam in detecting relevant fragrance contact allergy is limited, while most fragrance mix-positive patients are aware that the use of scented products may cause skin problems....

  2. Hybrid resolution approaches for dynamic assignment problem of reusable containers

    Directory of Open Access Journals (Sweden)

    Ech-Charrat Mohammed Rida

    2017-01-01

    Full Text Available In this study, we are interested in the reusing activities of reverse logistics. We focus on the dynamic assignment of reusable containers problem (e.g. gas bottles, beverages, pallets, maritime containers, etc.. The objective is to minimize the collect, reloading, storage and redistribution operations costs over a fixed planning horizon taking into account the greenhouse gas emissions. We present a new generic Mixed Integer Programming (MIP model for the problem. The proposed model was solved using the IBM ILOG CPLEX optimization software; this method yield exact solutions, but it is very time consuming. So we adapted two hybrid approaches using a genetic algorithm to solve the problem at a reduced time (The second hybrid approach is enhanced with a local search procedure based on the Variable Neighborhood Search VNS. The numerical results show that both developed hybrid approaches generate high-quality solutions in a moderate computational time, especially the second hybrid method.

  3. Dynamic Vehicle Routing Problems with Enhanced Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Haitao Xu

    2018-01-01

    Full Text Available As we all know, there are a great number of optimization problems in the world. One of the relatively complicated and high-level problems is the vehicle routing problem (VRP. Dynamic vehicle routing problem (DVRP is a major variant of VRP, and it is closer to real logistic scene. In DVRP, the customers’ demands appear with time, and the unserved customers’ points must be updated and rearranged while carrying out the programming paths. Owing to the complexity and significance of the problem, DVRP applications have grabbed the attention of researchers in the past two decades. In this paper, we have two main contributions to solving DVRP. Firstly, DVRP is solved with enhanced Ant Colony Optimization (E-ACO, which is the traditional Ant Colony Optimization (ACO fusing improved K-means and crossover operation. K-means can divide the region with the most reasonable distance, while ACO using crossover is applied to extend search space and avoid falling into local optimum prematurely. Secondly, several new evaluation benchmarks are proposed, which can objectively and comprehensively estimate the proposed method. In the experiment, the results for different scale problems are compared to those of previously published papers. Experimental results show that the algorithm is feasible and efficient.

  4. Shape optimization in 2D contact problems with given friction and a solution-dependent coefficient of friction

    Czech Academy of Sciences Publication Activity Database

    Haslinger, J.; Outrata, Jiří; Pathó, R.

    2012-01-01

    Roč. 20, č. 1 (2012), s. 31-59 ISSN 1877-0533 R&D Projects: GA AV ČR IAA100750802 Institutional research plan: CEZ:AV0Z10750506 Institutional support: RVO:67985556 Keywords : shape optimization * Signorini problem * model with given frinction * solution-dependent coefficient of friction * mathematical probrams with equilibrium constraints Subject RIV: BA - General Mathematics Impact factor: 1.036, year: 2012 http://library.utia.cas.cz/separaty/2012/MTR/outrata-shape optimization in 2d contact problems with given friction and a solution-dependent coefficient of friction .pdf

  5. The magnetization dynamics of nano-contact spin-torque vortex oscillators

    Science.gov (United States)

    Keatley, Paul

    The operation of nano-contact (NC) spin-torque vortex oscillators (STVOs) is underpinned by vortex gyration in response to spin-torque delivered by high density current passing through the magnetic layers of a spin valve. Gyration directly beneath the NC yields radio frequency (RF) emission through the giant magnetoresistance (GMR) effect, which can be readily detected electronically. The magnetization dynamics that extend beyond the NC perimeter contribute little to the GMR signal, but are crucial for synchronization of multiple NC-STVOs that share the same spin valve film. In this work time-resolved scanning Kerr microscopy (TRSKM) was used to directly image the extended dynamics of STVOs phase-locked to an injected RF current. In this talk the dynamics of single 250-nm diameter NCs, and a pair of 100-nm diameter NCs, will be presented. In general the Kerr images reveal well-defined localized and far-field dynamics, driven by spin-torque and RF current Oersted fields respectively. The RF frequency, RF Oersted field, direction of an in-plane magnetic field, and equilibrium magnetic state, all influenced the spatial character of the dynamics observed in single NCs. In the pair of NCs, two modes were observed in the RF emission. Kerr images revealed that a vortex was formed beneath each NC and that the mode with enhanced spectral amplitude and line quality appeared to be correlated with two localized regions oscillating with similar amplitude and phase, while a second weaker mode exhibited amplitude and phase differences. This suggests that the RF emission was generated by collective modes of vortex gyration dynamically coupled via magnetization dynamics and dipolar interactions of the shared magnetic layers. Within the constraints of injection locking, this work demonstrates that TRSKM can provide valuable insight into the spatial character and time-evolution of magnetization dynamics generated by NC-STVOs and the conditions that may favor their synchronization

  6. Measurement and analysis of tyre and tread block dynamics due to contact phenomena

    Science.gov (United States)

    Brusarosco, M.; Cigada, A.; Manzoni, S.

    2011-06-01

    This paper deals with the dynamic behaviour of tyres and it is aimed at describing their dynamic features in the frequency band above 1 kHz, a range difficult to manage due to measurement noise and to the unreliability of numerical models, where the main influence is that of tread and blocks. Measurements have been made possible by fixing three three-axial micro-electro-mechanical system accelerometers on the liner and exciting the tyre under test by means of a dedicated test bench, suitably designed and constructed. Different kinds of tests have been considered in this research and described in the present paper. All of them show that a strong link exists between contact phenomena and tyre response in the frequency band over 1 kHz. This field is dominated by the tread and block dynamic responses. Furthermore, it is shown that vibrations of a sliding tyre give contributions in that frequency range for the above-mentioned reasons. It is thought that the study of the tyre behaviour over 1 kHz, though affected by significant uncertainties, can provide a proper knowledge to improve breaking effectiveness.

  7. Dynamic simulation of knee-joint loading during gait using force-feedback control and surrogate contact modelling.

    Science.gov (United States)

    Walter, Jonathan P; Pandy, Marcus G

    2017-10-01

    The aim of this study was to perform multi-body, muscle-driven, forward-dynamics simulations of human gait using a 6-degree-of-freedom (6-DOF) model of the knee in tandem with a surrogate model of articular contact and force control. A forward-dynamics simulation incorporating position, velocity and contact force-feedback control (FFC) was used to track full-body motion capture data recorded for multiple trials of level walking and stair descent performed by two individuals with instrumented knee implants. Tibiofemoral contact force errors for FFC were compared against those obtained from a standard computed muscle control algorithm (CMC) with a 6-DOF knee contact model (CMC6); CMC with a 1-DOF translating hinge-knee model (CMC1); and static optimization with a 1-DOF translating hinge-knee model (SO). Tibiofemoral joint loads predicted by FFC and CMC6 were comparable for level walking, however FFC produced more accurate results for stair descent. SO yielded reasonable predictions of joint contact loading for level walking but significant differences between model and experiment were observed for stair descent. CMC1 produced the least accurate predictions of tibiofemoral contact loads for both tasks. Our findings suggest that reliable estimates of knee-joint loading may be obtained by incorporating position, velocity and force-feedback control with a multi-DOF model of joint contact in a forward-dynamics simulation of gait. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Direct Measurement of Static and Dynamic Contact Angles Using a Random Micromodel Considering Geological CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Mohammad Jafari

    2017-12-01

    Full Text Available The pore-level two-phase fluids flow mechanism needs to be understood for geological CO2 sequestration as a solution to mitigate anthropogenic emission of carbon dioxide. Capillary pressure at the interface of water–CO2 influences CO2 injectability, capacity, and safety of the storage system. Wettability usually measured by contact angle is always a major uncertainty source among important parameters affecting capillary pressure. The contact angle is mostly determined on a flat surface as a representative of the rock surface. However, a simple and precise method for determining in situ contact angle at pore-scale is needed to simulate fluids flow in porous media. Recent progresses in X-ray tomography technique has provided a robust way to measure in situ contact angle of rocks. However, slow imaging and complicated image processing make it impossible to measure dynamic contact angle. In the present paper, a series of static and dynamic contact angles as well as contact angles on flat surface were measured inside a micromodel with random pattern of channels under high pressure condition. Our results showed a wide range of pore-scale contact angles, implying complexity of the pore-scale contact angle even in a highly smooth and chemically homogenous glass micromodel. Receding contact angle (RCA showed more reproducibility compared to advancing contact angle (ACA and static contact angle (SCA for repeating tests and during both drainage and imbibition. With decreasing pore size, RCA was increased. The hysteresis of the dynamic contact angle (ACA–RCA was higher at pressure of one megapascal in comparison with that at eight megapascals. The CO2 bubble had higher mobility at higher depths due to lower hysteresis which is unfavorable. CO2 bubbles resting on the flat surface of the micromodel channel showed a wide range of contact angles. They were much higher than reported contact angle values observed with sessile drop or captive bubble tests on a

  9. PROBLEME QUASI-STATIQUE DE CONTACT AVEC ADHESION ENTRE UN CORPS VISCOELASTIQUE ET UNE FONDATION

    Directory of Open Access Journals (Sweden)

    B TENIOU

    2008-06-01

    Full Text Available Le but de ce travail est l’étude variationnelle du contact avec adhésion entre un matériau viscoélastique et une fondation déformable dans le processus quasi-statique et avec l’hypothèse des petites déformations. Les conditions de contact sont de type bilatéral et de compliance normale et l’évolution du champ d’adhésion est décrite par une équation différentielle du premier ordre. Nous démontrons l’existence et l’unicité de la solution faible en utilisant un théorème sur les inéquations variationnelles elliptiques, le théorème de Cauchy-Lipschitz, un lemme de Gronwall ainsi que le point fixe de Banach.

  10. Reliable Solution of a Unilateral Contact Problem with Friction and Uncertain Data in Thermo-Elasticity

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Ivan; Nedoma, Jiří

    2005-01-01

    Roč. 67, - (2005), s. 559-580 ISSN 0378-4754 R&D Projects: GA ČR GA201/01/1200; GA MŠk OK 407 Grant - others:COPERNICUS-HIPERGEOS II(XE) KIT 977006 Institutional research plan: CEZ:AV0Z1030915 Keywords : unilateral contact * steady-state heat flow * Coulomb friction * finite element analysis * radioactive waste repositories Subject RIV: BA - General Mathematics Impact factor: 0.554, year: 2005

  11. Can joint contact dynamics be restored by anterior cruciate ligament reconstruction?

    Science.gov (United States)

    Hoshino, Yuichi; Fu, Freddie H; Irrgang, James J; Tashman, Scott

    2013-09-01

    Rotational kinematics has become an important consideration after ACL reconstruction because of its possible influence on knee degeneration. However, it remains unknown whether ACL reconstruction can restore both rotational kinematics and normal joint contact patterns, especially during functional activities. We asked whether knee kinematics (tibial anterior translation and axial rotation) and joint contact mechanics (tibiofemoral sliding distance) would be restored by double-bundle (DB) or single-bundle (SB) reconstruction. We retrospectively studied 17 patients who underwent ACL reconstruction by the SB (n = 7) or DB (n = 10) procedure. We used dynamic stereo x-ray to capture biplane radiographic images of the knee during downhill treadmill running. Tibial anterior translation, axial rotation, and joint sliding distance in the medial and lateral compartments were compared between reconstructed and contralateral knees in both SB and DB groups. We observed reduced anterior tibial translation and increased knee rotation in the reconstructed knees compared to the contralateral knees in both SB and DB groups. The mean joint sliding distance on the medial compartment was larger in the reconstructed knees than in the contralateral knees for both the SB group (9.5 ± 3.9 mm versus 7.5 ± 4.3 mm) and the DB group (11.1 ± 1.3 mm versus 7.9 ± 3.8 mm). Neither ACL reconstruction procedure restored normal knee kinematics or medial joint sliding. Further study is necessary to understand the clinical significance of abnormal joint contact, identify the responsible mechanisms, and optimize reconstruction procedures for restoring normal joint mechanics after ACL injury.

  12. Neutral modes' edge state dynamics through quantum point contacts

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, D; Magnoli, N [Dipartimento di Fisica, Universita di Genova, INFN, Via Dodecaneso 33, 16146 Genova (Italy); Braggio, A; Sassetti, M [Dipartimento di Fisica, Universita di Genova, CNR-INFM LAMIA, Via Dodecaneso 33, 16146 Genova (Italy)], E-mail: ferraro@ge.infn.it

    2010-01-15

    The dynamics of neutral modes for fractional quantum Hall states is investigated for a quantum point contact geometry in the weak-backscattering regime. The effective field theory introduced by Fradkin-Lopez for edge states in the Jain sequence is generalized to the case of propagating neutral modes. The dominant tunnelling processes are identified also in the presence of non-universal phenomena induced by interactions. The crossover regime in the backscattering current between tunnelling of single-quasiparticles and of agglomerates of p-quasiparticles is analysed. We demonstrate that higher-order cumulants of the backscattering current fluctuations are a unique resource to study quantitatively the competition between different carrier charges. We find that propagating neutral modes are a necessary ingredient in order to explain this crossover phenomenon.

  13. Analyzing and modeling the dynamic thermal behaviors of direct contact condensers packed with PCM spheres

    Science.gov (United States)

    Wang, Kai; Hu, Tao; Hassabou, Abdel H.; Spinnler, Markus; Polifke, Wolfgang

    2013-01-01

    Condensers serve as important components for humidification-dehumidification (HDH) desalination plants. Based on the interpenetration continua approach with volume averaging technique, a mathematical dynamic model for analyzing the heat and mass transfer within direct contact condensers with co-current or countercurrent flow arrangement was developed. It was validated against the experimental data from a small scale HDH desalination system. Comparisons including the productivities and the temperature profiles of gas, liquid, and solid phases show good agreement with the measurements. Phase change material (PCM) melting processes have little effect on water production rate for co-current flow arrangement, but the condenser packed with PCM capsules have higher water production rates than that packed with air capsules packed under given conditions. The relative humidity profile of the bulk gas shows contrary trend with the gas temperature profile. The direct contact condenser with countercurrent flow arrangement can provide much better heat and mass transfer between gas and water and produce about 16.3% more fresh water than the same condenser with co-current flow arrangement in 4 h under given conditions.

  14. Apparent dynamic contact angle of an advancing gas--liquid meniscus

    International Nuclear Information System (INIS)

    Kalliadasis, S.; Chang, H.

    1994-01-01

    The steady motion of an advancing meniscus in a gas-filled capillary tube involves a delicate balance of capillary, viscous, and intermolecular forces. The limit of small capillary numbers Ca (dimensionless speeds) is analyzed here with a matched asymptotic analysis that links the outer capillary region to the precursor film in front of the meniscus through a lubricating film. The meniscus shape in the outer region is constructed and the apparent dynamic contact angle Θ that the meniscus forms with the solid surface is derived as a function of the capillary number, the capillary radius, and the Hamaker's constant for intermolecular forces, under conditions of weak gas--solid interaction, which lead to fast spreading of the precursor film and weak intermolecular forces relative to viscous forces within the lubricating film. The dependence on intermolecular forces is very weak and the contact angle expression has a tight upper bound tan Θ=7.48 Ca 1/3 for thick films, which is independent of the Hamaker constant. This upper bound is in very good agreement with existing experimental data for wetting fluids in any capillary and for partially wetting fluids in a prewetted capillary. Significant correction to the Ca 1/3 dependence occurs only at very low Ca, where the intermolecular forces become more important and tan Θ diverges slightly from the above asymptotic behavior toward lower values

  15. Common mental disorder severity and its association with treatment contact and treatment intensity for mental health problems.

    Science.gov (United States)

    Ten Have, M; Nuyen, J; Beekman, A; de Graaf, R

    2013-10-01

    Detailed population-based survey information on the relationship between the severity of common mental disorders (CMDs) and treatment for mental health problems is heavily based on North American research. The aim of this study was to replicate and expand existing knowledge by studying CMD severity and its association with treatment contact and treatment intensity in The Netherlands. Data were obtained from the Netherlands Mental Health Survey and Incidence Study-2 (NEMESIS-2), a nationally representative face-to-face survey of the general population aged 18–64 years (n=6646, response rate=65.1%). DSM-IV diagnoses and disorder severity were assessed with the Composite International Diagnostic Interview Version 3.0 (CIDI 3.0). Treatment contact refers to at least one contact for mental health problems made in the general medical care (GMC) or mental health care (MHC) sector. Four levels of treatment intensity were assessed, based on type and duration of therapy received. Although CMD severity was related to treatment contact, only 39.0% of severe cases received MHC. At the same time, 40.3% of MHC users did not have a 12-month disorder. Increasing levels of treatment intensity ranged from 51.6% to 13.0% in GMC and from 81.4% to 51.1% in MHC. CMD severity was related to treatment intensity in MHC but not in GMC. Sociodemographic characteristics were not significantly related to having experienced the highest level of treatment intensity in MHC. CONCLUSIONS. Mental health treatment in the GMC sector should be improved, especially when policy is aimed at increasing the role of primary care in the management of mental health problems.

  16. Integrable Problems of the Dynamics of Coupled Rigid Bodies

    Science.gov (United States)

    Bogoyavlenskiĭ, O. I.

    1993-06-01

    Several classical problems of dynamics are shown to be integrable for the special systems of coupled rigid bodies introduced in this paper and called Ck-central configurations. It is proved that the dynamics of an arbitrary Ck-central configuration in the Newtonian gravitational field with an arbitrary quadratic potential is integrable in the Liouville sense and in theta-functions of Riemann surfaces. A hidden symmetry of the inertial dynamics of these configurations is found, and reductions of the corresponding Lagrange equations to the Euler equations on the direct sums of Lie coalgebras SO(3) are obtained. Reductions and integrable cases of the equations for the rotation of a heavy Ck-central configuration about a fixed point are indicated. Separation of rotations of a space station type orbiting system, which is a Ck-central configuration of rigid bodies, is proved. This result leads to the possibility of independent stabilization of rotations of the rigid bodies in such orbiting configurations. Integrability of the inertial dynamics of CRn-central configurations of coupled gyrostats is proved.

  17. Optical resonance problem in metamaterial arrays: a lattice dynamics approach.

    Science.gov (United States)

    Liu, Wanguo

    2016-11-30

    A systematic dynamic theory is established to deal with the optical collective resonance in metamaterial arrays. As a reference model, we consider an infinite split ring resonator (SRR) array illuminated by a linearly polarized wave and introduce an N-degree-of-freedom forced oscillator equation to simplify the coupled-mode vibration problem. We derive a strict formula of resonance frequency (RF) and its adjustable range from the steady-state response. Unlike a single SRR possesses invariant RF, it successfully explains the mechanism of RF shift effect in the SRR array when the incident angle changes. Instead of full wave analysis, only one or two adjacent resonance modes can give an accurate response line shape. Our approach is applicable for metallic arrays with any N-particle cell at all incident angles and well matched with numerical results. It provides a versatile way to study the vibration dynamics in optical periodic many-body systems.

  18. Distance learning, problem based learning and dynamic knowledge networks.

    Science.gov (United States)

    Giani, U; Martone, P

    1998-06-01

    This paper is an attempt to develop a distance learning model grounded upon a strict integration of problem based learning (PBL), dynamic knowledge networks (DKN) and web tools, such as hypermedia documents, synchronous and asynchronous communication facilities, etc. The main objective is to develop a theory of distance learning based upon the idea that learning is a highly dynamic cognitive process aimed at connecting different concepts in a network of mutually supporting concepts. Moreover, this process is supposed to be the result of a social interaction that has to be facilitated by the web. The model was tested by creating a virtual classroom of medical and nursing students and activating a learning session on the concept of knowledge representation in health sciences.

  19. Complex analysis and dynamical systems new trends and open problems

    CERN Document Server

    Golberg, Anatoly; Jacobzon, Fiana; Shoikhet, David; Zalcman, Lawrence

    2018-01-01

    This book focuses on developments in complex dynamical systems and geometric function theory over the past decade, showing strong links with other areas of mathematics and the natural sciences. Traditional methods and approaches surface in physics and in the life and engineering sciences with increasing frequency – the Schramm‐Loewner evolution, Laplacian growth, and quadratic differentials are just a few typical examples. This book provides a representative overview of these processes and collects open problems in the various areas, while at the same time showing where and how each particular topic evolves. This volume is dedicated to the memory of Alexander Vasiliev.

  20. The Effect of Contact Angle on Dynamics of Dry Spots Spreading in a Horizontal Layer of Liquid at Local Heating

    Directory of Open Access Journals (Sweden)

    Zaitsev D.V.

    2015-01-01

    Full Text Available The effect of equilibrium contact angle on dynamics of dry spot spreading at disruption of a horizontal water layer heated locally from the substrate was studied using the high-speed Schlieren technique. Different methods of working surface processing were applied; this allowed variations of the equilibrium contact angle from 27±6° to 74±9° without a change in thermal properties of the system. It is found out that substrate wettability significantly affects the propagation velocity of dry spot and its final size. It is also found out that the velocity of contact line propagation is higher in the areas of substrate with a higher temperature.

  1. Inverse problem and uncertainty quantification: application to compressible gas dynamics

    International Nuclear Information System (INIS)

    Birolleau, Alexandre

    2014-01-01

    This thesis deals with uncertainty propagation and the resolution of inverse problems together with their respective acceleration via Polynomial Chaos. The object of this work is to present a state of the art and a numerical analysis of this stochastic spectral method, in order to understand its pros and cons when tackling the probabilistic study of hydrodynamical instabilities in Richtmyer-Meshkov shock tube experiments. The first chapter is introductory and allows understanding the stakes of being able to accurately take into account uncertainties in compressible gas dynamics simulations. The second chapter is both an illustrative state of the art on generalized Polynomial Chaos and a full numerical analysis of the method keeping in mind the final application on hydrodynamical problems developing shocks and discontinuous solutions. In this chapter, we introduce a new method, naming iterative generalized Polynomial Chaos, which ensures a gain with respect to generalized Polynomial Chaos, especially with non smooth solutions. Chapter three is closely related to an accepted publication in Communication in Computational Physics. It deals with stochastic inverse problems and introduces bayesian inference. It also emphasizes the possibility of accelerating the bayesian inference thanks to iterative generalized Polynomial Chaos described in the previous chapter. Theoretical convergence is established and illustrated on several test-cases. The last chapter consists in the application of the above materials to a complex and ambitious compressible gas dynamics problem (Richtmyer-Meshkov shock tube configuration) together with a deepened study of the physico-numerical phenomenon at stake. Finally, in the appendix, we also present some interesting research paths we quickly tackled during this thesis. (author) [fr

  2. Dynamic Contact Angle Analysis of Protein Adsorption on Polysaccharide Multilayer’s Films for Biomaterial Reendothelialization

    Directory of Open Access Journals (Sweden)

    Safiya Benni

    2014-01-01

    Full Text Available Atherosclerosis is a major cardiovascular disease. One of the side effects is restenosis. The aim of this work was to study the coating of stents by dextran derivates based polyelectrolyte’s multilayer (PEM films in order to increase endothelialization of injured arterial wall after stent implantation. Films were composed with diethylaminoethyl dextran (DEAE as polycation and dextran sulphate (DS as polyanion. One film was composed with 4 bilayers of (DEAE-DS4 and was labeled D−. The other film was the same as D− but with an added terminal layer of DEAE polycation: (DEAE-DS4-DEAE (labeled D+. The dynamic adsorption/desorption of proteins on the films were characterized by dynamic contact angle (DCA and atomic force microscopy (AFM. Human endothelial cell (HUVEC adhesion and proliferation were quantified and correlated to protein adsorption analyzed by DCA for fibronectin, vitronectin, and bovine serum albumin (BSA. Our results showed that the endothelial cell response was optimal for films composed of DS as external layer. Fibronectin was found to be the only protein to exhibit a reversible change in conformation after desorption test. This behavior was only observed for (DEAE-DS4 films. (DEAE-DS4 films could enhance HUVEC proliferation in agreement with fibronectin ability to easily change from conformation.

  3. APPLICATION OF PARAMETER CONTINUATION METHOD FOR INVESTIGATION OF VIBROIMPACT SYSTEMS DYNAMIC BEHAVIOUR. PROBLEM STATE. SHORT SURVEY OF WORLD SCIENTIFIC LITERATURE

    Directory of Open Access Journals (Sweden)

    V.A. Bazhenov

    2014-12-01

    Full Text Available Authors in their works study vibroimpact system dynamic behaviour by numerical parametric continuation technique combined with shooting and Newton-Raphson’s methods. The technique is adapted to two-mass two-degree-of-freedom vibroimpact system under periodic excitation. Impact is simulated by nonlinear contact interaction force based on Hertz’s contact theory. Stability or instability of obtained periodic solutions is determined by monodromy matrix eigenvalues (multipliers based on Floquet’s theory. In the present paper we describe the state of problem of parameter continuation method using for nonlinear tasks solution. Also we give the short survey of numerous contemporary literature in English and Russian about parameter continuation method application for nonlinear problems. This method is applied for vibroimpact problem solving more rarely because of the difficulties connected with repeated impacts.

  4. Patch testing with markers of fragrance contact allergy. Do clinical tests correspond to patients' self-reported problems?

    DEFF Research Database (Denmark)

    Johansen, J D; Andersen, T F; Veien, Niels

    1997-01-01

    The aim of the present study was to investigate the relationship between patients' own recognition of skin problems using consumer products and the results of patch testing with markers of fragrance sensitization. Eight hundred and eighty-four consecutive eczema patients, 18-69 years of age, fill...... of Peru balsam in detecting relevant fragrance contact allergy is limited, while most fragrance mix-positive patients are aware that the use of scented products may cause skin problems....... in a questionnaire prior to patch testing with the European standard series. The questionnaire contained questions about skin symptoms from the use of scented and unscented products as well as skin reactions from contact with spices, flowers and citrus fruits that could indicate fragrance sensitivity. A highly......The aim of the present study was to investigate the relationship between patients' own recognition of skin problems using consumer products and the results of patch testing with markers of fragrance sensitization. Eight hundred and eighty-four consecutive eczema patients, 18-69 years of age, filled...

  5. The Fermi-Pasta-Ulam problem: Simulation and modern dynamics

    International Nuclear Information System (INIS)

    Weissert, T.P.

    1992-01-01

    In 1952, Enrico Fermi, John Pasta and Stanislaw Ulam (FPU) simulated the loaded string model, perturbed with small, nonlinear interaction terms. Because Poincare's theorem guarantees the non-existence of a complete set of integrals for three-body problem, they expected to see the diffusion of energy from its single-mode initial condition to all other modes of the string. But for every combination of initial conditions, the energy remained bounded within the lowest few modes. No theoretical explanation existed for this failure of the underlying hypothesis that erogidicity follows from the lack of a complete set of integrals of the motion in a Hamiltonian model. The author traces the history of this problem from the FPU simulation to the point that a consensus was reached concerning its solution twenty years later. During this period, the simulation of nonlinearly-perturbed integral models became the methodology for a new era in dynamics. Through the use of simulation, dynamicists discovered deterministic chaos, in which the exponential separation of pair orbits generate randomness in deterministic macroscopic systems, and a new kind of structure-related to the KAM theorem-that provides limited order in the absence of analytic integrals of the motions. The author maps the set of conceptually-related journal articles into a chronological inference topology that tracks the understanding of this problem of dynamics. Simulating non-integrable models on a digital computer requires the discretization of time and space. These approximations affect what the simulation can reveal about the model, and the model about reality. Simulations play the role of experiments on mathematical models. A discussion is presented of the issues that emerge with the use of simulation as a heuristic device and the groundwork is laid for an epistemology of simulation

  6. Predecessor and permutation existence problems for sequential dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, C. L. (Christopher L.); Hunt, H. B. (Harry B.); Marathe, M. V. (Madhav V.); Rosenkrantz, D. J. (Daniel J.); Stearns, R. E. (Richard E.)

    2002-01-01

    A class of finite discrete dynamical systems, called Sequential Dynamical Systems (SDSs), was introduced in BMR99, BR991 as a formal model for analyzing simulation systems. An SDS S is a triple (G, F,n ),w here (i) G(V,E ) is an undirected graph with n nodes with each node having a state, (ii) F = (fi, fi, . . ., fn), with fi denoting a function associated with node ui E V and (iii) A is a permutation of (or total order on) the nodes in V, A configuration of an SDS is an n-vector ( b l, bz, . . ., bn), where bi is the value of the state of node vi. A single SDS transition from one configuration to another is obtained by updating the states of the nodes by evaluating the function associated with each of them in the order given by n. Here, we address the complexity of two basic problems and their generalizations for SDSs. Given an SDS S and a configuration C, the PREDECESSOR EXISTENCE (or PRE) problem is to determine whether there is a configuration C' such that S has a transition from C' to C. (If C has no predecessor, C is known as a garden of Eden configuration.) Our results provide separations between efficiently solvable and computationally intractable instances of the PRE problem. For example, we show that the PRE problem can be solved efficiently for SDSs with Boolean state values when the node functions are symmetric and the underlying graph is of bounded treewidth. In contrast, we show that allowing just one non-symmetric node function renders the problem NP-complete even when the underlying graph is a tree (which has a treewidth of 1). We also show that the PRE problem is efficiently solvable for SDSs whose state values are from a field and whose node functions are linear. Some of the polynomial algorithms also extend to the case where we want to find an ancestor configuration that precedes a given configuration by a logarithmic number of steps. Our results extend some of the earlier results by Sutner [Su95] and Green [@87] on the complexity of

  7. Dynamic MRI reconstruction as a moment problem. Pt. 1

    International Nuclear Information System (INIS)

    Zwaan, M.

    1989-03-01

    This paper deals with some mathematical aspects of magnetic resonance imaging (MRI) concerning the beating heart. Some of the basic theory behind magnetic resonance is given. Of special interest is the mathematical theory concerning MRI and the ideas and problems in mathematical terms will be formulated. If one uses MRI to measure and display a so colled 'dynamic' organ, like the beating heart, the situation is more complex than the case of a static organ. Strategy is described how a cross section of a beating human heart is measured in practice and how the measurements are arranged before an image can be made. This technique is called retrospective synchronization. If the beating heart is measured and displayed with help of this method, artefacts often deteriorate the image quality. Some of these artefacts have a physical cause, while others are caused by the reconstruction algorithm. Perhaps mathematical techniques may be used to improve these algorithms hich are currently used in practice. The aim of this paper is not to solve problems, but to give an adequate mathematical formulation of the inversion problem concerning retrospective synchronization. (author). 3 refs.; 4 figs

  8. Automatic mesh refinement and local multigrid methods for contact problems: application to the Pellet-Cladding mechanical Interaction

    International Nuclear Information System (INIS)

    Liu, Hao

    2016-01-01

    This Ph.D. work takes place within the framework of studies on Pellet-Cladding mechanical Interaction (PCI) which occurs in the fuel rods of pressurized water reactor. This manuscript focuses on automatic mesh refinement to simulate more accurately this phenomena while maintaining acceptable computational time and memory space for industrial calculations. An automatic mesh refinement strategy based on the combination of the Local Defect Correction multigrid method (LDC) with the Zienkiewicz and Zhu a posteriori error estimator is proposed. The estimated error is used to detect the zones to be refined, where the local sub-grids of the LDC method are generated. Several stopping criteria are studied to end the refinement process when the solution is accurate enough or when the refinement does not improve the global solution accuracy anymore. Numerical results for elastic 2D test cases with pressure discontinuity show the efficiency of the proposed strategy. The automatic mesh refinement in case of unilateral contact problems is then considered. The strategy previously introduced can be easily adapted to the multi-body refinement by estimating solution error on each body separately. Post-processing is often necessary to ensure the conformity of the refined areas regarding the contact boundaries. A variety of numerical experiments with elastic contact (with or without friction, with or without an initial gap) confirms the efficiency and adaptability of the proposed strategy. (author) [fr

  9. Smooth dependence on data of solutions and contact regions for a Signorini problem

    Czech Academy of Sciences Publication Activity Database

    Eisner, Jan; Kučera, Milan; Recke, L.

    2010-01-01

    Roč. 72, 3-4 (2010), s. 1358-1378 ISSN 0362-546X R&D Projects: GA AV ČR IAA100190506 Institutional research plan: CEZ:AV0Z10190503 Keywords : smooth dependence on date * Signorini problem * variational inequality Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://www.sciencedirect.com/science/article/pii/S0362546X09009808

  10. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  11. Calibration of measurement sensitivities of multiple micro-cantilever dynamic modes in atomic force microscopy using a contact detection method

    International Nuclear Information System (INIS)

    Liu Zhen; Jeong, Younkoo; Menq, Chia-Hsiang

    2013-01-01

    An accurate experimental method is proposed for on-spot calibration of the measurement sensitivities of multiple micro-cantilever dynamic modes in atomic force microscopy. One of the key techniques devised for this method is a reliable contact detection mechanism that detects the tip-surface contact instantly. At the contact instant, the oscillation amplitude of the tip deflection, converted to that of the deflection signal in laser reading through the measurement sensitivity, exactly equals to the distance between the sample surface and the cantilever base position. Therefore, the proposed method utilizes the recorded oscillation amplitude of the deflection signal and the base position of the cantilever at the contact instant for the measurement sensitivity calibration. Experimental apparatus along with various signal processing and control modules was realized to enable automatic and rapid acquisition of multiple sets of data, with which the calibration of a single dynamic mode could be completed in less than 1 s to suppress the effect of thermal drift and measurement noise. Calibration of the measurement sensitivities of the first and second dynamic modes of three micro-cantilevers having distinct geometries was successfully demonstrated. The dependence of the measurement sensitivity on laser spot location was also experimentally investigated. Finally, an experiment was performed to validate the calibrated measurement sensitivity of the second dynamic mode of a micro-cantilever.

  12. Theoretical modelling, analysis and validation of the shaft motion and dynamic forces during rotor–stator contact

    DEFF Research Database (Denmark)

    Lahriri, Said; Santos, Ilmar

    2013-01-01

    This paper deals with the theoretical study of a horizontal shaft, partially levitated by a passive magnetic bearing, impacting its stator. Rigid body dynamics are utilised in order to describe the governing nonlinear equations of motion of the shaft interacting with a passive magnetic bearing...... and stator. Expressions for the restoring magnetic forces are derived using Biot Savart law for uniformed magnetised bar magnets and the contact forces are derived by use of a compliant contact force model. The theoretical mathematical model is verified with experimental results, and shows good agreements....... However, the simulated contact forces are higher in magnitude compared to the experimental results. The cause of this disagreement is addressed and shows that the formulation of the theoretical contact force model slightly overestimates the forces acting during a full annular backward whirl motion....

  13. Patch testing with markers of fragrance contact allergy. Do clinical tests correspond to patients' self-reported problems?

    Science.gov (United States)

    Johansen, J D; Andersen, T F; Veien, N; Avnstorp, C; Andersen, K E; Menné, T

    1997-03-01

    The aim of the present study was to investigate the relationship between patients' own recognition of skin problems using consumer products and the results of patch testing with markers of fragrance sensitization. Eight hundred and eighty-four consecutive eczema patients, 18-69 years of age, filled in a questionnaire prior to patch testing with the European standard series. The questionnaire contained questions about skin symptoms from the use of scented and unscented products as well as skin reactions from contact with spices, flowers and citrus fruits that could indicate fragrance sensitivity. A highly significant association was found between reporting a history of visible skin symptoms from using scented products and a positive patch test to the fragrance mix, whereas no such relationship could be established to the Peru balsam in univariate or multivariate analysis. Our results suggest that the role of Peru balsam in detecting relevant fragrance contact allergy is limited, while most fragrance mix-positive patients are aware that the use of scented products may cause skin problems.

  14. A parallel finite element procedure for contact-impact problems using edge-based smooth triangular element and GPU

    Science.gov (United States)

    Cai, Yong; Cui, Xiangyang; Li, Guangyao; Liu, Wenyang

    2018-04-01

    The edge-smooth finite element method (ES-FEM) can improve the computational accuracy of triangular shell elements and the mesh partition efficiency of complex models. In this paper, an approach is developed to perform explicit finite element simulations of contact-impact problems with a graphical processing unit (GPU) using a special edge-smooth triangular shell element based on ES-FEM. Of critical importance for this problem is achieving finer-grained parallelism to enable efficient data loading and to minimize communication between the device and host. Four kinds of parallel strategies are then developed to efficiently solve these ES-FEM based shell element formulas, and various optimization methods are adopted to ensure aligned memory access. Special focus is dedicated to developing an approach for the parallel construction of edge systems. A parallel hierarchy-territory contact-searching algorithm (HITA) and a parallel penalty function calculation method are embedded in this parallel explicit algorithm. Finally, the program flow is well designed, and a GPU-based simulation system is developed, using Nvidia's CUDA. Several numerical examples are presented to illustrate the high quality of the results obtained with the proposed methods. In addition, the GPU-based parallel computation is shown to significantly reduce the computing time.

  15. Prediction of plastic deformation under contact condition by quasi-static and dynamic simulations using explicit finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Siswanto, W. A.; Nagentrau, M.; Tobi, A. L. Mohd [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat (Malaysia); Tamin, M. N. [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru (Malaysia)

    2016-11-15

    We compared the quasi-static and dynamic simulation responses on elastic-plastic deformation of advanced alloys using Finite element (FE) method with an explicit numerical algorithm. A geometrical model consisting of a cylinder-on-flat surface contact under a normal load and sliding motion was examined. Two aeroengine materials, Ti-6Al-4V and Super CMV (Cr-Mo-V) alloy, were employed in the FE analysis. The FE model was validated by comparative magnitudes of the FE-predicted maximum contact pressure variation along the contact half-width length with the theoretical Hertzian contact solution. Results show that the (compressive) displacement of the initial contact surface steadily increases for the quasi-static load case, but accumulates at an increasing rate to the maximum level for the dynamic loading. However, the relatively higher stiffness and yield strength of the Super CMV alloy resulted in limited deformation and low plastic strain when compared to the Ti-6Al-4V alloy. The accumulated equivalent plastic strain of the material point at the initial contact position was nearly a thousand times higher for the dynamic load case (for example, 6.592 for Ti-6Al-4V, 1.0 kN) when compared to the quasi-static loading (only 0.0072). During the loading step, the von Mises stress increased with a decreasing and increasing rate for the quasi-static and dynamic load case, respectively. A sudden increase in the stress magnitude to the respective peak value was registered due to the additional constraint to overcome the static friction of the mating surfaces during the sliding step.

  16. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process

    KAUST Repository

    Eleiwi, Fadi

    2016-02-01

    This work proposes a mathematical dynamic model for the direct contact membrane distillation (DCMD) process. The model is based on a 2D Advection–Diffusion Equation (ADE), which describes the heat and mass transfer mechanisms that take place inside the DCMD module. The model studies the behavior of the process in the time varying and the steady state phases, contributing to understanding the process performance, especially when it is driven by intermittent energy supply, such as the solar energy. The model is experimentally validated in the steady state phase, where the permeate flux is measured for different feed inlet temperatures and the maximum absolute error recorded is 2.78 °C. Moreover, experimental validation includes the time variation phase, where the feed inlet temperature ranges from 30 °C to 75 °C with 0.1 °C increment every 2min. The validation marks relative error to be less than 5%, which leads to a strong correlation between the model predictions and the experiments.

  17. A numerical approach to the non-convex dynamic problem of pipeline-soil interaction under environmental effects

    Science.gov (United States)

    Liolios, K.; Georgiev, I.; Liolios, A.

    2012-10-01

    A numerical approach for a problem arising in Civil and Environmental Engineering is presented. This problem concerns the dynamic soil-pipeline interaction, when unilateral contact conditions due to tensionless and elastoplastic softening/fracturing behaviour of the soil as well as due to gapping caused by earthquake excitations are taken into account. Moreover, soil-capacity degradation due to environmental effects are taken into account. The mathematical formulation of this dynamic elastoplasticity problem leads to a system of partial differential equations with equality domain and inequality boundary conditions. The proposed numerical approach is based on a double discretization, in space and time, and on mathematical programming methods. First, in space the finite element method (FEM) is used for the simulation of the pipeline and the unilateral contact interface, in combination with the boundary element method (BEM) for the soil simulation. Concepts of the non-convex analysis are used. Next, with the aid of Laplace transform, the equality problem conditions are transformed to convolutional ones involving as unknowns the unilateral quantities only. So the number of unknowns is significantly reduced. Then a marching-time approach is applied and a non-convex linear complementarity problem is solved in each time-step.

  18. Which doctors and with what problems contact a specialist service for doctors? A cross sectional investigation

    Directory of Open Access Journals (Sweden)

    von der Tann Matthias

    2007-08-01

    Full Text Available Abstract Background In the United Kingdom, specialist treatment and intervention services for doctors are underdeveloped. The MedNet programme, created in 1997 and funded by the London Deanery, aims to fill this gap by providing a self-referral, face-to-face, psychotherapeutic assessment service for doctors in London and South-East England. MedNet was designed to be a low-threshold service, targeting doctors without formal psychiatric problems. The aim of this study was to delineate the characteristics of doctors utilising the service, to describe their psychological morbidity, and to determine if early intervention is achieved. Methods A cross-sectional study including all consecutive self-referred doctors (n = 121, 50% male presenting in 2002–2004 was conducted. Measures included standardised and bespoke questionnaires both self-report and clinician completed. The multi-dimensional evaluation included: demographics, CORE (CORE-OM, CORE-Workplace and CORE-A an instrument designed to evaluate the psychological difficulties of patients referred to outpatient services, Brief Symptom Inventory to quantify caseness and formal psychiatric illness, and Maslach Burnout Inventory. Results The most prevalent presenting problems included depression, anxiety, interpersonal, self-esteem and work-related issues. However, only 9% of the cohort were identified as severely distressed psychiatrically using this measure. In approximately 50% of the sample, problems first presented in the preceding year. About 25% were on sick leave at the time of consultation, while 50% took little or no leave in the prior 12 months. A total of 42% were considered to be at some risk of suicide, with more than 25% considered to have a moderate to severe risk. There were no significant gender differences in type of morbidity, severity or days off sick. Conclusion Doctors displayed high levels of distress as reflected in the significant proportion of those who were at some risk of

  19. A dynamically adaptive lattice Boltzmann method for thermal convection problems

    Directory of Open Access Journals (Sweden)

    Feldhusen Kai

    2016-12-01

    Full Text Available Utilizing the Boussinesq approximation, a double-population incompressible thermal lattice Boltzmann method (LBM for forced and natural convection in two and three space dimensions is developed and validated. A block-structured dynamic adaptive mesh refinement (AMR procedure tailored for the LBM is applied to enable computationally efficient simulations of moderate to high Rayleigh number flows which are characterized by a large scale disparity in boundary layers and free stream flow. As test cases, the analytically accessible problem of a two-dimensional (2D forced convection flow through two porous plates and the non-Cartesian configuration of a heated rotating cylinder are considered. The objective of the latter is to advance the boundary conditions for an accurate treatment of curved boundaries and to demonstrate the effect on the solution. The effectiveness of the overall approach is demonstrated for the natural convection benchmark of a 2D cavity with differentially heated walls at Rayleigh numbers from 103 up to 108. To demonstrate the benefit of the employed AMR procedure for three-dimensional (3D problems, results from the natural convection in a cubic cavity at Rayleigh numbers from 103 up to 105 are compared with benchmark results.

  20. Intraocular pressure and ocular pulse amplitude using dynamic contour tonometry and contact lens tonometry

    Directory of Open Access Journals (Sweden)

    Grus Franz-H

    2004-03-01

    Full Text Available Abstract Background The new Ocular Dynamic Contour Tonometer (DCT, investigational device supplied by SMT (Swiss Microtechnology AG, Switzerland allows simultaneous recording of intraocular pressure (IOP and ocular pulse amplitude (OPA. It was the aim of this study to compare the IOP results of this new device with Goldmann tonometry. Furthermore, IOP and OPA measured with the new slitlamp-mounted DCT were compared to the IOP and OPA measured with the hand-held SmartLens®, a gonioscopic contact lens tonometer (ODC Ophthalmic Development Company AG, Switzerland. Methods Nineteen healthy subjects were included in this study. IOP was determined by three consecutive measurements with each of the DCT, SmartLens®, and Goldmann tonometer. Furthermore, OPA was measured three times consecutively by DCT and SmartLens®. Results No difference (P = 0.09 was found between the IOP values by means of DCT (mean: 16.6 mm Hg, median: 15.33 mm Hg, SD: +/- 4.04 mm Hg and Goldmann tonometry (mean: 16.17 mm Hg, median: 15.33 mm Hg, SD: +/- 4.03 mm Hg. The IOP values of SmartLens® (mean: 20.25 mm Hg, median: 19.00 mm Hg, SD: +/- 4.96 mm Hg were significantly higher (P = 0.0008 both from Goldmann tonometry and DCT. The OPA values of the DCT (mean: 3.08 mm Hg, SD: +/- 0.92 mm Hg were significantly lower (P = 0.0003 than those obtained by SmartLens® (mean: 3.92 mm Hg, SD: +/- 0.83 mm Hg. Conclusions DCT was equivalent to Goldmann applanation tonometry in measurement of IOP in a small group of normal subjects. In contrast, SmartLens® (contact lens tonometry gave IOP readings that were significantly higher compared with Goldmann applanation tonometer readings. Both devices, DCT and SmartLens® provide the measurement of OPA which could be helpful e.g. for the management of glaucoma.

  1. Oxford medial unicompartmental knees display contact-loss during step-cycle motion and bicycle motion: A dynamic radiostereometric study.

    Science.gov (United States)

    Horsager, Kristian; Kaptein, Bart L; Jørgensen, Peter B; Jepsen, Claus F; Stilling, Maiken

    2018-01-01

    The Oxford medial unicompartmental knee is designed fully congruent, with the purpose of maintaining a large contact-area throughout motion and minimize wear. No other study has investigated this design feature in-vivo. We aimed to evaluate if contact-loss was introduced between the articulating surfaces of the Oxford medial unicompartmental knee during bicycle- and step-cycle motion, and whether this correlated with essential implant parameters, such as polyethylene (PE) wear, knee-loadings, and clinical outcome. To study contact-loss, 15 patients (12 males, mean age 69 years) with an Oxford medial unicompartmental knee (7 cemented, mean follow-up 4.4 years) were examined with use of dynamic radiostereometry (RSA) (10 frames/s). PE wear was measured from static RSA and clinical outcome was evaluated with American Knee Society Score (AKSS) and Oxford Knee Score (OKS). Data on knee-loadings were acquired from the literature. Contact-loss was deteced in all patients during both exercises, and the trend of contact-loss correlated with the knee-loadings. Median contact-loss was 0.8 mm (95%PI: 0.3; 1.5) for bicycle motion and 0.3 mm (95%PI: 0.24; 0.35) for step-cycle motion, and did not correlate with the PE wear rate of mean 0.06 mm/year. Possible in-congruency was seen in three patients. Clinical outcome scores correlated with contact-loss during step-cycle motion. In conclusion, contact-loss was seen in all patients indicating a clinical tolerance during load. Contact-loss followed the knee-loadings, which could explain why no correlation was seen with PE wear, as an increase in load was acommadated by an increase in contact-area (contact-loss reduction). The size of contact-loss may reflect clinical outcome. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:357-364, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Reduced-Order Dynamic Modeling, Fouling Detection, and Optimal Control of Solar-Powered Direct Contact Membrane Distillation

    KAUST Repository

    Karam, Ayman M.

    2016-12-01

    Membrane Distillation (MD) is an emerging sustainable desalination technique. While MD has many advantages and can be powered by solar thermal energy, its main drawback is the low water production rate. However, the MD process has not been fully optimized in terms of its manipulated and controlled variables. This is largely due to the lack of adequate dynamic models to study and simulate the process. In addition, MD is prone to membrane fouling, which is a fault that degrades the performance of the MD process. This work has three contributions to address these challenges. First, we derive a mathematical model of Direct Contact Membrane Distillation (DCMD), which is the building block for the next parts. Then, the proposed model is extended to account for membrane fouling and an observer-based fouling detection method is developed. Finally, various control strategies are implemented to optimize the performance of the DCMD solar-powered process. In part one, a reduced-order dynamic model of DCMD is developed based on lumped capacitance method and electrical analogy to thermal systems. The result is an electrical equivalent thermal network to the DCMD process, which is modeled by a system of nonlinear differential algebraic equations (DAEs). This model predicts the water-vapor flux and the temperature distribution along the module length. Experimental data is collected to validate the steady-state and dynamic responses of the proposed model, with great agreement demonstrated in both. The second part proposes an extension of the model to account for membrane fouling. An adaptive observer for DAE systems is developed and convergence proof is presented. A method for membrane fouling detection is then proposed based on adaptive observers. Simulation results demonstrate the performance of the membrane fouling detection method. Finally, an optimization problem is formulated to maximize the process efficiency of a solar-powered DCMD. The adapted method is known as Extremum

  3. Implementation of 3D spatial indexing and compression in a large-scale molecular dynamics simulation database for rapid atomic contact detection

    Directory of Open Access Journals (Sweden)

    Toofanny Rudesh D

    2011-08-01

    Full Text Available Abstract Background Molecular dynamics (MD simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function. The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the work required grows exponentially with the size of the simulation system. We describe the implementation of a spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as the basis for testing compression of data tables. We investigate the effects of compression of the trajectory coordinate tables with different options of data and index compression within MS SQL SERVER 2008. Results Our implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster. For a 'full' simulation trajectory (51 ns spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster. Compression resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour discovery. The greatest compression (~36% was achieved using page level compression on both the data and indexes. Conclusions The spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and could be applied to other multidimensional neighbor discovery

  4. Patch testing with markers of fragrance contact allergy. Do clinical tests correspond to patients' self-reported problems?

    DEFF Research Database (Denmark)

    Johansen, J D; Andersen, T F; Veien, N

    1997-01-01

    significant association was found between reporting a history of visible skin symptoms from using scented products and a positive patch test to the fragrance mix, whereas no such relationship could be established to the Peru balsam in univariate or multivariate analysis. Our results suggest that the role......The aim of the present study was to investigate the relationship between patients' own recognition of skin problems using consumer products and the results of patch testing with markers of fragrance sensitization. Eight hundred and eighty-four consecutive eczema patients, 18-69 years of age, filled...... in a questionnaire prior to patch testing with the European standard series. The questionnaire contained questions about skin symptoms from the use of scented and unscented products as well as skin reactions from contact with spices, flowers and citrus fruits that could indicate fragrance sensitivity. A highly...

  5. Patch testing with markers of fragrance contact allergy. Do clinical tests correspond to patients' self-reported problems?

    DEFF Research Database (Denmark)

    Johansen, J D; Andersen, T F; Veien, Niels

    1997-01-01

    The aim of the present study was to investigate the relationship between patients' own recognition of skin problems using consumer products and the results of patch testing with markers of fragrance sensitization. Eight hundred and eighty-four consecutive eczema patients, 18-69 years of age, filled...... in a questionnaire prior to patch testing with the European standard series. The questionnaire contained questions about skin symptoms from the use of scented and unscented products as well as skin reactions from contact with spices, flowers and citrus fruits that could indicate fragrance sensitivity. A highly...... significant association was found between reporting a history of visible skin symptoms from using scented products and a positive patch test to the fragrance mix, whereas no such relationship could be established to the Peru balsam in univariate or multivariate analysis. Our results suggest that the role...

  6. 3D adaptive finite element method for a phase field model for the moving contact line problems

    KAUST Repository

    Shi, Yi

    2013-08-01

    In this paper, we propose an adaptive finite element method for simulating the moving contact line problems in three dimensions. The model that we used is the coupled Cahn-Hilliard Navier-Stokes equations with the generalized Navier boundary condition(GNBC) proposed in [18]. In our algorithm, to improve the efficiency of the simulation, we use the residual type adaptive finite element algorithm. It is well known that the phase variable decays much faster away from the interface than the velocity variables. There- fore we use an adaptive strategy that will take into account of such difference. Numerical experiments show that our algorithm is both efficient and reliable. © 2013 American Institute of Mathematical Sciences.

  7. Some problems of dynamical systems on three dimensional manifolds

    International Nuclear Information System (INIS)

    Dong Zhenxie.

    1985-08-01

    It is important to study the dynamical systems on 3-dimensional manifolds, its importance is showing up in its close relation with our life. Because of the complication of topological structure of Dynamical systems on 3-dimensional manifolds, generally speaking, the search for 3-dynamical systems is not easier than 2-dynamical systems. This paper is a summary of the partial result of dynamical systems on 3-dimensional manifolds. (author)

  8. Dynamics of solid dispersions in oil during the lubrication of point contacts. Part 1: Graphite

    Science.gov (United States)

    Cusano, C.; Sliney, H. E.

    1981-01-01

    A Hertzian contact was lubricated with dispersed graphite in mineral oils under boundary lubrication conditions. The contact was optically observed under pure rolling, combined rolling and sliding, and pure sliding conditions. The contact was formed with a steel ball on the flat surface of a glass disk. Photomicrographs are presented which show the distribution of the graphite in and around the contact. Friction and surface damage are also shown for conditions when the base oils are used alone and when graphite is added to the base oils. Under pure rolling and combined rolling and sliding conditions, it is found that, for low speeds, a graphite film can form which will separate the contacting surfaces. Under pure sliding conditions, graphite accumulates at the inlet and sweeps around the contact, but very little of the graphite passes through the contact. The accumulated graphite appears to act as a barrier which reduces the supply of oil available to the contact for boundary lubrication. Friction data show no clear short term beneficial or detrimental effect caused by addition of graphite to the base oil. However, during pure sliding, more abrasion occurs on the polished balls lubricated with the dispersion than on those lubricated with the base oil alone. All observations were for the special case of a highly-polished ball on a glass surface and may not be applicable to other geometries and materials, or to rougher surfaces.

  9. Molecular dynamics simulation study of the "stay or leave" problem for two magnesium ions in gene transcription.

    Science.gov (United States)

    Wu, Shaogui

    2017-06-01

    Two magnesium ions play important roles in nucleotide addition cycle (NAC) of gene transcription. However, at the end of each NAC, why does one ion stay in the active site while the other ion leaves with product pyrophosphate (PP i )? This problem still remains obscure. In this work, we studied the problem using all-atom molecular dynamics simulation combined with steered molecular dynamics and umbrella sampling simulation methods. Our simulations reveal that although both ions are located in the active site after chemistry, their detailed positions are not symmetrical, leading to their different forces from surrounding groups. One ion makes weaker contacts with PP i than the whole protein. Hence, PP i release is less likely to take it away. The other one forms tighter contacts with PP i relative to the protein. The formed (Mg 2+ -PP i ) 2- complex is found to break the contacts with surrounding protein residues one by one so as to dissociate from the active site. This effectively avoids the coexistence of two ions in the active site after PP i release and guarantees a reasonable Mg 2+ ion number in the active site for the next NAC. The observations from this work can provide valuable information for comprehensively understanding the molecular mechanism of transcription. Proteins 2017; 85:1002-1007. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Dynamic Evaluation of the Contact Characteristics and Three-Dimensional Motion for the Ankle Joint with Lateral Ligament Injuries

    Science.gov (United States)

    Kawakami, Kensaku; Omori, Go; Terashima, Shojiro; Sakamoto, Makoto; Hara, Toshiaki

    The purpose of this study was to clarify the dynamic changes in contact pressure distribution and three-dimensional ankle joint motion before and after lateral ligament injuries. Five fresh and frozen intact cadaveric ankles were examined. Each ankle was mounted on a specially designed frame that preserved five degrees of freedom motion. The direct linear transformation technique was used to measure the three-dimensional ankle motion, and a pressure-sensitive conductive rubber sensor was inserted into the talocrural joint space to determine the contact pressure distribution. The contact area on the talus for intact ankle moved anteriorly and laterally with increasing dorsiflexion. An area of high pressure was observed in the medial aspect of the articular surface after the ligament was cut. Supination significantly increased after a combined anterior talofibular ligament (ATF) and calcaneofibular ligament (CF) were cut in comparison with after only an ATF was cut, and no significant differences were observed in motional properties under each experimental condition.

  11. Dynamics of solid dispersions in oil during the lubrication of point contacts. I - Graphite

    Science.gov (United States)

    Cusano, C.; Sliney, H. E.

    1981-01-01

    A Hertzian contact is lubricated with dispersed graphite in mineral oils under boundary lubrication conditions. The contacts are optically observed under pure rolling, combined rolling and sliding, and pure sliding conditions. The contact is formed with a steel ball on the flat surface of a glass disk. Under pure rolling and combined rolling and sliding conditions, it is found that, for low speeds, a graphite film can form which will separate the contacting surfaces. In contrast, under pure sliding conditions, graphite accumulates at the inlet and sweeps around the contact, but very little of graphite passes through the contact. The accumulated graphite appears to act as a barrier which reduces the supply of oil available to the contact for boundary lubrication. Friction data show no clear short-term beneficial or detrimental effect caused by addition of graphite to the base oil. However, during pure sliding, more abrasion occurs on the polished balls lubricated with the dispersion than on those lubricated with the base oil alone.

  12. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.

    Science.gov (United States)

    Ramos, S M M; Dias, J F; Canut, B

    2015-02-15

    In the present study, we experimentally study the evaporation modes and kinetics of sessile drops of water on highly hydrophobic surfaces (contact angle ∼160°), heated to temperatures ranging between 40° and 70 °C. These surfaces were initially constructed by means of controlled tailoring of polytetrafluoroethylene (PTFE) substrates. The evaporation of droplets was observed to occur in three distinct phases, which were the same for the different substrate temperatures. The drops started to evaporate in the constant contact radius (CCR) mode, then switched to a more complex mode characterized by a set of stick-slip events accompanied by a decrease in contact angle, and finally shifted to a mixed mode in which the contact radius and contact angle decreased simultaneously until the drops had completely evaporated. It is shown that in the case of superhydrophobic surfaces, the energy barriers (per unit length) associated with the stick-slip motion of a drop ranges in the nJ m(-1) scale. Furthermore, analysis of the evaporation rates, determined from experimental data show that, even in the CCR mode, a linear relationship between V(2/3) and the evaporation time is verified. The values of the evaporation rate constants are found to be higher in the pinned contact line regime (the CCR mode) than in the moving contact line regime. This behavior is attributed to the drop's higher surface to volume ratio in the CCR mode. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Drop shape analysis for determination of dynamic contact angles by double sided elliptical fitting method

    DEFF Research Database (Denmark)

    Andersen, Nis Korsgaard; Taboryski, Rafael J.

    2017-01-01

    Contact angle measurements are a fast and simple way to measure surface properties and is therefore widely used to measure surface energy and quantify wetting of a solid surface by a liquid substance. In common praxis contact angle measurements are done with sessile drops on a horizontal surface...... fitted to a drop profile derived from the Young-Laplace equation. When measuring the wetting behaviour by tilting experiments this is not possible since it involves moving drops that are not in equilibrium. Here we present a fitting technique capable of determining the contact angle of asymmetric drops...

  14. Finite Element Approximation of a Coupled Contact Stefan-like Problem Arising from the Time Discretization in Deformation Theory of Thermo-Plasticity

    Czech Academy of Sciences Publication Activity Database

    Nedoma, Jiří

    1997-01-01

    Roč. 82, č. 3 (1997), s. 313-331 ISSN 0377-0427. [International Congress on Computational and Applied Mathematics -ICCAM 96. Leuven, 21.07.1996-26.07.1996] Grant - others:COPERNICUS(XE) HIPERGEOS CP-940820 Keywords : Stefan-like problem * contact problem * deformation theory of plasticity * variational inequality * geodynamics * technology Impact factor: 0.402, year: 1997

  15. The nonlinear dynamics of the classical few body problem

    International Nuclear Information System (INIS)

    Tabor, M.

    1981-01-01

    The complicated behavior that small dynamical systems can display is reviewed and its relevance to such diverse fields as celestial mechanics, semi-classical mechanics and fluid dynamics is discussed. (orig.)

  16. Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation

    CSIR Research Space (South Africa)

    Greeff, M

    2008-06-01

    Full Text Available Many optimisation problems are multi-objective and change dynamically. Many methods use a weighted average approach to the multiple objectives. This paper introduces the usage of the vector evaluated particle swarm optimiser (VEPSO) to solve dynamic...

  17. Dynamic Behavior Analysis of Non-Contacting Hydrodynamic Finger Seal Based on Fluid-Solid-Interaction Method

    Directory of Open Access Journals (Sweden)

    Su Hua

    2018-01-01

    Full Text Available Finger seal is an advanced compliant seal and can be utilized to separate high (HP and low pressure (LP zones in high speed rotating shaft environment. The work to be presented concerns the dynamic behavior of a repetitive section of a two-layer finger seal with high-and padded low-pressure laminates. The dynamic performance of the finger seal are analyzed by the coupled fluid-solid-interaction (FSI simulations. By using the commercial software ANSYS-CFX, the numerical simulation results of interactions between the gas flow and fingers structural deformation are described when the radial periodic excitation from the shaft applies to the finger seal. And the gas film loading capacity, gas film stiffness and leakage varied with time are put forward in different working conditions. Compared with the dynamic performance analysis results based on equivalent dynamic method, the FSI dynamic analysis shows some different characteristics which are more accordance with actual circumstance. Moreover, it is shown that under low pressure differential and high rotation speed the non-contacting finger seal with advance features both in sealing effectiveness and potential unlimited life span can be obtained by rational structure design. But for the non-contacting finger seal with circumferential convergent pad working in high pressure and low rotating speed conditions, it is difficult to improve the sealing performance by the way of changing the structure parameters of finger seal. It is because the high pressure plays a major role on this sealing situation.

  18. Impact of lubricant traction coefficient on cage’s dynamic characteristics in high-speed angular contact ball bearing

    Directory of Open Access Journals (Sweden)

    Wenhu Zhang

    2017-04-01

    Full Text Available In this paper, the formulas of elasto-hydrodynamic traction coefficients of three Chinese aviation lubricating oils, 4109, 4106 and 4050, were obtained by a great number of elasto-hydrodynamic traction tests. The nonlinear dynamics differential equations of high-speed angular contact ball bearing were built on the basis of dynamic theory of rolling bearings and solved by Gear Stiff (GSTIFF integer algorithm with variable step. The impact of lubricant traction coefficient on cage’s dynamic characteristics in high-speed angular contact ball bearing was investigated, and Poincaré map was used to analyze the impact of three types of aviation lubricating oils on the dynamic response of cage’s mass center. And then, the period of dynamic response of cage’s mass center and the slip ratio of cage were used to assess the stability of cage under various working conditions. The results of this paper provide the theoretical basis for the selection and application of aviation lubricating oil.

  19. An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity

    KAUST Repository

    Gao, Min

    2014-09-01

    In this paper, we develop an efficient numerical method for the two phase moving contact line problem with variable density, viscosity, and slip length. The physical model is based on a phase field approach, which consists of a coupled system of the Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition [1,2,5]. To overcome the difficulties due to large density and viscosity ratio, the Navier-Stokes equations are solved by a splitting method based on a pressure Poisson equation [11], while the Cahn-Hilliard equation is solved by a convex splitting method. We show that the method is stable under certain conditions. The linearized schemes are easy to implement and introduce only mild CFL time constraint. Numerical tests are carried out to verify the accuracy, stability and efficiency of the schemes. The method allows us to simulate the interface problems with extremely small interface thickness. Three dimensional simulations are included to validate the efficiency of the method. © 2014 Elsevier Inc.

  20. Analysis problems for sequential dynamical systems and communicating state machines

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, C. L. (Christopher L.); Hunt, H. B. (Harry B.); Marathe, M. V. (Madhav V.); Ravi, S. S.; Rosenkrantz, D. J. (Daniel J.); Stearns, R. E. (Richard E.)

    2001-01-01

    A simple sequential dynamical system (SDS) is a triple (G, F, {pi}), where (i) G(V, E) is an undirected graph with n nodes with each node having a 1-bit state, (ii) F = {l_brace} f{sub 1},f{sub 2},...,f{sub n}{r_brace} is a set of local transition functions with f{sub i} denoting a Boolean function associated with node Vv{sub i} and (iii) {pi} is a fixed permutation of (i.e., a total order on) the nodes in V. A single SDS transition is obtained by updating the states of the nodes in V by evaluating the function associated with each of them in the order given by {pi}. Such a (finite) SDS is a mathematical abstraction of simulation systems [BMR99, BR99]. In this paper, we characterize the computational complexity of determining several phase space properties of SDSs. The properties considered are t-REACHABILITY ('Can a given SDS starting from configuration I reach configuration B in t or fewer transitions?'), REACHABILITY('Can a given SDS starting from configuration I ever reach configuration B?') and FIXED POINT REACHABILITY ('Can a given SDS starting from configuration I ever reach configuration in which it stays for ever?'). Our main result is a sharp dichotomy between classes of SDSs whose behavior is 'easy' to predict and those whose behavior is 'hard' to predict. Specifically, we show the following. (1) The t-REACHABILITY, REACHABILITY and the FIXED POINT REACHABILITY problems for SDSs are PSPACE-complete, even when restricted to graphs of bounded bandwidth (and hence of bounded pathwidth and treewidth) and when the function associated with each node is symmetric. The result holds even for regular graphs of constant degree where all the nodes compute the same symmetric Boolean function. (2) In contrast, the t-REACHABILITYm REACHABILITY and FIXED POINT REACHABILITY problems are solvable in polynomial time for SDSs when the Boolean function associated with each node is symmetric and monotone. Two important

  1. On some approximations of the resultant contact forces and their applications in rigid body dynamics

    Science.gov (United States)

    Kudra, Grzegorz; Szewc, Michał; Wojtunik, Igor; Awrejcewicz, Jan

    2016-10-01

    The work presents the possible applications and effectiveness of certain class of models of the resultant friction force and rolling resistance. The friction models are based on the integral model constructed under assumption of fully developed sliding on the plane contact area of general shape and any pressure distribution. Then the integral model of friction force and moment are approximated based on Padé approximants and their generalizations. These models are expected to be computationally effective in numerical simulations of rigid bodies with frictional contacts, such like billiard balls, Thompson top, the wobble stone and many others. In the present work two different examples of application of the developed contact models are presented and tested: a) a billiard ball rolling and sliding on the plane horizontal table; b) a full ellipsoid of revolution in contact with plane and horizontal base.

  2. Development of in-situ observation system of dynamic contact interface between dies and materials during microforming operation

    Directory of Open Access Journals (Sweden)

    Shimizu Tetsuhide

    2015-01-01

    Full Text Available Application of diamond like carbon (DLC films are reported in several microforming processes, in view of its great tribological performance owe to the low friction and the high chemical stability. However, due to its high internal residual stress, the film properties with the low adhesion strength and the high wear rate under severe tribological conditions are still remain as technical issues. However, since the dynamic variation of the contact state cannot be observed during the forming operation, it is difficult to recognize the origin and the influential tribological factors of tool life for DLC coated microforming die. Therefore, the appropriate DLC film properties for the contact state in microforming operation have not been clarified. To observe the dynamic variation of the contact state during the microforming operation, present study developed a novel microforming die assembly installed the in-situ observation system with silica glass die and high speed recording camera. By using this system, the dynamic delamination behaviour of DLC films during the progressive micro-bending process was successfully demonstrated. The influential factors for the durability of DLC coated microdies were discussed.

  3. On hyperbolic contact problems

    Czech Academy of Sciences Publication Activity Database

    Bock, I.; Jarušek, Jiří

    2009-01-01

    Roč. 43, č. 2 (2009), s. 25-40 ISSN 1210-3195 R&D Projects: GA AV ČR IAA1075402 Institutional research plan: CEZ:AV0Z10190503 Keywords : hyperbolic von Kármán system * variational inequality * elastic plate * penalization Subject RIV: BA - General Mathematics

  4. Effect of particle stiffness on contact dynamics and rheology in a dense granular flow

    Science.gov (United States)

    Bharathraj, S.; Kumaran, V.

    2018-01-01

    Dense granular flows have been well described by the Bagnold rheology, even when the particles are in the multibody contact regime and the coordination number is greater than 1. This is surprising, because the Bagnold law should be applicable only in the instantaneous collision regime, where the time between collisions is much larger than the period of a collision. Here, the effect of particle stiffness on rheology is examined. It is found that there is a rheological threshold between a particle stiffness of 104-105 for the linear contact model and 105-106 for the Hertzian contact model above which Bagnold rheology (stress proportional to square of the strain rate) is valid and below which there is a power-law rheology, where all components of the stress and the granular temperature are proportional to a power of the strain rate that is less then 2. The system is in the multibody contact regime at the rheological threshold. However, the contact energy per particle is less than the kinetic energy per particle above the rheological threshold, and it becomes larger than the kinetic energy per particle below the rheological threshold. The distribution functions for the interparticle forces and contact energies are also analyzed. The distribution functions are invariant with height, but they do depend on the contact model. The contact energy distribution functions are well fitted by Gamma distributions. There is a transition in the shape of the distribution function as the particle stiffness is decreased from 107 to 106 for the linear model and 108 to 107 for the Hertzian model, when the contact number exceeds 1. Thus, the transition in the distribution function correlates to the contact regime threshold from the binary to multibody contact regime, and is clearly different from the rheological threshold. An order-disorder transition has recently been reported in dense granular flows. The Bagnold rheology applies for both the ordered and disordered states, even though

  5. Acceleration of solving the dynamic multi-objective network design problem using response surface methods

    NARCIS (Netherlands)

    Wismans, Luc Johannes Josephus; van Berkum, Eric C.; Bliemer, M.C.J.

    2014-01-01

    Optimization of externalities and accessibility using dynamic traffic management measures on a strategic level is a specific example of solving a multi-objective network design problem. Solving this optimization problem is time consuming, because heuristics like evolutionary multi objective

  6. Dynamics and stability of rigid rotors levitated by passive cylinder-magnet bearings and driven/supported axially by pointwise contact clutch

    Science.gov (United States)

    Andersen, Søren B.; Enemark, Søren; Santos, Ilmar F.

    2013-12-01

    A stable rotor—supported laterally by passive magnetic bearings and longitudinally by magnetic forces and a clutch—loses suddenly its contact to the clutch and executes abruptly longitudinal movements away from its original equilibrium position as a result of small increases in angular velocity. Such an abrupt unstable behaviour and its reasons are thoroughly theoretically as well as experimentally investigated in this work. In this context, this paper gives theoretical as well as experimental contributions to the problem of two dimensional passive magnetic levitation and one dimensional pointwise contact stability dictated by mechanical-magnetic interaction. Load capacity and stiffness of passive multicylinder magnetic bearings (MCMB) are thoroughly investigated using two theoretical approaches followed by experimental validation. The contact dynamics between the clutch and the rotor supported by MCMB using several configurations of magnet distribution are described based on an accurate nonlinear model able to reliably reproduce the rotor-bearing dynamic behaviour. Such investigations lead to: (a) clear physical explanation about the reasons for the rotor's unstable behaviour, losing its contact to the clutch and (b) an accurate prediction of the threshold of stability based on the nonlinear rotor-bearing model, i.e. maximum angular velocity before the rotor misses its contact to the clutch as a function of rotor, bearing and clutch design parameters. passive cylinder-magnet bearings, imbalance ring with a screw, passive rotating cylinder-magnets, rotor, Pointwise contact clutch, and DC-motor. The rotor (4) is levitated in the two horseshoe-shaped bearing houses (1) which contain several cylinder-magnets arranged in a circular pattern. These permanent magnets form a magnetic field around the rotor which repels similar cylinder-magnets (3) embedded in the rotor, thereby counteracting the gravity forces. As the shape of the magnetic field generated by the

  7. Contact and Impact Dynamic Modeling Capabilities of LS-DYNA for Fluid-Structure Interaction Problems

    Science.gov (United States)

    2010-12-02

    2003, providing a summary of the major theoretical, experimental and numerical accomplishments in the field. Melis and Khanh Bui (2003) studied the ALE...and Khanh Bui (2003) studied the ALE capability to predict splashdown loads on a proposed replacement/upgrade of the hydrazine tanks on the thrust

  8. Contact problem for a solid indenter and a viscoelastic half-space described by the spectrum of relaxation and retardation times

    Science.gov (United States)

    Stepanov, F. I.

    2018-04-01

    The mechanical properties of a material which is modeled by an exponential creep kernel characterized by a spectrum of relaxation and retardation times are studied. The research is carried out considering a contact problem for a solid indenter sliding over a viscoelastic half-space. The contact pressure, indentation depth of the indenter, and the deformation component of the friction coefficient are analyzed with respect to the case of half-space material modeled by single relaxation and retardation times.

  9. Fractal Theory and Contact Dynamics Modeling Vibration Characteristics of Damping Blade

    Directory of Open Access Journals (Sweden)

    Ruishan Yuan

    2014-01-01

    Full Text Available The contact surface structure of dry friction damper is complicate, irregular, and self-similar. In this paper, contact surface structure is described with the fractal theory and damping blade is simplified as 2-DOF cantilever beam model with lumped masses. By changing the position of the damper, lacing and shroud structure are separately simulated to study vibration absorption effect of damping blade. The results show that both shroud structure and lacing could not only dissipate energy but also change stiffness of blade. Under the same condition of normal pressure and contact surface, the damping effect of lacing is stronger than that of shroud structure. Meanwhile, the effect on changing blade stiffness of shroud structure is stronger than that of lacing. This paper proposed that there is at least one position of the blade, at which the damper dissipates the most vibration energy during a vibration cycle.

  10. Granular dynamics, contact mechanics and particle system simulations a DEM study

    CERN Document Server

    Thornton, Colin

    2015-01-01

    This book is devoted to the Discrete Element Method (DEM) technique, a discontinuum modelling approach that takes into account the fact that granular materials are composed of discrete particles which interact with each other at the microscale level. This numerical simulation technique can be used both for dispersed systems in which the particle-particle interactions are collisional and compact systems of particles with multiple enduring contacts. The book provides an extensive and detailed explanation of the theoretical background of DEM. Contact mechanics theories for elastic, elastic-plastic, adhesive elastic and adhesive elastic-plastic particle-particle interactions are presented. Other contact force models are also discussed, including corrections to some of these models as described in the literature, and important areas of further research are identified. A key issue in DEM simulations is whether or not a code can reliably simulate the simplest of systems, namely the single particle oblique impact wit...

  11. Drop shape analysis for determination of dynamic contact angles by double sided elliptical fitting method

    International Nuclear Information System (INIS)

    Andersen, Nis Korsgaard; Taboryski, Rafael

    2017-01-01

    Contact angle measurements are a fast and simple way to measure surface properties and is therefore widely used to measure surface energy and quantify wetting of a solid surface by a liquid substance. In common praxis contact angle measurements are done with sessile drops on a horizontal surface fitted to a drop profile derived from the Young-Laplace equation. When measuring the wetting behaviour by tilting experiments this is not possible since it involves moving drops that are not in equilibrium. Here we present a fitting technique capable of determining the contact angle of asymmetric drops with very high accuracy even with blurry or noisy images. We do this by splitting the trace of a drop into a left and right part at the apex and then fit each side to an ellipse. (technical note)

  12. Problem of calculating dynamic ground subsidence resulting from mining operations

    Energy Technology Data Exchange (ETDEWEB)

    Schober, F.; Sroka, A.; Sroka, T.

    1987-11-01

    The fundamentals of dynamic ground subsidence calculations are presented. After presenting a model for calculating dynamic subsidence, an example is presented in order to illustrate the simplicity of the method. The easy applicability and adaptability of the model and the good agreement between measurements and calculations are pointed out. (MOS).

  13. MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories

    KAUST Repository

    Abdel-Azeim, Safwat

    2014-05-06

    Background: Molecular Dynamics ( MD) simulations of protein complexes suffer from the lack of specific tools in the analysis step. Analyses of MD trajectories of protein complexes indeed generally rely on classical measures, such as the RMSD, RMSF and gyration radius, conceived and developed for single macromolecules. As a matter of fact, instead, researchers engaged in simulating the dynamics of a protein complex are mainly interested in characterizing the conservation/variation of its biological interface. Results: On these bases, herein we propose a novel approach to the analysis of MD trajectories or other conformational ensembles of protein complexes, MDcons, which uses the conservation of inter-residue contacts at the interface as a measure of the similarity between different snapshots. A "consensus contact map" is also provided, where the conservation of the different contacts is drawn in a grey scale. Finally, the interface area of the complex is monitored during the simulations. To show its utility, we used this novel approach to study two protein-protein complexes with interfaces of comparable size and both dominated by hydrophilic interactions, but having binding affinities at the extremes of the experimental range. MDcons is demonstrated to be extremely useful to analyse the MD trajectories of the investigated complexes, adding important insight into the dynamic behavior of their biological interface. Conclusions: MDcons specifically allows the user to highlight and characterize the dynamics of the interface in protein complexes and can thus be used as a complementary tool for the analysis of MD simulations of both experimental and predicted structures of protein complexes.

  14. Local Dynamic Reactive Power for Correction of System Voltage Problems

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, John D [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Xu, Yan [ORNL; Li, Huijuan [University of Tennessee, Knoxville (UTK); Adhikari, Sarina [ORNL; Irminger, Philip [ORNL

    2008-12-01

    Distribution systems are experiencing outages due to a phenomenon known as local voltage collapse. Local voltage collapse is occurring in part because modern air conditioner compressor motors are much more susceptible to stalling during a voltage dip than older motors. These motors can stall in less than 3 cycles (.05s) when a fault, such as on the sub-transmission system, causes voltage to sag to 70 to 60%. The reasons for this susceptibility are discussed in the report. During the local voltage collapse, voltages are depressed for a period of perhaps one or two minutes. There is a concern that these local events are interacting together over larger areas and may present a challenge to system reliability. An effective method of preventing local voltage collapse is the use of voltage regulation from Distributed Energy Resources (DER) that can supply or absorb reactive power. DER, when properly controlled, can provide a rapid correction to voltage dips and prevent motor stall. This report discusses the phenomenon and causes of local voltage collapse as well as the control methodology we have developed to counter voltage sag. The problem is growing because of the use of low inertia, high efficiency air conditioner (A/C) compressor motors and because the use of electric A/C is growing in use and becoming a larger percentage of system load. A method for local dynamic voltage regulation is discussed which uses reactive power injection or absorption from local DER. This method is independent, rapid, and will not interfere with conventional utility system voltage control. The results of simulations of this method are provided. The method has also been tested at the ORNL s Distributed Energy Communications and Control (DECC) Laboratory using our research inverter and synchronous condenser. These systems at the DECC Lab are interconnected to an actual distribution system, the ORNL distribution system, which is fed from TVA s 161kV sub-transmission backbone. The test results

  15. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.

    Science.gov (United States)

    Malgarinos, Ilias; Nikolopoulos, Nikolaos; Marengo, Marco; Antonini, Carlo; Gavaises, Manolis

    2014-10-01

    In this study,a novel numerical implementation for the adhesion of liquid droplets impacting normally on solid dry surfaces is presented. The advantage of this new approach, compared to the majority of existing models, is that the dynamic contact angle forming during the surface wetting process is not inserted as a boundary condition, but is derived implicitly by the induced fluid flow characteristics (interface shape) and the adhesion physics of the gas-liquid-surface interface (triple line), starting only from the advancing and receding equilibrium contact angles. These angles are required in order to define the wetting properties of liquid phases when interacting with a solid surface. The physical model is implemented as a source term in the momentum equation of a Navier-Stokes CFD flow solver as an "adhesion-like" force which acts at the triple-phase contact line as a result of capillary interactions between the liquid drop and the solid substrate. The numerical simulations capture the liquid-air interface movement by considering the volume of fluid (VOF) method and utilizing an automatic local grid refinement technique in order to increase the accuracy of the predictions at the area of interest, and simultaneously minimize numerical diffusion of the interface. The proposed model is validated against previously reported experimental data of normal impingement of water droplets on dry surfaces at room temperature. A wide range of impact velocities, i.e. Weber numbers from as low as 0.2 up to 117, both for hydrophilic (θadv=10°-70°) and hydrophobic (θadv=105°-120°) surfaces, has been examined. Predictions include in addition to droplet spreading dynamics, the estimation of the dynamic contact angle; the latter is found in reasonable agreement against available experimental measurements. It is thus concluded that theimplementation of this model is an effective approach for overcoming the need of a pre-defined dynamic contact angle law, frequently adopted as

  16. Accelerating solving the dynamic multi-objective nework design problem using response surface methods

    NARCIS (Netherlands)

    Wismans, Luc Johannes Josephus; van Berkum, Eric C.; Bliemer, Michiel C.J.; Viti, F.; Immers, B.; Tampere, C.

    2011-01-01

    Multi objective optimization of externalities of traffic solving a network design problem in which Dynamic Traffic Management measures are used, is time consuming while heuristics are needed and solving the lower level requires solving the dynamic user equilibrium problem. Use of response surface

  17. Analysis of Ant Colony Optimization and Population-Based Evolutionary Algorithms on Dynamic Problems

    DEFF Research Database (Denmark)

    Lissovoi, Andrei

    the dynamic optimum for finite alphabets up to size μ, while MMAS is able to do so for any finite alphabet size. Parallel Evolutionary Algorithms on Maze. We prove that while a (1 + λ) EA is unable to track the optimum of the dynamic fitness function Maze for offspring population size up to λ = O(n1-ε......This thesis presents new running time analyses of nature-inspired algorithms on various dynamic problems. It aims to identify and analyse the features of algorithms and problem classes which allow efficient optimization to occur in the presence of dynamic behaviour. We consider the following...... settings: λ-MMAS on Dynamic Shortest Path Problems. We investigate how in-creasing the number of ants simulated per iteration may help an ACO algorithm to track optimum in a dynamic problem. It is shown that while a constant number of ants per-vertex is sufficient to track some oscillations, there also...

  18. Contact forces between a particle and a wet wall at both quasi-static and dynamic state

    Directory of Open Access Journals (Sweden)

    Zhang Huang

    2017-01-01

    Full Text Available The contact regime of particle-wall is investigated by the atomic force microscope (AFM and theoretical models. First, AFM is used to measure the cohesive force between a micron-sized grain and a glass plate at quasi-static state under various humidity. It is found out that the cohesive force starts to grow slowly and suddenly increase rapidly beyond a critical Relative Humidity (RH. Second, mathematical models of contacting forces are presented to depict the dynamic process that a particle impacts on a wet wall. Then the energy loss of a falling grain is calculated in comparison with the models and the experimental data from the previous references. The simulation results show that the force models presented here are adaptive for both low and high viscosity fluid films with different thickness.

  19. Dynamics of a New Strain of the H1N1 Influenza A Virus Incorporating the Effects of Repetitive Contacts

    Directory of Open Access Journals (Sweden)

    Puntani Pongsumpun

    2014-01-01

    Full Text Available The respiratory disease caused by the Influenza A Virus is occurring worldwide. The transmission for new strain of the H1N1 Influenza A virus is studied by formulating a SEIQR (susceptible, exposed, infected, quarantine, and recovered model to describe its spread. In the present model, we have assumed that a fraction of the infected population will die from the disease. This changes the mathematical equations governing the transmission. The effect of repetitive contact is also included in the model. Analysis of the model by using standard dynamical modeling method is given. Conditions for the stability of equilibrium state are given. Numerical solutions are presented for different values of parameters. It is found that increasing the amount of repetitive contacts leads to a decrease in the peak numbers of exposed and infectious humans. A stability analysis shows that the solutions are robust.

  20. Assessment of in vitro dynamics of pathogenic Acanthamoeba strains originating from contact lens wearers with infectious keratitis

    Science.gov (United States)

    Padzik, Marcin; Starościak, Bohdan; Szaflik, Jacek P; Pietruczuk-Padzik, Anna; Siczek, Paulina; Chomicz, Lidia

    Recently, incidents of Acanthamoeba keratitis, the vision-threatening eye disease, are reported with increasing frequency worldwide, particularly in contact lens wearers. In our study, the retrospective assessment of in vitro dynamics of subsequent pathogenic Acanthamoeba isolates cultured at 24°C, detected in Polish contact lens wearers with keratitis is presented and results compared with those of environmental A. castellanii Neff strain. There were delayed the proper diagnosis that influenced prolonged and severe course of this eye disease and treatment difficulties. The corneal material was examined directly to visualize developmental amoeba stages for diagnose verification, microbiologically tested for the specific identification of bacteriae and fungi, and in vitro grown in culture medium in temperature 24°C. Among twenty-six keratitis incidents analyzed, eleven were cases of Acanthamoeba keratitis; in the six of them, Acanthamoeba strains and concomitant bacterial and/or fungal infectious agents were detected. In vitro assays showed variability in population density of several clinical strains in the exponential growth phase expressed in various range of overall amoeba number and different proportion between trophozoites and cysts. The clear influence of temperature on the in vitro cultivation of the amoebae was observed: statistically significant lower population dynamics was revealed by most of pathogenic clinical isolates in comparison with those showed by environmental strain. The in vitro monitoring of dynamics of Acanthamoeba strains isolated from infected eyes may be helpful for diagnostics verification, especially in mixed infectious keratitis.

  1. Dynamic supplier selection problem considering full truck load in probabilistic environment

    Science.gov (United States)

    Sutrisno, Wicaksono, Purnawan Adi

    2017-11-01

    In this paper, we propose a mathematical model in a probabilistic dynamic optimization to solve a dynamic supplier selection problem considering full truck load in probabilistic environment where some parameters are uncertain. We determine the optimal strategy for this problem by using stochastic dynamic programming. We give some numerical experiments to evaluate and analyze the model. From the results, the optimal supplier and the optimal product volume from the optimal supplier were determined for each time period.

  2. Dynamic Programming Approaches for the Traveling Salesman Problem with Drone

    NARCIS (Netherlands)

    P. Bouman (Paul); N.A.H. Agatz (Niels); M.E. Schmidt (Marie)

    2017-01-01

    markdownabstractA promising new delivery model involves the use of a delivery truck that collaborates with a drone to make deliveries. Effectively combining a drone and a truck gives rise to a new planning problem that is known as the Traveling Salesman Problem with Drone (TSP-D). This paper

  3. New Unconditional Hardness Results for Dynamic and Online Problems

    DEFF Research Database (Denmark)

    Clifford, Raphaël; Jørgensen, Allan Grønlund; Larsen, Kasper Green

    2015-01-01

    Data summarization is an effective approach to dealing with the 'big data' problem. While data summarization problems traditionally have been studied is the streaming model, the focus is starting to shift to distributed models, as distributed/parallel computation seems to be the only viable way...

  4. Optimal management with hybrid dynamics : The shallow lake problem

    NARCIS (Netherlands)

    Reddy, P.V.; Schumacher, Hans; Engwerda, Jacob; Camlibel, M.K.; Julius, A.A.; Pasumarthy, R.

    2015-01-01

    In this article we analyze an optimal management problem that arises in ecological economics using hybrid systems modeling. First, we introduce a discounted autonomous infinite horizon hybrid optimal control problem and develop few tools to analyze the necessary conditions for optimality. Next,

  5. Some model problems of the dynamics of a jumping vehicle

    Science.gov (United States)

    Beletskii, V. V.; Dolganov, A. V.; Salimova, O. P.

    1992-06-01

    The paper considers two model problems of a vehicle moving on the surface of a planetoid by jumping. The vehicle is represented by a physical point subject to attraction from gravitational fields of different types. A characteristic feature of this problem is the effect on the vehicle of the planetoid-surface impacts, resulting in a complex, 'multipetaled', trajectory.

  6. A simple running model with rolling contact and its role as a template for dynamic locomotion on a hexapod robot.

    Science.gov (United States)

    Huang, Ke-Jung; Huang, Chun-Kai; Lin, Pei-Chun

    2014-10-07

    We report on the development of a robot's dynamic locomotion based on a template which fits the robot's natural dynamics. The developed template is a low degree-of-freedom planar model for running with rolling contact, which we call rolling spring loaded inverted pendulum (R-SLIP). Originating from a reduced-order model of the RHex-style robot with compliant circular legs, the R-SLIP model also acts as the template for general dynamic running. The model has a torsional spring and a large circular arc as the distributed foot, so during locomotion it rolls on the ground with varied equivalent linear stiffness. This differs from the well-known spring loaded inverted pendulum (SLIP) model with fixed stiffness and ground contact points. Through dimensionless steps-to-fall and return map analysis, within a wide range of parameter spaces, the R-SLIP model is revealed to have self-stable gaits and a larger stability region than that of the SLIP model. The R-SLIP model is then embedded as the reduced-order 'template' in a more complex 'anchor', the RHex-style robot, via various mapping definitions between the template and the anchor. Experimental validation confirms that by merely deploying the stable running gaits of the R-SLIP model on the empirical robot with simple open-loop control strategy, the robot can easily initiate its dynamic running behaviors with a flight phase and can move with similar body state profiles to those of the model, in all five testing speeds. The robot, embedded with the SLIP model but performing walking locomotion, further confirms the importance of finding an adequate template of the robot for dynamic locomotion.

  7. A simple running model with rolling contact and its role as a template for dynamic locomotion on a hexapod robot

    International Nuclear Information System (INIS)

    Huang, Ke-Jung; Huang, Chun-Kai; Lin, Pei-Chun

    2014-01-01

    We report on the development of a robot’s dynamic locomotion based on a template which fits the robot’s natural dynamics. The developed template is a low degree-of-freedom planar model for running with rolling contact, which we call rolling spring loaded inverted pendulum (R-SLIP). Originating from a reduced-order model of the RHex-style robot with compliant circular legs, the R-SLIP model also acts as the template for general dynamic running. The model has a torsional spring and a large circular arc as the distributed foot, so during locomotion it rolls on the ground with varied equivalent linear stiffness. This differs from the well-known spring loaded inverted pendulum (SLIP) model with fixed stiffness and ground contact points. Through dimensionless steps-to-fall and return map analysis, within a wide range of parameter spaces, the R-SLIP model is revealed to have self-stable gaits and a larger stability region than that of the SLIP model. The R-SLIP model is then embedded as the reduced-order ‘template’ in a more complex ‘anchor’, the RHex-style robot, via various mapping definitions between the template and the anchor. Experimental validation confirms that by merely deploying the stable running gaits of the R-SLIP model on the empirical robot with simple open-loop control strategy, the robot can easily initiate its dynamic running behaviors with a flight phase and can move with similar body state profiles to those of the model, in all five testing speeds. The robot, embedded with the SLIP model but performing walking locomotion, further confirms the importance of finding an adequate template of the robot for dynamic locomotion. (paper)

  8. On the Rotor to Stator Contact Dynamics with Impacts and Friction - Theoretical and Experimental Study

    DEFF Research Database (Denmark)

    Lahriri, Said

    The contact between a rotor and its stator can in some cases be considered as a serious malfunction that may lead to catastrophic failure. This major threat arises normally from full annular dry friction backward whirl and whip motion where the rotor runs and rubs at a high frequency on the inner...... of the friction coefficient behavior.......The contact between a rotor and its stator can in some cases be considered as a serious malfunction that may lead to catastrophic failure. This major threat arises normally from full annular dry friction backward whirl and whip motion where the rotor runs and rubs at a high frequency on the inner...... surface of the stator, and thereby traversing the full extent of the clearance. Normal and friction forces are exerted on the rotor at each impact and rubs. These particular forces can sustain the rotor in a persistent backward dry whirl or whip motion. In that case, the friction force plays a significant...

  9. Study of dynamic emission spectra from lubricant films in an elastohydrodynamic contact using Fourier transform spectroscopy

    Science.gov (United States)

    Lauer, J. L.

    1978-01-01

    Infrared emission spectra were obtained through a diamond window from lubricating fluids in an operating sliding elastohydrodynamic contact and analyzed by comparison with static absorption spectra under similar pressures. Different loads, shear rates and temperatures were used. Most of the spectra exhibited polarization characteristics, indicating directional alignment of the lubricant in the EHD contact. Among the fluids studied were a "traction" fluid, an advanced ester, and their mixtures, a synthetic paraffin, a naphthenic reference fluid (N-1), both neat and containing 1 percent of p-tricresyl phosphate as an anti-wear additive, and a C-ether. Traction properties were found to be nearly proportional to mixture composition for traction fluid and ester mixtures. The anti-wear additive reduced traction and fluid temperature under low loads but increased them under higher loads, giving rise to formation of a friction polymer.

  10. Shortest Path Problems in a Stochastic and Dynamic Environment

    National Research Council Canada - National Science Library

    Cho, Jae

    2003-01-01

    .... Particularly, we develop a variety of algorithms to solve the expected shortest path problem in addition to techniques for computing the total travel time distribution along a path in the network...

  11. Dynamic routing problems with fruitful regions: models and evolutionary computation

    NARCIS (Netherlands)

    J.I. van Hemert; J.A. La Poutré (Han)

    2004-01-01

    textabstractWe introduce the concept of fruitful regions in a dynamic routing context: regions that have a high potential of generating loads to be transported. The objective is to maximise the number of loads transported, while keeping to capacity and time constraints. Loads arrive while the

  12. Research on the dynamic response of high-contact-ratio spur gears influenced by surface roughness under EHL condition

    Science.gov (United States)

    Kang, Huang; Xiong, Yangshou; Wang, Tao; Chen, Qi

    2017-01-01

    Employing high-contact-ratio (HCR) gear is an effective method of decreasing the load on a single tooth, as well as reducing vibration and noise. While the spindlier tooth leads to greater relative sliding, having more teeth participate in contact at the same time makes the HCR gear more sensitive to the surface quality. Available literature regarding HCR gear primarily investigates the geometrical optimization, load distribution, or efficiency calculation. Limited work has been conducted on the effect of rough surfaces on the dynamic performance of HCR gear. For this reason, a multi-degree-of-freedom (MDOF) model is presented mathematically to characterize the static transmission error based on fractal theory, investigate the relative sliding friction using an EHL-based friction coefficient formula, and detail the time-varying friction coefficient suitable for HCR gear. Based on numerical results, the surface roughness has little influence on system response in terms of the dynamic transmission error but has a large effect on the motion in off-line-of-action (OLOA) direction and friction force. The impact of shaft-bearing stiffness and damping ratio is also explored with results revealing that a greater shaft-bearing stiffness is beneficial in obtaining a more stable motion in OLOA direction, and a larger damping ratio results in a smaller effective friction force. The theory presented in this report outlines a new method of analyzing the dynamics of HCR gear in respect of introducing surface roughness into MDOF model directly, as well as establishing an indirect relationship between dynamic responses and surface roughness. This method is expected to guide surface roughness design and manufacturing in the future.

  13. Gait parameter control timing with dynamic manual contact or visual cues

    Science.gov (United States)

    Shi, Peter; Werner, William

    2016-01-01

    We investigated the timing of gait parameter changes (stride length, peak toe velocity, and double-, single-support, and complete step duration) to control gait speed. Eleven healthy participants adjusted their gait speed on a treadmill to maintain a constant distance between them and a fore-aft oscillating cue (a place on a conveyor belt surface). The experimental design balanced conditions of cue modality (vision: eyes-open; manual contact: eyes-closed while touching the cue); treadmill speed (0.2, 0.4, 0.85, and 1.3 m/s); and cue motion (none, ±10 cm at 0.09, 0.11, and 0.18 Hz). Correlation analyses revealed a number of temporal relationships between gait parameters and cue speed. The results suggest that neural control ranged from feedforward to feedback. Specifically, step length preceded cue velocity during double-support duration suggesting anticipatory control. Peak toe velocity nearly coincided with its most-correlated cue velocity during single-support duration. The toe-off concluding step and double-support durations followed their most-correlated cue velocity, suggesting feedback control. Cue-tracking accuracy and cue velocity correlations with timing parameters were higher with the manual contact cue than visual cue. The cue/gait timing relationships generalized across cue modalities, albeit with greater delays of step-cycle events relative to manual contact cue velocity. We conclude that individual kinematic parameters of gait are controlled to achieve a desired velocity at different specific times during the gait cycle. The overall timing pattern of instantaneous cue velocities associated with different gait parameters is conserved across cues that afford different performance accuracies. This timing pattern may be temporally shifted to optimize control. Different cue/gait parameter latencies in our nonadaptation paradigm provide general-case evidence of the independent control of gait parameters previously demonstrated in gait adaptation paradigms

  14. Real-Time Dynamic Observation of Micro-Friction on the Contact Interface of Friction Lining

    Science.gov (United States)

    Zhang, Dekun; Chen, Kai; Guo, Yongbo

    2018-01-01

    This paper aims to investigate the microscopic friction mechanism based on in situ microscopic observation in order to record the deformation and contact situation of friction lining during the frictional process. The results show that friction coefficient increased with the shear deformation and energy loss of the surfacee, respectively. Furthermore, the friction mechanism mainly included adhesive friction in the high-pressure and high-speed conditions, whereas hysteresis friction was in the low-pressure and low-speed conditions. The mixed-friction mechanism was in the period when the working conditions varied from high pressure and speed to low pressure and speed. PMID:29498677

  15. Cellular dynamics in the draining lymph nodes during sensitization and elicitation phases of contact hypersensitivity

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura; Geisler, Carsten; Nielsen, Martin Weiss

    2007-01-01

    BACKGROUND: The different role of various immunological effector cells in contact hypersensitivity (CHS) is receiving increased attention. During the past decade, the involvement of different cell types in CHS has been investigated by the use of antibody-induced depletion of specific subtypes....../or challenged with 2,4-dinitrofluorobenzene or oxazolone. Using multi-parameter flow cytometry we determined the proliferation, activation state, and absolute number of helper T cells, cytotoxic T cells, B cells, and natural killer cells in the draining lymph nodes. RESULTS: The presented method can be applied...

  16. Complex cytogeographical patterns reveal a dynamic tetraploid–octoploid contact zone

    Science.gov (United States)

    Castro, Mariana; Castro, Sílvia; Figueiredo, Albano; Husband, Brian; Loureiro, João

    2018-01-01

    Abstract The distribution of cytotypes in mixed-ploidy species is crucial for evaluating ecological processes involved in the establishment and evolution of polyploid taxa. Here, we use flow cytometry and chromosome counts to explore cytotype diversity and distributions within a tetraploid–octoploid contact zone. We then use niche modelling and ploidy seed screening to assess the roles of niche differentiation among cytotypes and reproductive interactions, respectively, in promoting cytotype coexistence. Two cytotypes, tetraploids and octoploids, were dominant within the contact zone. They were most often distributed parapatrically or allopatrically, resulting in high geographic isolation. Still, 16.7 % of localities comprised two or more cytotypes, including the intermediate hexaploid cytotype. Tetraploids and octoploids had high environmental niche overlap and associated with similar climatic environments, suggesting they have similar ecological requirements. Given the geographical separation and habitat similarity among cytotypes, mixed-ploidy populations may be transitional and subject to the forces of minority cytotype exclusion which lead to pure-ploidy populations. However, seed ploidy analysis suggests that strong reproductive barriers may enforce assortative mating which favours stable cytotype coexistence. High cytogenetic diversity detected in the field suggests that unreduced gamete formation and hybridization events seem frequent in the studied polyploid complex and might be involved with the recurrent polyploid formation, governing, as well, the gene flow between cytogenetic entities. PMID:29593853

  17. Dynamic solar-powered multi-stage direct contact membrane distillation system: Concept design, modeling and simulation

    KAUST Repository

    Lee, Jung Gil

    2017-04-26

    This paper presents a theoretical analysis of the monthly average daily and hourly performances of a solar-powered multi-stage direct contact membrane distillation (SMDCMD) system with an energy recovery scheme and dynamic operating system. Mid-latitude meteorological data from Busan, Korea is employed, featuring large climate variation over the course of one year. The number of module stages used by the dynamic operating scheme changes dynamically based on the inlet feed temperature of the successive modules, which results in an improvement of the water production and thermal efficiency. The simulations of the SMDCMD system are carried out to investigate the spatial and temporal variations in the feed and permeate temperatures and permeate flux. The monthly average daily water production increases from 0.37m3/day to 0.4m3/day and thermal efficiency increases from 31% to 45% when comparing systems both without and with dynamic operation in December. The water production with respect to collector area ranged from 350m2 to 550m2 and the seawater storage tank volume ranged from 16m3 to 28.8m3, and the solar fraction at various desired feed temperatures from 50°C to 80°C have been investigated in October and December.

  18. Classical dynamical systems with the symmetry of the Kepler problem

    International Nuclear Information System (INIS)

    Karloukovski, V.I.

    1978-01-01

    The Hamiltonian dynamical systems of the form of H=1/2G 1 p 2 +1/2G 2 (xp) 2 +G 3 (xp)+U, where Gsub(j) and U are functions of r= √ x 2 , are investigated. The notion of the strict Kepler symmetry is introduced to single out the cases where there is the Runge-Lenz vector quadratic in the momentum. All dynamical systems with this property are found. They depend on an arbitrary function of the distance to the centrum of symmetry and two arbitrary interaction constants. The equations of motion are solved and it is shown explicitly that the orbits are closed. Cases when the strict Kepler symmetry is related to an underlying E(3) symmetry are noted. The breaking of the strict Kepler symmetry and its relation to the precession of the perihelium are discussed

  19. Null controllability of a nonlinear population dynamics problem

    OpenAIRE

    Traore, Oumar

    2006-01-01

    We establish a null controllability result for a nonlinear population dynamics model. In our model, the birth term is nonlocal and describes the recruitment process in newborn individuals population. Using a derivation of Leray-Schauder fixed point theorem and Carleman inequality for the adjoint system, we show that for all given initial density, there exists an internal control acting on a small open set of the domain and leading the population to extinction.

  20. Non-minimal quintessence: Dynamics and coincidence problem

    Indian Academy of Sciences (India)

    Abstract. Brans–Dicke scalar–tensor theory provides a conformal coupling of the scalar field with gravity in Einstein's frame. This model is equivalent to an interacting quintessence in which dark matter is coupled to dark energy. This provides a natural mechanism to alleviate the coincidence problem. We investigate the ...

  1. Dynamic models for problems of species occurrence with multiple states

    Science.gov (United States)

    MacKenzie, D.I.; Nichols, J.D.; Seamans, M.E.; Gutierrez, R.J.

    2009-01-01

    Recent extensions of occupancy modeling have focused not only on the distribution of species over space, but also on additional state variables (e.g., reproducing or not, with or without disease organisms, relative abundance categories) that provide extra information about occupied sites. These biologist-driven extensions are characterized by ambiguity in both species presence and correct state classification, caused by imperfect detection. We first show the relationships between independently published approaches to the modeling of multistate occupancy. We then extend the pattern-based modeling to the case of sampling over multiple seasons or years in order to estimate state transition probabilities associated with system dynamics. The methodology and its potential for addressing relevant ecological questions are demonstrated using both maximum likelihood (occupancy and successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo estimation approaches (changes in relative abundance of green frogs in Maryland). Just as multistate capture?recapture modeling has revolutionized the study of individual marked animals, we believe that multistate occupancy modeling will dramatically increase our ability to address interesting questions about ecological processes underlying population-level dynamics.

  2. A new approach to solve elastoplastic dynamic piping problems

    International Nuclear Information System (INIS)

    Leite de Andrade, J.E.; Guerreiro Ribeiro, S.V.

    1981-01-01

    A new method to perform the elastoplastic dynamic analysis of pipes is presented here, in which the pipe is analysed as a beam, and a bilinear eleastic-plastic behavior for the material is assumed. Pipe whip restraints are simulated as spring of bilinear elastic-plastic behavior with the provision for considering viscous damping. A numerical method was implemented in which plastic strain is treated as equivalent applied (force or moment) excitations, reducing the elastoplastic analysis of the structure to an elastic analysis of the same structure with a set of additional applied excitations. So the stiffness matrix and the eigenvectors do not vary with time. This procedure allows the response of the system to be computed by using dynamic influence coefficients, which are calculated from the elastic solution. For those structures whose dynamic elastic solutions are known in closed form, the present scheme seems to be very attractive, e.g., simple supported and cantilever beams. For those structures with unknown analytical elastic solutions, the finite element method will provide them. (orig./GL)

  3. Formation of Surface Nanobubbles and the Universality of Their Contact Angles: A Molecular Dynamics Approach

    NARCIS (Netherlands)

    Weijs, Joost; Snoeijer, Jacobus Hendrikus; Lohse, Detlef

    2012-01-01

    We study surface nanobubbles using molecular dynamics simulation of ternary (gas, liquid, solid) systems of Lennard-Jones fluids. They form for a sufficiently low gas solubility in the liquid, i.e., for a large relative gas concentration. For a strong enough gas-solid attraction, the surface

  4. The Shadow Map: A General Contact Definition for Capturing the Dynamics of Biomolecular Folding and Function

    OpenAIRE

    Noel, Jeffrey K.; Whitford, Paul C.; Onuchic, José N

    2012-01-01

    Structure-based models (SBMs) are simplified models of the biomolecular dynamics that arise from funneled energy landscapes. We recently introduced an all-atom SBM that explicitly represents the atomic geometry of a biomolecule. While this initial study showed the robustness of the all-atom SBM Hamiltonian to changes in many of the energetic parameters, an important aspect, which has not been explored previously, is the definition of native interactions. In this study, we propose a general de...

  5. An optimal maintenance policy for machine replacement problem using dynamic programming

    OpenAIRE

    Mohsen Sadegh Amalnik; Morteza Pourgharibshahi

    2017-01-01

    In this article, we present an acceptance sampling plan for machine replacement problem based on the backward dynamic programming model. Discount dynamic programming is used to solve a two-state machine replacement problem. We plan to design a model for maintenance by consid-ering the quality of the item produced. The purpose of the proposed model is to determine the optimal threshold policy for maintenance in a finite time horizon. We create a decision tree based on a sequential sampling inc...

  6. Dynamic problems of power reactors and analogic devices

    International Nuclear Information System (INIS)

    Braffort, P.

    1955-01-01

    The raise of the nuclear physics came with heavy mathematical developments. The analogical installations became especially useful for precise calculations of parameters which depend the running of a reactor. They permit between other to study of kinetic problems and especially ''cybernetics'' of nuclear reactors. It doesn't make a doubt that their use will become widespread, not only in the calculations laboratories, in services for servo-mechanisms study, but also in the control panels of the reactors themselves. (M.B.) [fr

  7. New solutions in the direct problem of dynamics

    Science.gov (United States)

    Blaga, C.; Anisiu, M.-C.; Bozis, G.

    2007-05-01

    Given a planar potential V, we look for families of orbits f(x,y)=c% (determined by their slope function γ=f_{y}/f_{x}), traced by a material point of unit mass under the action of that potential. The second-order equation which relates γ and V is nonlinear in γ; to find special solutions, we consider in addition a linear first-order partial differential equation satisfied by γ. The problem does not admit always solutions; but when solutions do exist, they can be found by algebraic manipulations. Examples are given for homogeneous families γ, and for some special cases which arise in the course of reasoning.

  8. Real-time image processing for non-contact monitoring of dynamic displacements using smartphone technologies

    Science.gov (United States)

    Min, Jae-Hong; Gelo, Nikolas J.; Jo, Hongki

    2016-04-01

    The newly developed smartphone application, named RINO, in this study allows measuring absolute dynamic displacements and processing them in real time using state-of-the-art smartphone technologies, such as high-performance graphics processing unit (GPU), in addition to already powerful CPU and memories, embedded high-speed/ resolution camera, and open-source computer vision libraries. A carefully designed color-patterned target and user-adjustable crop filter enable accurate and fast image processing, allowing up to 240fps for complete displacement calculation and real-time display. The performances of the developed smartphone application are experimentally validated, showing comparable accuracy with those of conventional laser displacement sensor.

  9. Contact Loss beneath Track Slab Caused by Deteriorated Cement Emulsified Asphalt Mortar: Dynamic Characteristics of Vehicle-Slab Track System and Prototype Experiment

    Directory of Open Access Journals (Sweden)

    Dan Liu

    2016-01-01

    Full Text Available The contact loss beneath track slab caused by deteriorated cement emulsified asphalt mortar (CA mortar has been one of the main diseases occurring in the CRTS- (China Railway Track System- I Slab Track of high-speed railway in China. Based on the slab track design theory and the vehicle-track coupling vibration theory, a vehicle-track vertical coupling dynamic FEM model was established to analyze the influence of the contact loss length on the dynamic characteristics of vehicle and track subsystems at different train speeds. A prototype dynamic characteristic experimental test of CRTS-I Slab Track with CA mortar contact loss was conducted to verify the FEM model results. The train load was generated by the customized ZSS50 excitation car. The results showed that when the operation speed is less than 300 km/h, the contact loss with length smaller than 2.0 m barely affects the running smoothness ride safety of vehicle. The contact loss length effect on the dynamic characteristics of track subsystem is pronounced, especially on the track slab. Once the contact loss beneath the track slab occurs, the vibration displacement and the acceleration of the track slab increase rapidly, while it has little influence on the displacement and acceleration of the concrete roadbed.

  10. Energy conserving schemes for the simulation of musical instrument contact dynamics

    Science.gov (United States)

    Chatziioannou, Vasileios; van Walstijn, Maarten

    2015-03-01

    Collisions are an innate part of the function of many musical instruments. Due to the nonlinear nature of contact forces, special care has to be taken in the construction of numerical schemes for simulation and sound synthesis. Finite difference schemes and other time-stepping algorithms used for musical instrument modelling purposes are normally arrived at by discretising a Newtonian description of the system. However because impact forces are non-analytic functions of the phase space variables, algorithm stability can rarely be established this way. This paper presents a systematic approach to deriving energy conserving schemes for frictionless impact modelling. The proposed numerical formulations follow from discretising Hamilton's equations of motion, generally leading to an implicit system of nonlinear equations that can be solved with Newton's method. The approach is first outlined for point mass collisions and then extended to distributed settings, such as vibrating strings and beams colliding with rigid obstacles. Stability and other relevant properties of the proposed approach are discussed and further demonstrated with simulation examples. The methodology is exemplified through a case study on tanpura string vibration, with the results confirming the main findings of previous studies on the role of the bridge in sound generation with this type of string instrument.

  11. NASA Langley's Approach to the Sandia's Structural Dynamics Challenge Problem

    Science.gov (United States)

    Horta, Lucas G.; Kenny, Sean P.; Crespo, Luis G.; Elliott, Kenny B.

    2007-01-01

    The objective of this challenge is to develop a data-based probabilistic model of uncertainty to predict the behavior of subsystems (payloads) by themselves and while coupled to a primary (target) system. Although this type of analysis is routinely performed and representative of issues faced in real-world system design and integration, there are still several key technical challenges that must be addressed when analyzing uncertain interconnected systems. For example, one key technical challenge is related to the fact that there is limited data on target configurations. Moreover, it is typical to have multiple data sets from experiments conducted at the subsystem level, but often samples sizes are not sufficient to compute high confidence statistics. In this challenge problem additional constraints are placed as ground rules for the participants. One such rule is that mathematical models of the subsystem are limited to linear approximations of the nonlinear physics of the problem at hand. Also, participants are constrained to use these models and the multiple data sets to make predictions about the target system response under completely different input conditions. Our approach involved initially the screening of several different methods. Three of the ones considered are presented herein. The first one is based on the transformation of the modal data to an orthogonal space where the mean and covariance of the data are matched by the model. The other two approaches worked solutions in physical space where the uncertain parameter set is made of masses, stiffnesses and damping coefficients; one matches confidence intervals of low order moments of the statistics via optimization while the second one uses a Kernel density estimation approach. The paper will touch on all the approaches, lessons learned, validation 1 metrics and their comparison, data quantity restriction, and assumptions/limitations of each approach. Keywords: Probabilistic modeling, model validation

  12. Mitigation of epidemics in contact networks through optimal contact adaptation *

    Science.gov (United States)

    Youssef, Mina; Scoglio, Caterina

    2013-01-01

    This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact reduction are linearly combined in a single objective function. Hence, the optimal control formulation addresses the tradeoff between minimization of total infection cases and minimization of contact weights reduction. Using Pontryagin theorem, the obtained solution is a unique candidate representing the dynamical weighted contact network. To find the near-optimal solution in a decentralized way, we propose two heuristics based on Bang-Bang control function and on a piecewise nonlinear control function, respectively. We perform extensive simulations to evaluate the two heuristics on different networks. Our results show that the piecewise nonlinear control function outperforms the well-known Bang-Bang control function in minimizing both the total number of infection cases and the reduction of contact weights. Finally, our results show awareness of the infection level at which the mitigation strategies are effectively applied to the contact weights. PMID:23906209

  13. Mitigation of epidemics in contact networks through optimal contact adaptation.

    Science.gov (United States)

    Youssef, Mina; Scoglio, Caterina

    2013-08-01

    This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact reduction are linearly combined in a single objective function. Hence, the optimal control formulation addresses the tradeoff between minimization of total infection cases and minimization of contact weights reduction. Using Pontryagin theorem, the obtained solution is a unique candidate representing the dynamical weighted contact network. To find the near-optimal solution in a decentralized way, we propose two heuristics based on Bang-Bang control function and on a piecewise nonlinear control function, respectively. We perform extensive simulations to evaluate the two heuristics on different networks. Our results show that the piecewise nonlinear control function outperforms the well-known Bang-Bang control function in minimizing both the total number of infection cases and the reduction of contact weights. Finally, our results show awareness of the infection level at which the mitigation strategies are effectively applied to the contact weights.

  14. Relationship between Maximum Principle and Dynamic Programming for Stochastic Recursive Optimal Control Problems and Applications

    Directory of Open Access Journals (Sweden)

    Jingtao Shi

    2013-01-01

    Full Text Available This paper is concerned with the relationship between maximum principle and dynamic programming for stochastic recursive optimal control problems. Under certain differentiability conditions, relations among the adjoint processes, the generalized Hamiltonian function, and the value function are given. A linear quadratic recursive utility portfolio optimization problem in the financial engineering is discussed as an explicitly illustrated example of the main result.

  15. A nonlinear problem for age-structured population dynamics with spatial diffusion

    OpenAIRE

    Nakoulima, Ousseynou; Omrane, Abdennebi; Velin, Jean

    2001-01-01

    We consider a nonlinear model for age-dependent population dynamics subject to a density dependent factor which regulates the selection of newborn at age zero. The initial-boundary value problem is studied using a vanishing viscosity method (in the age direction) together with the fixed point theory. Existence and uniqueness are obtained, and also the positivity of the solution to the problem.

  16. The Interactions between Problem Solving and Conceptual Change: System Dynamic Modelling as a Platform for Learning

    Science.gov (United States)

    Lee, Chwee Beng

    2010-01-01

    This study examines the interactions between problem solving and conceptual change in an elementary science class where students build system dynamic models as a form of problem representations. Through mostly qualitative findings, we illustrate the interplay of three emerging intervening conditions (epistemological belief, structural knowledge…

  17. Hodograph: A useful geometrical tool for solving some difficult problems in dynamics

    Science.gov (United States)

    Apostolatos, Theocharis A.

    2003-03-01

    The hodograph is very useful for solving complicated problems in dynamics. By simple geometrical arguments students can directly obtain the answer to problems that would otherwise be complicated exercises in algebra. Although beyond the level of undergraduates, we also use the hodograph to calculate by variational geometrical techniques, the well-known brachistochrone curve, thus illustrating this approach.

  18. Two-Stage Screening for Math Problem-Solving Difficulty Using Dynamic Assessment of Algebraic Learning

    Science.gov (United States)

    Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Hollenbeck, Kurstin N.; Hamlett, Carol L.; Seethaler, Pamela M.

    2011-01-01

    The purpose of this study was to explore the utility of a dynamic assessment (DA) of algebraic learning in predicting third graders' development of mathematics word-problem difficulty. In the fall, 122 third-grade students were assessed on a test of math word-problem skill and DA of algebraic learning. In the spring, they were assessed on…

  19. Quasistatic normal-compliance contact problem of visco-elastic bodies with Coulomb friction implemented by QP and SGBEM

    Czech Academy of Sciences Publication Activity Database

    Vodička, R.; Mantič, V.; Roubíček, Tomáš

    2017-01-01

    Roč. 315, May (2017), s. 249-272 ISSN 0377-0427 Institutional support: RVO:61388998 Keywords : contact mechanics * evolution variational inequalities * numerical approximation Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.357, year: 2016 http://www.sciencedirect.com/science/article/pii/S037704271630499X

  20. The general practitioner as the first contacted health professional by patients with psychosocial problems: a European study.

    NARCIS (Netherlands)

    Boerma, W.G.W.; Verhaak, P.F.M.

    1999-01-01

    Background: there are considerable differences between and within countries in the involvement of general practitioners (GPs) in psychosocial care. This study aimed to describe the self-perceived role of GPs in 30 European countries as the first contacted professional for patients with psychosocial

  1. Disease dynamics during wildlife translocations: disruptions to the host population and potential consequences for transmission in desert tortoise contact networks

    Science.gov (United States)

    Aiello, Christina M.; Nussear, Kenneth E.; Walde, Andrew D.; Esque, Todd C.; Emblidge, Patrick G.; Sah, Pratha; Bansal, S.; Hudson, Peter J.

    2014-01-01

    Wildlife managers consider animal translocation a means of increasing the viability of a local population. However, augmentation may disrupt existing resident disease dynamics and initiate an outbreak that would effectively offset any advantages the translocation may have achieved. This paper examines fundamental concepts of disease ecology and identifies the conditions that will increase the likelihood of a disease outbreak following translocation. We highlight the importance of susceptibility to infection, population size and population connectivity – a characteristic likely affected by translocation but not often considered in risk assessments – in estimating outbreak risk due to translocation. We then explore these features in a species of conservation concern often translocated in the presence of infectious disease, the Mojave Desert tortoise, and use data from experimental tortoise translocations to detect changes in population connectivity that may influence pathogen transmission. Preliminary analyses comparing contact networks inferred from spatial data at control and translocation plots and infection simulation results through these networks suggest increased outbreak risk following translocation due to dispersal-driven changes in contact frequency and network structure. We outline future research goals to test these concepts and aid managers in designing effective risk assessment and intervention strategies that will improve translocation success.

  2. Study of the resistance of SAMs on aluminium to acidic and basic solutions using dynamic contact angle measurement.

    Science.gov (United States)

    Liakos, Ioannis L; Newman, Roger C; McAlpine, Eoghan; Alexander, Morgan R

    2007-01-30

    We report the development of a method to determine the aqueous stability of self-assembled monolayers (SAMs) using the Wilhelmy plate dynamic contact angle (DCA) experiment. The DCA is measured in solutions over a range of pH values for alkyl carboxylic and alkyl phosphonic acid SAMs formed on magnetron-sputtered aluminum. The change in DCA on repeated immersion is used as a measure of the degradation of the SAMs by hydrolytic attack. The short and intermediate chain length alkyl acids are not stable in water of neutral pH, whereas molecules with the longest alkyl chains show considerably greater stability in neutral and both high and low pH solutions. The packing density inferred from the DCA and the contact angle hysteresis suggests the C18CO2H monolayer to be slightly less well packed than that of the C18P(=O)(OH)2; this is consistent with related friction force microscopy and infrared reflection absorption spectroscopy findings published elsewhere (Foster, T. T.; Alexander, M. R.; Leggett, G. J.; McAlpine, E. Langmuir 2006, 22, 9254-9259). The resistance of the SAMs to acid and alkaline environments is discussed in the context of aluminum oxide solubility, SAM packing density, and the resistance of the interfacial phosphate and carboxylate functionalities to different aqueous conditions.

  3. A finite element method for the numerical solution of the coupled Cahn-Hilliard and Navier-Stokes system for moving contact line problems

    KAUST Repository

    Bao, Kai

    2012-10-01

    In this paper, a semi-implicit finite element method is presented for the coupled Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition for the moving contact line problems. In our method, the system is solved in a decoupled way. For the Cahn-Hilliard equations, a convex splitting scheme is used along with a P1-P1 finite element discretization. The scheme is unconditionally stable. A linearized semi-implicit P2-P0 mixed finite element method is employed to solve the Navier-Stokes equations. With our method, the generalized Navier boundary condition is extended to handle the moving contact line problems with complex boundary in a very natural way. The efficiency and capacity of the present method are well demonstrated with several numerical examples. © 2012 Elsevier Inc..

  4. Dynamics of African swine fever virus shedding and excretion in domestic pigs infected by intramuscular inoculation and contact transmission.

    Science.gov (United States)

    Guinat, Claire; Reis, Ana Luisa; Netherton, Christopher L; Goatley, Lynnette; Pfeiffer, Dirk U; Dixon, Linda

    2014-09-26

    African swine fever virus (ASFV) is a highly virulent swine pathogen that has spread across Eastern Europe since 2007 and for which there is no effective vaccine or treatment available. The dynamics of shedding and excretion is not well known for this currently circulating ASFV strain. Therefore, susceptible pigs were exposed to pigs intramuscularly infected with the Georgia 2007/1 ASFV strain to measure those dynamics through within- and between-pen transmission scenarios. Blood, oral, nasal and rectal fluid samples were tested for the presence of ASFV by virus titration (VT) and quantitative real-time polymerase chain reaction (qPCR). Serum was tested for the presence of ASFV-specific antibodies. Both intramuscular inoculation and contact transmission resulted in development of acute disease in all pigs although the experiments indicated that the pathogenesis of the disease might be different, depending on the route of infection. Infectious ASFV was first isolated in blood among the inoculated pigs by day 3, and then chronologically among the direct and indirect contact pigs, by day 10 and 13, respectively. Close to the onset of clinical signs, higher ASFV titres were found in blood compared with nasal and rectal fluid samples among all pigs. No infectious ASFV was isolated in oral fluid samples although ASFV genome copies were detected. Only one animal developed antibodies starting after 12 days post-inoculation. The results provide quantitative data on shedding and excretion of the Georgia 2007/1 ASFV strain among domestic pigs and suggest a limited potential of this isolate to cause persistent infection.

  5. Image Processing Code for Sharpening Photoelastic Fringe Patterns and Its Usage in Determination of Stress Intensity Factors in a Sample Contact Problem

    OpenAIRE

    Khaleghian, Seyedmeysam; Emami, Anahita; Soltani, Nasser

    2015-01-01

    This study presented a type of image processing code which is used for sharpening photoelastic fringe patterns of transparent materials in photoelastic experiences to determine the stress distribution. C-Sharp software was utilized for coding the algorithm of this image processing method. For evaluation of this code, the results of a photoelastic experience of a sample contact problem between a half-plane with an oblique edge crack and a tilted wedge using this image processing method was com...

  6. Numerical implication of Riemann problem theory for fluid dynamics

    International Nuclear Information System (INIS)

    Menikoff, R.

    1988-01-01

    The Riemann problem plays an important role in understanding the wave structure of fluid flow. It is also crucial step in some numerical algorithms for accurately and efficiently computing fluid flow; Godunov method, random choice method, and from tracking method. The standard wave structure consists of shock and rarefaction waves. Due to physical effects such as phase transitions, which often are indistinguishable from numerical errors in an equation of state, anomalkous waves may occur, ''rarefaction shocks'', split waves, and composites. The anomalous waves may appear in numerical calculations as waves smeared out by either too much artificial viscosity or insufficient resolution. In addition, the equation of state may lead to instabilities of fluid flow. Since these anomalous effects due to the equation of state occur for the continuum equations, they can be expected to occur for all computational algorithms. The equation of state may be characterized by three dimensionless variables: the adiabatic exponent γ, the Grueneisen coefficient Γ, and the fundamental derivative G. The fluid flow anomalies occur when inequalities relating these variables are violated. 18 refs

  7. Piping benchmark problems. Volume 1. Dynamic analysis uniform support motion response spectrum method

    Energy Technology Data Exchange (ETDEWEB)

    Bezler, P.; Hartzman, M.; Reich, M.

    1980-08-01

    A set of benchmark problems and solutions have been developed for verifying the adequacy of computer programs used for dynamic analysis and design of nuclear piping systems by the Response Spectrum Method. The problems range from simple to complex configurations which are assumed to experience linear elastic behavior. The dynamic loading is represented by uniform support motion, assumed to be induced by seismic excitation in three spatial directions. The solutions consist of frequencies, participation factors, nodal displacement components and internal force and moment components. Solutions to associated anchor point motion static problems are not included.

  8. The Patch-Levy-Based Bees Algorithm Applied to Dynamic Optimization Problems

    Directory of Open Access Journals (Sweden)

    Wasim A. Hussein

    2017-01-01

    Full Text Available Many real-world optimization problems are actually of dynamic nature. These problems change over time in terms of the objective function, decision variables, constraints, and so forth. Therefore, it is very important to study the performance of a metaheuristic algorithm in dynamic environments to assess the robustness of the algorithm to deal with real-word problems. In addition, it is important to adapt the existing metaheuristic algorithms to perform well in dynamic environments. This paper investigates a recently proposed version of Bees Algorithm, which is called Patch-Levy-based Bees Algorithm (PLBA, on solving dynamic problems, and adapts it to deal with such problems. The performance of the PLBA is compared with other BA versions and other state-of-the-art algorithms on a set of dynamic multimodal benchmark problems of different degrees of difficulties. The results of the experiments show that PLBA achieves better results than the other BA variants. The obtained results also indicate that PLBA significantly outperforms some of the other state-of-the-art algorithms and is competitive with others.

  9. Social mixing in Fiji: Who-eats-with-whom contact patterns and the implications of age and ethnic heterogeneity for disease dynamics in the Pacific Islands.

    Science.gov (United States)

    Watson, Conall H; Coriakula, Jeremaia; Ngoc, Dung Tran Thi; Flasche, Stefan; Kucharski, Adam J; Lau, Colleen L; Thieu, Nga Tran Vu; le Polain de Waroux, Olivier; Rawalai, Kitione; Van, Tan Trinh; Taufa, Mere; Baker, Stephen; Nilles, Eric J; Kama, Mike; Edmunds, W John

    2017-01-01

    Empirical data on contact patterns can inform dynamic models of infectious disease transmission. Such information has not been widely reported from Pacific islands, nor strongly multi-ethnic settings, and few attempts have been made to quantify contact patterns relevant for the spread of gastrointestinal infections. As part of enteric fever investigations, we conducted a cross-sectional survey of the general public in Fiji, finding that within the 9,650 mealtime contacts reported by 1,814 participants, there was strong like-with-like mixing by age and ethnicity, with higher contact rates amongst iTaukei than non-iTaukei Fijians. Extra-domiciliary lunchtime contacts follow these mixing patterns, indicating the overall data do not simply reflect household structures. Inter-ethnic mixing was most common amongst school-age children. Serological responses indicative of recent Salmonella Typhi infection were found to be associated, after adjusting for age, with increased contact rates between meal-sharing iTaukei, with no association observed for other contact groups. Animal ownership and travel within the geographical division were common. These are novel data that identify ethnicity as an important social mixing variable, and use retrospective mealtime contacts as a socially acceptable metric of relevance to enteric, contact and respiratory diseases that can be collected in a single visit to participants. Application of these data to other island settings will enable communicable disease models to incorporate locally relevant mixing patterns in parameterisation.

  10. Direct Contact - Sorptive Tape Extraction coupled with Gas Chromatography - Mass Spectrometry to reveal volatile topographical dynamics of lima bean (Phaseolus lunatus L.) upon herbivory by Spodoptera littoralis Boisd

    OpenAIRE

    Boggia, Lorenzo; Sgorbini, Barbara; Bertea, Cinzia M; Cagliero, Cecilia; Bicchi, Carlo; Maffei, Massimo E; Rubiolo, Patrizia

    2015-01-01

    Background The dynamics of plant volatile (PV) emission, and the relationship between damaged area and biosynthesis of bioactive molecules in plant-insect interactions, remain open questions. Direct Contact-Sorptive Tape Extraction (DC-STE) is a sorption sampling technique employing non adhesive polydimethylsiloxane tapes, which are placed in direct contact with a biologically-active surface. DC-STE coupled to Gas Chromatography ? Mass Spectrometry (GC-MS) is a non-destructive, high concentra...

  11. Dynamics and stability of rigid rotors levitated by passive cylinder-magnet bearings and driven/supported axially by pointwise contact clutch

    DEFF Research Database (Denmark)

    Andersen, Søren Bøgh; Enemark, Søren; Santos, Ilmar

    2013-01-01

    A stable rotor—supported laterally by passive magnetic bearings and longitudinally by magnetic forces and a clutch—loses suddenly its contact to the clutch and executes abruptly longitudinal movements away from its original equilibrium position as a result of small increases in angular velocity...... contact stability dictated by mechanical–magnetic interaction. Load capacity and stiffness of passive multicylinder magnetic bearings (MCMB) are thoroughly investigated using two theoretical approaches followed by experimental validation. The contact dynamics between the clutch and the rotor supported...... contact to the clutch and (b) an accurate prediction of the threshold of stability based on the nonlinear rotor-bearing model, i.e. maximum angular velocity before the rotor misses its contact to the clutch as a function of rotor, bearing and clutch design parameters....

  12. Dynamics Modeling of a Continuum Robotic Arm with a Contact Point in Planar Grasp

    Directory of Open Access Journals (Sweden)

    Mohammad Dehghani

    2014-01-01

    Full Text Available Grasping objects by continuum arms or fingers is a new field of interest in robotics. Continuum manipulators have the advantages of high adaptation and compatibility with respect to the object shape. However, due to their extremely nonlinear behavior and infinite degrees of freedom, continuum arms cannot be easily modeled. In fact, dynamics modeling of continuum robotic manipulators is state-of-the-art. Using the exact modeling approaches, such as theory of Cosserat rod, the resulting models are either too much time-taking for computation or numerically unstable. Thus, such models are not suitable for applications such as real-time control. However, based on realistic assumptions and using some approximations, these systems can be modeled with reasonable computational efforts. In this paper, a planar continuum robotic arm is modeled, considering its backbone as two circular arcs. In order to simulate finger grasping, the continuum arm experiences a point-force along its body. Finally, the results are validated using obtained experimental data.

  13. Studies of dynamic contact of ceramics and alloys for advanced heat engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gaydos, P.A.; Dufrane, K.F. [Battelle, Columbus, OH (United States)

    1993-06-01

    Advanced materials and coatings for low heat rejection engines have been investigated for almost a decade. Much of the work has concentrated on the critical wear interface between the piston ring and cylinder liner. Simplified bench tests have identified families of coatings with high temperature wear performance that could meet or exceed that of conventional engine materials at today`s operating temperatures. More recently, engine manufacturers have begun to optimize material combinations and manufacturing processes so that the materials not only have promising friction and wear performance but are practical replacements for current materials from a materials and manufacturing cost standpoint. In this study, the advanced materials supplied by major diesel engine manufacturers were evaluated in an experimental apparatus that simulates many of the in-cylinder conditions of a low heat rejection diesel engine. Results include ring wear factors and average dynamic friction coefficients measured at intervals during the test. These results are compared with other advanced materials tested in the past as well as the baseline wear of current engines. Both fabricated specimens and sections of actual ring and cylinder liners were used in the testing. Observations and relative friction and wear performance of the individual materials are provided.

  14. Discretization and numerical realization of contact problems for elastic-perfectly plastic bodies. PART II - numerical realization, limit analysis

    Czech Academy of Sciences Publication Activity Database

    Čermák, M.; Haslinger, Jaroslav; Kozubek, T.; Sysala, Stanislav

    2015-01-01

    Roč. 95, č. 12 (2015), s. 1348-1371 ISSN 0044-2267 R&D Projects: GA ČR GA13-18652S Institutional support: RVO:68145535 Keywords : frictionless contact * alternating direction method of multipliers * limit load analysis * elastic-perfect analplasticity Subject RIV: BA - General Mathematics Impact factor: 1.293, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/zamm.201400069/epdf

  15. Assessment of methods for computing the closest point projection, penetration, and gap functions in contact searching problems

    Czech Academy of Sciences Publication Activity Database

    Kopačka, Ján; Gabriel, Dušan; Plešek, Jiří; Ulbin, M.

    2016-01-01

    Roč. 105, č. 11 (2016), s. 803-833 ISSN 0029-5981 R&D Projects: GA ČR(CZ) GAP101/12/2315; GA MŠk(CZ) ME10114 Institutional support: RVO:61388998 Keywords : closest point projection * local contact search * quadratic elements * Newtons methods * geometric iteration methods * simplex method Subject RIV: JC - Computer Hardware ; Software Impact factor: 2.162, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/nme.4994/abstract

  16. Towards a more accurate microscopic description of the moving contact line problem - incorporating nonlocal effects through a statistical mechanics framework

    Science.gov (United States)

    Nold, Andreas; Goddard, Ben; Sibley, David; Kalliadasis, Serafim

    2014-03-01

    Multiscale effects play a predominant role in wetting phenomena such as the moving contact line. An accurate description is of paramount interest for a wide range of industrial applications, yet it is a matter of ongoing research, due to the difficulty of incorporating different physical effects in one model. Important small-scale phenomena are corrections to the attractive fluid-fluid and wall-fluid forces in inhomogeneous density distributions, which often previously have been accounted for by the disjoining pressure in an ad-hoc manner. We systematically derive a novel model for the description of a single-component liquid-vapor multiphase system which inherently incorporates these nonlocal effects. This derivation, which is inspired by statistical mechanics in the framework of colloidal density functional theory, is critically discussed with respect to its assumptions and restrictions. The model is then employed numerically to study a moving contact line of a liquid fluid displacing its vapor phase. We show how nonlocal physical effects are inherently incorporated by the model and describe how classical macroscopic results for the contact line motion are retrieved. We acknowledge financial support from ERC Advanced Grant No. 247031 and Imperial College through a DTG International Studentship.

  17. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Cleveland. "This is far from the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager ... the lenses. Never share contact lenses with another person. Get follow up exams with your eye care ...

  18. Coupled problems in transient fluid and structural dynamics in nuclear engineering

    International Nuclear Information System (INIS)

    Krieg, R.

    1978-01-01

    Some important problems in coupled fluid-structural dynamics which occur in safety investigations of liquid metal fast breeder reactors (LMFBR). light water reactors and nuclear reprocessing plants are discussed and a classification of solution methods is introduced. A distinction is made between the step by step solution procedure, where available computer codes in fluid and structural dynamics are coupled, and advanced simultaneous solution methods, where the coupling is carried out at the level of the fundamental equations. Results presented include the transient deformation of a two-row pin bundle surrounded by an infinite fluid field, vapour explosions in a fluid container and containment distortions due to bubble collapse in the pressure suppression system of a boiling water reactor. A recently developed simultaneous solution method is presented in detail. Here the fluid dynamics (inviscid, incompressible fluid) is described by a singularity method which reduces the three-dimensional fluid dynamics problems to a two-dimensional formulation. In this way the three-dynamics fluid dynamics as well as the structural (shell) dynamics can be described essentially by common unknowns at the fluid-structural interface. The resulting equations for the coupled fluid-structural dynamics are analogous to to the equations of motion of the structural dynamics alone. (author)

  19. Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R. K.

    of the problem, i.e. the number of state variables of the dynamical systems. In contrast, the application of the simulation techniques is not limited to Markov problems, nor is it dependent on the mean rate of impulses. Moreover their use is straightforward for a large class of point processes, at least......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically......-numerical techniques suitable for Markov response problems such as moments equation, Petrov-Galerkin and cell-to-cell mapping techniques are briefly discussed. Usefulness of these techniques is limited by the fact that effectiveness of each of them depends on the mean rate of impulses. Another limitation is the size...

  20. Contact Loss beneath Track Slab Caused by Deteriorated Cement Emulsified Asphalt Mortar: Dynamic Characteristics of Vehicle-Slab Track System and Prototype Experiment

    OpenAIRE

    Liu, Dan; Liu, Yu-feng; Ren, Juan-juan; Yang, Rong-shan; Liu, Xue-yi

    2016-01-01

    The contact loss beneath track slab caused by deteriorated cement emulsified asphalt mortar (CA mortar) has been one of the main diseases occurring in the CRTS- (China Railway Track System-) I Slab Track of high-speed railway in China. Based on the slab track design theory and the vehicle-track coupling vibration theory, a vehicle-track vertical coupling dynamic FEM model was established to analyze the influence of the contact loss length on the dynamic characteristics of vehicle and track su...

  1. Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming

    DEFF Research Database (Denmark)

    Rauff Lind Christensen, Tue; Klose, Andreas; Andersen, Kim Allan

    The Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem (SSFCMCTP) is a problem with versatile applications. This problem is a generalization of the Single-Sink, Fixed-Charge Transportation Problem (SSFCTP), which has a fixed-charge, linear cost structure. However, in at least two...... are neglected in the SSFCTP. The SSFCMCTP overcome this problem by incorporating a staircase cost structure in the cost function instead of the usual one used in SSFCTP. We present a dynamic programming algorithm for the resulting problem. To enhance the performance of the generic algorithm a number...... of enhancements is employed. The problem instance is reduced by variable pegging using a Lagrangean relaxation from which also a flow augmentation scheme is derived. Additionally a reduction in the search space is employed along with a variable transformation which generalizes a transformation known from...

  2. Two-dimensional motion analysis of dynamic knee valgus identifies female high school athletes at risk of non-contact anterior cruciate ligament injury.

    Science.gov (United States)

    Numata, Hitoaki; Nakase, Junsuke; Kitaoka, Katsuhiko; Shima, Yosuke; Oshima, Takeshi; Takata, Yasushi; Shimozaki, Kengo; Tsuchiya, Hiroyuki

    2018-02-01

    Female athletes are at greater risk of non-contact ACL injury. Three-dimensional kinematic analyses have shown that at-risk female athletes have a greater knee valgus angle during drop jumping. The purpose of this study was to evaluate the relationship between knee valgus angle and non-contact ACL injury in young female athletes using coronal-plane two-dimensional (2D) kinematic analyses of single-leg landing. Two hundred ninety-one female high school athletes newly enrolled in basketball and handball clubs were assessed. Dynamic knee valgus was analysed during single-leg drop jumps using 2D coronal images at hallux-ground contact and at maximal knee valgus. All subjects were followed up for 3 years for ACL injury. Twenty-eight (9.6%) of 291 athletes had ACL rupture, including 27 non-contact ACL injuries. The injured group of 27 knees with non-contact ACL injury was compared with a control group of 27 randomly selected uninjured knees. The relationship between initial 2D movement analysis results and subsequent ACL injury was investigated. Dynamic knee valgus was significantly greater in the injured group compared to the control group at hallux-ground contact (2.1 ± 2.4 vs. 0.4 ± 2.2 cm, P = 0.006) and at maximal knee valgus (8.3 ± 4.3 vs. 5.1 ± 4.1 cm, P = 0.007). The results of this study confirm that dynamic knee valgus is a potential risk factor for non-contact ACL injury in female high school athletes. Fully understanding the risk factors that increase dynamic knee valgus will help in designing more appropriate training and interventional strategies to prevent injuries in at-risk athletes. Prognostic studies, Level II.

  3. Discretization and numerical realization of contact problems for elastic-perfectly plastic bodies. PART I – discretization, limit analysis

    Czech Academy of Sciences Publication Activity Database

    Sysala, Stanislav; Haslinger, Jaroslav; Hlaváček, Ivan; Čermák, Martin

    2015-01-01

    Roč. 95, č. 4 (2015), s. 333-353 ISSN 0044-2267 R&D Projects: GA MŠk ED1.1.00/02.0070; GA ČR GA13-18652S Grant - others:GA ČR(CZ) P201/12/0671 Institutional support: RVO:68145535 ; RVO:67985840 Keywords : frictionless contact * elasto-perfect plasticity * limit analysis Subject RIV: BA - General Mathematics Impact factor: 1.293, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/zamm.201300112/pdf

  4. Measurement of contact-angle hysteresis for droplets on nanopillared surface and in the Cassie and Wenzel states: a molecular dynamics simulation study.

    Science.gov (United States)

    Koishi, Takahiro; Yasuoka, Kenji; Fujikawa, Shigenori; Zeng, Xiao Cheng

    2011-09-27

    We perform large-scale molecular dynamics simulations to measure the contact-angle hysteresis for a nanodroplet of water placed on a nanopillared surface. The water droplet can be in either the Cassie state (droplet being on top of the nanopillared surface) or the Wenzel state (droplet being in contact with the bottom of nanopillar grooves). To measure the contact-angle hysteresis in a quantitative fashion, the molecular dynamics simulation is designed such that the number of water molecules in the droplets can be systematically varied, but the number of base nanopillars that are in direct contact with the droplets is fixed. We find that the contact-angle hysteresis for the droplet in the Cassie state is weaker than that in the Wenzel state. This conclusion is consistent with the experimental observation. We also test a different definition of the contact-angle hysteresis, which can be extended to estimate hysteresis between the Cassie and Wenzel state. The idea is motivated from the appearance of the hysteresis loop typically seen in computer simulation of the first-order phase transition, which stems from the metastability of a system in different thermodynamic states. Since the initial shape of the droplet can be controlled arbitrarily in the computer simulation, the number of base nanopillars that are in contact with the droplet can be controlled as well. We show that the measured contact-angle hysteresis according to the second definition is indeed very sensitive to the initial shape of the droplet. Nevertheless, the contact-angle hystereses measured based on the conventional and new definition seem converging in the large droplet limit. © 2011 American Chemical Society

  5. Proceedings of the Workshop on open problems in heavy ion reaction dynamics at VIVITRON energies

    International Nuclear Information System (INIS)

    Beck, F.A.

    1993-01-01

    Some problems of heavy ion reaction dynamics at the VIVITRON tandem accelerator and the experimental facilities are discussed at the meeting. Topics include light dinuclear systems, collision dynamics at low energies, fission evaporation and fusion of heavy nuclei and others. Most documents consist of transparencies presented at the workshop, texts of papers are missing. All items are indexed and abstracted for the INIS database. (K.A.)

  6. Piping benchmark problems: dynamic analysis independent support motion response spectrum method

    International Nuclear Information System (INIS)

    Bezler, P.; Subudhi, M.; Hartzman, M.

    1985-08-01

    Four benchmark problems and solutions were developed for verifying the adequacy of computer programs used for the dynamic analysis and design of elastic piping systems by the independent support motion, response spectrum method. The dynamic loading is represented by distinct sets of support excitation spectra assumed to be induced by non-uniform excitation in three spatial directions. Complete input descriptions for each problem are provided and the solutions include predicted natural frequencies, participation factors, nodal displacements and element forces for independent support excitation and also for uniform envelope spectrum excitation. Solutions to the associated anchor point pseudo-static displacements are not included

  7. Pareto Optimal Solutions for Stochastic Dynamic Programming Problems via Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    R. T. N. Cardoso

    2013-01-01

    Full Text Available A heuristic algorithm is proposed for a class of stochastic discrete-time continuous-variable dynamic programming problems submitted to non-Gaussian disturbances. Instead of using the expected values of the objective function, the randomness nature of the decision variables is kept along the process, while Pareto fronts weighted by all quantiles of the objective function are determined. Thus, decision makers are able to choose any quantile they wish. This new idea is carried out by using Monte Carlo simulations embedded in an approximate algorithm proposed to deterministic dynamic programming problems. The new method is tested in instances of the classical inventory control problem. The results obtained attest for the efficiency and efficacy of the algorithm in solving these important stochastic optimization problems.

  8. THE DYNAMIC INTERACTION OF THE MOVING CONTACTING SURFACES AT THE EXAMPLE OF THE ELECTRIC ROLLING STOCK CURRENT COLLECTOR

    Directory of Open Access Journals (Sweden)

    M. O. Babiak

    2009-07-01

    Full Text Available The process of mutual moving and contacting of surfaces of current collecting pantograph elements and contact network is considered taking into account the particularities of inf1uence of speed and acceleration parameters, determination of which will allow to forecast mathematically the wear-out degree of contacting elements.

  9. Analysis of forward and inverse problems in chemical dynamics and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rabitz, H. [Princeton Univ., NJ (United States)

    1993-12-01

    The overall scope of this research concerns the development and application of forward and inverse analysis tools for problems in chemical dynamics and chemical kinetics. The chemical dynamics work is specifically associated with relating features in potential surfaces and resultant dynamical behavior. The analogous inverse research aims to provide stable algorithms for extracting potential surfaces from laboratory data. In the case of chemical kinetics, the focus is on the development of systematic means to reduce the complexity of chemical kinetic models. Recent progress in these directions is summarized below.

  10. A dynamic programming algorithm for the space allocation and aisle positioning problem

    DEFF Research Database (Denmark)

    Bodnar, Peter; Lysgaard, Jens

    2014-01-01

    The space allocation and aisle positioning problem (SAAPP) in a material handling system with gravity flow racks is the problem of minimizing the total number of replenishments over a period subject to practical constraints related to the need for aisles granting safe and easy access to storage...... locations. In this paper, we develop an exact dynamic programming algorithm for the SAAPP. The computational study shows that our exact algorithm can be used to find optimal solutions for numerous SAAPP instances of moderate size....

  11. Contact structure, mobility, environmental impact and behaviour: the importance of social forces to infectious disease dynamics and disease ecology.

    Science.gov (United States)

    Arthur, Ronan F; Gurley, Emily S; Salje, Henrik; Bloomfield, Laura S P; Jones, James H

    2017-05-05

    Human factors, including contact structure, movement, impact on the environment and patterns of behaviour, can have significant influence on the emergence of novel infectious diseases and the transmission and amplification of established ones. As anthropogenic climate change alters natural systems and global economic forces drive land-use and land-cover change, it becomes increasingly important to understand both the ecological and social factors that impact infectious disease outcomes for human populations. While the field of disease ecology explicitly studies the ecological aspects of infectious disease transmission, the effects of the social context on zoonotic pathogen spillover and subsequent human-to-human transmission are comparatively neglected in the literature. The social sciences encompass a variety of disciplines and frameworks for understanding infectious diseases; however, here we focus on four primary areas of social systems that quantitatively and qualitatively contribute to infectious diseases as social-ecological systems. These areas are social mixing and structure, space and mobility, geography and environmental impact, and behaviour and behaviour change. Incorporation of these social factors requires empirical studies for parametrization, phenomena characterization and integrated theoretical modelling of social-ecological interactions. The social-ecological system that dictates infectious disease dynamics is a complex system rich in interacting variables with dynamically significant heterogeneous properties. Future discussions about infectious disease spillover and transmission in human populations need to address the social context that affects particular disease systems by identifying and measuring qualitatively important drivers.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Author(s).

  12. Common mental disorder severity and its association with treatment contact and treatment intensity for mental health problems

    NARCIS (Netherlands)

    ten Have, M.; Nuyen, J.; Beekman, A.T.F.; de Graaf, R.

    2013-01-01

    Background Detailed population-based survey information on the relationship between the severity of common mental disorders (CMDs) and treatment for mental health problems is heavily based on North American research. The aim of this study was to replicate and expand existing knowledge by studying

  13. On the diminishing of spurious oscillations in explicit finite element analysis of linear and non-linear wave propagation and contact problems

    Czech Academy of Sciences Publication Activity Database

    Kolman, Radek; Cho, S.; Park, K.C.

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] R&D Projects: GA ČR(CZ) GAP101/11/0288; GA ČR(CZ) GAP101/12/2315 Institutional support: RVO:61388998 Keywords : elastic and non-linear wave propagation * contact problem * finite element method * explicit time integration * dispersion * spurious oscillations Subject RIV: JR - Other Machinery http://www.ndt.net/events/ECNDT2014/app/content/Paper/17_Kolman_Rev1.pdf

  14. Using Dynamic Geometry and Computer Algebra Systems in Problem Based Courses for Future Engineers

    Science.gov (United States)

    Tomiczková, Svetlana; Lávicka, Miroslav

    2015-01-01

    It is a modern trend today when formulating the curriculum of a geometric course at the technical universities to start from a real-life problem originated in technical praxis and subsequently to define which geometric theories and which skills are necessary for its solving. Nowadays, interactive and dynamic geometry software plays a more and more…

  15. Family Income Dynamics, Early Childhood Education and Care, and Early Child Behavior Problems in Norway

    Science.gov (United States)

    Zachrisson, Henrik D.; Dearing, Eric

    2015-01-01

    The sociopolitical context of Norway includes low poverty rates and universal access to subsidized and regulated Early Childhood Education and Care (ECEC). In this context, the association between family income dynamics and changes in early child behavior problems was investigated, as well as whether high-quality ECEC buffers children from the…

  16. Students’ Views about the Problem Based Collaborative Learning Environment Supported By Dynamic Web Technologies

    Directory of Open Access Journals (Sweden)

    Erhan ÜNAL

    2017-04-01

    Full Text Available The purpose of this study is to design a problem based collaborative learning environment supported by dynamic web technologies and examine students’ views about this learning environment. The study was designed as a qualitative research. 36 students who took Object Oriented Programming I-II course from a public university at the department of computer programming participated in the study. During the research process, the Object Oriented Programming I-II course was designed with incorporating different dynamic web technologies (Edmodo, Google Services, and Mind42 and Nelson (1999’s collaborative problem solving method. At the end of the course, there were focus group interviews in regards to the students’ views on a learning environment supported by dynamic web technologies and collaborative problem solving method. At the end of the focus group interviews, 4 themes were obtained from the students’ views, including positive aspects of the learning environment, difficulties faced in the learning environment, advantages of the learning environment, and skills gained as a result of the project. The results suggest that problem based collaborative learning methods and dynamic web technologies can be used in learning environments in community colleges.

  17. Students' Views about the Problem Based Collaborative Learning Environment Supported by Dynamic Web Technologies

    Science.gov (United States)

    Ünal, Erhan; Çakir, Hasan

    2017-01-01

    The purpose of this study was to design a problem based collaborative learning environment supported by dynamic web technologies and to examine students' views about this learning environment. The study was designed as a qualitative research. Some 36 students who took an Object Oriented Programming I-II course at the department of computer…

  18. Runtime analysis of ant colony optimization on dynamic shortest path problems

    DEFF Research Database (Denmark)

    Lissovoi, Andrei; Witt, Carsten

    2013-01-01

    A simple ACO algorithm called λ-MMAS for dynamic variants of the single-destination shortest paths problem is studied by rigorous runtime analyses. Building upon previous results for the special case of 1-MMAS, it is studied to what extent an enlarged colony using $\\lambda$ ants per vertex helps ...

  19. Runtime analysis of ant colony optimization on dynamic shortest path problems

    DEFF Research Database (Denmark)

    Lissovoi, Andrei; Witt, Carsten

    2015-01-01

    A simple ACO algorithm called lambda-MMAS for dynamic variants of the single-destination shortest paths problem is studied by rigorous runtime analyses. Building upon previous results for the special case of 1-MMAS, it is studied to what extent an enlarged colony using lambda ants per vertex help...

  20. Dynamic Programming Strategies on the Decision Tree Hidden behind the Optimizing Problems

    OpenAIRE

    Zoltan KATAI

    2007-01-01

    The aim of the paper is to present the characteristics of certain dynamic programming strategies on the decision tree hidden behind the optimizing problems and thus to offer such a clear tool for their study and classification which can help in the comprehension of the essence of this programming technique.

  1. Analytical Solution of Nonlinear Problems in Classical Dynamics by Means of Lagrange-Ham

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Mahdavi, S. H; Rabbani, A.

    2011-01-01

    In this work, a powerful analytical method, called Homotopy Analysis Methods (HAM) is coupled with Lagrange method to obtain the exact solution for nonlinear problems in classic dynamics. In this work, the governing equations are obtained by using Lagrange method, and then the nonlinear governing...

  2. The Effects of Dynamic Strategic Math on English Language Learners' Word Problem Solving

    Science.gov (United States)

    Orosco, Michael J.; Swanson, H. Lee; O'Connor, Rollanda; Lussier, Cathy

    2013-01-01

    English language learners (ELLs) struggle with solving word problems for a number of reasons beyond math procedures or calculation challenges. As a result, ELLs may not only need math support but also reading and linguistic support. The purpose of this study was to assess the effectiveness of a math comprehension strategy called Dynamic Strategic…

  3. Problem Based Learning as a Shared Musical Journey--Group Dynamics, Communication and Creativity

    Science.gov (United States)

    Lindvang, Charlotte; Beck, Bolette

    2015-01-01

    The focus of this paper is how we can facilitate problem based learning (PBL) more creatively. We take a closer look upon the connection between creative processes and social communication in the PBL group including how difficulties in the social interplay may hinder creativity. The paper draws on group dynamic theory, and points out the…

  4. Investigation into the influence of dynamic forces on the tribological behavior of bodies in rolling/sliding contact with particular regard to surface corrugations

    Science.gov (United States)

    Krause, H.; Senuma, T.

    1980-08-01

    The effect of a dynamic force on the tribological behavior of bodies in rolling-sliding contact without lubrication was analyzed experimentally and theoretically. The coefficient of traction and wear decrease with the increase in the amplitude of the dynamic normal force; the ripples in a carbon steel in the presence of slip result from the formation of oxide stripes, and their propagation depends on plastic deformation and periodic wear. It is concluded that the accuracy of test rig results requires a consideration of the effect of the dynamic system on the tribological behavior.

  5. Minimal dominating set problem studied by simulated annealing and cavity method: analytics and population dynamics

    Science.gov (United States)

    Habibulla, Yusupjan

    2017-10-01

    The minimal dominating set (MDS) problem is a prototypical hard combinatorial optimization problem. We recently studied this problem using the cavity method. Although we obtained a solution for a given graph that gives a very good estimation of the minimal dominating size, we do not know whether there is a ground state solution or how many solutions exist in the ground state. We have therefore continued to develop a one-step replica symmetry breaking theory to investigate the ground state energy of the MDS problem. First, we find that the solution space for the MDS problem exhibits both condensation transition and cluster transition on regular random graphs, and prove this using a simulated annealing dynamical process. Second, we develop a zero-temperature survey propagation algorithm on Erdős–Rényi random graphs to estimate the ground state energy, and obtain a survey propagation decimation algorithm that achieves results as good as the belief propagation decimation algorithm.

  6. A novel comprehensive learning artificial bee colony optimizer for dynamic optimization biological problems

    Directory of Open Access Journals (Sweden)

    Weixing Su

    2017-03-01

    Full Text Available There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell’s pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.

  7. Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming

    DEFF Research Database (Denmark)

    Christensen, Tue; Andersen, Kim Allan; Klose, Andreas

    2013-01-01

    This paper considers a minimum-cost network flow problem in a bipartite graph with a single sink. The transportation costs exhibit a staircase cost structure because such types of transportation cost functions are often found in practice. We present a dynamic programming algorithm for solving...... this so-called single-sink, fixed-charge, multiple-choice transportation problem exactly. The method exploits heuristics and lower bounds to peg binary variables, improve bounds on flow variables, and reduce the state-space variable. In this way, the dynamic programming method is able to solve large...... instances with up to 10,000 nodes and 10 different transportation modes in a few seconds, much less time than required by a widely used mixed-integer programming solver and other methods proposed in the literature for this problem....

  8. Introduction to Hamiltonian dynamical systems and the N-body problem

    CERN Document Server

    Meyer, Kenneth R

    2017-01-01

    This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary exa...

  9. Dynamic Network Design Problem under Demand Uncertainty: An Adjustable Robust Optimization Approach

    Directory of Open Access Journals (Sweden)

    Hua Sun

    2014-01-01

    Full Text Available This paper develops an adjustable robust optimization approach for a network design problem explicitly incorporating traffic dynamics and demand uncertainty. In particular, a cell transmission model based network design problem of linear programming type is considered to describe dynamic traffic flows, and a polyhedral uncertainty set is used to characterize the demand uncertainty. The major contribution of this paper is to formulate such an adjustable robust network design problem as a tractable linear programming model and justify the model which is less conservative by comparing its solution performance with the robust solution from the usual robust model. The numerical results using one network from the literature demonstrate the modeling advantage of the adjustable robust optimization and provided strategic managerial insights for enacting capacity expansion policies under demand uncertainty.

  10. A boundary integral method for a dynamic, transient mode I crack problem with viscoelastic cohesive zone

    KAUST Repository

    Leise, Tanya L.

    2009-08-19

    We consider the problem of the dynamic, transient propagation of a semi-infinite, mode I crack in an infinite elastic body with a nonlinear, viscoelastic cohesize zone. Our problem formulation includes boundary conditions that preclude crack face interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation is preceeded by significant crazing in a thin region surrounding the crack tip. We present a combined analytical/numerical solution method that involves reducing the problem to a Dirichlet-to-Neumann map along the crack face plane, resulting in a differo-integral equation relating the displacement and stress along the crack faces and within the cohesive zone. © 2009 Springer Science+Business Media B.V.

  11. Reconsidering the boundary conditions for a dynamic, transient mode I crack problem

    KAUST Repository

    Leise, Tanya

    2008-11-01

    A careful examination of a dynamic mode I crack problem leads to the conclusion that the commonly used boundary conditions do not always hold in the case of an applied crack face loading, so that a modification is required to satisfy the equations. In particular, a transient compressive stress wave travels along the crack faces, moving outward from the loading region on the crack face. This does not occur in the quasistatic or steady state problems, and is a special feature of the transient dynamic problem that is important during the time interval immediately following the application of crack face loading. We demonstrate why the usual boundary conditions lead to a prediction of crack face interpenetration, and then examine how to modify the boundary condition for a semi-infinite crack with a cohesive zone. Numerical simulations illustrate the resulting approach.

  12. Evaluation of Internal Friction versus Plastic Deformations Effects in Impact Dynamics Problems of Robotic Elements

    Directory of Open Access Journals (Sweden)

    Stelian Alaci

    2014-06-01

    Full Text Available The dynamical behavior study of robotic systems is obtained using multibody dynamics method. The joints met in robots are modeled in different manners. In a robotic joint the energy is lost via hysteretic work and plastic deformation work. The paper presents a comparative study for the results obtained by integration of the equations defining two limit models which describe the impact between two robot parts, modeled by the centric collision between two spheres with loss of energy. The motion equations characteristic for the two models are integrated and for a tangible situation, are presented comparatively, for different values of the coefficient of restitution, the time dependencies of impacting force between the two bodies as well as the hysteresis loops. Finally, an evaluation of the lost work during impact, for the whole range of coefficients of restitution, is completed, together with characteristic parameters of collision: approaching period, complete contact time, maximum approaching and plastic imprint.

  13. Dynamics of solid dispersions in oil during the lubrication of point of contacts. Part 2: Molybdenum disulfide

    Science.gov (United States)

    Cusano, C.; Sliney, H. E.

    1981-01-01

    A Hertzian contact consisting of a steel ball in contact with a glass disk is lubricated with MoS2 dispersions and observed by optical microscopy at various slide/roll conditions. In general the behavior of MoS2 and graphite are similar. That is, the solids tend to enter the contact and form a film on the contacting surfaces whenever a rolling component of motion is used, but solid particles seldom enter the contact during pure sliding. The MoS2 has more pronounced plastic flow behavior than graphite. However, the polished steel ball is more readily scratched by MoS2 than by graphite. Under the conditions of these studies, lower friction and wear are observed with pure oil rather than with the dispersions. However under other conditions (such as different contact geometry or rougher surfaces) the solid lubricant dispersions might be beneficial.

  14. Metaheuristics for the dynamic stochastic dial-a-ride problem with expected return transports.

    Science.gov (United States)

    Schilde, M; Doerner, K F; Hartl, R F

    2011-12-01

    The problem of transporting patients or elderly people has been widely studied in literature and is usually modeled as a dial-a-ride problem (DARP). In this paper we analyze the corresponding problem arising in the daily operation of the Austrian Red Cross. This nongovernmental organization is the largest organization performing patient transportation in Austria. The aim is to design vehicle routes to serve partially dynamic transportation requests using a fixed vehicle fleet. Each request requires transportation from a patient's home location to a hospital (outbound request) or back home from the hospital (inbound request). Some of these requests are known in advance. Some requests are dynamic in the sense that they appear during the day without any prior information. Finally, some inbound requests are stochastic. More precisely, with a certain probability each outbound request causes a corresponding inbound request on the same day. Some stochastic information about these return transports is available from historical data. The purpose of this study is to investigate, whether using this information in designing the routes has a significant positive effect on the solution quality. The problem is modeled as a dynamic stochastic dial-a-ride problem with expected return transports. We propose four different modifications of metaheuristic solution approaches for this problem. In detail, we test dynamic versions of variable neighborhood search (VNS) and stochastic VNS (S-VNS) as well as modified versions of the multiple plan approach (MPA) and the multiple scenario approach (MSA). Tests are performed using 12 sets of test instances based on a real road network. Various demand scenarios are generated based on the available real data. Results show that using the stochastic information on return transports leads to average improvements of around 15%. Moreover, improvements of up to 41% can be achieved for some test instances.

  15. To Investigate the Absorption, Dynamic Contact Angle and Printability Effects of Synthetic Zeolite Pigments in an Inkjet Receptive Coating

    Science.gov (United States)

    Jalindre, Swaraj Sunil

    Ink absorption performance in inkjet receptive coatings containing synthetic zeolite pigments was studied. Coating pigment pore and particle size distribution are the key parameters that influence in modifying media surface properties, thus affecting the rate of ink penetration and drying time (Scholkopf, et al. 2004). The primary objective of this study was: (1) to investigate the synthetic zeolite pigment effects on inkjet ink absorption, dynamic contact angle and printability, and (2) to evaluate these novel synthetic zeolite pigments in replacing the fumed silica pigments in conventional inkjet receptive coatings. In this research study, single pigment coating formulations (in equal P:B ratio) were prepared using microporous synthetic zeolite pigments (5A, Organophilic and 13X) and polyvinyl alcohol (PVOH) binder. The laboratory-coated samples were characterized for absorption, air permeance, roughness, drying time, wettability and print fidelity. Based on the rheological data, it was found that the synthetic zeolite formulated coatings depicted a Newtonian flow behavior at low shear; while the industry accepted fumed silica based coatings displayed a characteristically high pseudoplastic flow behavior. Our coated samples generated using microporous synthetic zeolite pigments produced low absorption, reduced wettability and accelerated ink drying characteristics. These characteristics were caused due to the synthetic zeolite pigments, which resulted in relatively closed surface structure coated samples. The research suggested that no single selected synthetic zeolite coating performed better than the conventional fumed silica based coatings. Experimental data also showed that there was no apparent relationship between synthetic zeolite pigment pore sizes and inkjet ink absorption. For future research, above coated samples should be evaluated for pore size distribution using Mercury Porosimeter, which quantifies surface porosity of coated samples. This presented

  16. A new class of ensemble conserving algorithms for approximate quantum dynamics: Theoretical formulation and model problems

    International Nuclear Information System (INIS)

    Smith, Kyle K. G.; Poulsen, Jens Aage; Nyman, Gunnar; Rossky, Peter J.

    2015-01-01

    We develop two classes of quasi-classical dynamics that are shown to conserve the initial quantum ensemble when used in combination with the Feynman-Kleinert approximation of the density operator. These dynamics are used to improve the Feynman-Kleinert implementation of the classical Wigner approximation for the evaluation of quantum time correlation functions known as Feynman-Kleinert linearized path-integral. As shown, both classes of dynamics are able to recover the exact classical and high temperature limits of the quantum time correlation function, while a subset is able to recover the exact harmonic limit. A comparison of the approximate quantum time correlation functions obtained from both classes of dynamics is made with the exact results for the challenging model problems of the quartic and double-well potentials. It is found that these dynamics provide a great improvement over the classical Wigner approximation, in which purely classical dynamics are used. In a special case, our first method becomes identical to centroid molecular dynamics

  17. Cosmologies with variable parameters and dynamical cosmon: implications on the cosmic coincidence problem

    International Nuclear Information System (INIS)

    Grande, Javier; Sola, Joan; Stefancic, Hrvoje

    2007-01-01

    Dynamical dark energy (DE) has been proposed to explain various aspects of the cosmological constant (CC) problem(s). For example, it is very difficult to accept that a strictly constant Λ-term constitutes the ultimate explanation for the DE in our Universe. It is also hard to acquiesce in the idea that we accidentally happen to live in an epoch where the CC contributes an energy density value ρ Λ = Λ/8πG right in the ballpark of the rapidly diluting matter density ρ m ∼ 1/a 3 . It should perhaps be more plausible to conceive that the vacuum energy, ρ Λ , is actually a dynamical quantity as the Universe itself. More generally, we could even entertain the possibility that the total DE is in fact a mixture of ρ Λ and other dynamical components (e.g. fields, higher order terms in the effective action etc) which can be represented collectively by an effective entity X (dubbed the 'cosmon'). The 'cosmon', therefore, acts as a dynamical DE component different from the vacuum energy. While it can actually behave phantom-like by itself, the overall DE fluid may effectively appear as standard quintessence, or even mimic at present an almost exact CC behaviour. Thanks to the versatility of such cosmic fluid we can show that a composite DE system of this sort ('ΛXCDM') may have a key to resolving the mysterious coincidence problem

  18. Efficient generalized Golub-Kahan based methods for dynamic inverse problems

    Science.gov (United States)

    Chung, Julianne; Saibaba, Arvind K.; Brown, Matthew; Westman, Erik

    2018-02-01

    We consider efficient methods for computing solutions to and estimating uncertainties in dynamic inverse problems, where the parameters of interest may change during the measurement procedure. Compared to static inverse problems, incorporating prior information in both space and time in a Bayesian framework can become computationally intensive, in part, due to the large number of unknown parameters. In these problems, explicit computation of the square root and/or inverse of the prior covariance matrix is not possible, so we consider efficient, iterative, matrix-free methods based on the generalized Golub-Kahan bidiagonalization that allow automatic regularization parameter and variance estimation. We demonstrate that these methods for dynamic inversion can be more flexible than standard methods and develop efficient implementations that can exploit structure in the prior, as well as possible structure in the forward model. Numerical examples from photoacoustic tomography, space-time deblurring, and passive seismic tomography demonstrate the range of applicability and effectiveness of the described approaches. Specifically, in passive seismic tomography, we demonstrate our approach on both synthetic and real data. To demonstrate the scalability of our algorithm, we solve a dynamic inverse problem with approximately 43 000 measurements and 7.8 million unknowns in under 40 s on a standard desktop.

  19. Molecular dynamics simulation of subnanometric tool-workpiece contact on a force sensor-integrated fast tool servo for ultra-precision microcutting

    International Nuclear Information System (INIS)

    Cai, Yindi; Chen, Yuan-Liu; Shimizu, Yuki; Ito, So; Gao, Wei; Zhang, Liangchi

    2016-01-01

    Highlights: • Subnanometric contact between a diamond tool and a copper workpiece surface is investigated by MD simulation. • A multi-relaxation time technique is proposed to eliminate the influence of the atom vibrations. • The accuracy of the elastic-plastic transition contact depth estimation is improved by observing the residual defects. • The simulation results are beneficial for optimization of the next-generation microcutting instruments. - Abstract: This paper investigates the contact characteristics between a copper workpiece and a diamond tool in a force sensor-integrated fast tool servo (FS-FTS) for single point diamond microcutting and in-process measurement of ultra-precision surface forms of the workpiece. Molecular dynamics (MD) simulations are carried out to identify the subnanometric elastic-plastic transition contact depth, at which the plastic deformation in the workpiece is initiated. This critical depth can be used to optimize the FS-FTS as well as the cutting/measurement process. It is clarified that the vibrations of the copper atoms in the MD model have a great influence on the subnanometric MD simulation results. A multi-relaxation time method is then proposed to reduce the influence of the atom vibrations based on the fact that the dominant vibration component has a certain period determined by the size of the MD model. It is also identified that for a subnanometric contact depth, the position of the tool tip for the contact force to be zero during the retracting operation of the tool does not correspond to the final depth of the permanent contact impression on the workpiece surface. The accuracy for identification of the transition contact depth is then improved by observing the residual defects on the workpiece surface after the tool retracting.

  20. Experimental quantification of dynamic forces and shaft motion in two different types of backup bearings under several contact conditions

    DEFF Research Database (Denmark)

    Lahriri, Said; Santos, Ilmar

    2013-01-01

    This paper treats the experimental study on a shaft impacting its stator for different cases. The paper focuses mainly on the measured contact forces and the shaft motion in two different types of backup bearings. As such, the measured contact forces are thoroughly studied. These measured contact...... the first critical speed, the investigation revealed that different paths initiated the onset of backward whip and whirling motion. In order to improve the whirling and the full annular contact behavior, an unconventional pinned backup bearing is realized. The idea is to utilize pin connections that center...... the rotor during impacts and prevent the shaft from entering a full annular contact state. The experimental results show that the shaft escapes the pins and returns to a normal operational condition during an impact event. © 2013 Elsevier Ltd. All rights reserved....

  1. Design and evaluation of a robust dynamic neurocontroller for a multivariable aircraft control problem

    Science.gov (United States)

    Troudet, T.; Garg, S.; Merrill, W.

    1992-01-01

    The design of a dynamic neurocontroller with good robustness properties is presented for a multivariable aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and control input commands and rates. The neurocontroller exhibits good robustness through stability margins in phase and vehicle output gains. By maintaining performance and stability in the presence of sensor failures in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight control design.

  2. Selected problems relating to the dynamics of block-type foundations for machines

    Directory of Open Access Journals (Sweden)

    Marek Zombroń

    2014-07-01

    Full Text Available Atypical but real practical problems relating to the dynamics of block-type foundations for machines are considered using the deterministic approach and assuming that the determined parameters are random variables. A foundation model in the form of an undeformable solid on which another undeformable solid modelling a machine is mounted via viscoelastic constraints was adopted. The dynamic load was defined by a harmonically varying signal and by a series of short duration signals. The vibration of the system was investigated for the case when stratified ground (groundwater occurred within the side backfill was present. Calculation results illustrating the theoretical analyses are presented.

  3. New integrable problems in a rigid body dynamics with cubic integral in velocities

    Science.gov (United States)

    Elmandouh, A. A.

    2018-03-01

    We introduce a new family of the 2D integrable mechanical system possessing an additional integral of the third degree in velocities. This system contains 20 arbitrary parameters. We also clarify that the majority of the previous systems with a cubic integral can be reconstructed from it as a special version for certain values of those parameters. The applications of this system are extended to include the problem of motion of a particle and rigid body about its fixed point. We announce new integrable problems describing the motion of a particle in the plane, pseudosphere, and surfaces of variable curvature. We also present a new integrable problem in a rigid body dynamics and this problem generalizes some of the previous results for Sokolov-Tsiganov, Yehia, Stretensky, and Goriachev.

  4. An algebraic approach to the inverse eigenvalue problem for a quantum system with a dynamical group

    International Nuclear Information System (INIS)

    Wang, S.J.

    1993-04-01

    An algebraic approach to the inverse eigenvalue problem for a quantum system with a dynamical group is formulated for the first time. One dimensional problem is treated explicitly in detail for both the finite dimensional and infinite dimensional Hilbert spaces. For the finite dimensional Hilbert space, the su(2) algebraic representation is used; while for the infinite dimensional Hilbert space, the Heisenberg-Weyl algebraic representation is employed. Fourier expansion technique is generalized to the generator space, which is suitable for analysis of irregular spectra. The polynormial operator basis is also used for complement, which is appropriate for analysis of some simple Hamiltonians. The proposed new approach is applied to solve the classical inverse Sturn-Liouville problem and to study the problems of quantum regular and irregular spectra. (orig.)

  5. A parallel metaheuristic for large mixed-integer dynamic optimization problems, with applications in computational biology

    Science.gov (United States)

    Henriques, David; González, Patricia; Doallo, Ramón; Saez-Rodriguez, Julio; Banga, Julio R.

    2017-01-01

    Background We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs). Methods We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems. Results We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the

  6. A parallel metaheuristic for large mixed-integer dynamic optimization problems, with applications in computational biology.

    Science.gov (United States)

    Penas, David R; Henriques, David; González, Patricia; Doallo, Ramón; Saez-Rodriguez, Julio; Banga, Julio R

    2017-01-01

    We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs). We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems. We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the method is also good (tests

  7. A dynamic multiarmed bandit-gene expression programming hyper-heuristic for combinatorial optimization problems.

    Science.gov (United States)

    Sabar, Nasser R; Ayob, Masri; Kendall, Graham; Qu, Rong

    2015-02-01

    Hyper-heuristics are search methodologies that aim to provide high-quality solutions across a wide variety of problem domains, rather than developing tailor-made methodologies for each problem instance/domain. A traditional hyper-heuristic framework has two levels, namely, the high level strategy (heuristic selection mechanism and the acceptance criterion) and low level heuristics (a set of problem specific heuristics). Due to the different landscape structures of different problem instances, the high level strategy plays an important role in the design of a hyper-heuristic framework. In this paper, we propose a new high level strategy for a hyper-heuristic framework. The proposed high-level strategy utilizes a dynamic multiarmed bandit-extreme value-based reward as an online heuristic selection mechanism to select the appropriate heuristic to be applied at each iteration. In addition, we propose a gene expression programming framework to automatically generate the acceptance criterion for each problem instance, instead of using human-designed criteria. Two well-known, and very different, combinatorial optimization problems, one static (exam timetabling) and one dynamic (dynamic vehicle routing) are used to demonstrate the generality of the proposed framework. Compared with state-of-the-art hyper-heuristics and other bespoke methods, empirical results demonstrate that the proposed framework is able to generalize well across both domains. We obtain competitive, if not better results, when compared to the best known results obtained from other methods that have been presented in the scientific literature. We also compare our approach against the recently released hyper-heuristic competition test suite. We again demonstrate the generality of our approach when we compare against other methods that have utilized the same six benchmark datasets from this test suite.

  8. Iterative method for solving the inverse problem of dynamic diffraction by heterogeneous crystals

    International Nuclear Information System (INIS)

    Podorov, S.G.; Punegov, V.I.

    1997-01-01

    The symmetrical Bragg X-ray diffraction from the depth-heterogeneous crystal layer lying on the thick ideal substrate is considered. The inverse problem of the dynamic diffraction by the deformed crystal structure is solved. The iterative formula for numerical solution of the inverse diffraction problem is obtained. This iterative procedure is applied for calculation of parameters for the heterogeneous structure InGaAsSb/AlGaAsSb/(001)GaSb. The information about the distribution of crystal lattice deformations and the amorphism degree is obtained. The mean static Debye-Waller factor of the AlGaAsSb layer is 0.8 [ru

  9. Evaluating wildlife-cattle contact rates to improve the understanding of dynamics of bovine tuberculosis transmission in Michigan, USA.

    Science.gov (United States)

    Lavelle, Michael J; Kay, Shannon L; Pepin, Kim M; Grear, Daniel A; Campa, Henry; VerCauteren, Kurt C

    2016-12-01

    Direct and indirect contacts among individuals drive transmission of infectious disease. When multiple interacting species are susceptible to the same pathogen, risk assessment must include all potential host species. Bovine tuberculosis (bTB) is an example of a disease that can be transmitted among several wildlife species and to cattle, although the potential role of several wildlife species in spillback to cattle remains unclear. To better understand the complex network of contacts and factors driving disease transmission, we fitted proximity logger collars to beef and dairy cattle (n=37), white-tailed deer (Odocoileus virginianus; n=29), raccoon (Procyon lotor; n=53), and Virginia opossum (Didelphis virginiana; n=79) for 16 months in Michigan's Lower Peninsula, USA. We determined inter- and intra-species direct and indirect contact rates. Data on indirect contact was calculated when collared animals visited stationary proximity loggers placed at cattle feed and water resources. Most contact between wildlife species and cattle was indirect, with the highest contact rates occurring between raccoons and cattle during summer and fall. Nearly all visits (>99%) to cattle feed and water sources were by cattle, whereas visitation to stored cattle feed was dominated by deer and raccoon (46% and 38%, respectively). Our results suggest that indirect contact resulting from wildlife species visiting cattle-related resources could pose a risk of disease transmission to cattle and deserves continued attention with active mitigation. Published by Elsevier B.V.

  10. The boundary element method applied to 3D magneto-electro-elastic dynamic problems

    Science.gov (United States)

    Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.

    2017-11-01

    Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.

  11. An optimal maintenance policy for machine replacement problem using dynamic programming

    Directory of Open Access Journals (Sweden)

    Mohsen Sadegh Amalnik

    2017-06-01

    Full Text Available In this article, we present an acceptance sampling plan for machine replacement problem based on the backward dynamic programming model. Discount dynamic programming is used to solve a two-state machine replacement problem. We plan to design a model for maintenance by consid-ering the quality of the item produced. The purpose of the proposed model is to determine the optimal threshold policy for maintenance in a finite time horizon. We create a decision tree based on a sequential sampling including renew, repair and do nothing and wish to achieve an optimal threshold for making decisions including renew, repair and continue the production in order to minimize the expected cost. Results show that the optimal policy is sensitive to the data, for the probability of defective machines and parameters defined in the model. This can be clearly demonstrated by a sensitivity analysis technique.

  12. Mathematical problems of the dynamics of incompressible fluid on a rotating sphere

    CERN Document Server

    Skiba, Yuri N

    2017-01-01

    This book presents selected mathematical problems involving the dynamics of a two-dimensional viscous and ideal incompressible fluid on a rotating sphere. In this case, the fluid motion is completely governed by the barotropic vorticity equation (BVE), and the viscosity term in the vorticity equation is taken in its general form, which contains the derivative of real degree of the spherical Laplace operator. This work builds a bridge between basic concepts and concrete outcomes by pursuing a rich combination of theoretical, analytical and numerical approaches, and is recommended for specialists developing mathematical methods for application to problems in physics, hydrodynamics, meteorology and geophysics, as well for upper undergraduate or graduate students in the areas of dynamics of incompressible fluid on a rotating sphere, theory of functions on a sphere, and flow stability.

  13. Dynamic Inverse Problem Solution Using a Kalman Filter Smoother for Neuronal Activity Estimation

    Directory of Open Access Journals (Sweden)

    Eduardo Giraldo-Suárez

    2011-12-01

    Full Text Available This article presents an estimation method of neuronal activity into the brain using a Kalman smoother approach that takes into account in the solution of the inverse problem the dynamic variability of the time series. This method is applied over a realistic head model calculated with the boundary element method. A comparative analysis for the dynamic estimation methods is made up from simulated EEG signals for several noise conditions. The solution of the inverse problem is achieved by using high performance computing techniques and an evaluation of the computational cost is performed for each method. As a result, the Kalman smoother approach presents better performance in the estimation task than the regularized static solution, and the direct Kalman filter.

  14. Dynamic longitudinal relations between binge eating symptoms and severity and style of interpersonal problems.

    Science.gov (United States)

    Luo, Xiaochen; Nuttall, Amy K; Locke, Kenneth D; Hopwood, Christopher J

    2018-01-01

    Despite wide recognition of the importance of interpersonal problems in binge eating disorder (BED), the nature of this association remains unclear. Examining the direction of this longitudinal relationship is necessary to clarify the role that interpersonal problems play in the course of binge eating problems, and thus to specify treatment targets and mechanisms. This study aimed to articulate the bidirectional, longitudinal associations between BED and both the general severity of interpersonal problems as well as warm and dominant interpersonal styles. Severity and styles of interpersonal problems and BED symptoms were measured at baseline, 12 weeks, 24 weeks, and 36 weeks in a sample of 107 women in treatment for BED. Results from bivariate latent change score models indicated that interpersonal problem severity and BED symptoms are associated longitudinally but do not directly influence each other. The results indicated a bidirectional interrelation between binge eating symptoms and dominance such that less dominance predicted greater decreases in binge eating problems, and less binge eating symptoms predicted greater increases in dominance. We also found that binge eating symptoms positively predicted changes in warmth (i.e., less binge eating symptoms predicted less increases or more decreases in warmth). These findings highlight the importance of using dynamic models to examine directionality and delineate the distinct roles of interpersonal severity and styles in BED trajectories. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Comparison of the effect on bone healing process of different implants used in minimally invasive plate osteosynthesis: limited contact dynamic compression plate versus locking compression plate

    OpenAIRE

    Xue, Zichao; Xu, Haitao; Ding, Haoliang; Qin, Hui; An, Zhiquan

    2016-01-01

    Minimally invasive plate osteosynthesis (MIPO) has been widely accepted because of its satisfactory clinical outcomes. However, the implant construct that works best for MIPO remains controversial. Different plate designs result in different influence mechanisms to blood flow. In this study, we created ulnar fractures in 42 beagle dogs and fixed the fractures using MIPO. The dogs were randomly divided into two groups and were fixed with a limited contact dynamic compression plate (LC-DCP) or ...

  16. Explicit Solution of Reinsurance-Investment Problem for an Insurer with Dynamic Income under Vasicek Model

    Directory of Open Access Journals (Sweden)

    De-Lei Sheng

    2016-01-01

    Full Text Available Unlike traditionally used reserves models, this paper focuses on a reserve process with dynamic income to study the reinsurance-investment problem for an insurer under Vasicek stochastic interest rate model. The insurer’s dynamic income is given by the remainder after a dynamic reward budget being subtracted from the insurer’s net premium which is calculated according to expected premium principle. Applying stochastic control technique, a Hamilton-Jacobi-Bellman equation is established and the explicit solution is obtained under the objective of maximizing the insurer’s power utility of terminal wealth. Some economic interpretations of the obtained results are explained in detail. In addition, numerical analysis and several graphics are given to illustrate our results more meticulous.

  17. Modeling and solving the dynamic patient admission scheduling problem under uncertainty.

    Science.gov (United States)

    Ceschia, Sara; Schaerf, Andrea

    2012-11-01

    Our goal is to propose and solve a new formulation of the recently-formalized patient admission scheduling problem, extending it by including several real-world features, such as the presence of emergency patients, uncertainty in the length of stay, and the possibility of delayed admissions. We devised a metaheuristic approach that solves both the static (predictive) and the dynamic (daily) versions of this new problem, which is based on simulated annealing and a complex neighborhood structure. The quality of our metaheuristic approach is compared with an exact method based on integer linear programming. The main outcome is that our method is able to solve large cases (up to 4000 patients) in a reasonable time, whereas the exact method can solve only small/medium-size instances (up to 250 patients). For such datasets, the two methods obtain results at the same level of quality. In addition, the gap between our (dynamic) solver and the static one, which has all information available in advance, is only 4-5%. Finally, we propose (and publish on the web) a large set of new instances, and we discuss the impact of their features in the solution process. The metaheuristic approach proved to be a valid search method to solve dynamic problems in the healthcare domain. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Direct Measurement of Static and Dynamic Contact Angles Using a Random Micromodel Considering Geological CO2 Sequestration

    OpenAIRE

    Mohammad Jafari; Jongwon Jung

    2017-01-01

    The pore-level two-phase fluids flow mechanism needs to be understood for geological CO2 sequestration as a solution to mitigate anthropogenic emission of carbon dioxide. Capillary pressure at the interface of water–CO2 influences CO2 injectability, capacity, and safety of the storage system. Wettability usually measured by contact angle is always a major uncertainty source among important parameters affecting capillary pressure. The contact angle is mostly determined on a flat surface as a r...

  19. Harsh parenting, child behavior problems, and the dynamic coupling of parents' and children's positive behaviors.

    Science.gov (United States)

    Lunkenheimer, Erika; Ram, Nilam; Skowron, Elizabeth A; Yin, Peifeng

    2017-09-01

    We examined self-reported maternal and paternal harsh parenting (HP) and its effect on the moment-to-moment dynamic coupling of maternal autonomy support and children's positive, autonomous behavior. This positive behavior coupling was measured via hidden Markov models as the likelihood of transitions into specific positive dyadic states in real time. We also examined whether positive behavior coupling, in turn, predicted later HP and child behavior problems. Children (N = 96; age = 3.5 years at Time 1) and mothers completed structured clean-up and puzzle tasks in the laboratory. Mothers' and fathers' HP was associated with children's being less likely to respond positively to maternal autonomy support; mothers' HP was also associated with mothers' being less likely to respond positively to children's autonomous behavior. When mothers responded to children's autonomous behavior with greater autonomy support, children showed fewer externalizing and internalizing problems over time and mothers showed less HP over time. These results were unique to the dynamic coupling of maternal autonomy support and children's autonomous behavior: The overall amount of these positive behaviors did not similarly predict reduced problems. Findings suggest that HP in the family system compromises the coregulation of positive behavior between mother and child and that improving mothers' and children's abilities to respond optimally to one another's autonomy-supportive behaviors may reduce HP and child behavior problems over time. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Behavioural and Emotional Problems in Children and Educational Outcomes: A Dynamic Panel Data Analysis.

    Science.gov (United States)

    Khanam, Rasheda; Nghiem, Son

    2017-11-11

    This study investigates the effects of behavioural and emotional problems in children on their educational outcomes using data from the Longitudinal Survey of Australian Children (LSAC). We contribute to the extant literature using a dynamic specification to test the hypothesis of knowledge accumulation. Further, we apply the system generalised method of moments (GMM) estimator to minimise biases due to unobserved factors. We find that mental disorders in children has a negative effect on the National Assessment Program-Literacy and Numeracy (NAPLAN) test scores. Among all mental disorders, having emotional problems is found to be the most influential with one standard deviation (SD) increase in emotional problems being associated with 0.05 SD reduction in NAPLAN reading, writing and spelling; 0.04 SD reduction in matrix reasoning and grammar; and 0.03 SD reduction in NAPLAN numeracy.

  1. Effectiveness of Problem Solving Method In Dynamics And Academic Achievement of High School Students

    Science.gov (United States)

    Ahmadi, F.; Hamidi, F.; Mohammadzadeh, A.; Ahmadi, M. K. A.

    2010-07-01

    The present research as a per and post tests design with control group investigates the effectiveness of problem solving method as independent variable on academic achievement of students in the second grade of high school in the physics topic of dynamics. The sample consists of four random groups as experimental and control groups which were chosen from the students of the second grade of high school. Each sample consists of 25 participants. The experimental groups were taught in problem solving method without any changing in method for control groups. Data was analyzed using Mixed Analysis Of Variance (MANOVA). Result showed a significant difference between two methods of learning (P<0.05). Further the evaluation of their attitude about problem solving method has been showed that a significant percentage of participants in experimental group were interested to continue that method in other physical topics.

  2. Dynamic Assessment( DA and Evaluation of Problem-solving Skills in Childeren

    Directory of Open Access Journals (Sweden)

    Hamid Rahbardar

    2014-09-01

    Full Text Available   Introduction: The term dynamic assessment (DA refers to an assessment, by an active teaching process, of a child's perception, learning, thinking, and problem solving. The process is aimed at modifying an individual's cognitive functioning and observing subsequent changes in learning and problem-solving patterns within the testing situation. DA has been advocated as an alternative and/or supplemental approach to traditional standardized testing with children who are culturally and linguistically diverse (CLD. Methods: This study was a causal-comparative that including 58 children of  5 kindergartens of Mashhad, with 6 to 6.5-year-old, with  available sampling.  Kindergartens were selected of areas (1,2,4,5,6 of Mashhad-Iran. Variable of intelligence in children, was controlled by the Raven’s  IQ test. Results: Eight children were perceived process at the level of symbolic, eighteen children in the visual-image (visual and thirty-two children were perceived process at the level of  visual-motor (functional representation. Results showed children were perceived process at the level of symbolic, only 50% of them were used these method in practice. These results for children in the visual-image was 66.6% and for children were perceived process at the level of  visual-motor was 68.7%. Conclusion: Dynamic assessment is a method of education and according to methods of teacher (symbolic, visual, functional representation, children also, often engage in the same level of performance and problem solving. Keywords: Children, Dynamic assessment, Problem-solving, ZPD.

  3. Contact Hamiltonian mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70543, México, DF 04510 (Mexico)

    2017-01-15

    In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.

  4. Dynamical insurance models with investment: Constrained singular problems for integrodifferential equations

    Science.gov (United States)

    Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.

    2016-01-01

    Previous and new results are used to compare two mathematical insurance models with identical insurance company strategies in a financial market, namely, when the entire current surplus or its constant fraction is invested in risky assets (stocks), while the rest of the surplus is invested in a risk-free asset (bank account). Model I is the classical Cramér-Lundberg risk model with an exponential claim size distribution. Model II is a modification of the classical risk model (risk process with stochastic premiums) with exponential distributions of claim and premium sizes. For the survival probability of an insurance company over infinite time (as a function of its initial surplus), there arise singular problems for second-order linear integrodifferential equations (IDEs) defined on a semiinfinite interval and having nonintegrable singularities at zero: model I leads to a singular constrained initial value problem for an IDE with a Volterra integral operator, while II model leads to a more complicated nonlocal constrained problem for an IDE with a non-Volterra integral operator. A brief overview of previous results for these two problems depending on several positive parameters is given, and new results are presented. Additional results are concerned with the formulation, analysis, and numerical study of "degenerate" problems for both models, i.e., problems in which some of the IDE parameters vanish; moreover, passages to the limit with respect to the parameters through which we proceed from the original problems to the degenerate ones are singular for small and/or large argument values. Such problems are of mathematical and practical interest in themselves. Along with insurance models without investment, they describe the case of surplus completely invested in risk-free assets, as well as some noninsurance models of surplus dynamics, for example, charity-type models.

  5. EMG-driven Forward Dynamics Simulation to Estimate in Vivo Joint Contact Forces During Normal, Smooth, and Bouncy Gait.

    Science.gov (United States)

    Razu, Swithin; Guess, Trent M

    2017-11-21

    This study leveraged data from the "Sixth Grand Challenge Competition to Predict in Vivo Knee Loads" to create a full-body musculoskeletal model that incorporates subject specific geometries of the right leg in order to concurrently predict knee contact forces, ligament forces, muscle forces, and ground contact forces. The objectives of this paper are twofold: First, to describe an electromyography (EMG)-driven modeling methodology to predict knee contact forces, and second to validate model predictions by evaluating the model predictions against known values for a patient with an instrumented total knee replacement (TKR) for three distinctly different gait styles (normal, smooth, and bouncy gait). A novel EMG-driven feedforward with feedback trim motor control strategy was used to concurrently estimate muscle forces and knee contact forces from standard motion capture data collected on the individual subject. The predicted medial, lateral, and total tibiofemoral forces represented the overall measured magnitude and temporal patterns with good root mean squared errors (RMSEs) and Pearson's correlation (?2). The model accuracy was high: medial, lateral, and total tibiofemoral contact force RMSEs = 0.15, 0.14, 0.21 body weight (BW), and (0.92< ?2<0.96) for normal gait; RMSEs = 0.18 BW, 0.21 BW, 0.29 BW, and (0.81< ?2<0.93) for smooth gait; and RMSEs = 0.21 BW, 0.22 BW, 0.33 BW, and (0.86< ?2<0.95) for bouncy gait, respectively.

  6. Dynamic problem for two-layered stripe on the rigid basis

    Directory of Open Access Journals (Sweden)

    Yuriy P. Glukhov

    2014-12-01

    Full Text Available The intermediate results of the study of planar problems about perturbation by movable surface load of multilayer base with initial (residual stresses are presented. Within the bounds of linearizired theory of elasticity for bodies with initial stresses there are considered the statement and method of solving a planar problem of the perturbation of the surface load moving with a constant speed of two-layered pre-stressed stripe with the rigid basis. The model of the layered medium “a plate and pre-stressed layer” is considered. Equations of plate motion are written taking into account the shift and rotary inertia. Layer material is assumed compressible, isotropic in the natural state. The form of elastic potential has a general form and must be specified only while implementation of numeral calculations. With the help of the Fourier integral transform method a fundamental solution to the problem is obtained in general form under various conditions of contact and speeds of load.

  7. Mechanical Contact Experiments and Simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P; Zhang, W.

    2011-01-01

    Mechanical contact is studied under dynamic development by means of a combined numerical and experimental investigation. The experiments are designed to allow dynamical development of non-planar contact areas with significant expansion in all three directions as the load is increased. Different....... The overall investigation serves for testing and validating the numerical implementation of the mechanical contact, which is one of the main contributions to a system intended for 3D simulation of resistance welding. Correct modelling of contact between parts to be welded, as well as contact with electrodes......, is crucial for satisfactory modelling of the resistance welding process. The resistance heating at the contact interfaces depends on both contact area and pressure, and as the contact areas develop dynamically, the presented tests are relevant for assessing the validity and accuracy of the mechanical contact...

  8. Dynamic Scaffolding in a Cloud-Based Problem Representation System: Empowering Pre-Service Teachers' Problem Solving

    Science.gov (United States)

    Lee, Chwee Beng; Ling, Keck Voon; Reimann, Peter; Diponegoro, Yudho Ahmad; Koh, Chia Heng; Chew, Derwin

    2014-01-01

    Purpose: The purpose of this paper is to argue for the need to develop pre-service teachers' problem solving ability, in particular, in the context of real-world complex problems. Design/methodology/approach: To argue for the need to develop pre-service teachers' problem solving skills, the authors describe a web-based problem representation…

  9. Social strain, couple dynamics and gender differences in gambling problems: evidence from Chinese married couples.

    Science.gov (United States)

    Cheung, Nicole W T

    2015-02-01

    Knowledge of the influence of couple dynamics on gender differences in gambling behavior remains meager. Building on general strain theory from the sociology of deviance and stress crossover theory from social psychology, we argue that the strain encountered by one partner in a social setting may affect his or her spouse. For instance, the wife of a man under more social strain may experience more strain in turn and thus be at a higher risk of developing disordered gambling than the wife of a man under less social strain. Using community survey data of 1620 Chinese married couples, we performed multilevel dyad analyses to address social strain and couple dynamics, in addition to their roles as predictors of gambling behavior in both spouses. This was a community survey of Hong Kong and therefore was not representative of China. Based on the DSM-IV screen, the rates of probable problem gambling and pathological gambling among male partners (12.8% vs. 2.5%) were twice those among female partners (5.2% vs. 0.3%). We also found that the social strain experienced by a male partner significantly predicted both his and his wife's likelihood of developing gambling problems. Although a female partner's exposure to social strain was a significant correlate of her gambling problem, it had no significant association with her husband's gambling behavior. These results suggest that the cross-spouse transference of social strain may be a gendered process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Robustness and cognition in stabilization problem of dynamical systems based on asymptotic methods

    Science.gov (United States)

    Dubovik, S. A.; Kabanov, A. A.

    2017-01-01

    The problem of synthesis of stabilizing systems based on principles of cognitive (logical-dynamic) control for mobile objects used under uncertain conditions is considered. This direction in control theory is based on the principles of guaranteeing robust synthesis focused on worst-case scenarios of the controlled process. The guaranteeing approach is able to provide functioning of the system with the required quality and reliability only at sufficiently low disturbances and in the absence of large deviations from some regular features of the controlled process. The main tool for the analysis of large deviations and prediction of critical states here is the action functional. After the forecast is built, the choice of anti-crisis control is the supervisory control problem that optimizes the control system in a normal mode and prevents escape of the controlled process in critical states. An essential aspect of the approach presented here is the presence of a two-level (logical-dynamic) control: the input data are used not only for generating of synthesized feedback (local robust synthesis) in advance (off-line), but also to make decisions about the current (on-line) quality of stabilization in the global sense. An example of using the presented approach for the problem of development of the ship tilting prediction system is considered.

  11. A Universal Concept for Robust Solving of Shortest Path Problems in Dynamically Reconfigurable Graphs

    Directory of Open Access Journals (Sweden)

    Jean Chamberlain Chedjou

    2015-01-01

    Full Text Available This paper develops a flexible analytical concept for robust shortest path detection in dynamically reconfigurable graphs. The concept is expressed by a mathematical model representing the shortest path problem solver. The proposed mathematical model is characterized by three fundamental parameters expressing (a the graph topology (through the “incidence matrix”, (b the edge weights (with dynamic external weights’ setting capability, and (c the dynamic reconfigurability through external input(s of the source-destination nodes pair. In order to demonstrate the universality of the developed concept, a general algorithm is proposed to determine the three fundamental parameters (of the mathematical model developed for all types of graphs regardless of their topology, magnitude, and size. It is demonstrated that the main advantage of the developed concept is that arc costs, the origin-destination pair setting, and the graph topology are dynamically provided by external commands, which are inputs of the shortest path solver model. This enables high flexibility and full reconfigurability of the developed concept, without any retraining need. To validate the concept developed, benchmarking is performed leading to a comparison of its performance with the performances of two well-known concepts based on neural networks.

  12. Effects of structural and dynamic family characteristics on the development of depressive and aggressive problems during adolescence. The TRAILS study.

    Science.gov (United States)

    Sijtsema, J J; Oldehinkel, A J; Veenstra, R; Verhulst, F C; Ormel, J

    2014-06-01

    Both structural (i.e., SES, familial psychopathology, family composition) and dynamic (i.e., parental warmth and rejection) family characteristics have been associated with aggressive and depressive problem development. However, it is unclear to what extent (changes in) dynamic family characteristics have an independent effect on problem development while accounting for stable family characteristics and comorbid problem development. This issue was addressed by studying problem development in a large community sample (N = 2,230; age 10-20) of adolescents using Linear Mixed models. Paternal and maternal warmth and rejection were assessed via the Egna Minnen Beträffande Uppfostran for Children (EMBU-C). Aggressive and depressive problems were assessed via subscales of the Youth/Adult Self-Report. Results showed that dynamic family characteristics independently affected the development of aggressive problems. Moreover, maternal rejection in preadolescence and increases in paternal rejection were associated with aggressive problems, whereas decreases in maternal rejection were associated with decreases in depressive problems over time. Paternal and maternal warmth in preadolescence was associated with fewer depressive problems during adolescence. Moreover, increases in paternal warmth were associated with fewer depressive problems over time. Aggressive problems were a stable predictor of depressive problems over time. Finally, those who increased in depressive problems became more aggressive during adolescence, whereas those who decreased in depressive problems became also less aggressive. Besides the effect of comorbid problems, problem development is to a large extent due to dynamic family characteristics, and in particular to changes in parental rejection, which leaves much room for parenting-based interventions.

  13. Control of mechanical systems with rolling contacts: Applications to robotics

    Science.gov (United States)

    Sarkar, Nilanjan

    1993-01-01

    The problems of modeling and control of mechanical dynamic systems subject to rolling contacts are investigated. There are two important theoretical contributions in this dissertation. First, contact kinematic relationships up to second order are developed for two rigid bodies in point contact. These equations relate gross rigid body motion to the changes in the positions of the points of contact. Second, a unified approach to the control of mechanical systems subject to both holonomic and nonholonomic constraints is proposed. The basic approach is to extend the state-space to include, in the addition to the generalized coordinates and velocities, contact coordinates which describe the displacements of the contact points and their derivatives. This redundant state-space formulation provides a convenient way to specify output equations to control contact motion. The control problem is formulated as an affine nonlinear problem and a differential-geometric, control-theoretic approach is used to decouple and linearize such systems. It is shown that such a system, even though not input-state linearizable, is input-output linearizable. Further, the zero dynamics of such a system is shown to be Lagrange stable. The proposed methodology is applied to three different robotic systems: (1) wheeled mobile robots; (2) two arms manipulating an object with rolling contact between each arm and the object; and (3) a single robot arm maintaining controlled contact against a moving environment. In each case, a nonlinear controller is designed to achieve the desired performances. For mobile robots, a new control algorithm called dynamic path following is proposed and shown to be quite effective and robust. In the context of two arm manipulation, grasp adaptation through the control of contact motion is demonstrated. Maintaining rolling contact with a moving surface is formulated as an acatastatic system. The proposed scheme involves simultaneously controlling interaction forces as

  14. Multi-objective Mobile Robot Scheduling Problem with Dynamic Time Windows

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa; Steger-Jensen, Kenn

    2012-01-01

    This paper deals with the problem of scheduling feeding tasks of a single mobile robot which has capability of supplying parts to feeders on pro-duction lines. The performance criterion is to minimize the total traveling time of the robot and the total tardiness of the feeding tasks being scheduled......, simul-taneously. In operation, the feeders have to be replenished a number of times so as to maintain the manufacture of products during a planning horizon. A meth-od based on predefined characteristics of the feeders is presented to generate dynamic time windows of the feeding tasks which are dependent...

  15. A memetic algorithm to solve the dynamic multiple runway aircraft landing problem

    Directory of Open Access Journals (Sweden)

    Ghizlane Bencheikh

    2016-01-01

    Full Text Available The aircraft landing problem (ALP consists of scheduling the landing of aircrafts onto the available runways in an airport by assigning to each aircraft a landing time and a specific runway while respecting different operational constraints. This is a complex task for the air traffic controller, especially when the flow of aircrafts entering the radar range is continuous and the number of aircrafts is unknown a priori. In this paper, we study the dynamic version of the ALP when new aircrafts appear over time, which means that the landing of the previous aircrafts should be rescheduled. To solve this problem, we propose a memetic algorithm combining an ant colony algorithm and a local heuristic.

  16. Developing a system dynamics model to analyse environmental problem in construction site

    Science.gov (United States)

    Haron, Fatin Fasehah; Hawari, Nurul Nazihah

    2017-11-01

    This study aims to develop a system dynamics model at a construction site to analyse the impact of environmental problem. Construction sites may cause damages to the environment, and interference in the daily lives of residents. A proper environmental management system must be used to reduce pollution, enhance bio-diversity, conserve water, respect people and their local environment, measure performance and set targets for the environment and sustainability. This study investigates the damaging impact normally occur during the construction stage. Environmental problem will cause costly mistake in project implementation, either because of the environmental damages that are likely to arise during project implementation, or because of modification that may be required subsequently in order to make the action environmentally acceptable. Thus, findings from this study has helped in significantly reducing the damaging impact towards environment, and improve the environmental management system performance at construction site.

  17. Defect-phase-dynamics approach to statistical domain-growth problem of clock models

    Science.gov (United States)

    Kawasaki, K.

    1985-01-01

    The growth of statistical domains in quenched Ising-like p-state clock models with p = 3 or more is investigated theoretically, reformulating the analysis of Ohta et al. (1982) in terms of a phase variable and studying the dynamics of defects introduced into the phase field when the phase variable becomes multivalued. The resulting defect/phase domain-growth equation is applied to the interpretation of Monte Carlo simulations in two dimensions (Kaski and Gunton, 1983; Grest and Srolovitz, 1984), and problems encountered in the analysis of related Potts models are discussed. In the two-dimensional case, the problem is essentially that of a purely dissipative Coulomb gas, with a sq rt t growth law complicated by vertex-pinning effects at small t.

  18. Hybrid DE-SQP Method for Solving Combined Heat and Power Dynamic Economic Dispatch Problem

    Directory of Open Access Journals (Sweden)

    A. M. Elaiw

    2013-01-01

    Full Text Available Combined heat and power dynamic economic dispatch (CHPDED plays a key role in economic operation of power systems. CHPDED determines the optimal heat and power schedule of committed generating units by minimizing the fuel cost under ramp rate constraints and other constraints. Due to complex characteristics, heuristic and evolutionary based optimization approaches have became effective tools to solve the CHPDED problem. This paper proposes hybrid differential evolution (DE and sequential quadratic programming (SQP to solve the CHPDED problem with nonsmooth and nonconvex cost function due to valve point effects. DE is used as a global optimizer and SQP is used as a fine tuning to determine the optimal solution at the final. The proposed hybrid DE-SQP method has been tested and compared to demonstrate its effectiveness.

  19. Mixed integer linear programming model for dynamic supplier selection problem considering discounts

    Directory of Open Access Journals (Sweden)

    Adi Wicaksono Purnawan

    2018-01-01

    Full Text Available Supplier selection is one of the most important elements in supply chain management. This function involves evaluation of many factors such as, material costs, transportation costs, quality, delays, supplier capacity, storage capacity and others. Each of these factors varies with time, therefore, supplier identified for one period is not necessarily be same for the next period to supply the same product. So, mixed integer linear programming (MILP was developed to overcome the dynamic supplier selection problem (DSSP. In this paper, a mixed integer linear programming model is built to solve the lot-sizing problem with multiple suppliers, multiple periods, multiple products and quantity discounts. The buyer has to make a decision for some products which will be supplied by some suppliers for some periods cosidering by discount. To validate the MILP model with randomly generated data. The model is solved by Lingo 16.

  20. Relating dynamic brain states to dynamic machine states: Human and machine solutions to the speech recognition problem.

    Directory of Open Access Journals (Sweden)

    Cai Wingfield

    2017-09-01

    Full Text Available There is widespread interest in the relationship between the neurobiological systems supporting human cognition and emerging computational systems capable of emulating these capacities. Human speech comprehension, poorly understood as a neurobiological process, is an important case in point. Automatic Speech Recognition (ASR systems with near-human levels of performance are now available, which provide a computationally explicit solution for the recognition of words in continuous speech. This research aims to bridge the gap between speech recognition processes in humans and machines, using novel multivariate techniques to compare incremental 'machine states', generated as the ASR analysis progresses over time, to the incremental 'brain states', measured using combined electro- and magneto-encephalography (EMEG, generated as the same inputs are heard by human listeners. This direct comparison of dynamic human and machine internal states, as they respond to the same incrementally delivered sensory input, revealed a significant correspondence between neural response patterns in human superior temporal cortex and the structural properties of ASR-derived phonetic models. Spatially coherent patches in human temporal cortex responded selectively to individual phonetic features defined on the basis of machine-extracted regularities in the speech to lexicon mapping process. These results demonstrate the feasibility of relating human and ASR solutions to the problem of speech recognition, and suggest the potential for further studies relating complex neural computations in human speech comprehension to the rapidly evolving ASR systems that address the same problem domain.

  1. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... in Cleveland. "This is far from the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager Blinded ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...

  2. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Cleveland. "This is far from the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager ... About the Academy Jobs at the Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms of ...

  3. T-->0 mean-field population dynamics approach for the random 3-satisfiability problem.

    Science.gov (United States)

    Zhou, Haijun

    2008-06-01

    During the past decade, phase-transition phenomena in the random 3-satisfiability ( 3 -SAT) problem has been intensively studied by statistical physics methods. In this work, we study the random 3 -SAT problem by the mean-field first-step replica-symmetry-broken cavity theory at the limit of temperature T-->0 . The reweighting parameter y of the cavity theory is allowed to approach infinity together with the inverse temperature beta with fixed ratio r=ybeta . Focusing on the system's space of satisfiable configurations, we carry out extensive population dynamics simulations using the technique of importance sampling, and we obtain the entropy density s(r) and complexity Sigma(r) of zero-energy clusters at different r values. We demonstrate that the population dynamics may reach different fixed points with different types of initial conditions. By knowing the trends of s(r) and Sigma(r) with r , we can judge whether a certain type of initial condition is appropriate at a given r value. This work complements and confirms the results of several other very recent theoretical studies.

  4. Solving extra-high-order Rubikʼs Cube problem by a dynamic simulated annealing

    Science.gov (United States)

    Chen, Xi; Ding, Z. J.

    2012-08-01

    A Monte Carlo algorithm, dynamic simulated annealing, is developed to solve Rubik's Cube problem at any extra-high order with considerable efficiency. By designing appropriate energy function, cooling schedule and neighborhood search algorithm, a sequence of moves can select a path to decrease quickly the degree of disorder of a cube and jump out local energy minima in a simple but effective way. Different from the static simulated annealing method that adjusting the temperature parameter in Boltzmann function, we use a dynamic procedure by altering energy function expression instead. In addition, a solution of low-order cube is devised to be used for high efficient parallel programming for high-order cubes. An extra-high-order cube can then be solved in a relatively short time, which is merely proportional to the square of order. Example calculations cost 996.6 s for a 101-order on a PC, and 1877 s for a 5001-order using parallel program on a supercomputer with 8 nodes. The principle behind this feasible solution of Rubik's Cube at any high order, like the methods of partial stages, the way to design the proper energy function, the means to find a neighborhood search that matches the energy function, may be useful to other global optimization problems which avoiding tremendous local minima in energy landscape is chief task.

  5. Hybrid genetic algorithms: solutions in realistic dynamic and setup dependent job-shop scheduling problems

    Directory of Open Access Journals (Sweden)

    Rogério M. Branco

    2016-07-01

    Full Text Available This paper discusses the application of heuristic-based evolutionary technique in search for solutions concerning the dynamic job-shop scheduling problems with dependent setup times and alternate routes. With a combinatorial nature, these problems belong to an NP-hard class, with an aggravated condition when in realistic, dynamic and therefore, more complex cases than the traditional static ones. The proposed genetic algorithm executes two important functions: choose the routes using dispatching rules when forming each individual from a defined set of available machines and, also make the scheduling for each of these individuals created. The chromosome codifies a route, or the selected machines, and also an order to process the operations. In essence , each individual needs to be decoded by the scheduler to evaluate its time of completion, so the fitness function of the genetic algorithm, applying the modified Giffler and Thomson’s algorithm, obtains a scheduling of the selected routes in a given planning horizon. The scheduler considers the preparation time between operations on the machines and can manage operations exchange respecting the route and the order given by the chromosome. The best results in the evolutionary process are individuals with routes and processing orders optimized for this type of problema.

  6. Solving a Location, Allocation, and Capacity Planning Problem with Dynamic Demand and Response Time Service Level

    Directory of Open Access Journals (Sweden)

    Carrie Ka Yuk Lin

    2014-01-01

    Full Text Available Logistic systems with uncertain demand, travel time, and on-site processing time are studied here where sequential trip travel is allowed. The relationship between three levels of decisions: facility location, demand allocation, and resource capacity (number of service units, satisfying the response time requirement, is analysed. The problem is formulated as a stochastic mixed integer program. A simulation-based hybrid heuristic is developed to solve the dynamic problem under different response time service level. An initial solution is obtained from solving static location-allocation models, followed by iterative improvement of the three levels of decisions by ejection, reinsertion procedure with memory of feasible and infeasible service regions. Results indicate that a higher response time service level could be achieved by allocating a given resource under an appropriate decentralized policy. Given a response time requirement, the general trend is that the minimum total capacity initially decreases with more facilities. During this stage, variability in travel time has more impact on capacity than variability in demand arrivals. Thereafter, the total capacity remains stable and then gradually increases. When service level requirement is high, the dynamic dispatch based on first-come-first-serve rule requires smaller capacity than the one by nearest-neighbour rule.

  7. Experimental and Numerical Simulation of the Dynamic Frictional Contact between an Aircraft Tire Rubber and a Rough Surface

    Directory of Open Access Journals (Sweden)

    Iulian Rosu

    2016-08-01

    Full Text Available This paper presents a numerical simulation of an aircraft tire in contact with a rough surface using a variable friction coefficient dependent on temperature and contact pressure. A sliding facility was used in order to evaluate this dependence of the friction coefficient. The temperature diffusion throughout the tire cross-section was measured by means of thermocouples. Both frictional heating and temperature diffusion were compared to numerical two- and three- dimensional simulations. An adequate temperature prediction could be obtained. In future simulations, wear should be taken into account in order to have a more accurate simulation especially in the case of high pressures and slipping velocities. A 3D finite element model for a rolling tire at a velocity of 37.79 knots (19.44 m/s and in a cornering phase was investigated using a variable friction coefficient dependent on temperature and pressure. The numerical simulation tended to predict the temperature of the tire tread after a few seconds of rolling in skidding position, the temperature of the contact zone increases to 140 °C. Further investigations must be carried out in order to obtain the evolution of the temperature observed experimentally. The authors would like to point out that for confidentiality reasons, certain numerical data could not be revealed.

  8. Molecular-dynamics simulation of lateral friction in contact-mode atomic force microscopy of alkane films: The role of molecular flexibility

    DEFF Research Database (Denmark)

    Soza, P.; Hansen, Flemming Yssing; Taub, H.

    2011-01-01

    Molecular-dynamics simulations are used to investigate lateral friction in contact-mode atomic force microscopy of tetracosane (n-C24H50) films. We find larger friction coefficients on the surface of monolayer and bilayer films in which the long axis of the molecules is parallel to the interface...... of this motion does not appear to be in itself a major channel of energy dissipation. As previously reported in the literature, the layer density and thereby the strength of the attractive film-tip interaction is also an important factor in energy dissipation....

  9. Stability of Contact Lines in Fluids: 2D Stokes Flow

    Science.gov (United States)

    Guo, Yan; Tice, Ian

    2018-02-01

    In an effort to study the stability of contact lines in fluids, we consider the dynamics of an incompressible viscous Stokes fluid evolving in a two-dimensional open-top vessel under the influence of gravity. This is a free boundary problem: the interface between the fluid in the vessel and the air above (modeled by a trivial fluid) is free to move and experiences capillary forces. The three-phase interface where the fluid, air, and solid vessel wall meet is known as a contact point, and the angle formed between the free interface and the vessel is called the contact angle. We consider a model of this problem that allows for fully dynamic contact points and angles. We develop a scheme of a priori estimates for the model, which then allow us to show that for initial data sufficiently close to equilibrium, the model admits global solutions that decay to equilibrium exponentially quickly.

  10. Export dynamics as an optimal growth problem in the network of global economy.

    Science.gov (United States)

    Caraglio, Michele; Baldovin, Fulvio; Stella, Attilio L

    2016-08-17

    We analyze export data aggregated at world global level of 219 classes of products over a period of 39 years. Our main goal is to set up a dynamical model to identify and quantify plausible mechanisms by which the evolutions of the various exports affect each other. This is pursued through a stochastic differential description, partly inspired by approaches used in population dynamics or directed polymers in random media. We outline a complex network of transfer rates which describes how resources are shifted between different product classes, and determines how casual favorable conditions for one export can spread to the other ones. A calibration procedure allows to fit four free model-parameters such that the dynamical evolution becomes consistent with the average growth, the fluctuations, and the ranking of the export values observed in real data. Growth crucially depends on the balance between maintaining and shifting resources to different exports, like in an explore-exploit problem. Remarkably, the calibrated parameters warrant a close-to-maximum growth rate under the transient conditions realized in the period covered by data, implying an optimal self organization of the global export. According to the model, major structural changes in the global economy take tens of years.

  11. Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies.

    Science.gov (United States)

    Giordano, Nils; Mairet, Francis; Gouzé, Jean-Luc; Geiselmann, Johannes; de Jong, Hidde

    2016-03-01

    Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin's Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment.

  12. Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies.

    Directory of Open Access Journals (Sweden)

    Nils Giordano

    2016-03-01

    Full Text Available Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin's Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment.

  13. Effects of structural and dynamic family characteristics on the development of depressive and aggressive problems during adolescence. The TRAILS study

    NARCIS (Netherlands)

    Sijtsema, J. J.; Oldehinkel, A. J.; Veenstra, René; Verhulst, F. C.; Ormel, J.

    Both structural (i.e., SES, familial psychopathology, family composition) and dynamic (i.e., parental warmth and rejection) family characteristics have been associated with aggressive and depressive problem development. However, it is unclear to what extent (changes in) dynamic family

  14. Effects of structural and dynamic family characteristics on the development of depressive and aggressive problems during adolescence. The TRAILS study

    NARCIS (Netherlands)

    Sijtsema, J.J.; Oldehinkel, A.J.; Veenstra, R.; Verhulst, F.C.; Ormel, J.

    2014-01-01

    Both structural (i.e., SES, familial psychopathology, family composition) and dynamic (i.e., parental warmth and rejection) family characteristics have been associated with aggressive and depressive problem development. However, it is unclear to what extent (changes in) dynamic family

  15. A general-purpose contact detection algorithm for nonlinear structural analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Heinstein, M.W.; Attaway, S.W.; Swegle, J.W.; Mello, F.J.

    1993-05-01

    A new contact detection algorithm has been developed to address difficulties associated with the numerical simulation of contact in nonlinear finite element structural analysis codes. Problems including accurate and efficient detection of contact for self-contacting surfaces, tearing and eroding surfaces, and multi-body impact are addressed. The proposed algorithm is portable between dynamic and quasi-static codes and can efficiently model contact between a variety of finite element types including shells, bricks, beams and particles. The algorithm is composed of (1) a location strategy that uses a global search to decide which slave nodes are in proximity to a master surface and (2) an accurate detailed contact check that uses the projected motions of both master surface and slave node. In this report, currently used contact detection algorithms and their associated difficulties are discussed. Then the proposed algorithm and how it addresses these problems is described. Finally, the capability of the new algorithm is illustrated with several example problems.

  16. Potential for Assessing Dynamic Problem-Solving at the Beginning of Higher Education Studies

    Directory of Open Access Journals (Sweden)

    Benő Csapó

    2017-11-01

    Full Text Available There is a growing demand for assessment instruments which can be used in higher education, which cover a broader area of competencies than the traditional tests for disciplinary knowledge and domain-specific skills, and which measure students' most important general cognitive capabilities. Around the age of the transition from secondary to tertiary education, such assessments may serve several functions, including selecting the best-prepared candidates for certain fields of study. Dynamic problem-solving (DPS is a good candidate for such a role, as tasks that assess it involve knowledge acquisition and knowledge utilization as well. The purpose of this study is to validate an online DPS test and to explore its potential for assessing students' DPS skills at the beginning of their higher education studies. Participants in the study were first-year students at a major Hungarian university (n = 1468. They took five tests that measured knowledge from their previous studies: Hungarian language and literature, mathematics, history, science and English as a Foreign Language (EFL. A further, sixth test based on the MicroDYN approach, assessed students' DPS skills. A brief questionnaire explored learning strategies and collected data on students' background. The testing took place at the beginning of the first semester in three 2-h sessions. Problem-solving showed relatively strong correlations with mathematics (r = 0.492 and science (r = 0.401, and moderate correlations with EFL (r = 0.227, history (r = 0.192, and Hungarian (r = 0.125. Weak but still significant correlations were found with certain learning strategies, positive correlations with elaboration strategies, and a negative correlation with memorization strategies. Significant differences were observed between male and female students; men performed significantly better in DPS than women. Results indicated the dominant role of the first phase of solving dynamic problems, as knowledge

  17. A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems

    Science.gov (United States)

    Liu, X.; Banerjee, J. R.

    2017-03-01

    A highly efficient and accurate analytical spectral dynamic stiffness (SDS) method for modal analysis of plane elastodynamic problems based on both plane stress and plane strain assumptions is presented in this paper. First, the general solution satisfying the governing differential equation exactly is derived by applying two types of one-dimensional modified Fourier series. Then the SDS matrix for an element is formulated symbolically using the general solution. The SDS matrices are assembled directly in a similar way to that of the finite element method, demonstrating the method's capability to model complex structures. Any arbitrary boundary conditions are represented accurately in the form of the modified Fourier series. The Wittrick-Williams algorithm is then used as the solution technique where the mode count problem (J0) of a fully-clamped element is resolved. The proposed method gives highly accurate solutions with remarkable computational efficiency, covering low, medium and high frequency ranges. The method is applied to both plane stress and plane strain problems with simple as well as complex geometries. All results from the theory in this paper are accurate up to the last figures quoted to serve as benchmarks.

  18. A genetic algorithm for a bi-objective mathematical model for dynamic virtual cell formation problem

    Science.gov (United States)

    Moradgholi, Mostafa; Paydar, Mohammad Mahdi; Mahdavi, Iraj; Jouzdani, Javid

    2016-05-01

    Nowadays, with the increasing pressure of the competitive business environment and demand for diverse products, manufacturers are force to seek for solutions that reduce production costs and rise product quality. Cellular manufacturing system (CMS), as a means to this end, has been a point of attraction to both researchers and practitioners. Limitations of cell formation problem (CFP), as one of important topics in CMS, have led to the introduction of virtual CMS (VCMS). This research addresses a bi-objective dynamic virtual cell formation problem (DVCFP) with the objective of finding the optimal formation of cells, considering the material handling costs, fixed machine installation costs and variable production costs of machines and workforce. Furthermore, we consider different skills on different machines in workforce assignment in a multi-period planning horizon. The bi-objective model is transformed to a single-objective fuzzy goal programming model and to show its performance; numerical examples are solved using the LINGO software. In addition, genetic algorithm (GA) is customized to tackle large-scale instances of the problems to show the performance of the solution method.

  19. Solutions Stability of Initial Boundary Problem, Modeling of Dynamics of Some Discrete Continuum Mechanical System

    Directory of Open Access Journals (Sweden)

    D. A. Eliseev

    2015-01-01

    Full Text Available The solution stability of an initial boundary problem for a linear hybrid system of differential equations, which models the rotation of a rigid body with two elastic rods located in the same plane is studied in the paper. To an axis passing through the mass center of the rigid body perpendicularly to the rods location plane is applied the stabilizing moment proportional to the angle of the system rotation, derivative of the angle, integral of the angle. The external moment provides a feedback. A method of studying the behavior of solutions of the initial boundary problem is proposed. This method allows to exclude from the hybrid system of differential equations partial differential equations, which describe the dynamics of distributed elements of a mechanical system. It allows us to build one equation for an angle of the system rotation. Its characteristic equation defines the stability of solutions of all the system. In the space of feedback-coefficients the areas that provide the asymptotic stability of solutions of the initial boundary problem are built up.

  20. ANALYSIS OF MENTAL MODEL OF STUDENTS USING ISOMORPHIC PROBLEMS IN DYNAMICS OF ROTATIONAL MOTION TOPIC

    Directory of Open Access Journals (Sweden)

    N. Khasanah

    2016-10-01

    Full Text Available The analysis of mental models is a part of the identification of students' thoughts on the concept. Mental models analysis is conducted by conditioning the complex problems such as the isomorphic issues. The research objective is to analyze the development of students' mental models on the topic rotational motion dynamics. The study was designed with the mixed method. The design phase of the research was conducted in both quantitative and qualitative approach. The quantitative phase was performed by providing pre-test, learning, and post-test containing isomorphic problems; while qualitative phase was implemented by interview and quiz. The data were analyzed quantitatively and qualitatively. The results of the study categorizes mental models into three types, i.e. Low Mental Model (LMM, Moderate Mental Model (MMM, and High Mental Model (HMM. Based on the pre-test results, it was proved that all students used Low mental model in resolving the isomorphic problems. Using the Low Mental Model, it was found that students have misconceptions on the moment of force and moment of inertia. Mental models developed gradually from Low mental model to Moderate Mental Model and then reached the High Mental Model Mental. It was observed from the results of pre-test, quizzes, and post-test. The quiz and post-test results showed the students who used Mental Model and High Mental Model.

  1. Generalized Galilean transformations and the measurement problem in the entropic dynamics approach to quantum theory

    Science.gov (United States)

    Johnson, David T.

    Quantum mechanics is an extremely successful and accurate physical theory, yet since its inception, it has been afflicted with numerous conceptual difficulties. The primary subject of this thesis is the theory of entropic quantum dynamics (EQD), which seeks to avoid these conceptual problems by interpreting quantum theory from an informational perspective. We begin by reviewing Cox's work in describing probability theory as a means of rationally and consistently quantifying uncertainties. We then discuss how probabilities can be updated according to either Bayes' theorem or the extended method of maximum entropy (ME). After that discussion, we review the work of Caticha and Giffin that shows that Bayes' theorem is a special case of ME. This important result demonstrates that the ME method is the general method for updating probabilities. We then review some motivating difficulties in quantum mechanics before discussing Caticha's work in deriving quantum theory from the approach of entropic dynamics, which concludes our review. After entropic dynamics is introduced, we develop the concepts of symmetries and transformations from an informational perspective. The primary result is the formulation of a symmetry condition that any transformation must satisfy in order to qualify as a symmetry in EQD. We then proceed to apply this condition to the extended Galilean transformation. This transformation is of interest as it exhibits features of both special and general relativity. The transformation yields a gravitational potential that arises from an equivalence of information. We conclude the thesis with a discussion of the measurement problem in quantum mechanics. We discuss the difficulties that arise in the standard quantum mechanical approach to measurement before developing our theory of entropic measurement. In entropic dynamics, position is the only observable. We show how a theory built on this one observable can account for the multitude of measurements present in

  2. New numerical methods for open-loop and feedback solutions to dynamic optimization problems

    Science.gov (United States)

    Ghosh, Pradipto

    The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development

  3. Effect of water desorption on the rheology and dynamic response of human hair to a non-contact impact.

    Science.gov (United States)

    Jamart, J; Djaghloul, M; Bergheau, J M; Zahouani, H

    2015-06-01

    Human hair is a non-homogeneous complex material made of keratin fibers oriented along the longitudinal axis which offer anisotropic mechanical properties. Nowadays, it is possible to measure the mechanical properties of hairs with the classical tests, but most often, these tests are destructive and make hard to measure the influence of some external factors or treatments on the behavior of a same hair fiber. In the current paper, vibrations induced by a non-contact impact have been utilized as a representative response of the mechanical behavior of hair. The characteristics of the vibratory response allow measuring the variation in the mechanical properties and the instantaneous effect of an external factor on the properties of a same sample. First, load relaxation tests have been performed on hair samples after moisturization and for different times of an air-drying process in order to characterize the change in the visco-elastic behavior of hair during the water desorption. Other hair samples have been tested with our non-contact impact and vibration technique in order to observe the change in the vibratory response during the water desorption. The vibratory response has then been correlated to the mechanical properties of the hair fiber. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Dynamic behaviour of the contact line for 350 km/h on the new line Wuhan - Guangzhou; Dynamisches Verhalten der Oberleitung fuer 350 km/h auf der neuen Strecke Wuhan - Guangzhou

    Energy Technology Data Exchange (ETDEWEB)

    Zimmert, Gerhard [Balfour Beatty Rail, Beijing (China)

    2010-04-15

    Only after four and a half years of construction activities regular services started on the approximately 1 000 km long new high-speed line Wuhan - Guangzhou in the People's Republic of China. Achieving 320 to 330 km/h commercial speed, this line is the fastest railway connection in the world. The dynamic interaction between contact line and pantograph determines the maximally possible speed to an increasing extent. Worldwide, there is only low experience on the contact line dynamic behavior at this speed level. Balfour Beatty Rail designed the contact line for this installation, participated essentially in the implementation and, therefore, was in charge of proving the contact line quality. A series of test runs concerning the geometrical requirements and the contact force behaviour eventually proved the suitability of the system. (orig.)

  5. Dynamics of second order rational difference equations with open problems and conjectures

    CERN Document Server

    Kulenovic, Mustafa RS

    2001-01-01

    This self-contained monograph provides systematic, instructive analysis of second-order rational difference equations. After classifying the various types of these equations and introducing some preliminary results, the authors systematically investigate each equation for semicycles, invariant intervals, boundedness, periodicity, and global stability. Of paramount importance in their own right, the results presented also offer prototypes towards the development of the basic theory of the global behavior of solutions of nonlinear difference equations of order greater than one. The techniques and results in this monograph are also extremely useful in analyzing the equations in the mathematical models of various biological systems and other applications. Each chapter contains a section of open problems and conjectures that will stimulate further research interest in working towards a complete understanding of the dynamics of the equation and its functional generalizations-many of them ideal for research project...

  6. Problem Based Learning as a Shared Musical Journey – Group Dynamics, Communication and Creativity

    Directory of Open Access Journals (Sweden)

    Charlotte Lindvang

    2015-06-01

    Full Text Available The focus of this paper is how we can facilitate problem based learning (PBL more creatively. We take a closer look upon the connection between creative processes and social communication in the PBL group including how difficulties in the social interplay may hinder creativity. The paper draws on group dynamic theory, and points out the importance of building a reflexive milieu in the group. Musical concepts are used to illustrate the communicative and creative aspects of PBL and the paper uses the analogy between improvising together and do a project work together. We also discuss the role of the supervisor in a PBL group process. Further we argue that creativity is rooted deep in our consciousness and connected to our ability to work with a flexible mind. In order to enhance the cohesion as well as the creativity of the group a model of music listening as a concrete intervention tool in PBL processes is proposed.

  7. Dynamics of problem setting and framing in citizen discussions on synthetic biology.

    Science.gov (United States)

    Betten, Afke Wieke; Broerse, Jacqueline E W; Kupper, Frank

    2018-04-01

    Synthetic biology is an emerging scientific field where engineers and biologists design and build biological systems for various applications. Developing synthetic biology responsibly in the public interest necessitates a meaningful societal dialogue. In this article, we argue that facilitating such a dialogue requires an understanding of how people make sense of synthetic biology. We performed qualitative research to unravel the underlying dynamics of problem setting and framing in citizen discussions on synthetic biology. We found that most people are not inherently for or against synthetic biology as a technology or development in itself, but that their perspectives are framed by core values about our relationships with science and technology and that sensemaking is much dependent on the context and general feelings of (dis)content. Given that there are many assumptions focused on a more binary idea of the public's view, we emphasize the need for frame awareness and understanding in a meaningful dialogue.

  8. Optimal Stochastic Control Problem for General Linear Dynamical Systems in Neuroscience

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2017-01-01

    Full Text Available This paper considers a d-dimensional stochastic optimization problem in neuroscience. Suppose the arm’s movement trajectory is modeled by high-order linear stochastic differential dynamic system in d-dimensional space, the optimal trajectory, velocity, and variance are explicitly obtained by using stochastic control method, which allows us to analytically establish exact relationships between various quantities. Moreover, the optimal trajectory is almost a straight line for a reaching movement; the optimal velocity bell-shaped and the optimal variance are consistent with the experimental Fitts law; that is, the longer the time of a reaching movement, the higher the accuracy of arriving at the target position, and the results can be directly applied to designing a reaching movement performed by a robotic arm in a more general environment.

  9. Numerical continuation methods for dynamical systems path following and boundary value problems

    CERN Document Server

    Krauskopf, Bernd; Galan-Vioque, Jorge

    2007-01-01

    Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel''s 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects ...

  10. Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost

    Energy Technology Data Exchange (ETDEWEB)

    Bokanowski, Olivier, E-mail: boka@math.jussieu.fr [Laboratoire Jacques-Louis Lions, Université Paris-Diderot (Paris 7) UFR de Mathématiques - Bât. Sophie Germain (France); Picarelli, Athena, E-mail: athena.picarelli@inria.fr [Projet Commands, INRIA Saclay & ENSTA ParisTech (France); Zidani, Hasnaa, E-mail: hasnaa.zidani@ensta.fr [Unité de Mathématiques appliquées (UMA), ENSTA ParisTech (France)

    2015-02-15

    This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system of controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.

  11. New Dilated LMI Characterization for the Multiobjective Full-Order Dynamic Output Feedback Synthesis Problem

    Directory of Open Access Journals (Sweden)

    Zrida Jalel

    2010-01-01

    Full Text Available This paper introduces new dilated LMI conditions for continuous-time linear systems which not only characterize stability and performance specifications, but also, performance specifications. These new conditions offer, in addition to new analysis tools, synthesis procedures that have the advantages of keeping the controller parameters independent of the Lyapunov matrix and offering supplementary degrees of freedom. The impact of such advantages is great on the multiobjective full-order dynamic output feedback control problem as the obtained dilated LMI conditions always encompass the standard ones. It follows that much less conservatism is possible in comparison to the currently used standard LMI based synthesis procedures. A numerical simulation, based on an empirically abridged search procedure, is presented and shows the advantage of the proposed synthesis methods.

  12. An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems

    Science.gov (United States)

    Teng, Z. H.; Sun, F.; Wu, S. C.; Zhang, Z. B.; Chen, T.; Liao, D. M.

    2018-02-01

    By introducing the shape functions of virtual node polygonal (VP) elements into the standard extended finite element method (XFEM), a conforming elemental mesh can be created for the cracking process. Moreover, an adaptively refined meshing with the quadtree structure only at a growing crack tip is proposed without inserting hanging nodes into the transition region. A novel dynamic crack growth method termed as VP-XFEM is thus formulated in the framework of fracture mechanics. To verify the newly proposed VP-XFEM, both quasi-static and dynamic cracked problems are investigated in terms of computational accuracy, convergence, and efficiency. The research results show that the present VP-XFEM can achieve good agreement in stress intensity factor and crack growth path with the exact solutions or experiments. Furthermore, better accuracy, convergence, and efficiency of different models can be acquired, in contrast to standard XFEM and mesh-free methods. Therefore, VP-XFEM provides a suitable alternative to XFEM for engineering applications.

  13. Three-year dynamics and unsolved problems of lipid-lowering therapy

    Directory of Open Access Journals (Sweden)

    V. A. Sergeeva

    2015-11-01

    Full Text Available Aim. To study the lipid-lowering therapy, the adequacy of its control, as well as the awareness of patients at a high cardiovascular risk of atherosclerosis problems and the dynamics of these parameters in 3 years. Material and methods. Patients with dyslipidemia (113 patients in 2011 and 100 patients in 2014 who were treated in the cardiology clinic were examined. Patient survey on the lipid-lowering therapy and its monitoring was conducted. Medical records of patients were studied also. Results. The number of patients informed on atherosclerosis aspects increased from 52% to 59% (p>0.05 in 3 years. Laboratory control of lipid metabolism remained inadequate. Insufficient lifestyle modification changes (diet, smoking, physical inactivity were present. Lipid-lowering drugs were regularly taken by 26% of the patients in 2011 and 29% in 2014 (p>0.05 and a control of lipid metabolism was absent in 12% and 14% of the patients, respectively (p>0.05. Only 27% of the patients gave the importance of lipid-lowering therapy 10 points on a 10-point scale. Conclusion. Dynamics of patients awareness on atherosclerosis and measures taken to correct and control lipid metabolism disorders were insignificant within 3 years. High costs of medication and the underestimation of treatment importance by the patient play an important role in poor adherence.

  14. Three-year dynamics and unsolved problems of lipid-lowering therapy

    Directory of Open Access Journals (Sweden)

    V. A. Sergeeva

    2015-01-01

    Full Text Available Aim. To study the lipid-lowering therapy, the adequacy of its control, as well as the awareness of patients at a high cardiovascular risk of atherosclerosis problems and the dynamics of these parameters in 3 years. Material and methods. Patients with dyslipidemia (113 patients in 2011 and 100 patients in 2014 who were treated in the cardiology clinic were examined. Patient survey on the lipid-lowering therapy and its monitoring was conducted. Medical records of patients were studied also. Results. The number of patients informed on atherosclerosis aspects increased from 52% to 59% (p>0.05 in 3 years. Laboratory control of lipid metabolism remained inadequate. Insufficient lifestyle modification changes (diet, smoking, physical inactivity were present. Lipid-lowering drugs were regularly taken by 26% of the patients in 2011 and 29% in 2014 (p>0.05 and a control of lipid metabolism was absent in 12% and 14% of the patients, respectively (p>0.05. Only 27% of the patients gave the importance of lipid-lowering therapy 10 points on a 10-point scale. Conclusion. Dynamics of patients awareness on atherosclerosis and measures taken to correct and control lipid metabolism disorders were insignificant within 3 years. High costs of medication and the underestimation of treatment importance by the patient play an important role in poor adherence.

  15. Variational methods for direct/inverse problems of atmospheric dynamics and chemistry

    Science.gov (United States)

    Penenko, Vladimir; Penenko, Alexey; Tsvetova, Elena

    2013-04-01

    We present a variational approach for solving direct and inverse problems of atmospheric hydrodynamics and chemistry. It is important that the accurate matching of numerical schemes has to be provided in the chain of objects: direct/adjoint problems - sensitivity relations - inverse problems, including assimilation of all available measurement data. To solve the problems we have developed a new enhanced set of cost-effective algorithms. The matched description of the multi-scale processes is provided by a specific choice of the variational principle functionals for the whole set of integrated models. Then all functionals of variational principle are approximated in space and time by splitting and decomposition methods. Such approach allows us to separately consider, for example, the space-time problems of atmospheric chemistry in the frames of decomposition schemes for the integral identity sum analogs of the variational principle at each time step and in each of 3D finite-volumes. To enhance the realization efficiency, the set of chemical reactions is divided on the subsets related to the operators of production and destruction. Then the idea of the Euler's integrating factors is applied in the frames of the local adjoint problem technique [1]-[3]. The analytical solutions of such adjoint problems play the role of integrating factors for differential equations describing atmospheric chemistry. With their help, the system of differential equations is transformed to the equivalent system of integral equations. As a result we avoid the construction and inversion of preconditioning operators containing the Jacobi matrixes which arise in traditional implicit schemes for ODE solution. This is the main advantage of our schemes. At the same time step but on the different stages of the "global" splitting scheme, the system of atmospheric dynamic equations is solved. For convection - diffusion equations for all state functions in the integrated models we have developed the

  16. Cosmological dynamics of D-BIonic and DBI scalar field and coincidence problem of dark energy

    Science.gov (United States)

    Panpanich, Sirachak; Maeda, Kei-ichi; Mizuno, Shuntaro

    2017-05-01

    We study the cosmological dynamics of a D-BIonic and Dirac-Born-Infeld scalar field, which is coupled to matter fluid. For the exponential potential and the exponential couplings, we find a new analytic scaling solution yielding the accelerated expansion of the Universe. Since it is shown to be an attractor for some range of the coupling parameters, the density parameter of matter fluid can be the observed value, as in the coupled quintessence with a canonical scalar field. Contrary to the usual coupled quintessence, where the value of the matter coupling giving the observed density parameter is too large to satisfy the observational constraint from the cosmic microwave background, we show that the D-BIonic theory can give a similar solution with a much smaller value of matter coupling. As a result, together with the fact that the D-BIonic theory has a screening mechanism, the D-BIonic theory can solve the so-called coincidence problem as well as the dark energy problem.

  17. Relationship Dynamics and Intimate Partner Violence Among Israeli College Students: The Moderating Effect of Communication Problems.

    Science.gov (United States)

    Goussinsky, Ruhama; Michael, Keren; Yassour-Borochowitz, Dalit

    2017-08-01

    The present study, based on data from the International Dating Violence Study obtained in 2004 ( N = 465) and on data obtained in 2015 ( N = 392), estimated the prevalence of intimate partner violence (IPV) victimization and perpetration among Israeli college students. The main purpose of the study was to investigate whether communication problems (i.e., avoidant communication and disrespectful communication) intensify the effects of relationship dynamics (dominance, partner's controlling behavior, and jealousy) on physical IPV. A series of χ 2 analyses, independent t tests, and logistic regressions was conducted separately for each sample. Results revealed that in 2015, approximately 20% of the participants reported being a victim of at least one act of physical violence and more than 10% of the participants reported severely attacking a partner. Although there was a significant decline in the prevalence of the severe type of sexual violence victimization, most of the differences between the samples were not significant. The findings further showed that regardless of gender or age, dominance significantly increased the odds of physical violence perpetration, and partner's controlling behavior significantly increased the odds of physical violence victimization. Finally, the interaction effects that were found suggest that when relationships are characterized by an imbalance of power, communication problems may increase the risk of physical violence. The current study provides initial support for the idea that communication difficulties may contribute to conflict escalation and exacerbate the effects of relationship risk factors on physical IPV.

  18. VR-Cluster: Dynamic Migration for Resource Fragmentation Problem in Virtual Router Platform

    Directory of Open Access Journals (Sweden)

    Xianming Gao

    2016-01-01

    Full Text Available Network virtualization technology is regarded as one of gradual schemes to network architecture evolution. With the development of network functions virtualization, operators make lots of effort to achieve router virtualization by using general servers. In order to ensure high performance, virtual router platform usually adopts a cluster of general servers, which can be also regarded as a special cloud computing environment. However, due to frequent creation and deletion of router instances, it may generate lots of resource fragmentation to prevent platform from establishing new router instances. In order to solve “resource fragmentation problem,” we firstly propose VR-Cluster, which introduces two extra function planes including switching plane and resource management plane. Switching plane is mainly used to support seamless migration of router instances without packet loss; resource management plane can dynamically move router instances from one server to another server by using VR-mapping algorithms. Besides, three VR-mapping algorithms including first-fit mapping algorithm, best-fit mapping algorithm, and worst-fit mapping algorithm are proposed based on VR-Cluster. At last, we establish VR-Cluster protosystem by using general X86 servers, evaluate its migration time, and further analyze advantages and disadvantages of our proposed VR-mapping algorithms to solve resource fragmentation problem.

  19. Cascading peer dynamics underlying the progression from problem behavior to violence in early to late adolescence.

    Science.gov (United States)

    Dishion, Thomas J; Véronneau, Marie-Hélène; Myers, Michael W

    2010-08-01

    This study examined the peer dynamics linking early adolescent problem behavior, school marginalization, and low academic performance to multiple indices of late adolescent violence (arrests, parent report, and youth report) in an ethnically diverse sample of 998 males and females. A cascade model was proposed in which early adolescent risk factors assessed at age 11 to 12 predict gang involvement at age 13 to 14, which in turn, predicts deviancy training with friends at age 16 to 17, which then predicts violence by age 18 to 19. Each construct in the model was assessed with multiple measures and methods. Structural equation modeling revealed that the cascade model fit the data well, with problem behavior, school marginalization, and low academic performance significantly predicting gang involvement 2 years later. Gang involvement, in turn, predicted deviancy training with a friend, which predicted violence. The best fitting model included an indirect and direct path between early adolescent gang involvement and later violence. These findings suggest the need to carefully consider peer clustering into gangs in efforts to prevent individual and aggregate levels of violence, especially in youths who may be disengaged, marginalized, or academically unsuccessful in the public school context.

  20. Integer 1/0 Knapsack Problem Dynamic Programming Approach in Building Maintenance Optimization

    Directory of Open Access Journals (Sweden)

    Viska Dewi Fawzy

    2017-12-01

    Full Text Available The most common problem in urban areas is the high public demand and the limited provision of housing. In meeting the needs of affordable housing for low income communities, the Government of Indonesia implements Rusunawa Project. Object of this research is Pandanarang Rusunawa. Rusunawa Pandanarang is one of the vertical housing in Cilacap that is facing deterioration issue and needs good maintenance management. This study aims at insetting priority and optimizing maintenance plan due to limited funds (limited budget and the amount of damage that must be repaired.This study uses one of the optimization methods of Dynamic Programing on the application of Integer 1/0 Knapsack Problem, to determine an schedule the maintenance activities. The Criteria that are used such as: the level of building components damage and the level of occupants participation. In the first criterion, the benefit (p is the percentage of damage that is fixed with the cost (w. While on the second criterion, the benefit (p is the percentage of occupant participation rate on the maintenance activities with the cost (w. For the budget of Rp 125.000.000, 00, it was obtained from the simulation that the value of the optimum solution on the first criterion at the 7th stage of 71.88% with total cost Rp 106.000.000, 00. At the second criterion, the value of the optimum solution at the 7th stage of 89.29% with total cost Rp 124.000.000, 00.

  1. Electromechanical Design and Development of the Virginia Tech Roller Rig Testing Facility for Wheel-rail Contact Mechanics and Dynamics

    OpenAIRE

    Hosseinipour, Milad

    2016-01-01

    The electromechanical design and development of a sophisticated roller rig testing facility at the Railway Technologies Laboratory (RTL) of Virginia Polytechnic and State University (VT) is presented. The VT Roller Rig is intended for studying the complex dynamics and mechanics at the wheel-rail interface of railway vehicles in a controlled laboratory environment. Such measurements require excellent powering and driving architecture, high-performance motion control, accurate measurements, and...

  2. Dynamically Partitionable Autoassociative Networks as a Solution to the Neural Binding Problem

    Directory of Open Access Journals (Sweden)

    Kenneth Jeffrey Hayworth

    2012-09-01

    Full Text Available An outstanding question in theoretical neuroscience is how the brain solves the neural binding problem. In vision, binding can be summarized as the ability to represent that certain properties belong to one object while other properties belong to a different object. I review the binding problem in visual and other domains, and review its simplest proposed solution – the anatomical binding hypothesis. This hypothesis has traditionally been rejected as a true solution because it seems to require a type of one-to-one wiring of neurons that would be impossible in a biological system (as opposed to an engineered system like a computer. I show that this requirement for one-to-one wiring can be loosened by carefully considering how the neural representation is actually put to use by the rest of the brain. This leads to a solution where a symbol is represented not as a particular pattern of neural activation but instead as a piece of a global stable attractor state. I introduce the Dynamically Partitionable AutoAssociative Network (DPAAN as an implementation of this solution and show how DPANNs can be used in systems which perform perceptual binding and in systems that implement syntax-sensitive rules. Finally I show how the core parts of the cognitive architecture ACT-R can be neurally implemented using a DPAAN as ACT-R’s global workspace. Because the DPAAN solution to the binding problem requires only ‘flat’ neural representations (as opposed to the phase encoded representation hypothesized in neural synchrony solutions it is directly compatible with the most well developed neural models of learning, memory, and pattern recognition.

  3. METHODOLOGY AND RESULTS OF MOBILE OBJECT PURSUIT PROBLEM SOLUTION WITH TWO-STAGE DYNAMIC SYSTEM

    Directory of Open Access Journals (Sweden)

    A. Kiselev Mikhail

    2017-01-01

    Full Text Available The experience of developing unmanned fighting vehicles indicates that the main challenge in this field reduces itself to creating the systems which can replace the pilot both as a sensor and as the operator of the flight. This problem can be partial- ly solved by introducing remote control, but there are certain flight segments where it can only be executed under fully inde- pendent control and data support due to various reasons, such as tight time, short duration, lack of robust communication, etc. Such stages also include close-range air combat maneuvering (CRACM - a key flight segment as far as the fighter's purpose is concerned, which also places the highest demands on the fighter's design. Until recently the creation of an unmanned fighter airplane has been a fundamentally impossible task due to the absence of sensors able to provide the necessary data support to control the fighter during CRACM. However, the development prospects of aircraft hardware (passive type flush antennae, op- tico-locating panoramic view stations are indicative of producing possible solutions to this problem in the nearest future. There- fore, presently the only fundamental impediment on the way to developing an unmanned fighting aircraft is the problem of cre- ating algorithms for automatic trajectory control during CRACM. This paper presents the strategy of automatic trajectory con- trol synthesis by a two-stage dynamic system aiming to reach the conditions specified with respect to an object in pursuit. It contains certain results of control algorithm parameters impact assessment in regards to the pursuit mission effectiveness. Based on the obtained results a deduction is drawn pertaining to the efficiency of the offered method and its possible utilization in au- tomated control of an unmanned fighting aerial vehicle as well as organizing group interaction during CRACM.

  4. Hydrodynamics of air entrainment by moving contact lines

    NARCIS (Netherlands)

    Chan, Tak Shing; Srivastava, S.K.; Marchand, A.; Andreotti, B.; Biferale, L.; Toschi, F.; Snoeijer, Jacobus Hendrikus

    2013-01-01

    We study the dynamics of the interface between two immiscible fluids in contact with a chemically homogeneous moving solid plate. We consider the generic case of two fluids with any viscosity ratio and of a plate moving in either directions (pulled or pushed in the bath). The problem is studied by a

  5. Effectiveness of a training program for police officers who come into contact with people with mental health problems: A pragmatic randomised controlled trial.

    Science.gov (United States)

    Scantlebury, Arabella; Fairhurst, Caroline; Booth, Alison; McDaid, Catriona; Moran, Nicola; Parker, Adwoa; Payne, Rebecca; Scott, William J; Torgerson, David; Webber, Martin; Hewitt, Catherine

    2017-01-01

    Police officers frequently come into contact with individuals with mental health problems. Specialist training in this area for police officers may improve how they respond to individuals with mental health problems; however, evidence to support this is sparse. This study evaluated the effectiveness of one bespoke mental health training package for frontline police officers relative to routine training. Pragmatic, two-armed cluster randomised controlled trial in one police force in England. Police stations in North Yorkshire were randomised with frontline police officers receiving either a bespoke mental health training package or routine training. The primary outcome was the number of incidents which resulted in a police response reported to the North Yorkshire Police control room up to six months after delivery of training. Secondary outcomes included: likelihood of incidents using Section 136 of the Mental Health Act; likelihood of incidents having a mental health tag applied; and number of individuals with a mental health warning marker involved in incidents. The appropriateness of mental health tags applied to a random sample of incidents was checked by an independent mental health professional. Routinely collected data were used. Twelve police stations were recruited and randomised (Intervention group n = 6; Control group n = 6), and 249 officers received the bespoke mental health training intervention. At follow-up, a median of 397 incidents were assigned to trial stations in the intervention group, and 498 in the control group. There was no evidence of a difference in the number of incidents with a police response (adjusted incidence rate ratio (IRR) 0.92, 95% CI 0.61 to 1.38, p = 0.69), or in the number of people with mental health warning markers involved in incidents (adjusted IRR 1.39, 95% CI 0.91 to 2.10, p = 0.13) between the intervention and control groups up to six months following the intervention; however, incidents assigned to stations in the

  6. Innovation: Contact

    African Journals Online (AJOL)

    Principal Contact. Ruth Hoskins Editor University of KwaZulu-Natal, Information Studies Programme Email: hoskinsr@ukzn.ac.za. Support Contact. Gita Ramdass Email: ramdass@ukzn.ac.za. ISSN: 1025-8892. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More ...

  7. Mechanical Contact Experiments and Simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P; Zhang, W.

    2011-01-01

    . The overall investigation serves for testing and validating the numerical implementation of the mechanical contact, which is one of the main contributions to a system intended for 3D simulation of resistance welding. Correct modelling of contact between parts to be welded, as well as contact with electrodes...... geometries and different materials are analyzed including contact between dissimilar materials. The numerical implementation is performed with a finite element computer program based on the irreducible flow formulation, and contact between deformable objects is modelled by applying the penalty method......, is crucial for satisfactory modelling of the resistance welding process. The resistance heating at the contact interfaces depends on both contact area and pressure, and as the contact areas develop dynamically, the presented tests are relevant for assessing the validity and accuracy of the mechanical contact...

  8. u-w formulation for dynamic problems in large deformation regime solved through an implicit meshfree scheme

    Science.gov (United States)

    Navas, Pedro; Sanavia, Lorenzo; López-Querol, Susana; Yu, Rena C.

    2017-12-01

    Solving dynamic problems for fluid saturated porous media at large deformation regime is an interesting but complex issue. An implicit time integration scheme is herein developed within the framework of the u-w (solid displacement-relative fluid displacement) formulation for the Biot's equations. In particular, liquid water saturated porous media is considered and the linearization of the linear momentum equations taking into account all the inertia terms for both solid and fluid phases is for the first time presented. The spatial discretization is carried out through a meshfree method, in which the shape functions are based on the principle of local maximum entropy LME. The current methodology is firstly validated with the dynamic consolidation of a soil column and the plastic shear band formulation of a square domain loaded by a rigid footing. The feasibility of this new numerical approach for solving large deformation dynamic problems is finally demonstrated through the application to an embankment problem subjected to an earthquake.

  9. Characterizing the Quasi-Static and Dynamic Response of a Non-Contact Magneto-Elastic Torque Sensor

    Science.gov (United States)

    Muller, Brooks

    Advances in the development of rolled-sheet magnetostrictive materials led to testing of a prototype wireless magneto-elastic torque (WiMET) sensor using the iron alloy Galfenol. As torque was applied to a shaft, stress-induced changes in the magnetic state of Galfenol that was bonded to the shaft were proportional to the applied torque. Building on that work, this thesis investigates strategies to improve both repeatability and the signal to noise ratio of WiMET sensor output. Multi-physics models of WiMET stress and magnetic states under applied torques are used to improve understanding of sensor operation. Testing to validate simulations is performed using Galfenol and Alfenol, a newer rolled-sheet alloy, for torsional loads of 0 - 200 in-lb, and under quasi-static and dynamic (0 - 2000 RPM) loading conditions. The experimental results presented support the potential of WiMET sensor use for dynamic torque measurement and health monitoring of drive train systems.

  10. The GBT Dynamic Scheduling System: Scheduling Applications of the Knapsack Problem and Sudoku

    Science.gov (United States)

    Sessoms, E.; Clark, M.; Marganian, P.; McCarty, M.; Shelton, A.

    2009-09-01

    We applied algorithmic approaches to both theoretical and practical aspects of scheduling the Robert C. Byrd Green Bank Telescope (GBT). When using a theoretical approach to scheduling, assigning a numerical value, or score, to a telescope period is only half of the problem. The other half consists of using the score to determine the best global arrangement of the telescope periods in order to maximize the scientific throughput of the telescope. The naive brute-force approach of trying all possible schedules is too computationally expensive. Instead we applied a well-studied approach from operations research, known as dynamic programming. Specifically, we found the so-called ``knapsack'' algorithm to be a good fit to this problem. On the other hand, we cannot actually achieve maximum theoretical efficiency due to many practical constraints on telescope scheduling. The most severe practical constraints are fixed periods that must be scheduled at a specific date and time regardless of possible score and windowed periods that must be scheduled in regular, recurring intervals. The primary difficulty in scheduling fixed and windowed sessions is that they have the potential to conflict and even to generate irresolvable conflicts (double booking). In working on this problem, we realized it shared many characteristics with the game of Sudoku. In Sudoku, there are many possible arrangements of the recurring numbers 1 through 9 (telescope sessions). Some of these are fixed (the hints) and the others must live in windows (distinct groups having one instance each of each digit). Sudoku puzzles are solved algorithmically using a heuristic-guided brute-force search. We followed a similar approach. A full brute-force search is, again, too computationally expensive, but we found ways to restrict the search enough to make it feasible. We used a number of heuristics but found the largest gains came from partitioning the problem into distinct subsets than can each be scheduled

  11. Characterization of contact structures for the spread of infectious diseases in a pork supply chain in northern Germany by dynamic network analysis of yearly and monthly networks.

    Science.gov (United States)

    Büttner, K; Krieter, J; Traulsen, I

    2015-04-01

    A major risk factor in the spread of diseases between holdings is the transport of live animals. This study analysed the animal movements of the pork supply chain of a producer group in Northern Germany. The parameters in-degree and out-degree, ingoing and outgoing infection chain, betweenness and ingoing and outgoing closeness were measured using dynamic network analysis to identify holdings with central positions in the network and to characterize the overall network topology. The potential maximum epidemic size was also estimated. All parameters were calculated for three time periods: the 3-yearly network, the yearly and the monthly networks. The yearly and the monthly networks were more fragmented than the 3-yearly network. On average, one-third of the holdings were isolated in the yearly networks and almost three quarters in the monthly networks. This represented an immense reduction in the number of holdings participating in the trade of the monthly networks. The overall network topology showed right-skewed distributions for all calculated centrality parameters indicating that network resilience was high concerning the random removal of holdings. However, for a targeted removal of holdings according to their centrality, a rapid fragmentation of the trade network could be expected. Furthermore, to capture the real importance of holdings for disease transmission, indirect trade contacts (infection chain) should be considered. In contrast to the parameters regarding direct trade contacts (degree), the infection chain parameter did not underestimate the potential risk of disease transmission. This became more obvious, the longer the observed time period was. For all three time periods, the results for the estimation of the potential maximum epidemic size illustrated that the outgoing infection chain should be chosen. It considers the chronological order and the directed nature of the contacts and has no restrictions such as the strongly connected components of a

  12. Comparison of the effect on bone healing process of different implants used in minimally invasive plate osteosynthesis: limited contact dynamic compression plate versus locking compression plate.

    Science.gov (United States)

    Xue, Zichao; Xu, Haitao; Ding, Haoliang; Qin, Hui; An, Zhiquan

    2016-11-25

    Minimally invasive plate osteosynthesis (MIPO) has been widely accepted because of its satisfactory clinical outcomes. However, the implant construct that works best for MIPO remains controversial. Different plate designs result in different influence mechanisms to blood flow. In this study, we created ulnar fractures in 42 beagle dogs and fixed the fractures using MIPO. The dogs were randomly divided into two groups and were fixed with a limited contact dynamic compression plate (LC-DCP) or a locking compression plate (LCP). Our study showed that with MIPO, there was no significant difference between the LCP and the LC-DCP in terms of fracture fixation, bone formation, or mineralization. Combined with the previous literature, we inferred that the healing process is affected by the quality of fracture reduction more than plate selection.

  13. Universal Features of Electron Dynamics in Solar Cells with TiO2 Contact: From Dye Solar Cells to Perovskite Solar Cells.

    Science.gov (United States)

    Todinova, Anna; Idígoras, Jesús; Salado, Manuel; Kazim, Samrana; Anta, Juan A

    2015-10-01

    The electron dynamics of solar cells with mesoporous TiO2 contact is studied by electrochemical small-perturbation techniques. The study involved dye solar cells (DSC), solid-state perovskite solar cells (SSPSC), and devices where the perovskite acts as sensitizer in a liquid-junction device. Using a transport-recombination continuity equation we found that mid-frequency time constants are proper lifetimes that determine the current-voltage curve. This is not the case for the SSPSC, where a lifetime of ∼1 μs, 1 order of magnitude longer, is required to reproduce the current-voltage curve. This mismatch is attributed to the dielectric response on the mid-frequency component. Correcting for this effect, lifetimes lie on a common exponential trend with respect to open-circuit voltage. Electron transport times share a common trend line too. This universal behavior of lifetimes and transport times suggests that the main difference between the cells is the power to populate the mesoporous TiO2 contact with electrons.

  14. Coupled Static and Dynamic Buckling Modelling of Thin-Walled Structures in Elastic Range Review of Selected Problems

    Directory of Open Access Journals (Sweden)

    Kołakowski Zbigniew

    2016-06-01

    Full Text Available A review of papers that investigate the static and dynamic coupled buckling and post-buckling behaviour of thin-walled structures is carried out. The problem of static coupled buckling is sufficiently well-recognized. The analysis of dynamic interactive buckling is limited in practice to columns, single plates and shells. The applications of finite element method (FEM or/and analytical-numerical method (ANM to solve interaction buckling problems are on-going. In Poland, the team of scientists from the Department of Strength of Materials, Lodz University of Technology and co-workers developed the analytical-numerical method. This method allows to determine static buckling stresses, natural frequencies, coefficients of the equation describing the post-buckling equilibrium path and dynamic response of the plate structure subjected to compression load and/or bending moment. Using the dynamic buckling criteria, it is possible to determine the dynamic critical load. They presented a lot of interesting results for problems of the static and dynamic coupled buckling of thin-walled plate structures with complex shapes of cross-sections, including an interaction of component plates. The most important advantage of presented analytical-numerical method is that it enables to describe all buckling modes and the post-buckling behaviours of thin-walled columns made of different materials. Thin isotropic, orthotropic or laminate structures were considered.

  15. Effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture.

    Science.gov (United States)

    Jain, R; Podworny, N; Hearn, T; Anderson, G I; Schemitsch, E H

    1997-10-01

    Comparison of the effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture. Randomized, prospective. Orthopaedic research laboratory. Ten large (greater than twenty-five kilogram) adult dogs. A short, midshaft spiral tibial fracture was created, followed by lag screw fixation and neutralization with an eight-hole, 3.5-millimeter, low-contact dynamic compression plate (LCDCP) made of either 316L stainless steel (n = five) or commercially pure titanium (n = five). After surgery, animals were kept with unrestricted weight-bearing in individual stalls for ten weeks. Cortical bone blood flow was assessed by laser Doppler flowmetry using a standard metalshafted probe (Periflux Pf303, Perimed, Jarfalla, Sweden) applied through holes in the custom-made LCDCPs at five sites. Bone blood flow was determined at four times: (a) prefracture, (b) postfracture, (c) postplating, and (d) ten weeks postplating. After the dogs were killed, the implant was removed and both the treated tibia and contralateral tibia were tested for bending stiffness and load to failure. Fracture creation decreased cortical perfusion in both groups at the fracture site (p = 0.02). The application of neither stainless steel nor titanium LCDCPs further decreased cortical bone blood flow after fracture creation. However, at ten weeks postplating, cortical perfusion significantly increased compared with acute postplating levels in the stainless steel (p = 0.003) and titanium (p = 0.001) groups. Cortical bone blood flow ten weeks postplating was not significantly different between the titanium group and the stainless steel group. Biomechanical tests performed on the tibiae with the plates removed did not reveal any differences in bending stiffness nor load required to cause failure between the two groups. Both titanium and stainless steel LCDCPs were equally effective in allowing revascularization, and

  16. Contact Angle Measurement in Lattice Boltzmann Method

    OpenAIRE

    Wen, Binghai; Huang, Bingfang; Qin, Zhangrong; Wang, Chunlei; Zhang, Chaoying

    2017-01-01

    Contact angle is an essential characteristic in wetting, capillarity and moving contact line; however, although contact angle phenomena are effectively simulated, an accurate and real-time measurement for contact angle has not been well studied in computational fluid dynamics, especially in dynamic environments. Here, we design a geometry-based mesoscopic scheme to onthesport measure the contact angle in the lattice Boltzmann method. The computational results without gravity effect are in exc...

  17. Controlled and uncontrolled motion in the circular, restricted three-body problem: Dynamically natural spacecraft formations

    Science.gov (United States)

    Basilio, Ralph Ramos

    Spacecraft formation flying involves operating multiple spacecraft in a pre-determined geometrical shape such that the configuration yields both individual and system benefits. One example is an over-flight of the same spatial position by spacecraft in geocentric orbit with the intent to create a complementary data set of remotely sensed observables. Another example is controlling to a high degree of accuracy the distance between spacecraft in heliocentric orbit to create a virtual, large-diameter interferometer telescope. Although Keplerian orbits provide the basic framework for general and precision spacecraft formation flying they also present limitations. Spacecraft are generally constrained to operate only in circular and elliptical orbits, parabolic paths, or hyperbolic trajectories around celestial bodies. Applying continuation methods and bifurcation theory techniques to the circular, restricted three-body problem - where stable and unstable periodic orbits exist around equilibrium points - creates an environment that is more orbit rich. After surmounting a similar challenge with test particles in the circular, restricted three-vortex problem in fluid mechanics as a proof-of-concept, it was shown that spacecraft traveling in uncontrolled motion along separate and distinct planar or three-dimensional periodic orbits could be placed in controlled motion, i.e. a controller is enabled and later disabled at precisely the proper positions, to have them phase-locked on a single periodic orbit. Although it was possible to use this controller in a resonant frequency/orbit approach to establish a formation, it was clearly shown that a separate controller could be used in conjunction with the first to expedite the formation establishment process. Creation of these dynamically natural spacecraft formations or multi-spacecraft platforms will enable the 'loiter, synchronize/coordinate, and observe' approach for future engineering and scientific missions where flexibility

  18. Critical Domain Problem for the Reaction–Telegraph Equation Model of Population Dynamics

    Directory of Open Access Journals (Sweden)

    Weam Alharbi

    2018-04-01

    Full Text Available A telegraph equation is believed to be an appropriate model of population dynamics as it accounts for the directional persistence of individual animal movement. Being motivated by the problem of habitat fragmentation, which is known to be a major threat to biodiversity that causes species extinction worldwide, we consider the reaction–telegraph equation (i.e., telegraph equation combined with the population growth on a bounded domain with the goal to establish the conditions of species survival. We first show analytically that, in the case of linear growth, the expression for the domain’s critical size coincides with the critical size of the corresponding reaction–diffusion model. We then consider two biologically relevant cases of nonlinear growth, i.e., the logistic growth and the growth with a strong Allee effect. Using extensive numerical simulations, we show that in both cases the critical domain size of the reaction–telegraph equation is larger than the critical domain size of the reaction–diffusion equation. Finally, we discuss possible modifications of the model in order to enhance the positivity of its solutions.

  19. Is structural sensitivity a problem of oversimplified biological models? Insights from nested Dynamic Energy Budget models.

    Science.gov (United States)

    Aldebert, Clement; Kooi, Bob W; Nerini, David; Poggiale, Jean-Christophe

    2018-03-14

    Many current issues in ecology require predictions made by mathematical models, which are built on somewhat arbitrary choices. Their consequences are quantified by sensitivity analysis to quantify how changes in model parameters propagate into an uncertainty in model predictions. An extension called structural sensitivity analysis deals with changes in the mathematical description of complex processes like predation. Such processes are described at the population scale by a specific mathematical function taken among similar ones, a choice that can strongly drive model predictions. However, it has only been studied in simple theoretical models. Here, we ask whether structural sensitivity is a problem of oversimplified models. We found in predator-prey models describing chemostat experiments that these models are less structurally sensitive to the choice of a specific functional response if they include mass balance resource dynamics and individual maintenance. Neglecting these processes in an ecological model (for instance by using the well-known logistic growth equation) is not only an inappropriate description of the ecological system, but also a source of more uncertain predictions. Copyright © 2018. Published by Elsevier Ltd.

  20. Inverse problem analysis of pluripotent stem cell aggregation dynamics in stirred-suspension cultures

    Science.gov (United States)

    Rostami, Mahboubeh Rahmati; Wu, Jincheng; Tzanakakis, Emmanuel S.

    2015-01-01

    The cultivation of stem cells as aggregates in scalable bioreactor cultures is an appealing modality for the large-scale manufacturing of stem cell products. Aggregation phenomena are central to such bioprocesses affecting the viability, proliferation and differentiation trajectory of stem cells but a quantitative framework is currently lacking. A population balance equation (PBE) model was used to describe the temporal evolution of the embryonic stem cell (ESC) cluster size distribution by considering collision-induced aggregation and cell proliferation in a stirred-suspension vessel. For ESC cultures at different agitation rates, the aggregation kernel representing the aggregation dynamics was successfully recovered as a solution of the inverse problem. The rate of change of the average aggregate size was greater at the intermediate rate tested suggesting a trade-off between increased collisions and agitation-induced shear. Results from forward simulation with obtained aggregation kernels were in agreement with transient aggregate size data from experiments. We conclude that the framework presented here can complement mechanistic studies offering insights into relevant stem cell clustering processes. More importantly from a process development standpoint, this strategy can be employed in the design and control of bioreactors for the generation of stem cell derivatives for drug screening, tissue engineering and regenerative medicine. PMID:26036699

  1. Do Dental Students' Personality Types and Group Dynamics Affect Their Performance in Problem-Based Learning?

    Science.gov (United States)

    Ihm, Jung-Joon; An, So-Youn; Seo, Deog-Gyu

    2017-06-01

    The aim of this study was to determine whether the personality types of dental students and their group dynamics were linked to their problem-based learning (PBL) performance. The Myers-Briggs Type Indicator (MBTI) instrument was used with 263 dental students enrolled in Seoul National University School of Dentistry from 2011 to 2013; the students had participated in PBL in their first year. A four-session PBL setting was designed to analyze how individual personality types and the diversity of their small groups were associated with PBL performance. Overall, the results showed that the personality type of PBL performance that was the most prominent was Judging. As a group became more diverse with its different constituent personality characteristics, there was a tendency for the group to be higher ranked in terms of PBL performance. In particular, the overperforming group was clustered around three major profiles: Extraverted Intuitive Thinking Judging (ENTJ), Introverted Sensing Thinking Judging (ISTJ), and Extraverted Sensing Thinking Judging (ESTJ). Personality analysis would be beneficial for dental faculty members in order for them to understand the extent to which cooperative learning would work smoothly, especially when considering group personalities.

  2. Semiclassical and phase space approaches to dynamic and collisional problems of nuclei

    International Nuclear Information System (INIS)

    Hasse, R.W.; Gregoire, C.; Remaud, B.; Jaenicke, J.; Schuck, P.

    1988-09-01

    This article summarises recent work on the semiclassical (Thomas-Fermi like) treatment of nuclear correlations and dynamical problems. After a short outline of hte general technique the nucleon-nucleus optical potential in the doorway approximation (2p-1h and 2h-1p intermediate states) is treated. The imaginary part serves to calculate the energy dependent correction to the real part. The level density parameter, occupation numbers, and the mean free path are discussed. The semiclassical treatment of the nuclear response function is given in detail. Applications to inelastic electron scattering in the quasi-elastic peak region are presented. Analogously, inelastic proton scattering is calculated. Because of the surface absorption this reaction excites the surface response. The imaginary part of the single-particle (hole) potential in the evaluation of the response function introduces a 2p-2h spreading. The missing charge in the longitudinal response is reduced but not all experimental puzzles can be explained. The experience gained in the description of phenomena close to equilibrium serves to construct solutions of the Landau-Vlasov (alias Vlasov-Uehling-Uhlenbeck) equation for the description of non-equilibrium processes encountered in heavy ion reactions

  3. Technology Transfer: A Contact Sport

    Science.gov (United States)

    Paynter, Nina P.

    1995-01-01

    Technology transfer is a dynamic process, involving dynamic people as the bridge between NASA Langley Research Center and the outside world. This bridge, for nonaerospace applications, is known as the Technology Applications Group. The introduction of new innovations and expertise where they are needed occurs through a 'push' and 'pull' process. A 'push' occurs when a new technology is first developed with high commercial potential and then a company is found to licence or further develop the technology. The 'pull' process occurs through problem statements. A company or group will submit a written statement of what they need and the shortcomings of commercially available technology. The Technology Transfer Team (T3) reviews these problem statements and decides where NASA LaRC can offer assistance. A researcher or group of researchers are then identified who can help solve the problem and they are put in contact with the company. Depending upon the situation in either method, a Space Act Agreement (SAA), or outline of the responsibilities for each party, is developed.

  4. Dynamic-Programming Approaches to Single- and Multi-Stage Stochastic Knapsack Problems for Portfolio Optimization

    National Research Council Canada - National Science Library

    Khoo, Wai

    1999-01-01

    .... These problems model stochastic portfolio optimization problems (SPOPs) which assume deterministic unit weight, and normally distributed unit return with known mean and variance for each item type...

  5. Photofunctionalization enhances bone-implant contact, dynamics of interfacial osteogenesis, marginal bone seal, and removal torque value of implants: a dog jawbone study.

    Science.gov (United States)

    Pyo, Se-Wook; Park, Young Bum; Moon, Hong Seok; Lee, Jae-Hoon; Ogawa, Takahiro

    2013-12-01

    Ultraviolet (UV) light treatment of titanium, ie, photofunctionalization, has been extensively reported to enhance the osteoconductivity of titanium in animal and in vitro studies. This is the first study to examine whether photofunctionalization is effective on commercial dental implants in vivo. Dental implants with a microroughened surface were placed into dog jawbones. Photofunctionalization was performed by treating implants with UV light for 15 minutes using a photo device immediately before placement. Four weeks after placement, bone-implant integration was evaluated using a removable torque test and static and dynamic histology. Implant surfaces were converted from hydrophobic to super-hydrophilic after photofunctionalization. Removable torque for photofunctionalized implants was significantly higher by 50% than that for untreated implants. Bone-implant contact (BIC) was significantly higher for photofunctionalized implants in all zones examined: marginal, cortical, and bone marrow zones. An intensive mineralized layer was exclusively present in marginal bone at photofunctionalized interface. Dynamic histology identified early-onset, long-lasting robust bone deposition at photofunctionalized interface. Photofunctionalization enhanced the morphology, quality, and behavior of periimplant osteogenesis, including the increased BIC, expedited robust interfacial bone deposition, and improved marginal bone seal and support.

  6. How to formulate and solve "optimal stand density over time" problems for even-aged stands using dynamic programming.

    Science.gov (United States)

    Chung M. Chen; Dietmar W. Rose; Rolfe A. Leary

    1980-01-01

    Describes how dynamic programming can be used to solve optimal stand density problems when yields are given by prior simulation or by a new stand growth equation that is a function of the decision variable. Formulations of the latter type allow use of a calculus-based search procedure; they determine exact optimal residual density at each stage.

  7. Molecular dynamics-assisted pharmacophore modeling of caspase-3-isatin sulfonamide complex: Recognizing essential intermolecular contacts and features of sulfonamide inhibitor class for caspase-3 binding.

    Science.gov (United States)

    Kumar, Sivakumar Prasanth; Patel, Chirag N; Jha, Prakash C; Pandya, Himanshu A

    2017-12-01

    The identification of isatin sulfonamide as a potent small molecule inhibitor of caspase-3 had fuelled the synthesis and characterization of the numerous sulfonamide class of inhibitors to optimize for potency. Recent works that relied on the ligand-based approaches have successfully shown the regions of optimizations for sulfonamide scaffold. We present here molecular dynamics-based pharmacophore modeling of caspase-3-isatin sulfonamide crystal structure, to elucidate the essential non-covalent contacts and its associated pharmacophore features necessary to ensure caspase-3 optimal binding. We performed 20ns long dynamics of this crystal structure to extract global conformation states and converted into structure-based pharmacophore hypotheses which were rigorously validated using an exclusive focussed library of experimental actives and inactives of sulfonamide class by Receiver Operating Characteristic (ROC) statistic. Eighteen structure-based pharmacophore hypotheses with better sensitivity and specificity measures (>0.6) were chosen which collectively showed the role of pocket residues viz. Cys163 (S 1 sub-site; required for covalent and H bonding with Michael acceptor of inhibitors), His121 (S 1 ; π stack with bicyclic isatin moiety), Gly122 (S 1 ; H bond with carbonyl oxygen) and Tyr204 (S 2 ; π stack with phenyl group of the isatin sulfonamide molecule) as stringent binding entities for enabling caspase-3 optimal binding. The introduction of spatial pharmacophore site points obtained from dynamics-based pharmacophore models in a virtual screening strategy will be helpful to screen and optimize molecules belonging to sulfonamide class of caspase-3 inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A coarse-grained elastic network atom contact model and its use in the simulation of protein dynamics and the prediction of the effect of mutations.

    Directory of Open Access Journals (Sweden)

    Vincent Frappier

    2014-04-01

    Full Text Available Normal mode analysis (NMA methods are widely used to study dynamic aspects of protein structures. Two critical components of NMA methods are coarse-graining in the level of simplification used to represent protein structures and the choice of potential energy functional form. There is a trade-off between speed and accuracy in different choices. In one extreme one finds accurate but slow molecular-dynamics based methods with all-atom representations and detailed atom potentials. On the other extreme, fast elastic network model (ENM methods with Cα-only representations and simplified potentials that based on geometry alone, thus oblivious to protein sequence. Here we present ENCoM, an Elastic Network Contact Model that employs a potential energy function that includes a pairwise atom-type non-bonded interaction term and thus makes it possible to consider the effect of the specific nature of amino-acids on dynamics within the context of NMA. ENCoM is as fast as existing ENM methods and outperforms such methods in the generation of conformational ensembles. Here we introduce a new application for NMA methods with the use of ENCoM in the prediction of the effect of mutations on protein stability. While existing methods are based on machine learning or enthalpic considerations, the use of ENCoM, based on vibrational normal modes, is based on entropic considerations. This represents a novel area of application for NMA methods and a novel approach for the prediction of the effect of mutations. We compare ENCoM to a large number of methods in terms of accuracy and self-consistency. We show that the accuracy of ENCoM is comparable to that of the best existing methods. We show that existing methods are biased towards the prediction of destabilizing mutations and that ENCoM is less biased at predicting stabilizing mutations.

  9. Solving dynamic resource constraint project scheduling problems using new constraint programming tools

    OpenAIRE

    Elkhyari, Abdallah; Guéret, Christelle; Jussien, Narendra

    2003-01-01

    Timetabling problems have been studied a lot over the last decade. Due to the complexity and the variety of such problems, most work concern static problems in which activities to schedule and resources are known in advance, and constraints are fixed. However, every timetabling problem is subject to unexpected events (consider for example, for university timetabling problems, a missing teacher, or a slide projector breakdoawn). In such a situation, one has to quickly build a new solution whic...

  10. Military veterans with mental health problems: a protocol for a systematic review to identify whether they have an additional risk of contact with criminal justice systems compared with other veterans groups

    Directory of Open Access Journals (Sweden)

    Taylor James

    2012-11-01

    Full Text Available Abstract Background There is concern that some veterans of armed forces, in particular those with mental health, drug or alcohol problems, experience difficulty returning to a civilian way of life and may subsequently come into contact with criminal justice services and imprisonment. The aim of this review is to examine whether military veterans with mental health problems, including substance use, have an additional risk of contact with criminal justice systems when compared with veterans who do not have such problems. The review will also seek to identify veterans’ views and experiences on their contact with criminal justice services, what contributed to or influenced their contact and whether there are any differences, including international and temporal, in incidence, contact type, veteran type, their presenting health needs and reported experiences. Methods/design In this review we will adopt a methodological model similar to that previously used by other researchers when reviewing intervention studies. The model, which we will use as a framework for conducting a review of observational and qualitative studies, consists of two parallel synthesis stages within the review process; one for quantitative research and the other for qualitative research. The third stage involves a cross study synthesis, enabling a deeper understanding of the results of the quantitative synthesis. A range of electronic databases, including MEDLINE, PsychINFO, CINAHL, will be systematically searched, from 1939 to present day, using a broad range of search terms that cover four key concepts: mental health, military veterans, substance misuse, and criminal justice. Studies will be screened against topic specific inclusion/exclusion criteria and then against a smaller subset of design specific inclusion/exclusion criteria. Data will be extracted for those studies that meet the inclusion criteria, and all eligible studies will be critically appraised. Included

  11. Military veterans with mental health problems: a protocol for a systematic review to identify whether they have an additional risk of contact with criminal justice systems compared with other veterans groups.

    Science.gov (United States)

    Taylor, James; Parkes, Tessa; Haw, Sally; Jepson, Ruth

    2012-11-06

    There is concern that some veterans of armed forces, in particular those with mental health, drug or alcohol problems, experience difficulty returning to a civilian way of life and may subsequently come into contact with criminal justice services and imprisonment. The aim of this review is to examine whether military veterans with mental health problems, including substance use, have an additional risk of contact with criminal justice systems when compared with veterans who do not have such problems. The review will also seek to identify veterans' views and experiences on their contact with criminal justice services, what contributed to or influenced their contact and whether there are any differences, including international and temporal, in incidence, contact type, veteran type, their presenting health needs and reported experiences. In this review we will adopt a methodological model similar to that previously used by other researchers when reviewing intervention studies. The model, which we will use as a framework for conducting a review of observational and qualitative studies, consists of two parallel synthesis stages within the review process; one for quantitative research and the other for qualitative research. The third stage involves a cross study synthesis, enabling a deeper understanding of the results of the quantitative synthesis. A range of electronic databases, including MEDLINE, PsychINFO, CINAHL, will be systematically searched, from 1939 to present day, using a broad range of search terms that cover four key concepts: mental health, military veterans, substance misuse, and criminal justice. Studies will be screened against topic specific inclusion/exclusion criteria and then against a smaller subset of design specific inclusion/exclusion criteria. Data will be extracted for those studies that meet the inclusion criteria, and all eligible studies will be critically appraised. Included studies, both quantitative and qualitative, will then undergo

  12. Local and global approaches to the problem of Poincaré recurrences. Applications in nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Anishchenko, V.S., E-mail: wadim@info.sgu.ru; Boev, Ya.I., E-mail: boev.yaroslav@gmail.com; Semenova, N.I., E-mail: harbour2006@mail.ru; Strelkova, G.I., E-mail: strelkovagi@info.sgu.ru

    2015-07-26

    We review rigorous and numerical results on the statistics of Poincaré recurrences which are related to the modern development of the Poincaré recurrence problem. We analyze and describe the rigorous results which are achieved both in the classical (local) approach and in the recently developed global approach. These results are illustrated by numerical simulation data for simple chaotic and ergodic systems. It is shown that the basic theoretical laws can be applied to noisy systems if the probability measure is ergodic and stationary. Poincaré recurrences are studied numerically in nonautonomous systems. Statistical characteristics of recurrences are analyzed in the framework of the global approach for the cases of positive and zero topological entropy. We show that for the positive entropy, there is a relationship between the Afraimovich–Pesin dimension, Lyapunov exponents and the Kolmogorov–Sinai entropy either without and in the presence of external noise. The case of zero topological entropy is exemplified by numerical results for the Poincare recurrence statistics in the circle map. We show and prove that the dependence of minimal recurrence times on the return region size demonstrates universal properties for the golden and the silver ratio. The behavior of Poincaré recurrences is analyzed at the critical point of Feigenbaum attractor birth. We explore Poincaré recurrences for an ergodic set which is generated in the stroboscopic section of a nonautonomous oscillator and is similar to a circle shift. Based on the obtained results we show how the Poincaré recurrence statistics can be applied for solving a number of nonlinear dynamics issues. We propose and illustrate alternative methods for diagnosing effects of external and mutual synchronization of chaotic systems in the context of the local and global approaches. The properties of the recurrence time probability density can be used to detect the stochastic resonance phenomenon. We also discuss

  13. Dynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope. Basic Concepts and Results. Open Problems: a Review

    Directory of Open Access Journals (Sweden)

    Svetoslav Ganchev Nikolov

    2015-07-01

    Full Text Available The study of the dynamic behavior of a rigid body with one fixed point (gyroscope has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1 to outline the characteristic features of the theory of dynamical systems and 2 to reveal the specific properties of the motion of a rigid body with one fixed point (gyroscope.This article consists of six sections. The first section addresses the main concepts of the theory of dynamical systems. Section two presents the main theoretical results (obtained so far concerning the dynamic behavior of a solid with one fixed point (gyroscope. Section three examines the problem of gyroscopic stabilization. Section four deals with the non-linear (chaotic dynamics of the gyroscope. Section five is a brief analysis of the gyroscope applications in engineering. The final section provides conclusions and generalizations on why the theory of dynamical systems should be used in the study of the movement of gyroscopic systems.

  14. Connecting grain-scale physics to macroscopic granular flow behavior using discrete contact-dynamics simulations, centrifuge experiments, and continuum modeling

    Science.gov (United States)

    Reitz, Meredith; Stark, Colin; Hung, Chi-Yao; Smith, Breannan; Grinspin, Eitan; Capart, Herve; Li, Liming; Crone, Timothy; Hsu, Leslie; Ling, Hoe

    2014-05-01

    A complete theoretical understanding of geophysical granular flow is essential to the reliable assessment of landslide and debris flow hazard and for the design of mitigation strategies, but several key challenges remain. Perhaps the most basic is a general treatment of the processes of internal energy dissipation, which dictate the runout velocity and the shape and scale of the affected area. Currently, dissipation is best described by macroscopic, empirical friction coefficients only indirectly related to the grain-scale physics. Another challenge is describing the forces exerted at the boundaries of the flow, which dictate the entrainment of further debris and the erosion of cohesive surfaces. While the granular effects on these boundary forces have been shown to be large compared to predictions from continuum approximations, the link between granular effects and erosion or entrainment rates has not been settled. Here we present preliminary results of a multi-disciplinary study aimed at improving our understanding of granular flow energy dissipation and boundary forces, through an effort to connect grain-scale physics to macroscopic behaviors. Insights into grain-scale force distributions and energy dissipation mechanisms are derived from discrete contact-dynamics simulations. Macroscopic erosion and flow behaviors are documented from a series of granular flow experiments, in which a rotating drum half-filled with grains is placed within a centrifuge payload, in order to drive effective gravity levels up to ~100g and approach the forces present in natural systems. A continuum equation is used to characterize the flowing layer depth and velocity resulting from the force balance between the down-slope pull of gravity and the friction at the walls. In this presentation we will focus on the effect of granular-specific physics such as force chain networks and grain-grain collisions, derived from the contact dynamics simulations. We will describe our efforts to

  15. Assessing the Internal Dynamics of Mathematical Problem Solving in Small Groups.

    Science.gov (United States)

    Artzt, Alice F.; Armour-Thomas, Eleanor

    The purpose of this exploratory study was to examine the problem-solving behaviors and perceptions of (n=27) seventh-grade students as they worked on solving a mathematical problem within a small-group setting. An assessment system was developed that allowed for this analysis. To assess problem-solving behaviors within a small group a Group…

  16. Solving the job-shop scheduling problem optimally by dynamic programming

    NARCIS (Netherlands)

    Gromicho Dos Santos, J.A.; van Hoorn, J.J.; Saldanha da Gama, F.; Timmer, G.T.

    2012-01-01

    Scheduling problems received substantial attention during the last decennia. The job-shop problem is a very important scheduling problem, which is NP-hard in the strong sense and with well-known benchmark instances of relatively small size which attest the practical difficulty in solving it. The

  17. Solution to the SLAM Problem in Low Dynamic Environments Using a Pose Graph and an RGB-D Sensor

    Directory of Open Access Journals (Sweden)

    Donghwa Lee

    2014-07-01

    Full Text Available In this study, we propose a solution to the simultaneous localization and mapping (SLAM problem in low dynamic environments by using a pose graph and an RGB-D (red-green-blue depth sensor. The low dynamic environments refer to situations in which the positions of objects change over long intervals. Therefore, in the low dynamic environments, robots have difficulty recognizing the repositioning of objects unlike in highly dynamic environments in which relatively fast-moving objects can be detected using a variety of moving object detection algorithms. The changes in the environments then cause groups of false loop closing when the same moved objects are observed for a while, which means that conventional SLAM algorithms produce incorrect results. To address this problem, we propose a novel SLAM method that handles low dynamic environments. The proposed method uses a pose graph structure and an RGB-D sensor. First, to prune the falsely grouped constraints efficiently, nodes of the graph, that represent robot poses, are grouped according to the grouping rules with noise covariances. Next, false constraints of the pose graph are pruned according to an error metric based on the grouped nodes. The pose graph structure is reoptimized after eliminating the false information, and the corrected localization and mapping results are obtained. The performance of the method was validated in real experiments using a mobile robot system.

  18. Solution to the SLAM problem in low dynamic environments using a pose graph and an RGB-D sensor.

    Science.gov (United States)

    Lee, Donghwa; Myung, Hyun

    2014-07-11

    In this study, we propose a solution to the simultaneous localization and mapping (SLAM) problem in low dynamic environments by using a pose graph and an RGB-D (red-green-blue depth) sensor. The low dynamic environments refer to situations in which the positions of objects change over long intervals. Therefore, in the low dynamic environments, robots have difficulty recognizing the repositioning of objects unlike in highly dynamic environments in which relatively fast-moving objects can be detected using a variety of moving object detection algorithms. The changes in the environments then cause groups of false loop closing when the same moved objects are observed for a while, which means that conventional SLAM algorithms produce incorrect results. To address this problem, we propose a novel SLAM method that handles low dynamic environments. The proposed method uses a pose graph structure and an RGB-D sensor. First, to prune the falsely grouped constraints efficiently, nodes of the graph, that represent robot poses, are grouped according to the grouping rules with noise covariances. Next, false constraints of the pose graph are pruned according to an error metric based on the grouped nodes. The pose graph structure is reoptimized after eliminating the false information, and the corrected localization and mapping results are obtained. The performance of the method was validated in real experiments using a mobile robot system.

  19. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    International Nuclear Information System (INIS)

    Heib, F.; Hempelmann, R.; Munief, W.M.; Ingebrandt, S.; Fug, F.; Possart, W.; Groß, K.; Schmitt, M.

    2015-01-01

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ a and the receding θ r contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple line dis

  20. Aluminum break-point contacts

    NARCIS (Netherlands)

    Heinemann, Martina; Groot, R.A. de

    1997-01-01

    Ab initio molecular dynamics is used to study the contribution of a single Al atom to an aluminum breakpoint contact during the final stages of breaking and the initial stages of the formation of such a contact. A hysteresis effect is found in excellent agreement with experiment and the form of the