A dynamic contact problem between elasto-viscoplastic piezoelectric bodies
Tedjani Hadj ammar
2014-10-01
Full Text Available We consider a dynamic contact problem with adhesion between two elastic-viscoplastic piezoelectric bodies. The contact is frictionless and is described with the normal compliance condition. We derive variational formulation for the model which is in the form of a system involving the displacement field, the electric potential field and the adhesion field. We prove the existence of a unique weak solution to the problem. The proof is based on arguments of nonlinear evolution equations with monotone operators, a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed point arguments.
Mixed Finite Element Method for Static and Dynamic Contact Problems with Friction and Initial Gaps
Lanhao Zhao
2014-01-01
Full Text Available A novel mixed finite element method is proposed for static and dynamic contact problems with friction and initial gaps. Based on the characteristic of local nonlinearity for the problem, the system of forces acting on the contactor is divided into two parts: external forces and contact forces. The displacement of structure is chosen as the basic variable and the nodal contact force in contact region under local coordinate system is selected as the iteration variable to confine the nonlinear iteration process in the potential contact surface which is more numerically efficient. In this way, the sophisticated contact nonlinearity is revealed by the variety of the contact forces which are determined by the external load and the contact state stick, slip, or separation. Moreover, in the case of multibody contact problem, the flexibility matrix is symmetric and sparse; thus, the iterative procedure becomes easily carried out and much more economical. In the paper, both the finite element formulations and the iteration process are given in detail for static and dynamic contact problems. Four examples are included to demonstrate the accuracy and applicability of the presented method.
Dynamic contact problem with adhesion and damage between thermo-electro-elasto-viscoplastic bodies
Hadj ammar, Tedjani; Saïdi, Abdelkader; Azeb Ahmed, Abdelaziz
2017-05-01
We study of a dynamic contact problem between two thermo-electro-elasto-viscoplastic bodies with damage and adhesion. The contact is frictionless and is modeled with normal compliance condition. We derive variational formulation for the model and prove an existence and uniqueness result of the weak solution. The proof is based on arguments of evolutionary variational inequalities, parabolic inequalities, differential equations, and fixed point theorem.
A dynamic unilateral contact problem with adhesion and friction in viscoelasticity
Cocou, Marius; Schryve, Mathieu; Raous, Michel
2010-08-01
The aim of this paper is to study an interaction law coupling recoverable adhesion, friction and unilateral contact between two viscoelastic bodies of Kelvin-Voigt type. A dynamic contact problem with adhesion and nonlocal friction is considered and its variational formulation is written as the coupling between an implicit variational inequality and a parabolic variational inequality describing the evolution of the intensity of adhesion. The existence and approximation of variational solutions are analysed, based on a penalty method, some abstract results and compactness properties. Finally, some numerical examples are presented.
Existence of solutions for the dynamic frictional contact problem of isotropic viscoelastic bodies
Eck, C.; Jarušek, Jiří
2003-01-01
Roč. 53, č. 2 (2003), s. 157-181 ISSN 0362-546X R&D Projects: GA AV ČR IAA1075005; GA AV ČR IAA1075707 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : dynamic contact problem * parabolic equation * Coulomb law of friction Subject RIV: BA - General Mathematics Impact factor: 0.354, year: 2003
Eck, Ch.; Jarušek, Jiří; Sofonea, M.
2010-01-01
Roč. 21, č. 3 (2010), s. 229-251 ISSN 0956-7925 R&D Projects: GA AV ČR IAA100750802 Institutional research plan: CEZ:AV0Z10190503 Keywords : elastic-vosco plastic material * dynamic contact problem * normal damped response * unilateral constraint * Coulomb friction * weak solution * penalitazion * smoothing Subject RIV: BA - General Mathematics Impact factor: 1.480, year: 2010 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7675484&fileId=S0956792510000045
Mikaël Barboteu
2016-01-01
Full Text Available We consider a mathematical model which describes the dynamic evolution of a viscoelastic body in frictional contact with an obstacle. The contact is modelled with a combination of a normal compliance and a normal damped response law associated with a slip rate-dependent version of Coulomb’s law of dry friction. We derive a variational formulation and an existence and uniqueness result of the weak solution of the problem is presented. Next, we introduce a fully discrete approximation of the variational problem based on a finite element method and on an implicit time integration scheme. We study this fully discrete approximation schemes and bound the errors of the approximate solutions. Under regularity assumptions imposed on the exact solution, optimal order error estimates are derived for the fully discrete solution. Finally, after recalling the solution of the frictional contact problem, some numerical simulations are provided in order to illustrate both the behavior of the solution related to the frictional contact conditions and the theoretical error estimate result.
Kreiss, Gunilla; Holmgren, Hanna; Kronbichler, Martin; Ge, Anthony; Brant, Luca
2017-11-01
The conventional no-slip boundary condition leads to a non-integrable stress singularity at a moving contact line. This makes numerical simulations of two-phase flow challenging, especially when capillarity of the contact point is essential for the dynamics of the flow. We will describe a modeling methodology, which is suitable for numerical simulations, and present results from numerical computations. The methodology is based on combining a relation between the apparent contact angle and the contact line velocity, with the similarity solution for Stokes flow at a planar interface. The relation between angle and velocity can be determined by theoretical arguments, or from simulations using a more detailed model. In our approach we have used results from phase field simulations in a small domain, but using a molecular dynamics model should also be possible. In both cases more physics is included and the stress singularity is removed.
Existence and uniqueness results for a class of dynamic elasto-plastic contact problems
Krejčí, Pavel; Petrov, A.
2013-01-01
Roč. 408, č. 1 (2013), s. 125-139 ISSN 0022-247X R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : contact with friction * elasto-plasticity * hysteresis operators Subject RIV: BA - General Mathematics Impact factor: 1.119, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022247X13004952
Scalable algorithms for contact problems
Dostál, Zdeněk; Sadowská, Marie; Vondrák, Vít
2016-01-01
This book presents a comprehensive and self-contained treatment of the authors’ newly developed scalable algorithms for the solutions of multibody contact problems of linear elasticity. The brand new feature of these algorithms is theoretically supported numerical scalability and parallel scalability demonstrated on problems discretized by billions of degrees of freedom. The theory supports solving multibody frictionless contact problems, contact problems with possibly orthotropic Tresca’s friction, and transient contact problems. It covers BEM discretization, jumping coefficients, floating bodies, mortar non-penetration conditions, etc. The exposition is divided into four parts, the first of which reviews appropriate facets of linear algebra, optimization, and analysis. The most important algorithms and optimality results are presented in the third part of the volume. The presentation is complete, including continuous formulation, discretization, decomposition, optimality results, and numerical experimen...
Glaese, John R.; Tobbe, Patrick A.
1986-01-01
The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.
On the solutions of a dynamic contact problem for a thermoelastic von Kármán plate
Bock, I.; Jarušek, Jiří; Šilhavý, Miroslav
2016-01-01
Roč. 32, December (2016), s. 111-135 ISSN 1468-1218 R&D Projects: GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985840 Keywords : thermoelastic plate * unilateral dynamic contact * rigid obstacle Subject RIV: BA - General Mathematics Impact factor: 1.659, year: 2016 http://www.sciencedirect.com/science/article/pii/S146812181630013X
Ballard, Patrick; Charles, Alexandre
2018-03-01
In the end of the seventies, Schatzman and Moreau undertook to revisit the venerable dynamics of rigid bodies with contact and dry friction in the light of more recent mathematics. One claimed objective was to reach, for the first time, a mathematically consistent formulation of an initial value problem associated with the dynamics. The purpose of this article is to make a review of the today state-of-art concerning not only the formulation, but also the issues of existence and uniqueness of solution. xml:lang="fr"
Granular contact dynamics using mathematical programming methods
Krabbenhoft, K.; Lyamin, A. V.; Huang, J.
2012-01-01
granular contact dynamics formulation uses an implicit time discretization, thus allowing for large time steps. Moreover, in the limit of an infinite time step, the general dynamic formulation reduces to a static formulation that is useful in simulating common quasi-static problems such as triaxial tests...... is developed and it is concluded that the associated sliding rule, in the context of granular contact dynamics, may be viewed as an artifact of the time discretization and that the use of an associated flow rule at the particle scale level generally is physically acceptable. (C) 2012 Elsevier Ltd. All rights...
Dynamic frictional contact for elastic viscoplastic material
Kenneth L. Kuttler
2007-05-01
Full Text Available Using a general theory for evolution inclusions, existence and uniqueness theorems are obtained for weak solutions to a frictional dynamic contact problem for elastic visco-plastic material. An existence theorem in the case where the friction coefficient is discontinuous is also presented.
Quaternionic contact Einstein structures and the quaternionic contact Yamabe problem
Ivanov, Stefan; Vassilev, Dimiter
2014-01-01
A partial solution of the quaternionic contact Yamabe problem on the quaternionic sphere is given. It is shown that the torsion of the Biquard connection vanishes exactly when the trace-free part of the horizontal Ricci tensor of the Biquard connection is zero and this occurs precisely on 3-Sasakian manifolds. All conformal transformations sending the standard flat torsion-free quaternionic contact structure on the quaternionic Heisenberg group to a quaternionic contact structure with vanishing torsion of the Biquard connection are explicitly described. A "3-Hamiltonian form" of infinitesimal conformal automorphisms of quaternionic contact structures is presented.
Unilateral contact problems variational methods and existence theorems
Eck, Christof; Krbec, Miroslav
2005-01-01
The mathematical analysis of contact problems, with or without friction, is an area where progress depends heavily on the integration of pure and applied mathematics. This book presents the state of the art in the mathematical analysis of unilateral contact problems with friction, along with a major part of the analysis of dynamic contact problems without friction. Much of this monograph emerged from the authors'' research activities over the past 10 years and deals with an approach proven fruitful in many situations. Starting from thin estimates of possible solutions, this approach is based on an approximation of the problem and the proof of a moderate partial regularity of the solution to the approximate problem. This in turn makes use of the shift (or translation) technique - an important yet often overlooked tool for contact problems and other nonlinear problems with limited regularity. The authors pay careful attention to quantification and precise results to get optimal bounds in sufficient conditions f...
Bilateral contact problem with adhesion and damage
Adel Aissaoui
2014-05-01
Full Text Available We study a mathematical problem describing the frictionless adhesive contact between a viscoelastic material with damage and a foundation. The adhesion process is modeled by a bonding field on the contact surface. The contact is bilateral and the tangential shear due to the bonding field is included. We establish a variational formulation for the problem and prove the existence and uniqueness of the solution. The existence of a unique weak solution for the problem is established using arguments of nonlinear evolution equations with monotone operators, a classical existence and uniqueness result for parabolic inequalities, and Banach's fixed point theorem.
The Influence of Dynamic Contact Angle on Wetting Dynamics
Rame, Enrique; Garoff, Steven
2005-01-01
When surface tension forces dominate, and regardless of whether the situation is static or dynamic, the contact angle (the angle the interface between two immiscible fluids makes when it contacts a solid) is the key parameter that determines the shape of a fluid-fluid interface. The static contact angle is easy to measure and implement in models predicting static capillary surface shapes and such associated quantities as pressure drops. By contrast, when the interface moves relative to the solid (as in dynamic wetting processes) the dynamic contact angle is not identified unambiguously because it depends on the geometry of the system Consequently, its determination becomes problematic and measurements in one geometry cannot be applied in another for prediction purposes. However, knowing how to measure and use the dynamic contact angle is crucial to determine such dynamics as a microsystem throughput reliably. In this talk we will present experimental and analytical efforts aimed at resolving modeling issues present in dynamic wetting. We will review experiments that show the inadequacy of the usual hydrodynamic model when a fluid-fluid meniscus moves over a solid surface such as the wall of a small tube or duct. We will then present analytical results that show how to parametrize these problems in a predictive manner. We will illustrate these ideas by showing how to implement the method in numerical fluid mechanical calculations.
Yang, C.; Persson, B. N. J.
2007-01-01
We report a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. We study the contact area and the interfacial separation from small contact (low load) to full contact (high load). For small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For high load the contact area approaches to the nominal contact area (i.e., complete contact), and the i...
Dynamic contact with Signorini's condition and slip rate dependent friction
Kenneth Kuttler
2004-06-01
Full Text Available Existence of a weak solution for the problem of dynamic frictional contact between a viscoelastic body and a rigid foundation is established. Contact is modelled with the Signorini condition. Friction is described by a slip rate dependent friction coefficient and a nonlocal and regularized contact stress. The existence in the case of a friction coefficient that is a graph, which describes the jump from static to dynamic friction, is established, too. The proofs employ the theory of set-valued pseudomonotone operators applied to approximate problems and a priori estimates.
Dynamics of the Molten Contact Line
Sonin, Ain A.; Duthaler, Gregg; Liu, Michael; Torresola, Javier; Qiu, Taiqing
1999-01-01
The purpose of this program is to develop a basic understanding of how a molten material front spreads over a solid that is below its melting point, arrests, and freezes. Our hope is that the work will contribute toward a scientific knowledge base for certain new applications involving molten droplet deposition, including the "printing" of arbitrary three-dimensional objects by precise deposition of individual molten microdrops that solidify after impact. Little information is available at this time on the capillarity-driven motion and arrest of molten contact line regions. Schiaffino and Sonin investigated the arrest of the contact line of a molten microcrystalline wax spreading over a subcooled solid "target" of the same material. They found that contact line arrest takes place at an apparent liquid contact angle that depends primarily on the Stefan number S=c(T(sub f) -T(sub t)/L based on the temperature difference between the fusion point and the target temperature, and proposed that contact line arrest occurs when the liquid's dynamic contact angle approaches the angle of attack of the solidification front just behind the contact line. They also showed, however, that the conventional continuum equations and boundary conditions have no meaningful solution for this angle. The solidification front angle is determined by the heat flux just behind the contact line, and the heat flux is singular at that point. By comparing experiments with numerical computations, Schiaffino and Sonin estimated that the conventional solidification model must break down within a distance of order 0.1 - 1 microns of the contact line. The physical mechanism for this breakdown is as yet undetermined, and no first-principles theory exists for the contact angle at arrest. Schiaffino and Sonin also presented a framework for understanding how to moderate Weber number molten droplet deposition in terms of similarity laws and experimentation. The study is based on experiments with three molten
Contact Dynamics of EHL Contacts under Time Varying Conditions
Venner, Cornelis H.; Popovici, G.; Wijnant, Ysbrand H.; Dalmaz, G.; Lubrecht, A.A.; Priest, M
2004-01-01
By means of numerical simulations of two situations with time varying operating conditions it is shown that the dynamic behaviour of Elasto-Hydrodynamically Lubricated contacts in terms of vibrations can be characterized as: Changes in the mutual approach lead to film thickness changes in the inlet
Charles, Alexandre; Ballard, Patrick
2016-08-01
The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration manifold). The handling of perfect (frictionless) unilateral constraints in this framework (that of Lagrange's analytical dynamics) was undertaken by Schatzman and Moreau at the beginning of the 1980s. A mathematically sound and consistent evolution problem was obtained, paving the road for many subsequent theoretical investigations. In this general evolution problem, the only reaction force which is involved is a generalized reaction force, consistently with the virtual power philosophy of Lagrange. Surprisingly, such a general formulation was never derived in the case of frictional unilateral multibody dynamics. Instead, the paradigm of the Coulomb law applying to reaction forces in the real world is generally invoked. So far, this paradigm has only enabled to obtain a consistent evolution problem in only some very few specific examples and to suggest numerical algorithms to produce computational examples (numerical modeling). In particular, it is not clear what is the evolution problem underlying the computational examples. Moreover, some of the few specific cases in which this paradigm enables to write down a precise evolution problem are known to show paradoxes: the Painlevé paradox (indeterminacy) and the Kane paradox (increase in kinetic energy due to friction). In this paper, we follow Lagrange's philosophy and formulate the frictional unilateral multibody dynamics in terms of the generalized reaction force and not in terms of the real-world reaction force. A general evolution problem that governs the dynamics is obtained for the first time. We prove that all the solutions are dissipative; that is, this new formulation is free of Kane paradox. We also prove that some indeterminacy of the Painlevé paradox is fixed in this
Emery, V.J.; Kivelson, S.A.
1993-01-01
In the past few years there has been a resurgence of interest in dynamical impurity problems, as a result of developments in the theory of correlated electron systems. The general dynamical impurity problem is a set of conduction electrons interacting with an impurity which has internal degrees of freedom. The simplest and earliest example, the Kondo problem, has attracted interest since the mid-sixties not only because of its physical importance but also as an example of a model displaying logarithmic divergences order by order in perturbation theory. It provided one of the earliest applications of the renormalization group method, which is designed to deal with just such a situation. As we shall see, the antiferromagnetic Kondo model is controlled by a strong-coupling fixed point, and the essence of the renormalization group solution is to carry out the global renormalization numerically starting from the original (weak-coupling) Hamiltonian. In these lectures, we shall describe an alternative route in which we identify an exactly solvable model which renormalizes to the same fixed point as the original dynamical impurity problem. This approach is akin to determining the critical behavior at a second order phase transition point by solving any model in a given universality class
Emery, V.J. [Brookhaven National Lab., Upton, NY (United States); Kivelson, S.A. [California Univ., Los Angeles, CA (United States). Dept. of Physics
1993-12-31
In the past few years there has been a resurgence of interest in dynamical impurity problems, as a result of developments in the theory of correlated electron systems. The general dynamical impurity problem is a set of conduction electrons interacting with an impurity which has internal degrees of freedom. The simplest and earliest example, the Kondo problem, has attracted interest since the mid-sixties not only because of its physical importance but also as an example of a model displaying logarithmic divergences order by order in perturbation theory. It provided one of the earliest applications of the renormalization group method, which is designed to deal with just such a situation. As we shall see, the antiferromagnetic Kondo model is controlled by a strong-coupling fixed point, and the essence of the renormalization group solution is to carry out the global renormalization numerically starting from the original (weak-coupling) Hamiltonian. In these lectures, we shall describe an alternative route in which we identify an exactly solvable model which renormalizes to the same fixed point as the original dynamical impurity problem. This approach is akin to determining the critical behavior at a second order phase transition point by solving any model in a given universality class.
The Contact Dynamics method: A nonsmooth story
Dubois, Frédéric; Acary, Vincent; Jean, Michel
2018-03-01
When velocity jumps are occurring, the dynamics is said to be nonsmooth. For instance, in collections of contacting rigid bodies, jumps are caused by shocks and dry friction. Without compliance at the interface, contact laws are not only non-differentiable in the usual sense but also multi-valued. Modeling contacting bodies is of interest in order to understand the behavior of numerous mechanical systems such as flexible multi-body systems, granular materials or masonry. These granular materials behave puzzlingly either like a solid or a fluid and a description in the frame of classical continuous mechanics would be welcome though far to be satisfactory nowadays. Jean-Jacques Moreau greatly contributed to convex analysis, functions of bounded variations, differential measure theory, sweeping process theory, definitive mathematical tools to deal with nonsmooth dynamics. He converted all these underlying theoretical ideas into an original nonsmooth implicit numerical method called Contact Dynamics (CD); a robust and efficient method to simulate large collections of bodies with frictional contacts and impacts. The CD method offers a very interesting complementary alternative to the family of smoothed explicit numerical methods, often called Distinct Elements Method (DEM). In this paper developments and improvements of the CD method are presented together with a critical comparative review of advantages and drawbacks of both approaches. xml:lang="fr"
Dynamic Contact Angle at the Nanoscale: A Unified View.
Lukyanov, Alex V; Likhtman, Alexei E
2016-06-28
Generation of a dynamic contact angle in the course of wetting is a fundamental phenomenon of nature. Dynamic wetting processes have a direct impact on flows at the nanoscale, and therefore, understanding them is exceptionally important to emerging technologies. Here, we reveal the microscopic mechanism of dynamic contact angle generation. It has been demonstrated using large-scale molecular dynamics simulations of bead-spring model fluids that the main cause of local contact angle variations is the distribution of microscopic force acting at the contact line region. We were able to retrieve this elusive force with high accuracy. It has been directly established that the force distribution can be solely predicted on the basis of a general friction law for liquid flow at solid surfaces by Thompson and Troian. The relationship with the friction law provides both an explanation of the phenomenon of dynamic contact angle and a methodology for future predictions. The mechanism is intrinsically microscopic, universal, and irreducible and is applicable to a wide range of problems associated with wetting phenomena.
Dynamic contact angle cycling homogenizes heterogeneous surfaces.
Belibel, R; Barbaud, C; Mora, L
2016-12-01
In order to reduce restenosis, the necessity to develop the appropriate coating material of metallic stent is a challenge for biomedicine and scientific research over the past decade. Therefore, biodegradable copolymers of poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) were prepared in order to develop a new coating exhibiting different custom groups in its side chain and being able to carry a drug. This material will be in direct contact with cells and blood. It consists of carboxylic acid and hexylic groups used for hydrophilic and hydrophobic character, respectively. The study of this material wettability and dynamic surface properties is of importance due to the influence of the chemistry and the potential motility of these chemical groups on cell adhesion and polymer kinetic hydrolysis. Cassie theory was used for the theoretical correction of contact angles of these chemical heterogeneous surfaces coatings. Dynamic Surface Analysis was used as practical homogenizer of chemical heterogeneous surfaces by cycling during many cycles in water. In this work, we confirmed that, unlike receding contact angle, advancing contact angle is influenced by the difference of only 10% of acidic groups (%A) in side-chain of polymers. It linearly decreases with increasing acidity percentage. Hysteresis (H) is also a sensitive parameter which is discussed in this paper. Finally, we conclude that cycling provides real information, thus avoiding theoretical Cassie correction. H(10)is the most sensible parameter to %A. Copyright © 2016 Elsevier B.V. All rights reserved.
Contact Geometry of Mesoscopic Thermodynamics and Dynamics
Miroslav Grmela
2014-03-01
Full Text Available The time evolution during which macroscopic systems reach thermodynamic equilibrium states proceeds as a continuous sequence of contact structure preserving transformations maximizing the entropy. This viewpoint of mesoscopic thermodynamics and dynamics provides a unified setting for the classical equilibrium and nonequilibrium thermodynamics, kinetic theory, and statistical mechanics. One of the illustrations presented in the paper is a new version of extended nonequilibrium thermodynamics with fluxes as extra state variables.
Inequivalence of interior and exterior dynamical problems
Santilli, R.M.
1991-09-01
We begin a series of notes with the review of the historical distinction by Lagrange, Hamilton, Jacobi and other Founding Fathers of analytic dynamics, between the exteriordynamical problem, consisting of motion in vacuum under action-at-a-distance interactions, and the interior dynamical problem, consisting of motion within a resistive medium with the additional presence of contact, nonlinear, nonlocal and nonhamiltonian internal forces. After recalling some of the historical reasons that led to the contemporary, virtually complete restriction of research to the exterior problem, we show that the interior dynamical problem cannot be reduced to the exterior one. This establishes the open character of the central objective of these notes: the identification of the space-time symmetries and relativities that are applicable to interior, nonlinear, nonlocal and nonhamiltonian systems. (author). 29 refs
Mathematical Modeling of Contact Problems of Elasticity Theory with Continuous Unilateral Contact
I. V. Stankevich
2015-01-01
Full Text Available The work [1] presents the formulation and numerical solution of the problem concerning the unilateral discrete contact interaction of an elastic body and a rigid half-space. However, many parts and components of engineering structures have a pronounced continuous contact within a given surface [2, 3]. In this paper we consider a special case of this option of contact interaction when, the elastic body of finite size, subjected to external forces, is based on a rigid half-space. Contact occurs through a dedicated contact surface, which in general can change their sizes.Developed to solve this problem, a numerical algorithm is a further adaptation and development of the approaches described in [1]. The paper shows results of solving the model problem of the elasticity theory with and without taking friction into account. In the latter case, were additionally obtained numerical data characterizing the convergence of the solution.
Dynamic Multi-Rigid-Body Systems with Concurrent Distributed Contacts: Theory and Examples
TRINKLE, JEFFREY C.; TZITZOURIS, J.A.; PANG, J.S.
2001-01-01
Consider a system of rigid bodies with multiple concurrent contacts. The multi-rigid-body contact problem is to predict the accelerations of the bodies and the normal friction loads acting at the contacts. This paper presents theoretical results for the multi-rigid-body contact problem under the assumptions that one or more contacts occur over locally planar, finite regions and that friction forces are consistent with the maximum work inequality. Existence and uniqueness results are presented for this problem under mild assumptions on the system inputs. In addition, the performance of two different time-stepping methods for integrating the dynamics are compared on two simple multi-body systems
Wetting dynamics at high values of contact line speed
Пономарев, К. О.; Феоктистов, Дмитрий Владимирович; Орлова, Евгения Георгиевна
2015-01-01
Experimental results analyses of dynamic contact angle change under the conditions of substrate wetting by distilled water at high values of the contact line speed was conducted. Three spreading modes for copper substrates with different roughness were selected: drop formation, spreading and equilibrium contact angle formation. Peculiarity of droplet spreading on superhydrophobic surface is found. It consists in a monotonic increase of the advancing dynamic contact angle. The effect of the dr...
The problem of Newton dynamics
Roman Roldan, R.
1998-01-01
The problem of the teaching of Newton's principles of dynamics at High School level is addressed. Some usages, reasoning and wording, are pointed as the responsible for the deficient results which are revealed in the background of the first year University students in Physics. A methodology based on simplifying the common vocabulary is proposed in order to provide to the students with a clearer view of the dynamic problems. Some typical examples are shown which illustrate the proposal. (Author)
Effect of time derivative of contact area on dynamic friction
Arakawa, Kazuo
2015-01-01
This study investigated dynamic friction during oblique impact of a golf ball by evaluating the ball’s angular velocity, contact force, and the contact area between the ball and target. The effect of the contact area on the angular velocities was evaluated, and the results indicated that the contact area plays an important role in dynamic friction. In this study, the dynamic friction force F was given by F= μN+μη.dA/dt, where μ is the coefficient of friction, N is the contact force, dA/dt is ...
Solution of Contact Problems for Nonlinear Gao Beam and Obstacle
J. Machalová
2015-01-01
Full Text Available Contact problem for a large deformed beam with an elastic obstacle is formulated, analyzed, and numerically solved. The beam model is governed by a nonlinear fourth-order differential equation developed by Gao, while the obstacle is considered as the elastic foundation of Winkler’s type in some distance under the beam. The problem is static without a friction and modeled either using Signorini conditions or by means of normal compliance contact conditions. The problems are then reformulated as optimal control problems which is useful both for theoretical aspects and for solution methods. Discretization is based on using the mixed finite element method with independent discretization and interpolations for foundation and beam elements. Numerical examples demonstrate usefulness of the presented solution method. Results for the nonlinear Gao beam are compared with results for the classical Euler-Bernoulli beam model.
Analysis of a Unilateral Contact Problem with Normal Compliance
Touzaline Arezki
2014-06-01
Full Text Available The paper deals with the study of a quasistatic unilateral contact problem between a nonlinear elastic body and a foundation. The contact is modelled with a normal compliance condition associated to unilateral constraint and the Coulomb's friction law. The adhesion between contact surfaces is taken into account and is modelled with a surface variable, the bonding field, whose evolution is described by a first-order differential equation. We establish a variational formulation of the mechanical problem and prove an existence and uniqueness result in the case where the coefficient of friction is bounded by a certain constant. The technique of the proof is based on arguments of time-dependent variational inequalities, differential equations and fixed-point theorem.
Periodic Contact and Crack Problems in Plane Elasticity
Krenk, Steen
1976-01-01
By use of singular integral equations it is demonstrated how some periodic contact and crack problems can be solved in closed form. The integral equation in question is the same which is encountered when dealing with mixed boundary conditions on a circle. As analytical evaluation of the solution ...... may be quite complicated attention is drawn to a numerical quadrature method...
Approximate stresses in 2-D flat elastic contact fretting problems
Urban, Michael Rene
Fatigue results from the cyclic loading of a solid body. If the body subject to fatigue is in contact with another body and relative sliding motion occurs between these two bodies, then rubbing surface damage can accelerate fatigue failure. The acceleration of fatigue failure is especially important if the relative motion between the two bodies results in surface damage without excessive surface removal via wear. The situation just described is referred to as fretting fatigue. Understanding of fretting fatigue is greatly enhanced if the stress state associated with fretting can be characterized. For Hertzian contact, this can readily be done. Unfortunately, simple stress formulae are not available for flat body contact. The primary result of the present research is the development of a new, reasonably accurate, approximate closed form expression for 2-dimensional contact stresses which has been verified using finite element modeling. This expression is also combined with fracture mechanics to provide a simple method of determining when a crack is long enough to no longer be affected by the contact stress field. Lower bounds on fatigue life can then easily be calculated using fracture mechanics. This closed form expression can also be used to calculate crack propagation within the contact stress field. The problem of determining the cycles required to generate an initial crack and what to choose as an initial crack size is unresolved as it is in non-fretting fatigue.
Non-steady state modeling of wheel-rail contact problem
Guiral, A.; Alonso, A.; Baeza González, Luis Miguel; Giménez, J.G.
2013-01-01
Among all the algorithms to solve the wheel–rail contact problem, Kalker's FastSim has become the most useful computation tool since it combines a low computational cost and enough precision for most of the typical railway dynamics problems. However, some types of dynamic problems require the use of a non-steady state analysis. Alonso and Giménez developed a non-stationary method based on FastSim, which provides both, sufficiently accurate results and a low computational cost. However, it pre...
Non-steady state modelling of wheel-rail contact problem
Guiral, A.; Alonso, A.; Baeza, L.; Giménez, J. G.
2013-01-01
Among all the algorithms to solve the wheel-rail contact problem, Kalker's FastSim has become the most useful computation tool since it combines a low computational cost and enough precision for most of the typical railway dynamics problems. However, some types of dynamic problems require the use of a non-steady state analysis. Alonso and Giménez developed a non-stationary method based on FastSim, which provides both, sufficiently accurate results and a low computational cost. However, it presents some limitations; the method is developed for one time-dependent creepage and its accuracy for varying normal forces has not been checked. This article presents the required changes in order to deal with both problems and compares its results with those given by Kalker's Variational Method for rolling contact.
Mathematical Modeling of Contact Problems of Elasticity Theory with Unilateral Discrete Contact
I. V. Stankevich
2015-01-01
Full Text Available Development and operation of modern machinery and latest technology require reliable estimates of the strength characteristics of the critical elements of structures and technological equipment under the impact of high-intensity thermomechanical loading, accompanied, as a rule, by complex contact interaction. Mathematical modeling of stress-strain state of such parts and components in the contact area, based on adequate mathematical models, modern numerical methods and efficient algorithms that implement the direct determination of displacement fields, strains and stresses, is the main tool that allows fast acquisition of data required for the calculations of strength and durability. The paper considers an algorithm for constructing the numerical solution of the contact problem of elasticity theory in relation to the body, which has an obvious one-sided discrete contact interaction with an elastic half-space. The proposed algorithm is specially designed to have a correction of the tangential forces at discrete contact points, allowing us to achieve sufficiently accurate implementation of the adopted law of friction. The algorithm is embedded in a general finite element technology, with which the application code is generated. Numerical study of discrete unilateral contact interaction of an elastic plate and a rigid half-space showed a high efficiency of the developed algorithm and the application code that implements it.
Testing and Modeling of Contact Problems in Resistance Welding
Song, Quanfeng
together two or three cylindrical parts as well as disc-ring pairs of dissimilar metals. The tests have demonstrated the effectiveness of the model. A theoretical and experimental study is performed on the contact resistance aiming at a more reliable model for numerical simulation of resistance welding......As a part of the efforts towards a professional and reliable numerical tool for resistance welding engineers, this Ph.D. project is dedicated to refining the numerical models related to the interface behavior. An FE algorithm for the contact problems in resistance welding has been developed...... for the formulation, and the interfaces are treated in a symmetric pattern. The frictional sliding contact is also solved employing the constant friction model. The algorithm is incorporated into the finite element code. Verification is carried out in some numerical tests as well as experiments such as upsetting...
THE CONTROL VARIATIONAL METHOD FOR ELASTIC CONTACT PROBLEMS
Mircea Sofonea
2010-07-01
Full Text Available We consider a multivalued equation of the form Ay + F(y = fin a real Hilbert space, where A is a linear operator and F represents the (Clarke subdifferential of some function. We prove existence and uniqueness results of the solution by using the control variational method. The main idea in this method is to minimize the energy functional associated to the nonlinear equation by arguments of optimal control theory. Then we consider a general mathematical model describing the contact between a linearly elastic body and an obstacle which leads to a variational formulation as above, for the displacement field. We apply the abstract existence and uniqueness results to prove the unique weak solvability of the corresponding contact problem. Finally, we present examples of contact and friction laws for which our results work.
Simulation of unilateral contact problems departing from the classical boundary problems
Frey, S.L.; Sampaio, R.; Gama, R.M.S. da.
1989-08-01
A numerical algorithm is proposed for simulating unilateral contact problems under the classical elasticity point of view. This simple algorithm may be employed by engineers with a minimum knowledge on classical elasticity. (A.C.A.S.) [pt
On topological derivatives for contact problems in elasticity
Giusti, S.M.; Sokolowski, S.; Stebel, Jan
2015-01-01
Roč. 165, č. 1 (2015), s. 279-294 ISSN 0022-3239 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : topological derivative * static frictionless contact problem * asymptotic analysis Subject RIV: BA - General Mathematics Impact factor: 1.160, year: 2015 http://link.springer.com/article/10.1007%2Fs10957-014-0594-7
Numerical algorithms for contact problems in linear elastostatics
Barbosa, H.J.C.; Feijoo, R.A.
1984-01-01
In this work contact problems in linear elasticity are analysed by means of Finite Elements and Mathematical Programming Techniques. The principle of virtual work leads in this case to a variational inequality which in turn is equivalent, for Hookean materials and infinitesimal strains, to the minimization of the total potential energy over the set of all admissible virtual displacements. The use of Gauss-Seidel algorithm with relaxation and projection and also Lemke's algorithm and Uzawa's algorithm for solving the minimization problem is discussed. Finally numerical examples are presented. (Author) [pt
Dynamics of Railway Vehicles and Rail/Wheel Contact
True, Hans
2007-01-01
of the most important dynamic effects on vehicle dynamic problems are described. In chapter 7 characteristic features of railway vehicle dynamics are described, and in chapter 8 recommendations are presented for the numerical handling that is necessary for the investigation of vehicle dynamic problems...
Dynamic contact angle of water-based titanium oxide nanofluid
2013-01-01
This paper presents an investigation into spreading dynamics and dynamic contact angle of TiO2-deionized water nanofluids. Two mechanisms of energy dissipation, (1) contact line friction and (2) wedge film viscosity, govern the dynamics of contact line motion. The primary stage of spreading has the contact line friction as the dominant dissipative mechanism. At the secondary stage of spreading, the wedge film viscosity is the dominant dissipative mechanism. A theoretical model based on combination of molecular kinetic theory and hydrodynamic theory which incorporates non-Newtonian viscosity of solutions is used. The model agreement with experimental data is reasonable. Complex interparticle interactions, local pinning of the contact line, and variations in solid–liquid interfacial tension are attributed to errors. PMID:23759071
Universality in dynamic wetting dominated by contact-line friction.
Carlson, Andreas; Bellani, Gabriele; Amberg, Gustav
2012-04-01
We report experiments on the rapid contact-line motion present in the early stages of capillary-driven spreading of drops on dry solid substrates. The spreading data fail to follow a conventional viscous or inertial scaling. By integrating experiments and simulations, we quantify a contact-line friction μ(f) which is seen to limit the speed of the rapid dynamic wetting. A scaling based on this contact-line friction is shown to yield a universal curve for the evolution of the contact-line radius as a function of time, for a range of fluid viscosities, drop sizes, and surface wettabilities.
Harikrishnan, A. R.; Dhar, Purbarun; Agnihotri, Prabhat K.; Gedupudi, Sateesh; Das, Sarit K.
2018-04-01
Dynamic wettability and contact angle hysteresis can be correlated to shed insight onto any solid-liquid interaction. Complex fluids are capable of altering the expected hysteresis and dynamic wetting behavior due to interfacial interactions. We report the effect of capillary number on the dynamic advancing and receding contact angles of surfactant-based nanocolloidal solutions on hydrophilic, near hydrophobic, and superhydrophobic surfaces by performing forced wetting and de-wetting experiments by employing the embedded needle method. A segregated study is performed to infer the contributing effects of the constituents and effects of particle morphology. The static contact angle hysteresis is found to be a function of particle and surfactant concentrations and greatly depends on the nature of the morphology of the particles. An order of estimate of line energy and a dynamic flow parameter called spreading factor and the transient variations of these parameters are explored which sheds light on the dynamics of contact line movement and response to perturbation of three-phase contact. The Cox-Voinov-Tanner law was found to hold for hydrophilic and a weak dependency on superhydrophobic surfaces with capillary number, and even for the complex fluids, with a varying degree of dependency for different fluids.
Simulation of capillary flow with a dynamic contact angle
van Mourik, S; Veldman, AEP; Dreyer, ME
2005-01-01
A number of theoretical and empirical dynamic contact angle (DCA) models have been tested in a numerical simulation of liquid reorientation in microgravity for which experimental validation data are available. It is observed that the DCA can have a large influence on liquid dynamics in microgravity.
Friction modelling of preloaded tube contact dynamics
Hassan, M.A.; Rogers, R.J.
2004-01-01
Many loosely supported components are subjected to flow-induced vibration leading to localized wear. Life prediction depends on robust and accurate modelling of the nonlinear dynamics as the components interact with their supports. The output of such analysis is the component dynamic response and impact forces, including friction forces during stick-slip motions. Such results are used to determine the normal work rates, which are utilized to predict fretting wear damage. Accurate estimates of these parameters are essential. This paper presents simulations of a loosely supported fuel-channel tube subject to turbulence excitation. The effects of tube/support clearance and preload are investigated. Several friction models, including velocity-limited, spring-damper, and force-balance are utilized. A comparison of these models is carried out to investigate their accuracy. The results show good agreement with experimental work rates when a simple iterative procedure to update the friction forces is used. (authors)
Friction modelling of preloaded tube contact dynamics
Hassan, M.A.; Rogers, R.J.
2005-01-01
Many loosely supported components are subjected to flow-induced vibration leading to localized wear. Life prediction depends on robust and accurate modelling of the nonlinear dynamics as the components interact with their supports. The output of such analysis is the component dynamic response and impact forces, including friction forces during stick-slip motions. Such results are used to determine the normal work rates, which are utilized to predict fretting wear damage. Accurate estimates of these parameters are essential. This paper presents simulations of a loosely supported fuel-channel tube subject to turbulence excitation. The effects of tube/support clearance and preload are investigated. Several friction models, including velocity-limited, spring-damper and force-balance are utilized. A comparison of these models is carried out to investigate their accuracy. The results show good agreement with experimental work rates when a simple iterative procedure to update the friction forces is used
Compliant contact versus rigid contact: A comparison in the context of granular dynamics
Pazouki, Arman; Kwarta, Michał; Williams, Kyle; Likos, William; Serban, Radu; Jayakumar, Paramsothy; Negrut, Dan
2017-10-01
We summarize and numerically compare two approaches for modeling and simulating the dynamics of dry granular matter. The first one, the discrete-element method via penalty (DEM-P), is commonly used in the soft matter physics and geomechanics communities; it can be traced back to the work of Cundall and Strack [P. Cundall, Proc. Symp. ISRM, Nancy, France 1, 129 (1971); P. Cundall and O. Strack, Geotechnique 29, 47 (1979), 10.1680/geot.1979.29.1.47]. The second approach, the discrete-element method via complementarity (DEM-C), considers the grains perfectly rigid and enforces nonpenetration via complementarity conditions; it is commonly used in robotics and computer graphics applications and had two strong promoters in Moreau and Jean [J. J. Moreau, in Nonsmooth Mechanics and Applications, edited by J. J. Moreau and P. D. Panagiotopoulos (Springer, Berlin, 1988), pp. 1-82; J. J. Moreau and M. Jean, Proceedings of the Third Biennial Joint Conference on Engineering Systems and Analysis, Montpellier, France, 1996, pp. 201-208]. The DEM-P and DEM-C are manifestly unlike each other: They use different (i) approaches to model the frictional contact problem, (ii) sets of model parameters to capture the physics of interest, and (iii) classes of numerical methods to solve the differential equations that govern the dynamics of the granular material. Herein, we report numerical results for five experiments: shock wave propagation, cone penetration, direct shear, triaxial loading, and hopper flow, which we use to compare the DEM-P and DEM-C solutions. This exercise helps us reach two conclusions. First, both the DEM-P and DEM-C are predictive, i.e., they predict well the macroscale emergent behavior by capturing the dynamics at the microscale. Second, there are classes of problems for which one of the methods has an advantage. Unlike the DEM-P, the DEM-C cannot capture shock-wave propagation through granular media. However, the DEM-C is proficient at handling arbitrary grain
Dynamic Model of Contact Interface between Stator and Rotor
ZengHui Zhao
2013-01-01
Full Text Available Based on the equivalent principle, a linear spring contact model was established for the friction layer between stator and rotor. Different contact conditions were described by a distance index δ. Detailed analysis of the nonlinear contact behavior especially the static and dynamic slipping was carried on using a space-time equation. A contact deflection angle was proposed to quantitatively express the influence of friction force on the output performance. A more precision simulation model was established based on the theoretical analysis, and influences of different preload pressures and elastic modulus Em of friction layer on output performance were analyzed. The results showed the simulation results had very good consistency with experimental results, and the model could well reflect the output characteristics of contact interface.
Comparison between FEBio and Abaqus for biphasic contact problems.
Meng, Qingen; Jin, Zhongmin; Fisher, John; Wilcox, Ruth
2013-09-01
Articular cartilage plays an important role in the function of diarthrodial joints. Computational methods have been used to study the biphasic mechanics of cartilage, and Abaqus has been one of the most widely used commercial software packages for this purpose. A newly developed open-source finite element solver, FEBio, has been developed specifically for biomechanical applications. The aim of this study was to undertake a direct comparison between FEBio and Abaqus for some practical contact problems involving cartilage. Three model types, representing a porous flat-ended indentation test, a spherical-ended indentation test, and a conceptual natural joint contact model, were compared. In addition, a parameter sensitivity study was also performed for the spherical-ended indentation test to investigate the effects of changes in the input material properties on the model outputs, using both FEBio and Abaqus. Excellent agreement was found between FEBio and Abaqus for all of the model types and across the range of material properties that were investigated.
Solutions of dissimilar material singularity and contact problems
Yang, Y.
2003-09-01
Due to the mismatch of the material properties of joined components, after a homogeneous temperature change or under a mechanical loading, very high stresses occur near the intersection of the interface and the outer surface, or near the intersection of two interfaces. For most material combinations and joint geometries, there exists even a stress singularity. These high stresses may cause fracture of the joint. The investigation of the stress situation near the singular point, therefore, is of great interest. Especially, the relationship between the singular stress exponent, the material data and joint geometry is important for choosing a suitable material combination and joint geometry. In this work, the singular stress field is described analytically in case of the joint having a real and a complex eigenvalue. Solutions of different singularity problems are given, which are two dissimilar materials joint with free edges; dissimilar materials joint with edge tractions; joint with interface corner; joint with a given displacement at one edge; cracks in dissimilar materials joint; contact problem in dissimilar materials and logarithmic stress singularity. For an arbitrary joint geometry and material combination, the stress singular exponent, the angular function and the regular stress term can be calculated analytically. The stress intensity factors for a finite joint can be determined applying numerical methods, e.g. the finite element method (FEM). The method to determine more than one stress intensity factor is presented. The characteristics of the eigenvalues and the stress intensity factors are shown for different joint conditions. (orig.)
Dynamics of social contagions with limited contact capacity.
Wang, Wei; Shu, Panpan; Zhu, Yu-Xiao; Tang, Ming; Zhang, Yi-Cheng
2015-10-01
Individuals are always limited by some inelastic resources, such as time and energy, which restrict them to dedicate to social interaction and limit their contact capacities. Contact capacity plays an important role in dynamics of social contagions, which so far has eluded theoretical analysis. In this paper, we first propose a non-Markovian model to understand the effects of contact capacity on social contagions, in which each adopted individual can only contact and transmit the information to a finite number of neighbors. We then develop a heterogeneous edge-based compartmental theory for this model, and a remarkable agreement with simulations is obtained. Through theory and simulations, we find that enlarging the contact capacity makes the network more fragile to behavior spreading. Interestingly, we find that both the continuous and discontinuous dependence of the final adoption size on the information transmission probability can arise. There is a crossover phenomenon between the two types of dependence. More specifically, the crossover phenomenon can be induced by enlarging the contact capacity only when the degree exponent is above a critical degree exponent, while the final behavior adoption size always grows continuously for any contact capacity when degree exponent is below the critical degree exponent.
Existence for viscoplastic contact with Coulomb friction problems
Amina Amassad
2002-01-01
frictional contact between an elastic-viscoplastic body and a rigid obstacle. We model the frictional contact both by a Tresca's friction law and a regularized Coulomb's law. We assume, in a first part, that the contact is bilateral and that no separation takes place. In a second part, we consider the Signorini unilateral contact conditions. Proofs are based on a time-discretization method, Banach and Schauder fixed point theorems.
Capillary Rise: Validity of the Dynamic Contact Angle Models.
Wu, Pingkeng; Nikolov, Alex D; Wasan, Darsh T
2017-08-15
The classical Lucas-Washburn-Rideal (LWR) equation, using the equilibrium contact angle, predicts a faster capillary rise process than experiments in many cases. The major contributor to the faster prediction is believed to be the velocity dependent dynamic contact angle. In this work, we investigated the dynamic contact angle models for their ability to correct the dynamic contact angle effect in the capillary rise process. We conducted capillary rise experiments of various wetting liquids in borosilicate glass capillaries and compared the model predictions with our experimental data. The results show that the LWR equations modified by the molecular kinetic theory and hydrodynamic model provide good predictions on the capillary rise of all the testing liquids with fitting parameters, while the one modified by Joos' empirical equation works for specific liquids, such as silicone oils. The LWR equation modified by molecular self-layering model predicts well the capillary rise of carbon tetrachloride, octamethylcyclotetrasiloxane, and n-alkanes with the molecular diameter or measured solvation force data. The molecular self-layering model modified LWR equation also has good predictions on the capillary rise of silicone oils covering a wide range of bulk viscosities with the same key parameter W(0), which results from the molecular self-layering. The advantage of the molecular self-layering model over the other models reveals the importance of the layered molecularly thin wetting film ahead of the main meniscus in the energy dissipation associated with dynamic contact angle. The analysis of the capillary rise of silicone oils with a wide range of bulk viscosities provides new insights into the capillary dynamics of polymer melts.
A parallel algorithm for transient solid dynamics simulations with contact detection
Attaway, S.; Hendrickson, B.; Plimpton, S.; Gardner, D.; Vaughan, C.; Heinstein, M.; Peery, J.
1996-01-01
Solid dynamics simulations with Lagrangian finite elements are used to model a wide variety of problems, such as the calculation of impact damage to shipping containers for nuclear waste and the analysis of vehicular crashes. Using parallel computers for these simulations has been hindered by the difficulty of searching efficiently for material surface contacts in parallel. A new parallel algorithm for calculation of arbitrary material contacts in finite element simulations has been developed and implemented in the PRONTO3D transient solid dynamics code. This paper will explore some of the issues involved in developing efficient, portable, parallel finite element models for nonlinear transient solid dynamics simulations. The contact-detection problem poses interesting challenges for efficient implementation of a solid dynamics simulation on a parallel computer. The finite element mesh is typically partitioned so that each processor owns a localized region of the finite element mesh. This mesh partitioning is optimal for the finite element portion of the calculation since each processor must communicate only with the few connected neighboring processors that share boundaries with the decomposed mesh. However, contacts can occur between surfaces that may be owned by any two arbitrary processors. Hence, a global search across all processors is required at every time step to search for these contacts. Load-imbalance can become a problem since the finite element decomposition divides the volumetric mesh evenly across processors but typically leaves the surface elements unevenly distributed. In practice, these complications have been limiting factors in the performance and scalability of transient solid dynamics on massively parallel computers. In this paper the authors present a new parallel algorithm for contact detection that overcomes many of these limitations
Probing into frictional contact dynamics by ultrasound and electrical simulations
Changshan Jin
2014-12-01
Full Text Available Friction arises in the interface of friction pair, and therefore, it is difficult to detect it. Ultrasonic means, as a NDT, is the correct alternative. This paper introduces a means of detecting dynamic contact and an interpretation of behaviors of dry friction. It has been determined that frictional surfaces have a specific property of dynamic response hardening (DRH. Dynamic response forces and oscillation arise during static–kinetic transition process. While the contact zone of sliding surfaces appears “hard” in motion, it appears “soft” at rest. Consequently, a separation of the surfaces occurs and the real area of contact is decreased as sliding velocity increases. This is the cause of F–v descent phenomenon. When the friction comes to a rest, the remaining process of DRH and micro-oscillation do not disappear instantaneously, instead they gradually return to their original static position. The contact area, therefore, is increased by rest period (F–T ascent characteristics. Based on analogies between a solid unit (η–m–k and an R-L-C circuit, the DRH is demonstrated by electrical simulations.
Research on the Problem of Spur Gear Teeth Contact in the Car Gear Box
Viktor Skrickij
2011-04-01
Full Text Available The article presents research on the problem of two gear contact in the car gearbox. Contact stiffness is evaluated for the whole period of mesh. Also, contact stresses are evaluated in the contact place. The presented method can be used for calculating spur gear.Article in Lithuanian
Adaptive contact networks change effective disease infectiousness and dynamics.
Van Segbroeck, Sven; Santos, Francisco C; Pacheco, Jorge M
2010-08-19
Human societies are organized in complex webs that are constantly reshaped by a social dynamic which is influenced by the information individuals have about others. Similarly, epidemic spreading may be affected by local information that makes individuals aware of the health status of their social contacts, allowing them to avoid contact with those infected and to remain in touch with the healthy. Here we study disease dynamics in finite populations in which infection occurs along the links of a dynamical contact network whose reshaping may be biased based on each individual's health status. We adopt some of the most widely used epidemiological models, investigating the impact of the reshaping of the contact network on the disease dynamics. We derive analytical results in the limit where network reshaping occurs much faster than disease spreading and demonstrate numerically that this limit extends to a much wider range of time scales than one might anticipate. Specifically, we show that from a population-level description, disease propagation in a quickly adapting network can be formulated equivalently as disease spreading on a well-mixed population but with a rescaled infectiousness. We find that for all models studied here--SI, SIS and SIR--the effective infectiousness of a disease depends on the population size, the number of infected in the population, and the capacity of healthy individuals to sever contacts with the infected. Importantly, we indicate how the use of available information hinders disease progression, either by reducing the average time required to eradicate a disease (in case recovery is possible), or by increasing the average time needed for a disease to spread to the entire population (in case recovery or immunity is impossible).
SEVERAL PROBLEMS IN THERMOFLUID DYNAMICS
过增元
1991-01-01
A new cross-discipline, the thermofluid dynamics, has been established, which is relatedto heat transfer, fluid dynamics and thermodynamics with emphasis on the effect of thermalprocess on fluid flow. Its subject areas are (i) thermal drag, (ii) thermal roundabout flow,(iii) thermal drive and thermal instability, and (iv) thermal optimization.
Effects of material properties on soft contact dynamics
Khurshid, A.; Malik, M.A.; Ghafoor, A.
2009-01-01
The superiority of deformable human fingertips as compared to hard robot gripper fingers for grasping and manipulation has led to a number of investigations with robot hands employing elastomers or materials such as fluids or powders beneath a membrane at the fingertips. In this paper, to analyze the stability of dynamic control of an object grasped between two soft fingertips through a soft interface using the viscoelastic material between the manipulating fingers and a manipulated object is modeled through bond graph method (BGM). The fingers are made viscoelastic by using springs and dampers. Detailed bond graph modeling (BGM) of the contact phenomenon with two soft-finger contacts considered to be placed against each other on the opposite sides of the grasped object as is generally the case in a manufacturing environment is presented. The stiffness of the springs is exploited in order to achieve the stability in the soft-grasping which includes friction between the soft finger contact surfaces and the object, The paper also analyses stability of dynamic control through a soft interface between a manipulating finger and a manipulated object. It is shown in the paper that the system stability depends on the visco-elastic material properties of the soft interface. Method of root locus is used to analyze this phenomenon. The paper shows how the weight of the object coming downward is controlled by the friction between the fingers and the object during the application of contact forces by varying the damping and the stiffness in the soft finger. (author)
Modeling initial contact dynamics during ambulation with dynamic simulation.
Meyer, Andrew R; Wang, Mei; Smith, Peter A; Harris, Gerald F
2007-04-01
Ankle-foot orthoses are frequently used interventions to correct pathological gait. Their effects on the kinematics and kinetics of the proximal joints are of great interest when prescribing ankle-foot orthoses to specific patient groups. Mathematical Dynamic Model (MADYMO) is developed to simulate motor vehicle crash situations and analyze tissue injuries of the occupants based multibody dynamic theories. Joint kinetics output from an inverse model were perturbed and input to the forward model to examine the effects of changes in the internal sagittal ankle moment on knee and hip kinematics following heel strike. Increasing the internal ankle moment (augmentation, equivalent to gastroc-soleus contraction) produced less pronounced changes in kinematic results at the hip, knee and ankle than decreasing the moment (attenuation, equivalent to gastroc-soleus relaxation). Altering the internal ankle moment produced two distinctly different kinematic curve morphologies at the hip. Decreased internal ankle moments increased hip flexion, peaking at roughly 8% of the gait cycle. Increasing internal ankle moments decreased hip flexion to a lesser degree, and approached normal at the same point in the gait cycle. Increasing the internal ankle moment produced relatively small, well-behaved extension-biased kinematic results at the knee. Decreasing the internal ankle moment produced more substantial changes in knee kinematics towards flexion that increased with perturbation magnitude. Curve morphologies were similar to those at the hip. Immediately following heel strike, kinematic results at the ankle showed movement in the direction of the internal moment perturbation. Increased internal moments resulted in kinematic patterns that rapidly approach normal after initial differences. When the internal ankle moment was decreased, differences from normal were much greater and did not rapidly decrease. This study shows that MADYMO can be successfully applied to accomplish forward
Solving Dynamic Battlespace Movement Problems Using Dynamic Distributed Computer Networks
Bradford, Robert
2000-01-01
.... The thesis designs a system using this architecture that invokes operations research network optimization algorithms to solve problems involving movement of people and equipment over dynamic road networks...
Dynamical problem of micropolar viscoelasticity
R. Narasimhan (Krishtel eMaging Solutions)
gen (1964) and Tomar and Kumar (1999) discussed different types of problems in micropolar elastic medium. Eringen (1967) extended the theory of micropolar elasticity to obtain linear constitutive theory for micropolar material possessing inter- nal friction. A problem on micropolar viscoelastic waves has been discussed by ...
Influence of Stress Shape Function on Analysis of Contact Problem Using Hybrid Photoelasticity
Shin, Dongchul; Hawong, Jaisug
2013-01-01
In this research, a study on stress shape functions was conducted to analyze the contact stress problem by using a hybrid photoelasticity. Because the contact stress problem is generally solved as a half-plane problem, the relationship between two analytical stress functions, which are compositions of the Airy stress function, was similar to one of the crack problem. However, this relationship in itself could not be used to solve the contact stress problem (especially one with singular points). Therefore, to analyze the contact stress problem more correctly, stress shape functions based on the condition of two contact end points had to be considered in the form of these two analytical stress functions. The four types of stress shape functions were related to the stress singularities at the two contact end points. Among them, the primary two types used for the analysis of an O-ring were selected, and their validities were verified in this work
Piotrowski, Jerzy
1991-10-01
Investigation of contact mechanical nonlinearities of a mathematical model of corrugation revealed that the typical shape of contact patch resembles a falling drop of water. A contact patch of that shape was approximated with a figure composed of two parts of ellipses with different eccentricities. The contact pressure distribution was assumed as a smoothing ensemble of two paraboloidal distributions. The description of a general case of double half elliptical contact area was given but a special case of double half elliptical contact is more interesting as it possesses some Hertzian properties. It was shown how three geometrical parameters of double half elliptical contact can be chosen when actual, non-Hertzian contact is known. A linear theory was written which indicates that the lateral vibrations of the rail may be excited only due to shape variation on corrugation even if any other cause for these vibrations does not exist. For nonlinear theory a computer program, based on FASTSIM algorithm by Kalker, was written. The aim is to calculate the creep forces and frictional power density distribution over the contact area. Also, a graphic program visualizing the solution was written. Numerical results are not provided; unattended and unsolved problems relevant for this type of contact are listed.
Silcowitz, Morten; Niebe, Sarah Maria; Erleben, Kenny
2009-01-01
contact response. In this paper, we present a new approach to contact force determination. We reformulate the contact force problem as a nonlinear root search problem, using a Fischer function. We solve this problem using a generalized Newton method. Our new Fischer - Newton method shows improved...... qualities for specific configurations where the most widespread alternative, the Projected Gauss-Seidel method, fails. Experiments show superior convergence properties of the exact Fischer - Newton method....
Velandia Arana, Gonzalo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)
1990-12-31
Different numerical techniques are presented based in the finite element method to obtain numerical solutions to contact and contact with friction problems between solid bodies, and compared between each other. [Espanol] Se presentan diferentes tecnicas numericas basadas en el metodo de elementos finitos para la obtencion de soluciones numericas de problemas de contacto y contacto con friccion entre cuerpos solidos, y se comparan entre si.
Velandia Arana, Gonzalo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)
1989-12-31
Different numerical techniques are presented based in the finite element method to obtain numerical solutions to contact and contact with friction problems between solid bodies, and compared between each other. [Espanol] Se presentan diferentes tecnicas numericas basadas en el metodo de elementos finitos para la obtencion de soluciones numericas de problemas de contacto y contacto con friccion entre cuerpos solidos, y se comparan entre si.
Shear test on viscoelastic granular material using Contact Dynamics simulations
Quezada, Juan Carlos; Sagnol, Loba; Chazallon, Cyrille
2017-06-01
By means of 3D contact dynamic simulations, the behavior of a viscoelastic granular material under shear loading is investigated. A viscoelastic fluid phase surrounding the solid particles is simulated by a contact model acting between them. This contact law was implemented in the LMGC90 software, based on the Burgers model. This model is able to simulate also the effect of creep relaxation. To validate the proposed contact model, several direct shear tests were performed, experimentally and numerically using the Leutner device. The numerical samples were created using spheres with two particle size distribution, each one identified for two layers from a road structure. Our results show a reasonable agreement between experimental and numerical data regarding the strain-stress evolution curves and the stress levels measured at failure. The proposed model can be used to simulate the mechanical behavior of multi-layer road structure and to study the influence of traffic on road deformation, cracking and particles pull-out induced by traffic loading.
Dynamic Analysis of Rotor Systems Considering Ball Bearing Contact Mechanism
Kim, Youngjin; Lee, Jongmahn; Oh, Dongho
2013-01-01
We propose a finite element modeling method considering the ball bearing contact mechanism, and the developed method was verified through experimental and analytical results of inner and outer race-type rotor systems. A comparison of the proposed method with conventional method reveals that there is little difference in the results of the inner race-type rotor system, but there are considerable differences in the results of the outer race-type rotor system such that predictions of greater accuracy can be made. Therefore, the proposed method can be used for accurately predicting the dynamic characteristics of an outer race-type rotary machine
Free Piston Problem for Isentropic Gas Dynamics
Takeno, Shigeharu
1995-01-01
We consider the existence of the generalized solution for a free piston problem for isentropic gas dynamics. By the compensated compactness theory, we can show that an approximate solution converges to a generalized solution.
Solved problems in dynamical systems and control
Tenreiro-Machado, J; Valério, Duarte; Galhano, Alexandra M
2016-01-01
This book presents a collection of exercises on dynamical systems, modelling and control. Each topic covered includes a summary of the theoretical background, problems with solutions, and further exercises.
A frictional contact problem for an electro-viscoelastic body
Mircea Sofonea
2007-12-01
Full Text Available A mathematical model which describes the quasistatic frictional contact between a piezoelectric body and a deformable conductive foundation is studied. A nonlinear electro-viscoelastic constitutive law is used to model the piezoelectric material. Contact is described with the normal compliance condition, a version of Coulomb's law of dry friction, and a regularized electrical conductivity condition. A variational formulation of the model, in the form of a coupled system for the displacements and the electric potential, is derived. The existence of a unique weak solution of the model is established under a smallness assumption on the surface conductance. The proof is based on arguments of evolutionary variational inequalities and fixed points of operators.
Static semicoercive normal compliance contact problem with limited interpenetration
Jarušek, Jiří
2015-01-01
Roč. 66, č. 5 (2015), s. 2161-2172 ISSN 0044-2275 R&D Projects: GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985840 Keywords : contact * limited interpenetration * friction Subject RIV: BA - General Mathematics Impact factor: 1.560, year: 2015 http://link.springer.com/article/10.1007%2Fs00033-015-0539-5
Analysing Stagecoach Network Problem Using Dynamic ...
In this paper we present a recursive dynamic programming algorithm for solving the stagecoach problem. The algorithm is computationally more efficient than the first method as it obtains its minimum total cost using the suboptimal policies of the different stages without computing the cost of all the routes. By the dynamic ...
Modeling and analysis of linearized wheel-rail contact dynamics
Soomro, Z.
2014-01-01
The dynamics of the railway vehicles are nonlinear and depend upon several factors including vehicle speed, normal load and adhesion level. The presence of contaminants on the railway track makes them unpredictable too. Therefore in order to develop an effective control strategy it is important to analyze the effect of each factor on dynamic response thoroughly. In this paper a linearized model of a railway wheel-set is developed and is later analyzed by varying the speed and adhesion level by keeping the normal load constant. A wheel-set is the wheel-axle assembly of a railroad car. Patch contact is the study of the deformation of solids that touch each other at one or more points. (author)
Can foot anthropometric measurements predict dynamic plantar surface contact area?
Collins Natalie
2009-10-01
Full Text Available Abstract Background Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Methods Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 ± 3.5 years. The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. Results A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p R2 = 0.76, p Conclusion The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region.
Solving Dynamic Traveling Salesman Problem Using Dynamic Gaussian Process Regression
Stephen M. Akandwanaho
2014-01-01
Full Text Available This paper solves the dynamic traveling salesman problem (DTSP using dynamic Gaussian Process Regression (DGPR method. The problem of varying correlation tour is alleviated by the nonstationary covariance function interleaved with DGPR to generate a predictive distribution for DTSP tour. This approach is conjoined with Nearest Neighbor (NN method and the iterated local search to track dynamic optima. Experimental results were obtained on DTSP instances. The comparisons were performed with Genetic Algorithm and Simulated Annealing. The proposed approach demonstrates superiority in finding good traveling salesman problem (TSP tour and less computational time in nonstationary conditions.
Dynamic Restructuring Of Problems In Artificial Intelligence
Schwuttke, Ursula M.
1992-01-01
"Dynamic tradeoff evaluation" (DTE) denotes proposed method and procedure for restructuring problem-solving strategies in artificial intelligence to satisfy need for timely responses to changing conditions. Detects situations in which optimal problem-solving strategies cannot be pursued because of real-time constraints, and effects tradeoffs among nonoptimal strategies in such way to minimize adverse effects upon performance of system.
Planar dynamical systems selected classical problems
Liu, Yirong; Huang, Wentao
2014-01-01
This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. This book is intended for graduate students, post-doctors and researchers in the area of theories and applications of dynamical systems. For all engineers who are interested the theory of dynamical systems, it is also a reasona
Contact problem for a composite material with nacre inspired microstructure
Berinskii, Igor; Ryvkin, Michael; Aboudi, Jacob
2017-12-01
Bi-material composites with nacre inspired brick and mortar microstructures, characterized by stiff elements of one phase with high aspect ratio separated by thin layers of the second one, are considered. Such microstructure is proved to provide an efficient solution for the problem of a crack arrest. However, contrary to the case of a homogeneous material, an external pressure, applied to a part of the composite boundary, can cause significant tensile stresses which increase the danger of crack nucleation. Investigation of the influence of microstructure parameters on the magnitude of tensile stresses is performed by means of the classical Flamant-like problem of an orthotropic half-plane subjected to a normal external distributed loading. Adequate analysis of this problem represents a serious computational task due to the geometry of the considered layout and the high contrast between the composite constituents. This difficulty is presently circumvented by deriving a micro-to-macro analysis in the framework of which an analytical solution of the auxiliary elasticity problem, followed by the discrete Fourier transform and the higher-order theory are employed. As a result, full scale continuum modeling of both composite constituents without employing any simplifying assumptions is presented. In the framework of the present proposed modeling, the influence of stiff elements aspect ratio on the overall stress distribution is demonstrated.
Hybrid Predictive Control for Dynamic Transport Problems
Núñez, Alfredo A; Cortés, Cristián E
2013-01-01
Hybrid Predictive Control for Dynamic Transport Problems develops methods for the design of predictive control strategies for nonlinear-dynamic hybrid discrete-/continuous-variable systems. The methodology is designed for real-time applications, particularly the study of dynamic transport systems. Operational and service policies are considered, as well as cost reduction. The control structure is based on a sound definition of the key variables and their evolution. A flexible objective function able to capture the predictive behaviour of the system variables is described. Coupled with efficient algorithms, mainly drawn from the area of computational intelligence, this is shown to optimize performance indices for real-time applications. The framework of the proposed predictive control methodology is generic and, being able to solve nonlinear mixed-integer optimization problems dynamically, is readily extendable to other industrial processes. The main topics of this book are: ●hybrid predictive control (HPC) ...
Four tails problems for dynamical collapse theories
McQueen, Kelvin J.
2015-02-01
The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss the problem without considering the more severe formulations. Here I distinguish four distinct tails problems. The first (bare tails problem) and second (structured tails problem) exist in the literature. I argue that while the first is a pseudo-problem, the second has not been adequately addressed. The third (multiverse tails problem) reformulates the second to account for recently discovered dynamical consequences of collapse. Finally the fourth (tails problem dilemma) shows that solving the third by replacing the Gaussian with a non-Gaussian collapse function introduces new conflict with relativity theory.
Real-time visualization of dynamic particle contact failures
Parab, Niranjan D.; Hudspeth, Matthew; Claus, Ben; Guo, Zherui; Sun, Tao; Fezzaa, Kamel; Chen, Weinong W.
2017-01-01
Granular materials are widely used to resist impact and blast. Under these dynamic loadings, the constituent particles in the granular system fracture. To study the fracture mechanisms in brittle particles under dynamic compressive loading, a high speed X-ray phase contrast imaging setup was synchronized with a Kolsky bar apparatus. Controlled compressive loading was applied on two contacting particles using the Kolsky bar apparatus and fracture process was captured using the high speed X-ray imaging setup. Five different particles were investigated: soda-lime glass, polycrystalline silica (silicon dioxide), polycrystalline silicon, barium titanate glass, and yttrium stabilized zirconia. For both soda lime glass and polycrystalline silica particles, one of the particles fragmented explosively, thus breaking into many small pieces. For Silicon and barium titanate glass particles, a finite number of cracks were observed in one of the particles causing it to fracture. For yttrium stabilized zirconia particles, a single meridonial crack developed in one of the particles, breaking it into two parts.
Fast heuristics for a dynamic paratransit problem
Cremers, M.L.A.G.; Klein Haneveld, W.K.; van der Vlerk, M.H.
2008-01-01
In a previous paper we developed a non-standard two-stage recourse model for the dynamic day-ahead paratransit planning problem. Two heuristics, which are frequently applied in the recourse model, contain many details which leads to large CPU times to solve instances of relatively small size. In
Modern problems of relaxation gas dynamics
Losev, S.A.; Osipov, A.I.
1985-01-01
Some of the dynamical characteristics of relaxation processes are studied. Unfortunately, many dynamical characteristics of relaxation processes, necessary for the solution of important scientific and applied problems, are not known. These problems require further development of experimental methods of the study of nonequilibrium gas. It is known, that gas systems are shifted from the equilibrium by different methods: by acoustic and shock wav es, by means of gas expansion in nozzles and jets, by powerful radiations (laser, first of all), by electric discharges, in burning and combustion devices, etc. Non-equilibrium gas is produced in installations of continuum, impulse and periodic regime. Molecular beams, shock tubes (especially with nozzles), flow and jet installations, aerodynamical tubes, plasmatrons, vessels with a gas, influenced by the strong radiation, burners and combustion devices, where the study of non-euilibrium gas is helpful to solve the problems of the determination of kinetic equations and constants of physico-chemical kinetics
A frictional contact problem with damage and adhesion for an electro elastic-viscoplastic body
Adel Aissaoui
2014-01-01
Full Text Available We consider a quasistatic frictional contact problem for an electro elastic-viscopalastic body with damage and adhestion. The contact is modelled with normal compliance. The adhesion of the contact surfaces is taken into account and modelled by a surface variable. We derive variational formulation for the model which is in the form of a system involving the displacement field, the electric potential field, the damage field and the adhesion field. We prove the existence of a unique weak solution to the problem. The proof is based on arguments of time-dependent variational inequalities, parabolic inequalities, differential equations and fixed point.
Dynamics of contact line depinning during droplet evaporation based on thermodynamics.
Yu, Dong In; Kwak, Ho Jae; Doh, Seung Woo; Ahn, Ho Seon; Park, Hyun Sun; Kiyofumi, Moriyama; Kim, Moo Hwan
2015-02-17
For several decades, evaporation phenomena have been intensively investigated for a broad range of applications. However, the dynamics of contact line depinning during droplet evaporation has only been inductively inferred on the basis of experimental data and remains unclear. This study focuses on the dynamics of contact line depinning during droplet evaporation based on thermodynamics. Considering the decrease in the Gibbs free energy of a system with different evaporation modes, a theoretical model was developed to estimate the receding contact angle during contact line depinning as a function of surface conditions. Comparison of experimentally measured and theoretically modeled receding contact angles indicated that the dynamics of contact line depinning during droplet evaporation was caused by the most favorable thermodynamic process encountered during constant contact radius (CCR mode) and constant contact angle (CCA mode) evaporation to rapidly reach an equilibrium state during droplet evaporation.
Dynamics formulas and problems : engineering mechanics 3
Gross, Dietmar; Wriggers, Peter; Schröder, Jörg; Müller, Ralf
2017-01-01
This book contains the most important formulas and more than 190 completely solved problems from Kinetics and Hydrodynamics. It provides engineering students material to improve their skills and helps to gain experience in solving engineering problems. Particular emphasis is placed on finding the solution path and formulating the basic equations. Topics include: - Kinematics of a Point - Kinetics of a Point Mass- Dynamics of a System of Point Masses - Kinematics of Rigid Bodies - Kinetics of Rigid Bodies - Impact - Vibrations - Non-Inertial Reference Frames - Hydrodynamics .
Alain Mignot
2005-09-01
Full Text Available This paper shows the existence of a solution of the quasi-static unilateral contact problem with nonlocal friction law for nonlinear elastic materials. We set up a variational incremental problem which admits a solution, when the friction coefficient is small enough, and then by passing to the limit with respect to time we obtain a solution.
A fast nonlinear conjugate gradient based method for 3D frictional contact problems
Zhao, J.; Vollebregt, E.A.H.; Oosterlee, C.W.
2014-01-01
This paper presents a fast numerical solver for a nonlinear constrained optimization problem, arising from a 3D frictional contact problem. It incorporates an active set strategy with a nonlinear conjugate gradient method. One novelty is to consider the tractions of each slip element in a polar
A fast nonlinear conjugate gradient based method for 3D concentrated frictional contact problems
J. Zhao (Jing); E.A.H. Vollebregt (Edwin); C.W. Oosterlee (Cornelis)
2015-01-01
htmlabstractThis paper presents a fast numerical solver for a nonlinear constrained optimization problem, arising from 3D concentrated frictional shift and rolling contact problems with dry Coulomb friction. The solver combines an active set strategy with a nonlinear conjugate gradient method. One
Zeng, Shengda; Migórski, Stanisław
2018-03-01
In this paper a class of elliptic hemivariational inequalities involving the time-fractional order integral operator is investigated. Exploiting the Rothe method and using the surjectivity of multivalued pseudomonotone operators, a result on existence of solution to the problem is established. Then, this abstract result is applied to provide a theorem on the weak solvability of a fractional viscoelastic contact problem. The process is quasistatic and the constitutive relation is modeled with the fractional Kelvin-Voigt law. The friction and contact conditions are described by the Clarke generalized gradient of nonconvex and nonsmooth functionals. The variational formulation of this problem leads to a fractional hemivariational inequality.
Cellular automatons applied to gas dynamic problems
Long, Lyle N.; Coopersmith, Robert M.; Mclachlan, B. G.
1987-01-01
This paper compares the results of a relatively new computational fluid dynamics method, cellular automatons, with experimental data and analytical results. This technique has been shown to qualitatively predict fluidlike behavior; however, there have been few published comparisons with experiment or other theories. Comparisons are made for a one-dimensional supersonic piston problem, Stokes first problem, and the flow past a normal flat plate. These comparisons are used to assess the ability of the method to accurately model fluid dynamic behavior and to point out its limitations. Reasonable results were obtained for all three test cases, but the fundamental limitations of cellular automatons are numerous. It may be misleading, at this time, to say that cellular automatons are a computationally efficient technique. Other methods, based on continuum or kinetic theory, would also be very efficient if as little of the physics were included.
Application of an enriched FEM technique in thermo-mechanical contact problems
Khoei, A. R.; Bahmani, B.
2018-02-01
In this paper, an enriched FEM technique is employed for thermo-mechanical contact problem based on the extended finite element method. A fully coupled thermo-mechanical contact formulation is presented in the framework of X-FEM technique that takes into account the deformable continuum mechanics and the transient heat transfer analysis. The Coulomb frictional law is applied for the mechanical contact problem and a pressure dependent thermal contact model is employed through an explicit formulation in the weak form of X-FEM method. The equilibrium equations are discretized by the Newmark time splitting method and the final set of non-linear equations are solved based on the Newton-Raphson method using a staggered algorithm. Finally, in order to illustrate the capability of the proposed computational model several numerical examples are solved and the results are compared with those reported in literature.
Dynamic Flow Management Problems in Air Transportation
Patterson, Sarah Stock
1997-01-01
In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer
Semi-Smooth Newton Method for Solving 2D Contact Problems with Tresca and Coulomb Friction
Kristina Motyckova
2013-01-01
Full Text Available The contribution deals with contact problems for two elastic bodies with friction. After the description of the problem we present its discretization based on linear or bilinear finite elements. The semi--smooth Newton method is used to find the solution, from which we derive active sets algorithms. Finally, we arrive at the globally convergent dual implementation of the algorithms in terms of the Langrange multipliers for the Tresca problem. Numerical experiments conclude the paper.
Nedoma, Jiří; Tomášek, Luboš
2008-01-01
Roč. 218, č. 1 (2008), s. 116-124 ISSN 0377-0427 Institutional research plan: CEZ:AV0Z10300504 Keywords : visco-plasticity * Bingham rheology * contact problems with friction * variational inequalities * FEM * geomechanics * hydromechanics Subject RIV: BA - General Mathematics Impact factor: 1.048, year: 2008
Tedjani Hadj Ammar
2014-10-01
Full Text Available We consider a quasistatic contact problem between two electro-viscoelastic bodies with long-term memory and damage. The contact is frictional and is modelled with a version of normal compliance condition and the associated Coulomb's law of friction in which the adhesion of contact surfaces is taken into account. We derive a variational formulation for the model and prove an existence and uniqueness result of the weak solution. The proof is based on arguments of evolutionary variational inequalities, a classical existence and uniqueness result on parabolic inequalities, and Banach fixed point theorem.
History-Dependent Problems with Applications to Contact Models for Elastic Beams
Bartosz, Krzysztof; Kalita, Piotr; Migórski, Stanisław; Ochal, Anna; Sofonea, Mircea
2016-01-01
We prove an existence and uniqueness result for a class of subdifferential inclusions which involve a history-dependent operator. Then we specialize this result in the study of a class of history-dependent hemivariational inequalities. Problems of such kind arise in a large number of mathematical models which describe quasistatic processes of contact. To provide an example we consider an elastic beam in contact with a reactive obstacle. The contact is modeled with a new and nonstandard condition which involves both the subdifferential of a nonconvex and nonsmooth function and a Volterra-type integral term. We derive a variational formulation of the problem which is in the form of a history-dependent hemivariational inequality for the displacement field. Then, we use our abstract result to prove its unique weak solvability. Finally, we consider a numerical approximation of the model, solve effectively the approximate problems and provide numerical simulations
History-Dependent Problems with Applications to Contact Models for Elastic Beams
Bartosz, Krzysztof; Kalita, Piotr; Migórski, Stanisław; Ochal, Anna, E-mail: ochal@ii.uj.edu.pl [Jagiellonian University, Faculty of Mathematics and Computer Science (Poland); Sofonea, Mircea [Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (France)
2016-02-15
We prove an existence and uniqueness result for a class of subdifferential inclusions which involve a history-dependent operator. Then we specialize this result in the study of a class of history-dependent hemivariational inequalities. Problems of such kind arise in a large number of mathematical models which describe quasistatic processes of contact. To provide an example we consider an elastic beam in contact with a reactive obstacle. The contact is modeled with a new and nonstandard condition which involves both the subdifferential of a nonconvex and nonsmooth function and a Volterra-type integral term. We derive a variational formulation of the problem which is in the form of a history-dependent hemivariational inequality for the displacement field. Then, we use our abstract result to prove its unique weak solvability. Finally, we consider a numerical approximation of the model, solve effectively the approximate problems and provide numerical simulations.
Abdelmoumene Djabi
2015-05-01
Full Text Available We consider a mathematical problem for quasistatic contact between a thermo-elastic-viscoplastic body with damage and an obstacle. The contact is frictional and bilateral with a moving rigid foundation which results in the wear of the contacting surface. We employ the thermo-elasticviscoplastic with damage constitutive law for the material. The damage of the material caused by elastic deformations. The evolution of the damage is described by an inclusion of parabolic type. The problem is formulated as a coupled system of an elliptic variational inequality for the displacement, a parabolic variational inequality for the damage and the heat equation for the temperature. We establish a variational formulation for the model and we prove the existence of a unique weak solution to the problem. The proof is based on a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed point arguments.
Investigation of the Dynamic Contact Angle Using a Direct Numerical Simulation Method.
Zhu, Guangpu; Yao, Jun; Zhang, Lei; Sun, Hai; Li, Aifen; Shams, Bilal
2016-11-15
A large amount of residual oil, which exists as isolated oil slugs, remains trapped in reservoirs after water flooding. Numerous numerical studies are performed to investigate the fundamental flow mechanism of oil slugs to improve flooding efficiency. Dynamic contact angle models are usually introduced to simulate an accurate contact angle and meniscus displacement of oil slugs under a high capillary number. Nevertheless, in the oil slug flow simulation process, it is unnecessary to introduce the dynamic contact angle model because of a negligible change in the meniscus displacement after using the dynamic contact angle model when the capillary number is small. Therefore, a critical capillary number should be introduced to judge whether the dynamic contact model should be incorporated into simulations. In this study, a direct numerical simulation method is employed to simulate the oil slug flow in a capillary tube at the pore scale. The position of the interface between water and the oil slug is determined using the phase-field method. The capacity and accuracy of the model are validated using a classical benchmark: a dynamic capillary filling process. Then, different dynamic contact angle models and the factors that affect the dynamic contact angle are analyzed. The meniscus displacements of oil slugs with a dynamic contact angle and a static contact angle (SCA) are obtained during simulations, and the relative error between them is calculated automatically. The relative error limit has been defined to be 5%, beyond which the dynamic contact angle model needs to be incorporated into the simulation to approach the realistic displacement. Thus, the desired critical capillary number can be determined. A three-dimensional universal chart of critical capillary number, which functions as static contact angle and viscosity ratio, is given to provide a guideline for oil slug simulation. Also, a fitting formula is presented for ease of use.
Selected Problems in Nonlinear Dynamics and Sociophysics
Westley, Alexandra Renee
This Ph.D. dissertation focuses on a collection of problems on the dynamical behavior of nonlinear many-body systems, drawn from two substantially different areas. First, the dynamical behavior seen in strongly nonlinear lattices such as in the Fermi-Pasta-Ulam-Tsingou (FPUT) system (part I) and second, time evolution behavior of interacting living objects which can be broadly considered as sociophysics systems (part II). The studies on FPUT-like systems will comprise of five chapters, dedicated to the properties of solitary and anti-solitary waves in the system, how localized nonlinear excitations decay and spread throughout these lattices, how two colliding solitary waves can precipitate highly localized and stable excitations, a possible alternative way to view these localized excitations through Duffing oscillators, and finally an exploration of parametric resonance in an FPUT-like lattice. Part II consists of two problems in the context of sociophysics. I use molecular dynamics inspired simulations to study the size and the stability of social groups of chimpanzees (such as those seen in central Africa) and compare the results with existing observations on the stability of chimpanzee societies. Secondly, I use an agent-based model to simulate land battles between an intelligent army and an insurgency when both have access to equally powerful weaponry. The study considers genetic algorithm based adaptive strategies to infer the strategies needed for the intelligent army to win the battles.
Archibald, Paul C; Parker, Lauren; Thorpe, Roland
2018-04-01
Criminal justice contact-defined as lifetime arrest, parole, or incarceration, seems to exacerbate chronic conditions, and those who are most likely to have had contact with the criminal justice system, such as Black adults, often already have pre-existing disproportionately high rates of stress and chronic conditions due to the social determinants of health that affect underrepresented minorities. Findings from this study suggest that there is a mechanism that links the stressors among Black adults manifested by such factors as family, financial, neighborhood, and personal problems with criminal justice contact to obesity-related health status. Using the National Survey of American Life (NSAL), modified Poisson regression analyses were used to determine the association between criminal justice contact, stressors, and obesity-related health problems among a national sample of Black adults (n = 5008). In the full model, the odds of experiencing obesity-related health problems for Black adults who had criminal justice contact was reduced (PR, 1.23 to 1.14) and not statistically significant. Black adults who reported experiencing family stressors (PR, 1.21; 95% CI, 1.08, 1.36), financial stressors (PR, 1.30; 95% CI, 1.16, 1.47), and personal stressors (PR, 1.16; 95% CI, 1.02, 1.31) were statistically significant and higher than those who reported not experiencing any of these stressors; neighborhood stressors was not statistically significant. The evidence suggests a relationship between the stressors associated with criminal justice contact and obesity-related health status. These findings emphasize the need to further explore the family, financial, and personal stressors for Black adults with criminal justice contact in order to further our understanding of their obesity-related health problems.ᅟ.
The Finite Deformation Dynamic Sphere Test Problem
Versino, Daniele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brock, Jerry Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-09-02
In this manuscript we describe test cases for the dynamic sphere problem in presence of finite deformations. The spherical shell in exam is made of a homogeneous, isotropic or transverse isotropic material and elastic and elastic-plastic material behaviors are considered. Twenty cases, (a) to (t), are thus defined combining material types and boundary conditions. The inner surface radius, the outer surface radius and the material's density are kept constant for all the considered test cases and their values are r_{i} = 10mm, r_{o} = 20mm and p = 1000Kg/m^{3} respectively.
Computational approach to large quantum dynamical problems
Friesner, R.A.; Brunet, J.P.; Wyatt, R.E.; Leforestier, C.; Binkley, S.
1987-01-01
The organizational structure is described for a new program that permits computations on a variety of quantum mechanical problems in chemical dynamics and spectroscopy. Particular attention is devoted to developing and using algorithms that exploit the capabilities of current vector supercomputers. A key component in this procedure is the recursive transformation of the large sparse Hamiltonian matrix into a much smaller tridiagonal matrix. An application to time-dependent laser molecule energy transfer is presented. Rate of energy deposition in the multimode molecule for systematic variations in the molecular intermode coupling parameters is emphasized
Highly dynamic animal contact network and implications on disease transmission
Shi Chen; Brad J. White; Michael W. Sanderson; David E. Amrine; Amiyaal Ilany; Cristina Lanzas
2014-01-01
Contact patterns among hosts are considered as one of the most critical factors contributing to unequal pathogen transmission. Consequently, networks have been widely applied in infectious disease modeling. However most studies assume static network structure due to lack of accurate observation and appropriate analytic tools. In this study we used high temporal and spatial resolution animal position data to construct a high-resolution contact network relevant to infectious disease transmissio...
Efficient numerical methods for the large-scale, parallel solution of elastoplastic contact problems
Frohne, Jörg
2015-08-06
© 2016 John Wiley & Sons, Ltd. Quasi-static elastoplastic contact problems are ubiquitous in many industrial processes and other contexts, and their numerical simulation is consequently of great interest in accurately describing and optimizing production processes. The key component in these simulations is the solution of a single load step of a time iteration. From a mathematical perspective, the problems to be solved in each time step are characterized by the difficulties of variational inequalities for both the plastic behavior and the contact problem. Computationally, they also often lead to very large problems. In this paper, we present and evaluate a complete set of methods that are (1) designed to work well together and (2) allow for the efficient solution of such problems. In particular, we use adaptive finite element meshes with linear and quadratic elements, a Newton linearization of the plasticity, active set methods for the contact problem, and multigrid-preconditioned linear solvers. Through a sequence of numerical experiments, we show the performance of these methods. This includes highly accurate solutions of a three-dimensional benchmark problem and scaling our methods in parallel to 1024 cores and more than a billion unknowns.
Efficient numerical methods for the large-scale, parallel solution of elastoplastic contact problems
Frohne, Jö rg; Heister, Timo; Bangerth, Wolfgang
2015-01-01
© 2016 John Wiley & Sons, Ltd. Quasi-static elastoplastic contact problems are ubiquitous in many industrial processes and other contexts, and their numerical simulation is consequently of great interest in accurately describing and optimizing production processes. The key component in these simulations is the solution of a single load step of a time iteration. From a mathematical perspective, the problems to be solved in each time step are characterized by the difficulties of variational inequalities for both the plastic behavior and the contact problem. Computationally, they also often lead to very large problems. In this paper, we present and evaluate a complete set of methods that are (1) designed to work well together and (2) allow for the efficient solution of such problems. In particular, we use adaptive finite element meshes with linear and quadratic elements, a Newton linearization of the plasticity, active set methods for the contact problem, and multigrid-preconditioned linear solvers. Through a sequence of numerical experiments, we show the performance of these methods. This includes highly accurate solutions of a three-dimensional benchmark problem and scaling our methods in parallel to 1024 cores and more than a billion unknowns.
Petrov, A. G.; Kharlamov, Alexander A.
2013-01-01
Roč. 48, č. 5 (2013), s. 577-587 ISSN 0015-4628 R&D Projects: GA ČR(CZ) GA103/09/2066 Grant - others:Development of the Scientific Potential of the Higher Schoo(RU) 2.1.2/3604; Russian Foundation for Basic Research (RU) 11- 01-005355 Institutional support: RVO:67985874 Keywords : lubrication layer theory * viscous and inviscid fluids * thin layer * vicinity of a contact * three-dimensional problems Subject RIV: BK - Fluid Dynamics Impact factor: 0.320, year: 2013
Fumagalli, Ivan; Parolini, Nicola; Verani, Marco
2018-02-01
We analyze a free-surface problem described by time-dependent Navier-Stokes equations. Surface tension, capillary effects and wall friction are taken into account in the evolution of the system, influencing the motion of the contact line - where the free surface hits the wall - and of the dynamics of the contact angle. The differential equations governing the phenomenon are first derived from the variational principle of minimum reduced dissipation, and then discretized by means of the ALE approach. The numerical properties of the resulting scheme are investigated, drawing a parallel with the physical properties holding at the continuous level. Some instability issues are addressed in detail, in the case of an explicit treatment of the geometry, and novel additional terms are introduced in the discrete formulation in order to damp the instabilities. Numerical tests assess the suitability of the approach, the influence of the parameters, and the effectiveness of the new stabilizing terms.
Primal and Dual Penalty Methods for Contact Problems with Geometrical Non-linearities
Vondrák, V.; Dostál, Z.; Dobiáš, Jiří; Pták, Svatopluk
-, č. 5 (2005), s. 449-450 ISSN 1617-7061. [GAMM Annual Meeting 2005. Luxembourg, 28.03.2005-01.04.2005] R&D Projects: GA ČR(CZ) GA101/05/0423 Institutional research plan: CEZ:AV0Z20760514 Keywords : primal penalty * dual penalty * contact problem Subject RIV: BA - General Mathematics
Solvability of Static Contact Problems with Coulomb Friction for Orthotropic Material
Eck, C.; Jarušek, Jiří
2008-01-01
Roč. 93, č. 1 (2008), s. 93-104 ISSN 0374-3535 R&D Projects: GA AV ČR IAA1075402 Institutional research plan: CEZ:AV0Z10190503 Keywords : contact problem * Coulomb friction * orthotropic elasticity Subject RIV: BA - General Mathematics Impact factor: 1.277, year: 2008
Contact Problem of Disk on Shaft Fixed by Induction Shrink Fit
Ulrych, B.; Kotlan, V.; Doležel, Ivo
2012-01-01
Roč. 88, 12B (2012), s. 32-34 ISSN 0033-2097 Institutional research plan: CEZ:AV0Z20760514 Keywords : induction shrink fit * contact problem * transfer of torque Subject RIV: BA - General Mathematics Impact factor: 0.244, year: 2011
The dynamic contact area of elastomers at different velocities
Khafidh, Muhammad; Rodriguez, N.V.; Masen, Marc Arthur; Schipper, Dirk J.
2016-01-01
The friction in tribo-systems that contain viscoelastic materials, such as elastomers, is relevant for a large number of applications. Examples include tyres, hoses, transmission and conveyor belts. To quantify the friction in these applications, one must first understand the contact behaviour of
A "Conveyor Belt" Model for the Dynamic Contact Angle
Della Volpe, C.; Siboni, S.
2011-01-01
The familiar Young contact angle measurement of a liquid at equilibrium on a solid is a fundamental aspect of capillary phenomena. But in the real world it is not so easy to observe it. This is due to the roughness and/or heterogeneity of real surfaces, which typically are not perfectly planar and chemically homogeneous. What can be easily…
On the the Contact Lens Problem: Modeling Rigid and Elastic Beams on Thin Films
Trinh, Philippe; Wilson, Stephen; Stone, Howard
2011-11-01
Generally, contact lenses are prescribed by the practitioner to fit each individual patient's eye, but these fitting-philosophies are based on empirical studies and a certain degree of trial-and-error. A badly fitted lens can cause a range of afflictions, which varies from mild dry-eye-discomfort, to more serious corneal diseases. Thus, at this heart of this problem, is the question of how a rigid or elastic plate interacts with the free-surface of a thin viscous film. In this talk, we present several mathematical models for the study of these plate-and-fluid problems. Asymptotic and numerical results are described, and we explain the role of elasticity, surface tension, viscosity, and pressure in determining the equilibrium solutions. Finally, we discuss the implications of our work on the contact lens problem, as well as on other coating processes which involve elastic substrates.
Influence of wheel-rail contact modelling on vehicle dynamic simulation
Burgelman, Nico; Sichani, Matin Sh.; Enblom, Roger; Berg, Mats; Li, Zili; Dollevoet, Rolf
2015-08-01
This paper presents a comparison of four models of rolling contact used for online contact force evaluation in rail vehicle dynamics. Until now only a few wheel-rail contact models have been used for online simulation in multibody software (MBS). Many more models exist and their behaviour has been studied offline, but a comparative study of the mutual influence between the calculation of the creep forces and the simulated vehicle dynamics seems to be missing. Such a comparison would help researchers with the assessment of accuracy and calculation time. The contact methods investigated in this paper are FASTSIM, Linder, Kik-Piotrowski and Stripes. They are compared through a coupling between an MBS for the vehicle simulation and Matlab for the contact models. This way the influence of the creep force calculation on the vehicle simulation is investigated. More specifically this study focuses on the influence of the contact model on the simulation of the hunting motion and on the curving behaviour.
Problems of the dynamics of superradiant systems
Bogolyubov, N.N.; Shumovskij, A.S.
1984-01-01
Consideration is being given to the problems of describing dynamics of superradiant systems related to determination of operation conditions, the choice of active media and evaluation of noncavity laser power. It is shown that coherent monochromatic electromagnetic radiation can be generated according to noncavity circuit in a wide frequency range (from optical up to far infrared one) in ordered polar media by means of disturbing their equilibrium state. The most suitable operation substances can be presented by pyroelectrics possessing high degree of dipole correlation, monodomain structure and characteristic temperature dependence of specific polarization, as well as by paramagnetics located in magnetic field. Rapid decrease of temperature can be used as the simplest pumping mechanism in the case of pyroelectrics
Beyond Problem-Based Learning: Using Dynamic PBL in Chemistry
Overton, Tina L.; Randles, Christopher A.
2015-01-01
This paper describes the development and implementation of a novel pedagogy, dynamic problem-based learning. The pedagogy utilises real-world problems that evolve throughout the problem-based learning activity and provide students with choice and different data sets. This new dynamic problem-based learning approach was utilised to teach…
Martinovic, B.
2010-01-01
This book studies social integration of immigrants (i.e. contacts between immigrants and natives in leisure time) from a dynamic perspective. The central objective is to examine how such interethnic contacts change during the immigrants’ stay in the host country (do they increase, stagnate or
On the mechanical vibrator-earth contact geometry and its dynamics
Noorlandt, R.P.; Drijkoningen, G.G.
2016-01-01
The geometry of the contact between a vibrator and the earth underneath influences the dynamics of the vibrator. Although a vibrator might appear to be well-coupled with the earth on a macroscale, perfect coupling certainly does not occur on the microscale. With the aid of contact mechanical
A model-adaptivity method for the solution of Lennard-Jones based adhesive contact problems
Ben Dhia, Hachmi; Du, Shuimiao
2018-05-01
The surface micro-interaction model of Lennard-Jones (LJ) is used for adhesive contact problems (ACP). To address theoretical and numerical pitfalls of this model, a sequence of partitions of contact models is adaptively constructed to both extend and approximate the LJ model. It is formed by a combination of the LJ model with a sequence of shifted-Signorini (or, alternatively, -Linearized-LJ) models, indexed by a shift parameter field. For each model of this sequence, a weak formulation of the associated local ACP is developed. To track critical localized adhesive areas, a two-step strategy is developed: firstly, a macroscopic frictionless (as first approach) linear-elastic contact problem is solved once to detect contact separation zones. Secondly, at each shift-adaptive iteration, a micro-macro ACP is re-formulated and solved within the multiscale Arlequin framework, with significant reduction of computational costs. Comparison of our results with available analytical and numerical solutions shows the effectiveness of our global strategy.
Piotrowski, J.
2010-07-01
This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.
A parametric study of contact problem on a large size flange
Mukherjee, A.B.; Narayanan, T.; Dhondkar, J.K.; Mehra, V.K.
1989-01-01
Continuous change of contact point on gasket face with the application of bolt load makes it a non-linear problem. Thus the geometric non-linearity of the structure is simulated and a stress distribution over the gasket face is presented in this paper. The paper also describes the use of taper on the gasket face to reduce the stress peaking and to optimize the gasket face separation
Shape Optimization in Three-Dimensional Contact Problems with Coulomb Friction
Beremlijski, P.; Haslinger, J.; Kočvara, Michal; Kučera, R.; Outrata, Jiří
2009-01-01
Roč. 20, č. 1 (2009), s. 416-444 ISSN 1052-6234 R&D Projects: GA AV ČR IAA100750802; GA AV ČR IAA1075402 Grant - others:European Commision(XE) FP6 - 30717; GA ČR(CZ) GA201/07/0294 Institutional research plan: CEZ:AV0Z10750506 Keywords : shape optimization * contact problems * Coulomb friction Subject RIV: BA - General Mathematics Impact factor: 1.429, year: 2009
A finite-element model for moving contact line problems in immiscible two-phase flow
Kucala, Alec
2017-11-01
Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). The macroscale movement of the contact line is dependent on the molecular interactions occurring at the three-phase interface, however most MCL problems require resolution at the meso- and macro-scale. A phenomenological model must be developed to account for the microscale interactions, as resolving both the macro- and micro-scale would render most problems computationally intractable. Here, a model for the moving contact line is presented as a weak forcing term in the Navier-Stokes equation and applied directly at the location of the three-phase interface point. The moving interface is tracked with the level set method and discretized using the conformal decomposition finite element method (CDFEM), allowing for the surface tension and the wetting model to be computed at the exact interface location. A variety of verification test cases for simple two- and three-dimensional geometries are presented to validate the current MCL model, which can exhibit grid independence when a proper scaling for the slip length is chosen. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.
Modelling of contact problems involved in ensuring the safety of rail transport
Edward Rydygier
2013-12-01
Full Text Available Background: Mathematical modelling aids diagnostics the track and rolling stock, as it often for technical reasons it is not possible to obtain a complete set of measurement data required to diagnose the rail and wheel deformation caused by the impact of a rail vehicle on the track. The important issue in a railway diagnostics is to study the effects of contact wheel and rail. Diagnostics investigations of track and rolling stock have a fundamental role in ensuring the safety of transport of passengers and goods. The aim of the study presented in the paper was to develop simulation methods of mathematical modelling of the wheel-rail system useful in the diagnostics of the track and a railway vehicle. Methods: In the paper two ways of modelling were presented and discussed. One of these ways is the method which consists in reducing the contact issue to field issue and solving the identification of the field source in 2-D system. Also presented a different method designed on the basis of the methods using one period energy concept. This method is adapted for modelling the dynamics of the contact wheel-rail for the normal force. It has been shown that the developed modelling methods to effectively support the study on the effects of mechanical and thermal of contact wheel-rail and contribute to the safety of operations. Results and conclusions: In the case of field sources identifications two specific issues were examined: the issue of rail torsion and the identification of heat sources in the rail due to exposure the rolling contact wheel-rail. In the case of the method using one period energy concept it was demonstrated the usefulness of this method to the study of energy processes in the contact wheel-rail under the normal periodic force. The future direction of research is to establish cooperation with research teams entrusted with the diagnostic measurements of track and rolling stock.
Duval, Audrey; Obadia, Thomas; Martinet, Lucie; Boëlle, Pierre-Yves; Fleury, Eric; Guillemot, Didier; Opatowski, Lulla; Temime, Laura
2018-01-26
Understanding transmission routes of hospital-acquired infections (HAI) is key to improve their control. In this context, describing and analyzing dynamic inter-individual contact patterns in hospitals is essential. In this study, we used wearable sensors to detect Close Proximity Interactions (CPIs) among patients and hospital staff in a 200-bed long-term care facility over 4 months. First, the dynamic CPI data was described in terms of contact frequency and duration per individual status or activity and per ward. Second, we investigated the individual factors associated with high contact frequency or duration using generalized linear mixed-effect models to account for inter-ward heterogeneity. Hospital porters and physicians had the highest daily number of distinct contacts, making them more likely to disseminate HAI among individuals. Conversely, contact duration was highest between patients, with potential implications in terms of HAI acquisition risk. Contact patterns differed among hospital wards, reflecting varying care patterns depending on reason for hospitalization, with more frequent contacts in neurologic wards and fewer, longer contacts in geriatric wards. This study is the first to report proximity-sensing data informing on inter-individual contacts in long-term care settings. Our results should help better understand HAI spread, parameterize future mathematical models, and propose efficient control strategies.
Dynamic strain measurements in a sliding microstructured contact
Bennewitz, Roland; David, Jonathan; Lannoy, Charles-Francois de; Drevniok, Benedict; Hubbard-Davis, Paris; Miura, Takashi; Trichtchenko, Olga
2008-01-01
A novel experiment is described which measures the tangential strain development across the contact between a PDMS (polydimethylsiloxane) block and a glass surface during the initial stages of sliding. The surface of the PDMS block has been microfabricated to take the form of a regular array of pyramidal tips at 20 μm separation. Tangential strain is measured by means of light scattering from the interface between the block and surface. Three phases are observed in all experiments: initial shear deformation of the whole PDMS block, a pre-sliding tangential compression of the tip array with stepwise increase of the compressive strain, and sliding in stick-slip movements as revealed by periodic variation of the strain. The stick-slip sliding between the regular tip array and the randomly rough counter surface always takes on the periodicity of the tip array. The fast slip can cause either a sudden increase or a sudden decrease in compressive strain
Contact activity and dynamics of the social core
Mones, Enys; Stopczynski, Arkadiusz; Jørgensen, Sune Lehmann
2017-01-01
arising from communication events via phone calls and instant messages, the extent to which these networks differ is not clear. We show here that the network structure of these channels show large structural variations. The various channels account for diverse relationships between pairs of individuals......Humans interact through numerous communication channels to build and maintain social connections: they meet face-to-face, make phone calls or send text messages, and interact via social media. Although it is known that the network of physical contacts, for example, is distinct from the network...... of the network within a low number of steps, in contrast to the nodes on the periphery. The origin and purpose of each communication network also determine the role of their respective central members: highly connected individuals in the person-to-person networks interact with their environment in a regular...
Validation of single ball rolling contact fatigue machine dynamics
Allison, Bryan [SKF Aeroengine, Falconer (United States)
2017-01-15
Single ball test machines are a common method for accelerated rolling contact fatigue testing of bearing materials. Historically, it has always been assumed that the force applied by the retaining bars is negligible, without any data to support this claim. In this study, strain gauges were placed on the retaining bars to determine the load experienced by the retaining bars. This value was then compared to the applied load. It was found that a load of approximately 4 N was transferred to the retainer by the test ball during steady state operation, when a 8385 N load was applied to the ball via the rings. A simulation of the system was also created and successfully predicted the expected loads with reasonable accuracy. This information, as well as the technique of strain gauging the retaining bars, may be useful in the development of similar testing machinery.
Experimentally-based optimization of contact parameters in dynamics simulation of humanoid robots
Vivian, Michele; Reggiani, Monica; Sartori, Massimo
2013-01-01
With this work we introduce a novel methodology for the simulation of walking of a humanoid robot. Motion capture technology is used to calibrate the dynamics engine internal parameters and validate the simulated motor task. Results showed the calibrated contact model allows predicting dynamically
Awrejcewicz, J.; Krysko, V. A.; Yakovleva, T. V.; Pavlov, S. P.; Krysko, V. A.
2018-05-01
A mathematical model of complex vibrations exhibited by contact dynamics of size-dependent beam-plate constructions was derived by taking the account of constraints between these structural members. The governing equations were yielded by variational principles based on the moment theory of elasticity. The centre of the investigated plate was supported by a beam. The plate and the beam satisfied the Kirchhoff/Euler-Bernoulli hypotheses. The derived partial differential equations (PDEs) were reduced to the Cauchy problems by the Faedo-Galerkin method in higher approximations, whereas the Cauchy problem was solved using a few Runge-Kutta methods. Reliability of results was validated by comparing the solutions obtained by qualitatively different methods. Complex vibrations were investigated with the help of methods of nonlinear dynamics such as vibration signals, phase portraits, Fourier power spectra, wavelet analysis, and estimation of the largest Lyapunov exponents based on the Rosenstein, Kantz, and Wolf methods. The effect of size-dependent parameters of the beam and plate on their contact interaction was investigated. It was detected and illustrated that the first contact between the size-dependent structural members implies chaotic vibrations. In addition, problems of chaotic synchronization between a nanoplate and a nanobeam were addressed.
Current-induced dynamics in carbon atomic contacts
Lu, Jing Tao; Gunst, Tue; Brandbyge, Mads
2011-01-01
voltage, which can be used to explore current-induced vibrational instabilities due the NC/BP forces. Furthermore, using tight-binding and the Brenner potential we illustrate how Langevin-type molecular-dynamics calculations including the Joule heating effect for the carbon-chain systems can be performed...... be used to explore current-induced dynamics and instabilities. We find instabilities at experimentally relevant bias and gate voltages for the carbon-chain system. © 2011 Lü et al....... carbon chain connecting electrically gated graphene electrodes. This illustrates how the device stability can be predicted solely from the modes obtained from the Langevin equation, including the current-induced forces. We point out that the gate offers control of the current, independent of the bias...
Dynamics of liquid solidification thermal resistance of contact layer
Lipnicki, Zygmunt
2017-01-01
This monograph comprehensively describes phenomena of heat flow during phase change as well as the dynamics of liquid solidification, i.e. the development of a solidified layer. The book provides the reader with basic knowledge for practical designs, as well as with equations which describe processes of energy transformation. The target audience primarily comprises researchers and experts in the field of heat flow, but the book may also be beneficial for both practicing engineers and graduate students.
Contact- and distance-based principal component analysis of protein dynamics
Ernst, Matthias; Sittel, Florian; Stock, Gerhard, E-mail: stock@physik.uni-freiburg.de [Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg (Germany)
2015-12-28
To interpret molecular dynamics simulations of complex systems, systematic dimensionality reduction methods such as principal component analysis (PCA) represent a well-established and popular approach. Apart from Cartesian coordinates, internal coordinates, e.g., backbone dihedral angles or various kinds of distances, may be used as input data in a PCA. Adopting two well-known model problems, folding of villin headpiece and the functional dynamics of BPTI, a systematic study of PCA using distance-based measures is presented which employs distances between C{sub α}-atoms as well as distances between inter-residue contacts including side chains. While this approach seems prohibitive for larger systems due to the quadratic scaling of the number of distances with the size of the molecule, it is shown that it is sufficient (and sometimes even better) to include only relatively few selected distances in the analysis. The quality of the PCA is assessed by considering the resolution of the resulting free energy landscape (to identify metastable conformational states and barriers) and the decay behavior of the corresponding autocorrelation functions (to test the time scale separation of the PCA). By comparing results obtained with distance-based, dihedral angle, and Cartesian coordinates, the study shows that the choice of input variables may drastically influence the outcome of a PCA.
Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings
Wang, Hong; Han, Qinkai; Zhou, Daning
2017-02-01
In current bearing dynamic models, the displacement coordinate relations are usually utilized to approximately obtain the contact deformations between the rolling element and raceways, and then the nonlinear restoring forces of the rolling bearing could be calculated accordingly. Although the calculation efficiency is relatively higher, the accuracy is lower as the contact deformations should be solved through iterative analysis. Thus, an improved nonlinear dynamic model is presented in this paper. Considering the preload condition, surface waviness, Hertz contact and elastohydrodynamic lubrication, load distribution analysis is solved iteratively to more accurately obtain the contact deformations and angles between the rolling balls and raceways. The bearing restoring forces are then obtained through iteratively solving the load distribution equations at every time step. Dynamic tests upon a typical rotor system supported by two angular contact ball bearings are conducted to verify the model. Through comparisons, the differences between the nonlinear dynamic model and current models are also pointed out. The effects of axial preload, rotor eccentricity and inner/outer waviness amplitudes on the dynamic response are discussed in detail.
Zhang, Neng-Li; Chao, David F.
2001-01-01
A new hybrid optical system, consisting of reflection-refracted shadowgraphy and top-view photography, is used to visualize flow phenomena and simultaneously measure the spreading and instant dynamic contact angle in a volatile-liquid drop on a nontransparent substrate. Thermocapillary convection in the drop, induced by evaporation, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this unique technique clearly reveal that thermocapillary convection strongly affects the spreading process and the characteristics of dynamic contact angle of the drop. Comprehensive information of a sessile drop, including the local contact angle along the periphery, the instability of the three-phase contact line, and the deformation of the drop shape is obtained and analyzed.
Bao-guo Yao
2017-10-01
Full Text Available Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials.
Beremlijski, P.; Outrata, Jiří; Haslinger, Jaroslav; Pathó, R.
2014-01-01
Roč. 52, č. 5 (2014), s. 3371-3400 ISSN 0363-0129 R&D Projects: GA ČR(CZ) GAP201/12/0671 Grant - others:GA MŠK(CZ) CZ.1.05/1.1.00/02.0070; GA MŠK(CZ) CZ.1.07/2.3.00/20.0070 Institutional support: RVO:67985556 ; RVO:68145535 Keywords : shape optimization * contact problems * Coulomb friction * solution-dependent coefficient of friction * mathematical programs with equilibrium constraints Subject RIV: BA - General Mathematics Impact factor: 1.463, year: 2014 http://library.utia.cas.cz/separaty/2014/MTR/outrata-0434234.pdf
Moving contact lines: linking molecular dynamics and continuum-scale modelling.
Smith, Edward R; Theodorakis, Panagiotis E; Craster, Richard V; Matar, Omar K
2018-05-04
Despite decades of research, the modelling of moving contact lines has remained a formidable challenge in fluid dynamics whose resolution will impact numerous industrial, biological, and daily-life applications. On the one hand, molecular dynamics (MD) simulation has the ability to provide unique insight into the microscopic details that determine the dynamic behavior of the contact line, which is not possible with either continuum-scale simulations or experiments. On the other hand, continuum-based models provide the link to the macroscopic description of the system. In this Feature Article, we explore the complex range of physical factors, including the presence of surfactants, which govern the contact line motion through MD simulations. We also discuss links between continuum- and molecular-scale modelling, and highlight the opportunities for future developments in this area.
Dynamic characterization of contact interactions of micro-robotic leg structures
Ryou, Jeong Hoon; Oldham, Kenn Richard
2014-05-01
Contact dynamics of microelectromechanical systems (MEMS) are typically complicated and it is consequently difficult to model all dynamic characteristics observed in time-domain responses involving impact. This issue becomes worse when a device, such as a mobile micro-robot, is not clamped to a substrate and has a complex mechanical structure. To characterize such a contact interaction situation, two walking micro-robot prototypes are tested having intentionally simple structures with different dimensions (21.2 mm × 16.3 mm × 0.75 mm and 32 mm × 25.4 mm × 4.1 mm) and weights (0.16 and 2.7 g). Contact interaction behaviors are characterized by analyzing experimental data under various excitation signals. A numerical approach was used to derive a novel contact model consisting of a coefficient of restitution matrix that uses modal vibration information. Experimental validation of the simulation model shows that it captures various dynamic features of the contact interaction when simulating leg behavior more accurately than previous contact models, such as single-point coefficient of restitution or compliant ground models. In addition, this paper shows that small-scale forces can be added to the simulation to improve model accuracy, resulting in average errors across driving conditions on the order of 2-6% for bounce frequency, maximum foot height, and average foot height, although there is substantial variation from case to case.
Dynamic characterization of contact interactions of micro-robotic leg structures
Ryou, Jeong Hoon; Oldham, Kenn Richard
2014-01-01
Contact dynamics of microelectromechanical systems (MEMS) are typically complicated and it is consequently difficult to model all dynamic characteristics observed in time-domain responses involving impact. This issue becomes worse when a device, such as a mobile micro-robot, is not clamped to a substrate and has a complex mechanical structure. To characterize such a contact interaction situation, two walking micro-robot prototypes are tested having intentionally simple structures with different dimensions (21.2 mm × 16.3 mm × 0.75 mm and 32 mm × 25.4 mm × 4.1 mm) and weights (0.16 and 2.7 g). Contact interaction behaviors are characterized by analyzing experimental data under various excitation signals. A numerical approach was used to derive a novel contact model consisting of a coefficient of restitution matrix that uses modal vibration information. Experimental validation of the simulation model shows that it captures various dynamic features of the contact interaction when simulating leg behavior more accurately than previous contact models, such as single-point coefficient of restitution or compliant ground models. In addition, this paper shows that small-scale forces can be added to the simulation to improve model accuracy, resulting in average errors across driving conditions on the order of 2–6% for bounce frequency, maximum foot height, and average foot height, although there is substantial variation from case to case. (paper)
Modelling and solution of contact problem for infinite plate and cross-shaped embedment
O.B. Kozin
2016-09-01
Full Text Available Development of efficient methods of determination of an intense-strained state of thin-walled constructional designs with inclusions, reinforcements and other stress raisers is an important problem both with theoretical, and from the practical point of view, considering their wide practical application. Aim: The aim of this research is to develop the analytical mathematical method of studying of an intense-strained state of infinite plate with cross-shaped embedment at a bend. Materials and Methods: The method of boundary elements is an efficient way of the boundary value problems solution for systems of differential equations. The methods based on boundary integral equations get wide application in many branches of science and technique, calculation of plates and shells. One of methods of solution of a numerous class of the integral equations and systems arising on the basis of a method of boundary integral equations is the analytical method of construction of these equations and systems to Riemann problems with their forthcoming decision. Results: The integral equation for the analysis of deflections and the analysis of an intense-strained state of a thin rigid plate with rigid cross-shaped embedment is received. The precise solution of this boundary value problem is received by reduction to a Riemann problem and its forthcoming solution. An asymptotical behavior of contact efforts at the ends of embedment is investigated.
How Does a Liquid Wet a Solid? Hydrodynamics of Dynamic Contact Angles
Rame, Enrique
2001-01-01
A contact line is defined at the intersection of a solid surface with the interface between two immiscible fluids. When one fluid displaces another immiscible fluid along a solid surface, the process is called dynamic wetting and a "moving" contact line (one whose position relative to the solid changes in time) often appears. The physics of dynamic wetting controls such natural and industrial processes as spraying of paints and insecticides, dishwashing, film formation and rupture in the eye and in the alveoli, application of coatings, printing, drying and imbibition of fibrous materials, oil recovery from porous rocks, and microfluidics.
Deraedt, Deborah; Touzé, Camille; Robert, Tanguy; Colinet, Gilles; Degré, Aurore; Garré, Sarah
2015-04-01
Electrical resistivity tomography (ERT) has often been put forward as a promising tool to quantify soil water and solute fluxes in a non-invasive way. In our experiment, we wanted to determine preferential flow processes along a forested hillslope using a saline tracer with ERT. The experiment was conducted in the Houille watershed, subcatchment of the Meuse located in the North of Belgian Ardennes (50° 1'52.6'N, 4° 53'22.5'E). The climate is continental but the soil under spruce (Picea abies (L.) Karst.) and Douglas fire stand (Pseudotsuga menziesii (Mirb.) Franco) remains quite dry (19% WVC in average) during the whole year. The soil is Cambisol and the parent rock is Devonian schist covered with variable thickness of silty loam soil. The soil density ranges from 1.13 to 1.87 g/cm3 on average. The stone content varies from 20 to 89% and the soil depth fluctuates between 70 and 130 cm. The ERT tests took place on June 1st 2012, April 1st, 2nd and 3rd 2014 and May 12th 2014. We used the Terrameter LS 12 channels (ABEM, Sweden) in 2012 test and the DAS-1 (Multi-Phase Technologies, United States) in 2014. Different electrode configurations and arrays were adopted for different dates (transect and grid arrays and Wenner - Schlumberger, Wenner alpha and dipole-dipole configurations). During all tests, we systematically faced technical problems, mainly related to bad electrode contact. The recorded data show values of contact resistance above 14873 Ω (our target value would be below 3000 Ω). Subsequently, we tried to improve the contact by predrilling the soil and pouring water in the electrode holes. The contact resistance improved to 14040 Ω as minimum. The same procedure with liquid mud was then tested to prevent quick percolation of the water from the electrode location. As a result, the lower contact resistance dropped to 11745 Ω. Finally, we applied about 25 litre of saline solution (CaCl2, 0.75g/L) homogeneously on the electrode grid. The minimum value of
The intermittent contact impact problem in piping systems of nuclear reactor
Martin, A.; Ricard, A.; Millard, A.
1981-09-01
The intermittent contact problem is important in many pipe whip studies, specially as to the safety of nuclear reactors. The impact concept adopted is that of instantaneous impact, so that at the time of impact the two impacting structures instantaneously acquire the same velocity in the impact direction. Energy is dissipated by some mechanism whose spatial and temporal scale is small compared to these scales in the discrete model. This dissipation is associated with local plastic deformation. Different solutions are presented for solving this problem. The first one is a generalization of the modal superposition method, when the nonlinearities of the structure are only due to impact between structural components; the other ones are included in a step by step time history and can take in account geometrical non linearities and of behavior. Some industrial applications in nuclear technology are presented
A Dynamic Programming Algorithm for the k-Haplotyping Problem
Zhen-ping Li; Ling-yun Wu; Yu-ying Zhao; Xiang-sun Zhang
2006-01-01
The Minimum Fragments Removal (MFR) problem is one of the haplotyping problems: given a set of fragments, remove the minimum number of fragments so that the resulting fragments can be partitioned into k classes of non-conflicting subsets. In this paper, we formulate the k-MFR problem as an integer linear programming problem, and develop a dynamic programming approach to solve the k-MFR problem for both the gapless and gap cases.
Dynamic Response of a Planetary Gear System Using a Finite Element/Contact Mechanics Model
Parker, Robert G.; Agashe, Vinayak; Vijayakar, Sandeep M.
2000-01-01
The dynamic response of a helicopter planetary gear system is examined over a wide range of operating speeds and torques. The analysis tool is a unique, semianalytical finite element formulation that admits precise representation of the tooth geometry and contact forces that are crucial in gear dynamics. Importantly, no a priori specification of static transmission error excitation or mesh frequency variation is required; the dynamic contact forces are evaluated internally at each time step. The calculated response shows classical resonances when a harmonic of mesh frequency coincides with a natural frequency. However, peculiar behavior occurs where resonances expected to be excited at a given speed are absent. This absence of particular modes is explained by analytical relationships that depend on the planetary configuration and mesh frequency harmonic. The torque sensitivity of the dynamic response is examined and compared to static analyses. Rotation mode response is shown to be more sensitive to input torque than translational mode response.
Yurii M. Streliaiev
2016-06-01
Full Text Available Three-dimensional quasistatic contact problem of two linearly elastic bodies' interaction with Coulomb friction taken into account is considered. The boundary conditions of the problem have been simplified by the modification of the Coulomb's law of friction. This modification is based on the introducing of a delay in normal contact tractions that bound tangent contact tractions in the Coulomb's law of friction expressions. At this statement the problem is reduced to a sequence of similar systems of nonlinear integral equations describing bodies' interaction at each step of loading. A method for an approximate solution of the integral equations system corresponded to each step of loading is applied. This method consists of system regularization, discretization of regularized system and iterative process application for solving the discretized system. A numerical solution of a contact problem of an elastic sphere with an elastic half-space interaction under increasing and subsequently decreasing normal compressive force has been obtained.
Molecular Dynamics Analyses on Microscopic Contact Angle - Effect of Wall Atom Configuration
Takahiro Ito; Yosuke Hirata; Yutaka Kukita
2006-01-01
Boiling or condensing phenomena of liquid on the solid surface is greatly affected by the wetting condition of the liquid to the solid. Although the contact angle is one of the most important parameter to represent the wetting condition, the behavior of the contact angle is not understood well, especially in the dynamic condition. In this study we made molecular dynamics simulations to investigate the microscopic contact angle behavior under several conditions on the numerical density of the wall atoms. In the analyses, when the number density of the wall is lower, the changing rate of the dynamics contact angles for the variation of ΔV was higher than those for the case where the wall density is higher. This is mainly due to the crystallization of the fluid near the wall and subsequent decrease in the slip between the fluid and the wall. The analyses also show that the static contact angle decreases with increase in the number density of the wall. This was mainly induced by the increase in the number density of the wall itself. (authors)
Discrete Control Processes, Dynamic Games and Multicriterion Control Problems
Dumitru Lozovanu
2002-07-01
Full Text Available The discrete control processes with state evaluation in time of dynamical system is considered. A general model of control problems with integral-time cost criterion by a trajectory is studied and a general scheme for solving such classes of problems is proposed. In addition the game-theoretical and multicriterion models for control problems are formulated and studied.
Barros de Oliveira, Alan; Fortini, Andrea; Buldyrev, Sergey V.; Srolovitz, David
2011-01-01
We study the dynamics of the contact between a pair of surfaces (with properties designed to mimic ruthenium) via molecular dynamics simulations. In particular, we study the contact between a ruthenium surface with a single nanoasperity and a flat ruthenium surface. The results of such simulations suggest that contact behavior is highly variable. The goal of this study is to investigate the source and degree of this variability. We find that during compression, the behavior of the contact force displacement curves is reproducible, while during contact separation, the behavior is highly variable. Examination of the contact surfaces suggests that two separation mechanisms are in operation and give rise to this variability. One mechanism corresponds to the formation of a bridge between the two surfaces that plastically stretches as the surfaces are drawn apart and eventually separate in shear. This leads to a morphology after separation in which there are opposing asperities on the two surfaces. This plastic separation/bridge formation mechanism leads to a large work of separation. The other mechanism is a more brittle-like mode in which a crack propagates across the base of the asperity (slightly below the asperity/substrate junction) leading to most of the asperity on one surface or the other after separation and a slight depression facing this asperity on the opposing surface. This failure mode corresponds to a smaller work of separation. This failure mode corresponds to a smaller work of separation. Furthermore, contacts made from materials that exhibit predominantly brittle-like behavior will tend to require lower work of separation than those made from ductile-like contact materials.
Effects of internal friction on contact formation dynamics of polymer chain
Bian, Yukun; Li, Peng; Zhao, Nanrong
2018-04-01
A theoretical framework is presented to study the contact formation dynamics of polymer chains, in accompany with an electron-transfer quenching. Based on a non-Markovian Smoluchowski equation supplemented with an exponential sink term, we derive the mean time of contact formation under Wilemski-Fixman approximation. Our particular attentions are paid to the effect of internal friction. We find out that internal friction induces a novel fractional viscosity dependence, which will become more remarkable as internal friction increases. Furthermore, we clarify that internal friction inevitably promotes a diffusion-controlled mechanism by slowing the chain relaxation. Finally, we apply our theory to rationalise the experimental investigation for contact formation of a single-stranded DNA. The theoretical results can reproduce the experimental data very well with quite reasonable estimation for the intrinsic parameters. Such good agreements clearly demonstrate the validity of our theory which has appropriately addressed the very role of internal friction to the relevant dynamics.
Effects of moving dynamic tyre loads on tyre-pavement contact stresses
Steyn, WJvdM
2002-01-01
Full Text Available The purpose of this paper is to indicate the effect that moving dynamic tyre loads has on the tyre-pavement contact stresses used in pavement analysis. Traditionally tyre loads (in pavement analysis) are modelled as constant loads applied through...
Dynamic Head-Disk Interface Instabilities With Friction for Light Contact (Surfing) Recording
Vakis, Antonis I.; Lee, Sung-Chang; Polycarpou, Andreas A.
2009-01-01
Recent advances in hard-disk drive technology involve the use of a thermal fly-height control (TFC) pole tip protrusion to bring the read/write recording elements of the slider closer to the disk surface and thus achieve Terabit per square inch recording densities. A dynamic, contact mechanics-based
A framework for dynamic rescheduling problems
Larsen, Rune; Pranzo, Marco
2018-01-01
. Extensive tests are carried out for the job shop problem, and we demonstrate that the framework can be used to ascertain the benefit of using rescheduling over static methods, decide between rescheduling policies, and finally we show that it can be applied in real-life applications due to a low time...
Boundary-value problems in cosmological dynamics
Nusser, Adi
2008-08-01
The dynamics of cosmological gravitating system is governed by the Euler and the Poisson equations. Tiny fluctuations near the big bang singularity are amplified by gravitational instability into the observed structure today. Given the current distribution of galaxies and assuming initial homogeneity, dynamic reconstruction methods have been developed to derive the cosmic density and velocity fields back in time. The reconstruction method described here is based on a least action principle formulation of the dynamics of collisionless particles (representing galaxies). Two observational data sets will be considered. The first is the distribution of galaxies which is assumed to be an fair tracer of the mass density field of the dark matter. The second set is measurements of the peculiar velocities (deviations from pure Hubble flow) of galaxies. Given the first data set, the reconstruction method recovers the associated velocity field which can then be compared with the second data set. This comparison constrains the nature of the dark matter and the relation between mass and light in the Universe.
A gradient stable scheme for a phase field model for the moving contact line problem
Gao, Min
2012-02-01
In this paper, an efficient numerical scheme is designed for a phase field model for the moving contact line problem, which consists of a coupled system of the Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition [1,2,4]. The nonlinear version of the scheme is semi-implicit in time and is based on a convex splitting of the Cahn-Hilliard free energy (including the boundary energy) together with a projection method for the Navier-Stokes equations. We show, under certain conditions, the scheme has the total energy decaying property and is unconditionally stable. The linearized scheme is easy to implement and introduces only mild CFL time constraint. Numerical tests are carried out to verify the accuracy and stability of the scheme. The behavior of the solution near the contact line is examined. It is verified that, when the interface intersects with the boundary, the consistent splitting scheme [21,22] for the Navier Stokes equations has the better accuracy for pressure. © 2011 Elsevier Inc.
Analysis of in vitro and in vivo function of total knee replacements using dynamic contact models
Zhao, Dong
Despite the high incidence of osteoarthritis in human knee joint, its causes remain unknown. Total knee replacement (TKR) has been shown clinically to be effective in restoring the knee function. However, wear of ultra-high molecular weight polyethylene has limited the longevity of TKRs. To address these important issues, it is necessary to investigate the in vitro and in vivo function of total knee replacements using dynamic contact models. A multibody dynamic model of an AMTI knee simulator was developed. Incorporating a wear prediction model into the contact model based on elastic foundation theory enables the contact surface to take into account creep and wear during the dynamic simulation. Comparisons of the predicted damage depth, area, and volume lost with worn retrievals from a physical machine were made to validate the model. In vivo tibial force distributions during dynamic and high flexion activities were investigated using the dynamic contact model. In vivo medial and lateral contact forces experienced by a well-aligned instrumented knee implant, as well as upper and lower bounds on contact pressures for a variety of activities were studied. For all activities, the predicted medial and lateral contact forces were insensitive to the selected material model. For this patient, the load split during the mid-stance phase of gait and during stair is more equal than anticipated. The external knee adduction torque has been proposed as a surrogate measure for medial compartment load during gait. However, a direct link between these two quantities has not been demonstrated using in vivo measurement of medial compartment load. In vivo data collected from a subject with an instrumented knee implant were analyzed to evaluate this link. The subject performed five different overground gait motions (normal, fast, slow, wide, and toe out) while instrumented implant, video motion, and ground reaction data were simultaneously collected. The high correlation coefficient
Nonlinear dynamic model for skidding behavior of angular contact ball bearings
Han, Qinkai; Chu, Fulei
2015-10-01
A three-dimensional nonlinear dynamic model is proposed to predict the skidding behavior of angular contact ball bearings under combined load condition. The centrifugal and gyroscopic effects induced by ball rotation and revolution, Hertz contact between the ball and inner/outer races, discontinuous contact between the ball and cage and elastohydrodynamic lubrication are considered in the model. Through comparisons with the tested results of the reference, the dynamic model is verified. Based upon these, variations of ball slipping speed with time and space are discussed for the bearing under combined load condition. It is shown that radial load leads to the fluctuations in the slipping velocity of the ball contacting with inner/outer races, especially for the ball in load-decreasing regions. Adding the radial load would significantly increase the amplitude and range of slipping velocity, indicating that the skidding becomes more serious. As the ball still withstands contact load in the load-decreasing region, large slipping velocity would increase the temperature of both bearing and lubricant oil, intensify the wear and then might shorten the bearing service life. Therefore, the radial load should be considered carefully in the design and monitoring of rotating machinery.
Effect of skin hydration on the dynamics of fingertip gripping contact.
André, T; Lévesque, V; Hayward, V; Lefèvre, P; Thonnard, J-L
2011-11-07
The dynamics of fingertip contact manifest themselves in the complex skin movements observed during the transition from a stuck state to a fully developed slip. While investigating this transition, we found that it depended on skin hydration. To quantify this dependency, we asked subjects to slide their index fingertip on a glass surface while keeping the normal component of the interaction force constant with the help of visual feedback. Skin deformation inside the contact region was imaged with an optical apparatus that allowed us to quantify the relative sizes of the slipping and sticking regions. The ratio of the stuck skin area to the total contact area decreased linearly from 1 to 0 when the tangential force component increased from 0 to a maximum. The slope of this relationship was inversely correlated to the normal force component. The skin hydration level dramatically affected the dynamics of the contact encapsulated in the course of evolution from sticking to slipping. The specific effect was to reduce the tendency of a contact to slip, regardless of the variations of the coefficient of friction. Since grips were more unstable under dry skin conditions, our results suggest that the nervous system responds to dry skin by exaggerated grip forces that cannot be simply explained by a change in the coefficient of friction.
Some fluid dynamical problems in astrophysics
Drury, L.O.
1979-06-01
Certain aspects of the cosmic turbulence theory of galaxy formation are considered. Using a generalized form of a transformation due to Kurskov and Ozernoi I exhibit a formal equivalence between the problem of turbulence in an expanding universe containing a coupled matter-radiation fluid and in a non-expanding fluid with a time-dependent viscosity. This enables me to extend the Olson-Sachs formula for vorticity generation in cosmic turbulence to a matter-radiation fluid and to show that, the turbulence can not have an inertial subrange at the epoch of recombination. The linear inviscid stability of axisymmetric flows is considered. Using the projective form of the perturbation equations I obtain a simple proof of a generalised Richardson criterion which holds for all boundary conditions which do not actively feed energy to the perturbation. Further analysis shows the uniform density and pressure discs with self-similar rotation laws, are stable to perturbations which are incompressible in character, but that instability is a generic feature of differentially rotating compressible systems. The problem of numerically solving boundary value problems of the Orr-Sommerfeld type by shooting methods is considered, and a unifying geometrical interpretation of the principal methods is described. (author)
Dynamic Wheel/Rail Rolling Contact at Singular Defects with Application to Squats
Zhao, X.
2012-01-01
Squats, as a kind of short wavelength rail surface defects, have become one of the main rolling contact fatigue problems in railways worldwide. The purpose of this work is to better understand the squatting phenomenon, contribute to reduction and even prevention of squat occurrence, and thereby
van Damme, H.S.; Hogt, A.H.; Feijen, Jan
1986-01-01
Dynamic contact angles and contact-angle hysteresis of a series of poly(n-alkyl methacrylates) (PAMA) were investigated using the Wilhelmy plate technique. The mobility of polymer surface chains, segments, and side groups affected the measured contact angles and their hysteresis. A model is
Yoon, Hong Min; Kondaraju, Sasidhar; Lee, Jung Shin; Suh, Youngho; Lee, Joonho H.; Lee, Joon Sang
2017-01-01
Highlights: • Contact line forces, including friction and spreading forces are directly calculated. • Overall trends of variations in contact line forces during droplet spreading process show characteristics of contact line forces. • Detail relations of contact line forces and atomic kinetics in the contact line provide a clear evidence of the possible energy dissipation mechanism in droplet spreading process. - Abstract: Recent studies have revealed that contact line forces play an important role in the droplet spreading process. Despite their significance, the physics related to them has been studied only indirectly and the effect of contact line forces is still being disputed. We performed a molecular dynamics simulation and mimicked the droplet spreading process at the nanoscale. Based on the results of the simulation, the contact line forces were directly calculated. We found that the forces acting on the bulk and the contact line region showed different trends. Distinct positive and negative forces, contact line spreading, and friction forces were observed near the contact line. We also observed a strong dependency of the atomic kinetics in the contact line region on the variations in the contact line forces. The atoms of the liquid in the contact line region lost their kinetic energy due to the contact line friction force and became partially immobile on the solid surface. The results of the current study will be useful for understanding the role of the contact line forces on the kinetic energy dissipation in the contact line region.
Yoon, Hong Min [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kondaraju, Sasidhar [Department of Mechanical Science, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 751013 (India); Lee, Jung Shin [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Suh, Youngho; Lee, Joonho H. [Samsung Electronics, Mechatronics R& D Center, Hwaseong-si, Gyeonggi-do 445-330 (Korea, Republic of); Lee, Joon Sang, E-mail: joonlee@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)
2017-07-01
Highlights: • Contact line forces, including friction and spreading forces are directly calculated. • Overall trends of variations in contact line forces during droplet spreading process show characteristics of contact line forces. • Detail relations of contact line forces and atomic kinetics in the contact line provide a clear evidence of the possible energy dissipation mechanism in droplet spreading process. - Abstract: Recent studies have revealed that contact line forces play an important role in the droplet spreading process. Despite their significance, the physics related to them has been studied only indirectly and the effect of contact line forces is still being disputed. We performed a molecular dynamics simulation and mimicked the droplet spreading process at the nanoscale. Based on the results of the simulation, the contact line forces were directly calculated. We found that the forces acting on the bulk and the contact line region showed different trends. Distinct positive and negative forces, contact line spreading, and friction forces were observed near the contact line. We also observed a strong dependency of the atomic kinetics in the contact line region on the variations in the contact line forces. The atoms of the liquid in the contact line region lost their kinetic energy due to the contact line friction force and became partially immobile on the solid surface. The results of the current study will be useful for understanding the role of the contact line forces on the kinetic energy dissipation in the contact line region.
Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and modeling
Cole, David M.; Hopkins, Mark A.; Ketcham, Stephen A.
2013-01-01
High fidelity treatments of the generation and propagation of seismic waves in naturally occurring granular materials is becoming more practical given recent advancements in our ability to model complex particle shapes and their mechanical interaction. Of particular interest are the grain-scale processes that are activated by impact events and the characteristics of force transmission through grain contacts. To address this issue, we have developed a physics based approach that involves laboratory experiments to quantify the dynamic contact and impact behavior of granular materials and incorporation of the observed behavior indiscrete element models. The dynamic experiments do not involve particle damage and emphasis is placed on measured values of contact stiffness and frictional loss. The normal stiffness observed in dynamic contact experiments at low frequencies (e.g., 10 Hz) are shown to be in good agreement with quasistatic experiments on quartz sand. The results of impact experiments – which involve moderate to extensive levels of particle damage – are presented for several types of naturally occurring granular materials (several quartz sands, magnesite and calcium carbonate ooids). Implementation of the experimental findings in discrete element models is discussed and the results of impact simulations involving up to 5 × 105 grains are presented.
Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and modeling
Cole, David M.; Hopkins, Mark A.; Ketcham, Stephen A. [Engineer Research and Development Center - Cold Regions Research and Engineering Laboratory, 72 Lyme Rd., Hanover, NH 03755 (United States)
2013-06-18
High fidelity treatments of the generation and propagation of seismic waves in naturally occurring granular materials is becoming more practical given recent advancements in our ability to model complex particle shapes and their mechanical interaction. Of particular interest are the grain-scale processes that are activated by impact events and the characteristics of force transmission through grain contacts. To address this issue, we have developed a physics based approach that involves laboratory experiments to quantify the dynamic contact and impact behavior of granular materials and incorporation of the observed behavior indiscrete element models. The dynamic experiments do not involve particle damage and emphasis is placed on measured values of contact stiffness and frictional loss. The normal stiffness observed in dynamic contact experiments at low frequencies (e.g., 10 Hz) are shown to be in good agreement with quasistatic experiments on quartz sand. The results of impact experiments - which involve moderate to extensive levels of particle damage - are presented for several types of naturally occurring granular materials (several quartz sands, magnesite and calcium carbonate ooids). Implementation of the experimental findings in discrete element models is discussed and the results of impact simulations involving up to 5 Multiplication-Sign 105 grains are presented.
Chen, Szu-Ying; Kaufman, Yair; Schrader, Alex M; Seo, Dongjin; Lee, Dong Woog; Page, Steven H; Koenig, Peter H; Isaacs, Sandra; Gizaw, Yonas; Israelachvili, Jacob N
2017-09-26
Measuring truly equilibrium adhesion energies or contact angles to obtain the thermodynamic values is experimentally difficult because it requires loading/unloading or advancing/receding boundaries to be measured at rates that can be slower than 1 nm/s. We have measured advancing-receding contact angles and loading-unloading adhesion energies for various systems and geometries involving molecularly smooth and chemically homogeneous surfaces moving at different but steady velocities in both directions, ±V, focusing on the thermodynamic limit of ±V → 0. We have used the Bell Theory (1978) to derive expressions for the dynamic (velocity-dependent) adhesion energies and contact angles suitable for both (i) dynamic adhesion measurements using the classic Johnson-Kendall-Roberts (JKR, 1971) theory of "contact mechanics" and (ii) dynamic contact angle hysteresis measurements of both rolling droplets and syringe-controlled (sessile) droplets on various surfaces. We present our results for systems that exhibited both steady and varying velocities from V ≈ 10 mm/s to 1 nm/s, where in all cases but one, the advancing (V > 0) and receding (V contact angles converged toward the same theoretical (thermodynamic) values as V → 0. Our equations for the dynamic contact angles are similar to the classic equations of Blake & Haynes (1969) and fitted the experimental adhesion data equally well over the range of velocities studied, although with somewhat different fitting parameters for the characteristic molecular length/dimension or area and characteristic bond formation/rupture lifetime or velocity. Our theoretical and experimental methods and results unify previous kinetic theories of adhesion and contact angle hysteresis and offer new experimental methods for testing kinetic models in the thermodynamic, quasi-static, limit. Our analyses are limited to kinetic effects only, and we conclude that hydrodynamic, i.e., viscous, and inertial effects do not play a role at the
Dynamic contour tonometry vs. non-contact tonometry and their relation with corneal thickness
Briceño, Adriana; Mas, David; Domenech, Begoña
2016-01-01
The purpose of this study is to evaluate the concordance between intraocular pressure (IOP) values obtained with a dynamic contour tonometer (DCT) and a non-contact tonometer (NCT) in healthy patients and to investigate the effect of central corneal thickness (CCT) on IOP readings for each of the two measuring systems. The mean IOP yielded by DCT, NCT and corrected non-contact tonometer (CNCT) was 17.1 mmHg, 15.5 mmHg and 12.2 mmHg, respectively. The average CCT was 563.6 μm and the ocular pu...
Dynamic contour tonometry (DCT) versus non-contact tonometry (NCT): a comparison study.
Burvenich, H; Burvenich, E; Vincent, C
2005-01-01
In a prospective study we measured the intraocular pressure (IOP) by means of a Non-Contact Tonometer (NCT) and by means of a Pascal Dynamic Contour Tonometer (DCT), and the Central Corneal Thickness (CCT) by means of a contact pachymeter in 294 emmetropic or ametropic eyes. There is a linear relation between NCT and CCT. This linear relation doesn't exist between DCT and CCT. The same measurements were done before and 6 weeks after a Lasik intervention in 58 myopic eyes. Lasik intervention influences NCT but doesn't influence DCT.
Dynamic Programming Approaches for the Traveling Salesman Problem with Drone
Bouman, Paul; Agatz, Niels; Schmidt, Marie
2017-01-01
markdownabstractA promising new delivery model involves the use of a delivery truck that collaborates with a drone to make deliveries. Effectively combining a drone and a truck gives rise to a new planning problem that is known as the Traveling Salesman Problem with Drone (TSP-D). This paper presents an exact solution approach for the TSP-D based on dynamic programming and present experimental results of different dynamic programming based heuristics. Our numerical experiments show that our a...
The assessment of structural dynamics problems in nuclear reactor safety
Liebe, R.
1978-10-01
The paper discusses important physical features of structural dynamics problems in reactor safety. First a general characterization is given of the following problems: Containment deformation due to pool-dynamics during BWR-blowdown; behavior of the core internals due to PWR-blowdown loads; dynamic response of a nuclear power plant during an earthquake; fuel element deformation due to local pressure pulses in an LMFBR core. Several criterias are formulated to classify typical problems so that a better choise can be made both of appropriate mathematical/numerical as well as experimental techniques. The degree of physical coupling between structural dynamics and fluid dynamics is discussed in more detail since it requires particular attention when selecting problem-oriented methods of solution. Some examples are given to illustrate the application and to compare advantages and disadvantages of several numerical methods. Then description is given of experimental techniques in structural dynamics and typical problem areas are identified. Finally some results are presented concerning the fuel element deformation problem in LMFBRs and from the general considerations some important conclusions are summarized. (orig.) 891 RW 892 AP [de
Xu, Z N; Wang, S Y
2015-02-01
To improve the accuracy in the calculation of dynamic contact angle for drops on the inclined surface, a significant number of numerical drop profiles on the inclined surface with different inclination angles, drop volumes, and contact angles are generated based on the finite difference method, a least-squares ellipse-fitting algorithm is used to calculate the dynamic contact angle. The influences of the above three factors are systematically investigated. The results reveal that the dynamic contact angle errors, including the errors of the left and right contact angles, evaluated by the ellipse-fitting algorithm tend to increase with inclination angle/drop volume/contact angle. If the drop volume and the solid substrate are fixed, the errors of the left and right contact angles increase with inclination angle. After performing a tremendous amount of computation, the critical dimensionless drop volumes corresponding to the critical contact angle error are obtained. Based on the values of the critical volumes, a highly accurate dynamic contact angle algorithm is proposed and fully validated. Within nearly the whole hydrophobicity range, it can decrease the dynamic contact angle error in the inclined plane method to less than a certain value even for different types of liquids.
Contact point generation for convex polytopes in interactive rigid body dynamics
Silcowitz-Hansen, Morten; Abel, Sarah Maria Niebe; Erleben, Kenny
When computing contact forces in rigid body dynamics systems, most state-of-the-art solutions use iterative methods such as the projected Gauss–Seidel (PGS) method. Methods such as the PGS method are preferred for their robustness. However, the time-critical nature of interactive applications...... combined with the linear convergence rates of such methods, will often result in visual artifacts in the final simulation. With this paper, we address an issue which is of major impact on the animation quality, when using methods such as the PGS method. The issue is robust generation of contact points...... for convex polytopes. A novel contact point generation method is presented, which is based on growth distances and Gauss maps. We demonstrate improvements when using our method in the context of interactive rigid body simulation...
A simulation analysis to characterize the dynamics of vaccinating behaviour on contact networks.
Perisic, Ana; Bauch, Chris T
2009-05-28
Human behavior influences infectious disease transmission, and numerous "prevalence-behavior" models have analyzed this interplay. These previous analyses assumed homogeneously mixing populations without spatial or social structure. However, spatial and social heterogeneity are known to significantly impact transmission dynamics and are particularly relevant for certain diseases. Previous work has demonstrated that social contact structure can change the individual incentive to vaccinate, thus enabling eradication of a disease under a voluntary vaccination policy when the corresponding homogeneous mixing model predicts that eradication is impossible due to free rider effects. Here, we extend this work and characterize the range of possible behavior-prevalence dynamics on a network. We simulate transmission of a vaccine-preventable infection through a random, static contact network. Individuals choose whether or not to vaccinate on any given day according to perceived risks of vaccination and infection. We find three possible outcomes for behavior-prevalence dynamics on this type of network: small final number vaccinated and final epidemic size (due to rapid control through voluntary ring vaccination); large final number vaccinated and significant final epidemic size (due to imperfect voluntary ring vaccination), and little or no vaccination and large final epidemic size (corresponding to little or no voluntary ring vaccination). We also show that the social contact structure enables eradication under a broad range of assumptions, except when vaccine risk is sufficiently high, the disease risk is sufficiently low, or individuals vaccinate too late for the vaccine to be effective. For populations where infection can spread only through social contact network, relatively small differences in parameter values relating to perceived risk or vaccination behavior at the individual level can translate into large differences in population-level outcomes such as final size
Dynamic simulation of the effect of soft toric contact lenses movement on retinal image quality.
Niu, Yafei; Sarver, Edwin J; Stevenson, Scott B; Marsack, Jason D; Parker, Katrina E; Applegate, Raymond A
2008-04-01
To report the development of a tool designed to dynamically simulate the effect of soft toric contact lens movement on retinal image quality, initial findings on three eyes, and the next steps to be taken to improve the utility of the tool. Three eyes of two subjects wearing soft toric contact lenses were cyclopleged with 1% cyclopentolate and 2.5% phenylephrine. Four hundred wavefront aberration measurements over a 5-mm pupil were recorded during soft contact lens wear at 30 Hz using a complete ophthalmic analysis system aberrometer. Each wavefront error measurement was input into Visual Optics Laboratory (version 7.15, Sarver and Associates, Inc.) to generate a retinal simulation of a high contrast log MAR visual acuity chart. The individual simulations were combined into a single dynamic movie using a custom MatLab PsychToolbox program. Visual acuity was measured for each eye reading the movie with best cycloplegic spectacle correction through a 3-mm artificial pupil to minimize the influence of the eyes' uncorrected aberrations. Comparison of the simulated acuity was made to values recorded while the subject read unaberrated charts with contact lenses through a 5-mm artificial pupil. For one study eye, average acuity was the same as the natural contact lens viewing condition. For the other two study eyes visual acuity of the best simulation was more than one line worse than natural viewing conditions. Dynamic simulation of retinal image quality, although not yet perfect, is a promising technique for visually illustrating the optical effects on image quality because of the movements of alignment-sensitive corrections.
A Langevin model for fluctuating contact angle behaviour parametrised using molecular dynamics.
Smith, E R; Müller, E A; Craster, R V; Matar, O K
2016-12-06
Molecular dynamics simulations are employed to develop a theoretical model to predict the fluid-solid contact angle as a function of wall-sliding speed incorporating thermal fluctuations. A liquid bridge between counter-sliding walls is studied, with liquid-vapour interface-tracking, to explore the impact of wall-sliding speed on contact angle. The behaviour of the macroscopic contact angle varies linearly over a range of capillary numbers beyond which the liquid bridge pinches off, a behaviour supported by experimental results. Nonetheless, the liquid bridge provides an ideal test case to study molecular scale thermal fluctuations, which are shown to be well described by Gaussian distributions. A Langevin model for contact angle is parametrised to incorporate the mean, fluctuation and auto-correlations over a range of sliding speeds and temperatures. The resulting equations can be used as a proxy for the fully-detailed molecular dynamics simulation allowing them to be integrated within a continuum-scale solver.
Droplets and the three-phase contact line at the nano-scale. Statics and dynamics
Yatsyshin, Petr; Sibley, David; Savva, Nikos; Kalliadasis, Serafim
2014-11-01
Understanding the behaviour of the solid-liquid-vapour contact line at the scale of several tens of molecular diameters is important in wetting hydrodynamics with applications in micro- and nano-fluidics, including the design of lab-on-a-chip devices and surfaces with specific wetting properties. Due to the fluid inhomogeneity at the nano-scale, the application of continuum-mechanical approaches is limited, and a natural way to remedy this is to seek descriptions accounting for the non-local molecular-level interactions. Density Functional Theory (DFT) for fluids offers a statistical-mechanical framework based on expressing the free energy of the fluid-solid pair as a functional of the spatially varying fluid density. DFT allows us to investigate small drops deposited on planar substrates whilst keeping track of the microscopic structural details of the fluid. Starting from a model of intermolecular forces, we systematically obtain interfaces, surface tensions, and the microscopic contact angle. Using a dynamic extension of equilibrium DFT, we investigate the diffusion-driven evolution of the three-phase contact line to gain insight into the dynamic behaviour of the microscopic contact angle, which is still under debate.
Cultural-based particle swarm for dynamic optimisation problems
Daneshyari, Moayed; Yen, Gary G.
2012-07-01
Many practical optimisation problems are with the existence of uncertainties, among which a significant number belong to the dynamic optimisation problem (DOP) category in which the fitness function changes through time. In this study, we propose the cultural-based particle swarm optimisation (PSO) to solve DOP problems. A cultural framework is adopted incorporating the required information from the PSO into five sections of the belief space, namely situational, temporal, domain, normative and spatial knowledge. The stored information will be adopted to detect the changes in the environment and assists response to the change through a diversity-based repulsion among particles and migration among swarms in the population space, and also helps in selecting the leading particles in three different levels, personal, swarm and global levels. Comparison of the proposed heuristics over several difficult dynamic benchmark problems demonstrates the better or equal performance with respect to most of other selected state-of-the-art dynamic PSO heuristics.
Contact stiffness and damping of liquid films in dynamic atomic force microscope
Xu, Rong-Guang; Leng, Yongsheng
2016-01-01
The mechanical properties and dissipation behaviors of nanometers confined liquid films have been long-standing interests in surface force measurements. The correlation between the contact stiffness and damping of the nanoconfined film is still not well understood. We establish a novel computational framework through molecular dynamics (MD) simulation for the first time to study small-amplitude dynamic atomic force microscopy (dynamic AFM) in a simple nonpolar liquid. Through introducing a tip driven dynamics to mimic the mechanical oscillations of the dynamic AFM tip-cantilever assembly, we find that the contact stiffness and damping of the confined film exhibit distinct oscillations within 6-7 monolayer distances, and they are generally out-of-phase. For the solid-like film with integer monolayer thickness, further compression of the film before layering transition leads to higher stiffness and lower damping, while much lower stiffness and higher damping occur at non-integer monolayer distances. These two alternating mechanisms dominate the mechanical properties and dissipation behaviors of simple liquid films under cyclic elastic compression and inelastic squeeze-out. Our MD simulations provide a direct picture of correlations between the structural property, mechanical stiffness, and dissipation behavior of the nanoconfined film.
Contact stiffness and damping of liquid films in dynamic atomic force microscope
Xu, Rong-Guang; Leng, Yongsheng, E-mail: leng@gwu.edu [Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052 (United States)
2016-04-21
The mechanical properties and dissipation behaviors of nanometers confined liquid films have been long-standing interests in surface force measurements. The correlation between the contact stiffness and damping of the nanoconfined film is still not well understood. We establish a novel computational framework through molecular dynamics (MD) simulation for the first time to study small-amplitude dynamic atomic force microscopy (dynamic AFM) in a simple nonpolar liquid. Through introducing a tip driven dynamics to mimic the mechanical oscillations of the dynamic AFM tip-cantilever assembly, we find that the contact stiffness and damping of the confined film exhibit distinct oscillations within 6-7 monolayer distances, and they are generally out-of-phase. For the solid-like film with integer monolayer thickness, further compression of the film before layering transition leads to higher stiffness and lower damping, while much lower stiffness and higher damping occur at non-integer monolayer distances. These two alternating mechanisms dominate the mechanical properties and dissipation behaviors of simple liquid films under cyclic elastic compression and inelastic squeeze-out. Our MD simulations provide a direct picture of correlations between the structural property, mechanical stiffness, and dissipation behavior of the nanoconfined film.
Green, Barry G; Pope, Jennifer V
2003-02-01
In a previous study of the heat grill illusion, sensations of burning and stinging were sometimes reported when the skin was cooled by as little as 2 degrees C. Informal tests subsequently indicated that these nociceptive sensations were experienced if cooling occurred when the stimulating thermode rested on the skin, but not when the thermode was cooled and then touched to the skin. In experiment 1 subjects judged the intensity of thermal (cold/warm) and nociceptive (burning/stinging) sensations when the volar surface of the forearm was cooled to 25 degrees C (1) via a static thermode (Static condition), or (2) via a cold thermode touched to the skin (Dynamic condition). The total area of stimulation was varied from 2.6 to 10.4 cm(2) to determine if the occurrence of nociceptive sensations depended upon stimulus size. Burning/stinging was rated 10.3 times stronger in the Static condition than in the Dynamic condition, and this difference did not vary significantly with stimulus size. In experiment 2, thermal and nociceptive sensations were measured during cooling to just 31 degrees, 29 degrees or 27 degrees C, and data were obtained on the frequency at which different sensation qualities were experienced. Stinging was the most frequently reported nociceptive quality in the Static condition, and stinging and burning were both markedly reduced in the Dynamic condition. In experiment 3 we tested the possibility that dynamic contact might have inhibited burning and stinging not because of mechanical contact per se, but rather because dynamic contact caused higher rates of cooling. However, varying cooling rate over a tenfold range (-0.5 degrees to -5.0 degrees /s) had no appreciable effect on the frequency of stinging and burning. Overall, the data show that mild cooling can produce nociceptive sensations that are suppressed under conditions of dynamic mechanical contact. The latter observation suggests that cold is perceived differently during active contact with
Contributions to thermal and fluid dynamic problems in nuclear technology
Mueller, U.; Krebs, L.; Rust, K.
1984-02-01
The majority of contributions compiled in this report deals with thermal and fluid dynamic problems in nuclear engineering. Especially problems of heat transfer and cooling are represented which may arise during and afer a loss-of-coolant accident both in light water reactors and in liquid metal cooled fast breeder reactors. Papers on the mass transfer in pressurized water, tribological problems in sodium cooled reactors, the fluid dynamics of pulsed column, and fundamental investigations of convective flows supplement these contributions on problems connected with accidents. Furthermore, a keynote paper presents the individual activities relating to the reliability of reactor components, a field recently included in our research program. Technical solutions to special problems are closely connected to the investigations based on experiments. Therefore, several contributions deal with new developments in technology and measuring techniques. (orig.) [de
Jingmang Xu
2016-01-01
Full Text Available Severe wear is a common damage mechanism in railway turnouts, which strongly affects the dynamic performance of railway vehicles and maintenance costs of tracks. This article explores the effects of profile wear on contact behaviors in the wheel–rail/switch contact and dynamic interaction, and nominal and measured worn turnout rail profiles are used as boundary conditions of wheel–rail contact. The calculation of the dynamic loads and the resultant contact stresses and internal stresses makes it possible to rationally design railway turnouts and correctly select the material to be applied for their components. For these reasons, the multi-body system SIMPACK and finite element software ANSYS are used to calculate the features of load and subsequently distributions of contact stresses and internal stresses in the regions of wheel–turnout components. The results show that profile wear disturbs the distribution of wheel–rail contact point pairs, changes the positions of wheel–rail contact points along the longitudinal direction, and affects the dynamic interaction of vehicle and turnout. For the measured profile in this article, profile wear aggravates vertical dynamic responses significantly but improves lateral dynamic responses. Profile wear disturbs the normal contact situations between the wheel and switch rail and worsens the stress state of the switch rail.
Keatley, Paul Steven; Redjai Sani, Sohrab; Hrkac, Gino; Majid Mohseni, Seyed; Dürrenfeld, Philipp; Åkerman, Johan; Hicken, Robert James
2017-04-01
Nano-contact spin-torque vortex oscillators (STVOs) are anticipated to find application as nanoscale sources of microwave emission in future technological applications. Presently the output power and phase stability of individual STVOs are not competitive with existing oscillator technologies. Synchronisation of multiple nano-contact STVOs via magnetisation dynamics has been proposed to enhance the microwave emission. The control of device-to-device variations, such as mode splitting of the microwave emission, is essential if multiple STVOs are to be successfully synchronised. In this work a combination of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM) was used to demonstrate how mode splitting in the microwave emission of STVOs was related to the magnetisation dynamics that are generated. The free-running STVO response to a DC current only was used to identify devices and bias magnetic field configurations for which single and multiple modes of microwave emission were observed. Stroboscopic Kerr images were acquired by injecting a small amplitude RF current to phase lock the free-running STVO response. The images showed that the magnetisation dynamics of a multimode device with moderate splitting could be controlled by the injected RF current so that they exhibit similar spatial character to that of a single mode. Significant splitting was found to result from a complicated equilibrium magnetic state that was observed in Kerr images as irregular spatial characteristics of the magnetisation dynamics. Such dynamics were observed far from the nano-contact and so their presence cannot be detected in electrical measurements. This work demonstrates that TRSKM is a powerful tool for the direct observation of the magnetisation dynamics generated by STVOs that exhibit complicated microwave emission. Characterisation of such dynamics outside the nano-contact perimeter permits a deeper insight into the requirements for optimal phase-locking of
Distinct migration and contact dynamics of resting and IL-2-activated human natural killer cells
Per Erik Olofsson
2014-03-01
Full Text Available Natural killer (NK cells serve as one of the first lines of defense against viral infections and transformed cells. NK cell cytotoxicity is not dependent on antigen presentation by target cells, but is dependent on integration of activating and inhibitory signals triggered by receptor–ligand interactions formed at a tight intercellular contact between the NK and target cell, i.e. the immune synapse. We have studied the single-cell migration behavior and target-cell contact dynamics of resting and IL-2-activated human peripheral blood NK cells. Small populations of NK cells and target cells were confined in microwells and imaged by fluorescence microscopy for >8 h. Only the IL-2-activated population of NK cells showed efficient cytotoxicity against the human embryonic kidney (HEK 293T target cells. We found that although the average migration speeds were comparable, activated NK cells showed significantly more dynamic migration behavior, with more frequent transitions between periods of low and high motility. Resting NK cells formed fewer and weaker contacts with target cells, which manifested as shorter conjugation times and in many cases a complete lack of post-conjugation attachment to target cells. Activated NK cells were approximately twice as big as the resting cells, displayed a more migratory phenotype, and were more likely to employ motile scanning of the target cell surface during conjugation. Taken together, our experiments quantify, at the single-cell level, how activation by IL-2 leads to altered NK cell cytotoxicity, migration behavior and contact dynamics.
Comparison of analysis and experiment for dynamics of low-contact-ratio spur gears
Oswald, Fred B.; Rebbechi, Brian; Zakrajsek, James J.; Townsend, Dennis P.; Lin, Hsiang Hsi
1991-01-01
Low-contact-ratio spur gears were tested in NASA gear-noise-rig to study gear dynamics including dynamic load, tooth bending stress, vibration, and noise. The experimental results were compared with a NASA gear dynamics code to validate the code as a design tool for predicting transmission vibration and noise. Analytical predictions and experimental data for gear-tooth dynamic loads and tooth-root bending stress were compared at 28 operating conditions. Strain gage data were used to compute the normal load between meshing teeth and the bending stress at the tooth root for direct comparison with the analysis. The computed and measured waveforms for dynamic load and stress were compared for several test conditions. These are very similar in shape, which means the analysis successfully simulates the physical behavior of the test gears. The predicted peak value of the dynamic load agrees with the measurement results within an average error of 4.9 percent except at low-torque, high-speed conditions. Predictions of peak dynamic root stress are generally within 10 to 15 percent of the measured values.
Nissen, K.L.
1988-06-01
Two computer codes for the analysis of fuel rod behavior have been developed. Fuel rod mechanics is treated by a two-dimensional, axisymmetric finite element method. The program KONTAKT is used for detailed examinations on fuel rod sections, whereas the second program METHOD2D allows instationary calculations of whole fuel rods. The mechanical contact of fuel and cladding during heating of the fuel rod is very important for it's integrity. Both computer codes use a Newton-Raphson iteration for the solution of the nonlinear solid body contact problem. A constitutive equation is applied for the dependency of contact pressure on normal approach of the surfaces which are assumed to be rough. If friction is present on the contacting surfaces, Coulomb's friction law is used. Code validation is done by comparison with known analytical solutions for special problems. Results of the contact algorithm for an elastic ball pressing against a rigid surface are confronted with Hertzian theory. Influences of fuel-pellet geometry as well as influences of discretisation of displacements and stresses of a single fuel pellet are studied. Contact of fuel and cladding is calculated for a fuel rod section with two fuel pellets. The influence of friction forces between fuel and cladding on their axial expansion is demonstrated. By calculation of deformations and temperatures during an instationary fuel rod experiment of the CABRI-series the feasibility of two-dimensional finite element analysis of whole fuel rods is shown. (orig.) [de
Validation of flexible multibody dynamics beam formulations using benchmark problems
Bauchau, Olivier A., E-mail: obauchau@umd.edu [University of Maryland (United States); Betsch, Peter [Karlsruhe Institute of Technology (Germany); Cardona, Alberto [CIMEC (UNL/Conicet) (Argentina); Gerstmayr, Johannes [Leopold-Franzens Universität Innsbruck (Austria); Jonker, Ben [University of Twente (Netherlands); Masarati, Pierangelo [Politecnico di Milano (Italy); Sonneville, Valentin [Université de Liège (Belgium)
2016-05-15
As the need to model flexibility arose in multibody dynamics, the floating frame of reference formulation was developed, but this approach can yield inaccurate results when elastic displacements becomes large. While the use of three-dimensional finite element formulations overcomes this problem, the associated computational cost is overwhelming. Consequently, beam models, which are one-dimensional approximations of three-dimensional elasticity, have become the workhorse of many flexible multibody dynamics codes. Numerous beam formulations have been proposed, such as the geometrically exact beam formulation or the absolute nodal coordinate formulation, to name just two. New solution strategies have been investigated as well, including the intrinsic beam formulation or the DAE approach. This paper provides a systematic comparison of these various approaches, which will be assessed by comparing their predictions for four benchmark problems. The first problem is the Princeton beam experiment, a study of the static large displacement and rotation behavior of a simple cantilevered beam under a gravity tip load. The second problem, the four-bar mechanism, focuses on a flexible mechanism involving beams and revolute joints. The third problem investigates the behavior of a beam bent in its plane of greatest flexural rigidity, resulting in lateral buckling when a critical value of the transverse load is reached. The last problem investigates the dynamic stability of a rotating shaft. The predictions of eight independent codes are compared for these four benchmark problems and are found to be in close agreement with each other and with experimental measurements, when available.
Dynamics of the conservative and dissipative spin-orbit problem
Celletti, A; Lega, E
2006-01-01
We investigate the dynamics of the spin--orbit coupling under different settings. First we consider the conservative problem, and then we add a dissipative torque as provided by MacDonald's or Darwin's models. By means of frequency analysis and of the computation of the maximum Lyapunov indicator we explore the different dynamical behaviors associated to the main resonances. In particular we focus on the 1:1 and 3:2 resonances in which the Moon and Mercury are actually trapped.
Research on Dynamic Modeling and Application of Kinetic Contact Interface in Machine Tool
Dan Xu
2016-01-01
Full Text Available A method is presented which is a kind of combining theoretic analysis and experiment to obtain the equivalent dynamic parameters of linear guideway through four steps in detail. From statics analysis, vibration model analysis, dynamic experiment, and parameter identification, the dynamic modeling of linear guideway is synthetically studied. Based on contact mechanics and elastic mechanics, the mathematic vibration model and the expressions of basic mode frequency are deduced. Then, equivalent stiffness and damping of guideway are obtained in virtue of single-freedom-degree mode fitting method. Moreover, the investigation above is applied in a certain gantry-type machining center; and through comparing with simulation model and experiment results, both availability and correctness are validated.
Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems
Yang, Ge; Wang, Jun; Fang, Wen
2015-01-01
In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems
Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems
Yang, Ge; Wang, Jun; Fang, Wen
2015-04-01
In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.
Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems
Yang, Ge; Wang, Jun [School of Science, Beijing Jiaotong University, Beijing 100044 (China); Fang, Wen, E-mail: fangwen@bjtu.edu.cn [School of Economics and Management, Beijing Jiaotong University, Beijing 100044 (China)
2015-04-15
In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.
Some dynamic resource allocation problems in wireless networks
Berry, Randall
2001-07-01
We consider dynamic resource allocation problems that arise in wireless networking. Specifically transmission scheduling problems are studied in cases where a user can dynamically allocate communication resources such as transmission rate and power based on current channel knowledge as well as traffic variations. We assume that arriving data is stored in a transmission buffer, and investigate the trade-off between average transmission power and average buffer delay. A general characterization of this trade-off is given and the behavior of this trade-off in the regime of asymptotically large buffer delays is explored. An extension to a more general utility based quality of service definition is also discussed.
Non-Markovian electron dynamics in nanostructures coupled to dissipative contacts
Novakovic, B.; Knezevic, I.
2013-02-01
In quasiballistic semiconductor nanostructures, carrier exchange between the active region and dissipative contacts is the mechanism that governs relaxation. In this paper, we present a theoretical treatment of transient quantum transport in quasiballistic semiconductor nanostructures, which is based on the open system theory and valid on timescales much longer than the characteristic relaxation time in the contacts. The approach relies on a model interaction between the current-limiting active region and the contacts, given in the scattering-state basis. We derive a non-Markovian master equation for the irreversible evolution of the active region's many-body statistical operator by coarse-graining the exact dynamical map over the contact relaxation time. In order to obtain the response quantities of a nanostructure under bias, such as the potential and the charge and current densities, the non-Markovian master equation must be solved numerically together with the Schr\\"{o}dinger, Poisson, and continuity equations. We discuss how to numerically solve this coupled system of equations and illustrate the approach on the example of a silicon nin diode.
Timmerman, Johan G; Heederik, Dick; Spee, Ton; van Rooy, Frits G; Krop, Esmeralda J M; Rustemeyer, Thomas; Smit, Lidwien A M
2017-01-01
BACKGROUND: A high contact dermatitis symptoms prevalence has been observed in Dutch construction workers. METHODS: Contact dermatitis was diagnosed by an expert panel using questionnaire data and photographs of 751 subjects' hands. A subset was evaluated by two occupational physicians. Their
Quasivariational Inequalities for a Dynamic Competitive Economic Equilibrium Problem
Carmela Vitanza
2009-01-01
Full Text Available The aim of this paper is to consider a dynamic competitive economic equilibrium problem in terms of maximization of utility functions and of excess demand functions. This equilibrium problem is studied by means of a time-dependent quasivariational inequality which is set in the Lebesgue space L2([0,T],ℝ. This approach allows us to obtain an existence result of time-dependent equilibrium solutions.
Nedoma, Jiří
2006-01-01
Roč. 22, č. 4 (2006), s. 484-499 ISSN 0167-739X Institutional research plan: CEZ:AV0Z10300504 Keywords : unilateral contact problem * local visco- plastic friction * thermo-visco- plastic Bingham rheology * FEM Subject RIV: BA - General Mathematics Impact factor: 0.722, year: 2006
Molecular dynamics of contact behavior of self-assembled monolayers on gold using nanoindentation
Fang, Te-Hua [Institute of Mechanical and Electromechanical Engineering National Formosa University, Yunlin 632, Taiwan (China); Chang, Win-Jin, E-mail: changwj@mail.ksu.edu.tw [Department of Mechanical Engineering Kun Shan University, Tainan 710, Taiwan (China); Fan, Yu-Cheng [Institute of Mechanical and Electromechanical Engineering National Formosa University, Yunlin 632, Taiwan (China); Weng, Cheng-I [Department of Mechanical Engineering National Cheng Kung University, Tainan, 710, Taiwan (China)
2009-08-15
Molecular dynamics simulation is used to study nanoindentation of the self-assembled monolayers (SAMs) on an Au surface. The interaction of SAM atoms is described by a general universal force field (UFF), the tight-binding second-moment approximation (TB-SMA) is used for Au substrate, and the Lennard-Jones potential function is employed to describe interaction among the indenter, the SAMs, and the Au substrate atoms. The model consists of a planar Au substrate with n-hexadecanethiol SAM chemisorbed to the substrate. The simulation results show that the contact pressure increases as the SAMs temperature increases. In addition, the contact pressure also increases as the depth and velocity of indentation increase.
Molecular dynamics of contact behavior of self-assembled monolayers on gold using nanoindentation
Fang, Te-Hua; Chang, Win-Jin; Fan, Yu-Cheng; Weng, Cheng-I
2009-01-01
Molecular dynamics simulation is used to study nanoindentation of the self-assembled monolayers (SAMs) on an Au surface. The interaction of SAM atoms is described by a general universal force field (UFF), the tight-binding second-moment approximation (TB-SMA) is used for Au substrate, and the Lennard-Jones potential function is employed to describe interaction among the indenter, the SAMs, and the Au substrate atoms. The model consists of a planar Au substrate with n-hexadecanethiol SAM chemisorbed to the substrate. The simulation results show that the contact pressure increases as the SAMs temperature increases. In addition, the contact pressure also increases as the depth and velocity of indentation increase.
Dynamic Contact between a Wire Rope and a Pulley Using Absolute Nodal Coordinate Formulation
Shoichiro Takehara
2016-01-01
Full Text Available Wire rope and pulley devices are used in various machines. To use these machines more safely, it is necessary to analyze the behavior of the contact between them. In this study, we represent a wire rope by a numerical model of a flexible body. This flexible body is expressed in the absolute nodal coordinate formulation (ANCF, and the model includes the normal contact force and the frictional force between the wire rope and the pulley. The normal contact force is expressed by spring-damper elements, and the frictional force is expressed by the Quinn method. The advantage of the Quinn method is that it reduces the numerical problems associated with the discontinuities in Coulomb friction at zero velocity. By using the numerical model, simulations are performed, and the validity of this model is shown by comparing its results with those of an experiment. Through numerical simulations, we confirm the proposed model for the contact between the wire rope and the pulley. We confirmed that the behavior of the wire rope changes when both the bending elastic modulus of the wire rope and the mass added to each end of the wire rope are changed.
Timmerman, Johan G; Heederik, Dick; Spee, Ton; van Rooy, Frits G; Krop, Esmeralda J M; Rustemeyer, Thomas; Smit, Lidwien A M
2017-10-01
A high contact dermatitis symptoms prevalence has been observed in Dutch construction workers. Contact dermatitis was diagnosed by an expert panel using questionnaire data and photographs of 751 subjects' hands. A subset was evaluated by two occupational physicians. Their diagnoses were compared to those of the expert panel. In addition, two self-reported questionnaire-based assessment methods were compared to the expert panel evaluation. Associations between contact dermatitis and determinants were assessed using log-binomial regression analysis. Contact dermatitis prevalence was high: 61.4% (expert panel's diagnosis) and 32.9% (self-reported). Agreement between occupational physicians and the expert panel was low but increased after training. Washing hands with solvents and performing job-related tasks at home were related to contact dermatitis. Contact dermatitis prevalence among construction workers is high. Recognition of contact dermatitis by occupational physicians is poor but can be improved by training. Awareness of skin disorders should be raised. © 2017 Wiley Periodicals, Inc.
A simulation analysis to characterize the dynamics of vaccinating behaviour on contact networks
Bauch Chris T
2009-05-01
Full Text Available Abstract Background Human behavior influences infectious disease transmission, and numerous "prevalence-behavior" models have analyzed this interplay. These previous analyses assumed homogeneously mixing populations without spatial or social structure. However, spatial and social heterogeneity are known to significantly impact transmission dynamics and are particularly relevant for certain diseases. Previous work has demonstrated that social contact structure can change the individual incentive to vaccinate, thus enabling eradication of a disease under a voluntary vaccination policy when the corresponding homogeneous mixing model predicts that eradication is impossible due to free rider effects. Here, we extend this work and characterize the range of possible behavior-prevalence dynamics on a network. Methods We simulate transmission of a vaccine-prevetable infection through a random, static contact network. Individuals choose whether or not to vaccinate on any given day according to perceived risks of vaccination and infection. Results We find three possible outcomes for behavior-prevalence dynamics on this type of network: small final number vaccinated and final epidemic size (due to rapid control through voluntary ring vaccination; large final number vaccinated and significant final epidemic size (due to imperfect voluntary ring vaccination, and little or no vaccination and large final epidemic size (corresponding to little or no voluntary ring vaccination. We also show that the social contact structure enables eradication under a broad range of assumptions, except when vaccine risk is sufficiently high, the disease risk is sufficiently low, or individuals vaccinate too late for the vaccine to be effective. Conclusion For populations where infection can spread only through social contact network, relatively small differences in parameter values relating to perceived risk or vaccination behavior at the individual level can translate into large
Zheng Guo
2010-01-01
Full Text Available A new virtual baffle methodology is implemented to solve contact/detach problem which is often encountered in fluid and structure interaction simulations while using dynamic grids technique. The algorithm is based on tetrahedral unstructured grid, and a zero thickness baffle face is generated between actually contacted two objects. In computation process, this baffle face is divided into two parts representing convective and blocked area, respectively; the area of each part is calculated according to the actual displacement between the two objects. Convective part in a baffle face is treated as inner interface between cells, and on blocked part wall boundary condition is applied; so convective and blocking effect can be achieved on a single baffle face. This methodology can simulate real detaching process starting from contact, that is, zero displacement, while it has no restriction to minimum grid cell size. The methodology is then applied in modeling of a complicated safety valve opening process, involving multidisciplinary fluid and structure interaction and dynamic grids. The results agree well with experimental data, which proves that the virtual baffle method is successful.
Validation of flexible multibody dynamics beam formulations using benchmark problems
Bauchau, O.A.; Wu, Genyong; Betsch, P.; Cardona, A.; Gerstmayr, J.; Jonker, Jan B.; Masarati, P.; Sonneville, V.
2016-01-01
As the need to model flexibility arose in multibody dynamics, the floating frame of reference formulation was developed, but this approach can yield inaccurate results when elastic displacements becomes large. While the use of three-dimensional finite element formulations overcomes this problem, the
The Dynamic Multi-Period Vehicle Routing Problem
Wen, Min; Cordeau, Jean-Francois; Laporte, Gilbert
This paper considers the Dynamic Multi-Period Vehicle Routing Problem which deals with the distribution of orders from a depot to a set of customers over a multi-period time horizon. Customer orders and their feasible service periods are dynamically revealed over time. The objectives are to minim......This paper considers the Dynamic Multi-Period Vehicle Routing Problem which deals with the distribution of orders from a depot to a set of customers over a multi-period time horizon. Customer orders and their feasible service periods are dynamically revealed over time. The objectives...... are to minimize total travel costs and customer waiting, and to balance the daily workload over the planning horizon. This problem originates from a large distributor operating in Sweden. It is modeled as a mixed integer linear program, and solved by means of a three-phase heuristic that works over a rolling...... planning horizon. The multi-objective aspect of the problem is handled through a scalar technique approach. Computational results show that our solutions improve upon those of the Swedish distributor....
Lee, Jung Gil; Kim, Woo-Seung; Choi, June-Seok; Ghaffour, NorEddine; Kim, Young-Deuk
2017-01-01
This paper presents a theoretical analysis of the monthly average daily and hourly performances of a solar-powered multi-stage direct contact membrane distillation (SMDCMD) system with an energy recovery scheme and dynamic operating system. Mid
Wölfer, R.; van Zalk, M.H.W.; Schmid, K.; Hewstone, M.
2016-01-01
Intergroup contact represents a powerful way to improve intergroup attitudes and to overcome prejudice and discrimination. However, long-term effects of intergroup contact that consider social network dynamics have rarely been studied at a young age. Study 1 validated an optimized social network
On the dynamic spatial response of a heat exchanger tube with intermittent baffle contacts
Rogers, R.J.; Pick, R.J.
1976-01-01
Flow-induced vibration in heat exchanger tubes can result in fretting wear at the baffle supports and subsequent tube failure. As one step in correlating the random flow excitation to the rate of fretting wear, this paper presents a dynamic finite element technique for predicting the motions and baffle contact forces of a single heat exchanger tube. Using a modal superposition approach, the modal equations of motion are generated and numerically integrated. The predicted results are compared with experimental data for both planar and spatial vibration of harmonically excited cantilevered beams with a clearance support at the free end. (Auth.)
On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations.
Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo
2018-04-28
We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact
Dynamic vehicle routing problems: Three decades and counting
Psaraftis, Harilaos N.; Wen, Min; Kontovas, Christos A.
2016-01-01
of DVRP papers according to 11 criteria. These are (1) type of problem, (2) logistical context, (3) transportation mode, (4) objective function, (5) fleet size, (6) time constraints, (7) vehicle capacity constraints, (8) the ability to reject customers, (9) the natureof the dynamic element, (10......Since the late 70s, much research activity has taken place on the class of dynamic vehicle routing problems (DVRP), with the time period after year 2000 witnessing areal explosion in related papers. Our paper sheds more light into work in this area over more than 3 decades by developing a taxonomy......) the nature of the stochasticity (if any), and (11) the solution method. We comment on technological vis-à-vis methodological advances for this class of problems and suggest directions for further research. The latter include alternative objective functions, vehicle speed as decision variable, more explicit...
Summers, Andrew Z; Iacovella, Christopher R; Cummings, Peter T; McCabe, Clare
2017-10-24
Chemisorbed monolayer films are known to possess favorable characteristics for nanoscale lubrication of micro- and nanoelectromechanical systems (MEMS/NEMS). Prior studies have shown that the friction observed for monolayer-coated surfaces features a strong dependence on the geometry of contact. Specifically, tip-like geometries have been shown to penetrate into monolayer films, inducing defects in the monolayer chains and leading to plowing mechanisms during shear, which result in higher coefficients of friction (COF) than those observed for planar geometries. In this work, we use molecular dynamics simulations to examine the tribology of model silica single-asperity contacts under shear with monolayer-coated substrates featuring various film densities. It is observed that lower monolayer densities lead to reduced COFs, in contrast to results for planar systems where COF is found to be nearly independent of monolayer density. This is attributed to a liquid-like response to shear, whereby fewer defects are imparted in monolayer chains from the asperity, and chains are easily displaced by the tip as a result of the higher free volume. This transition in the mechanism of molecular plowing suggests that liquid-like films should provide favorable lubrication at single-asperity contacts.
Gupta, D N; Srinivas, D; Patil, G N; Kale, S S; Potnis, S B
2010-01-01
The high-energy, high-current thermal plasma that develops between electric contacts in a gas circuit-breaker during circuit interruption is an important phenomenon in the power transmission industry. The high temperature and pressure arc dissipates the tremendous amount of energy generated by the fault current. Simultaneously, this energy has to be transferred away from the contacts to build the dielectric strength level of the circuit-breaker. In order to interrupt the current, the arc must be weakened and finally extinguished. We model these phenomena by using a computer software code based on the solution of the unsteady Euler equations of gas dynamics. We consider the equations of fluid flows. These equations are solved numerically in complex circuit breaker geometries using a finite-volume method. The domain is initially filled with SF 6 gas. We begin our simulations from cold mode, where the fault current is not present (hence no arc). An axis-symmetric geometry of a 145 kV gas circuit-breaker is considered to study the pressure, density, and temperature profile during contact opening process.
On some control problems of dynamic of reactor
Baskakov, A. V.; Volkov, N. P.
2017-12-01
The paper analyzes controllability of the transient processes in some problems of nuclear reactor dynamics. In this case, the mathematical model of nuclear reactor dynamics is described by a system of integro-differential equations consisting of the non-stationary anisotropic multi-velocity kinetic equation of neutron transport and the balance equation of delayed neutrons. The paper defines the formulation of the linear problem on control of transient processes in nuclear reactors with application of spatially distributed actions on internal neutron sources, and the formulation of the nonlinear problems on control of transient processes with application of spatially distributed actions on the neutron absorption coefficient and the neutron scattering indicatrix. The required control actions depend on the spatial and velocity coordinates. The theorems on existence and uniqueness of these control actions are proved in the paper. To do this, the control problems mentioned above are reduced to equivalent systems of integral equations. Existence and uniqueness of the solution for this system of integral equations is proved by the method of successive approximations, which makes it possible to construct an iterative scheme for numerical analyses of transient processes in a given nuclear reactor with application of the developed mathematical model. Sufficient conditions for controllability of transient processes are also obtained. In conclusion, a connection is made between the control problems and the observation problems, which, by to the given information, allow us to reconstruct either the function of internal neutron sources, or the neutron absorption coefficient, or the neutron scattering indicatrix....
Jacobian projection reduced-order models for dynamic systems with contact nonlinearities
Gastaldi, Chiara; Zucca, Stefano; Epureanu, Bogdan I.
2018-02-01
In structural dynamics, the prediction of the response of systems with localized nonlinearities, such as friction dampers, is of particular interest. This task becomes especially cumbersome when high-resolution finite element models are used. While state-of-the-art techniques such as Craig-Bampton component mode synthesis are employed to generate reduced order models, the interface (nonlinear) degrees of freedom must still be solved in-full. For this reason, a new generation of specialized techniques capable of reducing linear and nonlinear degrees of freedom alike is emerging. This paper proposes a new technique that exploits spatial correlations in the dynamics to compute a reduction basis. The basis is composed of a set of vectors obtained using the Jacobian of partial derivatives of the contact forces with respect to nodal displacements. These basis vectors correspond to specifically chosen boundary conditions at the contacts over one cycle of vibration. The technique is shown to be effective in the reduction of several models studied using multiple harmonics with a coupled static solution. In addition, this paper addresses another challenge common to all reduction techniques: it presents and validates a novel a posteriori error estimate capable of evaluating the quality of the reduced-order solution without involving a comparison with the full-order solution.
Sibley, David; Nold, Andreas; Kalliadasis, Serafim
2015-11-01
Density Functional Theory (DFT), a statistical mechanics of fluids approach, captures microscopic details of the fluid density structure in the vicinity of contact lines, as seen in computations in our recent study. Contact lines describe the location where interfaces between two fluids meet solid substrates, and have stimulated a wealth of research due to both their ubiquity in nature and technological applications and also due to their rich multiscale behaviour. Whilst progress can be made computationally to capture the microscopic to mesoscopic structure from DFT, complete analytical results to fully bridge to the macroscale are lacking. In this work, we describe our efforts to bring asymptotic methods to DFT to obtain results for contact angles and other macroscopic quantities in various parameter regimes. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.
Automatic contact algorithm in ppercase[dyna3d] for crashworthiness and impact problems
Whirley, Robert G.; Engelmann, Bruce E.
1994-01-01
This paper presents a new approach for the automatic definition and treatment of mechanical contact in explicit non-linear finite element analysis. Automatic contact offers the benefits of significantly reduced model construction time and fewer opportunities for user error, but faces significant challenges in reliability and computational costs. Key aspects of the proposed new method include automatic identification of adjacent and opposite surfaces in the global search phase, and the use of a well-defined surface normal which allows a consistent treatment of shell intersection and corner contact conditions without adhoc rules. The paper concludes with three examples which illustrate the performance of the newly proposed algorithm in the public ppercase[dyna3d] code. ((orig.))
Tulina, N.A.
1985-01-01
A study was made of point-contact spectra of oxides WO 2 , ReO 3 , MoO 2 with metallic conductivity. It is shown that zero anomalies often observed in transition metal spectra are due to a higher-type oxide interlayer in the vicinity of a point contact. There are no zero anomalies in the point-contact spectra of heterocontacts Zn-MoO 2 (broken crystal) obtained directly in a helium cryostal. When studying such heterocontacts, major maxima of electron- phonon interaction in MoO 2 were determined on the energy scale hω sub(TA) approximately 28 MeV, hω sub(LA) approximately 41 MeV
Karam, Ayman M.
2016-10-03
Membrane distillation (MD) is an emerging technology that has a great potential for sustainable water desalination. In order to pave the way for successful commercialization of MD-based water desalination techniques, adequate and accurate dynamical models of the process are essential. This paper presents the predictive capabilities of a lumped-parameter dynamic model for direct contact membrane distillation (DCMD) and discusses the results under wide range of steady-state and dynamic conditions. Unlike previous studies, the proposed model captures the time response of the spacial temperature distribution along the flow direction. It also directly solves for the local temperatures at the membrane interfaces, which allows to accurately model and calculate local flux values along with other intrinsic variables of great influence on the process, like the temperature polarization coefficient (TPC). The proposed model is based on energy and mass conservation principles and analogy between thermal and electrical systems. Experimental data was collected to validated the steady-state and dynamic responses of the model. The obtained results shows great agreement with the experimental data. The paper discusses the results of several simulations under various conditions to optimize the DCMD process efficiency and analyze its response. This demonstrates some potential applications of the proposed model to carry out scale up and design studies. © 2016
Karam, Ayman M.; Alsaadi, Ahmad Salem; Ghaffour, NorEddine; Laleg-Kirati, Taous-Meriem
2016-01-01
Membrane distillation (MD) is an emerging technology that has a great potential for sustainable water desalination. In order to pave the way for successful commercialization of MD-based water desalination techniques, adequate and accurate dynamical models of the process are essential. This paper presents the predictive capabilities of a lumped-parameter dynamic model for direct contact membrane distillation (DCMD) and discusses the results under wide range of steady-state and dynamic conditions. Unlike previous studies, the proposed model captures the time response of the spacial temperature distribution along the flow direction. It also directly solves for the local temperatures at the membrane interfaces, which allows to accurately model and calculate local flux values along with other intrinsic variables of great influence on the process, like the temperature polarization coefficient (TPC). The proposed model is based on energy and mass conservation principles and analogy between thermal and electrical systems. Experimental data was collected to validated the steady-state and dynamic responses of the model. The obtained results shows great agreement with the experimental data. The paper discusses the results of several simulations under various conditions to optimize the DCMD process efficiency and analyze its response. This demonstrates some potential applications of the proposed model to carry out scale up and design studies. © 2016
T. S. Ozsahin
2013-01-01
Full Text Available The frictionless contact problem for an elastic layer resting on an elastic half plane is considered. The problem is solved by using the theory of elasticity and integral transformation technique. The compressive loads P and Q (per unit thickness in direction are applied to the layer through three rigid flat punches. The elastic layer is also subjected to uniform vertical body force due to effect of gravity. The contact along the interface between elastic layer and half plane is continuous, if the value of the load factor, λ, is less than a critical value, . In this case, initial separation loads, and initial separation points, are determined. Also the required distance between the punches to avoid any separation between the punches and the elastic layer is studied and the limit distance between punches that ends interaction of punches is investigated for various dimensionless quantities. However, if tensile tractions are not allowed on the interface, for the layer separates from the interface along a certain finite region. Numerical results for distance determining the separation area, vertical displacement in the separation zone, contact stress distribution along the interface between elastic layer and half plane are given for this discontinuous contact case.
Contact in an expanding universe: an instructive exercise in dynamic geometry
Zimmerman, Seth
2010-01-01
The particular problem solved in this paper is that of calculating the time required to overtake a distant object receding under cosmic expansion, and the speed at which that object is passed. This is a rarely investigated problem leading to some interesting apparent paradoxes. We employ the problem to promote a deeper understanding of the dynamic geometry behind the expansion of space in three eras, especially for physics undergraduates. We do not utilize the standard cosmological formulae, but deliberately take a simpler approach, comprehensible to any student comfortable with differentials. This should offer an intuitive preparation for later courses in general relativity. The paper can be read straight through, or offered to a class in segments as problems to investigate. The overall intention is to leave students with a more tangible grasp of expanding space.
Contact in an expanding universe: an instructive exercise in dynamic geometry
Zimmerman, Seth
2010-11-01
The particular problem solved in this paper is that of calculating the time required to overtake a distant object receding under cosmic expansion, and the speed at which that object is passed. This is a rarely investigated problem leading to some interesting apparent paradoxes. We employ the problem to promote a deeper understanding of the dynamic geometry behind the expansion of space in three eras, especially for physics undergraduates. We do not utilize the standard cosmological formulae, but deliberately take a simpler approach, comprehensible to any student comfortable with differentials. This should offer an intuitive preparation for later courses in general relativity. The paper can be read straight through, or offered to a class in segments as problems to investigate. The overall intention is to leave students with a more tangible grasp of expanding space.
Moving interface problems and applications in fluid dynamics
Khoo, Boo Cheong; Lin, Ping
2008-01-01
This volume is a collection of research papers presented at the program on Moving Interface Problems and Applications in Fluid Dynamics, which was held between January 8 and March 31, 2007 at the Institute for Mathematical Sciences (IMS) of the National University of Singapore. The topics discussed include modeling and simulations of biological flow coupled to deformable tissue/elastic structure, shock wave and bubble dynamics and various applications including biological treatments with experimental verification, multi-medium flow or multi-phase flow and various applications including cavitation/supercavitation, detonation problems, Newtonian and non-Newtonian fluid, and many other areas. Readers can benefit from some recent research results in these areas.
A Monarch Butterfly Optimization for the Dynamic Vehicle Routing Problem
Shifeng Chen
2017-09-01
Full Text Available The dynamic vehicle routing problem (DVRP is a variant of the Vehicle Routing Problem (VRP in which customers appear dynamically. The objective is to determine a set of routes that minimizes the total travel distance. In this paper, we propose a monarch butterfly optimization (MBO algorithm to solve DVRPs, utilizing a greedy strategy. Both migration operation and the butterfly adjusting operator only accept the offspring of butterfly individuals that have better fitness than their parents. To improve performance, a later perturbation procedure is implemented, to maintain a balance between global diversification and local intensification. The computational results indicate that the proposed technique outperforms the existing approaches in the literature for average performance by at least 9.38%. In addition, 12 new best solutions were found. This shows that this proposed technique consistently produces high-quality solutions and outperforms other published heuristics for the DVRP.
Dynamic Scheduling for Cloud Reliability using Transportation Problem
P. Balasubramanie; S. K. Senthil Kumar
2012-01-01
Problem statement: Cloud is purely a dynamic environment and the existing task scheduling algorithms are mostly static and considered various parameters like time, cost, make span, speed, scalability, throughput, resource utilization, scheduling success rate and so on. Available scheduling algorithms are mostly heuristic in nature and more complex, time consuming and does not consider reliability and availability of the cloud computing environment. Therefore there is a need to implement a sch...
Haslinger, J.; Outrata, Jiří; Pathó, R.
2012-01-01
Roč. 20, č. 1 (2012), s. 31-59 ISSN 1877-0533 R&D Projects: GA AV ČR IAA100750802 Institutional research plan: CEZ:AV0Z10750506 Institutional support: RVO:67985556 Keywords : shape optimization * Signorini problem * model with given frinction * solution-dependent coefficient of friction * mathematical probrams with equilibrium constraints Subject RIV: BA - General Mathematics Impact factor: 1.036, year: 2012 http://library.utia.cas.cz/separaty/2012/MTR/outrata-shape optimization in 2d contact problems with given friction and a solution-dependent coefficient of friction .pdf
Walter, Jonathan P; Pandy, Marcus G
2017-10-01
The aim of this study was to perform multi-body, muscle-driven, forward-dynamics simulations of human gait using a 6-degree-of-freedom (6-DOF) model of the knee in tandem with a surrogate model of articular contact and force control. A forward-dynamics simulation incorporating position, velocity and contact force-feedback control (FFC) was used to track full-body motion capture data recorded for multiple trials of level walking and stair descent performed by two individuals with instrumented knee implants. Tibiofemoral contact force errors for FFC were compared against those obtained from a standard computed muscle control algorithm (CMC) with a 6-DOF knee contact model (CMC6); CMC with a 1-DOF translating hinge-knee model (CMC1); and static optimization with a 1-DOF translating hinge-knee model (SO). Tibiofemoral joint loads predicted by FFC and CMC6 were comparable for level walking, however FFC produced more accurate results for stair descent. SO yielded reasonable predictions of joint contact loading for level walking but significant differences between model and experiment were observed for stair descent. CMC1 produced the least accurate predictions of tibiofemoral contact loads for both tasks. Our findings suggest that reliable estimates of knee-joint loading may be obtained by incorporating position, velocity and force-feedback control with a multi-DOF model of joint contact in a forward-dynamics simulation of gait. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
The magnetization dynamics of nano-contact spin-torque vortex oscillators
Keatley, Paul
The operation of nano-contact (NC) spin-torque vortex oscillators (STVOs) is underpinned by vortex gyration in response to spin-torque delivered by high density current passing through the magnetic layers of a spin valve. Gyration directly beneath the NC yields radio frequency (RF) emission through the giant magnetoresistance (GMR) effect, which can be readily detected electronically. The magnetization dynamics that extend beyond the NC perimeter contribute little to the GMR signal, but are crucial for synchronization of multiple NC-STVOs that share the same spin valve film. In this work time-resolved scanning Kerr microscopy (TRSKM) was used to directly image the extended dynamics of STVOs phase-locked to an injected RF current. In this talk the dynamics of single 250-nm diameter NCs, and a pair of 100-nm diameter NCs, will be presented. In general the Kerr images reveal well-defined localized and far-field dynamics, driven by spin-torque and RF current Oersted fields respectively. The RF frequency, RF Oersted field, direction of an in-plane magnetic field, and equilibrium magnetic state, all influenced the spatial character of the dynamics observed in single NCs. In the pair of NCs, two modes were observed in the RF emission. Kerr images revealed that a vortex was formed beneath each NC and that the mode with enhanced spectral amplitude and line quality appeared to be correlated with two localized regions oscillating with similar amplitude and phase, while a second weaker mode exhibited amplitude and phase differences. This suggests that the RF emission was generated by collective modes of vortex gyration dynamically coupled via magnetization dynamics and dipolar interactions of the shared magnetic layers. Within the constraints of injection locking, this work demonstrates that TRSKM can provide valuable insight into the spatial character and time-evolution of magnetization dynamics generated by NC-STVOs and the conditions that may favor their synchronization
Dynamic Variation in Sexual Contact Rates in a Cohort of HIV-Negative Gay Men.
Romero-Severson, E O; Volz, E; Koopman, J S; Leitner, T; Ionides, E L
2015-08-01
Human immunodeficiency virus (HIV) transmission models that include variability in sexual behavior over time have shown increased incidence, prevalence, and acute-state transmission rates for a given population risk profile. This raises the question of whether dynamic variation in individual sexual behavior is a real phenomenon that can be observed and measured. To study this dynamic variation, we developed a model incorporating heterogeneity in both between-person and within-person sexual contact patterns. Using novel methodology that we call iterated filtering for longitudinal data, we fitted this model by maximum likelihood to longitudinal survey data from the Centers for Disease Control and Prevention's Collaborative HIV Seroincidence Study (1992-1995). We found evidence for individual heterogeneity in sexual behavior over time. We simulated an epidemic process and found that inclusion of empirically measured levels of dynamic variation in individual-level sexual behavior brought the theoretical predictions of HIV incidence into closer alignment with reality given the measured per-act probabilities of transmission. The methods developed here provide a framework for quantifying variation in sexual behaviors that helps in understanding the HIV epidemic among gay men. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Mohammad Jafari
2017-12-01
Full Text Available The pore-level two-phase fluids flow mechanism needs to be understood for geological CO2 sequestration as a solution to mitigate anthropogenic emission of carbon dioxide. Capillary pressure at the interface of water–CO2 influences CO2 injectability, capacity, and safety of the storage system. Wettability usually measured by contact angle is always a major uncertainty source among important parameters affecting capillary pressure. The contact angle is mostly determined on a flat surface as a representative of the rock surface. However, a simple and precise method for determining in situ contact angle at pore-scale is needed to simulate fluids flow in porous media. Recent progresses in X-ray tomography technique has provided a robust way to measure in situ contact angle of rocks. However, slow imaging and complicated image processing make it impossible to measure dynamic contact angle. In the present paper, a series of static and dynamic contact angles as well as contact angles on flat surface were measured inside a micromodel with random pattern of channels under high pressure condition. Our results showed a wide range of pore-scale contact angles, implying complexity of the pore-scale contact angle even in a highly smooth and chemically homogenous glass micromodel. Receding contact angle (RCA showed more reproducibility compared to advancing contact angle (ACA and static contact angle (SCA for repeating tests and during both drainage and imbibition. With decreasing pore size, RCA was increased. The hysteresis of the dynamic contact angle (ACA–RCA was higher at pressure of one megapascal in comparison with that at eight megapascals. The CO2 bubble had higher mobility at higher depths due to lower hysteresis which is unfavorable. CO2 bubbles resting on the flat surface of the micromodel channel showed a wide range of contact angles. They were much higher than reported contact angle values observed with sessile drop or captive bubble tests on a
Hlaváček, Ivan; Nedoma, Jiří
2005-01-01
Roč. 67, - (2005), s. 559-580 ISSN 0378-4754 R&D Projects: GA ČR GA201/01/1200; GA MŠk OK 407 Grant - others:COPERNICUS-HIPERGEOS II(XE) KIT 977006 Institutional research plan: CEZ:AV0Z1030915 Keywords : unilateral contact * steady-state heat flow * Coulomb friction * finite element analysis * radioactive waste repositories Subject RIV: BA - General Mathematics Impact factor: 0.554, year: 2005
Dynamic Vehicle Routing Problems with Enhanced Ant Colony Optimization
Haitao Xu
2018-01-01
Full Text Available As we all know, there are a great number of optimization problems in the world. One of the relatively complicated and high-level problems is the vehicle routing problem (VRP. Dynamic vehicle routing problem (DVRP is a major variant of VRP, and it is closer to real logistic scene. In DVRP, the customers’ demands appear with time, and the unserved customers’ points must be updated and rearranged while carrying out the programming paths. Owing to the complexity and significance of the problem, DVRP applications have grabbed the attention of researchers in the past two decades. In this paper, we have two main contributions to solving DVRP. Firstly, DVRP is solved with enhanced Ant Colony Optimization (E-ACO, which is the traditional Ant Colony Optimization (ACO fusing improved K-means and crossover operation. K-means can divide the region with the most reasonable distance, while ACO using crossover is applied to extend search space and avoid falling into local optimum prematurely. Secondly, several new evaluation benchmarks are proposed, which can objectively and comprehensively estimate the proposed method. In the experiment, the results for different scale problems are compared to those of previously published papers. Experimental results show that the algorithm is feasible and efficient.
Multiproduct Multiperiod Newsvendor Problem with Dynamic Market Efforts
Jianmai Shi
2016-01-01
Full Text Available We study a multiperiod multiproduct production planning problem where the production capacity and the marketing effort on demand are both considered. The accumulative impact of marketing effort on demand is captured by the Nerlove and Arrow (N-A advertising model. The problem is formulated as a discrete-time, finite-horizon dynamic optimization problem, which can be viewed as an extension to the classic newsvendor problem by integrating with the N-A model. A Lagrangian relaxation based solution approach is developed to solve the problem, in which the subgradient algorithm is used to find an upper bound of the solution and a feasibility heuristic algorithm is proposed to search for a feasible lower bound. Twelve kinds of instances with different problem size involving up to 50 products and 15 planning periods are randomly generated and used to test the Lagrangian heuristic algorithm. Computational results show that the proposed approach can obtain near optimal solutions for all the instances in very short CPU time, which is less than 90 seconds even for the largest instance.
Larsen, Jeppe Madura; Geisler, Carsten; Nielsen, Martin Weiss
2007-01-01
BACKGROUND: The different role of various immunological effector cells in contact hypersensitivity (CHS) is receiving increased attention. During the past decade, the involvement of different cell types in CHS has been investigated by the use of antibody-induced depletion of specific subtypes...... of immunological cells and by studying knockout mice lacking one or more of these immunological cell populations. OBJECTIVES: To develop a method for studying the collective cellular dynamics of immune cells in the draining lymph nodes during CHS in intact animals. PATIENTS/METHODS: Mice were sensitized and....../or challenged with 2,4-dinitrofluorobenzene or oxazolone. Using multi-parameter flow cytometry we determined the proliferation, activation state, and absolute number of helper T cells, cytotoxic T cells, B cells, and natural killer cells in the draining lymph nodes. RESULTS: The presented method can be applied...
Analysis of dynamic capacity of low-contact-ratio spur gears using Lundberg-Palmgren theory
Coy, J. J.
1975-01-01
A concise mathematical model is developed for surface fatigue life of low-contact-ratio spur gears. The expected fatigue life of the pinion, gear, or gear sets may be calculated from the model. An equation for the dynamic capacity of the gear set was also derived in terms of the transmitted tangential tooth load which will give a 10-percent fatigue life of one million pinion revolutions. The theoretical life was compared with experimental data for a set of VAR AISI 9310 gears operating at a Hertz stress of 1.71X10 to the 9th power newtons per square meter (248,000 psi) and 10 000 revolutions per minute. Good agreement was obtained between the experimental and theoretical surface fatigue life of the gears.
Interaction dynamics of two diffusing particles: contact times and influence of nearby surfaces.
Tränkle, B; Ruh, D; Rohrbach, A
2016-03-14
Interactions of diffusing particles are governed by hydrodynamics on different length and timescales. The local hydrodynamics can be influenced substantially by simple interfaces. Here, we investigate the interaction dynamics of two micron-sized spheres close to plane interfaces to mimic more complex biological systems or microfluidic environments. Using scanned line optical tweezers and fast 3D interferometric particle tracking, we are able to track the motion of each bead with precisions of a few nanometers and at a rate of 10 kilohertz. From the recorded trajectories, all spatial and temporal information is accessible. This way, we measure diffusion coefficients for two coupling particles at varying distances h to one or two glass interfaces. We analyze their coupling strength and length by cross-correlation analysis relative to h and find a significant decrease in the coupling length when a second particle diffuses nearby. By analysing the times the particles are in close contact, we find that the influence of nearby surfaces and interaction potentials reduce the diffusivity strongly, although we found that the diffusivity hardly affects the contact times and the binding probability between the particles. All experimental results are compared to a theoretical model, which is based on the number of possible diffusion paths following the Catalan numbers and a diffusion probability, which is biased by the spheres' surface potential. The theoretical and experimental results agree very well and therefore enable a better understanding of hydrodynamically coupled interaction processes.
Lee, Wang Wei; Kukreja, Sunil L; Thakor, Nitish V
2017-01-01
This paper presents a neuromorphic tactile encoding methodology that utilizes a temporally precise event-based representation of sensory signals. We introduce a novel concept where touch signals are characterized as patterns of millisecond precise binary events to denote pressure changes. This approach is amenable to a sparse signal representation and enables the extraction of relevant features from thousands of sensing elements with sub-millisecond temporal precision. We also proposed measures adopted from computational neuroscience to study the information content within the spiking representations of artificial tactile signals. Implemented on a state-of-the-art 4096 element tactile sensor array with 5.2 kHz sampling frequency, we demonstrate the classification of transient impact events while utilizing 20 times less communication bandwidth compared to frame based representations. Spiking sensor responses to a large library of contact conditions were also synthesized using finite element simulations, illustrating an 8-fold improvement in information content and a 4-fold reduction in classification latency when millisecond-precise temporal structures are available. Our research represents a significant advance, demonstrating that a neuromorphic spatiotemporal representation of touch is well suited to rapid identification of critical contact events, making it suitable for dynamic tactile sensing in robotic and prosthetic applications.
Dynamics of liquid nitrogen cooling process of solid surface at wetting contact coefficient
Smakulski, P; Pietrowicz, S
2015-01-01
Liquid cryogens cooling by direct contact is very often used as a method for decreasing the temperature of electronic devices or equipment i.e. HTS cables. Somehow, cooldown process conducted in that way could not be optimized, because of cryogen pool boiling characteristic and low value of the heat transfer coefficient. One of the possibilities to increase the efficiency of heat transfer, as well as the efficiency of cooling itself, it is to use a spray cooling method. The paper shows dynamics analysis of liquid nitrogen cooling solid surface process. The model of heat transfer for the single droplet of liquid nitrogen, which hits on a flat and smooth surface with respect to the different Weber numbers, is shown. Temperature profiles in calculation domains are presented, as well as the required cooling time. The numerical calculations are performed for different initial and boundary conditions, to study how the wetting contact coefficient is changing, and how it contributed to heat transfer between solid and liquid cryogen. (paper)
Apparent dynamic contact angle of an advancing gas--liquid meniscus
Kalliadasis, S.; Chang, H.
1994-01-01
The steady motion of an advancing meniscus in a gas-filled capillary tube involves a delicate balance of capillary, viscous, and intermolecular forces. The limit of small capillary numbers Ca (dimensionless speeds) is analyzed here with a matched asymptotic analysis that links the outer capillary region to the precursor film in front of the meniscus through a lubricating film. The meniscus shape in the outer region is constructed and the apparent dynamic contact angle Θ that the meniscus forms with the solid surface is derived as a function of the capillary number, the capillary radius, and the Hamaker's constant for intermolecular forces, under conditions of weak gas--solid interaction, which lead to fast spreading of the precursor film and weak intermolecular forces relative to viscous forces within the lubricating film. The dependence on intermolecular forces is very weak and the contact angle expression has a tight upper bound tan Θ=7.48 Ca 1/3 for thick films, which is independent of the Hamaker constant. This upper bound is in very good agreement with existing experimental data for wetting fluids in any capillary and for partially wetting fluids in a prewetted capillary. Significant correction to the Ca 1/3 dependence occurs only at very low Ca, where the intermolecular forces become more important and tan Θ diverges slightly from the above asymptotic behavior toward lower values
Jasikova, Darina; Kotek, Michal
2014-03-01
The development of industrial technology also brings with optimized surface quality, particularly where there is contact with food. Application ultra-hydrophobic surface significantly reduces the growth of bacteria and facilitates cleaning processes. Testing and evaluation of surface quality are used two methods: impinging droplet and inclined surface method optimized with high speed shadowgraphy, which give information about dynamic contact angle. This article presents the results of research into new methods of measuring ultra-hydrophobic patented technology.
Beam dynamics problems for next generation linear colliders
Yokoya, Kaoru
1990-01-01
The most critical issue for the feasibility of high-energy e + e - linear colliders is obviously the development of intense microwave power sources. Remaining problems, however, are not trivial and in fact some of them require several order-of-magnitude improvement from the existing SLC parameters. The present report summarizes the study status of the beam dynamics problems of high energy linear colliders with an exaggeration on the beam-beam phenomenon at the interaction region. There are four laboratories having linear collider plans, SLAC, CERN, Novosibirsk-Protovino, and KEK. The parameters of these projects scatter in some range but seem to converge slowly if one recalls the status five years ago. The beam energy will be below 500GeV. The basic requirements to the damping ring are the short damping time and small equilibrium emittance. All the proposed designs make use of tight focusing optics and strong wiggler magnets to meet these requirements and seem to have no major problems at least compared with other problems in the colliders. One of the major problems in the linac is the transverse beam blow-up due to the wake field created by the head of the bunch and, in the case of multiple bunches per pulse, by the preceeding bunches. (N.K.)
A nonsmooth nonlinear conjugate gradient method for interactive contact force problems
Silcowitz, Morten; Abel, Sarah Maria Niebe; Erleben, Kenny
2010-01-01
of a nonlinear complementarity problem (NCP), which can be solved using an iterative splitting method, such as the projected Gauss–Seidel (PGS) method. We present a novel method for solving the NCP problem by applying a Fletcher–Reeves type nonlinear nonsmooth conjugate gradient (NNCG) type method. We analyze...... and present experimental convergence behavior and properties of the new method. Our results show that the NNCG method has at least the same convergence rate as PGS, and in many cases better....
Zaitsev D.V.
2015-01-01
Full Text Available The effect of equilibrium contact angle on dynamics of dry spot spreading at disruption of a horizontal water layer heated locally from the substrate was studied using the high-speed Schlieren technique. Different methods of working surface processing were applied; this allowed variations of the equilibrium contact angle from 27±6° to 74±9° without a change in thermal properties of the system. It is found out that substrate wettability significantly affects the propagation velocity of dry spot and its final size. It is also found out that the velocity of contact line propagation is higher in the areas of substrate with a higher temperature.
Xu Mingyu; Lin Tengjiao; Li Runfang; Du Xuesong; Li Shuian; Yang Yu
2005-01-01
There are some complex operating cases such as high temperature and high pressure during the operating process of nuclear reactor pressure vessel. It is necessary to carry out mechanical analysis and experimental investigation for its sealing ability. On the basis of the self-developed program for 3-D transient sealing analysis for nuclear reactor pressure vessel, some specific measures are presented to enhance the calculation efficiency in several aspects such as the non-linear solution of elasto-plastic problem, the mixed solution algorithm for contact problem as well as contract heat transfer problem and linear equation set solver. The 3-D transient sealing analysis program is amended and complemented, with which the sealing analysis result of the pressure vessel model can be obtained. The calculation results have good regularity and the calculation efficiency is twice more than before. (authors)
Safiya Benni
2014-01-01
Full Text Available Atherosclerosis is a major cardiovascular disease. One of the side effects is restenosis. The aim of this work was to study the coating of stents by dextran derivates based polyelectrolyte’s multilayer (PEM films in order to increase endothelialization of injured arterial wall after stent implantation. Films were composed with diethylaminoethyl dextran (DEAE as polycation and dextran sulphate (DS as polyanion. One film was composed with 4 bilayers of (DEAE-DS4 and was labeled D−. The other film was the same as D− but with an added terminal layer of DEAE polycation: (DEAE-DS4-DEAE (labeled D+. The dynamic adsorption/desorption of proteins on the films were characterized by dynamic contact angle (DCA and atomic force microscopy (AFM. Human endothelial cell (HUVEC adhesion and proliferation were quantified and correlated to protein adsorption analyzed by DCA for fibronectin, vitronectin, and bovine serum albumin (BSA. Our results showed that the endothelial cell response was optimal for films composed of DS as external layer. Fibronectin was found to be the only protein to exhibit a reversible change in conformation after desorption test. This behavior was only observed for (DEAE-DS4 films. (DEAE-DS4 films could enhance HUVEC proliferation in agreement with fibronectin ability to easily change from conformation.
Prediction of dynamic contact angle histories of a bubble growing at a wall
Geld, Cees W.M. van der
2004-01-01
A fast growing boiling bubble at the verge of detaching from a plane wall is usually shaped as a truncated sphere, and experiences various hydrodynamic forces due to its expansion and the motion of its center of mass. In a homogeneous flow field, one of the forces is the so-called bubble growth force that is essentially due to inertia. This force is usually evaluated with the aid of approximate expressions [Int. J. Heat Mass Transfer 36 (1993) 651, Int. J. Heat Mass Transfer 38 (1995) 2075]. In the present study an exact expression for the expansion force is derived for the case of a truncated sphere attached to a plane, infinite wall. The Lagrange-Thomson formalism is applied. Two Euler-Lagrange equations are derived, one governing the motion of the center of mass, the other governing expansion a kind of extended Rayleigh-Plesset equation. If a constitutive equation for the gas-vapor content of the bubble is given, initial conditions and these two differential equations determine the dynamics of the growing truncated sphere that has its foot on a plane, infinite wall. Simulations are carried out for a given expansion rate to predict the history of the dynamic contact angle. The simulations increase the understanding of mechanisms controlling detachment, and yield realistic times of detachment
Applications of Asymptotic Sampling on High Dimensional Structural Dynamic Problems
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Bucher, Christian
2011-01-01
The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has consid...... dimensional reliability problems in structural dynamics.......The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has...... is minimized. Next, the method is applied on different cases of linear and nonlinear systems with a large number of random variables representing the dynamic excitation. The results show that asymptotic sampling is capable of providing good approximations of low failure probability events for very high...
Distance learning, problem based learning and dynamic knowledge networks.
Giani, U; Martone, P
1998-06-01
This paper is an attempt to develop a distance learning model grounded upon a strict integration of problem based learning (PBL), dynamic knowledge networks (DKN) and web tools, such as hypermedia documents, synchronous and asynchronous communication facilities, etc. The main objective is to develop a theory of distance learning based upon the idea that learning is a highly dynamic cognitive process aimed at connecting different concepts in a network of mutually supporting concepts. Moreover, this process is supposed to be the result of a social interaction that has to be facilitated by the web. The model was tested by creating a virtual classroom of medical and nursing students and activating a learning session on the concept of knowledge representation in health sciences.
Complex analysis and dynamical systems new trends and open problems
Golberg, Anatoly; Jacobzon, Fiana; Shoikhet, David; Zalcman, Lawrence
2018-01-01
This book focuses on developments in complex dynamical systems and geometric function theory over the past decade, showing strong links with other areas of mathematics and the natural sciences. Traditional methods and approaches surface in physics and in the life and engineering sciences with increasing frequency – the Schramm‐Loewner evolution, Laplacian growth, and quadratic differentials are just a few typical examples. This book provides a representative overview of these processes and collects open problems in the various areas, while at the same time showing where and how each particular topic evolves. This volume is dedicated to the memory of Alexander Vasiliev.
Problem of dynamic impacts upon NPP buildings and constructions
Kosterev, A.E.
1998-01-01
Activities of IAEA member-states dealing with the problems of taking into account external natural and technogenic impacts (earthquakes, cyclones, hurricanes, aircraft crushes, air shock waves) when designing NPP buildings and constructions important for nuclear and radiation safety are briefly discussed. It is concluded that development of IAEA general recommendations for taking into account specific dynamic impacts will improve noticeably safety of NPPs being in operation both in Russia and all over the World as a result of reconstruction of safety-important buildings and constructions
Dynamic Eigenvalue Problem of Concrete Slab Road Surface
Pawlak, Urszula; Szczecina, Michał
2017-10-01
The paper presents an analysis of the dynamic eigenvalue problem of concrete slab road surface. A sample concrete slab was modelled using Autodesk Robot Structural Analysis software and calculated with Finite Element Method. The slab was set on a one-parameter elastic subsoil, for which the modulus of elasticity was separately calculated. The eigen frequencies and eigenvectors (as maximal vertical nodal displacements) were presented. On the basis of the results of calculations, some basic recommendations for designers of concrete road surfaces were offered.
Inverse problem and uncertainty quantification: application to compressible gas dynamics
Birolleau, Alexandre
2014-01-01
This thesis deals with uncertainty propagation and the resolution of inverse problems together with their respective acceleration via Polynomial Chaos. The object of this work is to present a state of the art and a numerical analysis of this stochastic spectral method, in order to understand its pros and cons when tackling the probabilistic study of hydrodynamical instabilities in Richtmyer-Meshkov shock tube experiments. The first chapter is introductory and allows understanding the stakes of being able to accurately take into account uncertainties in compressible gas dynamics simulations. The second chapter is both an illustrative state of the art on generalized Polynomial Chaos and a full numerical analysis of the method keeping in mind the final application on hydrodynamical problems developing shocks and discontinuous solutions. In this chapter, we introduce a new method, naming iterative generalized Polynomial Chaos, which ensures a gain with respect to generalized Polynomial Chaos, especially with non smooth solutions. Chapter three is closely related to an accepted publication in Communication in Computational Physics. It deals with stochastic inverse problems and introduces bayesian inference. It also emphasizes the possibility of accelerating the bayesian inference thanks to iterative generalized Polynomial Chaos described in the previous chapter. Theoretical convergence is established and illustrated on several test-cases. The last chapter consists in the application of the above materials to a complex and ambitious compressible gas dynamics problem (Richtmyer-Meshkov shock tube configuration) together with a deepened study of the physico-numerical phenomenon at stake. Finally, in the appendix, we also present some interesting research paths we quickly tackled during this thesis. (author) [fr
3D Modeling and Testing of Contact Problems in Resistance Welding
Nielsen, Chris Valentin
A generic, electro-thermo-mechanically coupled finite element program is developed for three-dimensional simulation of resistance welding. The developed computer program has reached a level of a complete standalone software that can be utilized as a tool in the analysis of resistance welding...... of resistance welding processes, which cover a wide range of spot welding and projection welding applications. Three-dimensional simulation of spot welding enables the analysis of critical effects like electrode misalignment and shunt effects between consecutive spots. A single-sided spot welding case involving...... three-dimensional contact is also presented. This case was suggested by and discussed with a German steel manufacturer. When it comes to projection welding, a natural need for three-dimensional analysis arises in many cases because of the involved geometries. Cross-wire welding and welding of square...
V.A. Bazhenov
2014-12-01
Full Text Available Authors in their works study vibroimpact system dynamic behaviour by numerical parametric continuation technique combined with shooting and Newton-Raphson’s methods. The technique is adapted to two-mass two-degree-of-freedom vibroimpact system under periodic excitation. Impact is simulated by nonlinear contact interaction force based on Hertz’s contact theory. Stability or instability of obtained periodic solutions is determined by monodromy matrix eigenvalues (multipliers based on Floquet’s theory. In the present paper we describe the state of problem of parameter continuation method using for nonlinear tasks solution. Also we give the short survey of numerous contemporary literature in English and Russian about parameter continuation method application for nonlinear problems. This method is applied for vibroimpact problem solving more rarely because of the difficulties connected with repeated impacts.
Hoffmann, Esther M; Grus, Franz-H; Pfeiffer, Norbert
2004-03-23
The new Ocular Dynamic Contour Tonometer (DCT), investigational device supplied by SMT (Swiss Microtechnology AG, Switzerland) allows simultaneous recording of intraocular pressure (IOP) and ocular pulse amplitude (OPA). It was the aim of this study to compare the IOP results of this new device with Goldmann tonometry. Furthermore, IOP and OPA measured with the new slitlamp-mounted DCT were compared to the IOP and OPA measured with the hand-held SmartLens,a gonioscopic contact lens tonometer (ODC Ophthalmic Development Company AG, Switzerland). Nineteen healthy subjects were included in this study. IOP was determined by three consecutive measurements with each of the DCT, SmartLens, and Goldmann tonometer. Furthermore, OPA was measured three times consecutively by DCT and SmartLens. No difference (P = 0.09) was found between the IOP values by means of DCT (mean: 16.6 mm Hg, median: 15.33 mm Hg, SD: +/- 4.04 mm Hg) and Goldmann tonometry (mean: 16.17 mm Hg, median: 15.33 mm Hg, SD: +/- 4.03 mm Hg). The IOP values of SmartLens (mean: 20.25 mm Hg, median: 19.00 mm Hg, SD: +/- 4.96 mm Hg) were significantly higher (P = 0.0008) both from Goldmann tonometry and DCT. The OPA values of the DCT (mean: 3.08 mm Hg, SD: +/- 0.92 mm Hg) were significantly lower (P = 0.0003) than those obtained by SmartLens (mean: 3.92 mm Hg, SD: +/- 0.83 mm Hg). DCT was equivalent to Goldmann applanation tonometry in measurement of IOP in a small group of normal subjects. In contrast, SmartLens (contact lens tonometry) gave IOP readings that were significantly higher compared with Goldmann applanation tonometer readings. Both devices, DCT and SmartLens provide the measurement of OPA which could be helpful e.g. for the management of glaucoma.
Initial value problem of space dynamics in universal Stumpff anomaly
Sharaf, M. A.; Dwidar, H. R.
2018-05-01
In this paper, the initial value problem of space dynamics in universal Stumpff anomaly ψ is set up and developed in analytical and computational approach. For the analytical expansions, the linear independence of the functions U_{j} (ψ;σ); {j=0,1,2,3} are proved. The differential and recurrence equations satisfied by them and their relations with the elementary functions are given. The universal Kepler equation and its validations for different conic orbits are established together with the Lagrangian coefficients. Efficient representations of these functions are developed in terms of the continued fractions. For the computational developments we consider the following items: 1. Top-down algorithm for continued fraction evaluation. 2. One-point iteration formulae. 3. Determination of the coefficients of Kepler's equation. 4. Derivatives of Kepler's equation of any integer order. 5. Determination of the initial guess for the solution of the universal Kepler equation. Finally we give summary on the computational design for the initial value problem of space dynamics in universal Stumpff anomaly. This design based on the solution of the universal Kepler's equation by an iterative schemes of quadratic up to any desired order ℓ.
Prioritized Contact Transport Stream
Hunt, Walter Lee, Jr. (Inventor)
2015-01-01
A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.
Liu, Hao
2016-01-01
This Ph.D. work takes place within the framework of studies on Pellet-Cladding mechanical Interaction (PCI) which occurs in the fuel rods of pressurized water reactor. This manuscript focuses on automatic mesh refinement to simulate more accurately this phenomena while maintaining acceptable computational time and memory space for industrial calculations. An automatic mesh refinement strategy based on the combination of the Local Defect Correction multigrid method (LDC) with the Zienkiewicz and Zhu a posteriori error estimator is proposed. The estimated error is used to detect the zones to be refined, where the local sub-grids of the LDC method are generated. Several stopping criteria are studied to end the refinement process when the solution is accurate enough or when the refinement does not improve the global solution accuracy anymore. Numerical results for elastic 2D test cases with pressure discontinuity show the efficiency of the proposed strategy. The automatic mesh refinement in case of unilateral contact problems is then considered. The strategy previously introduced can be easily adapted to the multi-body refinement by estimating solution error on each body separately. Post-processing is often necessary to ensure the conformity of the refined areas regarding the contact boundaries. A variety of numerical experiments with elastic contact (with or without friction, with or without an initial gap) confirms the efficiency and adaptability of the proposed strategy. (author) [fr
Smooth dependence on data of solutions and contact regions for a Signorini problem
Eisner, Jan; Kučera, Milan; Recke, L.
2010-01-01
Roč. 72, 3-4 (2010), s. 1358-1378 ISSN 0362-546X R&D Projects: GA AV ČR IAA100190506 Institutional research plan: CEZ:AV0Z10190503 Keywords : smooth dependence on date * Signorini problem * variational inequality Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://www.sciencedirect.com/science/article/pii/S0362546X09009808
The Fermi-Pasta-Ulam problem: Simulation and modern dynamics
Weissert, T.P.
1992-01-01
In 1952, Enrico Fermi, John Pasta and Stanislaw Ulam (FPU) simulated the loaded string model, perturbed with small, nonlinear interaction terms. Because Poincare's theorem guarantees the non-existence of a complete set of integrals for three-body problem, they expected to see the diffusion of energy from its single-mode initial condition to all other modes of the string. But for every combination of initial conditions, the energy remained bounded within the lowest few modes. No theoretical explanation existed for this failure of the underlying hypothesis that erogidicity follows from the lack of a complete set of integrals of the motion in a Hamiltonian model. The author traces the history of this problem from the FPU simulation to the point that a consensus was reached concerning its solution twenty years later. During this period, the simulation of nonlinearly-perturbed integral models became the methodology for a new era in dynamics. Through the use of simulation, dynamicists discovered deterministic chaos, in which the exponential separation of pair orbits generate randomness in deterministic macroscopic systems, and a new kind of structure-related to the KAM theorem-that provides limited order in the absence of analytic integrals of the motions. The author maps the set of conceptually-related journal articles into a chronological inference topology that tracks the understanding of this problem of dynamics. Simulating non-integrable models on a digital computer requires the discretization of time and space. These approximations affect what the simulation can reveal about the model, and the model about reality. Simulations play the role of experiments on mathematical models. A discussion is presented of the issues that emerge with the use of simulation as a heuristic device and the groundwork is laid for an epistemology of simulation
Predecessor and permutation existence problems for sequential dynamical systems
Barrett, C. L. (Christopher L.); Hunt, H. B. (Harry B.); Marathe, M. V. (Madhav V.); Rosenkrantz, D. J. (Daniel J.); Stearns, R. E. (Richard E.)
2002-01-01
A class of finite discrete dynamical systems, called Sequential Dynamical Systems (SDSs), was introduced in BMR99, BR991 as a formal model for analyzing simulation systems. An SDS S is a triple (G, F,n ),w here (i) G(V,E ) is an undirected graph with n nodes with each node having a state, (ii) F = (fi, fi, . . ., fn), with fi denoting a function associated with node ui E V and (iii) A is a permutation of (or total order on) the nodes in V, A configuration of an SDS is an n-vector ( b l, bz, . . ., bn), where bi is the value of the state of node vi. A single SDS transition from one configuration to another is obtained by updating the states of the nodes by evaluating the function associated with each of them in the order given by n. Here, we address the complexity of two basic problems and their generalizations for SDSs. Given an SDS S and a configuration C, the PREDECESSOR EXISTENCE (or PRE) problem is to determine whether there is a configuration C' such that S has a transition from C' to C. (If C has no predecessor, C is known as a garden of Eden configuration.) Our results provide separations between efficiently solvable and computationally intractable instances of the PRE problem. For example, we show that the PRE problem can be solved efficiently for SDSs with Boolean state values when the node functions are symmetric and the underlying graph is of bounded treewidth. In contrast, we show that allowing just one non-symmetric node function renders the problem NP-complete even when the underlying graph is a tree (which has a treewidth of 1). We also show that the PRE problem is efficiently solvable for SDSs whose state values are from a field and whose node functions are linear. Some of the polynomial algorithms also extend to the case where we want to find an ancestor configuration that precedes a given configuration by a logarithmic number of steps. Our results extend some of the earlier results by Sutner [Su95] and Green [@87] on the complexity of
Dynamic MRI reconstruction as a moment problem. Pt. 1
Zwaan, M.
1989-03-01
This paper deals with some mathematical aspects of magnetic resonance imaging (MRI) concerning the beating heart. Some of the basic theory behind magnetic resonance is given. Of special interest is the mathematical theory concerning MRI and the ideas and problems in mathematical terms will be formulated. If one uses MRI to measure and display a so colled 'dynamic' organ, like the beating heart, the situation is more complex than the case of a static organ. Strategy is described how a cross section of a beating human heart is measured in practice and how the measurements are arranged before an image can be made. This technique is called retrospective synchronization. If the beating heart is measured and displayed with help of this method, artefacts often deteriorate the image quality. Some of these artefacts have a physical cause, while others are caused by the reconstruction algorithm. Perhaps mathematical techniques may be used to improve these algorithms hich are currently used in practice. The aim of this paper is not to solve problems, but to give an adequate mathematical formulation of the inversion problem concerning retrospective synchronization. (author). 3 refs.; 4 figs
De Franco, R.
2008-01-01
At convergent plate boundaries, the properties of the actual plate contact are important for the overall dynamics. Convergent plate boundaries both mechanically decouple and link tectonic plates and accommodate large amounts of strain. We investigate two fundamental physical states of the subduction
Johansen, J D; Andersen, T F; Veien, N; Avnstorp, C; Andersen, K E; Menné, T
1997-03-01
The aim of the present study was to investigate the relationship between patients' own recognition of skin problems using consumer products and the results of patch testing with markers of fragrance sensitization. Eight hundred and eighty-four consecutive eczema patients, 18-69 years of age, filled in a questionnaire prior to patch testing with the European standard series. The questionnaire contained questions about skin symptoms from the use of scented and unscented products as well as skin reactions from contact with spices, flowers and citrus fruits that could indicate fragrance sensitivity. A highly significant association was found between reporting a history of visible skin symptoms from using scented products and a positive patch test to the fragrance mix, whereas no such relationship could be established to the Peru balsam in univariate or multivariate analysis. Our results suggest that the role of Peru balsam in detecting relevant fragrance contact allergy is limited, while most fragrance mix-positive patients are aware that the use of scented products may cause skin problems.
Cai, Yong; Cui, Xiangyang; Li, Guangyao; Liu, Wenyang
2018-04-01
The edge-smooth finite element method (ES-FEM) can improve the computational accuracy of triangular shell elements and the mesh partition efficiency of complex models. In this paper, an approach is developed to perform explicit finite element simulations of contact-impact problems with a graphical processing unit (GPU) using a special edge-smooth triangular shell element based on ES-FEM. Of critical importance for this problem is achieving finer-grained parallelism to enable efficient data loading and to minimize communication between the device and host. Four kinds of parallel strategies are then developed to efficiently solve these ES-FEM based shell element formulas, and various optimization methods are adopted to ensure aligned memory access. Special focus is dedicated to developing an approach for the parallel construction of edge systems. A parallel hierarchy-territory contact-searching algorithm (HITA) and a parallel penalty function calculation method are embedded in this parallel explicit algorithm. Finally, the program flow is well designed, and a GPU-based simulation system is developed, using Nvidia's CUDA. Several numerical examples are presented to illustrate the high quality of the results obtained with the proposed methods. In addition, the GPU-based parallel computation is shown to significantly reduce the computing time.
Meshless Local Petrov-Galerkin Method for Solving Contact, Impact and Penetration Problems
2006-11-30
as the residual forces to the FEM domain, denoted as pFEM ≡ −pSGBEMu on SI in Fig. 2(c), re-solve the FEM problem and obtain the traction pSGBEMc on...crack surfaces SSGBEMc . 4. Repeat steps 2 and 3 until the residual load pFEM is small enough. 5. By adding the SGBEM solution to the FEM one, the...the given traction on St , we have pFEM = p and pSGBEM = 0 and get pOrg = pFEM + pSGBEM = p on St (21) ii) for the given displacement on Su, the SGBEM
Siswanto, W. A.; Nagentrau, M.; Tobi, A. L. Mohd; Tamin, M. N.
2016-01-01
We compared the quasi-static and dynamic simulation responses on elastic-plastic deformation of advanced alloys using Finite element (FE) method with an explicit numerical algorithm. A geometrical model consisting of a cylinder-on-flat surface contact under a normal load and sliding motion was examined. Two aeroengine materials, Ti-6Al-4V and Super CMV (Cr-Mo-V) alloy, were employed in the FE analysis. The FE model was validated by comparative magnitudes of the FE-predicted maximum contact pressure variation along the contact half-width length with the theoretical Hertzian contact solution. Results show that the (compressive) displacement of the initial contact surface steadily increases for the quasi-static load case, but accumulates at an increasing rate to the maximum level for the dynamic loading. However, the relatively higher stiffness and yield strength of the Super CMV alloy resulted in limited deformation and low plastic strain when compared to the Ti-6Al-4V alloy. The accumulated equivalent plastic strain of the material point at the initial contact position was nearly a thousand times higher for the dynamic load case (for example, 6.592 for Ti-6Al-4V, 1.0 kN) when compared to the quasi-static loading (only 0.0072). During the loading step, the von Mises stress increased with a decreasing and increasing rate for the quasi-static and dynamic load case, respectively. A sudden increase in the stress magnitude to the respective peak value was registered due to the additional constraint to overcome the static friction of the mating surfaces during the sliding step
Siswanto, W. A.; Nagentrau, M.; Tobi, A. L. Mohd [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat (Malaysia); Tamin, M. N. [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru (Malaysia)
2016-11-15
We compared the quasi-static and dynamic simulation responses on elastic-plastic deformation of advanced alloys using Finite element (FE) method with an explicit numerical algorithm. A geometrical model consisting of a cylinder-on-flat surface contact under a normal load and sliding motion was examined. Two aeroengine materials, Ti-6Al-4V and Super CMV (Cr-Mo-V) alloy, were employed in the FE analysis. The FE model was validated by comparative magnitudes of the FE-predicted maximum contact pressure variation along the contact half-width length with the theoretical Hertzian contact solution. Results show that the (compressive) displacement of the initial contact surface steadily increases for the quasi-static load case, but accumulates at an increasing rate to the maximum level for the dynamic loading. However, the relatively higher stiffness and yield strength of the Super CMV alloy resulted in limited deformation and low plastic strain when compared to the Ti-6Al-4V alloy. The accumulated equivalent plastic strain of the material point at the initial contact position was nearly a thousand times higher for the dynamic load case (for example, 6.592 for Ti-6Al-4V, 1.0 kN) when compared to the quasi-static loading (only 0.0072). During the loading step, the von Mises stress increased with a decreasing and increasing rate for the quasi-static and dynamic load case, respectively. A sudden increase in the stress magnitude to the respective peak value was registered due to the additional constraint to overcome the static friction of the mating surfaces during the sliding step.
Investigation of contact line dynamics under a vapor bubble at boiling on the transparent heater
Surtaev, A. S.; Serdyukov, V. S.
2018-01-01
The paper presents the results of an experimental study of dynamics of vapor bubble growth and departure at pool boiling, obtained with the use of high-speed video recording and IR thermography. The study was carried out at saturated water boiling under the atmospheric pressure in the range of heat fluxes of 30-150 kW/m2. To visualize the process and determine the growth rates of the outer bubble diameter, microlayer region and dry spot area, transpa-rent thin film heater with the thickness of 1 μm deposited on sapphire substrate was used in the experiments, and video recording was performed from the bottom side of the heating surface. To study integral heat transfer as well as local non-stationary thermal characteristics, high-speed infrared thermography with a frequency of up to 1000 FPS was used. High-speed video recording showed that after formation of vapor bubble and microlayer region, dry spot appears in a short time (up to 1 ms) under the vapor bubble. Various stages of contact line boundary propagation were ob-served. It was shown that at the initial stage before the development of small-scale perturbations, the dry spot propaga-tion rate is constant. It was also showed that the bubble departure stage begins after complete evaporation of liquid in the microlayer region.
Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process
Eleiwi, Fadi
2016-02-01
This work proposes a mathematical dynamic model for the direct contact membrane distillation (DCMD) process. The model is based on a 2D Advection–Diffusion Equation (ADE), which describes the heat and mass transfer mechanisms that take place inside the DCMD module. The model studies the behavior of the process in the time varying and the steady state phases, contributing to understanding the process performance, especially when it is driven by intermittent energy supply, such as the solar energy. The model is experimentally validated in the steady state phase, where the permeate flux is measured for different feed inlet temperatures and the maximum absolute error recorded is 2.78 °C. Moreover, experimental validation includes the time variation phase, where the feed inlet temperature ranges from 30 °C to 75 °C with 0.1 °C increment every 2min. The validation marks relative error to be less than 5%, which leads to a strong correlation between the model predictions and the experiments.
Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process
Eleiwi, Fadi; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Francis, Lijo; Laleg-Kirati, Taous-Meriem
2016-01-01
This work proposes a mathematical dynamic model for the direct contact membrane distillation (DCMD) process. The model is based on a 2D Advection–Diffusion Equation (ADE), which describes the heat and mass transfer mechanisms that take place inside the DCMD module. The model studies the behavior of the process in the time varying and the steady state phases, contributing to understanding the process performance, especially when it is driven by intermittent energy supply, such as the solar energy. The model is experimentally validated in the steady state phase, where the permeate flux is measured for different feed inlet temperatures and the maximum absolute error recorded is 2.78 °C. Moreover, experimental validation includes the time variation phase, where the feed inlet temperature ranges from 30 °C to 75 °C with 0.1 °C increment every 2min. The validation marks relative error to be less than 5%, which leads to a strong correlation between the model predictions and the experiments.
von der Tann Matthias
2007-08-01
Full Text Available Abstract Background In the United Kingdom, specialist treatment and intervention services for doctors are underdeveloped. The MedNet programme, created in 1997 and funded by the London Deanery, aims to fill this gap by providing a self-referral, face-to-face, psychotherapeutic assessment service for doctors in London and South-East England. MedNet was designed to be a low-threshold service, targeting doctors without formal psychiatric problems. The aim of this study was to delineate the characteristics of doctors utilising the service, to describe their psychological morbidity, and to determine if early intervention is achieved. Methods A cross-sectional study including all consecutive self-referred doctors (n = 121, 50% male presenting in 2002–2004 was conducted. Measures included standardised and bespoke questionnaires both self-report and clinician completed. The multi-dimensional evaluation included: demographics, CORE (CORE-OM, CORE-Workplace and CORE-A an instrument designed to evaluate the psychological difficulties of patients referred to outpatient services, Brief Symptom Inventory to quantify caseness and formal psychiatric illness, and Maslach Burnout Inventory. Results The most prevalent presenting problems included depression, anxiety, interpersonal, self-esteem and work-related issues. However, only 9% of the cohort were identified as severely distressed psychiatrically using this measure. In approximately 50% of the sample, problems first presented in the preceding year. About 25% were on sick leave at the time of consultation, while 50% took little or no leave in the prior 12 months. A total of 42% were considered to be at some risk of suicide, with more than 25% considered to have a moderate to severe risk. There were no significant gender differences in type of morbidity, severity or days off sick. Conclusion Doctors displayed high levels of distress as reflected in the significant proportion of those who were at some risk of
Dynamics of relativistic point particles as a problem with constraints
Todorov, I.T.
1976-01-01
The relativistic n-particle dynamics is studied as a problem with constraints of the type (2phisub(i)=)msub(i)sup(2)-psub(i)sup(2)+PHIsub(i)=0, i=1,...,n, (C) where PHIsub(i) are Poincare invariant functions of the particles' coordinates, momenta and spin components; PHIsib(i) is assumed to vanish asymptotically when the i-th particle coordinates tend to infinity. In the two particle case it is assumed in addition that the Poisson bracket [phi 1 , phi 2 ] vanishes on the surface (C). That allows us to give a formulation of the theory, invariant with respect to the choice of the time-parameter on each trajectory. The quantization of the relative two-particle motion is also discussed. It is pointed out that the stationary Schrodinger equation obtained in this manner is a local quasipotential equation
Relativized problems with abelian phase group in topological dynamics.
McMahon, D
1976-04-01
Let (X, T) be the equicontinuous minimal transformation group with X = pi(infinity)Z(2), the Cantor group, and S = [unk](infinity)Z(2) endowed with the discrete topology acting on X by right multiplication. For any countable group T we construct a function F:X x S --> T such that if (Y, T) is a minimal transformation group, then (X x Y, S) is a minimal transformation group with the action defined by (x, y)s = [xs, yF(x, s)]. If (W, T) is a minimal transformation group and varphi:(Y, T) --> (W, T) is a homomorphism, then identity x varphi:(X x Y, S) --> (X x W, S) is a homomorphism and has many of the same properties that varphi has. For this reason, one may assume that the phase group is abelian (or S) without loss of generality for many relativized problems in topological dynamics.
Grus Franz-H
2004-03-01
Full Text Available Abstract Background The new Ocular Dynamic Contour Tonometer (DCT, investigational device supplied by SMT (Swiss Microtechnology AG, Switzerland allows simultaneous recording of intraocular pressure (IOP and ocular pulse amplitude (OPA. It was the aim of this study to compare the IOP results of this new device with Goldmann tonometry. Furthermore, IOP and OPA measured with the new slitlamp-mounted DCT were compared to the IOP and OPA measured with the hand-held SmartLens®, a gonioscopic contact lens tonometer (ODC Ophthalmic Development Company AG, Switzerland. Methods Nineteen healthy subjects were included in this study. IOP was determined by three consecutive measurements with each of the DCT, SmartLens®, and Goldmann tonometer. Furthermore, OPA was measured three times consecutively by DCT and SmartLens®. Results No difference (P = 0.09 was found between the IOP values by means of DCT (mean: 16.6 mm Hg, median: 15.33 mm Hg, SD: +/- 4.04 mm Hg and Goldmann tonometry (mean: 16.17 mm Hg, median: 15.33 mm Hg, SD: +/- 4.03 mm Hg. The IOP values of SmartLens® (mean: 20.25 mm Hg, median: 19.00 mm Hg, SD: +/- 4.96 mm Hg were significantly higher (P = 0.0008 both from Goldmann tonometry and DCT. The OPA values of the DCT (mean: 3.08 mm Hg, SD: +/- 0.92 mm Hg were significantly lower (P = 0.0003 than those obtained by SmartLens® (mean: 3.92 mm Hg, SD: +/- 0.83 mm Hg. Conclusions DCT was equivalent to Goldmann applanation tonometry in measurement of IOP in a small group of normal subjects. In contrast, SmartLens® (contact lens tonometry gave IOP readings that were significantly higher compared with Goldmann applanation tonometer readings. Both devices, DCT and SmartLens® provide the measurement of OPA which could be helpful e.g. for the management of glaucoma.
Group theoretic reduction of Laplacian dynamical problems on fractal lattices
Schwalm, W.A.; Schwalm, M.K.; Giona, M.
1997-01-01
Discrete forms of the Schroedinger equation, the diffusion equation, the linearized Landau-Ginzburg equation, and discrete models for vibrations and spin dynamics belong to a class of Laplacian-based finite difference models. Real-space renormalization of such models on finitely ramified regular fractals is known to give exact recursion relations. It is shown that these recursions commute with Lie groups representing continuous symmetries of the discrete models. Each such symmetry reduces the order of the renormalization recursions by one, resulting in a system of recursions with one fewer variable. Group trajectories are obtained from inverse images of fixed and invariant sets of the recursions. A subset of the Laplacian finite difference models can be mapped by change of boundary conditions and time dependence to a diffusion problem with closed boundaries. In such cases conservation of mass simplifies the group flow and obtaining the groups becomes easier. To illustrate this, the renormalization recursions for Green functions on four standard examples are decoupled. The examples are (1) the linear chain, (2) an anisotropic version of Dhar close-quote s 3-simplex, similar to a model dealt with by Hood and Southern, (3) the fourfold coordinated Sierpiacute nski lattice of Rammal and of Domany et al., and (4) a form of the Vicsek lattice. Prospects for applying the group theoretic method to more general dynamical systems are discussed. copyright 1997 The American Physical Society
Progress and problems in modelling HTR core dynamics
Scherer, W.; Gerwin, H.
1991-01-01
In recent years greater effort has been made to establish theoretical models for HTR core dynamics. At KFA Juelich the TINTE (TIme dependent Neutronics and TEmperatures) code system has been developed, which is able to model the primary circuit of an HTR plant using modern numerical techniques and taking into account the mutual interference of the relevant physical variables. The HTR core is treated in 2-D R-Z geometry for both nucleonics and thermo-fluid-dynamics. 2-energy-group diffusion theory is used in the nuclear part including 6 groups of delayed neutron precursors and 14 groups of decay heat producers. Local and non-local heat sources are incorporated, thus simulating gamma ray transport. The thermo-fluid-dynamics module accounts for heterogeneity effects due to the pebble bed structure. Pipes and other components of the primary loop are modelled in 1-D geometry. Forced convection may be treated as well as natural convection in case of blower breakdown accidents. Validation of TINTE has started using the results of a comprehensive experimental program that has been performed at the Arbeitsgemeinschaft Versuchsreaktor GmbH (AVR) high temperature pebble bed reactor at Juelich. In the frame of this program power transients were initiated by varying the helium blower rotational speed or by moving the control rods. In most cases a good accordance between experiment and calculation was found. Problems in modelling the special AVR reactor geometry in two dimensions are described and suggestions for overcoming the uncertainties of experimentally determined control rod reactivities are given. The influence of different polynomial expansions of xenon cross sections to long term transients is discussed together with effects of burnup during that time. Up to now the TINTE code has proven its general applicability to operational core transients of HTR. The effects of water ingress on reactivity, fuel element corrosion and cooling gas properties are now being
Substructure method in high-speed monorail dynamic problems
Ivanchenko, I. I.
2008-12-01
The study of actions of high-speed moving loads on bridges and elevated tracks remains a topical problem for transport. In the present study, we propose a new method for moving load analysis of elevated tracks (monorail structures or bridges), which permits studying the interaction between two strained objects consisting of rod systems and rigid bodies with viscoelastic links; one of these objects is the moving load (monorail rolling stock), and the other is the carrying structure (monorail elevated track or bridge). The methods for moving load analysis of structures were developed in numerous papers [1-15]. At the first stage, when solving the problem about a beam under the action of the simplest moving load such as a moving weight, two fundamental methods can be used; the same methods are realized for other structures and loads. The first method is based on the use of a generalized coordinate in the expansion of the deflection in the natural shapes of the beam, and the problem is reduced to solving a system of ordinary differential equations with variable coefficients [1-3]. In the second method, after the "beam-weight" system is decomposed, just as in the problem with the weight impact on the beam [4], solving the problem is reduced to solving an integral equation for the dynamic weight reaction [6, 7]. In [1-3], an increase in the number of retained forms leads to an increase in the order of the system of equations; in [6, 7], difficulties arise when solving the integral equations related to the conditional stability of the step procedures. The method proposed in [9, 14] for beams and rod systems combines the above approaches and eliminates their drawbacks, because it permits retaining any necessary number of shapes in the deflection expansion and has a resolving system of equations with an unconditionally stable integration scheme and with a minimum number of unknowns, just as in the method of integral equations [6, 7]. This method is further developed for
Kim, Gi-Woo; Kim, Ji-Sik
2014-01-01
This paper presents the result of a preliminary experimental study on the dynamic torsional response analysis of mechanoluminescent (ML) paint for potential development as a new type of non-contacting torque transducer. The torsional torque applied to a transmission shaft is measured by sensing the ML intensity emitting from an ML paint coating a transmission shaft. This study provides the fundamental knowledge for the development of new non-contacting torque sensing technology based on the ML intensity detection. The proposed measurement principle appears to offer potential applications in automotive torque measurement systems, even though the loading rate-dependent characteristics of the ML intensity needs to be examined further. (paper)
Kim, Gi-Woo; Kim, Ji-Sik
2014-01-01
This paper presents the result of a preliminary experimental study on the dynamic torsional response analysis of mechanoluminescent (ML) paint for potential development as a new type of non-contacting torque transducer. The torsional torque applied to a transmission shaft is measured by sensing the ML intensity emitting from an ML paint coating a transmission shaft. This study provides the fundamental knowledge for the development of new non-contacting torque sensing technology based on the ML intensity detection. The proposed measurement principle appears to offer potential applications in automotive torque measurement systems, even though the loading rate-dependent characteristics of the ML intensity needs to be examined further.
Li, S.; Li, Z.; Nunez Vicencio, Alfredo; Dollevoet, R.P.B.J.
2017-01-01
A three-dimensional (3D) finite element (FE) dynamic frictional rolling contact model is presented for the study of short pitch corrugation that considers direct and instantaneous coupling between the contact mechanics and the structural dynamics in a vehicle-track system. In this study, we examine
Karam, Ayman M.
2016-12-01
Membrane Distillation (MD) is an emerging sustainable desalination technique. While MD has many advantages and can be powered by solar thermal energy, its main drawback is the low water production rate. However, the MD process has not been fully optimized in terms of its manipulated and controlled variables. This is largely due to the lack of adequate dynamic models to study and simulate the process. In addition, MD is prone to membrane fouling, which is a fault that degrades the performance of the MD process. This work has three contributions to address these challenges. First, we derive a mathematical model of Direct Contact Membrane Distillation (DCMD), which is the building block for the next parts. Then, the proposed model is extended to account for membrane fouling and an observer-based fouling detection method is developed. Finally, various control strategies are implemented to optimize the performance of the DCMD solar-powered process. In part one, a reduced-order dynamic model of DCMD is developed based on lumped capacitance method and electrical analogy to thermal systems. The result is an electrical equivalent thermal network to the DCMD process, which is modeled by a system of nonlinear differential algebraic equations (DAEs). This model predicts the water-vapor flux and the temperature distribution along the module length. Experimental data is collected to validate the steady-state and dynamic responses of the proposed model, with great agreement demonstrated in both. The second part proposes an extension of the model to account for membrane fouling. An adaptive observer for DAE systems is developed and convergence proof is presented. A method for membrane fouling detection is then proposed based on adaptive observers. Simulation results demonstrate the performance of the membrane fouling detection method. Finally, an optimization problem is formulated to maximize the process efficiency of a solar-powered DCMD. The adapted method is known as Extremum
3D adaptive finite element method for a phase field model for the moving contact line problems
Shi, Yi
2013-08-01
In this paper, we propose an adaptive finite element method for simulating the moving contact line problems in three dimensions. The model that we used is the coupled Cahn-Hilliard Navier-Stokes equations with the generalized Navier boundary condition(GNBC) proposed in [18]. In our algorithm, to improve the efficiency of the simulation, we use the residual type adaptive finite element algorithm. It is well known that the phase variable decays much faster away from the interface than the velocity variables. There- fore we use an adaptive strategy that will take into account of such difference. Numerical experiments show that our algorithm is both efficient and reliable. © 2013 American Institute of Mathematical Sciences.
Johansen, J D; Andersen, T F; Veien, N
1997-01-01
The aim of the present study was to investigate the relationship between patients' own recognition of skin problems using consumer products and the results of patch testing with markers of fragrance sensitization. Eight hundred and eighty-four consecutive eczema patients, 18-69 years of age, filled...... in a questionnaire prior to patch testing with the European standard series. The questionnaire contained questions about skin symptoms from the use of scented and unscented products as well as skin reactions from contact with spices, flowers and citrus fruits that could indicate fragrance sensitivity. A highly...... significant association was found between reporting a history of visible skin symptoms from using scented products and a positive patch test to the fragrance mix, whereas no such relationship could be established to the Peru balsam in univariate or multivariate analysis. Our results suggest that the role...
Toofanny, Rudesh D; Simms, Andrew M; Beck, David A C; Daggett, Valerie
2011-08-10
Molecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function. The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the work required grows exponentially with the size of the simulation system. We describe the implementation of a spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as the basis for testing compression of data tables. We investigate the effects of compression of the trajectory coordinate tables with different options of data and index compression within MS SQL SERVER 2008. Our implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns) simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster). For a 'full' simulation trajectory (51 ns) spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster). Compression resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour discovery. The greatest compression (~36%) was achieved using page level compression on both the data and indexes. The spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and could be applied to other multidimensional neighbor discovery problems. The speed up enables on-the-fly calculation
Toofanny Rudesh D
2011-08-01
Full Text Available Abstract Background Molecular dynamics (MD simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function. The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the work required grows exponentially with the size of the simulation system. We describe the implementation of a spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as the basis for testing compression of data tables. We investigate the effects of compression of the trajectory coordinate tables with different options of data and index compression within MS SQL SERVER 2008. Results Our implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster. For a 'full' simulation trajectory (51 ns spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster. Compression resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour discovery. The greatest compression (~36% was achieved using page level compression on both the data and indexes. Conclusions The spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and could be applied to other multidimensional neighbor discovery
Some problems of dynamical systems on three dimensional manifolds
Dong Zhenxie.
1985-08-01
It is important to study the dynamical systems on 3-dimensional manifolds, its importance is showing up in its close relation with our life. Because of the complication of topological structure of Dynamical systems on 3-dimensional manifolds, generally speaking, the search for 3-dynamical systems is not easier than 2-dynamical systems. This paper is a summary of the partial result of dynamical systems on 3-dimensional manifolds. (author)
Wu, Shaogui
2017-06-01
Two magnesium ions play important roles in nucleotide addition cycle (NAC) of gene transcription. However, at the end of each NAC, why does one ion stay in the active site while the other ion leaves with product pyrophosphate (PP i )? This problem still remains obscure. In this work, we studied the problem using all-atom molecular dynamics simulation combined with steered molecular dynamics and umbrella sampling simulation methods. Our simulations reveal that although both ions are located in the active site after chemistry, their detailed positions are not symmetrical, leading to their different forces from surrounding groups. One ion makes weaker contacts with PP i than the whole protein. Hence, PP i release is less likely to take it away. The other one forms tighter contacts with PP i relative to the protein. The formed (Mg 2+ -PP i ) 2- complex is found to break the contacts with surrounding protein residues one by one so as to dissociate from the active site. This effectively avoids the coexistence of two ions in the active site after PP i release and guarantees a reasonable Mg 2+ ion number in the active site for the next NAC. The observations from this work can provide valuable information for comprehensively understanding the molecular mechanism of transcription. Proteins 2017; 85:1002-1007. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.
Ramos, S M M; Dias, J F; Canut, B
2015-02-15
In the present study, we experimentally study the evaporation modes and kinetics of sessile drops of water on highly hydrophobic surfaces (contact angle ∼160°), heated to temperatures ranging between 40° and 70 °C. These surfaces were initially constructed by means of controlled tailoring of polytetrafluoroethylene (PTFE) substrates. The evaporation of droplets was observed to occur in three distinct phases, which were the same for the different substrate temperatures. The drops started to evaporate in the constant contact radius (CCR) mode, then switched to a more complex mode characterized by a set of stick-slip events accompanied by a decrease in contact angle, and finally shifted to a mixed mode in which the contact radius and contact angle decreased simultaneously until the drops had completely evaporated. It is shown that in the case of superhydrophobic surfaces, the energy barriers (per unit length) associated with the stick-slip motion of a drop ranges in the nJ m(-1) scale. Furthermore, analysis of the evaporation rates, determined from experimental data show that, even in the CCR mode, a linear relationship between V(2/3) and the evaporation time is verified. The values of the evaporation rate constants are found to be higher in the pinned contact line regime (the CCR mode) than in the moving contact line regime. This behavior is attributed to the drop's higher surface to volume ratio in the CCR mode. Copyright © 2014 Elsevier Inc. All rights reserved.
Andersen, Nis Korsgaard; Taboryski, Rafael J.
2017-01-01
Contact angle measurements are a fast and simple way to measure surface properties and is therefore widely used to measure surface energy and quantify wetting of a solid surface by a liquid substance. In common praxis contact angle measurements are done with sessile drops on a horizontal surface...... fitted to a drop profile derived from the Young-Laplace equation. When measuring the wetting behaviour by tilting experiments this is not possible since it involves moving drops that are not in equilibrium. Here we present a fitting technique capable of determining the contact angle of asymmetric drops...
Gao, Min
2014-09-01
In this paper, we develop an efficient numerical method for the two phase moving contact line problem with variable density, viscosity, and slip length. The physical model is based on a phase field approach, which consists of a coupled system of the Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition [1,2,5]. To overcome the difficulties due to large density and viscosity ratio, the Navier-Stokes equations are solved by a splitting method based on a pressure Poisson equation [11], while the Cahn-Hilliard equation is solved by a convex splitting method. We show that the method is stable under certain conditions. The linearized schemes are easy to implement and introduce only mild CFL time constraint. Numerical tests are carried out to verify the accuracy, stability and efficiency of the schemes. The method allows us to simulate the interface problems with extremely small interface thickness. Three dimensional simulations are included to validate the efficiency of the method. © 2014 Elsevier Inc.
Gao, Min; Wang, Xiao-Ping
2014-01-01
In this paper, we develop an efficient numerical method for the two phase moving contact line problem with variable density, viscosity, and slip length. The physical model is based on a phase field approach, which consists of a coupled system of the Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition [1,2,5]. To overcome the difficulties due to large density and viscosity ratio, the Navier-Stokes equations are solved by a splitting method based on a pressure Poisson equation [11], while the Cahn-Hilliard equation is solved by a convex splitting method. We show that the method is stable under certain conditions. The linearized schemes are easy to implement and introduce only mild CFL time constraint. Numerical tests are carried out to verify the accuracy, stability and efficiency of the schemes. The method allows us to simulate the interface problems with extremely small interface thickness. Three dimensional simulations are included to validate the efficiency of the method. © 2014 Elsevier Inc.
Su Hua
2018-01-01
Full Text Available Finger seal is an advanced compliant seal and can be utilized to separate high (HP and low pressure (LP zones in high speed rotating shaft environment. The work to be presented concerns the dynamic behavior of a repetitive section of a two-layer finger seal with high-and padded low-pressure laminates. The dynamic performance of the finger seal are analyzed by the coupled fluid-solid-interaction (FSI simulations. By using the commercial software ANSYS-CFX, the numerical simulation results of interactions between the gas flow and fingers structural deformation are described when the radial periodic excitation from the shaft applies to the finger seal. And the gas film loading capacity, gas film stiffness and leakage varied with time are put forward in different working conditions. Compared with the dynamic performance analysis results based on equivalent dynamic method, the FSI dynamic analysis shows some different characteristics which are more accordance with actual circumstance. Moreover, it is shown that under low pressure differential and high rotation speed the non-contacting finger seal with advance features both in sealing effectiveness and potential unlimited life span can be obtained by rational structure design. But for the non-contacting finger seal with circumferential convergent pad working in high pressure and low rotating speed conditions, it is difficult to improve the sealing performance by the way of changing the structure parameters of finger seal. It is because the high pressure plays a major role on this sealing situation.
Effect of particle stiffness on contact dynamics and rheology in a dense granular flow
Bharathraj, S.; Kumaran, V.
2018-01-01
Dense granular flows have been well described by the Bagnold rheology, even when the particles are in the multibody contact regime and the coordination number is greater than 1. This is surprising, because the Bagnold law should be applicable only in the instantaneous collision regime, where the time between collisions is much larger than the period of a collision. Here, the effect of particle stiffness on rheology is examined. It is found that there is a rheological threshold between a particle stiffness of 104-105 for the linear contact model and 105-106 for the Hertzian contact model above which Bagnold rheology (stress proportional to square of the strain rate) is valid and below which there is a power-law rheology, where all components of the stress and the granular temperature are proportional to a power of the strain rate that is less then 2. The system is in the multibody contact regime at the rheological threshold. However, the contact energy per particle is less than the kinetic energy per particle above the rheological threshold, and it becomes larger than the kinetic energy per particle below the rheological threshold. The distribution functions for the interparticle forces and contact energies are also analyzed. The distribution functions are invariant with height, but they do depend on the contact model. The contact energy distribution functions are well fitted by Gamma distributions. There is a transition in the shape of the distribution function as the particle stiffness is decreased from 107 to 106 for the linear model and 108 to 107 for the Hertzian model, when the contact number exceeds 1. Thus, the transition in the distribution function correlates to the contact regime threshold from the binary to multibody contact regime, and is clearly different from the rheological threshold. An order-disorder transition has recently been reported in dense granular flows. The Bagnold rheology applies for both the ordered and disordered states, even though
Shimizu Tetsuhide
2015-01-01
Full Text Available Application of diamond like carbon (DLC films are reported in several microforming processes, in view of its great tribological performance owe to the low friction and the high chemical stability. However, due to its high internal residual stress, the film properties with the low adhesion strength and the high wear rate under severe tribological conditions are still remain as technical issues. However, since the dynamic variation of the contact state cannot be observed during the forming operation, it is difficult to recognize the origin and the influential tribological factors of tool life for DLC coated microforming die. Therefore, the appropriate DLC film properties for the contact state in microforming operation have not been clarified. To observe the dynamic variation of the contact state during the microforming operation, present study developed a novel microforming die assembly installed the in-situ observation system with silica glass die and high speed recording camera. By using this system, the dynamic delamination behaviour of DLC films during the progressive micro-bending process was successfully demonstrated. The influential factors for the durability of DLC coated microdies were discussed.
The nonlinear dynamics of the classical few body problem
Tabor, M.
1981-01-01
The complicated behavior that small dynamical systems can display is reviewed and its relevance to such diverse fields as celestial mechanics, semi-classical mechanics and fluid dynamics is discussed. (orig.)
Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation
Greeff, M
2008-06-01
Full Text Available Many optimisation problems are multi-objective and change dynamically. Many methods use a weighted average approach to the multiple objectives. This paper introduces the usage of the vector evaluated particle swarm optimiser (VEPSO) to solve dynamic...
Stepanov, F. I.
2018-04-01
The mechanical properties of a material which is modeled by an exponential creep kernel characterized by a spectrum of relaxation and retardation times are studied. The research is carried out considering a contact problem for a solid indenter sliding over a viscoelastic half-space. The contact pressure, indentation depth of the indenter, and the deformation component of the friction coefficient are analyzed with respect to the case of half-space material modeled by single relaxation and retardation times.
A 'conveyor belt' model for the dynamic contact angle
Volpe C, Della; Siboni, S, E-mail: stefano.siboni@ing.unitn.it [Department of Materials Engineering and Industrial Technologies, University of Trento, Mesiano di Povo 38050 Povo, Trento (Italy)
2011-07-15
The familiar Young contact angle measurement of a liquid at equilibrium on a solid is a fundamental aspect of capillary phenomena. But in the real world it is not so easy to observe it. This is due to the roughness and/or heterogeneity of real surfaces, which typically are not perfectly planar and chemically homogeneous. What can be easily detected, and in a repeatable way, are advancing and receding contact angles. In this paper, we discuss a simple model which accounts for the onset of advancing and receding contact angles measured by the Wilhelmy microbalance, one of the most powerful techniques for contact angle measurements. The model also explains the experimental observation that advancing and receding contact angles become closer to each other when the system is gently 'shaken', by supplying mechanical energy in an appropriate way. The model may be pedagogically useful in introducing students and teachers to aspects of capillary phenomena which are not usually discussed in basic physics courses.
In Vivo Patellar Tracking and Patellofemoral Cartilage Contacts during Dynamic Stair Ascending
Suzuki, Takashi; Hosseini, Ali; Li, Jing-Sheng; Gill, Thomas J; Li, Guoan
2012-01-01
The knowledge of normal patellar tracking is essential for understanding of the knee joint function and for diagnosis of patellar instabilities. This paper investigated the patellar tracking and patellofemoral joint contact locations during a stair ascending activity using a validated dual-fluoroscopic imaging system. The results showed that the patellar flexion angle decreased from 41.9° to 7.5° with the knee extension during stair ascending. During first 80% of the activity, the patella shifted medially about 3.9 mm and then slightly shifted laterally during the last 20% of the ascending activity. Anterior translation of 13 mm of the patella was measured at the early 80% of the activity and then slightly moved posteriorly by about 2 mm at the last 20% of the activity. The path of the cartilage contact points was slightly lateral on the cartilage surfaces of patella and femur. On the patellar cartilage surface, the cartilage contact locations were about 2 mm laterally from heel strike to 60% of the stair ascending activity and moved laterally and reached 5.3 mm at full extension. However, the cartilage contact locations were relatively constant on the femoral cartilage surface (~5 mm lateral). The patellar tracking pattern was consistent with the patellofemoral cartilage contact location pattern. These data could provide baseline knowledge for understanding of normal physiology of the patellofemoral joint and can be used as a reference for clinical evaluation of patellofemoral disorder symptoms. PMID:22840488
Liu, Binbin; Bruni, Stefano; Vollebregt, Edwin
2016-09-01
A novel approach is proposed in this paper to deal with non-Hertzian normal contact in wheel-rail interface, extending the widely used Kik-Piotrowski method. The new approach is able to consider the effect of the yaw angle of the wheelset against the rail on the shape of the contact patch and on pressure distribution. Furthermore, the method considers the variation of profile curvature across the contact patch, enhancing the correspondence to CONTACT for highly non-Hertzian contact conditions. The simulation results show that the proposed method can provide more accurate estimation than the original algorithm compared to Kalker's CONTACT, and that the influence of yaw on the contact results is significant under certain circumstances.
Granular dynamics, contact mechanics and particle system simulations a DEM study
Thornton, Colin
2015-01-01
This book is devoted to the Discrete Element Method (DEM) technique, a discontinuum modelling approach that takes into account the fact that granular materials are composed of discrete particles which interact with each other at the microscale level. This numerical simulation technique can be used both for dispersed systems in which the particle-particle interactions are collisional and compact systems of particles with multiple enduring contacts. The book provides an extensive and detailed explanation of the theoretical background of DEM. Contact mechanics theories for elastic, elastic-plastic, adhesive elastic and adhesive elastic-plastic particle-particle interactions are presented. Other contact force models are also discussed, including corrections to some of these models as described in the literature, and important areas of further research are identified. A key issue in DEM simulations is whether or not a code can reliably simulate the simplest of systems, namely the single particle oblique impact wit...
Contralateral limb during total contact casting. A dynamic pressure and thermometric analysis.
Armstrong, D G; Liswood, P J; Todd, W F
1995-12-01
The authors draw attention to the importance of evaluation of the contralateral limb when treating unilateral sequelae secondary to distal symmetrical polyneuropathy. Plantar pressure measurements of the contralateral limb during total contact casting are reviewed. The results of thermometric evaluation before and after initiation of repetitive stress were reviewed. The results suggest that the patient walking in a total contact cast may experience a reduced focal pressure on the contralateral limb when compared with uncasted walking and three-point walking with crutches. Dermal thermometry may be a highly sensitive tool in evaluating even mild increases in repetitive stress. To explain this decrease in contralateral stress, the authors examine the features inherent to the total contact cast and propose the concept of proprioceptive stability.
Static and dynamic optimization of CAPE problems using a Model Testbed
This paper presents a new computer aided tool for setting up and solving CAPE related static and dynamic optimisation problems. The Model Testbed (MOT) offers an integrated environment for setting up and solving a very large range of CAPE problems, including complex optimisation problems...... and dynamic optimisation, and how interfacing of solvers and seamless information flow can lead to more efficient solution of process design problems....
Abdel-Azeim, Safwat
2014-05-06
Background: Molecular Dynamics ( MD) simulations of protein complexes suffer from the lack of specific tools in the analysis step. Analyses of MD trajectories of protein complexes indeed generally rely on classical measures, such as the RMSD, RMSF and gyration radius, conceived and developed for single macromolecules. As a matter of fact, instead, researchers engaged in simulating the dynamics of a protein complex are mainly interested in characterizing the conservation/variation of its biological interface. Results: On these bases, herein we propose a novel approach to the analysis of MD trajectories or other conformational ensembles of protein complexes, MDcons, which uses the conservation of inter-residue contacts at the interface as a measure of the similarity between different snapshots. A "consensus contact map" is also provided, where the conservation of the different contacts is drawn in a grey scale. Finally, the interface area of the complex is monitored during the simulations. To show its utility, we used this novel approach to study two protein-protein complexes with interfaces of comparable size and both dominated by hydrophilic interactions, but having binding affinities at the extremes of the experimental range. MDcons is demonstrated to be extremely useful to analyse the MD trajectories of the investigated complexes, adding important insight into the dynamic behavior of their biological interface. Conclusions: MDcons specifically allows the user to highlight and characterize the dynamics of the interface in protein complexes and can thus be used as a complementary tool for the analysis of MD simulations of both experimental and predicted structures of protein complexes.
Malgarinos, Ilias; Nikolopoulos, Nikolaos; Marengo, Marco; Antonini, Carlo; Gavaises, Manolis
2014-10-01
In this study,a novel numerical implementation for the adhesion of liquid droplets impacting normally on solid dry surfaces is presented. The advantage of this new approach, compared to the majority of existing models, is that the dynamic contact angle forming during the surface wetting process is not inserted as a boundary condition, but is derived implicitly by the induced fluid flow characteristics (interface shape) and the adhesion physics of the gas-liquid-surface interface (triple line), starting only from the advancing and receding equilibrium contact angles. These angles are required in order to define the wetting properties of liquid phases when interacting with a solid surface. The physical model is implemented as a source term in the momentum equation of a Navier-Stokes CFD flow solver as an "adhesion-like" force which acts at the triple-phase contact line as a result of capillary interactions between the liquid drop and the solid substrate. The numerical simulations capture the liquid-air interface movement by considering the volume of fluid (VOF) method and utilizing an automatic local grid refinement technique in order to increase the accuracy of the predictions at the area of interest, and simultaneously minimize numerical diffusion of the interface. The proposed model is validated against previously reported experimental data of normal impingement of water droplets on dry surfaces at room temperature. A wide range of impact velocities, i.e. Weber numbers from as low as 0.2 up to 117, both for hydrophilic (θadv=10°-70°) and hydrophobic (θadv=105°-120°) surfaces, has been examined. Predictions include in addition to droplet spreading dynamics, the estimation of the dynamic contact angle; the latter is found in reasonable agreement against available experimental measurements. It is thus concluded that theimplementation of this model is an effective approach for overcoming the need of a pre-defined dynamic contact angle law, frequently adopted as
Rusu-Anghel, S.; Ene, A.
2017-05-01
The quality of electric energy capture and also the equipment operational safety depend essentially of the technical state of the contact line (CL). The present method for determining the technical state of CL based on advance programming is no longer efficient, due to the faults which can occur into the not programmed areas. Therefore, they cannot be remediated. It is expected another management method for the repairing and maintenance of CL based on its real state which must be very well known. In this paper a new method for determining the faults in CL is described. It is based on the analysis of the variation of pantograph-CL contact force in dynamical regime. Using mathematical modelling and also experimental tests, it was established that each type of fault is able to generate ‘signatures’ into the contact force diagram. The identification of these signatures can be accomplished by an informatics system which will provide the fault location, its type and also in the future, the probable evolution of the CL technical state. The measuring of the contact force is realized in optical manner using a railway inspection trolley which has appropriate equipment. The analysis of the desired parameters can be accomplished in real time by a data acquisition system, based on dedicated software.
Yoshida, H; Faust, A; Wilckens, J; Kitagawa, M; Fetto, J; Chao, Edmund Y-S
2006-01-01
Estimation of the hip joint contact area and pressure distribution during activities of daily living is important in predicting joint degeneration mechanism, prosthetic implant wear, providing biomechanical rationales for preoperative planning and postoperative rehabilitation. These biomechanical data were estimated utilizing a generic hip model, the Discrete Element Analysis technique, and the in vivo hip joint contact force data. The three-dimensional joint potential contact area was obtained from the anteroposterior radiograph of a subject and the actual joint contact area and pressure distribution in eight activities of daily living were calculated. During fast, normal, and slow walking, the peak pressure of moderate magnitude was located at the lateral roof of the acetabulum during mid-stance. In standing up and sitting down, and during knee bending, the peak pressures were located at the edge of the posterior horn and the magnitude of the peak pressure during sitting down was 2.8 times that of normal walking. The peak pressure was found at the lateral roof in climbing up stairs which was higher than that in going down stairs. These results can be used to rationalize rehabilitation protocols, functional restrictions after complex acetabular reconstructions, and prosthetic component wear and fatigue test set up. The same model and analysis can provide further insight to soft tissue loading and pathology such as labral injury. When the pressure distribution on the acetabulum is inverted onto the femoral head, prediction of subchondral bone collapse associated with avascular necrosis can be achieved with improved accuracy.
Contact in an Expanding Universe: An Instructive Exercise in Dynamic Geometry
Zimmerman, Seth
2010-01-01
The particular problem solved in this paper is that of calculating the time required to overtake a distant object receding under cosmic expansion, and the speed at which that object is passed. This is a rarely investigated problem leading to some interesting apparent paradoxes. We employ the problem to promote a deeper understanding of the dynamic…
Local Dynamic Reactive Power for Correction of System Voltage Problems
Kueck, John D [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Xu, Yan [ORNL; Li, Huijuan [University of Tennessee, Knoxville (UTK); Adhikari, Sarina [ORNL; Irminger, Philip [ORNL
2008-12-01
Distribution systems are experiencing outages due to a phenomenon known as local voltage collapse. Local voltage collapse is occurring in part because modern air conditioner compressor motors are much more susceptible to stalling during a voltage dip than older motors. These motors can stall in less than 3 cycles (.05s) when a fault, such as on the sub-transmission system, causes voltage to sag to 70 to 60%. The reasons for this susceptibility are discussed in the report. During the local voltage collapse, voltages are depressed for a period of perhaps one or two minutes. There is a concern that these local events are interacting together over larger areas and may present a challenge to system reliability. An effective method of preventing local voltage collapse is the use of voltage regulation from Distributed Energy Resources (DER) that can supply or absorb reactive power. DER, when properly controlled, can provide a rapid correction to voltage dips and prevent motor stall. This report discusses the phenomenon and causes of local voltage collapse as well as the control methodology we have developed to counter voltage sag. The problem is growing because of the use of low inertia, high efficiency air conditioner (A/C) compressor motors and because the use of electric A/C is growing in use and becoming a larger percentage of system load. A method for local dynamic voltage regulation is discussed which uses reactive power injection or absorption from local DER. This method is independent, rapid, and will not interfere with conventional utility system voltage control. The results of simulations of this method are provided. The method has also been tested at the ORNL s Distributed Energy Communications and Control (DECC) Laboratory using our research inverter and synchronous condenser. These systems at the DECC Lab are interconnected to an actual distribution system, the ORNL distribution system, which is fed from TVA s 161kV sub-transmission backbone. The test results
Contact forces between a particle and a wet wall at both quasi-static and dynamic state
Zhang Huang
2017-01-01
Full Text Available The contact regime of particle-wall is investigated by the atomic force microscope (AFM and theoretical models. First, AFM is used to measure the cohesive force between a micron-sized grain and a glass plate at quasi-static state under various humidity. It is found out that the cohesive force starts to grow slowly and suddenly increase rapidly beyond a critical Relative Humidity (RH. Second, mathematical models of contacting forces are presented to depict the dynamic process that a particle impacts on a wet wall. Then the energy loss of a falling grain is calculated in comparison with the models and the experimental data from the previous references. The simulation results show that the force models presented here are adaptive for both low and high viscosity fluid films with different thickness.
Puntani Pongsumpun
2014-01-01
Full Text Available The respiratory disease caused by the Influenza A Virus is occurring worldwide. The transmission for new strain of the H1N1 Influenza A virus is studied by formulating a SEIQR (susceptible, exposed, infected, quarantine, and recovered model to describe its spread. In the present model, we have assumed that a fraction of the infected population will die from the disease. This changes the mathematical equations governing the transmission. The effect of repetitive contact is also included in the model. Analysis of the model by using standard dynamical modeling method is given. Conditions for the stability of equilibrium state are given. Numerical solutions are presented for different values of parameters. It is found that increasing the amount of repetitive contacts leads to a decrease in the peak numbers of exposed and infectious humans. A stability analysis shows that the solutions are robust.
Thomas-Claudepierre, Anne-Sophie; Robert, Isabelle; Rocha, Pedro P; Raviram, Ramya; Schiavo, Ebe; Heyer, Vincent; Bonneau, Richard; Luo, Vincent M; Reddy, Janardan K; Borggrefe, Tilman; Skok, Jane A; Reina-San-Martin, Bernardo
2016-03-07
Immunoglobulin (Ig) class switch recombination (CSR) is initiated by the transcription-coupled recruitment of activation-induced cytidine deaminase (AID) to Ig switch regions (S regions). During CSR, the IgH locus undergoes dynamic three-dimensional structural changes in which promoters, enhancers, and S regions are brought to close proximity. Nevertheless, little is known about the underlying mechanisms. In this study, we show that Med1 and Med12, two subunits of the mediator complex implicated in transcription initiation and long-range enhancer/promoter loop formation, are dynamically recruited to the IgH locus enhancers and the acceptor regions during CSR and that their knockdown in CH12 cells results in impaired CSR. Furthermore, we show that conditional inactivation of Med1 in B cells results in defective CSR and reduced acceptor S region transcription. Finally, we show that in B cells undergoing CSR, the dynamic long-range contacts between the IgH enhancers and the acceptor regions correlate with Med1 and Med12 binding and that they happen at a reduced frequency in Med1-deficient B cells. Our results implicate the mediator complex in the mechanism of CSR and are consistent with a model in which mediator facilitates the long-range contacts between S regions and the IgH locus enhancers during CSR and their transcriptional activation. © 2016 Thomas-Claudepierre et al.
Wismans, Luc Johannes Josephus; van Berkum, Eric C.; Bliemer, Michiel C.J.; Viti, F.; Immers, B.; Tampere, C.
2011-01-01
Multi objective optimization of externalities of traffic solving a network design problem in which Dynamic Traffic Management measures are used, is time consuming while heuristics are needed and solving the lower level requires solving the dynamic user equilibrium problem. Use of response surface
Investigating the Problem Solving Competency of Pre Service Teachers in Dynamic Geometry Environment
Haja, Shajahan
2005-01-01
This study investigated the problem-solving competency of four secondary pre service teachers (PSTs) of University of London as they explored geometry problems in dynamic geometry environment (DGE) in 2004. A constructivist experiment was designed in which dynamic software Cabri-Geometre II (hereafter Cabri) was used as an interactive medium.…
Dynamic Transition and Pattern Formation in Taylor Problem
Tian MA; Shouhong WANG
2010-01-01
The main objective of this article is to study both dynamic and structural transitions of the Taylor-Couette flow,by using the dynamic transition theory and geometric theory of incompressible flows developed recently by the authors.In particular,it is shown that as the Taylor number crosses the critical number,the system undergoes either a continuous or a jump dynamic transition,dictated by the sign of a computable,nondimensional parameter R.In addition,it is also shown that the new transition states have the Taylor vortex type of flow structure,which is structurally stable.
Huang, Ke-Jung; Huang, Chun-Kai; Lin, Pei-Chun
2014-01-01
We report on the development of a robot’s dynamic locomotion based on a template which fits the robot’s natural dynamics. The developed template is a low degree-of-freedom planar model for running with rolling contact, which we call rolling spring loaded inverted pendulum (R-SLIP). Originating from a reduced-order model of the RHex-style robot with compliant circular legs, the R-SLIP model also acts as the template for general dynamic running. The model has a torsional spring and a large circular arc as the distributed foot, so during locomotion it rolls on the ground with varied equivalent linear stiffness. This differs from the well-known spring loaded inverted pendulum (SLIP) model with fixed stiffness and ground contact points. Through dimensionless steps-to-fall and return map analysis, within a wide range of parameter spaces, the R-SLIP model is revealed to have self-stable gaits and a larger stability region than that of the SLIP model. The R-SLIP model is then embedded as the reduced-order ‘template’ in a more complex ‘anchor’, the RHex-style robot, via various mapping definitions between the template and the anchor. Experimental validation confirms that by merely deploying the stable running gaits of the R-SLIP model on the empirical robot with simple open-loop control strategy, the robot can easily initiate its dynamic running behaviors with a flight phase and can move with similar body state profiles to those of the model, in all five testing speeds. The robot, embedded with the SLIP model but performing walking locomotion, further confirms the importance of finding an adequate template of the robot for dynamic locomotion. (paper)
Dynamic nuclear polarization at high Landau levels in a quantum point contact
Fauzi, M. H.; Noorhidayati, A.; Sahdan, M. F.; Sato, K.; Nagase, K.; Hirayama, Y.
2018-05-01
We demonstrate a way to polarize and detect nuclear spin in a gate-defined quantum point contact operating at high Landau levels. Resistively detected nuclear magnetic resonance (RDNMR) can be achieved up to the fifth Landau level and at a magnetic field lower than 1 T. We are able to retain the RDNMR signals in a condition where the spin degeneracy of the first one-dimensional (1D) subband is still preserved. Furthermore, the effects of orbital motion on the first 1D subband can be made smaller than those due to electrostatic confinement. This developed RDNMR technique is a promising means to study electronic states in a quantum point contact near zero magnetic field.
Lahriri, Said
The contact between a rotor and its stator can in some cases be considered as a serious malfunction that may lead to catastrophic failure. This major threat arises normally from full annular dry friction backward whirl and whip motion where the rotor runs and rubs at a high frequency on the inner...... of the friction coefficient behavior.......The contact between a rotor and its stator can in some cases be considered as a serious malfunction that may lead to catastrophic failure. This major threat arises normally from full annular dry friction backward whirl and whip motion where the rotor runs and rubs at a high frequency on the inner...... surface of the stator, and thereby traversing the full extent of the clearance. Normal and friction forces are exerted on the rotor at each impact and rubs. These particular forces can sustain the rotor in a persistent backward dry whirl or whip motion. In that case, the friction force plays a significant...
Analysis of Ant Colony Optimization and Population-Based Evolutionary Algorithms on Dynamic Problems
Lissovoi, Andrei
the dynamic optimum for finite alphabets up to size μ, while MMAS is able to do so for any finite alphabet size. Parallel Evolutionary Algorithms on Maze. We prove that while a (1 + λ) EA is unable to track the optimum of the dynamic fitness function Maze for offspring population size up to λ = O(n1-ε......This thesis presents new running time analyses of nature-inspired algorithms on various dynamic problems. It aims to identify and analyse the features of algorithms and problem classes which allow efficient optimization to occur in the presence of dynamic behaviour. We consider the following...... settings: λ-MMAS on Dynamic Shortest Path Problems. We investigate how in-creasing the number of ants simulated per iteration may help an ACO algorithm to track optimum in a dynamic problem. It is shown that while a constant number of ants per-vertex is sufficient to track some oscillations, there also...
NONLINEAR DYNAMICS OF A ROTOR WITH CANTILEVERED DISK RESTING ON ANGULAR CONTACT BALL BEARINGS
S. Filipkovskyi
2016-06-01
Full Text Available The mathematical model of nonlinear oscillations of the rotor resting on angular contact ball bearings is developed. The disc is fixed on the console end of the shaft. The deflection of the shaft, and the elastic deformation of the bearings have the same order. Analysis of free oscillations is carried out, using nonlinear normal modes. The modes and backbone curves of rotor nonlinear oscillations are calculated. The system has soft characteristics.
Cao, Lang
2014-10-01
In recent years, continuing efforts have been directed to revealing the effect of human behavioral responses in the spread of infectious diseases. In this paper, we propose an implementation mechanism of disease awareness via individual self-perception from neighborhood contact histories (NCHs), where each individual is capable of memorizing a sequence of his infectious contacts earlier time, and adaptively adjusting the contact rate with his neighboring individuals as a preventive strategy from risks of exposure to infection. Both analytical and numerical results show that the NCH-based self-perceived awareness is a simple, but efficient disease control measure, which can greatly reduce the outbreak size of infectious diseases. We further examine the effects of a centralized disease control measure, which corresponds, for comparison, to an NCH-independent and uniformly aroused disease awareness. We find our proposed strategy outperforms the centralized one in a much larger and more practical range of epidemiological parameters, which also highlight the importance of the NCH-based awareness information in guidance of the individual protective behavior against infectious diseases.
Optimal management with hybrid dynamics : The shallow lake problem
Reddy, P.V.; Schumacher, Hans; Engwerda, Jacob; Camlibel, M.K.; Julius, A.A.; Pasumarthy, R.
2015-01-01
In this article we analyze an optimal management problem that arises in ecological economics using hybrid systems modeling. First, we introduce a discounted autonomous infinite horizon hybrid optimal control problem and develop few tools to analyze the necessary conditions for optimality. Next,
Dynamic Programming Approaches for the Traveling Salesman Problem with Drone
P. Bouman (Paul); N.A.H. Agatz (Niels); M.E. Schmidt (Marie)
2017-01-01
markdownabstractA promising new delivery model involves the use of a delivery truck that collaborates with a drone to make deliveries. Effectively combining a drone and a truck gives rise to a new planning problem that is known as the Traveling Salesman Problem with Drone (TSP-D). This paper
Dynamic Programming Approaches for the Traveling Salesman Problem with Drone
P. Bouman (Paul); N.A.H. Agatz (Niels); M.E. Schmidt (Marie)
2017-01-01
markdownabstractA promising new delivery model involves the use of a delivery truck that collaborates with a drone to make deliveries. Effectively combining a truck and a drone gives rise to a new planning problem that is known as the Traveling Salesman Problem with Drone (TSP-D). This paper
Pathgroups, a dynamic data structure for genome reconstruction problems.
Zheng, Chunfang
2010-07-01
Ancestral gene order reconstruction problems, including the median problem, quartet construction, small phylogeny, guided genome halving and genome aliquoting, are NP hard. Available heuristics dedicated to each of these problems are computationally costly for even small instances. We present a data structure enabling rapid heuristic solution to all these ancestral genome reconstruction problems. A generic greedy algorithm with look-ahead based on an automatically generated priority system suffices for all the problems using this data structure. The efficiency of the algorithm is due to fast updating of the structure during run time and to the simplicity of the priority scheme. We illustrate with the first rapid algorithm for quartet construction and apply this to a set of yeast genomes to corroborate a recent gene sequence-based phylogeny. http://albuquerque.bioinformatics.uottawa.ca/pathgroup/Quartet.html chunfang313@gmail.com Supplementary data are available at Bioinformatics online.
Dynamic supplier selection problem considering full truck load in probabilistic environment
Sutrisno, Wicaksono, Purnawan Adi
2017-11-01
In this paper, we propose a mathematical model in a probabilistic dynamic optimization to solve a dynamic supplier selection problem considering full truck load in probabilistic environment where some parameters are uncertain. We determine the optimal strategy for this problem by using stochastic dynamic programming. We give some numerical experiments to evaluate and analyze the model. From the results, the optimal supplier and the optimal product volume from the optimal supplier were determined for each time period.
New Unconditional Hardness Results for Dynamic and Online Problems
Clifford, Raphaël; Jørgensen, Allan Grønlund; Larsen, Kasper Green
2015-01-01
Data summarization is an effective approach to dealing with the 'big data' problem. While data summarization problems traditionally have been studied is the streaming model, the focus is starting to shift to distributed models, as distributed/parallel computation seems to be the only viable way...... to handle today's massive data sets. In this paper, we study ε-approximations, a classical data summary that, intuitively speaking, preserves approximately the density of the underlying data set over a certain range space. We consider the problem of computing ε-approximations for a data set which is held...
Dynamical symmetry breaking: Exotic quarks and the strong CP problem
Furlong, R.C.
1988-10-01
Decuplet quarks (quens) transforming as 10's under SU(3)/sub C/ are shown to be superior to sextet quarks (quixes) in their ability to resolve the Strong CP problem, resulting in composite invisible axions (CIAs). 8 refs
Shortest Path Problems in a Stochastic and Dynamic Environment
Cho, Jae
2003-01-01
.... Particularly, we develop a variety of algorithms to solve the expected shortest path problem in addition to techniques for computing the total travel time distribution along a path in the network...
Kang, Huang; Xiong, Yangshou; Wang, Tao; Chen, Qi
2017-01-01
Employing high-contact-ratio (HCR) gear is an effective method of decreasing the load on a single tooth, as well as reducing vibration and noise. While the spindlier tooth leads to greater relative sliding, having more teeth participate in contact at the same time makes the HCR gear more sensitive to the surface quality. Available literature regarding HCR gear primarily investigates the geometrical optimization, load distribution, or efficiency calculation. Limited work has been conducted on the effect of rough surfaces on the dynamic performance of HCR gear. For this reason, a multi-degree-of-freedom (MDOF) model is presented mathematically to characterize the static transmission error based on fractal theory, investigate the relative sliding friction using an EHL-based friction coefficient formula, and detail the time-varying friction coefficient suitable for HCR gear. Based on numerical results, the surface roughness has little influence on system response in terms of the dynamic transmission error but has a large effect on the motion in off-line-of-action (OLOA) direction and friction force. The impact of shaft-bearing stiffness and damping ratio is also explored with results revealing that a greater shaft-bearing stiffness is beneficial in obtaining a more stable motion in OLOA direction, and a larger damping ratio results in a smaller effective friction force. The theory presented in this report outlines a new method of analyzing the dynamics of HCR gear in respect of introducing surface roughness into MDOF model directly, as well as establishing an indirect relationship between dynamic responses and surface roughness. This method is expected to guide surface roughness design and manufacturing in the future.
Gait parameter control timing with dynamic manual contact or visual cues
Shi, Peter; Werner, William
2016-01-01
We investigated the timing of gait parameter changes (stride length, peak toe velocity, and double-, single-support, and complete step duration) to control gait speed. Eleven healthy participants adjusted their gait speed on a treadmill to maintain a constant distance between them and a fore-aft oscillating cue (a place on a conveyor belt surface). The experimental design balanced conditions of cue modality (vision: eyes-open; manual contact: eyes-closed while touching the cue); treadmill speed (0.2, 0.4, 0.85, and 1.3 m/s); and cue motion (none, ±10 cm at 0.09, 0.11, and 0.18 Hz). Correlation analyses revealed a number of temporal relationships between gait parameters and cue speed. The results suggest that neural control ranged from feedforward to feedback. Specifically, step length preceded cue velocity during double-support duration suggesting anticipatory control. Peak toe velocity nearly coincided with its most-correlated cue velocity during single-support duration. The toe-off concluding step and double-support durations followed their most-correlated cue velocity, suggesting feedback control. Cue-tracking accuracy and cue velocity correlations with timing parameters were higher with the manual contact cue than visual cue. The cue/gait timing relationships generalized across cue modalities, albeit with greater delays of step-cycle events relative to manual contact cue velocity. We conclude that individual kinematic parameters of gait are controlled to achieve a desired velocity at different specific times during the gait cycle. The overall timing pattern of instantaneous cue velocities associated with different gait parameters is conserved across cues that afford different performance accuracies. This timing pattern may be temporally shifted to optimize control. Different cue/gait parameter latencies in our nonadaptation paradigm provide general-case evidence of the independent control of gait parameters previously demonstrated in gait adaptation paradigms
Gait parameter control timing with dynamic manual contact or visual cues.
Rabin, Ely; Shi, Peter; Werner, William
2016-06-01
We investigated the timing of gait parameter changes (stride length, peak toe velocity, and double-, single-support, and complete step duration) to control gait speed. Eleven healthy participants adjusted their gait speed on a treadmill to maintain a constant distance between them and a fore-aft oscillating cue (a place on a conveyor belt surface). The experimental design balanced conditions of cue modality (vision: eyes-open; manual contact: eyes-closed while touching the cue); treadmill speed (0.2, 0.4, 0.85, and 1.3 m/s); and cue motion (none, ±10 cm at 0.09, 0.11, and 0.18 Hz). Correlation analyses revealed a number of temporal relationships between gait parameters and cue speed. The results suggest that neural control ranged from feedforward to feedback. Specifically, step length preceded cue velocity during double-support duration suggesting anticipatory control. Peak toe velocity nearly coincided with its most-correlated cue velocity during single-support duration. The toe-off concluding step and double-support durations followed their most-correlated cue velocity, suggesting feedback control. Cue-tracking accuracy and cue velocity correlations with timing parameters were higher with the manual contact cue than visual cue. The cue/gait timing relationships generalized across cue modalities, albeit with greater delays of step-cycle events relative to manual contact cue velocity. We conclude that individual kinematic parameters of gait are controlled to achieve a desired velocity at different specific times during the gait cycle. The overall timing pattern of instantaneous cue velocities associated with different gait parameters is conserved across cues that afford different performance accuracies. This timing pattern may be temporally shifted to optimize control. Different cue/gait parameter latencies in our nonadaptation paradigm provide general-case evidence of the independent control of gait parameters previously demonstrated in gait adaptation paradigms
Real-Time Dynamic Observation of Micro-Friction on the Contact Interface of Friction Lining
Zhang, Dekun; Chen, Kai; Guo, Yongbo
2018-01-01
This paper aims to investigate the microscopic friction mechanism based on in situ microscopic observation in order to record the deformation and contact situation of friction lining during the frictional process. The results show that friction coefficient increased with the shear deformation and energy loss of the surfacee, respectively. Furthermore, the friction mechanism mainly included adhesive friction in the high-pressure and high-speed conditions, whereas hysteresis friction was in the low-pressure and low-speed conditions. The mixed-friction mechanism was in the period when the working conditions varied from high pressure and speed to low pressure and speed. PMID:29498677
Veksler, Yu.G.; Poluyanov, V.B.
1977-01-01
A method is suggested for selecting materials working in contact with fusible liquid metals under namic loading. It is recommended to determine the rate of failure in short-time tests of materials which have shown good corrosion resistence. A material thus selected is subject to short-time cavitation mechanical strength test and a creep test. After that the cavitation-mechanical strength is to be calculated with an account for variation of transverse cross-section area. An equation of cavitation failure rate vs. time is given
Problems in the neutron dynamics of source-driven systems
Ravetto, P.
2001-01-01
The present paper presents some neutronic features of source-driven neutron multiplying systems, with special regards to dynamics, discussing the validity and limitations of classical methods, developed for systems in the vicinity of criticality. Specific characteristics, such as source dominance and the role of delayed neutron emissions are illustrated. Some dynamic peculiarities of innovative concepts proposed for accelerator-driven systems, such as fluid-fuel, are also discussed. The second portion of the work formulates the quasi-static methods for source-driven systems, evidencing its novel features and presenting some numerical results. (author)
S. Augustin
2018-05-01
Full Text Available In applicable standards and sets of rules (VDI/VDE, 2014; DIN, 2010, 2017, recommendations are made concerning the types of experiments for determining the dynamic parameters in fluids (flowing water and flowing air under well-defined conditions. In the data sheets of the thermometer manufacturers, quite different specifications can be found, such as time percentage values or time constants. Only a few thermometer manufacturers specify the medium and flow conditions under which these parameters have been determined. Above all, it is not common practice to indicate a measurement uncertainty for the dynamic parameters found. In Augustin et al. (2017, a first model for the indication of the measurement uncertainty of dynamic parameters in flowing air was presented.The present paper describes the results of a bilateral comparison made for the first time for determining dynamic parameters in the laboratories of the JUMO GmbH & Co. KG Fulda company and at the Institute of Process Measurement and Sensor Technology of the TU Ilmenau. In doing so, two type-N thermocouples with different diameters were investigated in experimental facilities with flowing water and flowing air. Subsequently, the dynamic parameters found were compared with each other. The differences revealed mainly resulted from plant-specific parameters.
Casaccia, S.; Sirevaag, E. J.; Richter, E. J.; O'Sullivan, J. A.; Scalise, L.; Rohrbaugh, J. W.
2016-10-01
This report amplifies and extends prior descriptions of the use of laser Doppler vibrometry (LDV) as a method for assessing cardiovascular activity, on a non-contact basis. A rebreathing task (n = 35 healthy individuals) was used to elicit multiple effects associated with changes in autonomic drive as well as blood gases including hypercapnia. The LDV pulse was obtained from two sites overlying the carotid artery, separated by 40 mm. A robust pulse signal was obtained from both sites, in accord with the well-described changes in carotid diameter over the blood pressure cycle. Emphasis was placed on extracting timing measures from the LDV pulse, which could serve as surrogate measures of pulse wave velocity (PWV) and the associated arterial stiffness. For validation purposes, a standard measure of pulse transit time (PTT) to the radial artery was obtained using a tonometric sensor. Two key measures of timing were extracted from the LDV pulse. One involved the transit time along the 40 mm distance separating the two LDV measurement sites. A second measure involved the timing of a late feature of the LDV pulse contour, which was interpreted as reflection wave latency and thus a measure of round-trip travel time. Both LDV measures agreed with the conventional PTT measure, in disclosing increased PWV during periods of active rebreathing. These results thus provide additional evidence that measures based on the non-contact LDV technique might provide surrogate measures for those obtained using conventional, more obtrusive assessment methods that require attached sensors.
Complex cytogeographical patterns reveal a dynamic tetraploid–octoploid contact zone
Castro, Mariana; Castro, Sílvia; Figueiredo, Albano; Husband, Brian; Loureiro, João
2018-01-01
Abstract The distribution of cytotypes in mixed-ploidy species is crucial for evaluating ecological processes involved in the establishment and evolution of polyploid taxa. Here, we use flow cytometry and chromosome counts to explore cytotype diversity and distributions within a tetraploid–octoploid contact zone. We then use niche modelling and ploidy seed screening to assess the roles of niche differentiation among cytotypes and reproductive interactions, respectively, in promoting cytotype coexistence. Two cytotypes, tetraploids and octoploids, were dominant within the contact zone. They were most often distributed parapatrically or allopatrically, resulting in high geographic isolation. Still, 16.7 % of localities comprised two or more cytotypes, including the intermediate hexaploid cytotype. Tetraploids and octoploids had high environmental niche overlap and associated with similar climatic environments, suggesting they have similar ecological requirements. Given the geographical separation and habitat similarity among cytotypes, mixed-ploidy populations may be transitional and subject to the forces of minority cytotype exclusion which lead to pure-ploidy populations. However, seed ploidy analysis suggests that strong reproductive barriers may enforce assortative mating which favours stable cytotype coexistence. High cytogenetic diversity detected in the field suggests that unreduced gamete formation and hybridization events seem frequent in the studied polyploid complex and might be involved with the recurrent polyploid formation, governing, as well, the gene flow between cytogenetic entities. PMID:29593853
General problems of dynamics and control of vibratory gyroscopes
Shatalov, MY
2008-05-01
Full Text Available A general model of operation of vibratory gyroscopes, which is applicable to a broad class of instruments, including cylindrical, disc and micro-machined gyros, is formulated on the basis of analysis of dynamics and control of a hemispherical...
The current account as a dynamic portfolio choice problem
Didier, Tatiana; Lowenkron, Alexandre
2009-01-01
The current account can be understood as the outcome of investment decisions made by domestic and foreign investors. These decisions can be decomposed into a portfolio rebalancing and a portfolio growth component. This paper provides empirical evidence of the importance of portfolio rebalancing for the dynamics of the current account. The authors evaluate the predictions of a partial-equil...
Lee, Jung Gil
2017-04-26
This paper presents a theoretical analysis of the monthly average daily and hourly performances of a solar-powered multi-stage direct contact membrane distillation (SMDCMD) system with an energy recovery scheme and dynamic operating system. Mid-latitude meteorological data from Busan, Korea is employed, featuring large climate variation over the course of one year. The number of module stages used by the dynamic operating scheme changes dynamically based on the inlet feed temperature of the successive modules, which results in an improvement of the water production and thermal efficiency. The simulations of the SMDCMD system are carried out to investigate the spatial and temporal variations in the feed and permeate temperatures and permeate flux. The monthly average daily water production increases from 0.37m3/day to 0.4m3/day and thermal efficiency increases from 31% to 45% when comparing systems both without and with dynamic operation in December. The water production with respect to collector area ranged from 350m2 to 550m2 and the seawater storage tank volume ranged from 16m3 to 28.8m3, and the solar fraction at various desired feed temperatures from 50°C to 80°C have been investigated in October and December.
The dynamic multi-period vehicle routing problem
Wen, Min; Cordeau, Jean-Francois; Laporte, Gilbert
2010-01-01
are to minimize total travel costs and customer waiting, and to balance the daily workload over the planning horizon. This problem originates from a large distributor operating in Sweden. It is modeled as a mixed integer linear program, and solved by means of a three-phase heuristic that works over a rolling...... planning horizon. The multi-objective aspect of the problem is handled through a scalar technique approach. Computational results show that the proposed approach can yield high quality solutions within reasonable running times....
Towards a dynamical solution of the strong CP problem
Schierholz, G.
1994-01-01
One may argue that QCD solves the strong CP problem by itself. To test this idea, a lattice simulation suggests itself. In view of the difficulty of such a calculation we have, as a first step, investigated the problem in the CP 3 model. The CP 3 model is in many respects similar to QCD. In this talk I present some first results of our calculation. Among other things it is shown that the model has a first order deconfining phase transition in θ and that the critical value of θ decreases towards zero as β is taken to infinity. This suggests that θ is tuned to zero in the continuum limit. ((orig.))
Volkov, Sergei S.; Vasiliev, Andrey S.; Aizikovich, Sergei M.; Sadyrin, Evgeniy V.
2018-05-01
Indentation of an elastic half-space with functionally graded coating by a rigid flat punch is studied. The half-plane is additionally subjected to distributed tangential stresses. Tangential stresses are represented in a form of Fourier series. The problem is reduced to the solution of two dual integral equations over even and odd functions describing distribution of unknown normal contact stresses. The solutions of these dual integral equations are constructed by the bilateral asymptotic method. Approximated analytical expressions for contact normal stresses are provided.
Rotor–stator contact dynamics using a non-ideal drive
Lahriri, Said; Weber, H.I.Hans I.; Santos, I.F.Ilmar F.
2012-01-01
and bearings among others. The contact event gives rise to normal and friction forces exerted on the rotor at impact events. The friction force plays a significant role by transferring some rotational energy of the rotor to lateral motion. A mathematical model has been developed to capture...... this for a conventional backup annular guide setup. It is reasonable to superpose an impact condition to the rub, where the rotor spin energy can be fully transformed into rotor lateral movements. Using a nonideal drive, i.e. an electric motor without any kind of velocity feedback control, it is even possible to stop...... the rotor spin under rubbing conditions. All the rotational energy will be transformed in a kind of “self-excited” rotor lateral vibration with repeated impacts against the housing. This paper studies the impact motion of a rotor impacting a conventional backup annular guide for the case of dry...
A new approach to solve elastoplastic dynamic piping problems
Leite de Andrade, J.E.; Guerreiro Ribeiro, S.V.
1981-01-01
A new method to perform the elastoplastic dynamic analysis of pipes is presented here, in which the pipe is analysed as a beam, and a bilinear eleastic-plastic behavior for the material is assumed. Pipe whip restraints are simulated as spring of bilinear elastic-plastic behavior with the provision for considering viscous damping. A numerical method was implemented in which plastic strain is treated as equivalent applied (force or moment) excitations, reducing the elastoplastic analysis of the structure to an elastic analysis of the same structure with a set of additional applied excitations. So the stiffness matrix and the eigenvectors do not vary with time. This procedure allows the response of the system to be computed by using dynamic influence coefficients, which are calculated from the elastic solution. For those structures whose dynamic elastic solutions are known in closed form, the present scheme seems to be very attractive, e.g., simple supported and cantilever beams. For those structures with unknown analytical elastic solutions, the finite element method will provide them. (orig./GL)
Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach
Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com [Laboratoire de Probabilités et Modèles Aléatoires, CNRS, UMR 7599, Université Paris Diderot (France)
2016-12-15
We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.
Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach
Pham, Huyên; Wei, Xiaoli
2016-01-01
We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.
Jung, Yihwan; Jung, Moonki; Ryu, Jiseon; Yoon, Sukhoon; Park, Sang-Kyoon; Koo, Seungbum
2016-03-01
Human dynamic models have been used to estimate joint kinetics during various activities. Kinetics estimation is in demand in sports and clinical applications where data on external forces, such as the ground reaction force (GRF), are not available. The purpose of this study was to estimate the GRF during gait by utilizing distance- and velocity-dependent force models between the foot and ground in an inverse-dynamics-based optimization. Ten males were tested as they walked at four different speeds on a force plate-embedded treadmill system. The full-GRF model whose foot-ground reaction elements were dynamically adjusted according to vertical displacement and anterior-posterior speed between the foot and ground was implemented in a full-body skeletal model. The model estimated the vertical and shear forces of the GRF from body kinematics. The shear-GRF model with dynamically adjustable shear reaction elements according to the input vertical force was also implemented in the foot of a full-body skeletal model. Shear forces of the GRF were estimated from body kinematics, vertical GRF, and center of pressure. The estimated full GRF had the lowest root mean square (RMS) errors at the slow walking speed (1.0m/s) with 4.2, 1.3, and 5.7% BW for anterior-posterior, medial-lateral, and vertical forces, respectively. The estimated shear forces were not significantly different between the full-GRF and shear-GRF models, but the RMS errors of the estimated knee joint kinetics were significantly lower for the shear-GRF model. Providing COP and vertical GRF with sensors, such as an insole-type pressure mat, can help estimate shear forces of the GRF and increase accuracy for estimation of joint kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.
Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics
Iwankiewicz, R.; Nielsen, Søren R. K.
Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically-numerical tec......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...
Dynamics of galaxies and the 'missing mass' problem
Gunn, J E [Hale Observatories, Pasadena, CA (USA)
1980-03-06
The observational situation concerning the existence of dark matter in the outer parts of galaxies is reviewed. Observation now leaves little doubt of its presence, and both observation and simple theory suggest that the dark matter is probably bound to galaxies, and furthermore is present around both spirals and ellipticals. New evidence concerning the rotation curve of the Galaxy shows that the distribution of the halo stuff in our own system is roughly spherical, as seems natural from existing dynamical data on the nature of the halo material.
Tulina, N.A.
1985-01-01
The point-contact spectra of oxides with metallic conductivity WO 2 , ReO 3 , and MoO 2 are studied. It is shown that the zero-bias anomalies, which are often observed in the spectra of transition metals, are determined by the presence of an interlayer consisting of an oxide of the above type in the region of the point contact. Zero-bias anomalies do not occur in the point-contact spectra of Zn--MoO 2 -chip heterocontacts. In the studies of such heterocontacts the major maxima in the electron--phonon interaction of MoO 2 were determined at the energies hω/sub T/Aapprox.28 meV and hω/sub L/Aapprox.41 meV
Discrete Dynamical Systems Meet the Classic Monkey-and-the-Bananas Problem.
Gannon, Gerald E.; Martelli, Mario U.
2001-01-01
Presents a solution of the three-sailors-and-the-bananas problem and attempts a generalization. Introduces an interesting way of looking at the mathematics with an idea drawn from discrete dynamical systems. (KHR)
Energy conserving schemes for the simulation of musical instrument contact dynamics
Chatziioannou, Vasileios; van Walstijn, Maarten
2015-03-01
Collisions are an innate part of the function of many musical instruments. Due to the nonlinear nature of contact forces, special care has to be taken in the construction of numerical schemes for simulation and sound synthesis. Finite difference schemes and other time-stepping algorithms used for musical instrument modelling purposes are normally arrived at by discretising a Newtonian description of the system. However because impact forces are non-analytic functions of the phase space variables, algorithm stability can rarely be established this way. This paper presents a systematic approach to deriving energy conserving schemes for frictionless impact modelling. The proposed numerical formulations follow from discretising Hamilton's equations of motion, generally leading to an implicit system of nonlinear equations that can be solved with Newton's method. The approach is first outlined for point mass collisions and then extended to distributed settings, such as vibrating strings and beams colliding with rigid obstacles. Stability and other relevant properties of the proposed approach are discussed and further demonstrated with simulation examples. The methodology is exemplified through a case study on tanpura string vibration, with the results confirming the main findings of previous studies on the role of the bridge in sound generation with this type of string instrument.
An optimal maintenance policy for machine replacement problem using dynamic programming
Mohsen Sadegh Amalnik; Morteza Pourgharibshahi
2017-01-01
In this article, we present an acceptance sampling plan for machine replacement problem based on the backward dynamic programming model. Discount dynamic programming is used to solve a two-state machine replacement problem. We plan to design a model for maintenance by consid-ering the quality of the item produced. The purpose of the proposed model is to determine the optimal threshold policy for maintenance in a finite time horizon. We create a decision tree based on a sequential sampling inc...
Dynamic problems of power reactors and analogic devices
Braffort, P.
1955-01-01
The raise of the nuclear physics came with heavy mathematical developments. The analogical installations became especially useful for precise calculations of parameters which depend the running of a reactor. They permit between other to study of kinetic problems and especially ''cybernetics'' of nuclear reactors. It doesn't make a doubt that their use will become widespread, not only in the calculations laboratories, in services for servo-mechanisms study, but also in the control panels of the reactors themselves. (M.B.) [fr
Vodička, R.; Mantič, V.; Roubíček, Tomáš
2017-01-01
Roč. 315, May (2017), s. 249-272 ISSN 0377-0427 Institutional support: RVO:61388998 Keywords : contact mechanics * evolution variational inequalities * numerical approximation Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.357, year: 2016 http://www.sciencedirect.com/science/article/pii/S037704271630499X
Johansen, J D; Andersen, T F; Veien, N
1997-01-01
in a questionnaire prior to patch testing with the European standard series. The questionnaire contained questions about skin symptoms from the use of scented and unscented products as well as skin reactions from contact with spices, flowers and citrus fruits that could indicate fragrance sensitivity. A highly...
Boerma, W.G.W.; Verhaak, P.F.M.
1999-01-01
Background: there are considerable differences between and within countries in the involvement of general practitioners (GPs) in psychosocial care. This study aimed to describe the self-perceived role of GPs in 30 European countries as the first contacted professional for patients with psychosocial
Bao, Kai
2012-10-01
In this paper, a semi-implicit finite element method is presented for the coupled Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition for the moving contact line problems. In our method, the system is solved in a decoupled way. For the Cahn-Hilliard equations, a convex splitting scheme is used along with a P1-P1 finite element discretization. The scheme is unconditionally stable. A linearized semi-implicit P2-P0 mixed finite element method is employed to solve the Navier-Stokes equations. With our method, the generalized Navier boundary condition is extended to handle the moving contact line problems with complex boundary in a very natural way. The efficiency and capacity of the present method are well demonstrated with several numerical examples. © 2012 Elsevier Inc..
Bao, Kai; Shi, Yi; Sun, Shuyu; Wang, Xiaoping
2012-01-01
In this paper, a semi-implicit finite element method is presented for the coupled Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition for the moving contact line problems. In our method, the system is solved in a decoupled way. For the Cahn-Hilliard equations, a convex splitting scheme is used along with a P1-P1 finite element discretization. The scheme is unconditionally stable. A linearized semi-implicit P2-P0 mixed finite element method is employed to solve the Navier-Stokes equations. With our method, the generalized Navier boundary condition is extended to handle the moving contact line problems with complex boundary in a very natural way. The efficiency and capacity of the present method are well demonstrated with several numerical examples. © 2012 Elsevier Inc..
Li, Caoxiong; Shen, Yinghao; Ge, Hongkui; Zhang, Yanjun; Liu, Tao
2018-03-02
Shales have abundant micro-nano pores. Meanwhile, a considerable amount of fracturing liquid is imbibed spontaneously in the hydraulic fracturing process. The spontaneous imbibition in tortuous micro-nano pores is special to shale, and dynamic contact angle and slippage are two important characteristics. In this work, we mainly investigate spontaneous imbibition considering dynamic contact angle and slip effect in fractal tortuous capillaries. We introduce phase portrait analysis to analyse the dynamic state and stability of imbibition. Moreover, analytical solutions to the imbibition equation are derived under special situations, and the solutions are verified by published data. Finally, we discuss the influences of slip length, dynamic contact angle and gravity on spontaneous imbibition. The analysis shows that phase portrait is an ideal tool for analysing spontaneous imbibition because it can evaluate the process without solving the complex governing ordinary differential equations. Moreover, dynamic contact angle and slip effect play an important role in fluid imbibition in fractal tortuous capillaries. Neglecting slip effect in micro-nano pores apparently underestimates imbibition capability, and ignoring variations in contact angle causes inaccuracy in predicting imbibition speed at the initial stage of the process. Finally, gravity is one of the factors that control the stabilisation of the imbibition process.
Thomas J Moutinho
Full Text Available Interactions between microbes are central to the dynamics of microbial communities. Understanding these interactions is essential for the characterization of communities, yet challenging to accomplish in practice. There are limited available tools for characterizing diffusion-mediated, contact-independent microbial interactions. A practical and widely implemented technique in such characterization involves the simultaneous co-culture of distinct bacterial species and subsequent analysis of relative abundance in the total population. However, distinguishing between species can be logistically challenging. In this paper, we present a low-cost, vertical membrane, co-culture plate to quantify contact-independent interactions between distinct bacterial populations in co-culture via real-time optical density measurements. These measurements can be used to facilitate the analysis of the interaction between microbes that are physically separated by a semipermeable membrane yet able to exchange diffusible molecules. We show that diffusion across the membrane occurs at a sufficient rate to enable effective interaction between physically separate cultures. Two bacterial species commonly found in the cystic fibrotic lung, Pseudomonas aeruginosa and Burkholderia cenocepacia, were co-cultured to demonstrate how this plate may be implemented to study microbial interactions. We have demonstrated that this novel co-culture device is able to reliably generate real-time measurements of optical density data that can be used to characterize interactions between microbial species.
Santoro, Domenico; Crapulli, Ferdinando; Raisee, Mehrdad; Raspa, Giuseppe; Haas, Charles N
2015-06-16
Wastewater disinfection processes are typically designed according to heuristics derived from batch experiments in which the interaction among wastewater quality, reactor hydraulics, and inactivation kinetics is often neglected. In this paper, a computational fluid dynamics (CFD) study was conducted in a nondeterministic (ND) modeling framework to predict the Escherichia coli inactivation by peracetic acid (PAA) in municipal contact tanks fed by secondary settled wastewater effluent. The extent and variability associated with the observed inactivation kinetics were both satisfactorily predicted by the stochastic inactivation model at a 95% confidence level. Moreover, it was found that (a) the process variability induced by reactor hydraulics is negligible when compared to the one caused by inactivation kinetics, (b) the PAA dose required for meeting regulations is dictated equally by the fixed limit of the microbial concentration as well as its probability of occurrence, and (c) neglecting the probability of occurrence during process sizing could lead to an underestimation of the PAA dose required by as much as 100%. Finally, the ND-CFD model was used to generate sizing information in the form of probabilistic disinfection curves relating E. coli inactivation and probability of occurrence with the average PAA dose and PAA residual concentration at the outlet of the contact tank.
Watson, Conall H; Coriakula, Jeremaia; Ngoc, Dung Tran Thi; Flasche, Stefan; Kucharski, Adam J; Lau, Colleen L; Thieu, Nga Tran Vu; le Polain de Waroux, Olivier; Rawalai, Kitione; Van, Tan Trinh; Taufa, Mere; Baker, Stephen; Nilles, Eric J; Kama, Mike; Edmunds, W John
2017-01-01
Empirical data on contact patterns can inform dynamic models of infectious disease transmission. Such information has not been widely reported from Pacific islands, nor strongly multi-ethnic settings, and few attempts have been made to quantify contact patterns relevant for the spread of gastrointestinal infections. As part of enteric fever investigations, we conducted a cross-sectional survey of the general public in Fiji, finding that within the 9,650 mealtime contacts reported by 1,814 participants, there was strong like-with-like mixing by age and ethnicity, with higher contact rates amongst iTaukei than non-iTaukei Fijians. Extra-domiciliary lunchtime contacts follow these mixing patterns, indicating the overall data do not simply reflect household structures. Inter-ethnic mixing was most common amongst school-age children. Serological responses indicative of recent Salmonella Typhi infection were found to be associated, after adjusting for age, with increased contact rates between meal-sharing iTaukei, with no association observed for other contact groups. Animal ownership and travel within the geographical division were common. These are novel data that identify ethnicity as an important social mixing variable, and use retrospective mealtime contacts as a socially acceptable metric of relevance to enteric, contact and respiratory diseases that can be collected in a single visit to participants. Application of these data to other island settings will enable communicable disease models to incorporate locally relevant mixing patterns in parameterisation.
Jingtao Shi
2013-01-01
Full Text Available This paper is concerned with the relationship between maximum principle and dynamic programming for stochastic recursive optimal control problems. Under certain differentiability conditions, relations among the adjoint processes, the generalized Hamiltonian function, and the value function are given. A linear quadratic recursive utility portfolio optimization problem in the financial engineering is discussed as an explicitly illustrated example of the main result.
Lee, Chwee Beng
2010-01-01
This study examines the interactions between problem solving and conceptual change in an elementary science class where students build system dynamic models as a form of problem representations. Through mostly qualitative findings, we illustrate the interplay of three emerging intervening conditions (epistemological belief, structural knowledge…
Decomposition principles applied to the dynamic production and work-force scheduling problem
Aardal, K.I.; Ari, A.
1987-01-01
One of the most important problems in the production and inventory planning field, is the scheduling of production and work force in a dynamic environment. Although this problem can be formulated as a linear program, it is often quite difficult to solve directly, due to its large scale. Instead, it
Reconsidering the boundary conditions for a dynamic, transient mode I crack problem
Leise, Tanya; Walton, Jay; Gorb, Yuliya
2008-01-01
. In particular, a transient compressive stress wave travels along the crack faces, moving outward from the loading region on the crack face. This does not occur in the quasistatic or steady state problems, and is a special feature of the transient dynamic problem
Ballard, P.; Jarušek, Jiří
2011-01-01
Roč. 103, č. 1 (2011), s. 15-52 ISSN 0374-3535 R&D Projects: GA AV ČR IAA100750802 Institutional research plan: CEZ:AV0Z10190503 Keywords : elasticity * contact * friction * uniqueness * singularity Subject RIV: BA - General Mathematics Impact factor: 1.110, year: 2011 http://link.springer.com/article/10.1007%2Fs10659-010-9270-9
Kozbial, Andrew; Trouba, Charlie; Liu, Haitao; Li, Lei
2017-01-31
Elucidating the intrinsic water wettability of the graphitic surface has increasingly attracted research interests, triggered by the recent finding that the well-established hydrophobicity of graphitic surfaces actually results from airborne hydrocarbon contamination. Currently, static water contact angle (WCA) is often used to characterize the intrinsic water wettability of graphitic surfaces. In the current paper, we show that because of the existence of defects, static WCA does not necessarily characterize the intrinsic water wettability. Freshly exfoliated graphite of varying qualities, characterized using atomic force microscopy and Raman spectroscopy, was studied using static, advancing, and receding WCA measurements. The results showed that graphite of different qualities (i.e., defect density) always has a similar advancing WCA, but it could have very different static and receding WCAs. This finding indicates that defects play an important role in contact angle measurements, and the static contact angle does not always represent the intrinsic water wettability of pristine graphite. On the basis of the experimental results, a qualitative model is proposed to explain the effect of defects on static, advancing, and receding contact angles. The model suggests that the advancing WCA reflects the intrinsic water wettability of pristine (defect-free) graphite. Our results showed that the advancing WCA for pristine graphite is 68.6°, which indicates that graphitic carbon is intrinsically mildly hydrophilic.
Full Text Available ... Cleveland. "This is far from the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager ... about the members of the eye-care team . Consumer warning about the improper use of colored contact ...
Full Text Available ... Hazard: The Hidden Dangers of Buying Decorative Contact Lenses Without a Prescription Leer en Español: Peligros asociados ... truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager Blinded In One Eye By Non- ...
... Hazard: The Hidden Dangers of Buying Decorative Contact Lenses Without a Prescription Leer en Español: Peligros asociados ... truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager Blinded In One Eye By Non- ...
Full Text Available ... Cleveland. "This is far from the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager ... the lenses. Never share contact lenses with another person. Get follow up exams with your eye care ...
Tanti Octavia
2003-01-01
Full Text Available A Modified Giffler and Thompson algorithm combined with dynamic slack time is used to allocate machines resources in dynamic nature. It was compared with a Real Time Order Promising (RTP algorithm. The performance of modified Giffler and Thompson and RTP algorithms are measured by mean tardiness. The result shows that modified Giffler and Thompson algorithm combined with dynamic slack time provides significantly better result compared with RTP algorithm in terms of mean tardiness.
Numerical implication of Riemann problem theory for fluid dynamics
Menikoff, R.
1988-01-01
The Riemann problem plays an important role in understanding the wave structure of fluid flow. It is also crucial step in some numerical algorithms for accurately and efficiently computing fluid flow; Godunov method, random choice method, and from tracking method. The standard wave structure consists of shock and rarefaction waves. Due to physical effects such as phase transitions, which often are indistinguishable from numerical errors in an equation of state, anomalkous waves may occur, ''rarefaction shocks'', split waves, and composites. The anomalous waves may appear in numerical calculations as waves smeared out by either too much artificial viscosity or insufficient resolution. In addition, the equation of state may lead to instabilities of fluid flow. Since these anomalous effects due to the equation of state occur for the continuum equations, they can be expected to occur for all computational algorithms. The equation of state may be characterized by three dimensionless variables: the adiabatic exponent γ, the Grueneisen coefficient Γ, and the fundamental derivative G. The fluid flow anomalies occur when inequalities relating these variables are violated. 18 refs
Studies of dynamic contact of ceramics and alloys for advanced heat engines. Final report
Gaydos, P.A.; Dufrane, K.F. [Battelle, Columbus, OH (United States)
1993-06-01
Advanced materials and coatings for low heat rejection engines have been investigated for almost a decade. Much of the work has concentrated on the critical wear interface between the piston ring and cylinder liner. Simplified bench tests have identified families of coatings with high temperature wear performance that could meet or exceed that of conventional engine materials at today`s operating temperatures. More recently, engine manufacturers have begun to optimize material combinations and manufacturing processes so that the materials not only have promising friction and wear performance but are practical replacements for current materials from a materials and manufacturing cost standpoint. In this study, the advanced materials supplied by major diesel engine manufacturers were evaluated in an experimental apparatus that simulates many of the in-cylinder conditions of a low heat rejection diesel engine. Results include ring wear factors and average dynamic friction coefficients measured at intervals during the test. These results are compared with other advanced materials tested in the past as well as the baseline wear of current engines. Both fabricated specimens and sections of actual ring and cylinder liners were used in the testing. Observations and relative friction and wear performance of the individual materials are provided.
Čermák, M.; Haslinger, Jaroslav; Kozubek, T.; Sysala, Stanislav
2015-01-01
Roč. 95, č. 12 (2015), s. 1348-1371 ISSN 0044-2267 R&D Projects: GA ČR GA13-18652S Institutional support: RVO:68145535 Keywords : frictionless contact * alternating direction method of multipliers * limit load analysis * elastic-perfect analplasticity Subject RIV: BA - General Mathematics Impact factor: 1.293, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/zamm.201400069/epdf
Kopačka, Ján; Gabriel, Dušan; Plešek, Jiří; Ulbin, M.
2016-01-01
Roč. 105, č. 11 (2016), s. 803-833 ISSN 0029-5981 R&D Projects: GA ČR(CZ) GAP101/12/2315; GA MŠk(CZ) ME10114 Institutional support: RVO:61388998 Keywords : closest point projection * local contact search * quadratic elements * Newtons methods * geometric iteration methods * simplex method Subject RIV: JC - Computer Hardware ; Software Impact factor: 2.162, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/nme.4994/abstract
Nold, Andreas; Goddard, Ben; Sibley, David; Kalliadasis, Serafim
2014-03-01
Multiscale effects play a predominant role in wetting phenomena such as the moving contact line. An accurate description is of paramount interest for a wide range of industrial applications, yet it is a matter of ongoing research, due to the difficulty of incorporating different physical effects in one model. Important small-scale phenomena are corrections to the attractive fluid-fluid and wall-fluid forces in inhomogeneous density distributions, which often previously have been accounted for by the disjoining pressure in an ad-hoc manner. We systematically derive a novel model for the description of a single-component liquid-vapor multiphase system which inherently incorporates these nonlocal effects. This derivation, which is inspired by statistical mechanics in the framework of colloidal density functional theory, is critically discussed with respect to its assumptions and restrictions. The model is then employed numerically to study a moving contact line of a liquid fluid displacing its vapor phase. We show how nonlocal physical effects are inherently incorporated by the model and describe how classical macroscopic results for the contact line motion are retrieved. We acknowledge financial support from ERC Advanced Grant No. 247031 and Imperial College through a DTG International Studentship.
The Patch-Levy-Based Bees Algorithm Applied to Dynamic Optimization Problems
Wasim A. Hussein
2017-01-01
Full Text Available Many real-world optimization problems are actually of dynamic nature. These problems change over time in terms of the objective function, decision variables, constraints, and so forth. Therefore, it is very important to study the performance of a metaheuristic algorithm in dynamic environments to assess the robustness of the algorithm to deal with real-word problems. In addition, it is important to adapt the existing metaheuristic algorithms to perform well in dynamic environments. This paper investigates a recently proposed version of Bees Algorithm, which is called Patch-Levy-based Bees Algorithm (PLBA, on solving dynamic problems, and adapts it to deal with such problems. The performance of the PLBA is compared with other BA versions and other state-of-the-art algorithms on a set of dynamic multimodal benchmark problems of different degrees of difficulties. The results of the experiments show that PLBA achieves better results than the other BA variants. The obtained results also indicate that PLBA significantly outperforms some of the other state-of-the-art algorithms and is competitive with others.
Coupled problems in transient fluid and structural dynamics in nuclear engineering
Krieg, R.
1978-01-01
Some important problems in coupled fluid-structural dynamics which occur in safety investigations of liquid metal fast breeder reactors (LMFBR). light water reactors and nuclear reprocessing plants are discussed and a classification of solution methods is introduced. A distinction is made between the step by step solution procedure, where available computer codes in fluid and structural dynamics are coupled, and advanced simultaneous solution methods, where the coupling is carried out at the level of the fundamental equations. Results presented include the transient deformation of a two-row pin bundle surrounded by an infinite fluid field, vapour explosions in a fluid container and containment distortions due to bubble collapse in the pressure suppression system of a boiling water reactor. A recently developed simultaneous solution method is presented in detail. Here the fluid dynamics (inviscid, incompressible fluid) is described by a singularity method which reduces the three-dimensional fluid dynamics problems to a two-dimensional formulation. In this way the three-dynamics fluid dynamics as well as the structural (shell) dynamics can be described essentially by common unknowns at the fluid-structural interface. The resulting equations for the coupled fluid-structural dynamics are analogous to to the equations of motion of the structural dynamics alone. (author)
Koishi, Takahiro; Yasuoka, Kenji; Fujikawa, Shigenori; Zeng, Xiao Cheng
2011-09-27
We perform large-scale molecular dynamics simulations to measure the contact-angle hysteresis for a nanodroplet of water placed on a nanopillared surface. The water droplet can be in either the Cassie state (droplet being on top of the nanopillared surface) or the Wenzel state (droplet being in contact with the bottom of nanopillar grooves). To measure the contact-angle hysteresis in a quantitative fashion, the molecular dynamics simulation is designed such that the number of water molecules in the droplets can be systematically varied, but the number of base nanopillars that are in direct contact with the droplets is fixed. We find that the contact-angle hysteresis for the droplet in the Cassie state is weaker than that in the Wenzel state. This conclusion is consistent with the experimental observation. We also test a different definition of the contact-angle hysteresis, which can be extended to estimate hysteresis between the Cassie and Wenzel state. The idea is motivated from the appearance of the hysteresis loop typically seen in computer simulation of the first-order phase transition, which stems from the metastability of a system in different thermodynamic states. Since the initial shape of the droplet can be controlled arbitrarily in the computer simulation, the number of base nanopillars that are in contact with the droplet can be controlled as well. We show that the measured contact-angle hysteresis according to the second definition is indeed very sensitive to the initial shape of the droplet. Nevertheless, the contact-angle hystereses measured based on the conventional and new definition seem converging in the large droplet limit. © 2011 American Chemical Society
Oden, J. T.; Becker, E. B.; Lin, T. L.; Hsieh, K. T.
1984-01-01
The formulation and numerical analysis of several problems related to the behavior of pneumatic tires are considered. These problems include the general rolling contact problem of a rubber-like viscoelastic cylinder undergoing finite deformations and the finite deformation of cord-reinforced rubber composites. New finite element models are developed for these problems. Numerical results obtained for several representative cases are presented.
1986-03-31
Martins, J.A.C. and Campos , L.T. [1986], "Existence and Local Uniqueness of Solutions to Contact Problems in Elasticity with Nonlinear Friction...noisy and ttoubl esome vibt.t4ons. If the sound generated by the friction-induced oscillations of Rviolin strings may be the delight of all music lovers...formulation. See 0den and Martins - [1985] and Rabier, Martins, Oden and Campos [1986]. - It is now simple to show, in a 6o’uman manner, that, for
M. O. Babiak
2009-07-01
Full Text Available The process of mutual moving and contacting of surfaces of current collecting pantograph elements and contact network is considered taking into account the particularities of inf1uence of speed and acceleration parameters, determination of which will allow to forecast mathematically the wear-out degree of contacting elements.
Bogaers, Alfred EJ
2016-09-01
Full Text Available the respective outward pointing normals along Γs and Γf if the solid and fluid interfaces are non-matching, Γs 6= Γf . In this paper, the fluid operator F is solved using OpenFOAM where Calculix is used for the structural analysis. The interface load and motion... differ only on the basis of how information from multiple time steps are retained. 4 Test Problems The test problems in the sections to follow have been performed using OpenFOAM [1] for the fluid domain and Calculix [22] for the structural domain...
Proceedings of the Workshop on open problems in heavy ion reaction dynamics at VIVITRON energies
Beck, F.A.
1993-01-01
Some problems of heavy ion reaction dynamics at the VIVITRON tandem accelerator and the experimental facilities are discussed at the meeting. Topics include light dinuclear systems, collision dynamics at low energies, fission evaporation and fusion of heavy nuclei and others. Most documents consist of transparencies presented at the workshop, texts of papers are missing. All items are indexed and abstracted for the INIS database. (K.A.)
Application of Symplectic Algebraic Dynamics Algorithm to Circular Restricted Three-Body Problem
Wei-Tao, Lu; Hua, Zhang; Shun-Jin, Wang
2008-01-01
Symplectic algebraic dynamics algorithm (SADA) for ordinary differential equations is applied to solve numerically the circular restricted three-body problem (CR3BP) in dynamical astronomy for both stable motion and chaotic motion. The result is compared with those of Runge–Kutta algorithm and symplectic algorithm under the fourth order, which shows that SADA has higher accuracy than the others in the long-term calculations of the CR3BP. (general)
Lu, Wei-Tao; Zhang, Hua; Wang, Shun-Jin
2008-07-01
Symplectic algebraic dynamics algorithm (SADA) for ordinary differential equations is applied to solve numerically the circular restricted three-body problem (CR3BP) in dynamical astronomy for both stable motion and chaotic motion. The result is compared with those of Runge-Kutta algorithm and symplectic algorithm under the fourth order, which shows that SADA has higher accuracy than the others in the long-term calculations of the CR3BP.
Proceedings of the Workshop on open problems in heavy ion reaction dynamics at VIVITRON energies
Beck, F. A.
1993-07-01
Some problems of heavy ion reaction dynamics at the VIVITRON tandem accelerator and the experimental facilities are discussed at the meeting. Topics include light dinuclear systems, collision dynamics at low energies, fission evaporation and fusion of heavy nuclei and others. Most documents consist of transparencies presented at the workshop, texts of papers are missing. All items are indexed and abstracted for the INIS database. (K.A.).
A Monte Carlo estimation of the marginal distributions in a problem of probabilistic dynamics
Labeau, P.E.
1996-01-01
Modelling the effect of the dynamic behaviour of a system on its PSA study leads, in a Markovian framework, to a development at first order of the Chapman-Kolmogorov equation, whose solutions are the probability densities of the problem. Because of its size, there is no hope of solving directly these equations in realistic circumstances. We present in this paper a biased simulation giving the marginals and compare different ways of speeding up the integration of the equations of the dynamics
Arthur, Ronan F; Gurley, Emily S; Salje, Henrik; Bloomfield, Laura S P; Jones, James H
2017-05-05
Human factors, including contact structure, movement, impact on the environment and patterns of behaviour, can have significant influence on the emergence of novel infectious diseases and the transmission and amplification of established ones. As anthropogenic climate change alters natural systems and global economic forces drive land-use and land-cover change, it becomes increasingly important to understand both the ecological and social factors that impact infectious disease outcomes for human populations. While the field of disease ecology explicitly studies the ecological aspects of infectious disease transmission, the effects of the social context on zoonotic pathogen spillover and subsequent human-to-human transmission are comparatively neglected in the literature. The social sciences encompass a variety of disciplines and frameworks for understanding infectious diseases; however, here we focus on four primary areas of social systems that quantitatively and qualitatively contribute to infectious diseases as social-ecological systems. These areas are social mixing and structure, space and mobility, geography and environmental impact, and behaviour and behaviour change. Incorporation of these social factors requires empirical studies for parametrization, phenomena characterization and integrated theoretical modelling of social-ecological interactions. The social-ecological system that dictates infectious disease dynamics is a complex system rich in interacting variables with dynamically significant heterogeneous properties. Future discussions about infectious disease spillover and transmission in human populations need to address the social context that affects particular disease systems by identifying and measuring qualitatively important drivers.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Author(s).
New developments in the theory of wheel/rail contact mechanics
Nielsen, Jakob Birkedal
1998-01-01
Today many simulation routines concerning railway dynamics employ rather primitive contact models which are not necessarily suited for the specific wheel/rail contact problem. The objective of the present thesis is to derive a more flexible contact model which can be applied on a variety of conta...
Johansen, J D; Andersen, T F; Veien, Niels
1997-01-01
The aim of the present study was to investigate the relationship between patients' own recognition of skin problems using consumer products and the results of patch testing with markers of fragrance sensitization. Eight hundred and eighty-four consecutive eczema patients, 18-69 years of age, filled...
Johansen, J D; Andersen, T F; Veien, Niels
1997-01-01
The aim of the present study was to investigate the relationship between patients' own recognition of skin problems using consumer products and the results of patch testing with markers of fragrance sensitization. Eight hundred and eighty-four consecutive eczema patients, 18-69 years of age, fill...
Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming
Rauff Lind Christensen, Tue; Klose, Andreas; Andersen, Kim Allan
important aspects of supplier selection, an important application of the SSFCTP, this does not reflect the real life situation. First, transportation costs faced by many companies are in fact piecewise linear. Secondly, when suppliers offer discounts, either incremental or all-unit discounts, such savings......The Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem (SSFCMCTP) is a problem with versatile applications. This problem is a generalization of the Single-Sink, Fixed-Charge Transportation Problem (SSFCTP), which has a fixed-charge, linear cost structure. However, in at least two...... are neglected in the SSFCTP. The SSFCMCTP overcome this problem by incorporating a staircase cost structure in the cost function instead of the usual one used in SSFCTP. We present a dynamic programming algorithm for the resulting problem. To enhance the performance of the generic algorithm a number...
Stanimirović Ivan
2009-01-01
Full Text Available We introduce a heuristic method for the single resource constrained project scheduling problem, based on the dynamic programming solution of the knapsack problem. This method schedules projects with one type of resources, in the non-preemptive case: once started an activity is not interrupted and runs to completion. We compare the implementation of this method with well-known heuristic scheduling method, called Minimum Slack First (known also as Gray-Kidd algorithm, as well as with Microsoft Project.
Analysis of forward and inverse problems in chemical dynamics and spectroscopy
Rabitz, H. [Princeton Univ., NJ (United States)
1993-12-01
The overall scope of this research concerns the development and application of forward and inverse analysis tools for problems in chemical dynamics and chemical kinetics. The chemical dynamics work is specifically associated with relating features in potential surfaces and resultant dynamical behavior. The analogous inverse research aims to provide stable algorithms for extracting potential surfaces from laboratory data. In the case of chemical kinetics, the focus is on the development of systematic means to reduce the complexity of chemical kinetic models. Recent progress in these directions is summarized below.
Contact mechanics: contact area and interfacial separation from small contact to full contact
Yang, C; Persson, B N J
2008-01-01
We present a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. The numerical calculations mainly focus on the contact area and the interfacial separation from small contact (low load) to full contact (high load). For a small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For a high load the contact area approaches the nominal contact area (i.e. complete contact), and the interfacial separation approaches zero. The numerical results have been compared with analytical theory and experimental results. They are in good agreement with each other. The present findings may be very important for soft solids, e.g. rubber, or for very smooth surfaces, where complete contact can be reached at moderately high loads without plastic deformation of the solids
Ballard, Patrick
2016-12-01
The steady sliding frictional contact problem between a moving rigid indentor of arbitrary shape and an isotropic homogeneous elastic half-space in plane strain is extensively analysed. The case where the friction coefficient is a step function (with respect to the space variable), that is, where there are jumps in the friction coefficient, is considered. The problem is put under the form of a variational inequality which is proved to always have a solution which, in addition, is unique in some cases. The solutions exhibit different kinds of universal singularities that are explicitly given. In particular, it is shown that the nature of the universal stress singularity at a jump of the friction coefficient is different depending on the sign of the jump.
Using Dynamic Geometry and Computer Algebra Systems in Problem Based Courses for Future Engineers
Tomiczková, Svetlana; Lávicka, Miroslav
2015-01-01
It is a modern trend today when formulating the curriculum of a geometric course at the technical universities to start from a real-life problem originated in technical praxis and subsequently to define which geometric theories and which skills are necessary for its solving. Nowadays, interactive and dynamic geometry software plays a more and more…
The Finite-Horizon Singular H∞ Control Problem With Dynamic Measurement Feedback
Stoorvogel, A.A.; Trentelman, H.L.
1993-01-01
This paper is concerned with the finite-horizon version of the H∞ problem with measurement feedback. Given a finite-dimensional linear, time-varying system, together with a positive real number γ, we obtain necessary and sufficient conditions for the existence of a possibly time-varying dynamic
Erhan ÜNAL
2017-04-01
Full Text Available The purpose of this study is to design a problem based collaborative learning environment supported by dynamic web technologies and examine students’ views about this learning environment. The study was designed as a qualitative research. 36 students who took Object Oriented Programming I-II course from a public university at the department of computer programming participated in the study. During the research process, the Object Oriented Programming I-II course was designed with incorporating different dynamic web technologies (Edmodo, Google Services, and Mind42 and Nelson (1999’s collaborative problem solving method. At the end of the course, there were focus group interviews in regards to the students’ views on a learning environment supported by dynamic web technologies and collaborative problem solving method. At the end of the focus group interviews, 4 themes were obtained from the students’ views, including positive aspects of the learning environment, difficulties faced in the learning environment, advantages of the learning environment, and skills gained as a result of the project. The results suggest that problem based collaborative learning methods and dynamic web technologies can be used in learning environments in community colleges.
Short Term Strategies for a Dynamic Multi-Period Routing Problem
Angelelli, E.; Bianchessi, N.; Mansini, R.; Speranza, M. G.
2009-01-01
We consider a Dynamic Multi-Period Routing Problem (DMPRP) faced by a company which deals with on-line pick-up requests and has to serve them by a fleet of uncapacitated vehicles over a finite time horizon. When a request is issued, a deadline of a given number of days d ≤ 2 is associated to it: if
Ünal, Erhan; Çakir, Hasan
2017-01-01
The purpose of this study was to design a problem based collaborative learning environment supported by dynamic web technologies and to examine students' views about this learning environment. The study was designed as a qualitative research. Some 36 students who took an Object Oriented Programming I-II course at the department of computer…
Analytical Solution of Nonlinear Problems in Classical Dynamics by Means of Lagrange-Ham
Kimiaeifar, Amin; Mahdavi, S. H; Rabbani, A.
2011-01-01
In this work, a powerful analytical method, called Homotopy Analysis Methods (HAM) is coupled with Lagrange method to obtain the exact solution for nonlinear problems in classic dynamics. In this work, the governing equations are obtained by using Lagrange method, and then the nonlinear governing...
Zachrisson, Henrik D.; Dearing, Eric
2015-01-01
The sociopolitical context of Norway includes low poverty rates and universal access to subsidized and regulated Early Childhood Education and Care (ECEC). In this context, the association between family income dynamics and changes in early child behavior problems was investigated, as well as whether high-quality ECEC buffers children from the…
Neill, R.H.; Channell, J.K.
1983-08-01
There are about 1000 drums of contact-handled transuranic (CH-TRU) wastes containing more than 100 Ci/drum of Pu-238 that are stored at the Savannah River Plant and at the Los Alamos National Laboratory. Studies performed at DOE laboratories have shown that large quantities of gases are generated in stored drums containing 100 Ci of 238 Pu. Concentrations of hydrogen gas in the void space of the drums are often found to be high enough to be explosive. None of the analyses in the DOE WIPP Final Environmental Impact Statement, Safety Analysis Report, and Preliminary Transportation Analysis have considered the possibility that the generation of hydrogen gas by radiolysis may create an explosive or flammable hazard that could increase the frequency and severity of accidental releases of radionuclides during transportation or handling. These high 238 Pu concentration containers would also increase the estimated doses received by individuals and populations from transportation, WIPP site operations, and human intrusion scenarios even if the possibility of gas-enhanced releases is ignored. The WIPP Project Office has evaluated this effect on WIPP site operations and is suggesting a maximum limit of 140 239 Pu equivalent curies (P-Ci) per drum so that postulated accidental off-site doses will not be larger than those listed in the FEIS. The TRUPACT container, which is being designed for the transportation of CH-TRU wastes to WIPP, does not appear to meet the Nuclear Regulatory Commission regulations requiring double containment for the transportation of plutonium in quantities >20 Ci. A 20 alpha Ci/shipment limit would require about 200,000 shipments for the 4 million curies of alpha emitters slated for WIPP
Vectorization and parallelization of the finite strip method for dynamic Mindlin plate problems
Chen, Hsin-Chu; He, Ai-Fang
1993-01-01
The finite strip method is a semi-analytical finite element process which allows for a discrete analysis of certain types of physical problems by discretizing the domain of the problem into finite strips. This method decomposes a single large problem into m smaller independent subproblems when m harmonic functions are employed, thus yielding natural parallelism at a very high level. In this paper we address vectorization and parallelization strategies for the dynamic analysis of simply-supported Mindlin plate bending problems and show how to prevent potential conflicts in memory access during the assemblage process. The vector and parallel implementations of this method and the performance results of a test problem under scalar, vector, and vector-concurrent execution modes on the Alliant FX/80 are also presented.
2014-01-01
Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP), which aims to minimize total service time, and proposes an iterated greedy (IG) algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set. PMID:25295295
Shih-Wei Lin
2014-01-01
Full Text Available Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP, which aims to minimize total service time, and proposes an iterated greedy (IG algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set.
Weixing Su
2017-03-01
Full Text Available There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell’s pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.
Su, Weixing; Chen, Hanning; Liu, Fang; Lin, Na; Jing, Shikai; Liang, Xiaodan; Liu, Wei
2017-03-01
There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC) for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell's pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.
Stelian Alaci
2014-06-01
Full Text Available The dynamical behavior study of robotic systems is obtained using multibody dynamics method. The joints met in robots are modeled in different manners. In a robotic joint the energy is lost via hysteretic work and plastic deformation work. The paper presents a comparative study for the results obtained by integration of the equations defining two limit models which describe the impact between two robot parts, modeled by the centric collision between two spheres with loss of energy. The motion equations characteristic for the two models are integrated and for a tangible situation, are presented comparatively, for different values of the coefficient of restitution, the time dependencies of impacting force between the two bodies as well as the hysteresis loops. Finally, an evaluation of the lost work during impact, for the whole range of coefficients of restitution, is completed, together with characteristic parameters of collision: approaching period, complete contact time, maximum approaching and plastic imprint.
Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming
Christensen, Tue; Andersen, Kim Allan; Klose, Andreas
2013-01-01
This paper considers a minimum-cost network flow problem in a bipartite graph with a single sink. The transportation costs exhibit a staircase cost structure because such types of transportation cost functions are often found in practice. We present a dynamic programming algorithm for solving...... this so-called single-sink, fixed-charge, multiple-choice transportation problem exactly. The method exploits heuristics and lower bounds to peg binary variables, improve bounds on flow variables, and reduce the state-space variable. In this way, the dynamic programming method is able to solve large...... instances with up to 10,000 nodes and 10 different transportation modes in a few seconds, much less time than required by a widely used mixed-integer programming solver and other methods proposed in the literature for this problem....
Leise, Tanya L.
2009-08-19
We consider the problem of the dynamic, transient propagation of a semi-infinite, mode I crack in an infinite elastic body with a nonlinear, viscoelastic cohesize zone. Our problem formulation includes boundary conditions that preclude crack face interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation is preceeded by significant crazing in a thin region surrounding the crack tip. We present a combined analytical/numerical solution method that involves reducing the problem to a Dirichlet-to-Neumann map along the crack face plane, resulting in a differo-integral equation relating the displacement and stress along the crack faces and within the cohesive zone. © 2009 Springer Science+Business Media B.V.
The coupled dynamical problem of thermoelasticity in case of large temperature differences
Szekeres, A.
1981-01-01
In the tasks of thermoelasticity in general, also in dynamical problems it is common to suppose small temperature differences. The equations used in scientific literature refer to these. It arises the thought of what is the influence on the dynamical problems of taking into account the large temperature changes. To investigate this first we present the general equation of heat conduction in case of small temperature differences according to Nowacki and Biot. On this basis we introduce the general equation of heat conduction with large temperature changes. Some remarks show the connection between the two cases. Using the latter in the equations of thermoelasticity we write down the expressions of the problem for the thermal shock of a long bar. Finally we show the results of the numerical example and the experimental opoortunity to measure some of the constants. (orig.)
Zachrisson, Henrik Daae; Dearing, Eric
2014-01-01
The sociopolitical context of Norway includes low poverty rates and universal access to subsidized and regulated Early Childhood Education and Care (ECEC). In this context, the association between family income dynamics and changes in early child behavior problems was investigated, as well as whether high quality ECEC buffers children from the effects of income dynamics. In a population-based sample (N = 75,296), within-family changes in income-to-needs predicted changes in externalizing and internalizing problems (from age 18 to 36 months), particularly for lower-income children. For internalizing problems, ECEC buffered the effect of income-to-needs changes. These findings lend further support to the potential benefits of ECEC for children from lower-income families. PMID:25345342
Introduction to Hamiltonian dynamical systems and the N-body problem
Meyer, Kenneth R
2017-01-01
This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary exa...
Reconsidering the boundary conditions for a dynamic, transient mode I crack problem
Leise, Tanya
2008-11-01
A careful examination of a dynamic mode I crack problem leads to the conclusion that the commonly used boundary conditions do not always hold in the case of an applied crack face loading, so that a modification is required to satisfy the equations. In particular, a transient compressive stress wave travels along the crack faces, moving outward from the loading region on the crack face. This does not occur in the quasistatic or steady state problems, and is a special feature of the transient dynamic problem that is important during the time interval immediately following the application of crack face loading. We demonstrate why the usual boundary conditions lead to a prediction of crack face interpenetration, and then examine how to modify the boundary condition for a semi-infinite crack with a cohesive zone. Numerical simulations illustrate the resulting approach.
Jalindre, Swaraj Sunil
Ink absorption performance in inkjet receptive coatings containing synthetic zeolite pigments was studied. Coating pigment pore and particle size distribution are the key parameters that influence in modifying media surface properties, thus affecting the rate of ink penetration and drying time (Scholkopf, et al. 2004). The primary objective of this study was: (1) to investigate the synthetic zeolite pigment effects on inkjet ink absorption, dynamic contact angle and printability, and (2) to evaluate these novel synthetic zeolite pigments in replacing the fumed silica pigments in conventional inkjet receptive coatings. In this research study, single pigment coating formulations (in equal P:B ratio) were prepared using microporous synthetic zeolite pigments (5A, Organophilic and 13X) and polyvinyl alcohol (PVOH) binder. The laboratory-coated samples were characterized for absorption, air permeance, roughness, drying time, wettability and print fidelity. Based on the rheological data, it was found that the synthetic zeolite formulated coatings depicted a Newtonian flow behavior at low shear; while the industry accepted fumed silica based coatings displayed a characteristically high pseudoplastic flow behavior. Our coated samples generated using microporous synthetic zeolite pigments produced low absorption, reduced wettability and accelerated ink drying characteristics. These characteristics were caused due to the synthetic zeolite pigments, which resulted in relatively closed surface structure coated samples. The research suggested that no single selected synthetic zeolite coating performed better than the conventional fumed silica based coatings. Experimental data also showed that there was no apparent relationship between synthetic zeolite pigment pore sizes and inkjet ink absorption. For future research, above coated samples should be evaluated for pore size distribution using Mercury Porosimeter, which quantifies surface porosity of coated samples. This presented
Metaheuristics for the dynamic stochastic dial-a-ride problem with expected return transports.
Schilde, M; Doerner, K F; Hartl, R F
2011-12-01
The problem of transporting patients or elderly people has been widely studied in literature and is usually modeled as a dial-a-ride problem (DARP). In this paper we analyze the corresponding problem arising in the daily operation of the Austrian Red Cross. This nongovernmental organization is the largest organization performing patient transportation in Austria. The aim is to design vehicle routes to serve partially dynamic transportation requests using a fixed vehicle fleet. Each request requires transportation from a patient's home location to a hospital (outbound request) or back home from the hospital (inbound request). Some of these requests are known in advance. Some requests are dynamic in the sense that they appear during the day without any prior information. Finally, some inbound requests are stochastic. More precisely, with a certain probability each outbound request causes a corresponding inbound request on the same day. Some stochastic information about these return transports is available from historical data. The purpose of this study is to investigate, whether using this information in designing the routes has a significant positive effect on the solution quality. The problem is modeled as a dynamic stochastic dial-a-ride problem with expected return transports. We propose four different modifications of metaheuristic solution approaches for this problem. In detail, we test dynamic versions of variable neighborhood search (VNS) and stochastic VNS (S-VNS) as well as modified versions of the multiple plan approach (MPA) and the multiple scenario approach (MSA). Tests are performed using 12 sets of test instances based on a real road network. Various demand scenarios are generated based on the available real data. Results show that using the stochastic information on return transports leads to average improvements of around 15%. Moreover, improvements of up to 41% can be achieved for some test instances.
Cai, Yindi; Chen, Yuan-Liu; Shimizu, Yuki; Ito, So; Gao, Wei; Zhang, Liangchi
2016-01-01
Highlights: • Subnanometric contact between a diamond tool and a copper workpiece surface is investigated by MD simulation. • A multi-relaxation time technique is proposed to eliminate the influence of the atom vibrations. • The accuracy of the elastic-plastic transition contact depth estimation is improved by observing the residual defects. • The simulation results are beneficial for optimization of the next-generation microcutting instruments. - Abstract: This paper investigates the contact characteristics between a copper workpiece and a diamond tool in a force sensor-integrated fast tool servo (FS-FTS) for single point diamond microcutting and in-process measurement of ultra-precision surface forms of the workpiece. Molecular dynamics (MD) simulations are carried out to identify the subnanometric elastic-plastic transition contact depth, at which the plastic deformation in the workpiece is initiated. This critical depth can be used to optimize the FS-FTS as well as the cutting/measurement process. It is clarified that the vibrations of the copper atoms in the MD model have a great influence on the subnanometric MD simulation results. A multi-relaxation time method is then proposed to reduce the influence of the atom vibrations based on the fact that the dominant vibration component has a certain period determined by the size of the MD model. It is also identified that for a subnanometric contact depth, the position of the tool tip for the contact force to be zero during the retracting operation of the tool does not correspond to the final depth of the permanent contact impression on the workpiece surface. The accuracy for identification of the transition contact depth is then improved by observing the residual defects on the workpiece surface after the tool retracting.
Abdel-Azeim, Safwat; Chermak, Edrisse; Vangone, Anna; Oliva, Romina; Cavallo, Luigi
2014-01-01
of the similarity between different snapshots. A "consensus contact map" is also provided, where the conservation of the different contacts is drawn in a grey scale. Finally, the interface area of the complex is monitored during the simulations. To show its utility
Lahriri, Said; Santos, Ilmar
2013-01-01
and stator. Expressions for the restoring magnetic forces are derived using Biot Savart law for uniformed magnetised bar magnets and the contact forces are derived by use of a compliant contact force model. The theoretical mathematical model is verified with experimental results, and shows good agreements...
Romit Maulik
2016-12-01
Full Text Available This paper puts forth a simplified dynamic modeling strategy for the eddy viscosity coefficient parameterized in space and time. The eddy viscosity coefficient is dynamically adjusted to the local structure of the flow using two different nonlinear eddy viscosity functional forms to capture anisotropic dissipation mechanism, namely, (i the Smagorinsky model using the local strain rate field, and (ii the Leith model using the gradient of the vorticity field. The proposed models are applied to the one-layer and two-layer wind-driven quasigeostrophic ocean circulation problems, which are standard prototypes of more realistic ocean dynamics. Results show that both models capture the quasi-stationary ocean dynamics and provide the physical level of eddy viscosity distribution without using any a priori estimation. However, it is found that slightly less dissipative results can be obtained by using the dynamic Leith model. Two-layer numerical experiments also reveal that the proposed dynamic models automatically parameterize the subgrid-scale stress terms in each active layer. Furthermore, the proposed scale-aware models dynamically provide higher values of the eddy viscosity for smaller resolutions taking into account the local resolved flow information, and addressing the intimate relationship between the eddy viscosity coefficients and the numerical resolution employed by the quasigeostrophic models.
Smith, Kyle K. G.; Poulsen, Jens Aage; Nyman, Gunnar; Rossky, Peter J.
2015-01-01
We develop two classes of quasi-classical dynamics that are shown to conserve the initial quantum ensemble when used in combination with the Feynman-Kleinert approximation of the density operator. These dynamics are used to improve the Feynman-Kleinert implementation of the classical Wigner approximation for the evaluation of quantum time correlation functions known as Feynman-Kleinert linearized path-integral. As shown, both classes of dynamics are able to recover the exact classical and high temperature limits of the quantum time correlation function, while a subset is able to recover the exact harmonic limit. A comparison of the approximate quantum time correlation functions obtained from both classes of dynamics is made with the exact results for the challenging model problems of the quartic and double-well potentials. It is found that these dynamics provide a great improvement over the classical Wigner approximation, in which purely classical dynamics are used. In a special case, our first method becomes identical to centroid molecular dynamics
Lei Wang
2017-01-01
Full Text Available In real-world manufacturing systems, production scheduling systems are often implemented under random or dynamic events like machine failure, unexpected processing times, stochastic arrival of the urgent orders, cancellation of the orders, and so on. These dynamic events will lead the initial scheduling scheme to be nonoptimal and/or infeasible. Hence, appropriate dynamic rescheduling approaches are needed to overcome the dynamic events. In this paper, we propose a dynamic rescheduling method based on variable interval rescheduling strategy (VIRS to deal with the dynamic flexible job shop scheduling problem considering machine failure, urgent job arrival, and job damage as disruptions. On the other hand, an improved genetic algorithm (GA is proposed for minimizing makespan. In our improved GA, a mix of random initialization population by combining initialization machine and initialization operation with random initialization is designed for generating high-quality initial population. In addition, the elitist strategy (ES and improved population diversity strategy (IPDS are used to avoid falling into the local optimal solution. Experimental results for static and several dynamic events in the FJSP show that our method is feasible and effective.
Efficient generalized Golub-Kahan based methods for dynamic inverse problems
Chung, Julianne; Saibaba, Arvind K.; Brown, Matthew; Westman, Erik
2018-02-01
We consider efficient methods for computing solutions to and estimating uncertainties in dynamic inverse problems, where the parameters of interest may change during the measurement procedure. Compared to static inverse problems, incorporating prior information in both space and time in a Bayesian framework can become computationally intensive, in part, due to the large number of unknown parameters. In these problems, explicit computation of the square root and/or inverse of the prior covariance matrix is not possible, so we consider efficient, iterative, matrix-free methods based on the generalized Golub-Kahan bidiagonalization that allow automatic regularization parameter and variance estimation. We demonstrate that these methods for dynamic inversion can be more flexible than standard methods and develop efficient implementations that can exploit structure in the prior, as well as possible structure in the forward model. Numerical examples from photoacoustic tomography, space-time deblurring, and passive seismic tomography demonstrate the range of applicability and effectiveness of the described approaches. Specifically, in passive seismic tomography, we demonstrate our approach on both synthetic and real data. To demonstrate the scalability of our algorithm, we solve a dynamic inverse problem with approximately 43 000 measurements and 7.8 million unknowns in under 40 s on a standard desktop.
Lorbach, Olaf; Zumbansen, Nikolaus; Kieb, Matthias; Efe, Turgay; Pizanis, Antonius; Kohn, Dieter; Haupert, Alexander
2018-04-01
Objective evaluation of the optimal graft tension angle to fully restore patellofemoral contact pressure in reconstruction of the medial patellofemoral ligament (MPFL) in comparison to the native knee. Twelve cadaveric knee specimens were fixed in a custom-made fixation device. A sensitive pressure film (Tekscan) was fixed in the patellofemoral joint, and patellofemoral contact pressure was assessed during a dynamic flexion movement from 0° to 90°. The MPFL was cut and measurements were repeated. Reconstruction of the MPFL was performed with the gracilis tendon subsequently fixed in the femur at 15°, 30°, 45°, 60°, 75°, and 90° of knee flexion under controlled tension (2 N). The sequence of the flexion angles was alternated. Pressure measurements were repeated after every fixation of the graft. No significant differences were seen in the overall patellofemoral contact pressure compared to the native knee (P > .05). However, medial patellofemoral pressure showed a significant increased patellofemoral contact pressure after MPFL reconstruction at a knee flexion angle during graft fixation of 15° (P = .027), 45° (P = .050, P = .044), and 75° (P = .039). Moreover, proximal/distal patellofemoral contact pressure revealed a significantly reduced contact pressure at 15° (P = .003), 30° (P = .009), 45° (P = .025), 75° (P = .021), and 90° (P = .022) of flexion distal after MPFL reconstruction compared with the intact knee. Lateral patellofemoral contact pressure was significantly reduced in all performed reconstructions (P angle during graft fixation for MPFL reconstruction did not have a significant impact on the overall patellofemoral contact pressure. However, selective medial, proximal, distal, and lateral patellofemoral contact pressure was significantly altered for all reconstructions. Fixation of the MPFL graft at 60° of flexion was able to most closely restore patellofemoral contact pressure compared with the intact knee. Based on the
Lavelle, Michael J; Kay, Shannon L; Pepin, Kim M; Grear, Daniel A; Campa, Henry; VerCauteren, Kurt C
2016-12-01
Direct and indirect contacts among individuals drive transmission of infectious disease. When multiple interacting species are susceptible to the same pathogen, risk assessment must include all potential host species. Bovine tuberculosis (bTB) is an example of a disease that can be transmitted among several wildlife species and to cattle, although the potential role of several wildlife species in spillback to cattle remains unclear. To better understand the complex network of contacts and factors driving disease transmission, we fitted proximity logger collars to beef and dairy cattle (n=37), white-tailed deer (Odocoileus virginianus; n=29), raccoon (Procyon lotor; n=53), and Virginia opossum (Didelphis virginiana; n=79) for 16 months in Michigan's Lower Peninsula, USA. We determined inter- and intra-species direct and indirect contact rates. Data on indirect contact was calculated when collared animals visited stationary proximity loggers placed at cattle feed and water resources. Most contact between wildlife species and cattle was indirect, with the highest contact rates occurring between raccoons and cattle during summer and fall. Nearly all visits (>99%) to cattle feed and water sources were by cattle, whereas visitation to stored cattle feed was dominated by deer and raccoon (46% and 38%, respectively). Our results suggest that indirect contact resulting from wildlife species visiting cattle-related resources could pose a risk of disease transmission to cattle and deserves continued attention with active mitigation. Published by Elsevier B.V.
Troudet, T.; Garg, S.; Merrill, W.
1992-01-01
The design of a dynamic neurocontroller with good robustness properties is presented for a multivariable aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and control input commands and rates. The neurocontroller exhibits good robustness through stability margins in phase and vehicle output gains. By maintaining performance and stability in the presence of sensor failures in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight control design.
Selected problems relating to the dynamics of block-type foundations for machines
Marek Zombroń
2014-07-01
Full Text Available Atypical but real practical problems relating to the dynamics of block-type foundations for machines are considered using the deterministic approach and assuming that the determined parameters are random variables. A foundation model in the form of an undeformable solid on which another undeformable solid modelling a machine is mounted via viscoelastic constraints was adopted. The dynamic load was defined by a harmonically varying signal and by a series of short duration signals. The vibration of the system was investigated for the case when stratified ground (groundwater occurred within the side backfill was present. Calculation results illustrating the theoretical analyses are presented.
New integrable problems in a rigid body dynamics with cubic integral in velocities
Elmandouh, A. A.
2018-03-01
We introduce a new family of the 2D integrable mechanical system possessing an additional integral of the third degree in velocities. This system contains 20 arbitrary parameters. We also clarify that the majority of the previous systems with a cubic integral can be reconstructed from it as a special version for certain values of those parameters. The applications of this system are extended to include the problem of motion of a particle and rigid body about its fixed point. We announce new integrable problems describing the motion of a particle in the plane, pseudosphere, and surfaces of variable curvature. We also present a new integrable problem in a rigid body dynamics and this problem generalizes some of the previous results for Sokolov-Tsiganov, Yehia, Stretensky, and Goriachev.
Deniz Özen
2013-03-01
Full Text Available The aim of this study is to investigate pre-service elementary mathematics teachers’ open geometric problem solving process in a Dynamic Geometry Environment. With its qualitative inquiry based research design employed, the participants of the study are three pre-service teachers from 4th graders of the Department of Elementary Mathematics Teaching. In this study, clinical interviews, screencaptures of the problem solving process in the Cabri Geomery Environment, and worksheets included 2 open geometry problems have been used to collect the data. It has been investigated that all the participants passed through similar recursive phases as construction, exploration, conjecture, validate, and justification in the problem solving process. It has been thought that this study provide a new point of view to curriculum developers, teachers and researchers
An algebraic approach to the inverse eigenvalue problem for a quantum system with a dynamical group
Wang, S.J.
1993-04-01
An algebraic approach to the inverse eigenvalue problem for a quantum system with a dynamical group is formulated for the first time. One dimensional problem is treated explicitly in detail for both the finite dimensional and infinite dimensional Hilbert spaces. For the finite dimensional Hilbert space, the su(2) algebraic representation is used; while for the infinite dimensional Hilbert space, the Heisenberg-Weyl algebraic representation is employed. Fourier expansion technique is generalized to the generator space, which is suitable for analysis of irregular spectra. The polynormial operator basis is also used for complement, which is appropriate for analysis of some simple Hamiltonians. The proposed new approach is applied to solve the classical inverse Sturn-Liouville problem and to study the problems of quantum regular and irregular spectra. (orig.)
Nelde, Peter Hans
1995-01-01
Examines the phenomenon of language contact and recent trends in linguistic contact research, which focuses on language use, language users, and language spheres. Also discusses the role of linguistic and cultural conflicts in language contact situations. (13 references) (MDM)
New scheduling rules for a dynamic flexible flow line problem with sequence-dependent setup times
Kia, Hamidreza; Ghodsypour, Seyed Hassan; Davoudpour, Hamid
2017-09-01
In the literature, the application of multi-objective dynamic scheduling problem and simple priority rules are widely studied. Although these rules are not efficient enough due to simplicity and lack of general insight, composite dispatching rules have a very suitable performance because they result from experiments. In this paper, a dynamic flexible flow line problem with sequence-dependent setup times is studied. The objective of the problem is minimization of mean flow time and mean tardiness. A 0-1 mixed integer model of the problem is formulated. Since the problem is NP-hard, four new composite dispatching rules are proposed to solve it by applying genetic programming framework and choosing proper operators. Furthermore, a discrete-event simulation model is made to examine the performances of scheduling rules considering four new heuristic rules and the six adapted heuristic rules from the literature. It is clear from the experimental results that composite dispatching rules that are formed from genetic programming have a better performance in minimization of mean flow time and mean tardiness than others.
An optimal maintenance policy for machine replacement problem using dynamic programming
Mohsen Sadegh Amalnik
2017-06-01
Full Text Available In this article, we present an acceptance sampling plan for machine replacement problem based on the backward dynamic programming model. Discount dynamic programming is used to solve a two-state machine replacement problem. We plan to design a model for maintenance by consid-ering the quality of the item produced. The purpose of the proposed model is to determine the optimal threshold policy for maintenance in a finite time horizon. We create a decision tree based on a sequential sampling including renew, repair and do nothing and wish to achieve an optimal threshold for making decisions including renew, repair and continue the production in order to minimize the expected cost. Results show that the optimal policy is sensitive to the data, for the probability of defective machines and parameters defined in the model. This can be clearly demonstrated by a sensitivity analysis technique.
Mathematical problems of the dynamics of incompressible fluid on a rotating sphere
Skiba, Yuri N
2017-01-01
This book presents selected mathematical problems involving the dynamics of a two-dimensional viscous and ideal incompressible fluid on a rotating sphere. In this case, the fluid motion is completely governed by the barotropic vorticity equation (BVE), and the viscosity term in the vorticity equation is taken in its general form, which contains the derivative of real degree of the spherical Laplace operator. This work builds a bridge between basic concepts and concrete outcomes by pursuing a rich combination of theoretical, analytical and numerical approaches, and is recommended for specialists developing mathematical methods for application to problems in physics, hydrodynamics, meteorology and geophysics, as well for upper undergraduate or graduate students in the areas of dynamics of incompressible fluid on a rotating sphere, theory of functions on a sphere, and flow stability.
On some problems of the dynamics of protons captured by geomagnetic fields
Kudela, K.; Dubinski, Yu.
1977-01-01
Problems on the dynamics of protons captured by the geomagnetic field is reviewed using new experimental data obtained from artificial satellites. The problems on radial and pitch-angular diffusion of high-energy protons on different L-shells are considered. A good agreement is shown to exist between experimental data and diffusion analysis results. The experimental researches of the changes in the fluxes of quasi-captured, captured, and spilled protons are interpreted as a result of the scattering of protons on lowfrequency waves in the magnetosphere. Presented are the graphs of measurement of the flux of spilled and quasi-ca.ptured protons on different L-shells according to the data obtained from the ''ESRO-1A'' and ''Intercosmos-5'' satellites. To clarify the dynamics of the interaction of protons with waves, it is acknowledged as necessary to pay attention to enhancing the role played by a complex character of experiments
The boundary element method applied to 3D magneto-electro-elastic dynamic problems
Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.
2017-11-01
Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.
Luo, Xiaochen; Nuttall, Amy K; Locke, Kenneth D; Hopwood, Christopher J
2018-01-01
Despite wide recognition of the importance of interpersonal problems in binge eating disorder (BED), the nature of this association remains unclear. Examining the direction of this longitudinal relationship is necessary to clarify the role that interpersonal problems play in the course of binge eating problems, and thus to specify treatment targets and mechanisms. This study aimed to articulate the bidirectional, longitudinal associations between BED and both the general severity of interpersonal problems as well as warm and dominant interpersonal styles. Severity and styles of interpersonal problems and BED symptoms were measured at baseline, 12 weeks, 24 weeks, and 36 weeks in a sample of 107 women in treatment for BED. Results from bivariate latent change score models indicated that interpersonal problem severity and BED symptoms are associated longitudinally but do not directly influence each other. The results indicated a bidirectional interrelation between binge eating symptoms and dominance such that less dominance predicted greater decreases in binge eating problems, and less binge eating symptoms predicted greater increases in dominance. We also found that binge eating symptoms positively predicted changes in warmth (i.e., less binge eating symptoms predicted less increases or more decreases in warmth). These findings highlight the importance of using dynamic models to examine directionality and delineate the distinct roles of interpersonal severity and styles in BED trajectories. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Wavelet and adaptive methods for time dependent problems and applications in aerosol dynamics
Guo, Qiang
Time dependent partial differential equations (PDEs) are widely used as mathematical models of environmental problems. Aerosols are now clearly identified as an important factor in many environmental aspects of climate and radiative forcing processes, as well as in the health effects of air quality. The mathematical models for the aerosol dynamics with respect to size distribution are nonlinear partial differential and integral equations, which describe processes of condensation, coagulation and deposition. Simulating the general aerosol dynamic equations on time, particle size and space exhibits serious difficulties because the size dimension ranges from a few nanometer to several micrometer while the spatial dimension is usually described with kilometers. Therefore, it is an important and challenging task to develop efficient techniques for solving time dependent dynamic equations. In this thesis, we develop and analyze efficient wavelet and adaptive methods for the time dependent dynamic equations on particle size and further apply them to the spatial aerosol dynamic systems. Wavelet Galerkin method is proposed to solve the aerosol dynamic equations on time and particle size due to the fact that aerosol distribution changes strongly along size direction and the wavelet technique can solve it very efficiently. Daubechies' wavelets are considered in the study due to the fact that they possess useful properties like orthogonality, compact support, exact representation of polynomials to a certain degree. Another problem encountered in the solution of the aerosol dynamic equations results from the hyperbolic form due to the condensation growth term. We propose a new characteristic-based fully adaptive multiresolution numerical scheme for solving the aerosol dynamic equation, which combines the attractive advantages of adaptive multiresolution technique and the characteristics method. On the aspect of theoretical analysis, the global existence and uniqueness of
MSSM fine tuning problem and dynamical suppression of the Higgs mass parameters
Kobayashi, Tatsuo; Terao, Haruhiko
2004-01-01
There have been several proposals for extension of the MSSM so as to ameliorate the fine tuning problem, which may be classified roughly into two categories; scenarios with enhanced quartic Higgs couplings and scenarios with radiatively stable Higgs soft masses. After a brief remark on some generic aspects of these approaches, we show a scenario with use of superconformal dynamics suppressing the Higgs mass parameters. (author)
MSSM fine tuning problem and dynamical suppression of the Higgs mass parameters
Kobayashi, Tatsuo [Kyoto Univ., Dept. of Physics, Kyoto (Japan); Terao, Haruhiko [Kanazawa Univ., Institute for Theoretical Physics, Kanazawa, Ishikawa (Japan)
2004-12-01
There have been several proposals for extension of the MSSM so as to ameliorate the fine tuning problem, which may be classified roughly into two categories; scenarios with enhanced quartic Higgs couplings and scenarios with radiatively stable Higgs soft masses. After a brief remark on some generic aspects of these approaches, we show a scenario with use of superconformal dynamics suppressing the Higgs mass parameters. (author)
Investigation of elastic stability of the lower part of drill pipe string (dynamic problems)
Griguletskii, V.G.
1981-12-01
Based on V.V. Bolotin's results, the problem of dynamic stability of the lower part of a string of drill pipes in a vertical well is formulated (and solved in the first approximation). An investigation of the phenomena during the interaction between lengthwise and transverse oscillations of the bottom part of the drill pipe string is carried out. Excitation conditions are determined and the mechanism of the onset of parametric oscillations is explained. 20 refs.
De-Lei Sheng
2016-01-01
Full Text Available Unlike traditionally used reserves models, this paper focuses on a reserve process with dynamic income to study the reinsurance-investment problem for an insurer under Vasicek stochastic interest rate model. The insurer’s dynamic income is given by the remainder after a dynamic reward budget being subtracted from the insurer’s net premium which is calculated according to expected premium principle. Applying stochastic control technique, a Hamilton-Jacobi-Bellman equation is established and the explicit solution is obtained under the objective of maximizing the insurer’s power utility of terminal wealth. Some economic interpretations of the obtained results are explained in detail. In addition, numerical analysis and several graphics are given to illustrate our results more meticulous.
Mapped Chebyshev Pseudo-Spectral Method for Dynamic Aero-Elastic Problem of Limit Cycle Oscillation
Im, Dong Kyun; Kim, Hyun Soon; Choi, Seongim
2018-05-01
A mapped Chebyshev pseudo-spectral method is developed as one of the Fourier-spectral approaches and solves nonlinear PDE systems for unsteady flows and dynamic aero-elastic problem in a given time interval, where the flows or elastic motions can be periodic, nonperiodic, or periodic with an unknown frequency. The method uses the Chebyshev polynomials of the first kind for the basis function and redistributes the standard Chebyshev-Gauss-Lobatto collocation points more evenly by a conformal mapping function for improved numerical stability. Contributions of the method are several. It can be an order of magnitude more efficient than the conventional finite difference-based, time-accurate computation, depending on the complexity of solutions and the number of collocation points. The method reformulates the dynamic aero-elastic problem in spectral form for coupled analysis of aerodynamics and structures, which can be effective for design optimization of unsteady and dynamic problems. A limit cycle oscillation (LCO) is chosen for the validation and a new method to determine the LCO frequency is introduced based on the minimization of a second derivative of the aero-elastic formulation. Two examples of the limit cycle oscillation are tested: nonlinear, one degree-of-freedom mass-spring-damper system and two degrees-of-freedom oscillating airfoil under pitch and plunge motions. Results show good agreements with those of the conventional time-accurate simulations and wind tunnel experiments.
The simplest problem in the collective dynamics of neural networks: is synchrony stable?
Timme, Marc; Wolf, Fred
2008-01-01
For spiking neural networks we consider the stability problem of global synchrony, arguably the simplest non-trivial collective dynamics in such networks. We find that even this simplest dynamical problem—local stability of synchrony—is non-trivial to solve and requires novel methods for its solution. In particular, the discrete mode of pulsed communication together with the complicated connectivity of neural interaction networks requires a non-standard approach. The dynamics in the vicinity of the synchronous state is determined by a multitude of linear operators, in contrast to a single stability matrix in conventional linear stability theory. This unusual property qualitatively depends on network topology and may be neglected for globally coupled homogeneous networks. For generic networks, however, the number of operators increases exponentially with the size of the network. We present methods to treat this multi-operator problem exactly. First, based on the Gershgorin and Perron–Frobenius theorems, we derive bounds on the eigenvalues that provide important information about the synchronization process but are not sufficient to establish the asymptotic stability or instability of the synchronous state. We then present a complete analysis of asymptotic stability for topologically strongly connected networks using simple graph-theoretical considerations. For inhibitory interactions between dissipative (leaky) oscillatory neurons the synchronous state is stable, independent of the parameters and the network connectivity. These results indicate that pulse-like interactions play a profound role in network dynamical systems, and in particular in the dynamics of biological synchronization, unless the coupling is homogeneous and all-to-all. The concepts introduced here are expected to also facilitate the exact analysis of more complicated dynamical network states, for instance the irregular balanced activity in cortical neural networks
Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70543, México, DF 04510 (Mexico)
2017-01-15
In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.
Lunkenheimer, Erika; Ram, Nilam; Skowron, Elizabeth A; Yin, Peifeng
2017-09-01
We examined self-reported maternal and paternal harsh parenting (HP) and its effect on the moment-to-moment dynamic coupling of maternal autonomy support and children's positive, autonomous behavior. This positive behavior coupling was measured via hidden Markov models as the likelihood of transitions into specific positive dyadic states in real time. We also examined whether positive behavior coupling, in turn, predicted later HP and child behavior problems. Children (N = 96; age = 3.5 years at Time 1) and mothers completed structured clean-up and puzzle tasks in the laboratory. Mothers' and fathers' HP was associated with children's being less likely to respond positively to maternal autonomy support; mothers' HP was also associated with mothers' being less likely to respond positively to children's autonomous behavior. When mothers responded to children's autonomous behavior with greater autonomy support, children showed fewer externalizing and internalizing problems over time and mothers showed less HP over time. These results were unique to the dynamic coupling of maternal autonomy support and children's autonomous behavior: The overall amount of these positive behaviors did not similarly predict reduced problems. Findings suggest that HP in the family system compromises the coregulation of positive behavior between mother and child and that improving mothers' and children's abilities to respond optimally to one another's autonomy-supportive behaviors may reduce HP and child behavior problems over time. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Mechanical Contact Experiments and Simulations
Nielsen, Chris Valentin; Martins, P; Zhang, W.
2011-01-01
Mechanical contact is studied under dynamic development by means of a combined numerical and experimental investigation. The experiments are designed to allow dynamical development of non-planar contact areas with significant expansion in all three directions as the load is increased. Different....... The overall investigation serves for testing and validating the numerical implementation of the mechanical contact, which is one of the main contributions to a system intended for 3D simulation of resistance welding. Correct modelling of contact between parts to be welded, as well as contact with electrodes......, is crucial for satisfactory modelling of the resistance welding process. The resistance heating at the contact interfaces depends on both contact area and pressure, and as the contact areas develop dynamically, the presented tests are relevant for assessing the validity and accuracy of the mechanical contact...
COMPUTER TOOLS OF DYNAMIC MATHEMATIC SOFTWARE AND METHODICAL PROBLEMS OF THEIR USE
Olena V. Semenikhina
2014-08-01
Full Text Available The article presents results of analyses of standard computer tools of dynamic mathematic software which are used in solving tasks, and tools on which the teacher can support in the teaching of mathematics. Possibility of the organization of experimental investigating of mathematical objects on the basis of these tools and the wording of new tasks on the basis of the limited number of tools, fast automated check are specified. Some methodological comments on application of computer tools and methodological features of the use of interactive mathematical environments are presented. Problems, which are arising from the use of computer tools, among which rethinking forms and methods of training by teacher, the search for creative problems, the problem of rational choice of environment, check the e-solutions, common mistakes in the use of computer tools are selected.
Morita, Akio; Teraoka, Akira
1985-01-01
Dynamic CT scan is a very useful method for the diagnosis of cerebral infarctions and other ischemic disorders. We have used this method for 1) the ultra-early stage diagnosis of major infarctions, 2) the detection of the recanalization and the disruption of the blood-brain barrier, and 3) the detection of latent ischemic lesions. In this report we discussed the clinical cases and the usual use of this dynamic CT scan. We used a GE CT/T8800 scanner for dynamic CT scanning. Manual bolus-contrast-medium injection was done simultaneously with the first scanning, and 6 sequential scannings (scan time: 4.8 s; scan interval: 1.4 s) were done on the same slice level. Especially in major infarctions (e.g., MCA occlusion), OM 40 was the most preferred slice. In cases of ultra-early stage infarctions (i.e., no abnormal lesions in non-enhanced CT), we used this dynamic CT scan immediately after the non-enhanced CT; we could thus obtain information on the ischemic lesions and the ischemic degree. After that we repeated this examination on Days 3, 7, and 14 for the evaluation of the recanalization and blood-brain-barrier disruption. In the cases of TIA and impending or progressing strokes, dynamic CT scan could disclose latent ischemic lesions; in there instances, we treated the patients with intensive to prevent the prognosis from worsening. These benefits and also some problems were discussed. (author)
Modal resonant dynamics of cables with a flexible support: A modulated diffraction problem
Guo, Tieding; Kang, Houjun; Wang, Lianhua; Liu, Qijian; Zhao, Yueyu
2018-06-01
Modal resonant dynamics of cables with a flexible support is defined as a modulated (wave) diffraction problem, and investigated by asymptotic expansions of the cable-support coupled system. The support-cable mass ratio, which is usually very large, turns out to be the key parameter for characterizing cable-support dynamic interactions. By treating the mass ratio's inverse as a small perturbation parameter and scaling the cable tension properly, both cable's modal resonant dynamics and the flexible support dynamics are asymptotically reduced by using multiple scale expansions, leading finally to a reduced cable-support coupled model (i.e., on a slow time scale). After numerical validations of the reduced coupled model, cable-support coupled responses and the flexible support induced coupling effects on the cable, are both fully investigated, based upon the reduced model. More explicitly, the dynamic effects on the cable's nonlinear frequency and force responses, caused by the support-cable mass ratio, the resonant detuning parameter and the support damping, are carefully evaluated.
Kawashima, Rumi; Matsushita, Kenji; Fujimoto, Hisataka; Maeda, Naoyuki; Nishida, Kohji
2015-01-01
To report air pressure-induced corneal deformation and iridocornea contact in eyes with primary angle closure (PAC) during intraocular pressure (IOP) measurement performed using a novel noncontact tonometer. A single case report. We report a patient with bilateral angle closure. One eye had acute PAC and the other had PAC. The latter was evaluated by the movements of the cornea and iris during IOP measurement using a noncontact tonometer. During the examination, the corneal endothelium and the iris came into contact at the mid-peripheral pupillary area in the left eye with PAC during the corneal reaction to an air puff. In contrast, the corneal endothelium in the pupillary area did not come into contact with the iris. Although we observed only 1 case and there could be limitations in its interpretation, IOP measurements using a noncontact tonometer may create mechanical stress on the corneal endothelium in eyes with PAC with a very shallow anterior chamber.
Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.
2016-01-01
Previous and new results are used to compare two mathematical insurance models with identical insurance company strategies in a financial market, namely, when the entire current surplus or its constant fraction is invested in risky assets (stocks), while the rest of the surplus is invested in a risk-free asset (bank account). Model I is the classical Cramér-Lundberg risk model with an exponential claim size distribution. Model II is a modification of the classical risk model (risk process with stochastic premiums) with exponential distributions of claim and premium sizes. For the survival probability of an insurance company over infinite time (as a function of its initial surplus), there arise singular problems for second-order linear integrodifferential equations (IDEs) defined on a semiinfinite interval and having nonintegrable singularities at zero: model I leads to a singular constrained initial value problem for an IDE with a Volterra integral operator, while II model leads to a more complicated nonlocal constrained problem for an IDE with a non-Volterra integral operator. A brief overview of previous results for these two problems depending on several positive parameters is given, and new results are presented. Additional results are concerned with the formulation, analysis, and numerical study of "degenerate" problems for both models, i.e., problems in which some of the IDE parameters vanish; moreover, passages to the limit with respect to the parameters through which we proceed from the original problems to the degenerate ones are singular for small and/or large argument values. Such problems are of mathematical and practical interest in themselves. Along with insurance models without investment, they describe the case of surplus completely invested in risk-free assets, as well as some noninsurance models of surplus dynamics, for example, charity-type models.
Cheung, Nicole W T
2015-02-01
Knowledge of the influence of couple dynamics on gender differences in gambling behavior remains meager. Building on general strain theory from the sociology of deviance and stress crossover theory from social psychology, we argue that the strain encountered by one partner in a social setting may affect his or her spouse. For instance, the wife of a man under more social strain may experience more strain in turn and thus be at a higher risk of developing disordered gambling than the wife of a man under less social strain. Using community survey data of 1620 Chinese married couples, we performed multilevel dyad analyses to address social strain and couple dynamics, in addition to their roles as predictors of gambling behavior in both spouses. This was a community survey of Hong Kong and therefore was not representative of China. Based on the DSM-IV screen, the rates of probable problem gambling and pathological gambling among male partners (12.8% vs. 2.5%) were twice those among female partners (5.2% vs. 0.3%). We also found that the social strain experienced by a male partner significantly predicted both his and his wife's likelihood of developing gambling problems. Although a female partner's exposure to social strain was a significant correlate of her gambling problem, it had no significant association with her husband's gambling behavior. These results suggest that the cross-spouse transference of social strain may be a gendered process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jean Chamberlain Chedjou
2015-01-01
Full Text Available This paper develops a flexible analytical concept for robust shortest path detection in dynamically reconfigurable graphs. The concept is expressed by a mathematical model representing the shortest path problem solver. The proposed mathematical model is characterized by three fundamental parameters expressing (a the graph topology (through the “incidence matrix”, (b the edge weights (with dynamic external weights’ setting capability, and (c the dynamic reconfigurability through external input(s of the source-destination nodes pair. In order to demonstrate the universality of the developed concept, a general algorithm is proposed to determine the three fundamental parameters (of the mathematical model developed for all types of graphs regardless of their topology, magnitude, and size. It is demonstrated that the main advantage of the developed concept is that arc costs, the origin-destination pair setting, and the graph topology are dynamically provided by external commands, which are inputs of the shortest path solver model. This enables high flexibility and full reconfigurability of the developed concept, without any retraining need. To validate the concept developed, benchmarking is performed leading to a comparison of its performance with the performances of two well-known concepts based on neural networks.
These technical contacts are available to help with questions regarding method deviations, modifications, sample problems or interferences, quality control requirements, the use of alternative methods, or the need to address analytes or sample types.
Full Text Available ... MD, professor of ophthalmology at Case Western Reserve University in Cleveland. "This is far from the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager Blinded In ...
Minimax terminal approach problem in two-level hierarchical nonlinear discrete-time dynamical system
Shorikov, A. F., E-mail: afshorikov@mail.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002, Russia Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation)
2015-11-30
We consider a discrete–time dynamical system consisting of three controllable objects. The motions of all objects are given by the corresponding vector nonlinear or linear discrete–time recurrent vector relations, and control system for its has two levels: basic (first or I level) that is dominating and subordinate level (second or II level) and both have different criterions of functioning and united a priori by determined informational and control connections defined in advance. For the dynamical system in question, we propose a mathematical formalization in the form of solving a multistep problem of two-level hierarchical minimax program control over the terminal approach process with incomplete information and give a general scheme for its solving.
Kandil, T.; Ayad, N.M.; Abdel Haleam, A.; Mahmoud, M.
2013-01-01
Egypt thermal research reactor (ETRR-2) was subjected to several Power Quality Problems such as voltage sags/swells, harmonics distortion, and short interruption. ETRR-2 encompasses a wide range of loads which are very sensitive to voltage variations and this leads to several unplanned shutdowns of the reactor due to trigger of the Reactor Protection System (RPS). The Dynamic Voltage Restorer (DVR) has recently been introduced to protect sensitive loads from voltage sags and other voltage disturbances. It is considered as one of the most efficient and effective solution. Its appeal includes smaller size and fast dynamic response to the disturbance. This paper describes a proposal of a DVR to improve power quality in ETRR-2 electrical distribution systems . The control of the compensation voltage is based on d-q-o algorithm. Simulation is carried out by Matlab/Simulink to verify the performance of the proposed method
Sijtsema, J J; Oldehinkel, A J; Veenstra, R; Verhulst, F C; Ormel, J
2014-06-01
Both structural (i.e., SES, familial psychopathology, family composition) and dynamic (i.e., parental warmth and rejection) family characteristics have been associated with aggressive and depressive problem development. However, it is unclear to what extent (changes in) dynamic family characteristics have an independent effect on problem development while accounting for stable family characteristics and comorbid problem development. This issue was addressed by studying problem development in a large community sample (N = 2,230; age 10-20) of adolescents using Linear Mixed models. Paternal and maternal warmth and rejection were assessed via the Egna Minnen Beträffande Uppfostran for Children (EMBU-C). Aggressive and depressive problems were assessed via subscales of the Youth/Adult Self-Report. Results showed that dynamic family characteristics independently affected the development of aggressive problems. Moreover, maternal rejection in preadolescence and increases in paternal rejection were associated with aggressive problems, whereas decreases in maternal rejection were associated with decreases in depressive problems over time. Paternal and maternal warmth in preadolescence was associated with fewer depressive problems during adolescence. Moreover, increases in paternal warmth were associated with fewer depressive problems over time. Aggressive problems were a stable predictor of depressive problems over time. Finally, those who increased in depressive problems became more aggressive during adolescence, whereas those who decreased in depressive problems became also less aggressive. Besides the effect of comorbid problems, problem development is to a large extent due to dynamic family characteristics, and in particular to changes in parental rejection, which leaves much room for parenting-based interventions.
Application of a numerical Laplace transform inversion technique to a problem in reactor dynamics
Ganapol, B.D.; Sumini, M.
1990-01-01
A newly developed numerical technique for the Laplace transform inversion is applied to a classical time-dependent problem of reactor physics. The dynamic behaviour of a multiplying system has been analyzed through a continuous slowing down model, taking into account a finite slowing down time, the presence of several groups of neutron precursors and simplifying the spatial analysis using the space asymptotic approximation. The results presented, show complete agreement with analytical ones previously obtained and allow a deeper understanding of the model features. (author)
Five decades of tackling models for stiff fluid dynamics problems a scientific autobiography
Zeytounian, Radyadour Kh
2014-01-01
Rationality - as opposed to 'ad-hoc' - and asymptotics - to emphasize the fact that perturbative methods are at the core of the theory - are the two main concepts associated with the Rational Asymptotic Modeling (RAM) approach in fluid dynamics when the goal is to specifically provide useful models accessible to numerical simulation via high-speed computing. This approach has contributed to a fresh understanding of Newtonian fluid flow problems and has opened up new avenues for tackling real fluid flow phenomena, which are known to lead to very difficult mathematical and numerical problems irrespective of turbulence. With the present scientific autobiography the author guides the reader through his somewhat non-traditional career; first discovering fluid mechanics, and then devoting more than fifty years to intense work in the field. Using both personal and general historical contexts, this account will be of benefit to anyone interested in the early and contemporary developments of an important branch of the...
Developing a system dynamics model to analyse environmental problem in construction site
Haron, Fatin Fasehah; Hawari, Nurul Nazihah
2017-11-01
This study aims to develop a system dynamics model at a construction site to analyse the impact of environmental problem. Construction sites may cause damages to the environment, and interference in the daily lives of residents. A proper environmental management system must be used to reduce pollution, enhance bio-diversity, conserve water, respect people and their local environment, measure performance and set targets for the environment and sustainability. This study investigates the damaging impact normally occur during the construction stage. Environmental problem will cause costly mistake in project implementation, either because of the environmental damages that are likely to arise during project implementation, or because of modification that may be required subsequently in order to make the action environmentally acceptable. Thus, findings from this study has helped in significantly reducing the damaging impact towards environment, and improve the environmental management system performance at construction site.
Sriyanyong, P. [King Mongkut' s Univ. of Technology, Bangkok (Thailand). Dept. of Teacher Training in Electrical Engineering
2008-07-01
This paper described the use of an enhanced particle swarm optimization (PSO) model to address the problem of dynamic economic dispatch (DED). A modified heuristic search method was incorporated into the PSO model. Both smooth and non-smooth cost functions were considered. The enhanced PSO model not only utilized the basic PSO algorithm in order to seek the optimal solution for the DED problem, but it also used a modified heuristic method to deal with constraints and increase the possibility of finding a feasible solution. In order to validate the enhanced PSO model, it was used and tested on 10-unit systems considering both smooth and non-smooth cost functions characteristics. The experimental results were also compared to other methods. The proposed technique was found to be better than other approaches. The enhanced PSO model outperformed others with respect to quality, stability and reliability. 23 refs., 1 tab., 8 figs.
Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten
2018-06-01
This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.
Mixed integer linear programming model for dynamic supplier selection problem considering discounts
Adi Wicaksono Purnawan
2018-01-01
Full Text Available Supplier selection is one of the most important elements in supply chain management. This function involves evaluation of many factors such as, material costs, transportation costs, quality, delays, supplier capacity, storage capacity and others. Each of these factors varies with time, therefore, supplier identified for one period is not necessarily be same for the next period to supply the same product. So, mixed integer linear programming (MILP was developed to overcome the dynamic supplier selection problem (DSSP. In this paper, a mixed integer linear programming model is built to solve the lot-sizing problem with multiple suppliers, multiple periods, multiple products and quantity discounts. The buyer has to make a decision for some products which will be supplied by some suppliers for some periods cosidering by discount. To validate the MILP model with randomly generated data. The model is solved by Lingo 16.
Cai Wingfield
2017-09-01
Full Text Available There is widespread interest in the relationship between the neurobiological systems supporting human cognition and emerging computational systems capable of emulating these capacities. Human speech comprehension, poorly understood as a neurobiological process, is an important case in point. Automatic Speech Recognition (ASR systems with near-human levels of performance are now available, which provide a computationally explicit solution for the recognition of words in continuous speech. This research aims to bridge the gap between speech recognition processes in humans and machines, using novel multivariate techniques to compare incremental 'machine states', generated as the ASR analysis progresses over time, to the incremental 'brain states', measured using combined electro- and magneto-encephalography (EMEG, generated as the same inputs are heard by human listeners. This direct comparison of dynamic human and machine internal states, as they respond to the same incrementally delivered sensory input, revealed a significant correspondence between neural response patterns in human superior temporal cortex and the structural properties of ASR-derived phonetic models. Spatially coherent patches in human temporal cortex responded selectively to individual phonetic features defined on the basis of machine-extracted regularities in the speech to lexicon mapping process. These results demonstrate the feasibility of relating human and ASR solutions to the problem of speech recognition, and suggest the potential for further studies relating complex neural computations in human speech comprehension to the rapidly evolving ASR systems that address the same problem domain.
Dong, Hao; Hu, Yahui
2018-04-01
The bend-torsion coupling dynamics load-sharing model of the helicopter face gear split torque transmission system is established by using concentrated quality standard, to analyzing the dynamic load-sharing characteristic. The mathematical models include nonlinear support stiffness, time-varying meshing stiffness, damping, gear backlash. The results showed that the errors collectively influenced the load sharing characteristics, only reduce a certain error, it is never fully reached the perfect loading sharing characteristics. The system load-sharing performance can be improved through floating shaft support. The above-method will provide a theoretical basis and data support for its dynamic performance optimization design.
Andersen, Søren Bøgh; Enemark, Søren; Santos, Ilmar
2013-01-01
A stable rotor—supported laterally by passive magnetic bearings and longitudinally by magnetic forces and a clutch—loses suddenly its contact to the clutch and executes abruptly longitudinal movements away from its original equilibrium position as a result of small increases in angular velocity...... by MCMB using several configurations of magnet distribution are described based on an accurate nonlinear model able to reliably reproduce the rotor-bearing dynamic behaviour. Such investigations lead to: (a) clear physical explanation about the reasons for the rotor's unstable behaviour, losing its...
Andersson, P. B. U.; Kropp, W.
2008-11-01
Rolling resistance, traction, wear, excitation of vibrations, and noise generation are all attributes to consider in optimisation of the interaction between automotive tyres and wearing courses of roads. The key to understand and describe the interaction is to include a wide range of length scales in the description of the contact geometry. This means including scales on the order of micrometres that have been neglected in previous tyre/road interaction models. A time domain contact model for the tyre/road interaction that includes interfacial details is presented. The contact geometry is discretised into multiple elements forming pairs of matching points. The dynamic response of the tyre is calculated by convolving the contact forces with pre-calculated Green's functions. The smaller-length scales are included by using constitutive interfacial relations, i.e. by using nonlinear contact springs, for each pair of contact elements. The method is presented for normal (out-of-plane) contact and a method for assessing the stiffness of the nonlinear springs based on detailed geometry and elastic data of the tread is suggested. The governing equations of the nonlinear contact problem are solved with the Newton-Raphson iterative scheme. Relations between force, indentation, and contact stiffness are calculated for a single tread block in contact with a road surface. The calculated results have the same character as results from measurements found in literature. Comparison to traditional contact formulations shows that the effect of the small-scale roughness is large; the contact stiffness is only up to half of the stiffness that would result if contact is made over the whole element directly to the bulk of the tread. It is concluded that the suggested contact formulation is a suitable model to include more details of the contact interface. Further, the presented result for the tread block in contact with the road is a suitable input for a global tyre/road interaction model
Carrie Ka Yuk Lin
2014-01-01
Full Text Available Logistic systems with uncertain demand, travel time, and on-site processing time are studied here where sequential trip travel is allowed. The relationship between three levels of decisions: facility location, demand allocation, and resource capacity (number of service units, satisfying the response time requirement, is analysed. The problem is formulated as a stochastic mixed integer program. A simulation-based hybrid heuristic is developed to solve the dynamic problem under different response time service level. An initial solution is obtained from solving static location-allocation models, followed by iterative improvement of the three levels of decisions by ejection, reinsertion procedure with memory of feasible and infeasible service regions. Results indicate that a higher response time service level could be achieved by allocating a given resource under an appropriate decentralized policy. Given a response time requirement, the general trend is that the minimum total capacity initially decreases with more facilities. During this stage, variability in travel time has more impact on capacity than variability in demand arrivals. Thereafter, the total capacity remains stable and then gradually increases. When service level requirement is high, the dynamic dispatch based on first-come-first-serve rule requires smaller capacity than the one by nearest-neighbour rule.
Sijtsema, J.J.; Oldehinkel, A.J.; Veenstra, R.; Verhulst, F.C.; Ormel, J.
2014-01-01
Both structural (i.e., SES, familial psychopathology, family composition) and dynamic (i.e., parental warmth and rejection) family characteristics have been associated with aggressive and depressive problem development. However, it is unclear to what extent (changes in) dynamic family
Sijtsema, J. J.; Oldehinkel, A. J.; Veenstra, René; Verhulst, F. C.; Ormel, J.
Both structural (i.e., SES, familial psychopathology, family composition) and dynamic (i.e., parental warmth and rejection) family characteristics have been associated with aggressive and depressive problem development. However, it is unclear to what extent (changes in) dynamic family
Potential for Assessing Dynamic Problem-Solving at the Beginning of Higher Education Studies
Csapó, Benő; Molnár, Gyöngyvér
2017-01-01
There is a growing demand for assessment instruments which can be used in higher education, which cover a broader area of competencies than the traditional tests for disciplinary knowledge and domain-specific skills, and which measure students' most important general cognitive capabilities. Around the age of the transition from secondary to tertiary education, such assessments may serve several functions, including selecting the best-prepared candidates for certain fields of study. Dynamic problem-solving (DPS) is a good candidate for such a role, as tasks that assess it involve knowledge acquisition and knowledge utilization as well. The purpose of this study is to validate an online DPS test and to explore its potential for assessing students' DPS skills at the beginning of their higher education studies. Participants in the study were first-year students at a major Hungarian university (n = 1468). They took five tests that measured knowledge from their previous studies: Hungarian language and literature, mathematics, history, science and English as a Foreign Language (EFL). A further, sixth test based on the MicroDYN approach, assessed students' DPS skills. A brief questionnaire explored learning strategies and collected data on students' background. The testing took place at the beginning of the first semester in three 2-h sessions. Problem-solving showed relatively strong correlations with mathematics (r = 0.492) and science (r = 0.401), and moderate correlations with EFL (r = 0.227), history (r = 0.192), and Hungarian (r = 0.125). Weak but still significant correlations were found with certain learning strategies, positive correlations with elaboration strategies, and a negative correlation with memorization strategies. Significant differences were observed between male and female students; men performed significantly better in DPS than women. Results indicated the dominant role of the first phase of solving dynamic problems, as knowledge acquisition
Potential for Assessing Dynamic Problem-Solving at the Beginning of Higher Education Studies
Benő Csapó
2017-11-01
Full Text Available There is a growing demand for assessment instruments which can be used in higher education, which cover a broader area of competencies than the traditional tests for disciplinary knowledge and domain-specific skills, and which measure students' most important general cognitive capabilities. Around the age of the transition from secondary to tertiary education, such assessments may serve several functions, including selecting the best-prepared candidates for certain fields of study. Dynamic problem-solving (DPS is a good candidate for such a role, as tasks that assess it involve knowledge acquisition and knowledge utilization as well. The purpose of this study is to validate an online DPS test and to explore its potential for assessing students' DPS skills at the beginning of their higher education studies. Participants in the study were first-year students at a major Hungarian university (n = 1468. They took five tests that measured knowledge from their previous studies: Hungarian language and literature, mathematics, history, science and English as a Foreign Language (EFL. A further, sixth test based on the MicroDYN approach, assessed students' DPS skills. A brief questionnaire explored learning strategies and collected data on students' background. The testing took place at the beginning of the first semester in three 2-h sessions. Problem-solving showed relatively strong correlations with mathematics (r = 0.492 and science (r = 0.401, and moderate correlations with EFL (r = 0.227, history (r = 0.192, and Hungarian (r = 0.125. Weak but still significant correlations were found with certain learning strategies, positive correlations with elaboration strategies, and a negative correlation with memorization strategies. Significant differences were observed between male and female students; men performed significantly better in DPS than women. Results indicated the dominant role of the first phase of solving dynamic problems, as knowledge
Potential for Assessing Dynamic Problem-Solving at the Beginning of Higher Education Studies.
Csapó, Benő; Molnár, Gyöngyvér
2017-01-01
There is a growing demand for assessment instruments which can be used in higher education, which cover a broader area of competencies than the traditional tests for disciplinary knowledge and domain-specific skills, and which measure students' most important general cognitive capabilities. Around the age of the transition from secondary to tertiary education, such assessments may serve several functions, including selecting the best-prepared candidates for certain fields of study. Dynamic problem-solving (DPS) is a good candidate for such a role, as tasks that assess it involve knowledge acquisition and knowledge utilization as well. The purpose of this study is to validate an online DPS test and to explore its potential for assessing students' DPS skills at the beginning of their higher education studies. Participants in the study were first-year students at a major Hungarian university ( n = 1468). They took five tests that measured knowledge from their previous studies: Hungarian language and literature, mathematics, history, science and English as a Foreign Language (EFL). A further, sixth test based on the MicroDYN approach, assessed students' DPS skills. A brief questionnaire explored learning strategies and collected data on students' background. The testing took place at the beginning of the first semester in three 2-h sessions. Problem-solving showed relatively strong correlations with mathematics ( r = 0.492) and science ( r = 0.401), and moderate correlations with EFL ( r = 0.227), history ( r = 0.192), and Hungarian ( r = 0.125). Weak but still significant correlations were found with certain learning strategies, positive correlations with elaboration strategies, and a negative correlation with memorization strategies. Significant differences were observed between male and female students; men performed significantly better in DPS than women. Results indicated the dominant role of the first phase of solving dynamic problems, as knowledge acquisition
A genetic algorithm for a bi-objective mathematical model for dynamic virtual cell formation problem
Moradgholi, Mostafa; Paydar, Mohammad Mahdi; Mahdavi, Iraj; Jouzdani, Javid
2016-09-01
Nowadays, with the increasing pressure of the competitive business environment and demand for diverse products, manufacturers are force to seek for solutions that reduce production costs and rise product quality. Cellular manufacturing system (CMS), as a means to this end, has been a point of attraction to both researchers and practitioners. Limitations of cell formation problem (CFP), as one of important topics in CMS, have led to the introduction of virtual CMS (VCMS). This research addresses a bi-objective dynamic virtual cell formation problem (DVCFP) with the objective of finding the optimal formation of cells, considering the material handling costs, fixed machine installation costs and variable production costs of machines and workforce. Furthermore, we consider different skills on different machines in workforce assignment in a multi-period planning horizon. The bi-objective model is transformed to a single-objective fuzzy goal programming model and to show its performance; numerical examples are solved using the LINGO software. In addition, genetic algorithm (GA) is customized to tackle large-scale instances of the problems to show the performance of the solution method.
D. A. Eliseev
2015-01-01
Full Text Available The solution stability of an initial boundary problem for a linear hybrid system of differential equations, which models the rotation of a rigid body with two elastic rods located in the same plane is studied in the paper. To an axis passing through the mass center of the rigid body perpendicularly to the rods location plane is applied the stabilizing moment proportional to the angle of the system rotation, derivative of the angle, integral of the angle. The external moment provides a feedback. A method of studying the behavior of solutions of the initial boundary problem is proposed. This method allows to exclude from the hybrid system of differential equations partial differential equations, which describe the dynamics of distributed elements of a mechanical system. It allows us to build one equation for an angle of the system rotation. Its characteristic equation defines the stability of solutions of all the system. In the space of feedback-coefficients the areas that provide the asymptotic stability of solutions of the initial boundary problem are built up.