WorldWideScience

Sample records for dynamic cluster models

  1. Single-cluster dynamics for the random-cluster model

    Science.gov (United States)

    Deng, Youjin; Qian, Xiaofeng; Blöte, Henk W. J.

    2009-09-01

    We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the q -state Potts model to noninteger values q>1 . Its results for static quantities are in a satisfactory agreement with those of the existing Swendsen-Wang-Chayes-Machta (SWCM) algorithm, which involves a full-cluster decomposition of random-cluster configurations. We explore the critical dynamics of this algorithm for several two-dimensional Potts and random-cluster models. For integer q , the single-cluster algorithm can be reduced to the Wolff algorithm, for which case we find that the autocorrelation functions decay almost purely exponentially, with dynamic exponents zexp=0.07 (1), 0.521 (7), and 1.007 (9) for q=2 , 3, and 4, respectively. For noninteger q , the dynamical behavior of the single-cluster algorithm appears to be very dissimilar to that of the SWCM algorithm. For large critical systems, the autocorrelation function displays a range of power-law behavior as a function of time. The dynamic exponents are relatively large. We provide an explanation for this peculiar dynamic behavior.

  2. Dynamic exponents for potts model cluster algorithms

    Science.gov (United States)

    Coddington, Paul D.; Baillie, Clive F.

    We have studied the Swendsen-Wang and Wolff cluster update algorithms for the Ising model in 2, 3 and 4 dimensions. The data indicate simple relations between the specific heat and the Wolff autocorrelations, and between the magnetization and the Swendsen-Wang autocorrelations. This implies that the dynamic critical exponents are related to the static exponents of the Ising model. We also investigate the possibility of similar relationships for the Q-state Potts model.

  3. Single-cluster dynamics for the random-cluster model

    NARCIS (Netherlands)

    Deng, Y.; Qian, X.; Blöte, H.W.J.

    2009-01-01

    We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the q-state Potts model to noninteger values q>1. Its results for static quantities are in a satisfactory agreement with those

  4. Single-cluster dynamics for the random-cluster model

    NARCIS (Netherlands)

    Deng, Y.; Qian, X.; Blöte, H.W.J.

    2009-01-01

    We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the q-state Potts model to noninteger values q>1. Its results for static quantities are in a satisfactory agreement with those

  5. Metal cluster fission: jellium model and Molecular dynamics simulations

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia;

    2004-01-01

    Fission of doubly charged sodium clusters is studied using the open-shell two-center deformed jellium model approximation and it ab initio molecular dynamic approach accounting for all electrons in the system. Results of calculations of fission reactions Na_10^2+ --> Na_7^+ + Na_3^+ and Na_18^2+ ...

  6. A dynamical $\\alpha$-cluster model of $^{16}$O

    CERN Document Server

    Halcrow, C J; Manton, N S

    2016-01-01

    We calculate the low-lying spectrum of the $^{16}$O nucleus using an $\\alpha$-cluster model which includes the important tetrahedral and square configurations. Our approach is motivated by the dynamics of $\\alpha$-particle scattering in the Skyrme model. We are able to replicate the large energy splitting that is observed between states of identical spin but opposite parities, as well as introduce states that were previously not found in other cluster models, such as a $0^-$ state. We also provide a novel interpretation of the first excited state of $^{16}$O and make predictions for the energies of $6^-$ states that have yet to be observed experimentally.

  7. Modeling, clustering, and segmenting video with mixtures of dynamic textures.

    Science.gov (United States)

    Chan, Antoni B; Vasconcelos, Nuno

    2008-05-01

    A dynamic texture is a spatio-temporal generative model for video, which represents video sequences as observations from a linear dynamical system. This work studies the mixture of dynamic textures, a statistical model for an ensemble of video sequences that is sampled from a finite collection of visual processes, each of which is a dynamic texture. An expectationmaximization (EM) algorithm is derived for learning the parameters of the model, and the model is related to previous works in linear systems, machine learning, time-series clustering, control theory, and computer vision. Through experimentation, it is shown that the mixture of dynamic textures is a suitable representation for both the appearance and dynamics of a variety of visual processes that have traditionally been challenging for computer vision (e.g. fire, steam, water, vehicle and pedestrian traffic, etc.). When compared with state-of-the-art methods in motion segmentation, including both temporal texture methods and traditional representations (e.g. optical flow or other localized motion representations), the mixture of dynamic textures achieves superior performance in the problems of clustering and segmenting video of such processes.

  8. Cluster Dynamics Modeling with Bubble Nucleation, Growth and Coalescence

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Blondel, Sophie [Univ. of Tennessee, Knoxville, TN (United States); Bernholdt, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States)

    2017-06-01

    The topic of this communication pertains to defect formation in irradiated solids such as plasma-facing tungsten submitted to helium implantation in fusion reactor com- ponents, and nuclear fuel (metal and oxides) submitted to volatile ssion product generation in nuclear reactors. The purpose of this progress report is to describe ef- forts towards addressing the prediction of long-time evolution of defects via continuum cluster dynamics simulation. The di culties are twofold. First, realistic, long-time dynamics in reactor conditions leads to a non-dilute di usion regime which is not accommodated by the prevailing dilute, stressless cluster dynamics theory. Second, long-time dynamics calls for a large set of species (ideally an in nite set) to capture all possible emerging defects, and this represents a computational bottleneck. Extensions beyond the dilute limit is a signi cant undertaking since no model has been advanced to extend cluster dynamics to non-dilute, deformable conditions. Here our proposed approach to model the non-dilute limit is to monitor the appearance of a spatially localized void volume fraction in the solid matrix with a bell shape pro le and insert an explicit geometrical bubble onto the support of the bell function. The newly cre- ated internal moving boundary provides the means to account for the interfacial ux of mobile species into the bubble, and the growth of bubbles allows for coalescence phenomena which captures highly non-dilute interactions. We present a preliminary interfacial kinematic model with associated interfacial di usion transport to follow the evolution of the bubble in any number of spatial dimensions and any number of bubbles, which can be further extended to include a deformation theory. Finally we comment on a computational front-tracking method to be used in conjunction with conventional cluster dynamics simulations in the non-dilute model proposed.

  9. Interloper treatment in dynamical modelling of galaxy clusters

    CERN Document Server

    Wojtak, R; Mamon, G A; Gottlöber, S; Prada, F; Moles, M; Wojtak, Radoslaw; Lokas, Ewa L.; Mamon, Gary A.; Gottloeber, Stefan; Prada, Francisco; Moles, Mariano

    2006-01-01

    The aim of this paper is to study the efficiency of different approaches to interloper treatment in dynamical modelling of galaxy clusters. Using cosmological N-body simulation of standard LCDM model we select 10 massive dark matter haloes and use their particles to emulate mock kinematic data in terms of projected galaxy positions and velocities as they would be measured by a distant observer. Taking advantage of the full 3D information available from the simulation we select samples of interlopers defined with different criteria. The interlopers thus selected provide means to assess the efficiency of different interloper removal schemes. We study direct methods of interloper removal based on dynamical or statistical restrictions imposed on ranges of positions and velocities available to cluster members. In determining these ranges we use either the velocity dispersion criterion or a maximum velocity profile. We find that the direct methods exclude on average 60-70 percent of unbound particles producing a sa...

  10. Critical dynamics of cluster algorithms in the dilute Ising model

    Science.gov (United States)

    Hennecke, M.; Heyken, U.

    1993-08-01

    Autocorrelation times for thermodynamic quantities at T C are calculated from Monte Carlo simulations of the site-diluted simple cubic Ising model, using the Swendsen-Wang and Wolff cluster algorithms. Our results show that for these algorithms the autocorrelation times decrease when reducing the concentration of magnetic sites from 100% down to 40%. This is of crucial importance when estimating static properties of the model, since the variances of these estimators increase with autocorrelation time. The dynamical critical exponents are calculated for both algorithms, observing pronounced finite-size effects in the energy autocorrelation data for the algorithm of Wolff. We conclude that, when applied to the dilute Ising model, cluster algorithms become even more effective than local algorithms, for which increasing autocorrelation times are expected.

  11. Comparative Studies of Clustering Techniques for Real-Time Dynamic Model Reduction

    CERN Document Server

    Hogan, Emilie; Halappanavar, Mahantesh; Huang, Zhenyu; Lin, Guang; Lu, Shuai; Wang, Shaobu

    2015-01-01

    Dynamic model reduction in power systems is necessary for improving computational efficiency. Traditional model reduction using linearized models or offline analysis would not be adequate to capture power system dynamic behaviors, especially the new mix of intermittent generation and intelligent consumption makes the power system more dynamic and non-linear. Real-time dynamic model reduction emerges as an important need. This paper explores the use of clustering techniques to analyze real-time phasor measurements to determine generator groups and representative generators for dynamic model reduction. Two clustering techniques -- graph clustering and evolutionary clustering -- are studied in this paper. Various implementations of these techniques are compared and also compared with a previously developed Singular Value Decomposition (SVD)-based dynamic model reduction approach. Various methods exhibit different levels of accuracy when comparing the reduced model simulation against the original model. But some ...

  12. Molecular dynamics modelling of EGCG clusters on ceramide bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Jingjie; Cheng, Yuan; Li, Weifeng; Zhang, Yong-Wei [Institute of High Performance Computing, A*STAR, 138632 (Singapore)

    2015-12-31

    A novel method of atomistic modelling and characterization of both pure ceramide and mixed lipid bilayers is being developed, using only the General Amber ForceField. Lipid bilayers modelled as pure ceramides adopt hexagonal packing after equilibration, and the area per lipid and bilayer thickness are consistent with previously reported theoretical results. Mixed lipid bilayers are modelled as a combination of ceramides, cholesterol, and free fatty acids. This model is shown to be stable after equilibration. Green tea extract, also known as epigallocatechin-3-gallate, is introduced as a spherical cluster on the surface of the mixed lipid bilayer. It is demonstrated that the cluster is able to bind to the bilayers as a cluster without diffusing into the surrounding water.

  13. Approximate Solutions of Interactive Dynamic Influence Diagrams Using Model Clustering

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Doshi, Prashant; Qiongyu, Cheng

    2007-01-01

    Interactive dynamic influence diagrams (I-DIDs) offer a transparent and semantically clear representation for the sequential decision-making problem over multiple time steps in the presence of other interacting agents. Solving I-DIDs exactly involves knowing the solutions of possible models...

  14. Approximate Solutions of Interactive Dynamic Influence Diagrams Using Model Clustering

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Doshi, Prashant; Qiongyu, Cheng

    2007-01-01

    Interactive dynamic influence diagrams (I-DIDs) offer a transparent and semantically clear representation for the sequential decision-making problem over multiple time steps in the presence of other interacting agents. Solving I-DIDs exactly involves knowing the solutions of possible models of th....... We discuss the error bound of the approximation technique and demonstrate its empirical performance....

  15. Spectral properties of the one-dimensional Hubbard model: cluster dynamical mean-field approaches

    Science.gov (United States)

    Go, Ara; Jeon, Gun Sang

    2011-03-01

    We investigate static and dynamic properties of the one-dimensional Hubbard model using cluster extensions of the dynamical mean-field theory. It is shown that the two different extensions, the cellular dynamical mean-field theory and the dynamic cluster approximation, yield the ground-state properties which are qualitatively in good agreement with each other. We compare the results with the Bethe ansatz results to check the accuracy of the calculation with finite sizes of clusters. We also analyze the spectral properties of the model with the focus on the spin-charge separation and discuss the dependency on the cluster size in the two approaches. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2010-0010937).

  16. Study of acoustic bubble cluster dynamics using a lattice Boltzmann model

    Institute of Scientific and Technical Information of China (English)

    Mahdi Daemi; Mohammad Taeibi-Rahni; Hamidreza Massah

    2015-01-01

    Search for the development of a reliable mathematical model for understanding bubble dynamics behavior is an ongoing endeavor. A long list of complex phenomena underlies physics of this problem. In the past decades, the lattice Boltzmann (LB) method has emerged as a promising tool to address such complexities. In this regard, we have applied a 121-velocity multiphase lattice Boltzmann model (LBM) to an asymmetric cluster of bubbles in an acoustic field. A problem as a benchmark is studied to check the consistency and applicability of the model. The problem of interest is to study the deformation and coalescence phenomena in bubble cluster dynamics, and the screening effect on an acoustic multi-bubble medium. It has been observed that the LB model is able to simulate the combination of the three aforementioned phenomena for a bubble cluster as a whole and for every individual bubble in the cluster.

  17. Dynamical clustering and a mechanism for raft-like structures in a model lipid membrane.

    Science.gov (United States)

    Starr, Francis W; Hartmann, Benedikt; Douglas, Jack F

    2014-05-01

    We use molecular dynamics simulations to examine the dynamical heterogeneity of a model single-component lipid membrane using a coarse-grained representation of lipid molecules. This model qualitatively reproduces the known phase transitions between disordered, ordered, and gel membrane phases, and the phase transitions are accompanied by significant changes in the nature of the lipid dynamics. In particular, lipid diffusion in the liquid-ordered phase is hindered by the transient trapping of molecules by their neighbors, similar to the dynamics of a liquid approaching its glass transition. This transient molecular caging gives rise to two distinct mobility groups within a single-component membrane: lipids that are transiently trapped, and lipids with displacements on the scale of the intermolecular spacing. Most significantly, lipids within these distinct mobility states spatially segregate, creating transient "islands" of enhanced mobility having a size and time scale compatible with lipid "rafts," dynamical structures thought to be important for cell membrane function. Although the dynamic lipid clusters that we observe do not themselves correspond to rafts (which are more complex, multicomponent structures), we hypothesize that such rafts may develop from the same universal mechanism, explaining why raft-like regions should arise, regardless of lipid structural or compositional details. These clusters are strikingly similar to the dynamical clusters found in glass-forming fluids, and distinct from phase-separation clusters. We also show that mobile lipid clusters can be dissected into smaller clusters of cooperatively rearranging molecules. The geometry of these clusters can be understood in the context of branched equilibrium polymers, related to percolation theory. We discuss how these dynamical structures relate to a range observations on the dynamics of lipid membranes.

  18. Clustering dynamic textures with the hierarchical em algorithm for modeling video.

    Science.gov (United States)

    Mumtaz, Adeel; Coviello, Emanuele; Lanckriet, Gert R G; Chan, Antoni B

    2013-07-01

    Dynamic texture (DT) is a probabilistic generative model, defined over space and time, that represents a video as the output of a linear dynamical system (LDS). The DT model has been applied to a wide variety of computer vision problems, such as motion segmentation, motion classification, and video registration. In this paper, we derive a new algorithm for clustering DT models that is based on the hierarchical EM algorithm. The proposed clustering algorithm is capable of both clustering DTs and learning novel DT cluster centers that are representative of the cluster members in a manner that is consistent with the underlying generative probabilistic model of the DT. We also derive an efficient recursive algorithm for sensitivity analysis of the discrete-time Kalman smoothing filter, which is used as the basis for computing expectations in the E-step of the HEM algorithm. Finally, we demonstrate the efficacy of the clustering algorithm on several applications in motion analysis, including hierarchical motion clustering, semantic motion annotation, and learning bag-of-systems (BoS) codebooks for dynamic texture recognition.

  19. Excitonic Insulator State of the Extended Falicov-Kimball Model in the Cluster Dynamical Impurity Approximation

    Science.gov (United States)

    Hamada, Kosuke; Kaneko, Tatsuya; Miyakoshi, Shohei; Ohta, Yukinori

    2017-07-01

    We comparatively study the excitonic insulator state in the extended Falicov-Kimball model (EFKM, a spinless two-band model) on the two-dimensional square lattice using the variational cluster approximation (VCA) and the cluster dynamical impurity approximation (CDIA). In the latter, the particle-bath sites are included in the reference cluster to take into account the particle-number fluctuations in the correlation sites. We thus calculate the particle-number distribution, order parameter, ground-state phase diagram, anomalous Green's function, and pair coherence length, thereby demonstrating the usefulness of the CDIA in the discussion of the excitonic condensation in the EFKM.

  20. Testing multimass dynamical models of star clusters with real data: mass segregation in three Galactic globular clusters

    Science.gov (United States)

    Sollima, A.; Dalessandro, E.; Beccari, G.; Pallanca, C.

    2017-02-01

    We present the results of the analysis of deep photometric data for a sample of three Galactic globular clusters (NGC5466, NGC6218 and NGC 6981) with the aim of estimating their degree of mass segregation and testing the predictions of analytic dynamical models. The adopted data set, composed of both Hubble Space Telescope and ground-based data, reaches the low-mass end of the mass functions of these clusters from the centre up to their tidal radii allowing us to derive the radial distribution of stars with different masses. All the analysed clusters show evidence of mass segregation with the most massive stars being more concentrated than the low-mass ones. The structures of NGC5466 and NGC6981 are well reproduced by multimass dynamical models adopting a lowered Maxwellian distribution function and the prescription for mass segregation given by Gunn & Griffin. Instead, NGC6218 appears to be more mass segregated than model predictions. By applying the same technique to mock observations derived from snapshots selected from suitable N-body simulations, we show that the deviation from the behaviour predicted by these models depends on the particular stage of dynamical evolution regardless of initial conditions.

  1. Cluster statistics and quasisoliton dynamics in microscopic optimal-velocity models

    Science.gov (United States)

    Yang, Bo; Xu, Xihua; Pang, John Z. F.; Monterola, Christopher

    2016-04-01

    Using the non-linear optimal velocity models as an example, we show that there exists an emergent intrinsic scale that characterizes the interaction strength between multiple clusters appearing in the solutions of such models. The interaction characterizes the dynamics of the localized quasisoliton structures given by the time derivative of the headways, and the intrinsic scale is analogous to the "charge" of the quasisolitons, leading to non-trivial cluster statistics from the random perturbations to the initial steady states of uniform headways. The cluster statistics depend both on the quasisoliton charge and the density of the traffic. The intrinsic scale is also related to an emergent quantity that gives the extremum headways in the cluster formation, as well as the coexistence curve separating the absolute stable phase from the metastable phase. The relationship is qualitatively universal for general optimal velocity models.

  2. Testing multi-mass dynamical models of star clusters with real data: mass segregation in three Galactic globular clusters

    CERN Document Server

    Sollima, A; Beccari, G; Pallanca, C

    2016-01-01

    We present the results of the analysis of deep photometric data for a sample of three Galactic globular clusters (NGC5466, NGC6218 and NGC6981) with the aim of estimating their degree of mass segregation and testing the predictions of analytic dynamical models. The adopted dataset, composed by both Hubble Space Telescope and ground based data, reaches the low-mass end of the mass functions of these clusters from the center up to their tidal radii allowing to derive their radial distribution of stars with different masses. All the analysed clusters show evidence of mass segregation with the most massive stars more concentrated than low-mass ones. The structures of NGC5466 and NGC6981 are well reproduced by multimass dynamical models adopting a lowered-Maxwellian distribution function and the prescription for mass segregation given by Gunn & Griffin (1979). Instead, NGC6218 appears to be more mass segregated than model predictions. By applying the same technique to mock observations derived from snapshots s...

  3. Empirical relations between static and dynamic exponents for Ising model cluster algorithms

    Science.gov (United States)

    Coddington, Paul D.; Baillie, Clive F.

    1992-02-01

    We have measured the autocorrelations for the Swendsen-Wang and the Wolff cluster update algorithms for the Ising model in two, three, and four dimensions. The data for the Wolff algorithm suggest that the autocorrelations are linearly related to the specific heat, in which case the dynamic critical exponent is zint,EW=α/ν. For the Swendsen-Wang algorithm, scaling the autocorrelations by the average maximum cluster size gives either a constant or a logarithm, which implies that zint,ESW=β/ν for the Ising model.

  4. Empirical relations between static and dynamic exponents for Ising model cluster algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, P.D. (Department of Physics, Syracuse University, Syracuse, New York 13244 (United States)); Baillie, C.F. (Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States))

    1992-02-17

    We have measured the autocorrelations for the Swendsen-Wang and the Wolff cluster update algorithms for the Ising model in two, three, and four dimensions. The data for the Wolff algorithm suggest that the autocorrelations are linearly related to the specific heat, in which case the dynamic critical exponent is {ital z}{sub int,}{ital E}{sup W}={alpha}/{nu}. For the Swendsen-Wang algorithm, scaling the autocorrelations by the average maximum cluster size gives either a constant or a logarithm, which implies that {ital z}{sub int,}{ital E}{sup SW}={beta}/{nu} for the Ising model.

  5. Single cluster dynamics for the infinite range O(n) model

    Science.gov (United States)

    Brower, R. C.; Gross, N. A.; Moriarty, K. J. M.; Tamayo, P.

    1994-03-01

    This paper presents a study of Wolff's single cluster acceleration algorithm for O( n) models in the infinite range or mean-field limit. Numerical results for n = 2, 3 and 4 are consistent with the complete elimination of critical slowing down. Also a heuristic argument is advanced to support the value of z = 0 for the dynamic critical exponent. A new cluster growth algorithm is formulated for the infinite range model that has optimal efficiency of O(inN) in the system size N for the Swendsen-Wang update scheme. Using an asymptotically correct version of this cluster method, we are able to perform simulations for the Wolff update scheme up to 262,144 spins for 10 5 time steps for the O( N) models.

  6. Local and cluster critical dynamics of the 3d random-site Ising model

    Science.gov (United States)

    Ivaneyko, D.; Ilnytskyi, J.; Berche, B.; Holovatch, Yu.

    2006-10-01

    We present the results of Monte Carlo simulations for the critical dynamics of the three-dimensional site-diluted quenched Ising model. Three different dynamics are considered, these correspond to the local update Metropolis scheme as well as to the Swendsen-Wang and Wolff cluster algorithms. The lattice sizes of L=10-96 are analysed by a finite-size-scaling technique. The site dilution concentration p=0.85 was chosen to minimize the correction-to-scaling effects. We calculate numerical values of the dynamical critical exponents for the integrated and exponential autocorrelation times for energy and magnetization. As expected, cluster algorithms are characterized by lower values of dynamical critical exponent than the local one: also in the case of dilution critical slowing down is more pronounced for the Metropolis algorithm. However, the striking feature of our estimates is that they suggest that dilution leads to decrease of the dynamical critical exponent for the cluster algorithms. This phenomenon is quite opposite to the local dynamics, where dilution enhances critical slowing down.

  7. Introduction to cluster dynamics

    CERN Document Server

    Reinhard, Paul-Gerhard

    2008-01-01

    Clusters as mesoscopic particles represent an intermediate state of matter between single atoms and solid material. The tendency to miniaturise technical objects requires knowledge about systems which contain a ""small"" number of atoms or molecules only. This is all the more true for dynamical aspects, particularly in relation to the qick development of laser technology and femtosecond spectroscopy. Here, for the first time is a highly qualitative introduction to cluster physics. With its emphasis on cluster dynamics, this will be vital to everyone involved in this interdisciplinary subje

  8. Dynamical Clustering and the Origin of Raft-like Structures in a Model Lipid Membrane

    Science.gov (United States)

    Starr, Francis

    2014-03-01

    We investigate the dynamical heterogeneity of a model single-component lipid membrane using simulations of a coarse-grained representation of lipid molecules. In the liquid-ordered (LO) phase, lipid diffusion is hindered by the transient trapping of molecules by their neighbors, giving rise to two distinct mobility groups: low-mobility lipids which are temporarily ``caged'', and lipids with displacements on the scale of the intermolecular spacing. The lipid molecules within these distinct mobility states cluster, giving rise to transient ``islands'' of enhanced mobility having the size and time scale expected for lipid ``rafts''. These clusters are strikingly similar to the dynamical clusters found in glass-forming fluids, and distinct from phase-separation clusters. Such dynamic heterogeneity is ubiquitous in disordered condensed-phase systems. Thus, we hypothesize that rafts may originate from this universal mechanism, explaining why raft-like regions should arise, regardless of lipid structural or compositional details. This perspective provides a new approach to understand membrane transport.

  9. The Gaia-ESO Survey: dynamical models of flattened, rotating globular clusters

    Science.gov (United States)

    Jeffreson, S. M. R.; Sanders, J. L.; Evans, N. W.; Williams, A. A.; Gilmore, G. F.; Bayo, A.; Bragaglia, A.; Casey, A. R.; Flaccomio, E.; Franciosini, E.; Hourihane, A.; Jackson, R. J.; Jeffries, R. D.; Jofré, P.; Koposov, S.; Lardo, C.; Lewis, J.; Magrini, L.; Morbidelli, L.; Pancino, E.; Randich, S.; Sacco, G. G.; Worley, C. C.; Zaggia, S.

    2017-08-01

    We present a family of self-consistent axisymmetric rotating globular cluster models which are fitted to spectroscopic data for NGC 362, NGC 1851, NGC 2808, NGC 4372, NGC 5927 and NGC 6752 to provide constraints on their physical and kinematic properties, including their rotation signals. They are constructed by flattening Modified Plummer profiles, which have the same asymptotic behaviour as classical Plummer models, but can provide better fits to young clusters due to a slower turnover in the density profile. The models are in dynamical equilibrium as they depend solely on the action variables. We employ a fully Bayesian scheme to investigate the uncertainty in our model parameters (including mass-to-light ratios and inclination angles) and evaluate the Bayesian evidence ratio for rotating to non-rotating models. We find convincing levels of rotation only in NGC 2808. In the other clusters, there is just a hint of rotation (in particular, NGC 4372 and NGC 5927), as the data quality does not allow us to draw strong conclusions. Where rotation is present, we find that it is confined to the central regions, within radii of R ≤ 2rh. As part of this work, we have developed a novel q-Gaussian basis expansion of the line-of-sight velocity distributions, from which general models can be constructed via interpolation on the basis coefficients.

  10. Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks.

    Science.gov (United States)

    Levis, Demian; Berthier, Ludovic

    2014-06-01

    We introduce a kinetic Monte Carlo model for self-propelled hard disks to capture with minimal ingredients the interplay between thermal fluctuations, excluded volume, and self-propulsion in large assemblies of active particles. We analyze in detail the resulting (density, self-propulsion) nonequilibrium phase diagram over a broad range of parameters. We find that purely repulsive hard disks spontaneously aggregate into fractal clusters as self-propulsion is increased and rationalize the evolution of the average cluster size by developing a kinetic model of reversible aggregation. As density is increased, the nonequilibrium clusters percolate to form a ramified structure reminiscent of a physical gel. We show that the addition of a finite amount of noise is needed to trigger a nonequilibrium phase separation, showing that demixing in active Brownian particles results from a delicate balance between noise, interparticle interactions, and self-propulsion. We show that self-propulsion has a profound influence on the dynamics of the active fluid. We find that the diffusion constant has a nonmonotonic behavior as self-propulsion is increased at finite density and that activity produces strong deviations from Fickian diffusion that persist over large time scales and length scales, suggesting that systems of active particles generically behave as dynamically heterogeneous systems.

  11. Globular clusters kinematics and dynamical models of the massive early-type galaxy NGC 1399

    Science.gov (United States)

    Samurović, S.

    2016-06-01

    We analyze the dynamical models of the massive early-type galaxy NGC 1399, the central galaxy of the Fornax cluster. We use the sample of 790 globular clusters as tracers of gravitational potential and we first extract the kinematics, which is then dynamically modeled. We find that the velocity dispersion remains high and approximately constant throughout the whole galaxy and that the departures from the Gaussian distribution of the orbits are not large. We use the spherical Jeans equation in both Newtonian and MOND approaches, assuming three cases of orbital anisotropies: we study isotropic, tangentially and radially anisotropic models in order to establish the best-fitting values of the mass-to-light ratios. We found that in the Newtonian approximation a significant amount of dark matter is needed and that Navarro-Frenk-White (NFW) model with a dark halo provides a satisfactory description of the kinematics of NGC 1399. We tested three MOND models (standard, simple and toy) and found that none of them can provide a fit of the velocity dispersion profile without the inclusion of dark matter. Finally, using our findings, we placed the galaxy NGC 1399 within the context of other observed early-type galaxies and discuss its location among them.

  12. Epistemic communities and cluster dynamics

    DEFF Research Database (Denmark)

    Håkanson, Lars

    2003-01-01

    This paper questions the prevailing notions that firms within industrial clusters have privi-leged access to `tacit knowledge' that is unavailable - or available only at high cost - to firms located elsewhere, and that such access provides competitive advantages that help to explain the growth...... and development of both firms and regions. It outlines a model of cluster dynam-ics emphasizing two mutually interdependent processes: the concentration of specialized and complementary epistemic communities, on the one hand, and entrepreneurship and a high rate of new firm formation on the other....

  13. Combined molecular dynamics and analytical model for repetitive cluster bombardment of solids

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, Barbara J., E-mail: bjg@psu.edu [Department of Chemistry, 104 Chemistry Building, Penn State University, University Park, PA 16802 (United States); Paruch, Robert J.; Postawa, Zbigniew [Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Kraków (Poland)

    2013-05-15

    Molecular dynamics simulations of repetitive bombardment of solids by keV cluster beams have generated so much data that easy interpretations are not possible. Moreover, although the MD simulations remove 3–4 nm of material, that is not sufficient material to determine a depth profile. The recently developed steady-state statistical sputtering model (SS-SSM) uses information from the MD simulations and incorporates it into a set of differential equations to predict a depth profile. In this study the distributions that provide the input to the SS-SSM are compared for simulations of 15 keV bombardment of Ag(1 1 1) by C{sub 60}, Au{sub 3} and Ar{sub 872} cluster beams.

  14. Cluster dynamics modeling of accumulation and diffusion of helium in neutron irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.G.; Zhou, W.H.; Huang, L.F. [Key Laboratory for Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zeng, Z., E-mail: zzeng@theory.issp.ac.cn [Key Laboratory for Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Ju, X. [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2012-12-15

    A cluster dynamics model based on rate theory has been developed to study the accumulation and diffusion processes of helium in tungsten under synergistic effects of helium implantation and neutron irradiation. By including self-interstitial atoms, vacancies and helium atoms as well as their clusters and further using more reliable parameters, the evolution of different types of defects with time and depth is investigated. The calculated results are comparable with experiments. The cases of helium plasma corresponding to the first wall and to the divertor are taken into account. The accumulation and diffusion behaviors of helium in tungsten are illustrated by the time and depth dependence of helium concentration in tungsten with or without the neutron irradiation, the contribution of different types of helium clusters/complexes to helium concentration and the depth profiles of different mobile defects and helium-vacancy complexes. It is concluded that the competition of trapping and diffusion effects dominates the behavior of helium atoms in tungsten for these two typical cases. Understanding these mechanisms is important for estimating damages to the plasma-facing materials.

  15. Stochastic dynamics of small ensembles of non-processive molecular motors: the parallel cluster model.

    Science.gov (United States)

    Erdmann, Thorsten; Albert, Philipp J; Schwarz, Ulrich S

    2013-11-07

    Non-processive molecular motors have to work together in ensembles in order to generate appreciable levels of force or movement. In skeletal muscle, for example, hundreds of myosin II molecules cooperate in thick filaments. In non-muscle cells, by contrast, small groups with few tens of non-muscle myosin II motors contribute to essential cellular processes such as transport, shape changes, or mechanosensing. Here we introduce a detailed and analytically tractable model for this important situation. Using a three-state crossbridge model for the myosin II motor cycle and exploiting the assumptions of fast power stroke kinetics and equal load sharing between motors in equivalent states, we reduce the stochastic reaction network to a one-step master equation for the binding and unbinding dynamics (parallel cluster model) and derive the rules for ensemble movement. We find that for constant external load, ensemble dynamics is strongly shaped by the catch bond character of myosin II, which leads to an increase of the fraction of bound motors under load and thus to firm attachment even for small ensembles. This adaptation to load results in a concave force-velocity relation described by a Hill relation. For external load provided by a linear spring, myosin II ensembles dynamically adjust themselves towards an isometric state with constant average position and load. The dynamics of the ensembles is now determined mainly by the distribution of motors over the different kinds of bound states. For increasing stiffness of the external spring, there is a sharp transition beyond which myosin II can no longer perform the power stroke. Slow unbinding from the pre-power-stroke state protects the ensembles against detachment.

  16. Stochastic dynamics of small ensembles of non-processive molecular motors: The parallel cluster model

    Science.gov (United States)

    Erdmann, Thorsten; Albert, Philipp J.; Schwarz, Ulrich S.

    2013-11-01

    Non-processive molecular motors have to work together in ensembles in order to generate appreciable levels of force or movement. In skeletal muscle, for example, hundreds of myosin II molecules cooperate in thick filaments. In non-muscle cells, by contrast, small groups with few tens of non-muscle myosin II motors contribute to essential cellular processes such as transport, shape changes, or mechanosensing. Here we introduce a detailed and analytically tractable model for this important situation. Using a three-state crossbridge model for the myosin II motor cycle and exploiting the assumptions of fast power stroke kinetics and equal load sharing between motors in equivalent states, we reduce the stochastic reaction network to a one-step master equation for the binding and unbinding dynamics (parallel cluster model) and derive the rules for ensemble movement. We find that for constant external load, ensemble dynamics is strongly shaped by the catch bond character of myosin II, which leads to an increase of the fraction of bound motors under load and thus to firm attachment even for small ensembles. This adaptation to load results in a concave force-velocity relation described by a Hill relation. For external load provided by a linear spring, myosin II ensembles dynamically adjust themselves towards an isometric state with constant average position and load. The dynamics of the ensembles is now determined mainly by the distribution of motors over the different kinds of bound states. For increasing stiffness of the external spring, there is a sharp transition beyond which myosin II can no longer perform the power stroke. Slow unbinding from the pre-power-stroke state protects the ensembles against detachment.

  17. Molecular dynamics modelling of nanocarbon cluster properties under conditions close to HE detonation

    Directory of Open Access Journals (Sweden)

    Sapozhnikov F.A.

    2011-01-01

    Full Text Available We use molecular dynamics for modelling properties of carbon nanoclusters. The size of modelled carbon nanoclusters is below 5 nm, which is typical of detonation diamond nanoclusters. We have found their structural changes at P = 0 to be as follows: Diamond → Diamond core + GL-surface → sandwich-type graphite → Graphite-like liquid. In smaller clusters the transformations start at a lower temperature. Adaptive Template Analysis (ATA was used to determine the structures. We studied evaporation properties at temperatures above 5000 K. For clusters of several thousands of atoms, the simple dependence kvap ∼ e−T0/T/N1/3 (T0 is constant is quite good. It has been found out that densities of saturated vapour for clusters containing from 4000 to 8000 atoms are very close at T = 5000 K. The structure of nanoclusters was studied at nonzero pressures set by an argon environment. Calculated results suggest that the patterns for different temperatures are qualitatively similar for three pressures under study (20, 25 and 30 GPa. At T = 1000–1500 K, the initial diamond core is preserved and a thin disordered GL layer is present on the surface. At T = 2000–5000 K, graphite grains form in the sample and a thin layer of liquid is present on its surface. The sample is amorphous at 5500 K and 6000 K. The prevalence of the graphite phase at these pressures seems to come from the absence of long-range interaction in REBO-2002.

  18. Stochastic dynamics of small ensembles of non-processive molecular motors: the parallel cluster model

    CERN Document Server

    Erdmann, Thorsten; Schwarz, Ulrich S

    2013-01-01

    Non-processive molecular motors have to work together in ensembles in order to generate appreciable levels of force or movement. In skeletal muscle, for example, hundreds of myosin II molecules cooperate in thick filaments. In non-muscle cells, by contrast, small groups with few tens of non-muscle myosin II motors contribute to essential cellular processes such as transport, shape changes or mechanosensing. Here we introduce a detailed and analytically tractable model for this important situation. Using a three-state crossbridge model for the myosin II motor cycle and exploiting the assumptions of fast power stroke kinetics and equal load sharing between motors in equivalent states, we reduce the stochastic reaction network to a one-step master equation for the binding and unbinding dynamics (parallel cluster model) and derive the rules for ensemble movement. We find that for constant external load, ensemble dynamics is strongly shaped by the catch bond character of myosin II, which leads to an increase of th...

  19. Entrance channel effect with stable and radioactive beams using dynamical cluster decay model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Raj, E-mail: rajkumarfzr@gmail.com [Dipartimento di Fisica “Galileo Galilei” and INFN, University of Padova, Padova-35131 (Italy); Jain, Deepika [School of Physics and Material Science, Thapar University, Patiala-147004 (India)

    2014-09-15

    The decay of hot and rotating {sup 172}Yb*, formed in two entrance channels {sup 124}Sn + {sup 48}Ca and {sup 132}Sn + {sup 40}Ca, is studied using the dynamical cluster-decay model. The effect of entrance channel, deformations (up to β{sub 2}), barrier modification and fusion enhancement are addressed. The decay pattern of compound system, formed in different channels at comparable energy around the barrier, shows change in magnitude with structure remains almost same. There is an increase in the fusion probability with decrease in barrier modification, which leads to fusion enhancement at low energies. The higher ℓ values are contributing for {sup 132}Sn + {sup 40}Ca channel at lower energies as compare to {sup 124}Sn + {sup 48}Ca. It is inferred that with the use of stable and radioactive beam, forming same compound nucleus, the entrance channel dependence changes with the excitation energy.

  20. Nonequilibrium dynamical cluster approximation study of the Falicov-Kimball model

    Science.gov (United States)

    Herrmann, Andreas J.; Tsuji, Naoto; Eckstein, Martin; Werner, Philipp

    2016-12-01

    We use a nonequilibrium implementation of the dynamical cluster approximation (DCA) to study the effect of short-range correlations on the dynamics of the two-dimensional Falicov-Kimball model after an interaction quench. As in the case of single-site dynamical mean-field theory, thermalization is absent in DCA simulations, and for quenches across the metal-insulator boundary, nearest-neighbor charge correlations in the nonthermal steady state are found to be larger than in the thermal state with identical energy. We investigate to what extent it is possible to define an effective temperature of the trapped state after a quench. Based on the ratio between the lesser and retarded Green's function, we conclude that a roughly thermal distribution is reached within the energy intervals corresponding to the momentum-patch dependent subbands of the spectral function. The effectively different chemical potentials of these distributions, however, lead to a very hot, or even negative, effective temperature in the energy intervals between these subbands.

  1. The effect of gas-dynamics on semi-analytic modeling of cluster galaxies

    CERN Document Server

    Saro, A; Dolag, K; Borgani, S

    2008-01-01

    We study the degree to which non-radiative gas dynamics affects the merger histories of haloes along with subsequent predictions from a semi-analytic model (SAM) of galaxy formation. To this aim, we use a sample of dark matter only and non-radiative SPH simulations of four massive clusters. The presence of gas-dynamical processes (e.g. ram-pressure from the hot ICM) makes haloes more fragile in the runs which include gas. This results in a 25 per cent decrease in the total number of subhaloes at z = 0. The impact on the galaxy population predicted by SAMs is complicated by the presence of "orphan" galaxies, i.e. galaxies whose parent substructures are reduced below the resolution limit of the simulation. In the model employed in our study, these galaxies survive for a residual merging time that is computed using a variation of the Chandrasekhar formula. Due to ram-pressure stripping, haloes in gas simulations tend to be less massive than their counterparts in the dark matter simulations. The resulting merging...

  2. Gas Dynamics in Galaxy Clusters

    Science.gov (United States)

    McCourt, Michael Kingsley, Jr.

    Galaxy clusters are the most massive structures in the universe and, in the hierarchical pattern of cosmological structure formation, the largest objects in the universe form last. Galaxy clusters are thus interesting objects for a number of reasons. Three examples relevant to this thesis are: 1. Constraining the properties of dark energy: Due to the hierarchical nature of structure formation, the largest objects in the universe form last. The cluster mass function is thus sensitive to the entire expansion history of the universe and can be used to constrain the properties of dark energy. This constraint complements others derived from the CMB or from Type Ia supernovae and provides an important, independent confirmation of such methods. In particular, clusters provide detailed information about the equation of state parameter w because they sample a large redshift range z ˜ 0 - 1. 2. Probing galaxy formation: Clusters contain the most massive galaxies in the uni- verse, and the most massive black holes; because clusters form so late, we can still witness the assembly of these objects in the nearby universe. Clusters thus provide a more detailed view of galaxy formation than is possible in studies of lower-mass ob- jects. An important example comes from x-ray studies of clusters, which unexpectedly found that star formation in massive galaxies in clusters is closely correlated with the properties of the hot, virialized gas in their halos. This correlation persists despite the enormous separation in temperature, in dynamical time-scales, and in length-scales between the virialized gas in the halo and the star-forming regions in the galaxy. This remains a challenge to interpret theoretically. 3. Developing our knowledge of dilute plasmas: The masses and sizes of galaxy clusters imply that the plasma which permeates them is both very hot (˜ 108 K) and very dilute (˜ 10 -2 cm-3). This plasma is collisional enough to be considered a fluid, but collisionless enough to

  3. Dynamical Models of Elliptical Galaxies -- II. M87 and its Globular Clusters

    CERN Document Server

    Agnello, A; Romanowsky, A J; Brodie, J P

    2014-01-01

    We study the Globular Cluster (GC) system of the nearby elliptical galaxy M87 using the newly available dataset with accurate kinematics (Strader et al.2011). We find evidence for three distinct sub-populations of GCs in terms of colours, kinematics and radial profiles. We show that a decomposition into three populations (blue, intermediate and red GCs) is statistically preferred to one with two or four populations, and relate them to the stellar profile. We exploit the sub-populations to derive dynamical constraints on the mass and Dark Matter (DM) content of M87 out to $\\sim100$ kpc. We use a class of global mass-estimators (from Paper I), obtaining mass measurements at different locations. M87's DM fraction changes from $\\approx$0.2 at the starlight's effective radius (6 kpc) to $\\approx$0.95 at the distance probed by the most extended, blue GCs (135 kpc). We supplement this with \\textit{virial decompositions}, exploiting the dynamical model to produce a separation into multiple components. These yield the...

  4. Compound nucleus formation probability PCN defined within the dynamical cluster-decay model

    Science.gov (United States)

    Chopra, Sahila; Kaur, Arshdeep; Gupta, Raj K.

    2015-01-01

    With in the dynamical cluster-decay model (DCM), the compound nucleus fusion/ formation probability PCN is defined for the first time, and its variation with CN excitation energy E* and fissility parameter χ is studied. In DCM, the (total) fusion cross section σfusion is sum of the compound nucleus (CN) and noncompound nucleus (nCN) decay processes, each calculated as the dynamical fragmentation process. The CN cross section σCN is constituted of the evaporation residues (ER) and fusion-fission (ff), including the intermediate mass fragments (IMFs), each calculated for all contributing decay fragments (A1, A2) in terms of their formation and barrier penetration probabilities P0 and P. The nCN cross section σnCN is determined as the quasi-fission (qf) process where P0=1 and P is calculated for the entrance channel nuclei. The calculations are presented for six different target-projectile combinations of CN mass A~100 to superheavy, at various different center-of-mass energies with effects of deformations and orientations of nuclei included in it. Interesting results are that the PCN=1 for complete fusion, but PCN <1 or ≪1 due to the nCN conribution, depending strongly on both E* and χ.

  5. Compound nucleus formation probability PCN defined within the dynamical cluster-decay model

    Directory of Open Access Journals (Sweden)

    Chopra Sahila

    2015-01-01

    Full Text Available With in the dynamical cluster-decay model (DCM, the compound nucleus fusion/ formation probability PCN is defined for the first time, and its variation with CN excitation energy E* and fissility parameter χ is studied. In DCM, the (total fusion cross section σfusion is sum of the compound nucleus (CN and noncompound nucleus (nCN decay processes, each calculated as the dynamical fragmentation process. The CN cross section σCN is constituted of the evaporation residues (ER and fusion-fission (ff, including the intermediate mass fragments (IMFs, each calculated for all contributing decay fragments (A1, A2 in terms of their formation and barrier penetration probabilities P0 and P. The nCN cross section σnCN is determined as the quasi-fission (qf process where P0=1 and P is calculated for the entrance channel nuclei. The calculations are presented for six different target-projectile combinations of CN mass A~100 to superheavy, at various different center-of-mass energies with effects of deformations and orientations of nuclei included in it. Interesting results are that the PCN=1 for complete fusion, but PCN <1 or ≪1 due to the nCN conribution, depending strongly on both E* and χ.

  6. The dynamics of general relativistic isotropic stellar cluster models -- Do relativistic extensions of the Plummer model exist?

    CERN Document Server

    De Rijcke, Sven; Boelens, Thomas

    2014-01-01

    We show that the general relativistic theory of the dynamics of isotropic stellar clusters can be developed essentially along the same lines as the Newtonian theory. We prove that the distribution function can be derived from any isotropic momentum moment and that every higher-order moment of the distribution can be written as an integral over a zeroth-order moment. We propose a mathematically simple expression for the distribution function of a family of isotropic general relativistic cluster models and investigate their dynamical properties. In the Newtonian limit, these models obtain a distribution function of the form F(E) ~ (E-E_0)^alpha, with E binding energy and E_0 a constant that determines the model's outer radius. The slope alpha sets the steepness of the distribution function and the corresponding radial density and pressure profiles. We show that the field equations only yield solutions with finite mass for alpha3.5, only Newtonian models exist. In other words: within the context of this family o...

  7. A Lagrangian model of Copepod dynamics: clustering by escape jumps in turbulence

    CERN Document Server

    Ardeshiri, Hamidreza; Schmitt, François G; Souissi, Sami; Toschi, Federico; Calzavarini, Enrico

    2016-01-01

    Planktonic copepods are small crustaceans that have the ability to swim by quick powerful jumps. Such an aptness is used to escape from high shear regions, which may be caused either by flow per- turbations, produced by a large predator (i.e. fish larvae), or by the inherent highly turbulent dynamics of the ocean. Through a combined experimental and numerical study, we investigate the impact of jumping behaviour on the small-scale patchiness of copepods in a turbulent environment. Recorded velocity tracks of copepods displaying escape response jumps in still water are here used to define and tune a Lagrangian Copepod (LC) model. The model is further employed to simulate the behaviour of thousands of copepods in a fully developed hydrodynamic turbulent flow obtained by direct numerical simulation of the Navier-Stokes equations. First, we show that the LC velocity statistics is in qualitative agreement with available experimental observations of copepods in tur- bulence. Second, we quantify the clustering of LC...

  8. Cluster dynamics modeling of He accumulation kinetics in W exposed to low-energy He plasma exposure

    Science.gov (United States)

    Blondel, Sophie; Maroudas, Dimitrios; Hu, Lin; Hammond, Karl; Wirth, Brian; PSI SciDAC Collaboration

    2015-11-01

    We report a hierarchical multi-scale modeling study of implanted helium segregation to surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics and molecular dynamics simulations to understand the origin of helium surface segregation. The near-surface cluster dynamics found in these simulations have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially-dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions, toward optimal design of plasma facing components.

  9. Dynamical Processes in Globular Clusters

    CERN Document Server

    McMillan, Stephen L W

    2014-01-01

    Globular clusters are among the most congested stellar systems in the Universe. Internal dynamical evolution drives them toward states of high central density, while simultaneously concentrating the most massive stars and binary systems in their cores. As a result, these clusters are expected to be sites of frequent close encounters and physical collisions between stars and binaries, making them efficient factories for the production of interesting and observable astrophysical exotica. I describe some elements of the competition among stellar dynamics, stellar evolution, and other processes that control globular cluster dynamics, with particular emphasis on pathways that may lead to the formation of blue stragglers.

  10. Cluster dynamics modeling of the effect of high dose irradiation and helium on the microstructure of austenitic stainless steels

    Science.gov (United States)

    Brimbal, Daniel; Fournier, Lionel; Barbu, Alain

    2016-01-01

    A mean field cluster dynamics model has been developed in order to study the effect of high dose irradiation and helium on the microstructural evolution of metals. In this model, self-interstitial clusters, stacking-fault tetrahedra and helium-vacancy clusters are taken into account, in a configuration well adapted to austenitic stainless steels. For small helium-vacancy cluster sizes, the densities of each small cluster are calculated. However, for large sizes, only the mean number of helium atoms per cluster size is calculated. This aspect allows us to calculate the evolution of the microstructural features up to high irradiation doses in a few minutes. It is shown that the presence of stacking-fault tetrahedra notably reduces cavity sizes below 400 °C, but they have little influence on the microstructure above this temperature. The binding energies of vacancies to cavities are calculated using a new method essentially based on ab initio data. It is shown that helium has little effect on the cavity microstructure at 300 °C. However, at higher temperatures, even small helium production rates such as those typical of sodium-fast-reactors induce a notable increase in cavity density compared to an irradiation without helium.

  11. Cluster Monte Carlo dynamics for the Ising model on fractal structures in dimensions between one and two

    Science.gov (United States)

    Monceau, P.; Hsiao, P.-Y.

    2003-02-01

    We study the cluster size distributions generated by the Wolff algorithm in the framework of the Ising model on Sierpinski fractals with Hausdorff dimension Df between 1 and 2. We show that these distributions exhibit a scaling property involving the magnetic exponent yh associated with one of the eigen-direction of the renormalization flows. We suggest that a single cluster tends to invade the whole lattice as Df tends towards the lower critical dimension of the Ising model, namely 1. The autocorrelation times associated with the Wolff and Swendsen-Wang algorithms enable us to calculate dynamical exponents; the cluster algorithms are shown to be more efficient in reducing the critical slowing down when Df is lowered.

  12. Dynamical Cluster-decay Model (DCM) applied to 9Li+208Pb reaction

    Science.gov (United States)

    Kaur, Arshdeep; Hemdeep; Kaushal, Pooja; Behera, Bivash R.; Gupta, Raj K.

    2017-10-01

    The decay mechanism of 217At* formed in 9Li+208Pb reaction is studied within the dynamical cluster-decay model (DCM) at various center-of-mass energies. The aim is to see the behavior of a light neutron-rich radioactive beam on a doubly-magic target nucleus for the (total) fusion cross section σfus and the individual decay channel cross sections. Experimentally, only the isotopic yield of heavy mass residues 211-214At * [equivalently, the light-particles (LPs) evaporation residue cross sections σxn for x = 3- 6 neutrons emission] are measured, with the fusion-fission (ff) component σff taken zero. For a fixed neck-length parameter ΔR, the only parameter in the DCM, we are able to fit σfus =∑x=16σxn almost exactly for 9Li on 208Pb at all E c . m .'s. However, the observed individual decay channels (3n-6n) are very poorly fitted, with unobserved channels (1n, 2n) and σff strongly over-estimated. Different ΔR values, meaning thereby different reaction time scales, are required to fit individually both the observed and unobserved evaporation residue channels (1n-6n) and σff, but then the compound nucleus (CN) contribution σCN is very small (< 1%), and the non-compound nucleus (nCN) decay cross section σnCN contributes the most towards total σfus (=σCN +σnCN). Thus, the 9Li induced reaction on doubly-magic 208Pb is more of a quasi-fission-like nCN decay, which is further analyzed in terms of the statistical CN formation probability PCN and CN survival probability Psurv. For the reaction under study, PCN < < 1 and Psurv → 1, in particular at above barrier energies.

  13. Dynamical models of elliptical galaxies - II. M87 and its globular clusters

    Science.gov (United States)

    Agnello, A.; Evans, N. W.; Romanowsky, A. J.; Brodie, J. P.

    2014-08-01

    We study the globular cluster (GC) system of the nearby elliptical galaxy M87 using the newly available data set with accurate kinematics provided by Strader et al. We find evidence for three distinct subpopulations of GCs in terms of colours, kinematics and radial profiles. A decomposition into three populations - blue, intermediate and red GCs - is statistically preferred to one with two or four populations. The existence of three components has been suggested before, but here we are able to identify them robustly and relate them to the stellar profile. We exploit the subpopulations to derive dynamical constraints on the mass and dark matter (DM) content of M87 out to ˜100 kpc. We deploy a class of global mass estimators, developed in Paper I, obtaining mass measurements at different locations. The DM fraction in M87 changes from ≈0.2 at the effective radius of the stellar light (0.02° or 6 kpc) to ≈0.95 at the distance probed by the most extended, blue GCs (0.47° or 135 kpc). We complete this analysis with virial decompositions, in which the dynamical model is used to produce velocity dispersions, which in turn are used to separate the GC populations. This ensures that the three subpopulations are simultaneously consistent with the same underlying mass profile. These yield the luminous mass as 5.5^{+1.5}_{-2.0} × 10^{11} M_{⊙} and the DM within 135 kpc as 8.0^{+1.0}_{-4.0} × 10^{12} M_{⊙}. The inner DM density behaves as ρ ˜ r-γ with γ ≈ 1.6. This is steeper than the cosmologically preferred cusp of ρ ˜ r-1 and may provide evidence of DM contraction. Finally, we combine the GC separation into three subpopulations with the Jeans equations, obtaining information on the orbital structure of the GC system. The centrally concentrated red GCs exhibit tangential anisotropy, consistent with the depletion of radial orbits by tidal shredding. The most extended blue GCs have an isotropic velocity-dispersion tensor in the central parts, which becomes

  14. Three-integral multi-component dynamical models and simulations of the nuclear star cluster in NGC 4244

    CERN Document Server

    De Lorenzi, F; Debattista, V P; Seth, A C; Gerhard, O

    2012-01-01

    Adaptive optics observations of the flattened nuclear star cluster in the nearby edge-on spiral galaxy NGC 4244 using the Gemini Near-Infrared Integral Field Spectrograph (NIFS) have revealed clear rotation. Using these kinematics plus 2MASS photometry we construct a series of axisymmetric two-component particle dynamical models with our improved version of NMAGIC, a flexible Chi^2-made-to-measure code. The models consist of a nuclear cluster disc embedded within a spheroidal particle population. We find a mass for the nuclear star cluster of M=1.6^+0.5_-0.2 x 10^7 M_sun within ~42.4 pc (2"). We also explore the presence of an intermediate mass black hole and show that models with a black hole as massive as M_bh = 5.0 x 10^5 M_sun are consistent with the available data. Regardless of whether a black hole is present or not, the nuclear cluster is vertically anisotropic (beta_z < 0), as was found with earlier two-integral models. We then use the models as initial conditions for N-body simulations. These simu...

  15. Formation and decay of the compound nucleus *220Th within the dynamical cluster-decay model

    Science.gov (United States)

    Hemdeep, Chopra, Sahila; Kaur, Arshdeep; Gupta, Raj K.

    2017-01-01

    Background: The radioactive *220Th compound nucleus (CN) is of interest since the evaporation residue (ER) cross sections are available for various entrance channels 16O+204Pb , 40Ar+180Hf , 48Ca+172Yb , and 82Se+138Ba at near barrier energies. Within the dynamical cluster-decay model (DCM), the radioactive CNs *215Fr, *242Pu, *246Bk, and *254Fm are studied where the main decay mode is fission, with very small predicted ER cross section. *220Th provides a first case with experimentally observed ER cross section instead of fission. Purpose: To look for the optimum "hot-compact" target-projectile (t-p) combinations for the synthesis of "cold"*. For best fitting of the measured ER cross sections, with quasifission (qf) content, if any, the fusion-fission (ff) component is predicted. The magic-shell structure and entrance channel mass-asymmetry effects are analyzed, and the behavior of CN formation and survival probabilities PCN and Psurv is studied. Methods: The quantum-mechanical fragmentation theory (QMFT) is used to predict the possible cold t-p combinations for synthesizing *220Th, and the QMFT-based DCM is used to analyze its decay channels for the experimentally studied entrance channels. The only parameter of the model, the neck length Δ R , varies smoothly with the excitation energy E* of CN and is used to best fit the ER data and predict qf and ff cross sections. Results: The hot-compact and "cold-elongated" fragmentation paths show dissimilar results, whose comparisons with measured fission yields result in t-p combinations, the cold reaction valleys. For the decay process, the fixed Δ R fit the measured ER cross section nicely, but not the individual decay-channel cross sections, which require the presence of qf effects, less so for asymmetric t-p combinations, and large (predicted) ff cross section. Conclusions: The calculated yields for hot-compact fragmentation path compared favorably with the observed asymmetric fission-mass distribution, resulting in

  16. Improved inference of gene regulatory networks through integrated Bayesian clustering and dynamic modeling of time-course expression data.

    Science.gov (United States)

    Godsey, Brian

    2013-01-01

    Inferring gene regulatory networks from expression data is difficult, but it is common and often useful. Most network problems are under-determined--there are more parameters than data points--and therefore data or parameter set reduction is often necessary. Correlation between variables in the model also contributes to confound network coefficient inference. In this paper, we present an algorithm that uses integrated, probabilistic clustering to ease the problems of under-determination and correlated variables within a fully Bayesian framework. Specifically, ours is a dynamic Bayesian network with integrated Gaussian mixture clustering, which we fit using variational Bayesian methods. We show, using public, simulated time-course data sets from the DREAM4 Challenge, that our algorithm outperforms non-clustering methods in many cases (7 out of 25) with fewer samples, rarely underperforming (1 out of 25), and often selects a non-clustering model if it better describes the data. Source code (GNU Octave) for BAyesian Clustering Over Networks (BACON) and sample data are available at: http://code.google.com/p/bacon-for-genetic-networks.

  17. Spatial cluster modelling

    CERN Document Server

    Lawson, Andrew B

    2002-01-01

    Research has generated a number of advances in methods for spatial cluster modelling in recent years, particularly in the area of Bayesian cluster modelling. Along with these advances has come an explosion of interest in the potential applications of this work, especially in epidemiology and genome research. In one integrated volume, this book reviews the state-of-the-art in spatial clustering and spatial cluster modelling, bringing together research and applications previously scattered throughout the literature. It begins with an overview of the field, then presents a series of chapters that illuminate the nature and purpose of cluster modelling within different application areas, including astrophysics, epidemiology, ecology, and imaging. The focus then shifts to methods, with discussions on point and object process modelling, perfect sampling of cluster processes, partitioning in space and space-time, spatial and spatio-temporal process modelling, nonparametric methods for clustering, and spatio-temporal ...

  18. Model HULIS compounds in nanoaerosol clusters – investigations of surface tension and aggregate formation using molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    T. Hede

    2011-07-01

    Full Text Available Cloud condensation nuclei act as cores for water vapour condensation, and their composition and chemical properties may enhance or depress the ability for droplet growth. In this study we use molecular dynamics simulations to show that model humic-like substances (HULIS in systems containing 10 000 water molecules mimic experimental data well referring to reduction of surface tension. The model HULIS compounds investigated in this study are cis-pinonic acid (CPA, pinic acid (PAD and pinonaldehyde (PAL. The structural properties examined show the ability for the model HULIS compounds to aggregate inside the nanoaerosol clusters.

  19. Continuum modeling of myxobacteria clustering

    Science.gov (United States)

    Harvey, Cameron W.; Alber, Mark; Tsimring, Lev S.; Aranson, Igor S.

    2013-03-01

    In this paper we develop a continuum theory of clustering in ensembles of self-propelled inelastically colliding rods with applications to collective dynamics of common gliding bacteria Myxococcus xanthus. A multi-phase hydrodynamic model that couples densities of oriented and isotropic phases is described. This model is used for the analysis of an instability that leads to spontaneous formation of directionally moving dense clusters within initially dilute isotropic ‘gas’ of myxobacteria. Numerical simulations of this model confirm the existence of stationary dense moving clusters and also elucidate the properties of their collisions. The results are shown to be in a qualitative agreement with experiments.

  20. Cluster-based control of nonlinear dynamics

    CERN Document Server

    Kaiser, Eurika; Spohn, Andreas; Cattafesta, Louis N; Morzynski, Marek

    2016-01-01

    The ability to manipulate and control fluid flows is of great importance in many scientific and engineering applications. Here, a cluster-based control framework is proposed to determine optimal control laws with respect to a cost function for unsteady flows. The proposed methodology frames high-dimensional, nonlinear dynamics into low-dimensional, probabilistic, linear dynamics which considerably simplifies the optimal control problem while preserving nonlinear actuation mechanisms. The data-driven approach builds upon a state space discretization using a clustering algorithm which groups kinematically similar flow states into a low number of clusters. The temporal evolution of the probability distribution on this set of clusters is then described by a Markov model. The Markov model can be used as predictor for the ergodic probability distribution for a particular control law. This probability distribution approximates the long-term behavior of the original system on which basis the optimal control law is de...

  1. Cluster adsorption on amorphous and crystalline surfaces - A molecular dynamics study of model Pt on Cu and model Pd on Pt

    Science.gov (United States)

    Garofalini, S. H.; Halicioglu, T.; Pound, G. M.

    1981-01-01

    Molecular dynamics was used to study the structure, dispersion and short-time behavior of ten-atom clusters adsorbed onto amorphous and crystalline substrates, in which the cluster atoms differed from the substrate atoms. Two adatom-substrate model systems were chosen; one, in which the interaction energy between adatom pairs was greater than that between substrate pairs, and the other, in which the reverse was true. At relatively low temperature ranges, increased dispersion of cluster atoms occurred: (a) on the amorphous substrate as compared to the FCC(100) surface, (b) with increasing reduced temperature, and (c) with adatom-substrate interaction energy stronger than adatom-adatom interaction. Two-dimensional clusters (rafts) on the FCC(100) surface displayed migration of edge atoms only, indicating a mechanism for the cluster rotation and shape changes found in experimental studies.

  2. Innovation, learning and cluster dynamics

    NARCIS (Netherlands)

    B. Nooteboom (Bart)

    2004-01-01

    textabstractThis chapter offers a theory and method for the analysis of the dynamics, i.e. the development, of clusters for innovation. It employs an analysis of three types of embedding: institutional embedding, which is often localized, structural embedding (network structure), and relational

  3. The Next Generation Virgo Cluster Survey. V. modeling the dynamics of M87 with the made-to-measure method

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ling; Long, R. J.; Mao, Shude [National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Rd, Chaoyang District, Beijing 100012 (China); Peng, Eric W.; Li, Biao [Department of Astronomy, Peking University, Beijing 100871 (China); Liu, Chengze [Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Caldwell, Nelson [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Blakeslee, John P.; Côté, Patrick; Ferrarese, Laura; Gwyn, Stephen [National Research Council of Canada, Victoria, BC V9E 2E7 (Canada); Cuillandre, Jean-Charles [Canada-France-Hawaii Telescope Corporation, Kamuela, HI 96743 (United States); Durrell, Patrick [Department of Physics and Astronomy, Youngstown State University, One University Plaza, Youngstown, OH 44555 (United States); Emsellem, Eric [Université de Lyon 1, CRAL, Observatoire de Lyon, 9 av. Charles André, F-69230 Saint-Genis Laval, CNRS, UMR 5574, ENS de Lyon (France); Jordán, Andrés; Muñoz, Roberto; Puzia, Thomas [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago (Chile); Lançon, Ariane [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' Universite, F-67000 Strasbourg (France); Mei, Simona, E-mail: lzhu@mpia-hd.mpg.de [GEPI, Observatoire de Paris, 77 av. Denfert Rochereau, F-75014 Paris (France)

    2014-09-01

    We study the dynamics of the giant elliptical galaxy M87 from the central to the outermost regions with the made-to-measure (M2M) method. We use a new catalog of 922 globular cluster line-of-sight velocities extending to a projected radius of 180 kpc (equivalent to 25 M87 effective radii), and SAURON integral field unit data within the central 2.4 kpc. There are 263 globular clusters, mainly located beyond 40 kpc, newly observed by the Next Generation Virgo Survey. For the M2M modeling, the gravitational potential is taken as a combination of a luminous matter potential with a constant stellar mass-to-light ratio and a dark matter potential modeled as a logarithmic potential. Our best-fit dynamical model returns a stellar mass-to-light ratio in the I band of M/L{sub I} = 6.0 ± 0.3 M{sub ⊙} L{sub ⊙}{sup −1} with a dark matter potential scale velocity of 591 ± 50 km s{sup –1} and scale radius of 42 ± 10 kpc. We determine the total mass of M87 within 180 kpc to be (1.5 ± 0.2) × 10{sup 13} M {sub ☉}. The mass within 40 kpc is smaller than previous estimates determined using globular cluster kinematics that did not extend beyond ∼45 kpc. With our new globular cluster velocities at much larger radii, we see that globular clusters around 40 kpc show an anomalously large velocity dispersion which affected previous results. The mass we derive is in good agreement with that inferred from ROSAT X-ray observation out to 180 kpc. Within 30 kpc our mass is also consistent with that inferred from Chandra and XMM-Newton X-ray observations, while within 120 kpc it is about 20% smaller. The model velocity dispersion anisotropy β parameter for the globular clusters in M87 is small, varying from –0.2 at the center to 0.2 at ∼40 kpc, and gradually decreasing to zero at ∼120 kpc.

  4. Cardiac mitochondria exhibit dynamic functional clustering

    Directory of Open Access Journals (Sweden)

    Felix Tobias Kurz

    2014-09-01

    Full Text Available Multi-oscillatory behavior of mitochondrial inner membrane potential ΔΨm in self-organized cardiac mitochondrial networks can be triggered by metabolic or oxidative stress. Spatio-temporal analyses of cardiac mitochondrial networks have shown that mitochondria are heterogeneously organized in synchronously oscillating clusters in which the mean cluster frequency and size are inversely correlated, thus suggesting a modulation of cluster frequency through local inter-mitochondrial coupling. In this study, we propose a method to examine the mitochondrial network's topology through quantification of its dynamic local clustering coefficients. Individual mitochondrial ΔΨm oscillation signals were identified for each cardiac myocyte and cross-correlated with all network mitochondria using previously described methods (Kurz et al., 2010. Time-varying inter-mitochondrial connectivity, defined for mitochondria in the whole network whose signals are at least 90% correlated at any given time point, allowed considering functional local clustering coefficients. It is shown that mitochondrial clustering in isolated cardiac myocytes changes dynamically and is significantly higher than for random mitochondrial networks that are constructed using the Erdös-Rényi model based on the same sets of vertices. The network's time-averaged clustering coefficient for cardiac myocytes was found to be 0.500 ± 0.051 (N=9 versus 0.061 ± 0.020 for random networks, respectively. Our results demonstrate that cardiac mitochondria constitute a network with dynamically connected constituents whose topological organization is prone to clustering. Cluster partitioning in networks of coupled oscillators has been observed in scale-free and chaotic systems and is therefore in good agreement with previous models of cardiac mitochondrial networks (Aon et al., 2008.

  5. Cluster dynamics transcending chemical dynamics toward nuclear fusion.

    Science.gov (United States)

    Heidenreich, Andreas; Jortner, Joshua; Last, Isidore

    2006-07-11

    Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 10(15)-10(20) W.cm(-2)). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C(4+)(D(+))(4))(n) and (D(+)I(22+))(n) at I(M) = 10(18) W.cm(-2), that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. The laser intensity and the cluster size dependence of the dynamics and energetics of CE of (D(2))(n), (HT)(n), (CD(4))(n), (DI)(n), (CD(3)I)(n), and (CH(3)I)(n) clusters were explored by electrostatic models and molecular dynamics simulations, quantifying energetic driving effects, and kinematic run-over effects. The optimization of table-top dd nuclear fusion driven by CE of deuterium containing heteroclusters is realized for light-heavy heteroclusters of the largest size, which allows for the prevalence of cluster vertical ionization at the highest intensity of the laser field. We demonstrate a 7-orders-of-magnitude enhancement of the yield of dd nuclear fusion driven by CE of light-heavy heteroclusters as compared with (D(2))(n) clusters of the same size. Prospective applications for the attainment of table-top nucleosynthesis reactions, e.g., (12)C(P,gamma)(13)N driven by CE of (CH(3)I)(n) clusters, were explored.

  6. Effect of grain size on the behavior of hydrogen/helium retention in tungsten: a cluster dynamics modeling

    Science.gov (United States)

    Zhao, Zhe; Li, Yonggang; Zhang, Chuanguo; Pan, Guyue; Tang, Panfei; Zeng, Zhi

    2017-08-01

    Reducing ion retention in materials is a key factor in the management of tritium inventory, the selection of compatible plasma-facing materials (PFMs), and thus the future development of fusion reactors. In this work, by introducing the cellular sink strength of grain boundaries (GBs) into the cluster dynamics model, the behavior of hydrogen (H) and helium (He) retention in W with different grain sizes is studied under various irradiation conditions systematically. It is found that the H/He retention increases dramatically with decreasing grain size at typical service temperatures, due to the enhancement of H/He capture ratio by GBs. Generally, He retention exists in three forms: He in GBs, in dislocations and in clusters (He m V n , He n and He n I). Our further study shows that, under the irradiation of low energy and low fluence ions, the contribution of He in clusters is negligible. The total He retention is thus dominated by the competing absorption of GBs and dislocations, that is, changing from the dislocation-based to grain boundary-based retention with decreasing grain size. H retention also presents the same behavior. In view of these grain size-related behaviors of H/He retention in W, it is suggested that coarse-grained crystals should be selected for W-based PFMs in practice.

  7. Nonlinear dynamics of electron-positron clusters

    CERN Document Server

    Manfredi, Giovanni; Haas, Fernando; 10.1088/1367-2630/14/7/075012

    2012-01-01

    Electron-positron clusters are studied using a quantum hydrodynamic model that includes Coulomb and exchange interactions. A variational Lagrangian method is used to determine their stationary and dynamical properties. The cluster static features are validated against existing Hartree-Fock calculations. In the linear response regime, we investigate both dipole and monopole (breathing) modes. The dipole mode is reminiscent of the surface plasmon mode usually observed in metal clusters. The nonlinear regime is explored by means of numerical simulations. We show that, by exciting the cluster with a chirped laser pulse with slowly varying frequency (autoresonance), it is possible to efficiently separate the electron and positron populations on a timescale of a few tens of femtoseconds.

  8. Plasma Instabilities in the Context of Current Helium Sedimentation Models: Dynamical Implications for the ICM in Galaxy Clusters

    CERN Document Server

    Berlok, Thomas

    2015-01-01

    Understanding whether Helium can sediment to the core of galaxy clusters is important for a number of problems in cosmology and astrophysics. All current models addressing this question are one-dimensional and do not account for the fact that magnetic fields can effectively channel ions and electrons, leading to anisotropic transport of momentum, heat, and particle diffusion in the weakly collisional intracluster medium (ICM). This anisotropy can lead to a wide variety of instabilities, which could be relevant for understanding the dynamics of heterogeneous media. In this paper, we consider the radial temperature and composition profiles as obtained from a state-of-the-art Helium sedimentation model and analyze its stability properties. We find that the associated radial profiles are unstable, to different kinds of instabilities depending on the magnetic field orientation, at all radii. The fastest growing modes are usually related to generalizations of the Magnetothermal Instability (MTI) and the Heat-flux-d...

  9. Structure and dynamics of cationic van-der-Waals clusters. II. Dynamics of protonated argon clusters

    Science.gov (United States)

    Ritschel, T.; Zuhrt, Ch.; Zülicke, L.; Kuntz, P. J.

    2007-01-01

    A diatomics-in-molecules (DIM) model with ab-initio input data, which in part I successfully described the structure and bonding properties of protonated argon clusters ArnH+, is used here to investigate some aspects of the dynamics of such aggregates for n up to 30. The simple triatomic ionic fragment, Ar2H+, is studied in some detail with respect to normal vibrations, characteristics of classical intramolecular dynamics as reflected in the Fourier spectra of dynamical variables, and accurate quantum states of the vibrational motion. For larger clusters ArnH+ (n ≤30), the normal vibrational frequencies (and displacement eigenvectors) are calculated and related to the cluster structure. In addition, the Fourier spectra are analyzed with respect to their variation with changing internal energy and cluster size. As expected, the clusters show some floppy character. Even a little vibrational excitation can lead to internal rearrangement and to Ar-atom evaporation from the clusters; this is studied in more detail for one small complex (n = 3). Electronic excitation to one of the low-lying excited states, which are all globally repulsive, leads to complete fragmentation (atomization) of the clusters. A variety of conceivable elementary collision processes involving protonated argon clusters are discussed. Some of these may play a role in the gas-phase formation of medium-sized ArnH+ aggregates.

  10. Cell Division, Differentiation and Dynamic Clustering

    CERN Document Server

    Kaneko, K; Kaneko, Kunihiko; Yomo, Tetsuya

    1993-01-01

    A novel mechanism for cell differentiation is proposed, based on the dynamic clustering in a globally coupled chaotic system. A simple model with metabolic reaction, active transport of chemicals from media, and cell division is found to show three successive stages with the growth of the number of cells; coherent growth, dynamic clustering, and fixed cell differentiation. At the last stage, disparity in activities, germ line segregation, somatic cell differentiation, and homeochaotic stability against external perturbation are found. Our results, in consistency with the experiments of the preceding paper, imply that cell differentiation can occur without a spatial pattern. From dynamical systems viewpoint, the new concept of ``open chaos" is proposed, as a novel and general scenario for systems with growing numbers of elements, also seen in economics and sociology.A

  11. Cluster Based Text Classification Model

    DEFF Research Database (Denmark)

    2011-01-01

    We propose a cluster based classification model for suspicious email detection and other text classification tasks. The text classification tasks comprise many training examples that require a complex classification model. Using clusters for classification makes the model simpler and increases th...... datasets. Our model also outperforms A Decision Cluster Classification (ADCC) and the Decision Cluster Forest Classification (DCFC) models on the Reuters-21578 dataset....

  12. Dynamical quorum sensing and clustering dynamics in a population of spatially distributed active rotators

    Science.gov (United States)

    Sakaguchi, Hidetsugu; Maeyama, Satomi

    2013-02-01

    A model of clustering dynamics is proposed for a population of spatially distributed active rotators. A transition from excitable to oscillatory dynamics is induced by the increase of the local density of active rotators. It is interpreted as dynamical quorum sensing. In the oscillation regime, phase waves propagate without decay, which generates an effectively long-range interaction in the clustering dynamics. The clustering process becomes facilitated and only one dominant cluster appears rapidly as a result of the dynamical quorum sensing. An exact localized solution is found to a simplified model equation, and the competitive dynamics between two localized states is studied numerically.

  13. Design of Intrusion Detection Model Based on FP-Growth and Dynamic Rule Generation with Clustering

    Directory of Open Access Journals (Sweden)

    Manish Somani

    2013-06-01

    Full Text Available Intrusion Detection is the process used to identify intrusions. If we think of the current scenario then several new intrusion that cannot be prevented by the previous algorithm, IDS is introduced to detect possible violations of a security policy by monitoring system activities and response in all times for betterment. If we detect the attack type in a particular communication environment, a response can be initiated to prevent or minimize the damage to the system. So it is a crucial concern. In our framework we present an efficient framework for intrusion detection which is based on Association Rule Mining (ARM and K-Means Clustering. K- Means clustering is use for separation of similar elements and after that association rule mining is used for better detection. Detection Rate (DR, False Positive Rate (FPR and False Negative Rate (FNR are used to measure performance and analysis experimental results.

  14. Design of Intrusion Detection Model Based on FP-Growth and Dynamic Rule Generation with Clustering

    Directory of Open Access Journals (Sweden)

    Manish Somani

    2013-06-01

    Full Text Available ntrusion Detection is the process used to identifyintrusions. If we think of the current scenario thenseveralnew intrusion that cannot be prevented bythe previous algorithm, IDS is introduced to detectpossible violations of a security policy by monitoringsystem activities and response in all times forbetterment. If we detect the attack type in aparticular communication environment, a responsecan be initiated to prevent or minimize the damageto the system. So it is a crucial concern. In ourframework we present an efficient framework forintrusion detection which is based on AssociationRule Mining (ARM and K-Means Clustering. K-Means clustering is use for separation of similarelements and after that association rule mining isused for better detection. Detection Rate (DR, FalsePositive Rate (FPR and False Negative Rate (FNRare used to measure performance and analysisexperimental results

  15. Spatial cluster detection using dynamic programming

    Directory of Open Access Journals (Sweden)

    Sverchkov Yuriy

    2012-03-01

    Full Text Available Abstract Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic

  16. The SLUGGS survey: multipopulation dynamical modelling of the elliptical galaxy NGC 1407 from stars and globular clusters

    Science.gov (United States)

    Pota, Vincenzo; Romanowsky, Aaron J.; Brodie, Jean P.; Peñarrubia, Jorge; Forbes, Duncan A.; Napolitano, Nicola R.; Foster, Caroline; Walker, Matthew G.; Strader, Jay; Roediger, Joel C.

    2015-07-01

    We perform in-depth dynamical modelling of the luminous and dark matter (DM) content of the elliptical galaxy NGC 1407. Our strategy consists of solving the spherical Jeans equations for three independent dynamical tracers: stars, blue globular clusters (GCs) and red GCs in a self-consistent manner. We adopt a maximum-likelihood Markov Chain Monte Carlo fitting technique in the attempt to constrain the inner slope of the DM density profile (the cusp/core problem), and the stellar initial mass function (IMF) of the galaxy. We find the inner logarithmic slope of the DM density profiles to be γ = 0.6 ± 0.4, which is consistent with either a DM cusp (γ = 1) or with a DM core (γ = 0). Our findings are consistent with a Salpeter IMF, and marginally consistent with a Kroupa IMF. We infer tangential orbits for the blue GCs, and radial anisotropy for red GCs and stars. The modelling results are consistent with the virial mass-concentration relation predicted by Λ cold dark matter (CDM) simulations. The virial mass of NGC 1407 is log Mvir = 13.3 ± 0.2M⊙, whereas the stellar mass is log M* = 11.8 ± 0.1 M⊙. The overall uncertainties on the mass of NGC 1407 are only 5 per cent at the projected stellar effective radius. We attribute the disagreement between our results and previous X-ray results to the gas not being in hydrostatic equilibrium in the central regions of the galaxy. The halo of NGC 1407 is found be DM-dominated, with a dynamical mass-to-light ratio of M/L=260_{-100} ^{+174} M_{⊙}/L_{⊙, B}. However, this value can be larger up to a factor of 3 depending on the assumed prior on the DM scale radius.

  17. Molecular dynamics simulations of cluster fission and fusion processes

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia

    2004-01-01

    Results of molecular dynamics simulations of fission reactions Na_10^2+ --> Na_7^+ +Na_3^+ and Na_18^2+ --> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analyzed. It is demonstrated that the energy necessary for removing homothetic...... groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual...... separation of the daughter fragments begins and/or forming a "neck" between the separating fragments. A novel algorithm for modeling the cluster growth process is described. This approach is based on dynamic search for the most stable cluster isomers and allows one to find the optimized cluster geometries...

  18. Compound nucleus formation probability PCN determined within the dynamical cluster-decay model for various "hot" fusion reactions

    Science.gov (United States)

    Kaur, Arshdeep; Chopra, Sahila; Gupta, Raj K.

    2014-08-01

    The compound nucleus (CN) fusion/formation probability PCN is defined and its detailed variations with the CN excitation energy E*, center-of-mass energy Ec .m., fissility parameter χ, CN mass number ACN, and Coulomb interaction parameter Z1Z2 are studied for the first time within the dynamical cluster-decay model (DCM). The model is a nonstatistical description of the decay of a CN to all possible processes. The (total) fusion cross section σfusion is the sum of the CN and noncompound nucleus (nCN) decay cross sections, each calculated as the dynamical fragmentation process. The CN cross section σCN is constituted of evaporation residues and fusion-fission, including intermediate-mass fragments, each calculated for all contributing decay fragments (A1, A2) in terms of their formation and barrier penetration probabilities P0 and P. The nCN cross section σnCN is determined as the quasi-fission (qf) process, where P0=1 and P is calculated for the entrance-channel nuclei. The DCM, with effects of deformations and orientations of nuclei included in it, is used to study the PCN for about a dozen "hot" fusion reactions forming a CN of mass number A ˜100 to superheavy nuclei and for various different nuclear interaction potentials. Interesting results are that PCN=1 for complete fusion, but PCNPCN≪1 due to the nCN contribution, depending strongly on different parameters of the entrance-channel reaction but found to be independent of the nuclear interaction potentials used.

  19. Cluster Monte Carlo distributions in fractal dimensions between two and three: Scaling properties and dynamical aspects for the Ising model

    Science.gov (United States)

    Monceau, Pascal; Hsiao, Pai-Yi

    2002-09-01

    We study the Wolff cluster size distributions obtained from Monte Carlo simulations of the Ising phase transition on Sierpinski fractals with Hausdorff dimensions Df between 2 and 3. These distributions are shown to be invariant when going from an iteration step of the fractal to the next under a scaling of the cluster sizes involving the exponent (β/ν)+(γ/ν). Moreover, the decay of the autocorrelation functions at the critical points enables us to calculate the Wolff dynamical critical exponents z for three different values of Df. The Wolff algorithm is more efficient in reducing the critical slowing down when Df is lowered.

  20. Shape effects on the cluster spreading process of spin-crossover compounds analyzed within an elastic model with Eden and Kawasaki dynamics

    Science.gov (United States)

    Enachescu, Cristian; Nishino, Masamichi; Miyashita, Seiji; Boukheddaden, Kamel; Varret, François; Rikvold, Per Arne

    2015-03-01

    In this paper we study the growth properties of domains of low-spin molecules in a high-spin background in open-boundary elliptically shaped spin-crossover systems within the framework of a mechanoelastic model. The molecules are situated on a triangular lattice and are linked by springs, through which they interact. Elliptical shapes are chosen in order to allow an in-depth analysis of cluster shapes as a function of the local curvature at their starting point and the length of the interface between the two phases. In contrast to the case of rectangular and hexagonal shapes, where the clusters always start from corners, we find that for ellipses clusters nucleate from vertices, covertices, or any other site. We apply and compare two kinds of dynamics, Eden-like and Kawasaki, in order to determine the stable shape of the clusters and the most probable starting points. We show that the wetting angle for small clusters is somewhat higher than π /2 and approaches this value only for large clusters. The stability of clusters is analyzed by comparing the Gibbs free energy to the elastic energy in the system and is discussed as a function of the cluster size, curvature of the starting place, and temperature.

  1. Cluster Dynamics in a Circulating Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, C.P.; Breault, R.W.

    2006-11-01

    A common hydrodynamic feature in industrial scale circulating fluidized beds is the presence of clusters. The continuous formation and destruction of clusters strongly influences particle hold-up, pressure drop, heat transfer at the wall, and mixing. In this paper fiber optic data is analyzed using discrete wavelet analysis to characterize the dynamic behavior of clusters. Five radial positions at three different axial locations under five different operating were analyzed using discrete wavelets. Results are summarized with respect to cluster size and frequency.

  2. Relevance of Dynamic Clustering to Biological Networks

    CERN Document Server

    Kaneko, K

    1993-01-01

    Abstract Network of nonlinear dynamical elements often show clustering of synchronization by chaotic instability. Relevance of the clustering to ecological, immune, neural, and cellular networks is discussed, with the emphasis of partially ordered states with chaotic itinerancy. First, clustering with bit structures in a hypercubic lattice is studied. Spontaneous formation and destruction of relevant bits are found, which give self-organizing, and chaotic genetic algorithms. When spontaneous changes of effective couplings are introduced, chaotic itinerancy of clusterings is widely seen through a feedback mechanism, which supports dynamic stability allowing for complexity and diversity, known as homeochaos. Second, synaptic dynamics of couplings is studied in relation with neural dynamics. The clustering structure is formed with a balance between external inputs and internal dynamics. Last, an extension allowing for the growth of the number of elements is given, in connection with cell differentiation. Effecti...

  3. 3D simulation of the Cluster-Cluster Aggregation model

    Science.gov (United States)

    Li, Chao; Xiong, Hailing

    2014-12-01

    We write a program to implement the Cluster-Cluster Aggregation (CCA) model with java programming language. By using the simulation program, the fractal aggregation growth process can be displayed dynamically in the form of a three-dimensional (3D) figure. Meanwhile, the related kinetics data of aggregation simulation can be also recorded dynamically. Compared to the traditional programs, the program has better real-time performance and is more helpful to observe the fractal growth process, which contributes to the scientific study in fractal aggregation. Besides, because of adopting java programming language, the program has very good cross-platform performance.

  4. Cluster analysis of word frequency dynamics

    Science.gov (United States)

    Maslennikova, Yu S.; Bochkarev, V. V.; Belashova, I. A.

    2015-01-01

    This paper describes the analysis and modelling of word usage frequency time series. During one of previous studies, an assumption was put forward that all word usage frequencies have uniform dynamics approaching the shape of a Gaussian function. This assumption can be checked using the frequency dictionaries of the Google Books Ngram database. This database includes 5.2 million books published between 1500 and 2008. The corpus contains over 500 billion words in American English, British English, French, German, Spanish, Russian, Hebrew, and Chinese. We clustered time series of word usage frequencies using a Kohonen neural network. The similarity between input vectors was estimated using several algorithms. As a result of the neural network training procedure, more than ten different forms of time series were found. They describe the dynamics of word usage frequencies from birth to death of individual words. Different groups of word forms were found to have different dynamics of word usage frequency variations.

  5. Variance Clustering Improved Dynamic Conditional Correlation MGARCH Estimators

    OpenAIRE

    Gian Piero Aielli; Massimiliano Caporin

    2011-01-01

    It is well-known that the estimated GARCH dynamics exhibit common patterns. Starting from this fact we extend the Dynamic Conditional Correlation (DCC) model by allowing for a cluster- ing structure of the univariate GARCH parameters. The model can be estimated in two steps, the first devoted to the clustering structure, and the second focusing on correlation parameters. Differently from the traditional two-step DCC estimation, we get large system feasibility of the joint estimation of the wh...

  6. The formation and dynamical evolution of young star clusters

    CERN Document Server

    Fujii, Michiko

    2015-01-01

    Recent observations have revealed a variety of young star clusters, including embedded systems, young massive clusters, and associations. We study the formation and dynamical evolution of these clusters using a combination of simulations and theoretical models. Our simulations start with a turbulent molecular cloud that collapses under its own gravity. The stars are assumed to form in the densest regions in the collapsing cloud after an initial free-fall times of the molecular cloud. The dynamical evolution of these stellar distributions are continued by means of direct $N$-body simulations. The molecular clouds typical for the Milky Way Galaxy tend to form embedded clusters which evolve to resemble open clusters. The associations were initially considerably more clumpy, but lost their irregularity in about a dynamical time scale due to the relaxation process. The densest molecular clouds, which are absent in the Milky Way but are typical in starburst galaxies, form massive young star clusters. They indeed ar...

  7. Modeling the Blue Stragglers in Globular Clusters

    Science.gov (United States)

    Chatterjee, Sourav

    2012-10-01

    Blue stragglers {BS} have been extensively observed in Galactic globular clusters {GGC}. primarily with HST. Many theoretical studies have identified BS formation channels and it is understood that dynamics in GCs modifies formation and distribution of the BSs. Despite the wealth of observational data, comprehensive theoretical models including all relevant physical processes in dynamically evolving GCs do not exist. Our dynamical cluster modeling code, developed over the past decade, includes all relevant physical processes in a GC including two-body relaxation, strong scattering, physical collisions, and stellar-evolution {single and binary}. We can model GCs with realistic N and provide star-by-star models for GCs directly comparable with the observed data. This proposed study will create realistic GC models with initial conditions from a grid spanning a large range in the multidimensional parameter space including cluster mass, binary fraction, concentration, and Galactic position. Our numerical models combined with observational constraints from existing HST data will for the first time provide explanations for the observed trends in the BS populations in GGCs, the dominant formation channel for these BSs, typical dynamical ages of the BSs, and find detailed dynamical histories of the BSs in GGCs. These models will yield valuable insight on the correlations between the BS properties and a number of cluster dynamical properties {central density, binary fraction, and binary orbital properties} which will potentially help constrain a GC's past evolutionary history. As a bonus a large set of realistic theoretical GC models will be constructed.

  8. Model HULIS compounds in nanoaerosol clusters - investigations of surface tension and aggregate formation using molecular dynamics simulations

    National Research Council Canada - National Science Library

    T. Hede; X. Li; C. Leck; Y. Tu; H. Ågren

    2011-01-01

    .... In this study we use molecular dynamics simulations to show that model humic-like substances (HULIS) in systems containing 10 000 water molecules mimic experimental data well referring to reduction of surface tension...

  9. Angular momentum in cluster Spherical Collapse Model

    CERN Document Server

    Cupani, Guido; Mardirossian, Fabio

    2011-01-01

    Our new formulation of the Spherical Collapse Model (SCM-L) takes into account the presence of angular momentum associated with the motion of galaxy groups infalling towards the centre of galaxy clusters. The angular momentum is responsible for an additional term in the dynamical equation which is useful to describe the evolution of the clusters in the non-equilibrium region which is investigated in the present paper. Our SCM-L can be used to predict the profiles of several strategic dynamical quantities as the radial and tangential velocities of member galaxies, and the total cluster mass. A good understanding of the non-equilibrium region is important since it is the natural scenario where to study the infall in galaxy clusters and the accretion phenomena present in these objects. Our results corroborate previous estimates and are in very good agreement with the analysis of recent observations and of simulated clusters.

  10. Development of a molecular-dynamics-based cluster-heat-capacity model for study of homogeneous condensation in supersonic water-vapor expansions.

    Science.gov (United States)

    Borner, Arnaud; Li, Zheng; Levin, Deborah A

    2013-02-14

    Supersonic expansions to vacuum produce clusters of sufficiently small size that properties such as heat capacities and latent heat of evaporation cannot be described by bulk vapor thermodynamic values. In this work the Monte-Carlo Canonical-Ensemble (MCCE) method was used to provide potential energies and constant-volume heat capacities for small water clusters. The cluster structures obtained using the well-known simple point charge model were found to agree well with earlier simulations using more rigorous potentials. The MCCE results were used as the starting point for molecular dynamics simulations of the evaporation rate as a function of cluster temperature and size which were found to agree with unimolecular dissociation theory and classical nucleation theory. The heat capacities and latent heat obtained from the MCCE simulations were used in direct-simulation Monte-Carlo of two experiments that measured Rayleigh scattering and terminal dimer mole fraction of supersonic water-jet expansions. Water-cluster temperature and size were found to be influenced by the use of kinetic rather than thermodynamic heat-capacity and latent-heat values as well as the nucleation model.

  11. Cluster banding heat source model

    Institute of Scientific and Technical Information of China (English)

    Zhang Liguo; Ji Shude; Yang Jianguo; Fang Hongyuan; Li Yafan

    2006-01-01

    Concept of cluster banding heat source model is put forward for the problem of overmany increment steps in the process of numerical simulation of large welding structures, and expression of cluster banding heat source model is deduced based on energy conservation law.Because the expression of cluster banding heat source model deduced is suitable for random weld width, quantitative analysis of welding stress field for large welding structures which have regular welds can be made quickly.

  12. He cluster dynamics in W in the presence of cluster induced formation of He traps

    Science.gov (United States)

    Krasheninnikov, S. I.; Smirnov, R. D.

    2016-02-01

    The theoretical model describing spatiotemporal dynamics of He clusters in tungsten, which takes into account He trap generation associated with the growth of He clusters, is presented. Application of this model to the formation of the layer of nano-bubbles underneath of the surface of thick He irradiated sample, before surface morphology starts to change, gives very good agreement with currently available experimental data. The role of thermophoresis in a long-term evolution of nano-bubble containing structures is discussed.

  13. Cluster dynamics largely shapes protoplanetary disc sizes

    CERN Document Server

    Vincke, Kirsten

    2016-01-01

    It is still on open question to what degree the cluster environment influences the sizes of protoplanetary discs surrounding young stars. Particularly so for the short-lived clusters typical for the solar neighbourhood in which the stellar density and therefore the influence of the cluster environment changes considerably over the first 10 Myr. In previous studies often the effect of the gas on the cluster dynamics has been neglected, this is remedied here. Using the code NBody6++ we study the stellar dynamics in different developmental phases - embedded, expulsion, expansion - including the gas and quantify the effect of fly-bys on the disc size. We concentrate on massive clusters ($M_{\\text{cl}} \\geq 10^3 - 6 \\cdot 10^4 M_{\\text{Sun}}$), which are representative for clusters like the Orion Nebula Cluster (ONC) or NGC 6611. We find that not only the stellar density but also the duration of the embedded phase matters. The densest clusters react fastest to the gas expulsion and drop quickly in density, here 98...

  14. Adaptation dynamics in densely clustered chemoreceptors.

    Directory of Open Access Journals (Sweden)

    William Pontius

    Full Text Available In many sensory systems, transmembrane receptors are spatially organized in large clusters. Such arrangement may facilitate signal amplification and the integration of multiple stimuli. However, this organization likely also affects the kinetics of signaling since the cytoplasmic enzymes that modulate the activity of the receptors must localize to the cluster prior to receptor modification. Here we examine how these spatial considerations shape signaling dynamics at rest and in response to stimuli. As a model system, we use the chemotaxis pathway of Escherichia coli, a canonical system for the study of how organisms sense, respond, and adapt to environmental stimuli. In bacterial chemotaxis, adaptation is mediated by two enzymes that localize to the clustered receptors and modulate their activity through methylation-demethylation. Using a novel stochastic simulation, we show that distributive receptor methylation is necessary for successful adaptation to stimulus and also leads to large fluctuations in receptor activity in the steady state. These fluctuations arise from noise in the number of localized enzymes combined with saturated modification kinetics between the localized enzymes and the receptor substrate. An analytical model explains how saturated enzyme kinetics and large fluctuations can coexist with an adapted state robust to variation in the expression levels of the pathway constituents, a key requirement to ensure the functionality of individual cells within a population. This contrasts with the well-mixed covalent modification system studied by Goldbeter and Koshland in which mean activity becomes ultrasensitive to protein abundances when the enzymes operate at saturation. Large fluctuations in receptor activity have been quantified experimentally and may benefit the cell by enhancing its ability to explore empty environments and track shallow nutrient gradients. Here we clarify the mechanistic relationship of these large

  15. On the dynamical origin of bias in clusters of galaxies

    CERN Document Server

    Colafrancesco, Sergio; Del Popolo, A; Colafrancesco, S; Del Popolo, A

    1994-01-01

    We study the effect of the dynamical friction induced by the presence of substructure on the statistics of the collapse of density peaks. Applying the results of a former paper we show that within high density environments, like rich clusters of galaxies, the collapse of smaller peaks is strongly delayed until very late epochs. A bias of dynamical nature thus naturally arises because high density peaks preferentially collapse For a standard CDM model we find that this dynamical bias can account for a substantial part of the total bias required by observations on cluster scales.

  16. Coevolutionary dynamics with clustering behaviors on cyclic competition

    Science.gov (United States)

    Dong, Linrong; Yang, Guangcan

    2012-05-01

    We propose a dynamic model for describing clustering behaviors on a cyclic game, in which the same species form a cluster to compete. The rates of consuming the prey depend not only on the individual competing ability v, but also on the two interacting cluster’s sizes. The fragmentation and coagulation rates of the clusters are related to the cohesive strength among the individuals. A new parameter u is introduced to indicate the uniting degree. We find that the probability distribution of the clustering sizes is almost a power law in a large regime specified by the two parameters, which reflects the scale-free behavior in complex systems. In addition, the exponential magnitudes are mostly in the range of real social systems. Our simulation shows that clustering promotes biodiversity. At steady state, the amounts about the three species evolve tempestuously with asymmetric period; the aggregations about big size’s clusters to compete are obvious and on-off intermittence.

  17. Analyzing Big Data with Dynamic Quantum Clustering

    CERN Document Server

    Weinstein, M; Hume, A; Sciau, Ph; Shaked, G; Hofstetter, R; Persi, E; Mehta, A; Horn, D

    2013-01-01

    How does one search for a needle in a multi-dimensional haystack without knowing what a needle is and without knowing if there is one in the haystack? This kind of problem requires a paradigm shift - away from hypothesis driven searches of the data - towards a methodology that lets the data speak for itself. Dynamic Quantum Clustering (DQC) is such a methodology. DQC is a powerful visual method that works with big, high-dimensional data. It exploits variations of the density of the data (in feature space) and unearths subsets of the data that exhibit correlations among all the measured variables. The outcome of a DQC analysis is a movie that shows how and why sets of data-points are eventually classified as members of simple clusters or as members of - what we call - extended structures. This allows DQC to be successfully used in a non-conventional exploratory mode where one searches data for unexpected information without the need to model the data. We show how this works for big, complex, real-world dataset...

  18. Clustering Effects Within the Dinuclear Model

    Science.gov (United States)

    Adamian, Gurgen; Antonenko, Nikolai; Scheid, Werner

    The clustering of two nuclei in a nuclear system creates configurations denoted in literature as nuclear molecular structures. A nuclear molecule or a dinuclear system (DNS) as named by Volkov consists of two touching nuclei (clusters) which keep their individuality. Such a system has two main degrees of freedom of collective motions which govern its dynamics: (i) the relative motion between the clusters leading to molecular resonances in the internuclear potential and to the decay of the dinuclear system (separation of the clusters) which is called quasifission since no compound system like in fission is first formed. (ii) the transfer of nucleons or light constituents between the two clusters of the dinuclear system leading to a special dynamics of the mass and charge asymmetries between the clusters in fusion and fission reactions. In this article we discuss the essential aspects of the diabatic internuclear potential used by the di-nuclear system concept and present applications to nuclear structure and reactions. We show applications of the dinuclear model to superdeformed and hyperdeformed bands. An extended discussion is given to the problems of fusion dynamics in the production of superheavy nuclei, to the quasifission process and to multi-nucleon transfer between nuclei. Also the binary and ternary fission processes are discussed within the scission-point model and the dinuclear system concept.

  19. Dynamic Scaling of Ramified Clusters Formed on Liquid Surfaces

    Institute of Scientific and Technical Information of China (English)

    WU Feng-Min; XU You-Sheng; LI Qiao-Wen

    2006-01-01

    A comprehensive simulation model -deposition,diffusion, rotation, reaction and aggregation model is presented to simulate the formation processes of ramified clusters on liquid surfaces, where clusters can diffuse and rotate easily. The mobility (including diffusion and rotation) of clusters is related to its mass, which is given by Dm = Dos-γD and θm =′θos-γθ, respectively. The influence of the reaction probability on the kinetics and structure formation is included in the simulation model. We concentrate on revealing dynamic scaling during ramified cluster formation. For this purpose, the time evolution of the cluster density and the weight-average cluster size as well as the cluster-size distribution scaling function at different time are determined for various conditions. The dependence of the cluster density on the deposition flux and time-dependence of fractal dimension are also investigated. The obtained results are helpful in understanding the formation of clusters or thin film growth on liquid surfaces.

  20. Nonlocalized cluster dynamics and nuclear molecular structure

    CERN Document Server

    Zhou, Bo; Horiuchi, Hisashi; Ren, Zhongzhou; Röpke, Gerd; Schuck, Peter; Tohsaki, Akihiro; Xu, Chang; Yamada, Taiichi

    2013-01-01

    A container picture is proposed for understanding cluster dynamics where the clusters make nonlocalized motion occupying the lowest orbit of the cluster mean-field potential characterized by the size parameter $``B"$ in the THSR (Tohsaki-Horiuchi-Schuck-R\\"{o}pke) wave function. The nonlocalized cluster aspects of the inversion-doublet bands in $^{20}$Ne which have been considered as a typical manifestation of localized clustering are discussed. So far unexplained puzzling features of the THSR wave function, namely that after angular-momentum projection for two cluster systems the prolate THSR wave function is almost 100$\\%$ equivalent to an oblate THSR wave function is clarified. It is shown that the true intrinsic two-cluster THSR configuration is nonetheless prolate. The proposal of the container picture is based on the fact that typical cluster systems, 2$\\alpha$, 3$\\alpha$, and $\\alpha$+$^{16}$O, are all well described by a single THSR wave function. It will be shown for the case of linear-chain states w...

  1. Clustered volatility in multiagent dynamics

    CERN Document Server

    Youssefmir, M; Youssefmir, Michael; Huberman, Bernardo

    1995-01-01

    Large distributed multiagent systems are characterized by vast numbers of agents trying to gain access to limited resources in an unpredictable environment. Agents in these system continuously switch strategies in order to opportunistically find improvements in their utilities. We have analyzed the fluctuations around equilibrium that arise from strategy switching and discovered the existence of a new phenomenon. It consists of the appearance of sudden bursts of activity that punctuate the fixed point, and is due to an effective random walk consistent with overall stability. This clustered volatility is followed by relaxation to the fixed point but with different strategy mixes from the previous one. This phenomenon is quite general for systems in which agents explore strategies in search of local improvements.

  2. Real-space cluster dynamical mean-field approach to the Falicov-Kimball model: An alloy-analogy approach

    Science.gov (United States)

    Haldar, P.; Laad, M. S.; Hassan, S. R.

    2017-03-01

    It is long known that the best single-site coherent potential approximation falls short of describing Anderson localization. Here, we study a binary alloy disorder [or equivalently, a spinless Falicov-Kimball (FK)] model and construct a dominantly analytic cluster extension that treats intracluster (1 /d ,d = spatial dimension) correlations exactly. We find that, in general, the irreducible two-particle vertex exhibits clear nonanalyticities before the band splitting transition of the Hubbard type occurs, signaling onset of an unusual type of localization at strong coupling. Using time-dependent response to a sudden local quench as a diagnostic, we find that the long-time wave-function overlap changes from a power-law to an anomalous form at strong coupling, lending additional support to this idea. Our results also imply such "strong" localization in the equivalent FK model, the simplest interacting fermion system.

  3. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

    Science.gov (United States)

    Ntampaka, M.; Trac, H.; Sutherland, D. J.; Fromenteau, S.; Póczos, B.; Schneider, J.

    2016-11-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership information and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width of {{Δ }}ε ≈ 0.87. Interlopers introduce additional scatter, significantly widening the error distribution further ({{Δ }}ε ≈ 2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement ({{Δ }}ε ≈ 0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncontaminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  4. Early dynamical evolution of young substructured clusters

    Science.gov (United States)

    Dorval, Julien; Boily, Christian

    2017-03-01

    Stellar clusters form with a high level of substructure, inherited from the molecular cloud and the star formation process. Evidence from observations and simulations also indicate the stars in such young clusters form a subvirial system. The subsequent dynamical evolution can cause important mass loss, ejecting a large part of the birth population in the field. It can also imprint the stellar population and still be inferred from observations of evolved clusters. Nbody simulations allow a better understanding of these early twists and turns, given realistic initial conditions. Nowadays, substructured, clumpy young clusters are usually obtained through pseudo-fractal growth and velocity inheritance. We introduce a new way to create clumpy initial conditions through a ''Hubble expansion'' which naturally produces self consistent clumps, velocity-wise. In depth analysis of the resulting clumps shows consistency with hydrodynamical simulations of young star clusters. We use these initial conditions to investigate the dynamical evolution of young subvirial clusters. We find the collapse to be soft, with hierarchical merging leading to a high level of mass segregation. The subsequent evolution is less pronounced than the equilibrium achieved from a cold collapse formation scenario.

  5. Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR is an efficient tool for metamodelling of nonlinear dynamic models

    Directory of Open Access Journals (Sweden)

    Omholt Stig W

    2011-06-01

    Full Text Available Abstract Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs to variation in features of the trajectories of the state variables (outputs throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR, where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR and ordinary least squares (OLS regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback

  6. Clusters in Intense XUV pulses: effects of cluster size on expansion dynamics and ionization

    CERN Document Server

    Ackad, Edward; Briggs, Kyle; Ramunno, Lora

    2010-01-01

    We examine the effect of cluster size on the interaction of Ar$_{55}$-Ar$_{2057}$ with intense extreme ultraviolet (XUV) pulses, using a model we developed earlier that includes ionization via collisional excitation as an intermediate step. We find that the dynamics of these irradiated clusters is dominated by collisions. Larger clusters are more highly collisional, produce higher charge states, and do so more rapidly than smaller clusters. Higher charge states produced via collisions are found to reduce the overall photon absorption, since charge states of Ar$^{2+}$ and higher are no longer photo-accessible. We call this mechanism \\textit{collisionally reduced photoabsorption}, and it decreases the effective cluster photoabsorption cross-section by more than 30% for Ar$_{55}$ and 45% Ar$_{2057}$. compared to gas targets with the same number of atoms. An investigation of the shell structure soon after the laser interaction shows an almost uniformly charged core with a modestly charged outer shell which evolve...

  7. A dynamic hierarchical clustering method for trajectory-based unusual video event detection.

    Science.gov (United States)

    Jiang, Fan; Wu, Ying; Katsaggelos, Aggelos K

    2009-04-01

    The proposed unusual video event detection method is based on unsupervised clustering of object trajectories, which are modeled by hidden Markov models (HMM). The novelty of the method includes a dynamic hierarchical process incorporated in the trajectory clustering algorithm to prevent model overfitting and a 2-depth greedy search strategy for efficient clustering.

  8. The Dynamical Equilibrium of Galaxy Clusters

    Science.gov (United States)

    Carlberg, R. G.; Yee, H. K. C.; Ellingson, E.; Morris, S. L.; Abraham, R.; Gravel, P.; Pritchet, C. J.; Smecker-Hane, T.; Hartwick, F. D. A.; Hesser, J. E.; Hutchings, J. B.; Oke, J. B.

    1997-02-01

    If a galaxy cluster is effectively in dynamical equilibrium, then all galaxy populations within the cluster must have distributions in velocity and position that individually reflect the same underlying mass distribution, although the derived virial masses can be quite different. Specifically, within the Canadian Network for Observational Cosmology cluster sample, the virial radius of the red galaxy population is, on the average, a factor of 2.05 +/- 0.34 smaller than that of the blue population. The red galaxies also have a smaller rms velocity dispersion, a factor of 1.31 +/- 0.13 within our sample. Consequently, the virial mass calculated from the blue galaxies is 3.5 +/- 1.3 times larger than from the red galaxies. However, applying the Jeans equation of stellar hydrodynamic equilibrium to the red and blue subsamples separately gives statistically identical cluster mass profiles. This is strong evidence that these clusters are effectively equilibrium systems and therefore demonstrates empirically that the masses in the virialized region are reliably estimated using dynamical techniques.

  9. Black hole binaries dynamically formed in globular clusters

    Science.gov (United States)

    Park, Dawoo; Kim, Chunglee; Lee, Hyung Mok; Bae, Yeong-Bok; Belczynski, Krzysztof

    2017-08-01

    We investigate properties of black hole (BH) binaries formed in globular clusters via dynamical processes, using directN-body simulations. We pay attention to effects of BH mass function on the total mass and mass ratio distributions of BH binaries ejected from clusters. First, we consider BH populations with two different masses in order to learn basic differences from models with single-mass BHs only. Secondly, we consider continuous BH mass functions adapted from recent studies on massive star evolution in a low metallicity environment, where globular clusters are formed. In this work, we consider only binaries that are formed by three-body processes and ignore stellar evolution and primordial binaries for simplicity. Our results imply that most BH binary mergers take place after they get ejected from the cluster. Also, mass ratios of dynamically formed binaries should be close to 1 or likely to be less than 2:1. Since the binary formation efficiency is larger for higher-mass BHs, it is likely that a BH mass function sampled by gravitational-wave observations would be weighed towards higher masses than the mass function of single BHs for a dynamically formed population. Applying conservative assumptions regarding globular cluster populations such as small BH mass fraction and no primordial binaries, the merger rate of BH binaries originated from globular clusters is estimated to be at least 6.5 yr-1 Gpc-3. Actual rate can be up to more than several times of our conservative estimate.

  10. Brightest cluster galaxies in the extended GMRT radio halo cluster sample. Radio properties and cluster dynamics

    Science.gov (United States)

    Kale, R.; Venturi, T.; Cassano, R.; Giacintucci, S.; Bardelli, S.; Dallacasa, D.; Zucca, E.

    2015-09-01

    Aims: First-ranked galaxies in clusters, usually referred to as brightest cluster galaxies (BCGs), show exceptional properties over the whole electromagnetic spectrum. They are the most massive elliptical galaxies and show the highest probability to be radio loud. Moreover, their special location at the centres of galaxy clusters raises the question of the role of the environment in shaping their radio properties. In the attempt to separate the effect of the galaxy mass and of the environment on their statistical radio properties, we investigate the possible dependence of the occurrence of radio loudness and of the fractional radio luminosity function on the dynamical state of the hosting cluster. Methods: We studied the radio properties of the BCGs in the Extended GMRT Radio Halo Survey (EGRHS), which consists of 65 clusters in the redshift range 0.2-0.4, with X-ray luminosity LX ≥ 5 × 1044 erg s-1, and quantitative information on their dynamical state from high-quality Chandra imaging. We obtained a statistical sample of 59 BCGs, which we divided into two classes, depending on whether the dynamical state of the host cluster was merging (M) or relaxed (R). Results: Of the 59 BCGs, 28 are radio loud and 31 are radio quiet. The radio-loud sources are favourably located in relaxed clusters (71%), while the reverse is true for the radio-quiet BCGs, which are mostly located in merging systems (81%). The fractional radio luminosity function for the BCGs in merging and relaxed clusters is different, and it is considerably higher for BCGs in relaxed clusters, where the total fraction of radio loudness reaches almost 90%, to be compared to the ~30% in merging clusters. For relaxed clusters, we found a positive correlation between the radio power of the BCGs and the strength of the cool core, consistent with previous studies on local samples. Conclusions: Our study suggests that the radio loudness of the BCGs strongly depends on the cluster dynamics; their fraction is

  11. Clustering determines the dynamics of complex contagions in multiplex networks

    CERN Document Server

    Zhuang, Yong; Yağan, Osman

    2016-01-01

    We present the mathematical analysis of generalized complex contagions in clustered multiplex networks for susceptible-infected-recovered (SIR)-like dynamics. The model is intended to understand diffusion of influence, or any other spreading process implying a threshold dynamics, in setups of interconnected networks with significant clustering. The contagion is assumed to be general enough to account for a content-dependent linear threshold model, where each link type has a different weight (for spreading influence) that may depend on the content (e.g., product, rumor, political view) that is being spread. Using the generating functions formalism, we determine the conditions, probability, and expected size of the emergent global cascades. This analysis provides a generalization of previous approaches and is specially useful in problems related to spreading and percolation. The results present non trivial dependencies between the clustering coefficient of the networks and its average degree. In particular, sev...

  12. Investigation of Melting Dynamics of Hafnium Clusters.

    Science.gov (United States)

    Ng, Wei Chun; Lim, Thong Leng; Yoon, Tiem Leong

    2017-03-27

    Melting dynamics of hafnium clusters are investigated using a novel approach based on the idea of the chemical similarity index. Ground state configurations of small hafnium clusters are first derived using Basin-Hopping and Genetic Algorithm in the parallel tempering mode, employing the COMB potential in the energy calculator. These assumed ground state structures are verified by using the Low Lying Structures (LLS) method. The melting process is carried out either by using the direct heating method or prolonged simulated annealing. The melting point is identified by a caloric curve. However, it is found that the global similarity index is much more superior in locating premelting and total melting points of hafnium clusters.

  13. The SLUGGS Survey: Multi-population dynamical modelling of the elliptical galaxy NGC 1407 from stars and globular clusters

    CERN Document Server

    Pota, Vincenzo; Brodie, Jean P; Peñarrubia, Jorge; Forbes, Duncan A; Napolitano, Nicola R; Foster, Caroline; Walker, Matthew G; Strader, Jay; Roediger, Joel C

    2015-01-01

    We perform in-depth dynamical modelling of the luminous and dark matter (DM) content of the elliptical galaxy NGC 1407. Our strategy consists of solving the spherical Jeans equations for three independent dynamical tracers: stars, blue GCs and red GCs in a self-consistent manner. We adopt a maximum-likelihood Markov-Chain Monte Carlo fitting technique in the attempt to constrain the inner slope of the DM density profile (the cusp/core problem), and the stellar initial mass function (IMF) of the galaxy. We find the inner logarithmic slope of the DM density profiles to be $\\gamma = 0.6\\pm0.4$, which is consistent with either a DM cusp ($\\gamma = 1$) or with a DM core $(\\gamma = 0)$. Our findings are consistent with a Salpeter IMF, and marginally consistent with a Kroupa IMF. We infer tangential orbits for the blue GCs, and radial anisotropy for red GCs and stars. The modelling results are consistent with the virial mass--concentration relation predicted by $\\Lambda$CDM simulations. The virial mass of NGC 1407 i...

  14. Research of Web Documents Clustering Based on Dynamic Concept

    Institute of Scientific and Technical Information of China (English)

    WANG Yun-hua; CHEN Shi-hong

    2004-01-01

    Conceptual clustering is mainly used for solving the deficiency and incompleteness of domain knowledge.Based on conceptual clustering technology and aiming at the institutional framework and characteristic of Web theme information, this paper proposes and implements dynamic conceptual clustering algorithm and merging algorithm for Web documents, and also analyses the super performance of the clustering algorithm in efficiency and clustering accuracy.

  15. Clustering determines the dynamics of complex contagions in multiplex networks

    Science.gov (United States)

    Zhuang, Yong; Arenas, Alex; Yaǧan, Osman

    2017-01-01

    We present the mathematical analysis of generalized complex contagions in a class of clustered multiplex networks. The model is intended to understand spread of influence, or any other spreading process implying a threshold dynamics, in setups of interconnected networks with significant clustering. The contagion is assumed to be general enough to account for a content-dependent linear threshold model, where each link type has a different weight (for spreading influence) that may depend on the content (e.g., product, rumor, political view) that is being spread. Using the generating functions formalism, we determine the conditions, probability, and expected size of the emergent global cascades. This analysis provides a generalization of previous approaches and is especially useful in problems related to spreading and percolation. The results present nontrivial dependencies between the clustering coefficient of the networks and its average degree. In particular, several phase transitions are shown to occur depending on these descriptors. Generally speaking, our findings reveal that increasing clustering decreases the probability of having global cascades and their size, however, this tendency changes with the average degree. There exists a certain average degree from which on clustering favors the probability and size of the contagion. By comparing the dynamics of complex contagions over multiplex networks and their monoplex projections, we demonstrate that ignoring link types and aggregating network layers may lead to inaccurate conclusions about contagion dynamics, particularly when the correlation of degrees between layers is high.

  16. Mean-field behavior of cluster dynamics

    Science.gov (United States)

    Persky, N.; Ben-Av, R.; Kanter, I.; Domany, E.

    1996-09-01

    The dynamic behavior of cluster algorithms is analyzed in the classical mean-field limit. Rigorous analytical results below Tc establish that the dynamic exponent has the value zSW=1 for the Swendsen-Wang algorithm and zW=0 for the Wolff algorithm. An efficient Monte Carlo implementation is introduced, adapted for using these algorithms for fully connected graphs. Extensive simulations both above and below Tc demonstrate scaling and evaluate the finite-size scaling function by means of a rather impressive collapse of the data.

  17. A Dynamical Model for Information Retrieval and Emergence of Scale-Free Clusters in a Long Term Memory Network

    CERN Document Server

    Licata, Ignazio

    2010-01-01

    The classical forms of knowledge representation fail when a strong dynamical interconnection between system and environment comes into play. We propose here a model of information retrieval derived from the Kintsch-Ericsson scheme, based upon a long term memory (LTM) associative net whose structure changes in time according to the textual content of the analyzed documents. Both the theoretical analysis carried out by using simple statistical tools and the tests show the appearing of typical power-laws and the net configuration as a scale-free graph. The information retrieval from LTM shows that the entire system can be considered to be an information amplifier which leads to the emergence of new cognitive structures. It has to be underlined that the expanding of the semantic domain regards the user-network as a whole system.

  18. Dynamics of the Intermediate-Age Elliptical LMC Cluster NGC 1978

    CERN Document Server

    Fischer, P; Mateo, M; Fischer, Philippe; Welch, Douglas L.; Mateo, Mario

    1992-01-01

    In this paper we investigate the internal dynamics of the LMC cluster NGC 1978 through the use of Photometric (CCD images) and kinematic (stellar radial velocities) data. We apply a variety of dynamical models to this data, including multi-mass King-Michie models and rotating and non-rotating oblate spheroid models. We discuss the cluster mass-to-light ratio and place constraints on the cluster mass function.

  19. A dynamic fuzzy clustering method based on genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yan; ZHOU Chunguang; LIANG Yanchun; GUO Dongwei

    2003-01-01

    A dynamic fuzzy clustering method is presented based on the genetic algorithm. By calculating the fuzzy dissimilarity between samples the essential associations among samples are modeled factually. The fuzzy dissimilarity between two samples is mapped into their Euclidean distance, that is, the high dimensional samples are mapped into the two-dimensional plane. The mapping is optimized globally by the genetic algorithm, which adjusts the coordinates of each sample, and thus the Euclidean distance, to approximate to the fuzzy dissimilarity between samples gradually. A key advantage of the proposed method is that the clustering is independent of the space distribution of input samples, which improves the flexibility and visualization. This method possesses characteristics of a faster convergence rate and more exact clustering than some typical clustering algorithms. Simulated experiments show the feasibility and availability of the proposed method.

  20. Higher-order structure and epidemic dynamics in clustered networks

    CERN Document Server

    Ritchie, Martin; House, Thomas; Kiss, Istvan Z

    2013-01-01

    Clustering is typically measured by the ratio of triangles to all triples, open or closed. Generating clustered networks, and how clustering affects dynamics on networks, is reasonably well understood for certain classes of networks \\cite{vmclust, karrerclust2010}, e.g., networks composed of lines and non-overlapping triangles. In this paper we show that it is possible to generate networks which, despite having the same degree distribution and equal clustering, exhibit different higher-order structure, specifically, overlapping triangles and other order-four (a closed network motif composed of four nodes) structures. To distinguish and quantify these additional structural features, we develop a new network metric capable of measuring order-four structure which, when used alongside traditional network metrics, allows us to more accurately describe a network's topology. Three network generation algorithms are considered: a modified configuration model and two rewiring algorithms. By generating homogeneous netwo...

  1. Accelerated Monte Carlo by Embedded Cluster Dynamics

    Science.gov (United States)

    Brower, R. C.; Gross, N. A.; Moriarty, K. J. M.

    1991-07-01

    We present an overview of the new methods for embedding Ising spins in continuous fields to achieve accelerated cluster Monte Carlo algorithms. The methods of Brower and Tamayo and Wolff are summarized and variations are suggested for the O( N) models based on multiple embedded Z2 spin components and/or correlated projections. Topological features are discussed for the XY model and numerical simulations presented for d=2, d=3 and mean field theory lattices.

  2. Brightest Cluster Galaxies in the Extended GMRT radio halo cluster sample. Radio properties and cluster dynamics

    CERN Document Server

    Kale, Ruta; Cassano, Rossella; Giacintucci, Simona; Bardelli, sandro; Dallacasa, Daniele; Zucca, Elena

    2015-01-01

    Brightest Cluster Galaxies (BCGs) show exceptional properties over the whole electromagnetic spectrum. Their special location at the centres of galaxy clusters raises the question of the role of the environment on their radio properties. To decouple the effect of the galaxy mass and of the environment in their statistical radio properties, we investigate the possible dependence of the occurrence of radio loudness and of the fractional radio luminosity function on the dynamical state of the hosting cluster. We studied the radio properties of the BCGs in the Extended GMRT Radio Halo Survey (EGRHS). We obtained a statistical sample of 59 BCGs, which was divided into two classes, depending on the dynamical state of the host cluster, i.e. merging (M) and relaxed (R). Among the 59 BCGs, 28 are radio-loud, and 31 are radio--quiet. The radio-loud sources are located favourably located in relaxed clusters (71\\%), while the reverse is true for the radio-quiet BCGs, mostly located in merging systems (81\\%). The fraction...

  3. Entanglement spectrum in cluster dynamical mean-field theory

    Science.gov (United States)

    Udagawa, Masafumi; Motome, Yukitoshi

    2015-01-01

    We study the entanglement spectrum of the Hubbard model at half filling on a kagome lattice. The entanglement spectrum is defined by the set of eigenvalues of a reduced thermal density matrix, which is naturally obtained in the framework of the dynamical mean-field theory. Adopting the cluster dynamical mean-field theory combined with continuous-time auxiliary-field Monte Carlo method, we calculate the entanglement spectrum for a three-site triangular cluster in the kagome Hubbard model. We find that the results at the three-particle sector well capture the qualitative nature of the system. In particular, the eigenvalue of the reduced density matrix, corresponding to the chiral degrees of freedom, exhibits a characteristic temperature scale Tchiral, below which a metallic state with large quasiparticle mass is stabilized. The entanglement spectra at different particle number sectors also exhibit characteristic changes around Tchiral, implying the development of inter-triangular ferromagnetic correlations in the correlated metallic regime.

  4. CLUSTER SYNCHRONIZATION IN A COMPLEX DYNAMICAL NETWORK WITH TWO NONIDENTICAL CLUSTERS

    Institute of Scientific and Technical Information of China (English)

    Liang CHEN; Jun'an LU

    2008-01-01

    This paper further investigates cluster synchronization in a complex dynamical network with two-cluster. Each cluster contains a number of identical dynamical systems, however, the sub-systems composing the two clusters can be different, i.e., the individual dynamical system in one cluster can differ from that in the other cluster. Complete synchronization within each cluster is possible only if each node from one cluster receives the same input from nodes in other cluster. In this case, the stability condition of one-cluster synchronization is known to contain two terms: the first accounts for the contribution of the inner-cluster coupling structure while the second is simply an extra linear term, which can be deduced by the "same-input" condition. Applying the connection graph stability method, the authors obtain an upper bound of input strength for one cluster if the first account is known, by which the synchronizability of cluster can be scaled. For different clusters, there are different upper bound of input strength by virtue of different dynamics and the corresponding cluster structure. Moreover, two illustrative examples are presented and the numerical simulations coincide with the theoretical analysis.

  5. Scale-Invariant Correlations in Dynamic Bacterial Clusters

    Science.gov (United States)

    Chen, Xiao; Dong, Xu; Be'er, Avraham; Swinney, Harry L.; Zhang, H. P.

    2012-04-01

    In Bacillus subtilis colonies, motile bacteria move collectively, spontaneously forming dynamic clusters. These bacterial clusters share similarities with other systems exhibiting polarized collective motion, such as bird flocks or fish schools. Here we study experimentally how velocity and orientation fluctuations within clusters are spatially correlated. For a range of cell density and cluster size, the correlation length is shown to be 30% of the spatial size of clusters, and the correlation functions collapse onto a master curve after rescaling the separation with correlation length. Our results demonstrate that correlations of velocity and orientation fluctuations are scale invariant in dynamic bacterial clusters.

  6. Gravothermal Star Clusters - Theory and Computer Modelling

    Science.gov (United States)

    Spurzem, Rainer

    2010-11-01

    In the George Darwin lecture, delivered to the British Royal Astronomical Society in 1960 by Viktor A. Ambartsumian he wrote on the evolution of stellar systems that it can be described by the "dynamic evolution of a gravitating gas" complemented by "a statistical description of the changes in the physical states of stars". This talk will show how this physical concept has inspired theoretical modeling of star clusters in the following decades up to the present day. The application of principles of thermodynamics shows, as Ambartsumian argued in his 1960 lecture, that there is no stable state of equilibrium of a gravitating star cluster. The trend to local thermodynamic equilibrium is always disturbed by escaping stars (Ambartsumian), as well as by gravothermal and gravogyro instabilities, as it was detected later. Here the state-of-the-art of modeling the evolution of dense stellar systems based on principles of thermodynamics and statistical mechanics (Fokker-Planck approximation) will be reviewed. Recent progress including rotation and internal correlations (primordial binaries) is presented. The models have also very successfully been used to study dense star clusters around massive black holes in galactic nuclei and even (in a few cases) relativistic supermassive dense objects in centres of galaxies (here again briefly touching one of the many research fields of V.A. Ambartsumian). For the modern present time of high-speed supercomputing, where we are tackling direct N-body simulations of star clusters, we will show that such direct modeling supports and proves the concept of the statistical models based on the Fokker-Planck theory, and that both theoretical concepts and direct computer simulations are necessary to support each other and make scientific progress in the study of star cluster evolution.

  7. Cluster models and other topics

    CERN Document Server

    Akaishi, Yoshinori; Horiuchi, Hisashi; Ikeda, Kiyomi

    1986-01-01

    This volume consists of contributions from some of Japan's most eminent nuclear theorists. The cluster model of the nucleus is discussed pedagogically and the current status of the field is surveyed. A contribution on Monte Carlo Methods and Lattice Gauge Theories gives nuclear theorists a glimpse of related developments in QCD and Gauge Theories. Few Body Systems are reviewed by Y Akaishi, paying special attention to the ATMS Multiple Scattering Method.

  8. Clustering molecular dynamics trajectories for optimizing docking experiments.

    Science.gov (United States)

    De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D; Norberto de Souza, Osmar; Barros, Rodrigo C

    2015-01-01

    Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand.

  9. Clustering Molecular Dynamics Trajectories for Optimizing Docking Experiments

    Directory of Open Access Journals (Sweden)

    Renata De Paris

    2015-01-01

    Full Text Available Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand.

  10. Complex brain networks: From topological communities to clustered dynamics

    Indian Academy of Sciences (India)

    Lucia Zemanová; Gorka Zamora-López; Changsong Zhou; Jürgen Kurths

    2008-06-01

    Recent research has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. A challenging task is to understand the implications of such network structures on the functional organisation of the brain activities. We investigate synchronisation dynamics on the corticocortical network of the cat by modelling each node of the network (cortical area) with a subnetwork of interacting excitable neurons. We find that this network of networks displays clustered synchronisation behaviour and the dynamical clusters closely coincide with the topological community structures observed in the anatomical network. The correlation between the firing rate of the areas and the areal intensity is additionally examined. Our results provide insights into the relationship between the global organisation and the functional specialisation of the brain cortex.

  11. Large amplitude femtosecond electron dynamics in metal clusters

    CERN Document Server

    Daligault, J

    2003-01-01

    We present a theoretical model that allows us to study linear and non-linear aspects of the femtosecond electron dynamics in metal clusters. The theoretical approach consists in the classical limit of the time-dependent Kohn-Sham equations. The electrons are described by a phase-space distribution function which satisfies a Vlasov-like equation while the ions are treated classically. This allows simulations for clusters containing several hundreds of atoms and extending up to several hundreds of femtoseconds during which the description conserves the fermionic character of the electron distribution. This semi-quantal approach compares very well with the purely quantal treatment. As an application of this approach, we show the prominent role of the electron dynamics during and after the interaction with an intense femtosecond laser pulse.

  12. Dynamical Evolution of Globular Clusters in the Galaxy

    Institute of Scientific and Technical Information of China (English)

    武振宇; 束成钢; 陈文屏

    2003-01-01

    Given the initial conditions of spatial density distribution, velocity distribution and mass function, the dynamical evolution of globular clusters in the Milky Way is investigated in details by means of Monte Carlo simulations.Four dynamic mechanisms are considered: stellar evaporation, stellar evolution, tidal shocks due to both the disc and bulge, and dynamical friction. It is found that stellar evaporation dominates the evolution of low-mass clusters and all four are important for massive ones. For both the power-law and lognormal initial clusters mass functions, we can find the best-fitting models which can match the present-day observations with their main features of the mass function almost unchanged after evolution of several Gyr. This implies that it is not possible to determine the initial mass function only based on the observed mass function today. The dispersion of the modelled mass functions mainly depends on the potential wells of host galaxies with the almost constant peaks,which is consistent with current observations

  13. Cluster structure and dynamics in gels and glasses

    CERN Document Server

    Pastore, Raffaele; Fierro, Anallisa; Ciamarra, Massimo Pica; Coniglio, Antonio

    2016-01-01

    The dynamical arrest of gels is the consequence of a well defined structural phase transition, leading to the formation of a spanning cluster of bonded particles. The dynamical glass transition, instead, is not accompanied by any clear structural signature. Nevertheless, both transitions are characterized by the emergence of dynamical heterogeneities. Reviewing recent results from numerical simulations, we discuss the behavior of dynamical heterogeneities in different systems and show that a clear connection with the structure exists in the case of gels. The emerging picture may be also relevant for the more elusive case of glasses. We show, as an example, that the relaxation process of a simple glass-forming model can be related to a reverse percolation transition and discuss further perspective in this direction.

  14. Oxidation dynamics of nanophase aluminum clusters : a molecular dynamics study.

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, S.

    1998-01-27

    Oxidation of an aluminum nanocluster (252,158 atoms) of radius 100{angstrom} placed in gaseous oxygen (530,727 atoms) is investigated by performing molecular-dynamics simulations on parallel computers. The simulation takes into account the effect of charge transfer between Al and O based on the electronegativity equalization principles. We find that the oxidation starts at the surface of the cluster and the oxide layer grows to a thickness of {approximately}28{angstrom}. Evolutions of local temperature and densities of Al and O are investigated. The surface oxide melts because of the high temperature resulting from the release of energy associated with Al-O bondings. Amorphous surface-oxides are obtained by quenching the cluster. Vibrational density-of-states for the surface oxide is analyzed through comparisons with those for crystalline Al, Al nanocluster, and {alpha}-Al{sub 2}O{sub 3}.

  15. The Baltimore and Utrecht models for cluster dissolution

    CERN Document Server

    Lamers, Henny J G L M

    2008-01-01

    The analysis of the age distributions of star cluster samples of different galaxies has resulted in two very different empirical models for the dissolution of star clusters: the Baltimore model and the Utrecht model. I describe these two models and their differences. The Baltimore model implies that the dissolution of star clusters is mass independent and that about 90% of the clusters are destroyed each age dex, up to an age of about a Gyr, after which point mass-dependent dissolution from two-body relaxation becomes the dominant mechanism. In the Utrecht model, cluster dissolution occurs in three stages: (i) mass-independent infant mortality due to the expulsion of gas up to about 10 Myr; (ii) a phase of slow dynamical evolution with strong evolutionary fading of the clusters lasting up to about a Gyr; and (iii) a phase dominated by mass dependent-dissolution, as predicted by dynamical models. I describe the cluster age distributions for mass-limited and magnitude-limited cluster samples for both models. I ...

  16. Dynamical Evolution of Young Embedded Clusters: A Parameter Space Survey

    CERN Document Server

    Proszkow, Eva-Marie

    2009-01-01

    This paper investigates the dynamical evolution of embedded stellar clusters from the protocluster stage, through the embedded star-forming phase, and out to ages of 10 Myr -- after the gas has been removed from the cluster. The relevant dynamical properties of young stellar clusters are explored over a wide range of possible star formation environments using N-body simulations. Many realizations of equivalent initial conditions are used to produce robust statistical descriptions of cluster evolution including the cluster bound fraction, radial probability distributions, as well as the distributions of close encounter distances and velocities. These cluster properties are presented as a function of parameters describing the initial configuration of the cluster, including the initial cluster membership N, initial stellar velocities, cluster radii, star formation efficiency, embedding gas dispersal time, and the degree of primordial mass segregation. The results of this parameter space survey, which includes ab...

  17. FORMATION OF A INNOVATION REGIONAL CLUSTER MODEL

    Directory of Open Access Journals (Sweden)

    G. S. Merzlikina

    2015-01-01

    Full Text Available Summary. As a result of investigation of science and methodical approaches related problems of building and development of innovation clusters there were some issues in functional assignments of innovation and production clusters. Because of those issues, article’s authors differ conceptions of innovation cluster and production cluster, as they explain notion of innovation-production cluster. The main goal of this article is to reveal existing organizational issues in cluster building and its successful development. Based on regional clusters building analysis carried out there was typical practical structure of cluster members interaction revealed. This structure also have its cons, as following: absence cluster orientation to marketing environment, lack of members’ prolonged relations’ building and development system, along with ineffective management of information, financial and material streams within cluster, narrow competence difference and responsibility zones between cluster members, lack of transparence of cluster’s action, low environment changes adaptivity, hard to use cluster members’ intellectual property, and commercialization of hi-tech products. When all those issues listed above come together, it reduces life activity of existing models of innovative cluster-building along with practical opportunity of cluster realization. Because of that, authors offer an upgraded innovative-productive cluster building model with more efficient business processes management system, which includes advanced innovative cluster structure, competence matrix and subcluster responsibility zone. Suggested model differs from other ones by using unified innovative product development control center, which also controls production and marketing realization.

  18. Structures and components in galaxy clusters: observations and models

    CERN Document Server

    Bykov, A M; Ferrari, C; Forman, W R; Kaastra, J S; Klein, U; Markevitch, M; de Plaa, J

    2015-01-01

    Clusters of galaxies are the largest gravitationally bounded structures in the Universe dominated by dark matter. We review the observational appearance and physical models of plasma structures in clusters of galaxies. Bubbles of relativistic plasma which are inflated by supermassive black holes of AGNs, cooling and heating of the gas, large scale plasma shocks, cold fronts, non-thermal halos and relics are observed in clusters. These constituents are reflecting both the formation history and the dynamical properties of clusters of galaxies. We discuss X-ray spectroscopy as a tool to study the metal enrichment in clusters and fine spectroscopy of Fe X-ray lines as a powerful diagnostics of both the turbulent plasma motions and the energetics of the non-thermal electron populations. The knowledge of the complex dynamical and feedback processes is necessary to understand the energy and matter balance as well as to constrain the role of the non-thermal components of clusters.

  19. The affective discourse dynamics of metaphor clustering The affective discourse dynamics of metaphor clustering

    Directory of Open Access Journals (Sweden)

    Lynne Cameron

    2010-05-01

    Full Text Available

    Metaphor is examined in the very different iscourse contexts of the classroom and of reconciliation talk to highlight the neglected affective dimension. The distribution of metaphors across discourse shows clustering at certain points, often where speakers are engaged in critical interpersonal discourse activity. Clusters in classroom talk co-occur with sequences of agenda management where teachers prepare students for upcoming lessons and with giving feedback to students, both of which require careful management of interpersonal and affective issues. Clusters in reconciliation talk co-occur with discourse management and with two situations with significant affective dynamics: appropriation of metaphor and exploration of alternative scenarios.

    Metaphor is examined in the very different iscourse contexts of the classroom and of reconciliation talk to highlight the neglected affective dimension. The distribution of metaphors across discourse shows clustering at certain points, often where speakers are engaged in critical interpersonal discourse activity. Clusters in classroom talk co-occur with sequences of agenda management where teachers prepare students for upcoming lessons and with giving feedback to students, both of which require careful management of interpersonal and affective issues. Clusters in reconciliation talk co-occur with discourse management and with two situations with significant affective dynamics: appropriation of metaphor and exploration of alternative scenarios.

  20. THE DYNAMICAL EVOLUTION OF STELLAR BLACK HOLES IN GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Morscher, Meagan; Pattabiraman, Bharath; Rodriguez, Carl; Rasio, Frederic A.; Umbreit, Stefan, E-mail: m.morscher@u.northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL (United States)

    2015-02-10

    Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters (GCs) may have formed hundreds to thousands of stellar-mass black holes (BHs), the remnants of stars with initial masses from ∼20-100 M {sub ☉}. Birth kicks from supernova explosions may eject some BHs from their birth clusters, but most should be retained. Using a Monte Carlo method we investigate the long-term dynamical evolution of GCs containing large numbers of stellar BHs. We describe numerical results for 42 models, covering a broad range of realistic initial conditions, including up to 1.6 × 10{sup 6} stars. In almost all models we find that significant numbers of BHs (up to ∼10{sup 3}) are retained all the way to the present. This is in contrast to previous theoretical expectations that most BHs should be ejected dynamically within a few gigayears The main reason for this difference is that core collapse driven by BHs (through the Spitzer {sup m}ass segregation instability{sup )} is easily reverted through three-body processes, and involves only a small number of the most massive BHs, while lower-mass BHs remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar BHs does not lead to a long-term physical separation of most BHs into a dynamically decoupled inner core, as often assumed previously. Combined with the recent detections of several BH X-ray binary candidates in Galactic GCs, our results suggest that stellar BHs could still be present in large numbers in many GCs today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.

  1. Dynamical evolution of globular-cluster systems in clusters of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Muzzio, J.C.

    1987-04-01

    The dynamical processes that affect globular-cluster systems in clusters of galaxies are analyzed. Two-body and impulsive approximations are utilized to study dynamical friction, drag force, tidal stripping, tidal radii, globular-cluster swapping, tidal accretion, and galactic cannibalism. The evolution of galaxies and the collision of galaxies are simulated numerically; the steps involved in the simulation are described. The simulated data are compared with observations. Consideration is given to the number of galaxies, halo extension, location of the galaxies, distribution of the missing mass, nonequilibrium initial conditions, mass dependence, massive central galaxies, globular-cluster distribution, and lost globular clusters. 116 references.

  2. Determination of the compound nucleus survival probability Psurv for various "hot" fusion reactions based on the dynamical cluster-decay model

    Science.gov (United States)

    Chopra, Sahila; Kaur, Arshdeep; Gupta, Raj K.

    2015-03-01

    After a successful attempt to define and determine recently the compound nucleus (CN) fusion/ formation probability PCN within the dynamical cluster-decay model (DCM), we introduce and estimate here for the first time the survival probability Psurv of CN against fission, again within the DCM. Calculated as the dynamical fragmentation process, Psurv is defined as the ratio of the evaporation residue (ER) cross section σER and the sum of σER and fusion-fission (ff) cross section σff, the CN formation cross section σCN, where each contributing fragmentation cross section is determined in terms of its formation and barrier penetration probabilities P0 and P . In DCM, the deformations up to hexadecapole and "compact" orientations for both in-plane (coplanar) and out-of-plane (noncoplanar) configurations are allowed. Some 16 "hot" fusion reactions, forming a CN of mass number ACN˜100 to superheavy nuclei, are analyzed for various different nuclear interaction potentials, and the variation of Psurv on CN excitation energy E*, fissility parameter χ , CN mass ACN, and Coulomb parameter Z1Z2 is investigated. Interesting results are that three groups, namely, weakly fissioning, radioactive, and strongly fissioning superheavy nuclei, are identified with Psurv, respectively, ˜1 ,˜10-6 , and ˜10-10 . For the weakly fissioning group (100 PCN belongs to the strongly fissioning superheavy group, Psurv belongs to weakly fissioning nuclei; for Pt* isotopes, the inverse of all the compound systems studied, both PCN and Psurv decrease with the increase of E*; for 213 ,215 ,217Fr* nuclei, though fissility χ is nearly the same, Psurv for 213 ,217Fr* is of the same order as for weakly fissioning nuclei, but that for 215Fr* is of the order of radioactive nuclei. Apparently, further calculations are called for.

  3. Co-clustering models, algorithms and applications

    CERN Document Server

    Govaert, Gérard

    2013-01-01

    Cluster or co-cluster analyses are important tools in a variety of scientific areas. The introduction of this book presents a state of the art of already well-established, as well as more recent methods of co-clustering. The authors mainly deal with the two-mode partitioning under different approaches, but pay particular attention to a probabilistic approach. Chapter 1 concerns clustering in general and the model-based clustering in particular. The authors briefly review the classical clustering methods and focus on the mixture model. They present and discuss the use of different mixture

  4. Dynamics of clusters and molecules in contact with an environment

    CERN Document Server

    Dinh, P M; Suraud, E

    2009-01-01

    We present recent theoretical investigations on the dynamics of metal clusters in contact with an environment, deposited of embedded. This concerns soft deposition as well as irradiation of the deposited/embedded clusters by intense laser pulses. We discuss examples of applications for two typical test cases, Na clusters deposited on MgO(001) surface and Na clusters in/on Ar substrate. Both environments are insulators with sizeable polarizability. They differ in their geometrical and mechanical properties.

  5. Clusters of classical water models

    Science.gov (United States)

    Kiss, Péter T.; Baranyai, András

    2009-11-01

    The properties of clusters can be used as tests of models constructed for molecular simulation of water. We searched for configurations with minimal energies for a small number of molecules. We identified topologically different structures close to the absolute energy minimum of the system by calculating overlap integrals and enumerating hydrogen bonds. Starting from the dimer, we found increasing number of topologically different, low-energy arrangements for the trimer(3), the tetramer(6), the pentamer(6), and the hexamer(9). We studied simple models with polarizable point dipole. These were the BSV model [J. Brodholt et al., Mol. Phys. 86, 149 (1995)], the DC model [L. X. Dang and T. M. Chang, J. Chem. Phys. 106, 8149 (1997)], and the GCP model [P. Paricaud et al., J. Chem. Phys. 122, 244511 (2005)]. As an alternative the SWM4-DP and the SWM4-NDP charge-on-spring models [G. Lamoureux et al., Chem. Phys. Lett. 418, 245 (2006)] were also investigated. To study the impact of polarizability restricted to the plane of the molecule we carried out calculations for the SPC-FQ and TIP4P-FQ models, too [S. W. Rick et al., J. Chem. Phys. 101, 6141 (1994)]. In addition to them, justified by their widespread use even for near critical or surface behavior calculations, we identified clusters for five nonpolarizable models of ambient water, SPC/E [H. J. C. Berendsen et al., J. Phys. Chem. 91, 6269 (1987)], TIP4P [W. L. Jorgensen et al., J. Chem. Phys. 79, 926 (1983)], TIP4P-EW [H. W. Horn et al., J. Chem. Phys. 120, 9665 (2004)], and TIP4P/2005 [J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005)]. The fifth was a five-site model named TIP5P [M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)]. To see the impact of the vibrations we studied the flexible SPC model. [K. Toukan and A. Rahman, Phys. Rev. B 31, 2643 (1985)]. We evaluated the results comparing them with experimental data and quantum chemical calculations. The position of the negative

  6. Cluster structure and dynamics in gels and glasses

    Science.gov (United States)

    Pastore, R.; de Candia, A.; Fierro, A.; Pica Ciamarra, M.; Coniglio, A.

    2016-07-01

    The dynamical arrest of gels is the consequence of a well defined structural phase transition, leading to the formation of a spanning cluster of bonded particles. The glass transition, instead, is not accompanied by any clear structural signature. Nevertheless, both transitions are characterized by the emergence of dynamical heterogeneities. Reviewing recent results from numerical simulations, we discuss the behavior of dynamical heterogeneities in different systems and show that a clear connection with the structure exists in the case of gels. The emerging picture may also be relevant for the more elusive case of glasses. We show, as an example, that the relaxation process of a simple glass-forming model can be related to a reverse percolation transition and discuss further perspective in this direction.

  7. Fractal dimension of critical clusters in the Φ44 model

    Science.gov (United States)

    Jansen, K.; Lang, C. B.

    1991-06-01

    We study the d=4 O(4) symmetric nonlinear sigma model at the pseudocritical points for 84-284 lattices. The Fortuin-Kasteleyn-Coniglio-Klein clusters are shown to have fractal dimension df~=3-in accordance with the conjectured scaling relation involving the odd critical exponent δ. For the one cluster algorithm introduced recently by Wolff the dynamical critical exponent z comes out to be compatible with zero in this model.

  8. Molecular dynamics simulation of gold cluster growth during sputter deposition

    Science.gov (United States)

    Abraham, J. W.; Strunskus, T.; Faupel, F.; Bonitz, M.

    2016-05-01

    We present a molecular dynamics simulation scheme that we apply to study the time evolution of the self-organized growth process of metal cluster assemblies formed by sputter-deposited gold atoms on a planar surface. The simulation model incorporates the characteristics of the plasma-assisted deposition process and allows for an investigation over a wide range of deposition parameters. It is used to obtain data for the cluster properties which can directly be compared with recently published experimental data for gold on polystyrene [M. Schwartzkopf et al., ACS Appl. Mater. Interfaces 7, 13547 (2015)]. While good agreement is found between the two, the simulations additionally provide valuable time-dependent real-space data of the surface morphology, some of whose details are hidden in the reciprocal-space scattering images that were used for the experimental analysis.

  9. Dynamic access clustering selecting mechanism based on Markov decision process for MANET

    Institute of Scientific and Technical Information of China (English)

    WANG Dao-yuan; TIAN Hui

    2007-01-01

    Clustering is an important method in the mobile Ad-hoc network (MANET). As a result of their mobility, the cluster selection is inevitable for the mobile nodes during their roaming between the different clusters. In this study, based on the analysis of the cluster-selecting problem in the environment containing multiple clusters, which are overlaying and intercrossing, a novel dynamic selecting mechanism is proposed to resolve the dynamic selection optimization of roaming between the different clusters in MANET. This selecting mechanism is also based on the consideration of the stability of communication system, the communicating bandwidth, and the effect of cluster selecting on the communication and also in accordance with the Markov decision-making model.

  10. Investigation of 10Be and its cluster dynamics from nonlocalized clustering concept

    CERN Document Server

    Lyu, Mengjiao; Zhou, Bo; Funaki, Yasuro; Horiuchi, Hisashi; Röpke, Gerd; Schuck, Peter; Tohsaki, Akihiro; Xu, Chang; Yamada, Taiichi

    2015-01-01

    We extend the new concept of nonlocalized clustering to the nucleus 10Be with proton number Z=4 and neutron number N=6 (N=Z+2). The Tohsaki-Horiuchi-Schuck-R\\"opke (THSR) wave function is formulated for the description of different structures of 10Be. Physical properties such as energy spectrum and root-mean-square radii are calculated for the first two 0+ states and corresponding rotational bands. With only one single THSR wave function, the calculated results show good agreement with other models and experimental values. We apply, for the first time, the THSR wave function on the chain orbit ({\\sigma}-orbit) structure in the 0^+_2 state of 10Be. The ring orbit ({\\pi}-orbit) and {\\sigma}-orbit structures are further illustrated by calculating the density distribution of the valence neutrons. We also investigate the dynamics of ff-clusters and the correlations of two valence neutrons in 10Be.

  11. A mathematical programming approach for sequential clustering of dynamic networks

    Science.gov (United States)

    Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia

    2016-02-01

    A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.

  12. IoT Service Clustering for Dynamic Service Matchmaking.

    Science.gov (United States)

    Zhao, Shuai; Yu, Le; Cheng, Bo; Chen, Junliang

    2017-07-27

    As the adoption of service-oriented paradigms in the IoT (Internet of Things) environment, real-world devices will open their capabilities through service interfaces, which enable other functional entities to interact with them. In an IoT application, it is indispensable to find suitable services for satisfying users' requirements or replacing the unavailable services. However, from the perspective of performance, it is inappropriate to find desired services from the service repository online directly. Instead, clustering services offline according to their similarity and matchmaking or discovering service online in limited clusters is necessary. This paper proposes a multidimensional model-based approach to measure the similarity between IoT services. Then, density-peaks-based clustering is employed to gather similar services together according to the result of similarity measurement. Based on the service clustering, the algorithms of dynamic service matchmaking, discovery, and replacement will be performed efficiently. Evaluating experiments are conducted to validate the performance of proposed approaches, and the results are promising.

  13. Molecular dynamical simulations of melting behaviors of metal clusters

    Directory of Open Access Journals (Sweden)

    Ilyar Hamid

    2015-04-01

    Full Text Available The melting behaviors of metal clusters are studied in a wide range by molecular dynamics simulations. The calculated results show that there are fluctuations in the heat capacity curves of some metal clusters due to the strong structural competition; For the 13-, 55- and 147-atom clusters, variations of the melting points with atomic number are almost the same; It is found that for different metal clusters the dynamical stabilities of the octahedral structures can be inferred in general by a criterion proposed earlier by F. Baletto et al. [J. Chem. Phys. 116 3856 (2002] for the statically stable structures.

  14. Influence of Dynamical Change of Edges on Clustering Coefficients

    Directory of Open Access Journals (Sweden)

    Yuhong Ruan

    2015-01-01

    Full Text Available Clustering coefficient is a very important measurement in complex networks, and it describes the average ratio between the actual existent edges and probable existent edges in the neighbor of one vertex in a complex network. Besides, in a complex networks, the dynamic change of edges can trigger directly the evolution of network and further affect the clustering coefficients. As a result, in this paper, we investigate the effects of the dynamic change of edge on the clustering coefficients. It is illustrated that the increase and decrease of the clustering coefficient can be effectively controlled by adding or deleting several edges of the network in the evolution of complex networks.

  15. Product PCNPsurv or the "reduced" evaporation residue cross section σER/σfusion for "hot" fusion reactions studied with the dynamical cluster-decay model

    Science.gov (United States)

    Chopra, Sahila; Kaur, Arshdeep; Hemdeep, Gupta, Raj K.

    2016-04-01

    The product PCNPsurv of compound nucleus (CN) fusion probability PCN and survival probability Psurv is calculated to determine the reduced evaporation residue cross section σER/σfusion , denoted σERreduced, with (total) fusion cross section σfusion given as a sum of CN-formation cross section σCN and non-CN cross section σnCN for each reaction, where σCN is the sum of evaporation residue cross section σER and fusion-fission cross section σff and σnCN, if not measured, is estimated empirically as the difference between measured and calculated σfusion. Our calculations of PCN and Psurv, based on the dynamical cluster-decay model, were successfully made for some 17 "hot" fusion reactions, forming different CN of mass numbers ACN˜100 -300 , with deformations of nuclei up to hexadecapole deformations and "compact" orientations for both coplanar (Φc=0∘ ) and noncoplanar (Φc≠0∘ ) configurations, using various different nuclear interaction potentials. Interesting variations of σERreduced with CN excitation energy E*, fissility parameter χ , CN mass ACN, and Coulomb parameter Z1Z2 show that, independent of entrance channel, different isotopes of CN, and nuclear interaction potentials used, the dominant quantity in the product is Psurv, which classifies all the studied CN into three groups of weakly fissioning, radioactive, and strongly fissioning superheavy nuclei, with relative magnitudes of σERreduced˜1 , ˜10-6 , and ˜10-11 , which, like for PCN, get further grouped in two dependencies of (i) weakly fissioning and strongly fissioning superheavy nuclei decreasing with increasing E* and (ii) radioactive nuclei increasing with increasing E*.

  16. Dynamic Clustering Of High Speed Data Streams

    Directory of Open Access Journals (Sweden)

    J. Chandrika

    2012-03-01

    Full Text Available We consider the problem of clustering data streams. A data stream can roughly be thought of as a transient, continuously increasing sequence of time-stamped data. In order to maintain an up-to-date clustering structure, it is necessary to analyze the incoming data in an online manner, tolerating but a constant time delay. The purpose of this study is to analyze the working of popular algorithms on clustering data streams and make a comparative analysis.

  17. Mock Observations of Blue Stragglers in Globular Cluster Models

    CERN Document Server

    Sills, Alison; Chatterjee, Sourav; Rasio, Frederic A

    2013-01-01

    We created artificial color-magnitude diagrams of Monte Carlo dynamical models of globular clusters, and then used observational methods to determine the number of blue stragglers in those clusters. We compared these blue stragglers to various cluster properties, mimicking work that has been done for blue stragglers in Milky Way globular clusters to determine the dominant formation mechanism(s) of this unusual stellar population. We find that a mass-based prescription for selecting blue stragglers will choose approximately twice as many blue stragglers than a selection criterion that was developed for observations of real clusters. However, the two numbers of blue stragglers are well-correlated, so either selection criterion can be used to characterize the blue straggler population of a cluster. We confirm previous results that the simplified prescription for the evolution of a collision or merger product in the BSE code overestimates the lifetime of collision products. Because our observationally-motivated s...

  18. Molecular dynamics simulations of cluster fission and fusion processes

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia

    2004-01-01

    Results of molecular dynamics simulations of fission reactions Na_10^2+ --> Na_7^+ +Na_3^+ and Na_18^2+ --> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analyzed. It is demonstrated that the energy necessary for removing homothetic...... groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual...

  19. Dynamics of Fractal Cluster Gels with Embedded Active Colloids

    Science.gov (United States)

    Szakasits, Megan E.; Zhang, Wenxuan; Solomon, Michael J.

    2017-08-01

    We find that embedded active colloids increase the ensemble-averaged mean squared displacement of particles in otherwise passively fluctuating fractal cluster gels. The enhancement in dynamics occurs by a mechanism in which the active colloids contribute to the average dynamics both directly through their own active motion and indirectly through their excitation of neighboring passive colloids in the fractal network. Fractal cluster gels are synthesized by addition of magnesium chloride to an initially stable suspension of 1.0 μ m polystyrene colloids in which a dilute concentration of platinum coated Janus colloids has been dispersed. The Janus colloids are thereby incorporated into the fractal network. We measure the ensemble-averaged mean squared displacement of all colloids in the gel before and after the addition of hydrogen peroxide, a fuel that drives diffusiophoretic motion of the Janus particles. The gel mean squared displacement increases by up to a factor of 3 for an active to passive particle ratio of 1 ∶20 and inputted active energy—defined based on the hydrogen peroxide's effect on colloid swim speed and run length—that is up to 9.5 times thermal energy, on a per particle basis. We model the enhancement in gel particle dynamics as the sum of a direct contribution from the displacement of the Janus particles themselves and an indirect contribution from the strain field that the active colloids induce in the surrounding passive particles.

  20. Advances in molecular vibrations and collision dynamics molecular clusters

    CERN Document Server

    Bacic, Zatko

    1998-01-01

    This volume focuses on molecular clusters, bound by van der Waals interactions and hydrogen bonds. Twelve chapters review a wide range of recent theoretical and experimental advances in the areas of cluster vibrations, spectroscopy, and reaction dynamics. The authors are leading experts, who have made significant contributions to these topics.The first chapter describes exciting results and new insights in the solvent effects on the short-time photo fragmentation dynamics of small molecules, obtained by combining heteroclusters with femtosecond laser excitation. The second is on theoretical work on effects of single solvent (argon) atom on the photodissociation dynamics of the solute H2O molecule. The next two chapters cover experimental and theoretical aspects of the energetics and vibrations of small clusters. Chapter 5 describes diffusion quantum Monte Carlo calculations and non additive three-body potential terms in molecular clusters. The next six chapters deal with hydrogen-bonded clusters, refle...

  1. Simulating Star Clusters with the AMUSE Software Framework: I. Dependence of Cluster Lifetimes on Model Assumptions and Cluster Dissolution Modes

    CERN Document Server

    Whitehead, Alfred J; Vesperini, Enrico; Zwart, Simon Portegies

    2013-01-01

    We perform a series of simulations of evolving star clusters using AMUSE (the Astrophysical Multipurpose Software Environment), a new community-based multi-physics simulation package, and compare our results to existing work. These simulations model a star cluster beginning with a King model distribution and a selection of power-law initial mass functions, and contain a tidal cut-off. They are evolved using collisional stellar dynamics and include mass loss due to stellar evolution. After determining that the differences between AMUSE results and prior publications are understood, we explored the variation in cluster lifetimes due to the random realization noise introduced by transforming a King model to specific initial conditions. This random realization noise can affect the lifetime of a simulated star cluster by up to 30%. Two modes of star cluster dissolution were identified: a mass evolution curve that contains a run-away cluster dissolution with a sudden loss of mass, and a dissolution mode that does n...

  2. New Approach to Cluster Synchronization in Complex Dynamical Networks

    Institute of Scientific and Technical Information of China (English)

    LU Xin-Biao; QIN Bu-Zhi; LU Xin-Yu

    2009-01-01

    In this paper, a distributed control strategy is proposed to make a complex dynamical network achieve cluster synchronization, which means that nodes in the same group achieve the same synchronization state, while nodes in different groups achieve different synchronization states. The local and global stability of the cluster synchronization state are analyzed. Moreover, simulation results verify the effectiveness of the new approach

  3. DYNER: A DYNamic ClustER for Education and Research

    Science.gov (United States)

    Kehagias, Dimitris; Grivas, Michael; Mamalis, Basilis; Pantziou, Grammati

    2006-01-01

    Purpose: The purpose of this paper is to evaluate the use of a non-expensive dynamic computing resource, consisting of a Beowulf class cluster and a NoW, as an educational and research infrastructure. Design/methodology/approach: Clusters, built using commodity-off-the-shelf (COTS) hardware components and free, or commonly used, software, provide…

  4. Thermodynamics of small clusters of atoms: A molecular dynamics simulation

    DEFF Research Database (Denmark)

    Damgaard Kristensen, W.; Jensen, E. J.; Cotterill, Rodney M J

    1974-01-01

    The thermodynamic properties of clusters containing 55, 135, and 429 atoms have been calculated using the molecular dynamics method. Structural and vibrational properties of the clusters were examined at different temperatures in both the solid and the liquid phase. The nature of the melting...

  5. Critical behavior of a dynamical percolation model

    Institute of Scientific and Technical Information of China (English)

    YU Mei-Ling; XU Ming-Mei; LIU Zheng-You; LIU Lian-Shou

    2009-01-01

    The critical behavior of the dynamical percolation model, which realizes the molecular-aggregation conception and describes the crossover between the hadronic phase and the partonic phase, is studied in detail. The critical percolation distance for this model is obtained by using the probability P∞ of the appearance of an infinite cluster. Utilizing the finite-size scaling method the critical exponents γ/v and T are extracted from the distribution of the average cluster size and cluster number density. The influences of two model related factors, I.e. The maximum bond number and the definition of the infinite cluster, on the critical behavior are found to be small.

  6. Clustering in Cell Cycle Dynamics with General Response/Signaling Feedback

    CERN Document Server

    Young, Todd; Buckalew, Richard; Moses, Gregory; Boczko, Erik; 10.1016/j.jtbi.2011.10.002.

    2011-01-01

    Motivated by experimental and theoretical work on autonomous oscillations in yeast, we analyze ordinary differential equations models of large populations of cells with cell-cycle dependent feedback. We assume a particular type of feedback that we call Responsive/Signaling (RS), but do not specify a functional form of the feedback. We study the dynamics and emergent behaviour of solutions, particularly temporal clustering and stability of clustered solutions. We establish the existence of certain periodic clustered solutions as well as "uniform" solutions and add to the evidence that cell-cycle dependent feedback robustly leads to cell-cycle clustering. We highlight the fundamental differences in dynamics between systems with negative and positive feedback. For positive feedback systems the most important mechanism seems to be the stability of individual isolated clusters. On the other hand we find that in negative feedback systems, clusters must interact with each other to reinforce coherence. We conclude fr...

  7. Study of nuclear clustering using the modern shell model approach

    Science.gov (United States)

    Volya, Alexander; Tchuvil'Sky, Yury

    2014-03-01

    Nuclear clustering, alpha decays, and multi-particle correlations are important components of nuclear dynamics. In this work we use the modern configuration-interaction approach with most advanced realistic shell-model Hamiltonians to study these questions. We utilize the algebraic many-nucleon structures and the corresponding fractional parentage coefficients to build the translationally invariant wave functions of the alpha-cluster channels. We explore the alpha spectroscopic factors, study the distribution of clustering strength, and discuss the structure of an effective 4-body operator describing the in-medium alpha dynamics in the multi-shell valence configuration space. Sensitivity of alpha clustering to the components of an effective Hamiltonian, which includes its collective and many-body components, as well as isospin symmetry breaking terms, are of interest. We offer effective techniques for evaluation of the cluster spectroscopic factors satisfying the orthogonality conditions of the respective cluster channels. We present a study of clustering phenomena, single-particle dynamics, and electromagnetic transitions for a number of nuclei in p-sd shells and compare our results with the experimentally available data. This work is supported by the U.S. Department of Energy under contract number DE-SC0009883.

  8. Effects of heterogeneous and clustered contact patterns on infectious disease dynamics.

    Directory of Open Access Journals (Sweden)

    Erik M Volz

    2011-06-01

    Full Text Available The spread of infectious diseases fundamentally depends on the pattern of contacts between individuals. Although studies of contact networks have shown that heterogeneity in the number of contacts and the duration of contacts can have far-reaching epidemiological consequences, models often assume that contacts are chosen at random and thereby ignore the sociological, temporal and/or spatial clustering of contacts. Here we investigate the simultaneous effects of heterogeneous and clustered contact patterns on epidemic dynamics. To model population structure, we generalize the configuration model which has a tunable degree distribution (number of contacts per node and level of clustering (number of three cliques. To model epidemic dynamics for this class of random graph, we derive a tractable, low-dimensional system of ordinary differential equations that accounts for the effects of network structure on the course of the epidemic. We find that the interaction between clustering and the degree distribution is complex. Clustering always slows an epidemic, but simultaneously increasing clustering and the variance of the degree distribution can increase final epidemic size. We also show that bond percolation-based approximations can be highly biased if one incorrectly assumes that infectious periods are homogeneous, and the magnitude of this bias increases with the amount of clustering in the network. We apply this approach to model the high clustering of contacts within households, using contact parameters estimated from survey data of social interactions, and we identify conditions under which network models that do not account for household structure will be biased.

  9. Tracing the Cluster Internal Dynamics with Member Galaxies

    OpenAIRE

    Biviano, Andrea

    2001-01-01

    The analysis of the spatial distribution and kinematics of galaxies in clusters allows one to determine the cluster internal dynamics. In this paper, I review the state of the art of this topic. In particular, I summarize what we have learned so far about galaxy orbits in clusters, and about the cluster mass distribution. I then compare four methods that have recently been used in the literature, by applying them to the same data-set. The results stress the importance of reducing systematic b...

  10. Slow dynamics and high variability in balanced cortical networks with clustered connections.

    Science.gov (United States)

    Litwin-Kumar, Ashok; Doiron, Brent

    2012-11-01

    Anatomical studies demonstrate that excitatory connections in cortex are not uniformly distributed across a network but instead exhibit clustering into groups of highly connected neurons. The implications of clustering for cortical activity are unclear. We studied the effect of clustered excitatory connections on the dynamics of neuronal networks that exhibited high spike time variability owing to a balance between excitation and inhibition. Even modest clustering substantially changed the behavior of these networks, introducing slow dynamics during which clusters of neurons transiently increased or decreased their firing rate. Consequently, neurons exhibited both fast spiking variability and slow firing rate fluctuations. A simplified model shows how stimuli bias networks toward particular activity states, thereby reducing firing rate variability as observed experimentally in many cortical areas. Our model thus relates cortical architecture to the reported variability in spontaneous and evoked spiking activity.

  11. Diffusion Dynamics of Cux Cluster on Cu(111) Surface

    Institute of Scientific and Technical Information of China (English)

    Jian-feng Tang; Mai-chang Xu; Xue-song Li; Wo-yun Long

    2008-01-01

    The diffusion dynamics of small two-dimensional atomic clusters Cux(1≤x≤8) on Cu(111) surface were studied using the molecular dynamics simulations and a modified analytic embedded-atom method in the temperature range from 200 K to 800 K.The cluster size and temperature dependence of the diffusion coefficients and migration energies are presented.Our simulations show that the diffusion migration energy of the Cu7 cluster is the highest and the prefactor for the CuT cluster is almost three orders of magnitude larger than that for single atom diffusion.This conclusion is consistent with the experimental results for similar metals.In addition,the dependence of cluster diffusion on film growth is also discussed.

  12. Effective Transparency: A Test of Atomistic Laser-Cluster Models

    CERN Document Server

    Pandit, Rishi; Teague, Thomas; Hartwick, Zachary; Bigaouette, Nicolas; Ramunno, Lora; Ackad, Edward

    2016-01-01

    The effective transparency of rare-gas clusters, post-interaction with an extreme ultraviolet (XUV) pump pulse, is studied by using an atomistic hybrid quantum-classical molecular dynamics model. We find there is an intensity range in which an XUV probe pulse has no lasting effect on the average charge state of a cluster after being saturated by an XUV pump pulse: the cluster is effectively transparent to the probe pulse. The range of this phenomena increases with the size of the cluster and thus provides an excellent candidate for an experimental test of the effective transparency effect. We present predictions for the clusters at the peak of the laser pulse as well as the experimental time-of-flight signal expected along with trends which can be compared with. Significant deviations from these predictions would provide evidence for enhanced photoionization mechanism(s).

  13. Multi-mode clustering model for hierarchical wireless sensor networks

    Science.gov (United States)

    Hu, Xiangdong; Li, Yongfu; Xu, Huifen

    2017-03-01

    The topology management, i.e., clusters maintenance, of wireless sensor networks (WSNs) is still a challenge due to its numerous nodes, diverse application scenarios and limited resources as well as complex dynamics. To address this issue, a multi-mode clustering model (M2 CM) is proposed to maintain the clusters for hierarchical WSNs in this study. In particular, unlike the traditional time-trigger model based on the whole-network and periodic style, the M2 CM is proposed based on the local and event-trigger operations. In addition, an adaptive local maintenance algorithm is designed for the broken clusters in the WSNs using the spatial-temporal demand changes accordingly. Numerical experiments are performed using the NS2 network simulation platform. Results validate the effectiveness of the proposed model with respect to the network maintenance costs, node energy consumption and transmitted data as well as the network lifetime.

  14. Ananke: temporal clustering reveals ecological dynamics of microbial communities

    Directory of Open Access Journals (Sweden)

    Michael W. Hall

    2017-09-01

    Full Text Available Taxonomic markers such as the 16S ribosomal RNA gene are widely used in microbial community analysis. A common first step in marker-gene analysis is grouping genes into clusters to reduce data sets to a more manageable size and potentially mitigate the effects of sequencing error. Instead of clustering based on sequence identity, marker-gene data sets collected over time can be clustered based on temporal correlation to reveal ecologically meaningful associations. We present Ananke, a free and open-source algorithm and software package that complements existing sequence-identity-based clustering approaches by clustering marker-gene data based on time-series profiles and provides interactive visualization of clusters, including highlighting of internal OTU inconsistencies. Ananke is able to cluster distinct temporal patterns from simulations of multiple ecological patterns, such as periodic seasonal dynamics and organism appearances/disappearances. We apply our algorithm to two longitudinal marker gene data sets: faecal communities from the human gut of an individual sampled over one year, and communities from a freshwater lake sampled over eleven years. Within the gut, the segregation of the bacterial community around a food-poisoning event was immediately clear. In the freshwater lake, we found that high sequence identity between marker genes does not guarantee similar temporal dynamics, and Ananke time-series clusters revealed patterns obscured by clustering based on sequence identity or taxonomy. Ananke is free and open-source software available at https://github.com/beiko-lab/ananke.

  15. Femtosecond Excited State Dynamics of Size Selected Neutral Molecular Clusters.

    Science.gov (United States)

    Montero, Raúl; León, Iker; Fernández, José A; Longarte, Asier

    2016-07-21

    The work describes a novel experimental approach to track the relaxation dynamics of an electronically excited distribution of neutral molecular clusters formed in a supersonic expansion, by pump-probe femtosecond ionization. The introduced method overcomes fragmentation issues and makes possible to retrieve the dynamical signature of a particular cluster from each mass channel, by associating it to an IR transition of the targeted structure. We have applied the technique to study the nonadiabatic relaxation of pyrrole homoclusters. The results obtained exciting at 243 nm, near the origin of the bare pyrrole electronic absorption, allow us to identify the dynamical signature of the dimer (Py)2, which exhibits a distinctive lifetime of τ1 ∼ 270 fs, considerably longer than the decays recorded for the monomer and bigger size clusters (Py)n>2. A possible relationship between the measured lifetime and the clusters geometries is tentatively discussed.

  16. Binaries and the dynamical mass of star clusters

    CERN Document Server

    Kouwenhoven, M B N

    2007-01-01

    The total mass of a distant star cluster is often derived from the virial theorem, using line-of-sight velocity dispersion measurements and half-light radii, under the implicit assumption that all stars are single (although it is known that most stars form part of binary systems). The components of binary stars exhibit orbital motion, which increases the measured velocity dispersion, resulting in a dynamical mass overestimation. In this article we quantify the effect of neglecting the binary population on the derivation of the dynamical mass of a star cluster. We find that the presence of binaries plays an important role for clusters with total mass M 10^5 Msun, binaries do not affect the dynamical mass estimation significantly, provided that the cluster is significantly compact (half-mass radius < 5 pc).

  17. The Dynamics of Technical and Business Knowledge Networks in Industrial Clusters: Embeddedness, status or proximity?

    NARCIS (Netherlands)

    Balland, Pierre-Alexandre; Belso-Martinez, Jose-Antonio; Morrison, Andrea

    2016-01-01

    Although informal knowledge networks have often been regarded as a key ingredient behind the success of industrial clusters, the forces that shape their structure and dynamics remain largely unknown. Drawing on recent network dynamic models, we analyze the evolution of business and technical knowled

  18. The Dynamics of Technical and Business Knowledge Networks in Industrial Clusters: Embeddedness, status or proximity?

    NARCIS (Netherlands)

    Balland, Pierre-Alexandre; Belso-Martinez, Jose-Antonio; Morrison, Andrea

    2016-01-01

    Although informal knowledge networks have often been regarded as a key ingredient behind the success of industrial clusters, the forces that shape their structure and dynamics remain largely unknown. Drawing on recent network dynamic models, we analyze the evolution of business and technical knowled

  19. Workload dynamics on clusters and grids

    NARCIS (Netherlands)

    Li, H.

    2009-01-01

    This paper presents a comprehensive statistical analysis of a variety of workloads collected on production clusters and Grids. The applications are mostly computational-intensive and each task requires single CPU for processing data, which dominate the workloads on current production Grid systems. T

  20. Dynamic Routing Protocol for Computer Networks with Clustering Topology

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    This paper presents a hierarchical dynamic routing protocol (HDRP) based on the discrete dynamic programming principle. The proposed protocol can adapt to the dynamic and large computer networks (DLCN) with clustering topology. The procedures for realizing routing update and decision are presented in this paper. The proof of correctness and complexity analysis of the protocol are also made. The performance measures of the HDRP including throughput and average message delay are evaluated by using of simulation. The study shows that the HDRP provides a new available approach to the routing decision for DLCN or high speed networks with clustering topology.

  1. AMI observations of ten CLASH galaxy clusters: SZ and X-ray data used together to determine cluster dynamical states

    CERN Document Server

    Rumsey, Clare; Perrott, Yvette C; Russell, Helen R; Feroz, Farhan; Grainge, Keith J B; Handley, Will J; Hobson, Michael P; Saunders, Richard D E; Schammel, Michel P

    2016-01-01

    Using Arcminute Microkelvin Imager (AMI) SZ observations towards ten CLASH clusters we investigate the influence of cluster mergers on observational galaxy cluster studies. Although selected to be largely relaxed, there is disagreement in the literature on the dynamical states of CLASH sample members. We analyse our AMI data in a fully Bayesian way to produce estimated cluster parameters and consider the intrinsic correlations in our NFW/GNFW-based model. Varying pressure profile shape parameters, illustrating an influence of mergers on scaling relations, induces small deviations from the canonical self-similar predictions -- in agreement with simulations of Poole et al. 2007 who found that merger activity causes only small scatter perpendicular to the relations. We demonstrate this effect observationally using the different dependencies of SZ and X-ray signals to $n_{\\rm e}$ that cause different sensitivities to the shocking and/or fractionation produced by mergers. Plotting $Y_{\\rm X}$--$M_{\\rm gas}$ relati...

  2. The merging cluster Abell 1758: an optical and dynamical view

    Science.gov (United States)

    Monteiro-Oliveira, Rogerio; Serra Cypriano, Eduardo; Machado, Rubens; Lima Neto, Gastao B.

    2015-08-01

    The galaxy cluster Abell 1758-North (z=0.28) is a binary system composed by the sub-structures NW and NE. This is supposed to be a post-merging cluster due to observed detachment between the NE BCG and the respective X-ray emitting hot gas clump in a scenario very close to the famous Bullet Cluster. On the other hand, the projected position of the NW BCG coincides with the local hot gas peak. This system was been targeted previously by several studies, using multiple wavelengths and techniques, but there is still no clear picture of the scenario that could have caused this unusual configuration. To help solving this complex puzzle we added some pieces: firstly, we have used deep B, RC and z' Subaru images to perform both weak lensing shear and magnification analysis of A1758 (including here the South component that is not in interaction with A1758-North) modeling each sub-clump as an NFW profile in order to constrain masses and its center positions through MCMC methods; the second piece is the dynamical analysis using radial velocities available in the literature (143) plus new Gemini-GMOS/N measurements (68 new redshifts).From weak lensing we found that independent shear and magnification mass determinations are in excellent agreement between them and combining both we could reduce mass error bar by ~30% compared to shear alone. By combining this two weak-lensing probes we found that the position of both Northern BCGs are consistent with the masses centers within 2σ and and the NE hot gas peak to be offseted of the respective mass peak (M200=5.5 X 1014 M⊙) with very high significance. The most massive structure is NW (M200=7.95 X 1014 M⊙ ) where we observed no detachment between gas, DM and BCG.We have calculated a low line-of-sight velocity difference (<300 km/s) between A1758 NW and NE. We have combined it with the projected velocity of 1600 km/s which was estimated by previous X-ray analysis (David & Kempner 2004) and we have obtained a small angle between

  3. The Large-Scale Environment of Dynamical Young Clusters of Galaxies

    OpenAIRE

    Plionis, M.; Basilakos, S.

    2001-01-01

    We investigate whether the dynamical status of clusters is related to the large-scale structure of the Universe. We find that cluster substructure is strongly correlated with the tendency of clusters to be aligned with their nearest neighbour and in general with the nearby clusters that belong to the same supercluster. Furthermore, dynamically young clusters are more clustered than the overall cluster population. These are strong indications that clusters develop in a hierarchical fashion by ...

  4. Dynamic and static properties of the invaded cluster algorithm

    Science.gov (United States)

    Moriarty, K.; Machta, J.; Chayes, L. Y.

    1999-02-01

    Simulations of the two-dimensional Ising and three-state Potts models at their critical points are performed using the invaded cluster (IC) algorithm. It is argued that observables measured on a sublattice of size l should exhibit a crossover to Swendsen-Wang (SW) behavior for l sufficiently less than the lattice size L, and a scaling form is proposed to describe the crossover phenomenon. It is found that the energy autocorrelation time τɛ(l,L) for an l×l sublattice attains a maximum in the crossover region, and a dynamic exponent zIC for the IC algorithm is defined according to τɛ,max~LzIC. Simulation results for the three-state model yield zIC=0.346+/-0.002, which is smaller than values of the dynamic exponent found for the SW and Wolff algorithms and also less than the Li-Sokal bound. The results are less conclusive for the Ising model, but it appears that zICWolff algorithms.

  5. Dynamic Latent Classification Model

    DEFF Research Database (Denmark)

    Zhong, Shengtong; Martínez, Ana M.; Nielsen, Thomas Dyhre

    as possible. Motivated by this problem setting, we propose a generative model for dynamic classification in continuous domains. At each time point the model can be seen as combining a naive Bayes model with a mixture of factor analyzers (FA). The latent variables of the FA are used to capture the dynamics...... in the process as well as modeling dependences between attributes....

  6. Visual verification and analysis of cluster detection for molecular dynamics.

    Science.gov (United States)

    Grottel, Sebastian; Reina, Guido; Vrabec, Jadran; Ertl, Thomas

    2007-01-01

    A current research topic in molecular thermodynamics is the condensation of vapor to liquid and the investigation of this process at the molecular level. Condensation is found in many physical phenomena, e.g. the formation of atmospheric clouds or the processes inside steam turbines, where a detailed knowledge of the dynamics of condensation processes will help to optimize energy efficiency and avoid problems with droplets of macroscopic size. The key properties of these processes are the nucleation rate and the critical cluster size. For the calculation of these properties it is essential to make use of a meaningful definition of molecular clusters, which currently is a not completely resolved issue. In this paper a framework capable of interactively visualizing molecular datasets of such nucleation simulations is presented, with an emphasis on the detected molecular clusters. To check the quality of the results of the cluster detection, our framework introduces the concept of flow groups to highlight potential cluster evolution over time which is not detected by the employed algorithm. To confirm the findings of the visual analysis, we coupled the rendering view with a schematic view of the clusters' evolution. This allows to rapidly assess the quality of the molecular cluster detection algorithm and to identify locations in the simulation data in space as well as in time where the cluster detection fails. Thus, thermodynamics researchers can eliminate weaknesses in their cluster detection algorithms. Several examples for the effective and efficient usage of our tool are presented.

  7. Dynamic screening of a localized hole during photoemission from a metal cluster

    CERN Document Server

    Koval, N E; Borisov, A G; Muiño, R Díez

    2012-01-01

    Recent advances in attosecond spectroscopy techniques have fueled the interest in the theoretical description of electronic processes taking place in the subfemtosecond time scale. We here study the coupled dynamic screening of a localized hole and a photoelectron emitted from a metal cluster using a semi-classical model. Electron density dynamics in the cluster is calculated with Time Dependent Density Functional Theory and the motion of the photoemitted electron is described classically. We show that the dynamic screening of the hole by the cluster electrons affects the motion of the photoemitted electron. At the very beginning of the photoemission process, the emitted electron is accelerated by the cluster electrons that pile up to screen the hole. This is a velocity dependent effect that needs to be accounted for when calculating the energy lost by the electron due to inelastic processes.

  8. What do dynamical cluster masses really tell us about dynamics?

    CERN Document Server

    de Grijs, Richard; Goodwin, Simon P

    2008-01-01

    The diagnostic age versus mass-to-light ratio diagram is often used in attempts to constrain the shape of the stellar initial mass function, and the stability and the potential longevity of extragalactic young to intermediate-age massive star clusters. Here, we explore the pitfalls associated with this approach and its potential for use with Galactic open clusters. We conclude that for an open cluster to survive for any significant fraction of a Hubble time (in the absence of substantial external perturbations), it is a necessary but not a sufficient condition to be located close to the predicted photometric evolutionary sequences for "normal" simple stellar populations.

  9. Dynamics of the NGC 4636 globular cluster system. An extremely dark matter dominated galaxy?

    Science.gov (United States)

    Schuberth, Y.; Richtler, T.; Dirsch, B.; Hilker, M.; Larsen, S. S.; Kissler-Patig, M.; Mebold, U.

    2006-11-01

    Context: .We present the first dynamical study of the globular cluster system of NGC 4636. It is the southernmost giant elliptical galaxy of the Virgo cluster and is claimed to be extremely dark matter dominated, according to X-ray observations. Aims: .Globular clusters are used as dynamical tracers to investigate, by stellar dynamical means, the dark matter content of this galaxy. Methods: .Several hundred medium resolution spectra were acquired at the VLT with FORS 2/MXU. We obtained velocities for 174 globular clusters in the radial range 0.90 arcmin Jeans-models. Results: .We find some indication of a rotation of the red (metal-rich) clusters about the minor axis. Out to a radius of 30 kpc, we find a roughly constant projected velocity dispersion for the blue clusters of σ ≈ 200~km s-1. The red clusters are found to have a distinctly different behavior: at a radius of about 3', the velocity dispersion drops by ~50~km s-1 to about 170~km s-1, which then remains constant out to a radius of 7'. The cause might be the steepening of the number density profile at ~3' observed for the red clusters. Using only the blue clusters as dynamical tracers, we perform Jeans-analyses for different assumptions of the orbital anisotropy. Enforcing the model dark halos to be of the NFW type, we determine their structural parameters. Depending on the anisotropy and the adopted M/L-values, we find that the dark matter fraction within one effective radius can vary between 20% and 50%, with most a probable range between 20% and 30%. The ambiguity of the velocity dispersion in the outermost bin is a main source of uncertainty. A comparison with cosmological N-body simulations reveals no striking disagreement. Conclusions: .Although the dark halo mass still cannot be strongly constrained, NGC 4636 does not seem to be extremely dark matter dominated. The derived circular velocities are also consistent with Modified Newtonian Dynamics.

  10. Modelling the Milky Way's globular cluster system

    Science.gov (United States)

    Binney, James; Wong, Leong Khim

    2017-05-01

    We construct a model for the Galactic globular cluster system based on a realistic gravitational potential and a distribution function (DF) analytic in the action integrals. The DF comprises disc and halo components whose functional forms resemble those recently used to describe the stellar discs and stellar halo. We determine the posterior distribution of our model parameters using a Bayesian approach. This gives us an understanding of how well the globular cluster data constrain our model. The favoured parameter values of the disc and halo DFs are similar to values previously obtained from fits to the stellar disc and halo, although the cluster halo system shows clearer rotation than does the stellar halo. Our model reproduces the generic features of the globular cluster system, namely the density profile, the mean rotation velocity and the fraction of metal-rich clusters. However, the data indicate either incompatibility between catalogued cluster distances and current estimates of distance to the Galactic Centre, or failure to identify clusters behind the bulge. As the data for our Galaxy's components increase in volume and precision over the next few years, it will be rewarding to revisit the present analysis.

  11. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

    CERN Document Server

    Ntampaka, M; Sutherland, D J; Fromenteau, S; Poczos, B; Schneider, J

    2015-01-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning (ML) algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark's publicly-available N-body MDPL1 simulation, one with perfect galaxy cluster membership information and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power law scaling relation to infer cluster mass from galaxy line of sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with width = 0.87. Interlopers introduce additional scatter, significantly widening the error distribution further (width = 2.13). We employ the Support Distribution Machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to...

  12. Efficient Cluster Algorithm for CP(N-1) Models

    CERN Document Server

    Beard, B B; Riederer, S; Wiese, U J

    2006-01-01

    Despite several attempts, no efficient cluster algorithm has been constructed for CP(N-1) models in the standard Wilson formulation of lattice field theory. In fact, there is a no-go theorem that prevents the construction of an efficient Wolff-type embedding algorithm. In this paper, we construct an efficient cluster algorithm for ferromagnetic SU(N)-symmetric quantum spin systems. Such systems provide a regularization for CP(N-1) models in the framework of D-theory. We present detailed studies of the autocorrelations and find a dynamical critical exponent that is consistent with z = 0.

  13. Efficient cluster algorithm for CP(N-1) models

    Science.gov (United States)

    Beard, B. B.; Pepe, M.; Riederer, S.; Wiese, U.-J.

    2006-11-01

    Despite several attempts, no efficient cluster algorithm has been constructed for CP(N-1) models in the standard Wilson formulation of lattice field theory. In fact, there is a no-go theorem that prevents the construction of an efficient Wolff-type embedding algorithm. In this paper, we construct an efficient cluster algorithm for ferromagnetic SU(N)-symmetric quantum spin systems. Such systems provide a regularization for CP(N-1) models in the framework of D-theory. We present detailed studies of the autocorrelations and find a dynamical critical exponent that is consistent with z=0.

  14. Baryon content and dynamic state of galaxy clusters

    Science.gov (United States)

    Wang, D.

    2016-06-01

    We are carrying out a panchromatic observing program to study the baryon content and dynamic state of galaxy clusters. In this talk, I will present results primarily from XMM-Newton observations of optically-selected clusters in the redshift range of 0.1-0.4. These clusters are selected because of their fortuitous alignment with background far-UV-bright QSOs, which thus allows for Ly-alpha and O VI absorption line spectroscopy with HST/COS, probing physical processes of the evolving intracluster medium, freshly accreted from the intergalactic medium and/or stripped out of individual galaxies, as well as the gaseous halos of individual cluster galaxies. Interestingly, such clusters tend to be dynamically young and often consist of merging subcluster pairs at similar redshifts. These subclusters themselves typically show substantial substructures, including strongly distorted radio lobes, as well as large position offsets between the diffuse X-ray centroids and the brightest galaxies. A comparison of the hot gas and stellar masses of each cluster with the expected cosmological baryonic mass fraction indicates a significant room for other gas components. I will also briefly examine the limitations of both optically and X-ray selected clusters, as well as how they may be used in a complementary fashion.

  15. Method for discovering relationships in data by dynamic quantum clustering

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Marvin; Horn, David

    2014-10-28

    Data clustering is provided according to a dynamical framework based on quantum mechanical time evolution of states corresponding to data points. To expedite computations, we can approximate the time-dependent Hamiltonian formalism by a truncated calculation within a set of Gaussian wave-functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition and/or feature filtering.

  16. Method for discovering relationships in data by dynamic quantum clustering

    Science.gov (United States)

    Weinstein, Marvin; Horn, David

    2014-10-28

    Data clustering is provided according to a dynamical framework based on quantum mechanical time evolution of states corresponding to data points. To expedite computations, we can approximate the time-dependent Hamiltonian formalism by a truncated calculation within a set of Gaussian wave-functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition and/or feature filtering.

  17. Cluster dynamics and universality of Ising lattice gases

    Science.gov (United States)

    Heringa, J. R.; Blöte, H. W. J.

    Lattice gases with nearest-neighbour exclusion are studied by means of Monte Carlo simulations with an efficient cluster algorithm. The critical dynamics is consistent with a dynamical exponent z=0 in the case of Wolff-like cluster updates for square and simple-cubic lattices in the studied range of lattice sizes. We find the critical activity zc=0.72020(4) for the body-centred cubic lattice. The critical exponents yh=2.475(8) and yt=1.61(6) disagree with an earlier study, but they do agree with the known values for the three-dimensional Ising universality class.

  18. Method for discovering relationships in data by dynamic quantum clustering

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Marvin; Horn, David

    2017-05-09

    Data clustering is provided according to a dynamical framework based on quantum mechanical time evolution of states corresponding to data points. To expedite computations, we can approximate the time-dependent Hamiltonian formalism by a truncated calculation within a set of Gaussian wave-functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition and/or feature filtering.

  19. Highly dynamically evolved intermediate-age open clusters

    Science.gov (United States)

    Piatti, Andrés E.; Dias, Wilton S.; Sampedro, Laura M.

    2017-04-01

    We present a comprehensive UBVRI and Washington CT1T2 photometric analysis of seven catalogued open clusters, namely: Ruprecht 3, 9, 37, 74, 150, ESO 324-15 and 436-2. The multiband photometric data sets in combination with 2MASS photometry and Gaia astrometry for the brighter stars were used to estimate their structural parameters and fundamental astrophysical properties. We found that Ruprecht 3 and ESO 436-2 do not show self-consistent evidence of being physical systems. The remained studied objects are open clusters of intermediate age (9.0 ≤ log(t yr-1) ≤ 9.6), of relatively small size (rcls ∼ 0.4-1.3 pc) and placed between 0.6 and 2.9 kpc from the Sun. We analysed the relationships between core, half-mass, tidal and Jacoby radii as well as half-mass relaxation times to conclude that the studied clusters are in an evolved dynamical stage. The total cluster masses obtained by summing those of the observed cluster stars resulted to be ∼10-15 per cent of the masses of open clusters of similar age located closer than 2 kpc from the Sun. We found that cluster stars occupy volumes as large as those for tidally filled clusters.

  20. Dynamics of Galaxy Clusters and their Outskirts

    DEFF Research Database (Denmark)

    Falco, Martina

    the mass determination far outside the radius of virialization. Our tests performed on cosmological simulations and observational data validate the proposed methods. We also formalize a justification for the Jeans swindle, i.e. the inconsistency that characterizes the dynamical mass measurement of any...

  1. A theory of differentiation with dynamic clustering

    CERN Document Server

    Kaneko, K; Kaneko, Kunihiko; Yomo, Tetsuya

    1995-01-01

    A novel theory for cell differentiation is proposed, based on simulations with interacting artificial cells which have metabolic networks within, and divide into two when the final product is accumulated. Results of simulations with coupled chemical networks and division process lead to the following scenario of the differentiation: Up to some numbers of cells, divisions bring about almost identical cells with synchronized metabolic oscillations. As the number is increased the oscillations lose the synchrony, leading to groups of cells with different phases of oscillations. At later stage this differentiation is fixed in time, and cells spilt into groups with different chemical constituents spontaneously, which are transmitted to daughter cells by cell divisions. Hierarchical differentiation, origin of stem cells, and anomalous differentiation by transplantations are also discussed with relevance to real biological experimental results. (Keywords: differentiation, metabolic network, cell division, clustering,...

  2. AMI observations of 10 CLASH galaxy clusters: SZ and X-ray data used together to determine cluster dynamical states

    Science.gov (United States)

    Rumsey, Clare; Olamaie, Malak; Perrott, Yvette C.; Russell, Helen R.; Feroz, Farhan; Grainge, Keith J. B.; Handley, Will J.; Hobson, Michael P.; Saunders, Richard D. E.; Schammel, Michel P.

    2016-07-01

    Using Arcminute Microkelvin Imager (AMI) Sunyaev-Zel'dovich (SZ) observations towards 10 CLASH (Cluster Lensing and Supernova Survey with Hubble) clusters, we investigate the influence of cluster mergers on observational galaxy cluster studies. Although selected to be largely relaxed, there is disagreement in the literature on the dynamical states of CLASH sample members. We analyse our AMI data in a fully Bayesian way to produce estimated cluster parameters and consider the intrinsic correlations in our Navarro, Frenk and White/generalized Navarro, Frenk and White-based model. Varying pressure profile shape parameters, illustrating an influence of mergers on scaling relations, induces small deviations from the canonical self-similar predictions - in agreement with simulations of Poole et al. (2007) who found that merger activity causes only small scatter perpendicular to the relations. We demonstrate this effect observationally using the different dependences of SZ and X-ray signals to ne that cause different sensitivities to the shocking and/or fractionation produced by mergers. Plotting YX-Mgas relations (where YX = MgasT) derived from AMI SZ and from Chandra X-ray gives ratios of AMI and Chandra YX and Mgas estimates that indicate movement of clusters along the scaling relation, as predicted by Poole et al. (2007). Clusters that have moved most along the relation have the most discrepant TSZ and TX estimates: all the other clusters (apart from one) have SZ and X-ray estimates of Mgas, T and YX that agree within r500. We use SZ versus X-ray discrepancies in conjunction with Chandra maps and TX profiles, making comparisons with simulated cluster merger maps in Poole et al. (2006) to identify disturbed members of our sample and estimate merger stages.

  3. Application of the Clustering Method in Molecular Dynamics Simulation of the Diffusion Coefficient

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using molecular dynamics (MD) simulation, the diffusion of oxygen, methane, ammonia and carbon dioxide in water was simulated in the canonical NVT ensemble, and the diffusion coefficient was analyzed by the clustering method. By comparing to the conventional method (using the Einstein model) and the differentiation-interval variation method, we found that the results obtained by the clustering method used in this study are more close to the experimental values. This method proved to be more reasonable than the other two methods.

  4. Topics in modelling of clustered data

    CERN Document Server

    Aerts, Marc; Ryan, Louise M; Geys, Helena

    2002-01-01

    Many methods for analyzing clustered data exist, all with advantages and limitations in particular applications. Compiled from the contributions of leading specialists in the field, Topics in Modelling of Clustered Data describes the tools and techniques for modelling the clustered data often encountered in medical, biological, environmental, and social science studies. It focuses on providing a comprehensive treatment of marginal, conditional, and random effects models using, among others, likelihood, pseudo-likelihood, and generalized estimating equations methods. The authors motivate and illustrate all aspects of these models in a variety of real applications. They discuss several variations and extensions, including individual-level covariates and combined continuous and discrete outcomes. Flexible modelling with fractional and local polynomials, omnibus lack-of-fit tests, robustification against misspecification, exact, and bootstrap inferential procedures all receive extensive treatment. The application...

  5. Segmentation of dynamic PET images with kinetic spectral clustering

    Science.gov (United States)

    Mouysset, S.; Zbib, H.; Stute, S.; Girault, J. M.; Charara, J.; Noailles, J.; Chalon, S.; Buvat, I.; Tauber, C.

    2013-10-01

    Segmentation is often required for the analysis of dynamic positron emission tomography (PET) images. However, noise and low spatial resolution make it a difficult task and several supervised and unsupervised methods have been proposed in the literature to perform the segmentation based on semi-automatic clustering of the time activity curves of voxels. In this paper we propose a new method based on spectral clustering that does not require any prior information on the shape of clusters in the space in which they are identified. In our approach, the p-dimensional data, where p is the number of time frames, is first mapped into a high dimensional space and then clustering is performed in a low-dimensional space of the Laplacian matrix. An estimation of the bounds for the scale parameter involved in the spectral clustering is derived. The method is assessed using dynamic brain PET images simulated with GATE and results on real images are presented. We demonstrate the usefulness of the method and its superior performance over three other clustering methods from the literature. The proposed approach appears as a promising pre-processing tool before parametric map calculation or ROI-based quantification tasks.

  6. A Chain-to-chain Dynamic Competition Network Model for the Industry Clusters of Multinational Companies%跨国企业嵌入集群下链与链竞争动态网络模型分析

    Institute of Scientific and Technical Information of China (English)

    刘春玲; 黎继子; 罗细飞

    2012-01-01

    the dynamic game path this paper explores the competitive models of producers, wholesalers and retailers before multinational enterprises enter a domestic industrial cluster. Maximizing profit is the goal of these three models. Individual equilibrium conditions are clarified from the perspective of variational inequality. A profit model for local cluster supply chains is established. Second, this paper considers multinational technology and capital advantages after multinational enterprises enter industrial cluster and form their own supply chains embedded into an industrial cluster. The exchange rate and capital time value become important because multinational enterprises begin to enter different regions and countries over the world. We therefore construct a chain-to-chain competitive network model for multinational enterprises embedded in the international industry cluster. Multinational companies completely embedded into a domestic cluster will gradually lose their competitiveness in the long run because of the increased competitiveness of local firms. Multinational enterprises will be forced to enter the melted equilibrium stage from the first stage of competitive embedding stage. This paper explored both stages of the supply chain cluster transformation by testing the optimal equilibrium conditions. Furthermore, the difference of equilibrium solutions is adjusted to determine its states by judging whether the difference is zero, and Euler and iterative principle are introduced to represent its algorithm. At last, we used a case study to demonstrate that in the first stage the original local supply chain maintains high customer satisfaction and market share and achieves higher supply chain performance than international supply chain in which multinational firms are embedded. However, after moving into the second stage, international supply chains perform much better than domestic supply chains. Indicators for the improved performance in the second stage include

  7. Aerosol cluster impact and break-up : II. Atomic and Cluster Scale Models.

    Energy Technology Data Exchange (ETDEWEB)

    Lechman, Jeremy B.; Takato, Yoichi (State University of New York at Buffalo, Buffalo, NY)

    2010-09-01

    Understanding the interaction of aerosol particle clusters/flocs with surfaces is an area of interest for a number of processes in chemical, pharmaceutical, and powder manufacturing as well as in steam-tube rupture in nuclear power plants. Developing predictive capabilities for these applications involves coupled phenomena on multiple length and timescales from the process macroscopic scale ({approx}1m) to the multi-cluster interaction scale (1mm-0.1m) to the single cluster scale ({approx}1000 - 10000 particles) to the particle scale (10nm-10{micro}m) interactions, and on down to the sub-particle, atomic scale interactions. The focus of this report is on the single cluster scale; although work directed toward developing better models of particle-particle interactions by considering sub-particle scale interactions and phenomena is also described. In particular, results of mesoscale (i.e., particle to single cluster scale) discrete element method (DEM) simulations for aerosol cluster impact with rigid walls are presented. The particle-particle interaction model is based on JKR adhesion theory and is implemented as an enhancement to the granular package in the LAMMPS code. The theory behind the model is outlined and preliminary results are shown. Additionally, as mentioned, results from atomistic classical molecular dynamics simulations are also described as a means of developing higher fidelity models of particle-particle interactions. Ultimately, the results from these and other studies at various scales must be collated to provide systems level models with accurate 'sub-grid' information for design, analysis and control of the underlying systems processes.

  8. Dynamics of molecules and clusters at surfaces

    CERN Document Server

    Goldby, I M

    1996-01-01

    and aggregate into round particles with a 'universal' diameter of approx 14 nm. This preferred diameter is attributed to the strain between the silver and graphite lattices. The deposition rate and the cluster impact angle are also shown to be important parameters, which strongly influence the morphology of the islands. Computer simulation results indicate that, to produce the observed island size distributions, the mobility of the particles must fall off rapidly as their size increases. In chapter five, I present results from angular resolved electron stimulated desorption studies of 0 sup - , 0 sub 2 sup - , and 0 sub 3 sup - , produced from ordered films of 0 sub 2 on HOPG. Resonances in the yields of all products as a function of electron impact energy are attributed to dissociative electron attachment, generating 0 sup - ions, which can react with neighbouring O sub 2 molecules in the film. Characteristic differences in the ion yield profiles from one product to another are explained in terms of a binary...

  9. Star clusters as laboratories for stellar and dynamical evolution

    CERN Document Server

    Kalirai, Jason S

    2009-01-01

    Open and globular star clusters have served as benchmarks for the study of stellar evolution due to their supposed nature as simple stellar populations of the same age and metallicity. After a brief review of some of the pioneering work that established the importance of imaging stars in these systems, we focus on several recent studies that have challenged our fundamental picture of star clusters. These new studies indicate that star clusters can very well harbour multiple stellar populations, possibly formed through self-enrichment processes from the first-generation stars that evolved through post-main-sequence evolutionary phases. Correctly interpreting stellar evolution in such systems is tied to our understanding of both chemical-enrichment mechanisms, including stellar mass loss along the giant branches, and the dynamical state of the cluster. We illustrate recent imaging, spectroscopic and theoretical studies that have begun to shed new light on the evolutionary processes that occur within star cluste...

  10. Binary Populations and Stellar Dynamics in Young Clusters

    Science.gov (United States)

    Vanbeveren, D.; Belkus, H.; Van Bever, J.; Mennekens, N.

    2008-06-01

    We first summarize work that has been done on the effects of binaries on theoretical population synthesis of stars and stellar phenomena. Next, we highlight the influence of stellar dynamics in young clusters by discussing a few candidate UFOs (unconventionally formed objects) like intermediate mass black holes, η Car, ζ Pup, γ2 Velorum and WR 140.

  11. Binary populations and stellar dynamics in young clusters

    CERN Document Server

    Vanbeveren, D; Van Bever, J; Mennekens, N

    2008-01-01

    We first summarize work that has been done on the effects of binaries on theoretical population synthesis of stars and stellar phenomena. Next, we highlight the influence of stellar dynamics in young clusters by discussing a few candidate UFOs (unconventionally formed objects) like intermediate mass black holes, Eta Carinae, Zeta Puppis, Gamma Velorum and WR 140.

  12. Enhancing Digital Book Clustering by LDAC Model

    Science.gov (United States)

    Wang, Lidong; Jie, Yuan

    In Digital Library (DL) applications, digital book clustering is an important and urgent research task. However, it is difficult to conduct effectively because of the great length of digital books. To do the correct clustering for digital books, a novel method based on probabilistic topic model is proposed. Firstly, we build a topic model named LDAC. The main goal of LDAC topic modeling is to effectively extract topics from digital books. Subsequently, Gibbs sampling is applied for parameter inference. Once the model parameters are learned, each book is assigned to the cluster which maximizes the posterior probability. Experimental results demonstrate that our approach based on LDAC is able to achieve significant improvement as compared to the related methods.

  13. Bridges in the random-cluster model

    Directory of Open Access Journals (Sweden)

    Eren Metin Elçi

    2016-02-01

    Full Text Available The random-cluster model, a correlated bond percolation model, unifies a range of important models of statistical mechanics in one description, including independent bond percolation, the Potts model and uniform spanning trees. By introducing a classification of edges based on their relevance to the connectivity we study the stability of clusters in this model. We prove several exact relations for general graphs that allow us to derive unambiguously the finite-size scaling behavior of the density of bridges and non-bridges. For percolation, we are also able to characterize the point for which clusters become maximally fragile and show that it is connected to the concept of the bridge load. Combining our exact treatment with further results from conformal field theory, we uncover a surprising behavior of the (normalized variance of the number of (non-bridges, showing that it diverges in two dimensions below the value 4cos2⁡(π/3=0.2315891⋯ of the cluster coupling q. Finally, we show that a partial or complete pruning of bridges from clusters enables estimates of the backbone fractal dimension that are much less encumbered by finite-size corrections than more conventional approaches.

  14. Path-integral molecular dynamics simulations for water anion clusters (HO)5- and (DO)5-

    Science.gov (United States)

    Takayanagi, Toshiyuki; Yoshikawa, Takehiro; Motegi, Haruki; Shiga, Motoyuki

    2009-11-01

    Quantum path-integral molecular dynamics simulations have been performed for the (HO)5- and (DO)5- anion clusters on the basis of a semiempirical one-electron pseudopotential-polarization model. Due to larger zero-point vibrational amplitudes for H atoms than that of D atoms, hydrogen-bond lengths in the (HO)5- cluster are slightly larger than those in (DO)5-. The distribution of the vertical detachment energies for (HO)5- also show a broader feature than that for (DO)5-. The present PIMD simulations thus demonstrate the importance of nuclear quantum effects in water anion clusters.

  15. Clustering of Galaxies in Brane World Models

    CERN Document Server

    Hameeda, Mir; Ali, Ahmed Farag

    2015-01-01

    In this paper, we analyze the clustering of galaxies using a modified Newtonian potential. This modification of the Newtonian potential occurs due to the existence of extra dimensions in brane world models. We will analyze a system of galaxies interacting with each other through this modified Newtonian potential. The partition function for this system of galaxies will be calculated, and this partition function will be used to calculate the free energy of this system of galaxies. The entropy and the chemical potential for this system will also be calculated. We will derive an explicit expression for the clustering parameter for this system. This parameter will determine the behavior of this system, and we will be able to express various thermodynamic quantities using this clustering parameter. Thus, we will be able to explicitly analyze the effect that modifying the Newtonian potential can have on the clustering of galaxies.

  16. Clustering of galaxies in brane world models

    Science.gov (United States)

    Hameeda, Mir; Faizal, Mir; Ali, Ahmed Farag

    2016-04-01

    In this paper, we analyze the clustering of galaxies using a modified Newtonian potential. This modification of the Newtonian potential occurs due to the existence of extra dimensions in brane world models. We will analyze a system of galaxies interacting with each other through this modified Newtonian potential. The partition function for this system of galaxies will be calculated, and this partition function will be used to calculate the free energy of this system of galaxies. The entropy and the chemical potential for this system will also be calculated. We will derive explicit expression for the clustering parameter for this system. This parameter will determine the behavior of this system, and we will be able to express various thermodynamic quantities using this clustering parameter. Thus, we will be able to explicitly analyze the effect that modifying the Newtonian potential can have on the clustering of galaxies. We also analyse the effect of extra dimensions on the two-point functions between galaxies.

  17. Vibration-rotation-tunneling dynamics in small water clusters

    Energy Technology Data Exchange (ETDEWEB)

    Pugliano, N.

    1992-11-01

    The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm{sup {minus}1} intermolecular vibration of the water dimer-d{sub 4}. Each of the VRT subbands originate from K{sub a}{double_prime}=0 and terminate in either K{sub a}{prime}=0 or 1. These data provide a complete characterization of the tunneling dynamics in the vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A{prime} rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K{sub a}{prime} quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a{prime} symmetry, and the vibration is assigned as the {nu}{sub 12} acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D{sub 2}O-DOH isotopomer.

  18. Vibration-rotation-tunneling dynamics in small water clusters

    Energy Technology Data Exchange (ETDEWEB)

    Pugliano, N.

    1992-11-01

    The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm[sup [minus]1] intermolecular vibration of the water dimer-d[sub 4]. Each of the VRT subbands originate from K[sub a][double prime]=0 and terminate in either K[sub a][prime]=0 or 1. These data provide a complete characterization of the tunneling dynamics in the vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A[prime] rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K[sub a][prime] quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a[prime] symmetry, and the vibration is assigned as the [nu][sub 12] acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D[sub 2]O-DOH isotopomer.

  19. Post-deposition dynamics of multiple cluster aggregation on liquid surfaces

    Institute of Scientific and Technical Information of China (English)

    Wu Feng-Min; Xu You-Sheng; Ye Gao-Xiang; Wu Zi-Qin

    2005-01-01

    A comprehensive simulation model-deposition, diffusion, rotation and aggregation-is presented to demonstrate the post-deposition phenomena of multiple cluster growth on liquid surfaces, such as post-deposition nucleation, postdeposition growth and post-deposition coalescence. Emphasis is placed on the relaxations of monomer density, dimer density and cluster density as well as combined cluster-plus-monomer density with time after deposition ending. It isshown that post-deposition coalescence largely takes place after deposition due to the large mobility of clusters on liquid surfaces, while the post-deposition nucleation is only possible before the saturation cluster density is reached at the end of the deposition. The deposition flux and the moment of deposition ending play important roles in the post-deposition dynamics.

  20. Experimental and theoretical investigation of the magnetization dynamics of an artificial square spin ice cluster

    Energy Technology Data Exchange (ETDEWEB)

    Pohlit, Merlin, E-mail: pohlit@physik.uni-frankfurt.de; Porrati, Fabrizio; Huth, Michael; Müller, Jens [Institute of Physics, Goethe-University Frankfurt, Frankfurt/Main (Germany); Stockem, Irina; Schröder, Christian [Bielefeld Institute for Applied Materials Research, FH Bielefeld-University of Applied Sciences, Bielefeld (Germany)

    2016-10-14

    We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamics of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.

  1. Experimental and theoretical investigation of the magnetization dynamics of an artificial square spin ice cluster

    Science.gov (United States)

    Pohlit, Merlin; Stockem, Irina; Porrati, Fabrizio; Huth, Michael; Schröder, Christian; Müller, Jens

    2016-10-01

    We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamics of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.

  2. Dynamics of 10 clusters of galaxies with substructures

    Energy Technology Data Exchange (ETDEWEB)

    Lakhchaura, Kiran; Singh, K. P., E-mail: kiran_astro@tifr.res.in [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400 005 (India)

    2014-06-01

    We present a detailed Chandra study of a sample of 10 clusters of galaxies selected based on the presence of substructures in their optical images. The X-ray surface brightness maps of most of these clusters show anisotropic morphologies, especially in the central regions. A total of 22 well resolved significantly bright X-ray peaks (corresponding with high-density regions) are seen in the central parts (within r{sub c} /2) of the clusters. Multiple peaks are seen in central parts of six clusters. We found 11 peaks to have optical counterparts (10 coinciding with the brightest cluster galaxies of the 10 clusters and 1 coinciding with the second brightest galaxy in A539). For most of the clusters, the optical substructures detected in the previous studies are found to be outside the field of view of Chandra. In the spectroscopically produced two-dimensional temperature maps, significantly lower temperatures are seen at the locations of three peaks (two in A539 and one in A376). The centers of five clusters in our sample also host regions of higher temperature compared to the ambient medium, indicating the presence of galaxy scale mergers. The X-ray luminosity, gas mass, and central cooling time estimates for all the clusters are presented. The radial X-ray surface-brightness profiles of all but one of the clusters are found to be best-fitted with a double-β model, pointing toward the presence of double-phased central gas due to cool cores. The cooling time estimates of all the clusters, however, indicate that none of them hosts a strong cool core, although the possibility of weak cool cores cannot be ruled out.

  3. Dynamical formation of cataclysmic variables in globular clusters

    Science.gov (United States)

    Hong, Jongsuk; Vesperini, Enrico; Belloni, Diogo; Giersz, Mirek

    2017-01-01

    The formation and evolution of X-ray sources in globular clusters is likely to be affected by the cluster internal dynamics and the stellar interactions in the cluster dense environment. Several observational studies have revealed a correlation between the number of X-ray sources and the stellar encounter rate, and provided evidence of the role of dynamics in the formation of X-ray binaries. We have performed a survey of Monte Carlo simulations aimed at exploring the connection between the dynamics and formation of cataclysmic variables (CVs) and the origin of the observed correlation between the number of these objects, Ncv, and the stellar encounter rate, Γ. The results of our simulations show a correlation between Ncv and Γ, as found in observational data, illustrate the essential role played by the dynamics, and shed light on the dynamical history behind this correlation. CVs in our simulations are more centrally concentrated than single stars with masses close to those of turn-off stars, although this trend is stronger for CVs formed from primordial binaries undergoing exchange encounters, which include a population of more massive CVs absent in the group of CVs formed from binaries not suffering any component exchange.

  4. Dynamical Formation of Cataclysmic Variables in Globular Clusters

    CERN Document Server

    Hong, Jongsuk; Belloni, Diogo; Giersz, Mirek

    2016-01-01

    The formation and evolution of X-ray sources in globular clusters is likely to be affected by the cluster internal dynamics and the stellar interactions in the cluster dense environment.Several observational studies have revealed a correlation between the number of X-ray sources and the stellar encounter rate and provided evidence of the role of dynamics in the formation of X-ray binaries. We have performed a survey of Monte-Carlo simulations aimed at exploring the connection between the dynamics and formation of cataclysmic variables (CVs) and the origin of the observed correlation between the number of these objects, $N_{\\rm cv}$, and the stellar encounter rate, $\\Gamma$.The results of our simulations show a correlation between $N_{\\rm cv}$ and $\\Gamma$ as found in observational data, illustrate the essential role played by dynamics, and shed light on the dynamical history behind this correlation. CVs in our simulations are more centrally concentrated than single stars with masses close to those of turn-off...

  5. The Exactly Solvable Simplest Model for Queue Dynamics

    OpenAIRE

    Y. Sugiyama; Yamada, H.

    1996-01-01

    We present an exactly solvable model for queue dynamics. Our model is very simple but provides the essential property for such dynamics. As an example, the model has the traveling cluster solution as well as the homogeneous flow solution. The model is the limiting case of Optimal Velocity (OV) model, which is proposed for the car following model to induce traffic jam spontaneously.

  6. The unrelaxed dynamical structure of the galaxy cluster Abell 85

    CERN Document Server

    Yu, Heng; Agulli, Irene; Aguerri, Jose Alfonso Lopez; Tozzi, Paolo

    2016-01-01

    For the first time, we explore the dynamics of the central region of a galaxy cluster within $r_{500}\\sim 600h^{-1}$~kpc from its center by combining optical and X-ray spectroscopy. We use (1) the caustic technique that identifies the cluster substructures and their galaxy members with optical spectroscopic data, and (2) the X-ray redshift fitting procedure that estimates the redshift distribution of the intracluster medium (ICM). We use the spatial and redshift distributions of the galaxies and of the X-ray emitting gas to associate the optical substructures to the X-ray regions. When we apply this approach to Abell 85 (A85), a complex dynamical structure of A85 emerges from our analysis: a galaxy group, with redshift $z=0.0509 \\pm 0.0021$ is passing through the cluster center along the line of sight dragging part of the ICM present in the cluster core; two additional groups, at redshift $z=0.0547 \\pm 0.0022$ and $z=0.0570 \\pm 0.0020$, are going through the cluster in opposite directions, almost perpendicula...

  7. Cluster Optimization and Parallelization of Simulations with Dynamically Adaptive Grids

    KAUST Repository

    Schreiber, Martin

    2013-01-01

    The present paper studies solvers for partial differential equations that work on dynamically adaptive grids stemming from spacetrees. Due to the underlying tree formalism, such grids efficiently can be decomposed into connected grid regions (clusters) on-the-fly. A graph on those clusters classified according to their grid invariancy, workload, multi-core affinity, and further meta data represents the inter-cluster communication. While stationary clusters already can be handled more efficiently than their dynamic counterparts, we propose to treat them as atomic grid entities and introduce a skip mechanism that allows the grid traversal to omit those regions completely. The communication graph ensures that the cluster data nevertheless are kept consistent, and several shared memory parallelization strategies are feasible. A hyperbolic benchmark that has to remesh selected mesh regions iteratively to preserve conforming tessellations acts as benchmark for the present work. We discuss runtime improvements resulting from the skip mechanism and the implications on shared memory performance and load balancing. © 2013 Springer-Verlag.

  8. Models for Dynamic Applications

    DEFF Research Database (Denmark)

    2011-01-01

    be applied to formulate, analyse and solve these dynamic problems and how in the case of the fuel cell problem the model consists of coupledmeso and micro scale models. It is shown how data flows are handled between the models and how the solution is obtained within the modelling environment....

  9. Dynamic Portfolio Strategy Using Clustering Approach

    Science.gov (United States)

    Lu, Ya-Nan; Li, Sai-Ping; Jiang, Xiong-Fei; Zhong, Li-Xin; Qiu, Tian

    2017-01-01

    The problem of portfolio optimization is one of the most important issues in asset management. We here propose a new dynamic portfolio strategy based on the time-varying structures of MST networks in Chinese stock markets, where the market condition is further considered when using the optimal portfolios for investment. A portfolio strategy comprises two stages: First, select the portfolios by choosing central and peripheral stocks in the selection horizon using five topological parameters, namely degree, betweenness centrality, distance on degree criterion, distance on correlation criterion and distance on distance criterion. Second, use the portfolios for investment in the investment horizon. The optimal portfolio is chosen by comparing central and peripheral portfolios under different combinations of market conditions in the selection and investment horizons. Market conditions in our paper are identified by the ratios of the number of trading days with rising index to the total number of trading days, or the sum of the amplitudes of the trading days with rising index to the sum of the amplitudes of the total trading days. We find that central portfolios outperform peripheral portfolios when the market is under a drawup condition, or when the market is stable or drawup in the selection horizon and is under a stable condition in the investment horizon. We also find that peripheral portfolios gain more than central portfolios when the market is stable in the selection horizon and is drawdown in the investment horizon. Empirical tests are carried out based on the optimal portfolio strategy. Among all possible optimal portfolio strategies based on different parameters to select portfolios and different criteria to identify market conditions, 65% of our optimal portfolio strategies outperform the random strategy for the Shanghai A-Share market while the proportion is 70% for the Shenzhen A-Share market. PMID:28129333

  10. Dynamic Portfolio Strategy Using Clustering Approach.

    Science.gov (United States)

    Ren, Fei; Lu, Ya-Nan; Li, Sai-Ping; Jiang, Xiong-Fei; Zhong, Li-Xin; Qiu, Tian

    2017-01-01

    The problem of portfolio optimization is one of the most important issues in asset management. We here propose a new dynamic portfolio strategy based on the time-varying structures of MST networks in Chinese stock markets, where the market condition is further considered when using the optimal portfolios for investment. A portfolio strategy comprises two stages: First, select the portfolios by choosing central and peripheral stocks in the selection horizon using five topological parameters, namely degree, betweenness centrality, distance on degree criterion, distance on correlation criterion and distance on distance criterion. Second, use the portfolios for investment in the investment horizon. The optimal portfolio is chosen by comparing central and peripheral portfolios under different combinations of market conditions in the selection and investment horizons. Market conditions in our paper are identified by the ratios of the number of trading days with rising index to the total number of trading days, or the sum of the amplitudes of the trading days with rising index to the sum of the amplitudes of the total trading days. We find that central portfolios outperform peripheral portfolios when the market is under a drawup condition, or when the market is stable or drawup in the selection horizon and is under a stable condition in the investment horizon. We also find that peripheral portfolios gain more than central portfolios when the market is stable in the selection horizon and is drawdown in the investment horizon. Empirical tests are carried out based on the optimal portfolio strategy. Among all possible optimal portfolio strategies based on different parameters to select portfolios and different criteria to identify market conditions, 65% of our optimal portfolio strategies outperform the random strategy for the Shanghai A-Share market while the proportion is 70% for the Shenzhen A-Share market.

  11. Highly dynamically evolved intermediate-age open clusters

    CERN Document Server

    Piatti, Andrés E; Sampedro, Laura M

    2016-01-01

    We present a comprehensive UBVRI and Washington CT1T2 photometric analysis of seven catalogued open clusters, namely: Ruprecht 3, 9, 37, 74, 150, ESO 324-15 and 436-2. The multi-band photometric data sets in combination with 2MASS photometry and Gaia astrometry for the brighter stars were used to estimate their structural parameters and fundamental astrophysical properties. We found that Ruprecht 3 and ESO 436-2 do not show self-consistent evidence of being physical systems. The remained studied objects are open clusters of intermediate-age (9.0 < log(t yr-1) < 9.6), of relatively small size (r_cls ~ 0.4 - 1.3 pc) and placed between 0.6 and 2.9 kpc from the Sun. We analized the relationships between core, half-mass, tidal and Jacoby radii as well as half-mass relaxation times to conclude that the studied clusters are in an evolved dynamical stage. The cluster masses obtained by summing those of the observed cluster stars resulted to be ~ 10-15 per cent of the masses of open clusters of similar age locat...

  12. Studying the Dynamical Properties of 20 Nearby Galaxy Clusters

    CERN Document Server

    Abdullah, Mohamed H; Ismail, H A; Rassem, Mohamed A

    2014-01-01

    Using SDSS-DR7, we construct a sample of 42382 galaxies with redshifts in the region of 20 galaxy clusters. Using two successive iterative methods, the adaptive kernel method and the spherical infall model, we obtained 3396 galaxies as members belonging to the studied sample. The 2D projected map for the distribution of the clusters members is introduced using the 2D adaptive kernel method to get the clusters centers. The cumulative surface number density profile for each cluster is fitted well with the generalized King model. The core radii of the clusters' sample are found to vary from 0.18 Mpc $\\mbox{h}^{-1}$ (A1459) to 0.47 Mpc $\\mbox{h}^{-1}$ (A2670) with mean value of 0.295 Mpc $\\mbox{h}^{-1}$. The infall velocity profile is determined using two different models, Yahil approximation and Praton model. Yahil approximation is matched with the distribution of galaxies only in the outskirts (infall regions) of many clusters of the sample, while it is not matched with the distribution within the inner core of...

  13. Modeling and clustering users with evolving profiles in usage streams

    KAUST Repository

    Zhang, Chongsheng

    2012-09-01

    Today, there is an increasing need of data stream mining technology to discover important patterns on the fly. Existing data stream models and algorithms commonly assume that users\\' records or profiles in data streams will not be updated or revised once they arrive. Nevertheless, in various applications such asWeb usage, the records/profiles of the users can evolve along time. This kind of streaming data evolves in two forms, the streaming of tuples or transactions as in the case of traditional data streams, and more importantly, the evolving of user records/profiles inside the streams. Such data streams bring difficulties on modeling and clustering for exploring users\\' behaviors. In this paper, we propose three models to summarize this kind of data streams, which are the batch model, the Evolving Objects (EO) model and the Dynamic Data Stream (DDS) model. Through creating, updating and deleting user profiles, these models summarize the behaviors of each user as a profile object. Based upon these models, clustering algorithms are employed to discover interesting user groups from the profile objects. We have evaluated all the proposed models on a large real-world data set, showing that the DDS model summarizes the data streams with evolving tuples more efficiently and effectively, and provides better basis for clustering users than the other two models. © 2012 IEEE.

  14. Dynamical ejections of massive stars from young star clusters under diverse initial conditions

    Science.gov (United States)

    Oh, Seungkyung; Kroupa, Pavel

    2016-05-01

    We study the effects that initial conditions of star clusters and their massive star population have on dynamical ejections of massive stars from star clusters up to an age of 3 Myr. We use a large set of direct N-body calculations for moderately massive star clusters (Mecl ≈ 103.5 M⊙). We vary the initial conditions of the calculations, such as the initial half-mass radius of the clusters, initial binary populations for massive stars and initial mass segregation. We find that the initial density is the most influential parameter for the ejection fraction of the massive systems. The clusters with an initial half-mass radius rh(0) of 0.1 (0.3) pc can eject up to 50% (30)% of their O-star systems on average, while initially larger (rh(0) = 0.8 pc) clusters, that is, lower density clusters, eject hardly any OB stars (at most ≈ 4.5%). When the binaries are composed of two stars of similar mass, the ejections are most effective. Most of the models show that the average ejection fraction decreases with decreasing stellar mass. For clusters that are efficient at ejecting O stars, the mass function of the ejected stars is top-heavy compared to the given initial mass function (IMF), while the mass function of stars that remain in the cluster becomes slightly steeper (top-light) than the IMF. The top-light mass functions of stars in 3 Myr old clusters in our N-body models agree well with the mean mass function of young intermediate-mass clusters in M 31, as reported previously. This implies that the IMF of the observed young clusters is the canonical IMF. We show that the multiplicity fraction of the ejected massive stars can be as high as ≈ 60%, that massive high-order multiple systems can be dynamically ejected, and that high-order multiples become common especially in the cluster. We also discuss binary populations of the ejected massive systems. Clusters that are initially not mass-segregated begin ejecting massive stars after a time delay that is caused by mass

  15. CNEM: Cluster Based Network Evolution Model

    Directory of Open Access Journals (Sweden)

    Sarwat Nizamani

    2015-01-01

    Full Text Available This paper presents a network evolution model, which is based on the clustering approach. The proposed approach depicts the network evolution, which demonstrates the network formation from individual nodes to fully evolved network. An agglomerative hierarchical clustering method is applied for the evolution of network. In the paper, we present three case studies which show the evolution of the networks from the scratch. These case studies include: terrorist network of 9/11 incidents, terrorist network of WMD (Weapons Mass Destruction plot against France and a network of tweets discussing a topic. The network of 9/11 is also used for evaluation, using other social network analysis methods which show that the clusters created using the proposed model of network evolution are of good quality, thus the proposed method can be used by law enforcement agencies in order to further investigate the criminal networks

  16. Climate Modeling with a Linux Cluster

    Science.gov (United States)

    Renold, M.; Beyerle, U.; Raible, C. C.; Knutti, R.; Stocker, T. F.; Craig, T.

    2004-08-01

    Until recently, computationally intensive calculations in many scientific disciplines have been limited to institutions which have access to supercomputing centers. Today, the computing power of PC processors permits the assembly of inexpensive PC clusters that nearly approach the power of supercomputers. Moreover, the combination of inexpensive network cards and Open Source software provides an easy linking of standard computer equipment to enlarge such clusters. Universities and other institutions have taken this opportunity and built their own mini-supercomputers on site. Computing power is a particular issue for the climate modeling and impacts community. The purpose of this article is to make available a Linux cluster version of the Community Climate System Model developed by the National Center for Atmospheric Research (NCAR; http://www.cgd.ucar.edu/csm).

  17. Evaluating Mixture Modeling for Clustering: Recommendations and Cautions

    Science.gov (United States)

    Steinley, Douglas; Brusco, Michael J.

    2011-01-01

    This article provides a large-scale investigation into several of the properties of mixture-model clustering techniques (also referred to as latent class cluster analysis, latent profile analysis, model-based clustering, probabilistic clustering, Bayesian classification, unsupervised learning, and finite mixture models; see Vermunt & Magdison,…

  18. High-performance dynamic quantum clustering on graphics processors

    Energy Technology Data Exchange (ETDEWEB)

    Wittek, Peter, E-mail: peterwittek@acm.org [Swedish School of Library and Information Science, University of Boras, Boras (Sweden)

    2013-01-15

    Clustering methods in machine learning may benefit from borrowing metaphors from physics. Dynamic quantum clustering associates a Gaussian wave packet with the multidimensional data points and regards them as eigenfunctions of the Schroedinger equation. The clustering structure emerges by letting the system evolve and the visual nature of the algorithm has been shown to be useful in a range of applications. Furthermore, the method only uses matrix operations, which readily lend themselves to parallelization. In this paper, we develop an implementation on graphics hardware and investigate how this approach can accelerate the computations. We achieve a speedup of up to two magnitudes over a multicore CPU implementation, which proves that quantum-like methods and acceleration by graphics processing units have a great relevance to machine learning.

  19. Functional clustering algorithm for the analysis of dynamic network data

    Science.gov (United States)

    Feldt, S.; Waddell, J.; Hetrick, V. L.; Berke, J. D.; Żochowski, M.

    2009-05-01

    We formulate a technique for the detection of functional clusters in discrete event data. The advantage of this algorithm is that no prior knowledge of the number of functional groups is needed, as our procedure progressively combines data traces and derives the optimal clustering cutoff in a simple and intuitive manner through the use of surrogate data sets. In order to demonstrate the power of this algorithm to detect changes in network dynamics and connectivity, we apply it to both simulated neural spike train data and real neural data obtained from the mouse hippocampus during exploration and slow-wave sleep. Using the simulated data, we show that our algorithm performs better than existing methods. In the experimental data, we observe state-dependent clustering patterns consistent with known neurophysiological processes involved in memory consolidation.

  20. DIRECT NUMERICAL SIMUIATION OF BUBBLE-CLUSTER'S DYNAMIC CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A Direct Numerical Simulation (DNS) for understanding the dynamic response of bubble cluster to pulses of pressure perturbations has been studied by using a front-tracking method. The results show that owing to high nonlinearity, the bubble shape and volume oscillations caused by passing by pressure wave will be transformed into an in-phase volumetric oscillation of whole bubble cluster at a particular low-frequency. The value of the frequency is independent of the pulse excitations but the characteristics of the bubble cluster such as its bubble size, bulk void fraction and its spacial distribution etc. It is believed that this study provides important information for us to understand the coupling mechanism of cavitation cloud involved in cavitation resonance, a phenomenon noticed by one of the authors more than two decades ago.

  1. Imaginary time Gaussian dynamics of the Ar_3 cluster

    CERN Document Server

    Cartarius, Holger

    2010-01-01

    Semiclassical Gaussian approximations to the Boltzmann operator have become an important tool for the investigation of thermodynamic properties of clusters of atoms at low temperatures. Usually, numerically expensive thawed Gaussian variants are applied. In this article, we introduce a numerically much cheaper frozen Gaussian approximation to the imaginary time propagator with a width matrix especially suited for the dynamics of clusters. The quality of the results is comparable to that of thawed Gaussian methods based on the single-particle ansatz. We apply the method to the argon trimer and investigate the dissociation process of the cluster. The results clearly show a classical-like transition from a bounded moiety to three free particles at a temperature T ~ 20 K, whereas previous studies of the system were not able to resolve this transition. Quantum effects, i.e., differences with the purely classical case manifest themselves in the low-temperature behavior of the mean energy and specific heat as well a...

  2. Kinematical fingerprints of star cluster early dynamical evolution

    CERN Document Server

    Vesperini, Enrico; McMillan, Stephen L W; Zepf, Stephen E

    2014-01-01

    We study the effects of the external tidal field on the violent relaxation phase of star clusters dynamical evolution, with particular attention to the kinematical properties of the equilibrium configurations emerging at the end of this phase.We show that star clusters undergoing the process of violent relaxation in the tidal field of their host galaxy can acquire significant internal differential rotation and are characterized by a distinctive radial variation of the velocity anisotropy. These kinematical properties are the result of the symmetry breaking introduced by the external tidal field in the collapse phase and of the action of the Coriolis force on the orbit of the stars. The resulting equilibrium configurations are characterized by differential rotation, with a peak located between one and two half-mass radii. As for the anisotropy, similar to clusters evolving in isolation, the systems explored in this Letter are characterized by an inner isotropic core, followed by a region of increasing radial a...

  3. Dynamic clustering of distributed source coding in wireless sensor networks

    Institute of Scientific and Technical Information of China (English)

    LIU Bing

    2009-01-01

    There are correlations of data in adjacent sensor nodes in wireless sensor networks (WSNs). Distributed source coding (DSC) is an idea to improve the energy efficiency in WSNs by compressing the sensor data with correlations to others. When utilizing the DSC, the network architecture that, deciding which nodes to transmit the side information and which nodes to compress according to the correlations, influences the compression efficiency significantly. Comparing with former schemes that have no adaptations, a dynamic clustering scheme is presented in this article, with which the network is partitioned to clusters adaptive to the topology and the degree of correlations. The simulation indicates that the proposed scheme has higher efficiency than static clustering schemes.

  4. Dynamical Analyses of Galaxy Clusters With Large Redshift Samples

    Science.gov (United States)

    Mohr, J. J.; Richstone, D. O.; Wegner, G.

    1998-12-01

    We construct equilibrium models of galaxy orbits in five nearby galaxy clusters to study the distribution of binding mass, the nature of galaxy orbits and the kinematic differences between cluster populations of emission-line and non emission-line galaxies. We avail ourselves of 1718 galaxy redshifts (and 1203 cluster member redshifts) in this Jeans analysis; most of these redshifts are new, coming from multifiber spectroscopic runs on the MDM 2.4m with the Decaspec and queue observing on WIYN with Hydra. In addition to the spectroscopic data we have V and R band CCD mosaics (obtained with the MDM 1.3m) of the Abell region in each of these clusters. Our scientific goals include: (i) a quantitative estimate of the range of binding masses M500 consistent with the optical and X-ray data, (ii) an estimate of the typical galaxy oribital anisotropies required to make the galaxy data consistent with the NFW expectation for the cluster potential, (iii) a better understanding of the systematics inherent in the process of rescaling and ``stacking'' galaxy cluster observations, (iv) a reexamination of the recent CNOC results implying that emission-line (blue) galaxies are an equilibrium population with a more extended radial distribution than their non emission-line (red) galaxy counterparts and (v) a measure of the galaxy contribution to the cluster mass of baryons.

  5. Managing Clustered Data Using Hierarchical Linear Modeling

    Science.gov (United States)

    Warne, Russell T.; Li, Yan; McKyer, E. Lisako J.; Condie, Rachel; Diep, Cassandra S.; Murano, Peter S.

    2012-01-01

    Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence…

  6. Managing Clustered Data Using Hierarchical Linear Modeling

    Science.gov (United States)

    Warne, Russell T.; Li, Yan; McKyer, E. Lisako J.; Condie, Rachel; Diep, Cassandra S.; Murano, Peter S.

    2012-01-01

    Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence…

  7. Dynamic term structure models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Meldrum, Andrew

    This paper studies whether dynamic term structure models for US nominal bond yields should enforce the zero lower bound by a quadratic policy rate or a shadow rate specification. We address the question by estimating quadratic term structure models (QTSMs) and shadow rate models with at most four...

  8. Clusters, Halos, And S-Factors In Fermionic Molecular Dynamics *

    Directory of Open Access Journals (Sweden)

    Feldmeier Hans

    2013-12-01

    Full Text Available In Fermionic Molecular Dynamics antisymmetrized products of Gaussian wave packets are projected on angular momentum, linear momentum, and parity. An appropriately chosen set of these states span the many-body Hilbert space in which the Hamiltonian is diagonalized. The wave packet parameters – position, momentum, width and spin – are obtained by variation under constraints. The great flexibility of this basis allows to describe not only shell-model like states but also exotic states like halos, e.g. the two-proton halo in 17Ne, or cluster states as they appear for example in 12C close to the α breakup threshold where the Hoyle state is located. Even a fully microscopic calculation of the 3He(α,γ7Be capture reaction is possible and yields an astrophysical S-factor that compares very well with newer data. As representatives of numerous results these cases will be discussed in this contribution, some of them not published so far. The Hamiltonian is based on the realistic Argonne V18 nucleon-nucleon interaction.

  9. Towards Realistic Modeling of Massive Star Clusters

    Science.gov (United States)

    Gnedin, O.; Li, H.

    2016-06-01

    Cosmological simulations of galaxy formation are rapidly advancing towards smaller scales. Current models can now resolve giant molecular clouds in galaxies and predict basic properties of star clusters forming within them. I will describe new theoretical simulations of the formation of the Milky Way throughout cosmic time, with the adaptive mesh refinement code ART. However, many challenges - physical and numerical - still remain. I will discuss how observations of massive star clusters and star forming regions can help us overcome some of them. Video of the talk is available at https://goo.gl/ZoZOfX

  10. Dynamical analysis of the cluster pair: A3407 + A3408

    CERN Document Server

    Nascimento, R S; Trevisan, M; Carrasco, E R; Plana, H; Dupke, R

    2016-01-01

    We carried out a dynamical study of the galaxy cluster pair A3407 \\& A3408 based on a spectroscopic survey obtained with the 4 meter Blanco telescope at the CTIO, plus 6dF data, and ROSAT All-Sky-Survey. The sample consists of 122 member galaxies brighter than $m_R=20$. Our main goal is to probe the galaxy dynamics in this field and verify if the sample constitutes a single galaxy system or corresponds to an ongoing merging process. Statistical tests were applied to clusters members showing that both the composite system A3407 + A3408 as well as each individual cluster have Gaussian velocity distribution. A velocity gradient of $\\sim 847\\pm 114$ $\\rm km\\;s^{-1}$ was identified around the principal axis of the projected distribution of galaxies, indicating that the global field may be rotating. Applying the KMM algorithm to the distribution of galaxies we found that the solution with two clusters is better than the single unit solution at the 99\\% c.l. This is consistent with the X-ray distribution around ...

  11. Cluster-based Dynamic Energy Management for Collaborative Target Tracking in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dao-Wei Bi

    2007-07-01

    Full Text Available A primary criterion of wireless sensor network is energy efficiency. Focused onthe energy problem of target tracking in wireless sensor networks, this paper proposes acluster-based dynamic energy management mechanism. Target tracking problem isformulated by the multi-sensor detection model as well as energy consumption model. Adistributed adaptive clustering approach is investigated to form a reasonable routingframework which has uniform cluster head distribution. Dijkstra’s algorithm is utilized toobtain optimal intra-cluster routing. Target position is predicted by particle filter. Thepredicted target position is adopted to estimate the idle interval of sensor nodes. Hence,dynamic awakening approach is exploited to prolong sleep time of sensor nodes so that theoperation energy consumption of wireless sensor network can be reduced. The sensornodes around the target wake up on time and act as sensing candidates. With the candidatesensor nodes and predicted target position, the optimal sensor node selection is considered.Binary particle swarm optimization is proposed to minimize the total energy consumptionduring collaborative sensing and data reporting. Experimental results verify that theproposed clustering approach establishes a low-energy communication structure while theenergy efficiency of wireless sensor networks is enhanced by cluster-based dynamic energymanagement.

  12. Modelling nano-clusters and nucleation.

    Science.gov (United States)

    Catlow, C Richard A; Bromley, Stefan T; Hamad, Said; Mora-Fonz, Miguel; Sokol, Alexey A; Woodley, Scott M

    2010-01-28

    We review the growing role of computational techniques in modelling the structures and properties of nano-particulate oxides and sulphides. We describe the main methods employed, including those based on both electronic structure and interatomic potential approaches. Particular attention is paid to the techniques used in searching for global minima in the energy landscape defined by the nano-particle cluster. We summarise applications to the widely studied ZnO and ZnS systems, to silica nanochemistry and to group IV oxides including TiO(2). We also consider the special case of silica cluster chemistry in solution and its importance in understanding the hydrothermal synthesis of microporous materials. The work summarised, together with related experimental studies, demonstrates a rich and varied nano-cluster chemistry for these materials.

  13. A Framework for Distributed Dynamic Load Balancing in Heterogeneous Cluster

    Directory of Open Access Journals (Sweden)

    Neeraj Nehra

    2007-01-01

    Full Text Available Distributed Dynamic load balancing (DDLB is an important system function destined to distribute workload among available processors to improve throughput and/or execution times of parallel computer in Cluster Computing. Instead of balancing the load in cluster by process migration, or by moving an entire process to a less loaded computer, we make an attempt to balance load by splitting processes into separate jobs and then balance them to nodes. In order to get target, we use mobile agent (MA to distribute load among nodes in a cluster. In this study, a multi-agent framework for load balancing in heterogeneous cluster is given. Total load on node is calculated using queue length which is measured as the total number of processes in queue. We introduce types of agents along with policies needed to meet the requirements of the proposed load-balancing. Different metrics are used to compare load balancing mechanism with the existing message passing technology. The experiment is carried out on cluster of PC's divided into multiple LAN's using PMADE (Platform for Mobile agent distribution and execution. Preliminary experimental results demonstrated that the proposed framework is effective than the existing ones.

  14. A Dynamical Study of Optically Selected Distant Clusters

    CERN Document Server

    Bower, R G; Couch, W J; Ellis, Richard S; Böhringer, H; Bower, Richard G.; Couch, Warrick J.

    1997-01-01

    We present a programme of spectroscopic observations of galaxies in a sample of optically-selected clusters taken from the catalogue of Couch et al (1991). Previous ROSAT observations of these clusters have shown them to have lower X-ray luminosities, given their optical richness, than might be expected on the basis of local samples. In the present paper we extend this work by determining velocity dispersions of a subsample of the clusters. We confirm the dynamical reality of all but one of the original sample, and find velocity dispersions comparable with present-day clusters of equivalent comoving space density. Thus, in the context of the $L_X-\\sigma$ relation for present-day clusters, there is evidence for a higher velocity dispersion at fixed X-ray luminosity. A key question is whether the high velocity dispersions are indicative of the gravitational potential. If they are, the X-ray luminosities measured in Bower et al., 1994 (Paper I), would then imply an implausibly low efficiency of X-ray generation....

  15. Cluster beam steering onto silicon surfaces studied by molecular dynamics

    CERN Document Server

    Mazzone, A M

    2002-01-01

    The purpose of this study is to investigate the effects of the impact conditions on cluster deposition in silicon and is motivated by recent results obtained using a variable incidence angle during deposition of metallic clusters and atoms. Therefore deposition of silicon clusters with a kinetic energy in the range from 0.5 to 10 eV/atom directed at normal and grazing incidence onto crystalline silicon has been studied using a molecular dynamics simulation method. The influence of other relevant parameters, such as the interatomic forces and the cluster size and shape, has also been investigated. This study shows that the physics of deposition is almost entirely dictated by the nature of the interatomic forces. When using potentials with the four-fold coordination typical of bulk a clear dependence on the size N is observed and the spreading index eta decreases with the increase of N for all incidence conditions. The cluster binding strength is perceptibly increased when using a potential accounting for the c...

  16. Binary cluster collision dynamics and minimum energy conformations

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Francisco [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Rogan, José; Valdivia, J.A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Varas, A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Nano-Bio Spectroscopy Group, ETSF Scientific Development Centre, Departamento de Física de Materiales, Universidad del País Vasco UPV/EHU, Av. Tolosa 72, E-20018 San Sebastián (Spain); Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile)

    2013-10-15

    The collision dynamics of one Ag or Cu atom impinging on a Au{sub 12} cluster is investigated by means of DFT molecular dynamics. Our results show that the experimentally confirmed 2D to 3D transition of Au{sub 12}→Au{sub 13} is mostly preserved by the resulting planar Au{sub 12}Ag and Au{sub 12}Cu minimum energy clusters, which is quite remarkable in view of the excess energy, well larger than the 2D–3D potential barrier height. The process is accompanied by a large s−d hybridization and charge transfer from Au to Ag or Cu. The dynamics of the collision process mainly yields fusion of projectile and target, however scattering and cluster fragmentation also occur for large energies and large impact parameters. While Ag projectiles favor fragmentation, Cu favors scattering due to its smaller mass. The projectile size does not play a major role in favoring the fragmentation or scattering channels. By comparing our collision results with those obtained by an unbiased minimum energy search of 4483 Au{sub 12}Ag and 4483 Au{sub 12}Cu configurations obtained phenomenologically, we find that there is an extra bonus: without increase of computer time collisions yield the planar lower energy structures that are not feasible to obtain using semi-classical potentials. In fact, we conclude that phenomenological potentials do not even provide adequate seeds for the search of global energy minima for planar structures. Since the fabrication of nanoclusters is mainly achieved by synthesis or laser ablation, the set of local minima configurations we provide here, and their distribution as a function of energy, are more relevant than the global minimum to analyze experimental results obtained at finite temperatures, and is consistent with the dynamical coexistence of 2D and 3D liquid Au clusters conformations obtained previously.

  17. Energy Efficient Cooperative Spectrum Sensing in Cognitive Radio Networks Using Distributed Dynamic Load Balanced Clustering Scheme

    Directory of Open Access Journals (Sweden)

    Muthukkumar R.

    2016-07-01

    Full Text Available Cognitive Radio (CR is a promising and potential technique to enable secondary users (SUs or unlicenced users to exploit the unused spectrum resources effectively possessed by primary users (PUs or licenced users. The proven clustering approach is used to organize nodes in the network into the logical groups to attain energy efficiency, network scalability, and stability for improving the sensing accuracy in CR through cooperative spectrum sensing (CSS. In this paper, a distributed dynamic load balanced clustering (DDLBC algorithm is proposed. In this algorithm, each member in the cluster is to calculate the cooperative gain, residual energy, distance, and sensing cost from the neighboring clusters to perform the optimal decision. Each member in a cluster participates in selecting a cluster head (CH through cooperative gain, and residual energy that minimises network energy consumption and enhances the channel sensing. First, we form the number of clusters using the Markov decision process (MDP model to reduce the energy consumption in a network. In this algorithm, CR users effectively utilize the PUs reporting time slots of unavailability. The simulation results reveal that the clusters convergence, energy efficiency, and accuracy of channel sensing increased considerably by using the proposed algorithm.

  18. The mass profile and dynamical status of the z~0.8 galaxy cluster LCDCS 0504

    CERN Document Server

    Guennou, L; Adami, C; Limousin, M; Neto, G B Lima; Mamon, G A; Ulmer, M P; Gavazzi, R; Cypriano, E S; Durret, F; Clowe, D; LeBrun, V; Allam, S; Basa, S; Benoist, C; Cappi, A; Halliday, C; Ilbert, O; Johnston, D; Jullo, E; Just, D; Kubo, J M; Marquez, I; Marshall, P; Martinet, N; Maurogordato, S; Mazure, A; Murphy, K J; Plana, H; Rostagni, F; Russeil, D; Schirmer, M; Schrabback, T; Slezak, E; Tucker, D; Zaritsky, D; Ziegler, B

    2014-01-01

    Constraints on the mass distribution in high-redshift clusters of galaxies are not currently very strong. We aim to constrain the mass profile, M(r), and dynamical status of the $z \\sim 0.8$ LCDCS 0504 cluster of galaxies characterized by prominent giant gravitational arcs near its center. Our analysis is based on deep X-ray, optical, and infrared imaging, as well as optical spectroscopy. We model the mass distribution of the cluster with three different mass density profiles, whose parameters are constrained by the strong lensing features of the inner cluster region, by the X-ray emission from the intra-cluster medium, and by the kinematics of 71 cluster members. We obtain consistent M(r) determinations from three methods (dispersion-kurtosis, caustics and MAMPOSSt), out to the cluster virial radius and beyond. The mass profile inferred by the strong lensing analysis in the central cluster region is slightly above, but still consistent with, the kinematics estimate. On the other hand, the X-ray based M(r) is...

  19. The dynamics of z~1 clusters of galaxies from the GCLASS survey

    CERN Document Server

    Biviano, A; Muzzin, A; Sartoris, B; Wilson, G; Yee, H K C

    2016-01-01

    We constrain the internal dynamics of a stack of 10 clusters from the GCLASS survey at 0.87cluster mass profile M(r) using the MAMPOSSt algorithm of Mamon et al., the velocity anisotropy profile beta(r) from the inversion of the Jeans equation, and the pseudo-phase-space density profiles Q(r) and Qr(r), obtained from the ratio between the mass density profile and the third power of the (total and, respectively, radial) velocity dispersion profiles of cluster galaxies. Several M(r) models are statistically acceptable for the stack cluster (Burkert, Einasto, Hernquist, NFW). The total mass distribution has a concentration c=r200/r-2=4.0-0.6+1.0, in agreement with theoretical expectations, and is less concentrated than the cluster stellar-mass distribution. The stack cluster beta(r) is similar for passive and star-forming galaxies and indicates isotropic galaxy orbits near the cluster center and increasingly radially elongated with increasing cluster-centric distance. Q(r) a...

  20. Dynamical Interactions Make Hot Jupiters in Open Star Clusters

    CERN Document Server

    Shara, Michael M; Mardling, Rosemary A

    2014-01-01

    Explaining the origin and evolution of exoplanetary "hot Jupiters" remains a significant challenge. One possible mechanism for their production is planet-planet interactions, which produces hot Jupiters from planets born far from their host stars but near their dynamical stability limits. In the much more likely case of planets born far from their dynamical stability limits, can hot Jupiters can be formed in star clusters? Our N-body simulations of planetary systems inside star clusters answer this question in the affirmative, and show that hot Jupiter formation is not a rare event. We detail three case studies of the dynamics-induced births of hot Jupiters on highly eccentric orbits that can only occur inside star clusters. The hot Jupiters' orbits bear remarkable similarities to those of some of the most extreme exoplanets known: HAT-P-32 b, HAT-P-2 b, HD 80606 b and GJ 876 d. If stellar perturbations formed these hot Jupiters then our simulations predict that these very hot, inner planets are sometimes acc...

  1. Modeling blue stragglers in young clusters

    Institute of Scientific and Technical Information of China (English)

    Pin Lu; Li-Cai Deng; Xiao-Bin Zhang

    2011-01-01

    A grid of binary evolution models are calculated for the study of a blue straggler (BS) population in intermediate age (log Age =7.85 - 8.95) star clusters.The BS formation via mass transfer and merging is studied systematically using our models.Both Case A and B close binary evolutionary tracks are calculated for a large range of parameters.The results show that BSs formed via Case B are generally bluer and even more luminous than those produced by Case A.Furthermore,the larger range in orbital separations of Case B models provides a probability of producing more BSs than in Case A.Based on the grid of models,several Monte-Carlo simulations of BS populations in the clusters in the age range are carried out.The results show that BSs formed via different channels populate different areas in the color magnitude diagram (CMD).The locations of BSs in CMD for a number of clusters are compared to our simulations as well.In order to investigate the influence of mass transfer efficiency in the models and simulations,a set of models is also calculated by implementing a constant mass transfer efficiency,β =0.5,during Roche lobe overflow (Case A binary evolution excluded).The result shows BSs can be formed via mass transfer at any given age in both cases.However,the distributions of the BS populations on CMD are different.

  2. Breakup reaction models for two- and three-cluster projectiles

    CERN Document Server

    Baye, D

    2010-01-01

    Breakup reactions are one of the main tools for the study of exotic nuclei, and in particular of their continuum. In order to get valuable information from measurements, a precise reaction model coupled to a fair description of the projectile is needed. We assume that the projectile initially possesses a cluster structure, which is revealed by the dissociation process. This structure is described by a few-body Hamiltonian involving effective forces between the clusters. Within this assumption, we review various reaction models. In semiclassical models, the projectile-target relative motion is described by a classical trajectory and the reaction properties are deduced by solving a time-dependent Schroedinger equation. We then describe the principle and variants of the eikonal approximation: the dynamical eikonal approximation, the standard eikonal approximation, and a corrected version avoiding Coulomb divergence. Finally, we present the continuum-discretized coupled-channel method (CDCC), in which the Schroed...

  3. The mass function and dynamical mass of young star clusters: Why their initial crossing-time matters crucially

    CERN Document Server

    Parmentier, Genevieve

    2012-01-01

    We highlight the impact of cluster-mass-dependent evolutionary rates upon the evolution of the cluster mass function during violent relaxation, that is, while clusters dynamically respond to the expulsion of their residual star-forming gas. Mass-dependent evolutionary rates arise when the mean volume density of cluster-forming regions is mass-dependent. In that case, even if the initial conditions are such that the cluster mass function at the end of violent relaxation has the same shape as the embedded-cluster mass function (i.e. infant weight-loss is mass-independent), the shape of the cluster mass function does change transiently {\\it during} violent relaxation. In contrast, for cluster-forming regions of constant mean volume density, the cluster mass function shape is preserved all through violent relaxation since all clusters then evolve at the same mass-independent rate. On the scale of individual clusters, we model the evolution of the ratio between the dynamical mass and luminous mass of a cluster aft...

  4. The Dynamical Evolution of Stellar-Mass Black Holes in Dense Star Clusters

    Science.gov (United States)

    Morscher, Maggie

    Globular clusters are gravitationally bound systems containing up to millions of stars, and are found ubiquitously in massive galaxies, including the Milky Way. With densities as high as a million stars per cubic parsec, they are one of the few places in the Universe where stars interact with one another. They therefore provide us with a unique laboratory for studying how gravitational interactions can facilitate the formation of exotic systems, such as X-ray binaries containing black holes, and merging double black hole binaries, which are produced much less efficiently in isolation. While telescopes can provide us with a snapshot of what these dense clusters look like at present, we must rely on detailed numerical simulations to learn about their evolution. These simulations are quite challenging, however, since dense star clusters are described by a complicated set of physical processes occurring on many different length and time scales, including stellar and binary evolution, weak gravitational scattering encounters, strong resonant binary interactions, and tidal stripping by the host galaxy. Until very recently, it was not possible to model the evolution of systems with millions of stars, the actual number contained in the largest clusters, including all the relevant physics required describe these systems accurately. The Northwestern Group's Henon Monte Carlo code, CMC, which has been in development for over a decade, is a powerful tool that can be used to construct detailed evolutionary models of large star clusters. With its recent parallelization, CMC is now capable of addressing a particularly interesting unsolved problem in astrophysics: the dynamical evolution of stellar black holes in dense star clusters. Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters may have formed hundreds to thousands of stellar-mass black holes, the remnants of stars with initial masses from 20 - 100

  5. Role of Ionic Clusters in Dynamics of Ionomer Melts: From Atomistic to Coarse Grained Simulations

    Science.gov (United States)

    Agrawal, Anupriya

    Ionomers, polymers decorated with ionizable groups, have found application in numerous technologies where ionic transport is required. The ionic groups associate into random clusters resulting in substantial effect on structure, dynamics and transport of these materials. The effects of topology, size and dynamics of these aggregates however remain an open question. Here we probe cluster formation correlated with polymer dynamics through a model system of randomly sulfonated polystyrene (SPS) melts with molecular dynamics (MD) simulations over a broad time and length scales ranging from that within the ionic clusters through polymer segmental dynamics to the motion of the entire molecules. The cluster evolution was probed by fully atomistic studies. We find ladder-like aggregates that transform to globule-like with increasing the dielectric constant of media for sodium neutralized SPS. With increasing dielectric constant, the size of the aggregates decrease and their number increases. Concurrently, the mobility of the polymer increases. The counterion radius and valency affect both morphology and dynamics as is evident in the calculated static and dynamic structure factors. It is further manifested in the results of viscosity obtained through non-equilibrium molecular dynamics technique. Finally, to access larger length scales a three bead coarse-grained model to describe sulfonated styrene that we have developed will be discussed in view of the outstanding challenges in ionic polymers. Supported in part by DOE Grant No. DE-SC007908. This work was carried out in collaboration with Dvora Perahia and Gary Grest while I was a postdoc at Clemson University. I gratefully acknowledge both of them for their support and encouragement.

  6. Record Dynamics in the Parking Lot Model

    DEFF Research Database (Denmark)

    Sibani, Paolo; Boettcher, Stefan

    2016-01-01

    We study the aging dynamics in the parking lot model of granular relaxation with extensive numerical simulations. Our results reveal the log-Poisson statistics in the progression of intermittent events that lead to ever slower increases in the density. Defining clusters as domains of parked cars...

  7. A comparison between the stellar and dynamical masses of six globular clusters

    CERN Document Server

    Sollima, A; Lee, J -W

    2012-01-01

    We present the results of a comprehensive analysis of the structure and kinematics of six Galactic globular clusters. By comparing the results of the most extensive photometric and kinematical surveys available to date with suited dynamical models, we determine the stellar and dynamical masses of these stellar systems taking into account for the effect of mass segregation, anisotropy and unresolved binaries. We show that the stellar masses of these clusters are on average smaller than those predicted by canonical integrated stellar evolution models because of the shallower slope of their mass functions. The derived stellar masses are found to be also systematically smaller than the dynamical masses by ~40%, although the presence of systematics affecting our estimates cannot be excluded. If confirmed, this evidence can be linked to an increased fraction of retained dark remnants or to the presence of a modest amount of dark matter.

  8. Ionisation clusters at DNA level: experimental modelling

    Energy Technology Data Exchange (ETDEWEB)

    Pszona, S.; Kula, J

    2002-07-01

    The importance of initial clustered damage to DNA is a hypothesis, which has to be approached also from physical modelling of the initial products of single charged particle interaction with DNA. A new tool for such studies, presented here, is based on modelling of the ionisation patterns resulting from a single charged particle crossing a nitrogen cavity of nanometre size. The nanometre size sites equivalent in unit density to DNA and nucleosome, have been modelled in a device, called a Jet Counter, consisting of a pulse operated valve which inject nitrogen in the form of an expansion jet into a interaction chamber. The distributions of the number of ions in a cluster created by a single alpha particle of 4.6 MeV along 0.15 nm to 13 nm size in nitrogen have been measured. A new descriptor of radiation action at DNA level is proposed. (author)

  9. Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-death equations

    Directory of Open Access Journals (Sweden)

    M. J. McGrath

    2012-03-01

    Full Text Available The Atmospheric Cluster Dynamics Code (ACDC is presented and explored. This program was created to study the first steps of atmospheric new particle formation by examining the formation of molecular clusters from atmospherically relevant molecules. The program models the cluster kinetics by explicit solution of the birth–death equations, using an efficient computer script for their generation and the MATLAB ode15s routine for their solution. Through the use of evaporation rate coefficients derived from formation free energies calculated by quantum chemical methods for clusters containing dimethylamine or ammonia and sulphuric acid, we have explored the effect of changing various parameters at atmospherically relevant monomer concentrations. We have included in our model clusters with 0–4 base molecules and 0–4 sulfuric acid molecules for which we have commensurable quantum chemical data. The tests demonstrate that large effects can be seen for even small changes in different parameters, due to the non-linearity of the system. In particular, changing the temperature had a significant impact on the steady-state concentrations of all clusters, while the boundary effects (allowing clusters to grow to sizes beyond the largest cluster that the code keeps track of, or forbidding such processes, coagulation sink terms, non-monomer collisions, sticking probabilities and monomer concentrations did not show as large effects under the conditions studied. Removal of coagulation sink terms prevented the system from reaching the steady state when all the initial cluster concentrations were set to the default value of 1 m−3, which is probably an effect caused by studying only relatively small cluster sizes.

  10. Experiments in clustered neuronal networks: A paradigm for complex modular dynamics

    Science.gov (United States)

    Teller, Sara; Soriano, Jordi

    2016-06-01

    Uncovering the interplay activity-connectivity is one of the major challenges in neuroscience. To deepen in the understanding of how a neuronal circuit shapes network dynamics, neuronal cultures have emerged as remarkable systems given their accessibility and easy manipulation. An attractive configuration of these in vitro systems consists in an ensemble of interconnected clusters of neurons. Using calcium fluorescence imaging to monitor spontaneous activity in these clustered neuronal networks, we were able to draw functional maps and reveal their topological features. We also observed that these networks exhibit a hierarchical modular dynamics, in which clusters fire in small groups that shape characteristic communities in the network. The structure and stability of these communities is sensitive to chemical or physical action, and therefore their analysis may serve as a proxy for network health. Indeed, the combination of all these approaches is helping to develop models to quantify damage upon network degradation, with promising applications for the study of neurological disorders in vitro.

  11. The effect of gaseous accretion disk on dynamics of the stellar cluster in AGN

    CERN Document Server

    Shukirgaliyev, Bekdaulet

    2016-01-01

    There is a supermassive black hole, a gaseous accretion disk and compact star cluster in the center of active galactic nuclei, as known today. So the activity of AGN can be represented as the result of interaction of these three subsystems. In this work we investigate the dynamical interaction of a central star cluster surrounding a supermassive black hole and a central accretion disk. The dissipative force acting on stars in the disk leads to an asymmetry in the phase space distribution of the central star cluster due to the rotating accretion disk. In our work we present some results of Stardisk model, where we see some changes in density and phase space of central star cluster due to influence of rotating gaseous accretion disk.

  12. Discrete dynamical models

    CERN Document Server

    Salinelli, Ernesto

    2014-01-01

    This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economic...

  13. The fluid dynamics of a downer fluidised bed using a cluster-based approach (CBA

    Directory of Open Access Journals (Sweden)

    Germán González Silva

    2010-05-01

    Full Text Available The fluid dynamics of a downer reactor were numerically resolved by adapting a mathematical conservation model. The mathematical model was based on the solid and fluid properties and physical characteristics using a cluster-based approach (CBA. Comparing the numerical results to the experimental data found in the literature indicated that the mathematical model could satisfactorily predict the experimental data. The mathematical simulation determined that there were three fluid dynamic areas in the downer reactor which were characterized by accelerated, slowed-down and fully-developed flow. The fully developed flow area in the downer decreased with increased gas surface speed keeping solid flux constant.

  14. Cluster size convergence of the density matrix embedding theory and its dynamical cluster formulation: A study with an auxiliary-field quantum Monte Carlo solver

    Science.gov (United States)

    Zheng, Bo-Xiao; Kretchmer, Joshua S.; Shi, Hao; Zhang, Shiwei; Chan, Garnet Kin-Lic

    2017-01-01

    We investigate the cluster size convergence of the energy and observables using two forms of density matrix embedding theory (DMET): the original cluster form (CDMET) and a new formulation motivated by the dynamical cluster approximation (DCA-DMET). Both methods are applied to the half-filled one- and two-dimensional Hubbard models using a sign-problem free auxiliary-field quantum Monte Carlo impurity solver, which allows for the treatment of large impurity clusters of up to 100 sites. While CDMET is more accurate at smaller impurity cluster sizes, DCA-DMET exhibits faster asymptotic convergence towards the thermodynamic limit. We use our two formulations to produce new accurate estimates for the energy and local moment of the two-dimensional Hubbard model for U /t =2 ,4 ,6 . These results compare favorably with the best data available in the literature, and help resolve earlier uncertainties in the moment for U /t =2 .

  15. Modeling dynamic swarms

    KAUST Repository

    Ghanem, Bernard

    2013-01-01

    This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal interdependency and stationarity, i.e., the motions are similar in any small spatiotemporal neighborhood. Examples of DS abound in nature, e.g., herds of animals and flocks of birds. To capture the local spatiotemporal properties of the DS, we present a probabilistic model that learns both the spatial layout of swarm elements (based on low-level image segmentation) and their joint dynamics that are modeled as linear transformations. To this end, a spatiotemporal neighborhood is associated with each swarm element, in which local stationarity is enforced both spatially and temporally. We assume that the prior on the swarm dynamics is distributed according to an MRF in both space and time. Embedding this model in a MAP framework, we iterate between learning the spatial layout of the swarm and its dynamics. We learn the swarm transformations using ICM, which iterates between estimating these transformations and updating their distribution in the spatiotemporal neighborhoods. We demonstrate the validity of our method by conducting experiments on real and synthetic video sequences. Real sequences of birds, geese, robot swarms, and pedestrians evaluate the applicability of our model to real world data. © 2012 Elsevier Inc. All rights reserved.

  16. Priority Based Congestion Control Dynamic Clustering Protocol in Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    R. Beulah Jayakumari

    2015-01-01

    Full Text Available Wireless sensor network is widely used to monitor natural phenomena because natural disaster has globally increased which causes significant loss of life, economic setback, and social development. Saving energy in a wireless sensor network (WSN is a critical factor to be considered. The sensor nodes are deployed to sense, compute, and communicate alerts in a WSN which are used to prevent natural hazards. Generally communication consumes more energy than sensing and computing; hence cluster based protocol is preferred. Even with clustering, multiclass traffic creates congested hotspots in the cluster, thereby causing packet loss and delay. In order to conserve energy and to avoid congestion during multiclass traffic a novel Priority Based Congestion Control Dynamic Clustering (PCCDC protocol is developed. PCCDC is designed with mobile nodes which are organized dynamically into clusters to provide complete coverage and connectivity. PCCDC computes congestion at intra- and intercluster level using linear and binary feedback method. Each mobile node within the cluster has an appropriate queue model for scheduling prioritized packet during congestion without drop or delay. Simulation results have proven that packet drop, control overhead, and end-to-end delay are much lower in PCCDC which in turn significantly increases packet delivery ratio, network lifetime, and residual energy when compared with PASCC protocol.

  17. Positive feedback can lead to dynamic nanometer-scale clustering on cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wehrens, Martijn; Rein ten Wolde, Pieter [FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Mugler, Andrew, E-mail: amugler@purdue.edu [FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-11-28

    Clustering of molecules on biological membranes is a widely observed phenomenon. A key example is the clustering of the oncoprotein Ras, which is known to be important for signal transduction in mammalian cells. Yet, the mechanism by which Ras clusters form and are maintained remains unclear. Recently, it has been discovered that activated Ras promotes further Ras activation. Here we show using particle-based simulation that this positive feedback is sufficient to produce persistent clusters of active Ras molecules at the nanometer scale via a dynamic nucleation mechanism. Furthermore, we find that our cluster statistics are consistent with experimental observations of the Ras system. Interestingly, we show that our model does not support a Turing regime of macroscopic reaction-diffusion patterning, and therefore that the clustering we observe is a purely stochastic effect, arising from the coupling of positive feedback with the discrete nature of individual molecules. These results underscore the importance of stochastic and dynamic properties of reaction diffusion systems for biological behavior.

  18. Priority Based Congestion Control Dynamic Clustering Protocol in Mobile Wireless Sensor Networks.

    Science.gov (United States)

    Jayakumari, R Beulah; Senthilkumar, V Jawahar

    2015-01-01

    Wireless sensor network is widely used to monitor natural phenomena because natural disaster has globally increased which causes significant loss of life, economic setback, and social development. Saving energy in a wireless sensor network (WSN) is a critical factor to be considered. The sensor nodes are deployed to sense, compute, and communicate alerts in a WSN which are used to prevent natural hazards. Generally communication consumes more energy than sensing and computing; hence cluster based protocol is preferred. Even with clustering, multiclass traffic creates congested hotspots in the cluster, thereby causing packet loss and delay. In order to conserve energy and to avoid congestion during multiclass traffic a novel Priority Based Congestion Control Dynamic Clustering (PCCDC) protocol is developed. PCCDC is designed with mobile nodes which are organized dynamically into clusters to provide complete coverage and connectivity. PCCDC computes congestion at intra- and intercluster level using linear and binary feedback method. Each mobile node within the cluster has an appropriate queue model for scheduling prioritized packet during congestion without drop or delay. Simulation results have proven that packet drop, control overhead, and end-to-end delay are much lower in PCCDC which in turn significantly increases packet delivery ratio, network lifetime, and residual energy when compared with PASCC protocol.

  19. Computational Studies on the Anharmonic Dynamics of Molecular Clusters

    Science.gov (United States)

    Mancini, John S.

    Molecular nanoclusters present ideal systems to probe the physical forces and dynamics that drive the behavior of larger bulk systems. At the nanocluster limit the first instances of several phenomena can be observed including the breaking of hydrogen and molecular bonds. Advancements in experimental and theoretical techniques have made it possible to explore these phenomena in great detail. The most fruitful of these studies have involved the use of both experimental and theoretical techniques to leverage to strengths of the two approaches. This dissertation seeks to explore several important phenomena of molecular clusters using new and existing theoretical methodologies. Three specific systems are considered, hydrogen chloride clusters, mixed water and hydrogen chloride clusters and the first cluster where hydrogen chloride autoionization occurs. The focus of these studies remain as close as possible to experimentally observable phenomena with the intention of validating, simulating and expanding on experimental work. Specifically, the properties of interested are those related to the vibrational ground and excited state dynamics of these systems. Studies are performed using full and reduced dimensional potential energy surface alongside advanced quantum mechanical methods including diffusion Monte Carlo, vibrational configuration interaction theory and quasi-classical molecular dynamics. The insight gained from these studies are great and varied. A new on-they-fly ab initio method for studying molecular clusters is validated for (HCl)1--6. A landmark study of the dissociation energy and predissociation mechanism of (HCl)3 is reported. The ground states of mixed (HCl)n(H2O)m are found to be highly delocalized across multiple stationary point configurations. Furthermore, it is identified that the consideration of this delocalization is required in vibrational excited state calculations to achieve agreement with experimental measurements. Finally, the theoretical

  20. Magnetic susceptibilities of cluster-hierarchical models

    Science.gov (United States)

    McKay, Susan R.; Berker, A. Nihat

    1984-02-01

    The exact magnetic susceptibilities of hierarchical models are calculated near and away from criticality, in both the ordered and disordered phases. The mechanism and phenomenology are discussed for models with susceptibilities that are physically sensible, e.g., nondivergent away from criticality. Such models are found based upon the Niemeijer-van Leeuwen cluster renormalization. A recursion-matrix method is presented for the renormalization-group evaluation of response functions. Diagonalization of this matrix at fixed points provides simple criteria for well-behaved densities and response functions.

  1. Thermal dynamics of silver clusters grown on rippled silica surfaces

    Science.gov (United States)

    Bhatnagar, Mukul; Ranjan, Mukesh; Jolley, Kenny; Lloyd, Adam; Smith, Roger; Mukherjee, Subroto

    2017-02-01

    Silver nanoparticles have been deposited on silicon rippled patterned templates at an angle of incidence of 70° to the surface normal. The templates are produced by oblique incidence argon ion bombardment and as the fluence increases, the periods and heights of the structures increase. Structures with periods of 20 nm, 35 nm and 45 nm have been produced. Moderate temperature vacuum annealing shows the phenomenon of cluster coalescence following the contour of the more exposed faces of the ripple for the case of 35 nm and 45 nm but not at 20 nm where the silver aggregates into larger randomly distributed clusters. In order to understand this effect, the morphological changes of silver nanoparticles deposited on an asymmetric rippled silica surface are investigated through the use of molecular dynamics simulations for different deposition angles of incidence between 0° and 70° and annealing temperatures between 500 K and 900 K. Near to normal incidence, clusters are observed to migrate over the entire surface but for deposition at 70°, a similar patterning is observed as in the experiment. The random distribution of clusters for the periodicity ≈ of 20 nm is linked to the geometry of the silica surface which has a lower ripple height than the longer wavelength structures. Calculations carried out on a surface with such a lower ripple height also demonstrate a similar effect.

  2. Dynamic causal modelling revisited.

    Science.gov (United States)

    Friston, K J; Preller, Katrin H; Mathys, Chris; Cagnan, Hayriye; Heinzle, Jakob; Razi, Adeel; Zeidman, Peter

    2017-02-17

    This paper revisits the dynamic causal modelling of fMRI timeseries by replacing the usual (Taylor) approximation to neuronal dynamics with a neural mass model of the canonical microcircuit. This provides a generative or dynamic causal model of laminar specific responses that can generate haemodynamic and electrophysiological measurements. In principle, this allows the fusion of haemodynamic and (event related or induced) electrophysiological responses. Furthermore, it enables Bayesian model comparison of competing hypotheses about physiologically plausible synaptic effects; for example, does attentional modulation act on superficial or deep pyramidal cells - or both? In this technical note, we describe the resulting dynamic causal model and provide an illustrative application to the attention to visual motion dataset used in previous papers. Our focus here is on how to answer long-standing questions in fMRI; for example, do haemodynamic responses reflect extrinsic (afferent) input from distant cortical regions, or do they reflect intrinsic (recurrent) neuronal activity? To what extent do inhibitory interneurons contribute to neurovascular coupling? What is the relationship between haemodynamic responses and the frequency of induced neuronal activity? This paper does not pretend to answer these questions; rather it shows how they can be addressed using neural mass models of fMRI timeseries. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Space and time dynamical heterogeneity in glassy relaxation. The role of democratic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Appignanesi, G A; Rodriguez Fris, J A [Fisicoquimica, Departamento de Quimica, Universidad Nacional del Sur, Avenida Alem 1253, 8000 BahIa Blanca (Argentina); Seccion de Fisicoquimica, Instituto de Quimica de la Universidad Nacional del Sur, INQUISUR-UNS-CONICET, Universidad Nacional del Sur, Avenida Alem 1253, 8000 BahIa Blanca (Argentina)], E-mail: appignan@criba.edu.ar

    2009-05-20

    In this work we review recent computational advances in the understanding of the relaxation dynamics of supercooled glass-forming liquids. In such a supercooled regime these systems experience a striking dynamical slowing down which can be rationalized in terms of the picture of dynamical heterogeneities, wherein the dynamics can vary by orders of magnitude from one region of the sample to another and where the sizes and timescales of such slowly relaxing regions are expected to increase considerably as the temperature is decreased. We shall focus on the relaxation events at a microscopic level and describe the finding of the collective motions of particles responsible for the dynamical heterogeneities. In so doing, we shall demonstrate that the dynamics in different regions of the system is not only heterogeneous in space but also in time. In particular, we shall be interested in the events relevant to the long-time structural relaxation or {alpha} relaxation. In this regard, we shall focus on the discovery of cooperatively relaxing units involving the collective motion of relatively compact clusters of particles, called 'democratic clusters' or d-clusters. These events have been shown to trigger transitions between metabasins of the potential energy landscape (collections of similar configurations or structures) and to consist of the main steps in the {alpha} relaxation. Such events emerge in systems quite different in nature such as simple model glass formers and supercooled amorphous water. Additionally, another relevant issue in this context consists in the determination of a link between structure and dynamics. In this context, we describe the relationship between the d-cluster events and the constraints that the local structure poses on the relaxation dynamics, thus revealing their role in reformulating structural constraints. (topical review)

  4. Features of the Triple Helix Model in Cross-Border Clusters

    OpenAIRE

    Mikhaylov, S. Andrey

    2013-01-01

    The article is aimed at discussing the unique characteristics of the “triple helix” model that are unveiled while applied to cross - border cluster studies. The results of the case study method of the best practice on cross - border cluster formation at the Baltic Sea region shows evidence of the doubling of the number of helices represented in a complex collaboration system. Major factors of the dynamics and the transformation of the cross-border cluster interactions are stated. The hypothes...

  5. Features of the Triple Helix Model in Cross-Border Clusters

    OpenAIRE

    Mikhaylov, S. Andrey

    2013-01-01

    The article is aimed at discussing the unique characteristics of the “triple helix” model that are unveiled while applied to cross - border cluster studies. The results of the case study method of the best practice on cross - border cluster formation at the Baltic Sea region shows evidence of the doubling of the number of helices represented in a complex collaboration system. Major factors of the dynamics and the transformation of the cross-border cluster interactions are stated. The hypothes...

  6. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics

    Science.gov (United States)

    Lau, Gabriel V.; Hunt, Patricia A.; Müller, Erich A.; Jackson, George; Ford, Ian J.

    2015-12-01

    Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the "mitosis" or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.

  7. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Gabriel V.; Müller, Erich A.; Jackson, George [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hunt, Patricia A. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Ford, Ian J. [Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-12-28

    Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the “mitosis” or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.

  8. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics.

    Science.gov (United States)

    Lau, Gabriel V; Hunt, Patricia A; Müller, Erich A; Jackson, George; Ford, Ian J

    2015-12-28

    Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the "mitosis" or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.

  9. Two-fluid Dynamics in Clusters of Galaxies

    Institute of Scientific and Technical Information of China (English)

    Yu-Qing Lou

    2005-01-01

    We develop a theoretical formulation for the large-scale dynamics of galaxy clusters involving two spherical ‘isothermal fluids’ coupled by their mutual gravity and derive asymptotic similarity solutions analytically. One of the fluids roughly approximates the massive dark matter halo, while the other describes the hot gas, the relatively small mass contribution from the galaxies being subsumed in the gas. By properly choosing the self-similar variables, it is possible to consistently transform the set of time-dependent two-fluid equations of spherical symmetry with self-gravity into a set of coupled nonlinear ordinary differential equations (ODEs). We focus on the analytical analysis and discuss applications of the solutions to galaxy clusters.

  10. Image modeling of compact starburst clusters: I. R136

    CERN Document Server

    Khorrami, Zeinab; Chesneau, Olivier

    2016-01-01

    Continuous progress in data quality from HST, recent multiwavelength high resolution spectroscopy and high contrast imaging from ground adaptive optics on large telescopes need modeling of R136 to understand its nature and evolutionary stage. To produce the best synthesized multiwavelength images of R136 we need to simulate the effect of dynamical and stellar evolution, mass segregation and binary stars fraction on the survival of young massive clusters with the initial parameters of R136 in the LMC, being set to the present knowledge of this famous cluster. We produced a series of 32 young massive clusters using the NBODY6 code. Each cluster was tracked with adequate temporal samples to follow the evolution of R136 during its early stages. To compare the NBODY6 simulations with observational data, we created the synthetic images from the output of the code. We used the TLUSTY and KURUCZ model atmospheres to produce the fluxes in HST/ WFPC2 filters. GENEVA isochrones were used to track the evolution of stars....

  11. Optimal control with non-adiabatic Molecular Dynamics: application to the Coulomb explosion of Sodium clusters

    CERN Document Server

    Pueyo, Adrián Gómez; Castro, Alberto

    2016-01-01

    We present an implementation of optimal control theory for the first-principles non-adiabatic Ehrenfest Molecular Dynamics model, which describes a condensed matter system by considering classical point-particle nuclei, and quantum electrons, handled in our case with time-dependent density-functional theory. The scheme is demonstrated by optimizing the Coulomb explosion of small Sodium clusters: the algorithm is set to find the optimal femtosecond laser pulses that disintegrate the clusters, for a given total pulse duration, fluence, and cut-off frequency. We describe the numerical details and difficulties of the methodology.

  12. Cluster Monte Carlo and dynamical scaling for long-range interactions

    CERN Document Server

    Flores-Sola, Emilio; Kenna, Ralph; Berche, Bertrand

    2016-01-01

    Many spin systems affected by critical slowing down can be efficiently simulated using cluster algorithms. Where such systems have long-range interactions, suitable formulations can additionally bring down the computational effort for each update from O($N^2$) to O($N\\ln N$) or even O($N$), thus promising an even more dramatic computational speed-up. Here, we review the available algorithms and propose a new and particularly efficient single-cluster variant. The efficiency and dynamical scaling of the available algorithms are investigated for the Ising model with power-law decaying interactions.

  13. Dynamical real-space renormalization group calculations with a highly connected clustering scheme on disordered networks.

    Science.gov (United States)

    Balcan, D; Erzan, A

    2005-02-01

    We have defined a type of clustering scheme preserving the connectivity of the nodes in a network, ignored by the conventional Migdal-Kadanoff bond moving process. In high dimensions, our clustering scheme performs better for correlation length and dynamical critical exponents than the conventional Migdal-Kadanoff bond moving scheme. In two and three dimensions we find the dynamical critical exponents for the kinetic Ising model to be z=2.13 and z=2.09 , respectively, at the pure Ising fixed point. These values are in very good agreement with recent Monte Carlo results. We investigate the phase diagram and the critical behavior of randomly bond diluted lattices in d=2 and 3 in the light of this transformation. We also provide exact correlation exponent and dynamical critical exponent values on hierarchical lattices with power-law and Poissonian degree distributions.

  14. Cluster infall in the concordance LCDM model

    CERN Document Server

    Pivato, M C; Lambas, D G; Pivato, Maximiliano C.; Padilla, Nelson D.; Lambas, Diego G.

    2005-01-01

    We perform statistical analyses of the infall of dark-matter onto clusters in numerical simulations within the concordance LCDM model. By studying the infall profile around clusters of different mass, we find a linear relation between the maximum infall velocity and mass which reach 900km/s for the most massive groups. The maximum infall velocity and the group mass follow a suitable power law fit of the form, V_{inf}^{max} = (M/m_0)^{gamma}. By comparing the measured infall velocity to the linear infall model with an exponential cutoff introduced by Croft et al., we find that the best agreement is obtained for a critical overdensity delta_c = 45. We study the dependence of the direction of infall with respect to the cluster centres, and find that in the case of massive groups, the maximum alignment occurs at scales r ~ 6Mpc/h. We obtain a logarithmic power-law relation between the average infall angle and the group mass. We also study the dependence of the results on the local dark-matter density, finding a r...

  15. Corruption dynamics model

    Science.gov (United States)

    Malafeyev, O. A.; Nemnyugin, S. A.; Rylow, D.; Kolpak, E. P.; Awasthi, Achal

    2017-07-01

    The corruption dynamics is analyzed by means of the lattice model which is similar to the three-dimensional Ising model. Agents placed at nodes of the corrupt network periodically choose to perfom or not to perform the act of corruption at gain or loss while making decisions based on the process history. The gain value and its dynamics are defined by means of the Markov stochastic process modelling with parameters established in accordance with the influence of external and individual factors on the agent's gain. The model is formulated algorithmically and is studied by means of the computer simulation. Numerical results are obtained which demonstrate asymptotic behaviour of the corruption network under various conditions.

  16. Dynamic Systems Modeling

    Directory of Open Access Journals (Sweden)

    Sorin Dan ŞANDOR

    2003-01-01

    Full Text Available System Dynamics was introduced by Jay W. Forrester in the 1960s. Since then the methodology was adopted in many areas of natural or social sciences. This article tries to present briefly how this methodology works, both as Systems Thinking and as Modelling with Vensim computer software.

  17. Dynamic modelling of windmills

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Knudsen, Hans

    1999-01-01

    An empirical dynamic model of windmills is set up based on analysis of measured Fourier spectra of the active electric power from a wind farm. The model is based on the assumption that eigenswings of the mechanical construction of the windmills excited by the phenomenon of vortex tower interaction...... will be transferred through the shaft to the electrical generator and result in disturbances of the active electric power supplied by the windmills. The results of the model are found to be in agreement with measurements in the frequency range of the model that is from 0.1 to 10 Hz....

  18. Neuro-fuzzy system modeling based on automatic fuzzy clustering

    Institute of Scientific and Technical Information of China (English)

    Yuangang TANG; Fuchun SUN; Zengqi SUN

    2005-01-01

    A neuro-fuzzy system model based on automatic fuzzy clustering is proposed.A hybrid model identification algorithm is also developed to decide the model structure and model parameters.The algorithm mainly includes three parts:1) Automatic fuzzy C-means (AFCM),which is applied to generate fuzzy rules automatically,and then fix on the size of the neuro-fuzzy network,by which the complexity of system design is reducesd greatly at the price of the fitting capability;2) Recursive least square estimation (RLSE).It is used to update the parameters of Takagi-Sugeno model,which is employed to describe the behavior of the system;3) Gradient descent algorithm is also proposed for the fuzzy values according to the back propagation algorithm of neural network.Finally,modeling the dynamical equation of the two-link manipulator with the proposed approach is illustrated to validate the feasibility of the method.

  19. Dynamic Network Models

    CERN Document Server

    Armbruster, Benjamin

    2011-01-01

    We analyze random networks that change over time. First we analyze a dynamic Erdos-Renyi model, whose edges change over time. We describe its stationary distribution, its convergence thereto, and the SI contact process on the network, which has relevance for connectivity and the spread of infections. Second, we analyze the effect of node turnover, when nodes enter and leave the network, which has relevance for network models incorporating births, deaths, aging, and other demographic factors.

  20. Molecular dynamics simulation of thermodynamical properties of copper clusters

    Institute of Scientific and Technical Information of China (English)

    Wu Zhi-Min; Wang Xin-Qiang; Yang Yuan-Yuan

    2007-01-01

    The melting and freezing processes of CuN (N = 180, 256, 360, 408, 500, 628 and 736) nanoclusters are simulated by using micro-canonical molecular dynamics simulation technique. The potential energies and the heat capacities as a function of temperature are obtained. The results reveal that the melting and freezing points increase almost linearly with the atom number in the cluster increasing. All copper nanoclusters have negative heat capacity around the melting and freezing points, and hysteresis effect in the melting/freezing transition is derived in CuN nanoclusters for the first time.

  1. Hierarchical modeling of cluster size in wildlife surveys

    Science.gov (United States)

    Royle, J. Andrew

    2008-01-01

    Clusters or groups of individuals are the fundamental unit of observation in many wildlife sampling problems, including aerial surveys of waterfowl, marine mammals, and ungulates. Explicit accounting of cluster size in models for estimating abundance is necessary because detection of individuals within clusters is not independent and detectability of clusters is likely to increase with cluster size. This induces a cluster size bias in which the average cluster size in the sample is larger than in the population at large. Thus, failure to account for the relationship between delectability and cluster size will tend to yield a positive bias in estimates of abundance or density. I describe a hierarchical modeling framework for accounting for cluster-size bias in animal sampling. The hierarchical model consists of models for the observation process conditional on the cluster size distribution and the cluster size distribution conditional on the total number of clusters. Optionally, a spatial model can be specified that describes variation in the total number of clusters per sample unit. Parameter estimation, model selection, and criticism may be carried out using conventional likelihood-based methods. An extension of the model is described for the situation where measurable covariates at the level of the sample unit are available. Several candidate models within the proposed class are evaluated for aerial survey data on mallard ducks (Anas platyrhynchos).

  2. Tidal torques dynamical friction and the structure of clusters of galaxies

    CERN Document Server

    Popolo, A D

    2001-01-01

    We study the joint effect of tidal torques and dynamical friction on the collapse of density peaks solving numerically the equations of motion of a shell of barionic matter falling into the central regions of a cluster of galaxies. We calculate the evolution of the expansion parameter, a(t), of the perturbation using a coefficient of dynamical friction eta_{cl} obtained from a clustered system and taking into account the gravitational interaction of the quadrupole moment of the system with the tidal field of the matter of the neighboring proto-galaxies. We show that within high-density environments, such as rich clusters of galaxies, tidal torques and dynamical friction slow down the collapse of low-nu peaks producing an observable variation of the parameter of expansion of the shell. As a consequence a bias of dynamical nature arises because high-density peaks preferentially collapse to form halos within which visible objects eventually will condense. For a standard Cold Dark Matter model this dynamical bias...

  3. Modal aerosol dynamics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, E.R.; McMurry, P.H.; Shankar, U.; Binkowski, F.S.

    1991-02-01

    The report presents the governing equations for representing aerosol dynamics, based on several different representations of the aerosol size distribution. Analytical and numerical solution techniques for these governing equations are also reviewed. Described in detail is a computationally efficient numerical technique for simulating aerosol behavior in systems undergoing simultaneous heat transfer, fluid flow, and mass transfer in and between the gas and condensed phases. The technique belongs to a general class of models known as modal aerosol dynamics (MAD) models. These models solve for the temporal and spatial evolution of the particle size distribution function. Computational efficiency is achieved by representing the complete aerosol population as a sum of additive overlapping populations (modes), and solving for the time rate of change of integral moments of each mode. Applications of MAD models for simulating aerosol dynamics in continuous stirred tank aerosol reactors and flow aerosol reactors are provided. For the application to flow aerosol reactors, the discussion is developed in terms of considerations for merging a MAD model with the SIMPLER routine described by Patankar (1980). Considerations for incorporating a MAD model into the U.S. Environmental Protection Agency's Regional Particulate Model are also described. Numerical and analytical techniques for evaluating the size-space integrals of the modal dynamics equations (MDEs) are described. For multimodal logonormal distributions, an analytical expression for the coagulation integrals of the MDEs, applicable for all size regimes, is derived, and is within 20% of accurate numerical evaluation of the same moment coagulation integrals. A computationally efficient integration technique, based on Gauss-Hermite numerical integration, is also derived.

  4. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    Energy Technology Data Exchange (ETDEWEB)

    Nedialkova, Lilia V.; Amat, Miguel A. [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de [Department of Chemical and Biological Engineering and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544 (United States); Hummer, Gerhard, E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de [Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main (Germany)

    2014-09-21

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  5. Cluster-cluster aggregation with particle replication and chemotaxy: a simple model for the growth of animal cells in culture

    Science.gov (United States)

    Alves, S. G.; Martins, M. L.

    2010-09-01

    Aggregation of animal cells in culture comprises a series of motility, collision and adhesion processes of basic relevance for tissue engineering, bioseparations, oncology research and in vitro drug testing. In the present paper, a cluster-cluster aggregation model with stochastic particle replication and chemotactically driven motility is investigated as a model for the growth of animal cells in culture. The focus is on the scaling laws governing the aggregation kinetics. Our simulations reveal that in the absence of chemotaxy the mean cluster size and the total number of clusters scale in time as stretched exponentials dependent on the particle replication rate. Also, the dynamical cluster size distribution functions are represented by a scaling relation in which the scaling function involves a stretched exponential of the time. The introduction of chemoattraction among the particles leads to distribution functions decaying as power laws with exponents that decrease in time. The fractal dimensions and size distributions of the simulated clusters are qualitatively discussed in terms of those determined experimentally for several normal and tumoral cell lines growing in culture. It is shown that particle replication and chemotaxy account for the simplest cluster size distributions of cellular aggregates observed in culture.

  6. Modelling sea ice dynamics

    Science.gov (United States)

    Murawski, Jens; Kleine, Eckhard

    2017-04-01

    Sea ice remains one of the frontiers of ocean modelling and is of vital importance for the correct forecasts of the northern oceans. At large scale, it is commonly considered a continuous medium whose dynamics is modelled in terms of continuum mechanics. Its specifics are a matter of constitutive behaviour which may be characterised as rigid-plastic. The new developed sea ice dynamic module bases on general principles and follows a systematic approach to the problem. Both drift field and stress field are modelled by a variational property. Rigidity is treated by Lagrangian relaxation. Thus one is led to a sensible numerical method. Modelling fast ice remains to be a challenge. It is understood that ridging and the formation of grounded ice keels plays a role in the process. The ice dynamic model includes a parameterisation of the stress associated with grounded ice keels. Shear against the grounded bottom contact might lead to plastic deformation and the loss of integrity. The numerical scheme involves a potentially large system of linear equations which is solved by pre-conditioned iteration. The entire algorithm consists of several components which result from decomposing the problem. The algorithm has been implemented and tested in practice.

  7. Computational fluid dynamics of a cylindrical nucleation flow reactor with detailed cluster thermodynamics.

    Science.gov (United States)

    Panta, Baradan; Glasoe, Walker A; Zollner, Juliana H; Carlson, Kimberly K; Hanson, David R

    2012-10-18

    Particle formation and growth with H(2)SO(4) molecules in an axially symmetric flow reactor was simulated with computational fluid dynamics. A warm (~310 K) gas containing H(2)SO(4) flows into a cooled section (296 K) that induces particle formation. The fluid dynamics gives flow fields, temperatures, and reactant and cluster distributions. Particle formation and growth are simulated with detailed H(2)SO(4) cluster kinetics with chemistry based on measured small cluster thermodynamics and on bulk thermodynamics for large clusters. Results show that particle number densities have power law dependencies on sulfuric acid of ~7, in accord with the thermodynamics of the cluster chemistry. The region where particle formation rates are largest has a temperature that is within 3 K of the wall. Additional simulations show that the H(2)SO(4) concentration in this region is 5 to 10 times greater than the measured H(2)SO(4): this information allows for direct comparisons of experiment and theory. Experiments where ammonia was added as a third nucleating species were simulated with a three-dimensional model. Ammonia was dispersed quickly and particle formation during this mixing was seen to be low. Downstream of the initial mixing region, however, ammonia greatly affected particle formation.

  8. Dynamical analysis of galaxy cluster merger Abell 2146

    CERN Document Server

    White, J A; King, L J; Lee, B E; Russell, H R; Baum, S A; Clowe, D I; Coleman, J E; Donahue, M; Edge, A C; Fabian, A C; Johnstone, R M; McNamara, B R; ODea, C P; Sanders, J S

    2015-01-01

    We present a dynamical analysis of the merging galaxy cluster system Abell 2146 using spectroscopy obtained with the Gemini Multi-Object Spectrograph on the Gemini North telescope. As revealed by the Chandra X-ray Observatory, the system is undergoing a major merger and has a gas structure indicative of a recent first core passage. The system presents two large shock fronts, making it unique amongst these rare systems. The hot gas structure indicates that the merger axis must be close to the plane of the sky and that the two merging clusters are relatively close in mass, from the observation of two shock fronts. Using 63 spectroscopically determined cluster members, we apply various statistical tests to establish the presence of two distinct massive structures. With the caveat that the system has recently undergone a major merger, the virial mass estimate is M_vir = 8.5 +4.3 -4.7 x 10 ^14 M_sol for the whole system, consistent with the mass determination in a previous study using the Sunyaev-Zeldovich signal....

  9. Modeling the Formation of Globular Cluster Systems in the Virgo Cluster

    CERN Document Server

    Li, Hui

    2014-01-01

    Globular cluster (GC) systems are some of the oldest and most unique building blocks of galaxies. The mass and chemical composition of GCs preserve the fossil record of the early stages of formation of their host galaxies. The observed distribution of GC colors within massive early-type galaxies in the ACS Virgo Cluster Survey (ACSVCS) reveals a multi-modal shape, which likely corresponds to a multi-modal metallicity distribution. In this paper, we present a simple model for the formation and dynamical disruption of globular clusters that aims to match the ACSVCS data. We test the hypothesis that GCs are formed during major mergers of gas-rich galaxies and inherit the metallicity of their hosts. To trace merger events, we use halo merger trees extracted from a large cosmological N-body simulation. We select 20 halos in the mass range 2*10^{12}-7*10^{13} M_sun and match them to 18 Virgo galaxies with K-band luminosity between 3*10^{10} and 3*10^{11}L_sun. To set the Iron abundances, we use an empirical galaxy ...

  10. Anharmonic resonance absorption of short laser pulses in clusters: A molecular dynamics simulation study

    Science.gov (United States)

    Mahalik, S. S.; Kundu, M.

    2016-12-01

    Linear resonance (LR) absorption of an intense 800 nm laser light in a nano-cluster requires a long laser pulse >100 fs when Mie-plasma frequency ( ω M ) of electrons in the expanding cluster matches the laser frequency (ω). For a short duration of the pulse, the condition for LR is not satisfied. In this case, it was shown by a model and particle-in-cell (PIC) simulations [Phys. Rev. Lett. 96, 123401 (2006)] that electrons absorb laser energy by anharmonic resonance (AHR) when the position-dependent frequency Ω [ r ( t ) ] of an electron in the self-consistent anharmonic potential of the cluster satisfies Ω [ r ( t ) ] = ω . However, AHR remains to be a debate and still obscure in multi-particle plasma simulations. Here, we identify AHR mechanism in a laser driven cluster using molecular dynamics (MD) simulations. By analyzing the trajectory of each MD electron and extracting its Ω [ r ( t ) ] in the self-generated anharmonic plasma potential, it is found that electron is outer ionized only when AHR is met. An anharmonic oscillator model, introduced here, brings out most of the features of MD electrons while passing the AHR. Thus, we not only bridge the gap between PIC simulations, analytical models, and MD calculations for the first time but also unequivocally prove that AHR process is a universal dominant collisionless mechanism of absorption in the short pulse regime or in the early time of longer pulses in clusters.

  11. Dynamic integration of remote cloud resources into local computing clusters

    Energy Technology Data Exchange (ETDEWEB)

    Fleig, Georg; Erli, Guenther; Giffels, Manuel; Hauth, Thomas; Quast, Guenter; Schnepf, Matthias [Institut fuer Experimentelle Kernphysik, Karlsruher Institut fuer Technologie (Germany)

    2016-07-01

    In modern high-energy physics (HEP) experiments enormous amounts of data are analyzed and simulated. Traditionally dedicated HEP computing centers are built or extended to meet this steadily increasing demand for computing resources. Nowadays it is more reasonable and more flexible to utilize computing power at remote data centers providing regular cloud services to users as they can be operated in a more efficient manner. This approach uses virtualization and allows the HEP community to run virtual machines containing a dedicated operating system and transparent access to the required software stack on almost any cloud site. The dynamic management of virtual machines depending on the demand for computing power is essential for cost efficient operation and sharing of resources with other communities. For this purpose the EKP developed the on-demand cloud manager ROCED for dynamic instantiation and integration of virtualized worker nodes into the institute's computing cluster. This contribution will report on the concept of our cloud manager and the implementation utilizing a remote OpenStack cloud site and a shared HPC center (bwForCluster located in Freiburg).

  12. Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza.

    Science.gov (United States)

    Cybis, Gabriela B; Sinsheimer, Janet S; Bedford, Trevor; Rambaut, Andrew; Lemey, Philippe; Suchard, Marc A

    2017-01-18

    Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antigenicity onto a low-dimensional space. Analysis of such assay data ideally leads to natural clustering of influenza strains of similar antigenicity that correlate with sequence evolution. To understand the dynamics of these antigenic groups, we present a framework that jointly models genetic and antigenic evolution by combining multidimensional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric clustering methods. We propose a phylogenetic Chinese restaurant process that extends the current process to incorporate the phylogenetic dependency structure between strains in the modeling of antigenic clusters. With this method, we are able to use the genetic information to better understand the evolution of antigenicity throughout epidemics, as shown in applications of this model to H1N1 influenza. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Dynamical ejections of massive stars from young star clusters under diverse initial conditions

    CERN Document Server

    Oh, Seungkyung

    2016-01-01

    We study the effects of initial conditions of star clusters and their massive star population on dynamical ejections of stars from star clusters up to an age of 3 Myr, particularly focusing on massive systems, using a large set of direct N-body calculations for moderately massive star clusters (Mecl=$10^{3.5}$ Msun). We vary the initial conditions of the calculations such as the initial half-mass radius of the clusters, initial binary populations for massive stars and initial mass segregation. We find that the initial density is the most influential parameter for the ejection fraction of the massive systems. The clusters with an initial half-mass radius of 0.1 (0.3) pc can eject up to 50% (30)% of their O-star systems on average. Most of the models show that the average ejection fraction decreases with decreasing stellar mass. For clusters efficient at ejecting O stars, the mass function of the ejected stars is top-heavy compared to the given initial mass function (IMF), while the mass function of stars remai...

  14. Dynamic wake meandering modeling

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Gunner C.; Aagaard Madsen, H.; Bingoel, F. (and others)

    2007-06-15

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, however, have the potential to include also mutual wake interaction phenomenons. The basic conjecture behind the dynamic wake meandering model is that wake transportation in the atmospheric boundary layer is driven by the large scale lateral- and vertical turbulence components. Based on this conjecture a stochastic model of the downstream wake meandering is formulated. In addition to the kinematic formulation of the dynamics of the 'meandering frame of reference', models characterizing the mean wake deficit as well as the added wake turbulence, described in the meandering frame of reference, are an integrated part the model complex. For design applications, the computational efficiency of wake deficit prediction is a key issue. Two computationally low cost models are developed for this purpose. The character of the added wake turbulence, generated by the up-stream turbine in the form of shed and trailed vorticity, has been approached by analytical as well as by numerical studies. The dynamic wake meandering philosophy has been verified by comparing model predictions with extensive full-scale measurements. These comparisons have demonstrated good agreement, both qualitatively and quantitatively, concerning both flow characteristics and turbine load characteristics. Contrary to previous attempts to model wake loading, the dynamic wake meandering approach opens for a unifying description in the sense that turbine power and load aspects can be treated simultaneously. This capability is a direct and attractive consequence of the model being based on the underlying physical process, and it potentially opens for optimization of wind farm topology, of wind farm operation as

  15. Dynamic wake meandering modeling

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Madsen Aagaard, Helge; Bingöl, Ferhat;

    , are an integrated part the model complex. For design applications, the computational efficiency of wake deficit prediction is a key issue. Two computationally low cost models are developed for this purpose. The character of the added wake turbulence, generated by the up-stream turbine in the form of shed......We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, however......, have the potential to include also mutual wake interaction phenomenons. The basic conjecture behind the dynamic wake meandering model is that wake transportation in the atmospheric boundary layer is driven by the large scale lateral- and vertical turbulence components. Based on this conjecture...

  16. Modeling earthquake dynamics

    Science.gov (United States)

    Charpentier, Arthur; Durand, Marilou

    2015-07-01

    In this paper, we investigate questions arising in Parsons and Geist (Bull Seismol Soc Am 102:1-11, 2012). Pseudo causal models connecting magnitudes and waiting times are considered, through generalized regression. We do use conditional model (magnitude given previous waiting time, and conversely) as an extension to joint distribution model described in Nikoloulopoulos and Karlis (Environmetrics 19: 251-269, 2008). On the one hand, we fit a Pareto distribution for earthquake magnitudes, where the tail index is a function of waiting time following previous earthquake; on the other hand, waiting times are modeled using a Gamma or a Weibull distribution, where parameters are functions of the magnitude of the previous earthquake. We use those two models, alternatively, to generate the dynamics of earthquake occurrence, and to estimate the probability of occurrence of several earthquakes within a year or a decade.

  17. HOW SIGNIFICANT IS RADIATION PRESSURE IN THE DYNAMICS OF THE GAS AROUND YOUNG STELLAR CLUSTERS?

    Energy Technology Data Exchange (ETDEWEB)

    Silich, Sergiy; Tenorio-Tagle, Guillermo, E-mail: silich@inaoep.mx [Instituto Nacional de Astrofisica Optica y Electronica, AP 51, 72000 Puebla (Mexico)

    2013-03-01

    The impact of radiation pressure on the dynamics of the gas in the vicinity of young stellar clusters is thoroughly discussed. The radiation over the thermal/ram pressure ratio time evolution is calculated explicitly and the crucial roles of the cluster mechanical power, the strong time evolution of the ionizing photon flux, and the bolometric luminosity of the exciting cluster are stressed. It is shown that radiation has only a narrow window of opportunity to dominate the wind-driven shell dynamics. This may occur only at early stages of the bubble evolution and if the shell expands into a dusty and/or a very dense proto-cluster medium. The impact of radiation pressure on the wind-driven shell always becomes negligible after about 3 Myr. Finally, the wind-driven model results allow one to compare the model predictions with the distribution of thermal pressure derived from X-ray observations. The shape of the thermal pressure profile then allows us to distinguish between the energy and the momentum-dominated regimes of expansion and thus conclude whether radiative losses of energy or the leakage of hot gas from the bubble interior have been significant during bubble evolution.

  18. How Significant is Radiation Pressure in the Dynamics of the Gas Around Young Stellar Clusters?

    CERN Document Server

    Silich, Sergiy

    2013-01-01

    The impact of radiation pressure on the dynamics of the gas in the vicinity of young stellar clusters is thoroughly discussed. The radiation over the thermal/ram pressure ratio time evolution is calculated explicitely and the crucial role of the cluster mechanical power and of the strong time evolution of the ionizing photon flux and of the bolometric luminosity of the exciting cluster is stressed. It is shown that radiation has only a narrow window of opportunity to dominate the wind-driven shell dynamics. This may occur only at early stages of the bubble evolution and if the shell expands into a dusty and/or a very dense proto-cluster medium. The impact of radiation pressure on the wind-driven shell becomes always negligible after about 3 Myr. Finally, the wind-driven model results allow one to compare the model predictions with the distribution of thermal pressure derived from X-ray observations. The shape of the thermal pressure profile allows then to distinguish between the energy and the momentum domina...

  19. 3.5D dynamic PET image reconstruction incorporating kinetics-based clusters.

    Science.gov (United States)

    Lu, Lijun; Karakatsanis, Nicolas A; Tang, Jing; Chen, Wufan; Rahmim, Arman

    2012-08-07

    Standard 3D dynamic positron emission tomographic (PET) imaging consists of independent image reconstructions of individual frames followed by application of appropriate kinetic model to the time activity curves at the voxel or region-of-interest (ROI). The emerging field of 4D PET reconstruction, by contrast, seeks to move beyond this scheme and incorporate information from multiple frames within the image reconstruction task. Here we propose a novel reconstruction framework aiming to enhance quantitative accuracy of parametric images via introduction of priors based on voxel kinetics, as generated via clustering of preliminary reconstructed dynamic images to define clustered neighborhoods of voxels with similar kinetics. This is then followed by straightforward maximum a posteriori (MAP) 3D PET reconstruction as applied to individual frames; and as such the method is labeled '3.5D' image reconstruction. The use of cluster-based priors has the advantage of further enhancing quantitative performance in dynamic PET imaging, because: (a) there are typically more voxels in clusters than in conventional local neighborhoods, and (b) neighboring voxels with distinct kinetics are less likely to be clustered together. Using realistic simulated (11)C-raclopride dynamic PET data, the quantitative performance of the proposed method was investigated. Parametric distribution-volume (DV) and DV ratio (DVR) images were estimated from dynamic image reconstructions using (a) maximum-likelihood expectation maximization (MLEM), and MAP reconstructions using (b) the quadratic prior (QP-MAP), (c) the Green prior (GP-MAP) and (d, e) two proposed cluster-based priors (CP-U-MAP and CP-W-MAP), followed by graphical modeling, and were qualitatively and quantitatively compared for 11 ROIs. Overall, the proposed dynamic PET reconstruction methodology resulted in substantial visual as well as quantitative accuracy improvements (in terms of noise versus bias performance) for parametric DV and

  20. Testing lowered isothermal models with direct N-body simulations of globular clusters

    Science.gov (United States)

    Zocchi, Alice; Gieles, Mark; Hénault-Brunet, Vincent; Varri, Anna Lisa

    2016-10-01

    Several self-consistent models have been proposed, aiming at describing the phase-space distribution of stars in globular clusters. This study explores the ability of the recently proposed LIMEPY models to reproduce the dynamical properties of direct N-body models of a cluster in a tidal field, during its entire evolution. These dynamical models include prescriptions for the truncation and the degree of radially biased anisotropy contained in the system, allowing us to explore the interplay between the role of anisotropy and tides in various stages of the life of star clusters. We show that the amount of anisotropy in an initially tidally underfilling cluster increases in the pre-collapse phase, and then decreases with time, due to the effect of the external tidal field on its spatial truncation. This is reflected in the correspondent model parameters, and the best-fitting models reproduce the main properties of the cluster at all stages of its evolution, except for the phases immediately preceding and following core collapse. We also notice that the best-fitting LIMEPY models are significantly different from isotropic King models, especially in the first part of the evolution of the cluster. Our results put limits on the amount of radial anisotropy that can be expected for clusters evolving in a tidal field, which is important to understand other factors that could give rise to similar observational signatures, such as the presence of an intermediate-mass black hole.

  1. Dynamical cluster approximation plus semiclassical approximation study for a Mott insulator and d-wave pairing

    Science.gov (United States)

    Kim, SungKun; Lee, Hunpyo

    2017-06-01

    Via a dynamical cluster approximation with N c = 4 in combination with a semiclassical approximation (DCA+SCA), we study the doped two-dimensional Hubbard model. We obtain a plaquette antiferromagnetic (AF) Mott insulator, a plaquette AF ordered metal, a pseudogap (or d-wave superconductor) and a paramagnetic metal by tuning the doping concentration. These features are similar to the behaviors observed in copper-oxide superconductors and are in qualitative agreement with the results calculated by the cluster dynamical mean field theory with the continuous-time quantum Monte Carlo (CDMFT+CTQMC) approach. The results of our DCA+SCA differ from those of the CDMFT+CTQMC approach in that the d-wave superconducting order parameters are shown even in the high doped region, unlike the results of the CDMFT+CTQMC approach. We think that the strong plaquette AF orderings in the dynamical cluster approximation (DCA) with N c = 4 suppress superconducting states with increasing doping up to strongly doped region, because frozen dynamical fluctuations in a semiclassical approximation (SCA) approach are unable to destroy those orderings. Our calculation with short-range spatial fluctuations is initial research, because the SCA can manage long-range spatial fluctuations in feasible computational times beyond the CDMFT+CTQMC tool. We believe that our future DCA+SCA calculations should supply information on the fully momentum-resolved physical properties, which could be compared with the results measured by angle-resolved photoemission spectroscopy experiments.

  2. Molecular Dynamics Simulations of the Nucleation of Water: Determining the Sticking Probability and Formation Energy of a Cluster

    CERN Document Server

    Tanaka, Kyoko K; Tanaka, Hidekazu

    2014-01-01

    We performed molecular dynamics (MD) simulations of the nucleation of water vapor in order to test nucleation theories. Simulations were performed for a wide range of supersaturation ratios (S = 3-25) and water temperatures (Tw=300-390K). We obtained the nucleation rates and the formation free energies of a subcritical cluster from the cluster size distribution. The classical nucleation theory (CNT) and the modified classical nucleation theory (MCNT) overestimate the nucleation rates in all cases. The semi-phenomenological (SP) model, which corrects the MCNT prediction using the second virial coefficient of a vapor, reproduces the formation free energy of a cluster with the size < 20 to within 10 % and the nucleation rate and cluster size distributions to within one order of magnitude. The sticking probability of the vapor molecules to the clusters was also determined from the growth rates of the clusters. The sticking probability rapidly increases with the supersaturation ratio S, which is similar to the ...

  3. The Baltimore and Utrecht models for cluster dissolution

    NARCIS (Netherlands)

    Lamers, H.J.G.L.M.

    2009-01-01

    The analysis of the age distributions of star cluster samples of different galaxies has resulted in two very different empirical models for the dissolution of star clusters: the Baltimore model and the Utrecht model. I describe these two models and their differences. The Baltimore model implies that

  4. nIFTy galaxy cluster simulations II: radiative models

    CERN Document Server

    Sembolini, Federico; Pearce, Frazer R; Power, Chris; Knebe, Alexander; Kay, Scott T; Cui, Weiguang; Yepes, Gustavo; Beck, Alexander M; Borgani, Stefano; Cunnama, Daniel; Davé, Romeel; February, Sean; Huang, Shuiyao; Katz, Neal; McCarthy, Ian G; Murante, Giuseppe; Newton, Richard D A; Perret, Valentin; Saro, Alexandro; Schaye, Joop; Teyssier, Romain

    2015-01-01

    We have simulated the formation of a massive galaxy cluster (M$_{200}^{\\rm crit}$ = 1.1$\\times$10$^{15}h^{-1}M_{\\odot}$) in a $\\Lambda$CDM universe using 10 different codes (RAMSES, 2 incarnations of AREPO and 7 of GADGET), modeling hydrodynamics with full radiative subgrid physics. These codes include Smoothed-Particle Hydrodynamics (SPH), spanning traditional and advanced SPH schemes, adaptive mesh and moving mesh codes. Our goal is to study the consistency between simulated clusters modeled with different radiative physical implementations - such as cooling, star formation and AGN feedback. We compare images of the cluster at $z=0$, global properties such as mass, and radial profiles of various dynamical and thermodynamical quantities. We find that, with respect to non-radiative simulations, dark matter is more centrally concentrated, the extent not simply depending on the presence/absence of AGN feedback. The scatter in global quantities is substantially higher than for non-radiative runs. Intriguingly, a...

  5. Structural dynamic modifications via models

    Indian Academy of Sciences (India)

    T K Kundra

    2000-06-01

    Structural dynamic modification techniques attempt to reduce dynamic design time and can be implemented beginning with spatial models of structures, dynamic test data or updated models. The models assumed in this discussion are mathematical models, namely mass, stiffness, and damping matrices of the equations of motion of a structure. These models are identified/extracted from dynamic test data viz. frequency response functions (FRFs). Alternatively these models could have been obtained by adjusting or updating the finite element model of the structure in the light of the test data. The methods of structural modification for getting desired dynamic characteristics by using modifiers namely mass, beams and tuned absorbers are discussed.

  6. Innovation performance and clusters : a dynamic capability perspective on regional technology clusters

    NARCIS (Netherlands)

    Röttmer, Nicole

    2009-01-01

    This research provides a novel, empirically tested, actionable theory of cluster innovativeness. Cluster innovativeness has for long been subject of research and resulting policy efforts. The cluster's endowment with assets, such as specialized labor, firms, research institutes, existing regional

  7. Innovation performance and clusters : a dynamic capability perspective on regional technology clusters

    NARCIS (Netherlands)

    Röttmer, Nicole

    2009-01-01

    This research provides a novel, empirically tested, actionable theory of cluster innovativeness. Cluster innovativeness has for long been subject of research and resulting policy efforts. The cluster's endowment with assets, such as specialized labor, firms, research institutes, existing regional ne

  8. Information Filtering via Collaborative User Clustering Modeling

    CERN Document Server

    Zhang, Chu-Xu; Yu, Lu; Liu, Chuang; Liu, Hao; Yan, Xiao-Yong

    2013-01-01

    The past few years have witnessed the great success of recommender systems, which can significantly help users find out personalized items for them from the information era. One of the most widely applied recommendation methods is the Matrix Factorization (MF). However, most of researches on this topic have focused on mining the direct relationships between users and items. In this paper, we optimize the standard MF by integrating the user clustering regularization term. Our model considers not only the user-item rating information, but also takes into account the user interest. We compared the proposed model with three typical other methods: User-Mean (UM), Item-Mean (IM) and standard MF. Experimental results on a real-world dataset, MovieLens, show that our method performs much better than other three methods in the accuracy of recommendation.

  9. Information filtering via collaborative user clustering modeling

    Science.gov (United States)

    Zhang, Chu-Xu; Zhang, Zi-Ke; Yu, Lu; Liu, Chuang; Liu, Hao; Yan, Xiao-Yong

    2014-02-01

    The past few years have witnessed the great success of recommender systems, which can significantly help users to find out personalized items for them from the information era. One of the widest applied recommendation methods is the Matrix Factorization (MF). However, most of the researches on this topic have focused on mining the direct relationships between users and items. In this paper, we optimize the standard MF by integrating the user clustering regularization term. Our model considers not only the user-item rating information but also the user information. In addition, we compared the proposed model with three typical other methods: User-Mean (UM), Item-Mean (IM) and standard MF. Experimental results on two real-world datasets, MovieLens 1M and MovieLens 100k, show that our method performs better than other three methods in the accuracy of recommendation.

  10. Dissipation and energy balance in electronic dynamics of Na clusters

    Science.gov (United States)

    Vincendon, Marc; Suraud, Eric; Reinhard, Paul-Gerhard

    2017-06-01

    We investigate the impact of dissipation on the energy balance in the electron dynamics of metal clusters excited by strong electro-magnetic pulses. The dynamics is described theoretically by Time-Dependent Density-Functional Theory (TDDFT) at the level of Local Density Approximation (LDA) augmented by a self interaction correction term and a quantum collision term in Relaxation-Time Approximation (RTA). We evaluate the separate contributions to the total excitation energy, namely energy exported by electron emission, potential energy due to changing charge state, intrinsic kinetic and potential energy, and collective flow energy. The balance of these energies is studied as function of the laser parameters (frequency, intensity, pulse length) and as function of system size and charge. We also look at collisions with a highly charged ion and here at the dependence on the impact parameter (close versus distant collisions). Dissipation turns out to be small where direct electron emission prevails namely for laser frequencies above any ionization threshold and for slow electron extraction in distant collisions. Dissipation is large for fast collisions and at low laser frequencies, particularly at resonances. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  11. Theoretical investigation of thermodynamic balance between cluster isomers and statistical model for predicting isomerization rate

    CERN Document Server

    Lin, Zheng-Zhe

    2013-01-01

    By molecular dynamics simulations and free energy calculations based on Monte Carlo method, the detailed balance between Pt cluster isomers was investigated. For clusters of n50. Then, a statistical mechanical model was built to evaluate unimolecular isomerization rate and simplify the prediction of isomer formation probability. This model is simpler than transition state theory and can be easily applied on ab initio calculations to predict the lifetime of nanostructures.

  12. Molecular-dynamics simulation of clustering processes in sea-ice floes.

    Science.gov (United States)

    Herman, Agnieszka

    2011-11-01

    In seasonally ice-covered seas and along the margins of perennial ice pack, i.e., in regions with medium ice concentrations, the ice cover typically consists of separate floes interacting with each other by inelastic collisions. In this paper, hitherto unexplored analogies between this type of ice cover and two-dimensional granular gases are used to formulate a model of ice dynamics at the floe level. The model consists of (i) momentum equations for floe motion between collisions, formulated in the form of a Stokes-flow problem, with floe-size-dependent time constant and equilibrium velocity, and (ii) a hard-disk collision model. The numerical algorithm developed is suitable for simulating particle-laden flow of N disk-shaped floes with arbitrary size distributions. The model is applied to study clustering phenomena in sea ice with power-law floe-size distribution. In particular, the influence of the average ice concentration A on the formation and characteristics of clusters is analyzed in detail. The results show the existence of two regimes, at low and high ice concentrations, differing in terms of the exponents of the cluster-size distribution and of the size of the largest cluster.

  13. Update Legal Documents Using Hierarchical Ranking Models and Word Clustering

    OpenAIRE

    Pham, Minh Quang Nhat; Nguyen, Minh Le; Shimazu, Akira

    2010-01-01

    Our research addresses the task of updating legal documents when newinformation emerges. In this paper, we employ a hierarchical ranking model tothe task of updating legal documents. Word clustering features are incorporatedto the ranking models to exploit semantic relations between words. Experimentalresults on legal data built from the United States Code show that the hierarchicalranking model with word clustering outperforms baseline methods using VectorSpace Model, and word cluster-based ...

  14. Dynamics of galaxies and clusters in \\textit{refracted gravity}

    CERN Document Server

    Matsakos, Titos

    2016-01-01

    We investigate the proof of concept and the implications of \\textit{refracted gravity}, a novel modified gravity aimed to solve the discrepancy between the luminous and the dynamical mass of cosmic structures without resorting to dark matter. Inspired by the behavior of electric fields in matter, refracted gravity introduces a gravitational permittivity that depends on the local mass density and modifies the standard Poisson equation. The resulting gravitational field can become more intense than the Newtonian field and can mimic the presence of dark matter. We show that the refracted gravitational field correctly describes (1) the rotation curves and the Tully-Fisher relation of disk galaxies; and (2) the observed temperature profile of the X-ray gas of galaxy clusters. According to these promising results, we conclude that refracted gravity deserves further investigation.

  15. DYNAMIC REQUEST DISPATCHING ALGORITHM FOR WEB SERVER CLUSTER

    Institute of Scientific and Technical Information of China (English)

    Yang Zhenjiang; Zhang Deyun; Sun Qindong; Sun Qing

    2006-01-01

    Distributed architectures support increased load on popular web sites by dispatching client requests transparently among multiple servers in a cluster. Packet Single-Rewriting technology and client address hashing algorithm in ONE-IP technology which can ensure application-session-keep have been analyzed, an improved request dispatching algorithm which is simple, effective and supports dynamic load balance has been proposed. In this algorithm, dispatcher evaluates which server node will process request by applying a hash function to the client IP address and comparing the result with its assigned identifier subset; it adjusts the size of the subset according to the performance and current load of each server, so as to utilize all servers' resource effectively. Simulation shows that the improved algorithm has better performance than the original one.

  16. Study of atmospheric dynamics and pollution in the coastal area of English Channel using clustering technique

    Science.gov (United States)

    Sokolov, Anton; Dmitriev, Egor; Delbarre, Hervé; Augustin, Patrick; Gengembre, Cyril; Fourmenten, Marc

    2016-04-01

    The problem of atmospheric contamination by principal air pollutants was considered in the industrialized coastal region of English Channel in Dunkirk influenced by north European metropolitan areas. MESO-NH nested models were used for the simulation of the local atmospheric dynamics and the online calculation of Lagrangian backward trajectories with 15-minute temporal resolution and the horizontal resolution down to 500 m. The one-month mesoscale numerical simulation was coupled with local pollution measurements of volatile organic components, particulate matter, ozone, sulphur dioxide and nitrogen oxides. Principal atmospheric pathways were determined by clustering technique applied to backward trajectories simulated. Six clusters were obtained which describe local atmospheric dynamics, four winds blowing through the English Channel, one coming from the south, and the biggest cluster with small wind speeds. This last cluster includes mostly sea breeze events. The analysis of meteorological data and pollution measurements allows relating the principal atmospheric pathways with local air contamination events. It was shown that contamination events are mostly connected with a channelling of pollution from local sources and low-turbulent states of the local atmosphere.

  17. The dynamical state and blue straggler population of the globular cluster NGC 6266 (M62)

    CERN Document Server

    Beccari, G; Origlia, L; Possenti, A; Rood, R T; Valenti, E

    2006-01-01

    We have used a proper combination of multiband high-resolution {\\it HST-WFPC2} and wide-field ground based observations to image the galactic globular cluster NGC 6266 (M62). The extensive photometric data set allows us to determine the center of gravity and to construct the most extended radial profile ever published for this cluster including, for the first time, detailed star counts in the very inner region. The star density profile is well reproduced by a standard King model with an extended core ($\\sim 19''$) and a modest value of the concentration parameter ($c=1.5$), indicating that the cluster has not-yet experienced core collapse. The millisecond pulsar population (whose members are all in binary systems) and the X-ray emitting population (more than 50 sources within the cluster half mass radius) suggest that NGC 6266 is in a dynamical phase particularly active in generating binaries through dynamical encounters. UV observations of the central region have been used to probe the population of blue str...

  18. Topological Structures of Cluster Spins for Ising Models

    CERN Document Server

    Feng, You-gang

    2010-01-01

    We discussed hierarchies and rescaling rule of the self similar transformations in Ising models, and define a fractal dimension of an ordered cluster, which minimum corresponds to a fixed point of the transformations. By the fractal structures we divide the clusters into two types: irreducible and reducible. A relationship of cluster spin with its coordination number and fractal dimension is obtained.

  19. Fuzzy Clustering Using the Convex Hull as Geometrical Model

    Directory of Open Access Journals (Sweden)

    Luca Liparulo

    2015-01-01

    Full Text Available A new approach to fuzzy clustering is proposed in this paper. It aims to relax some constraints imposed by known algorithms using a generalized geometrical model for clusters that is based on the convex hull computation. A method is also proposed in order to determine suitable membership functions and hence to represent fuzzy clusters based on the adopted geometrical model. The convex hull is not only used at the end of clustering analysis for the geometric data interpretation but also used during the fuzzy data partitioning within an online sequential procedure in order to calculate the membership function. Consequently, a pure fuzzy clustering algorithm is obtained where clusters are fitted to the data distribution by means of the fuzzy membership of patterns to each cluster. The numerical results reported in the paper show the validity and the efficacy of the proposed approach with respect to other well-known clustering algorithms.

  20. Atomistic interactions of clusters on surfaces using molecular dynamics and hyper molecular dynamics

    CERN Document Server

    Sanz-Navarro, C F

    2002-01-01

    The work presented in this thesis describes the results of Molecular Dynamics (MD) simulations applied to the interaction of silver clusters with graphite surfaces and some numerical and theoretical methods concerning the extension of MD simulations to longer time scales (hyper-MD). The first part of this thesis studies the implantation of clusters at normal incidence onto a graphite surface in order to determine the scaling of the penetration depth (PD) against the impact energy. A comparison with experimental results is made with good agreement. The main physical observations of the impact process are described and analysed. It is shown that there is a threshold impact velocity above which the linear dependence on PD on impact energy changes to a linear dependence on velocity. Implantation of silver clusters at oblique incidence is also considered. The second part of this work analyses the validity and feasibility of the three minimisation methods for the hyper-MD simulation method whereby time scales of an...

  1. nIFTy galaxy cluster simulations - II. Radiative models

    Science.gov (United States)

    Sembolini, Federico; Elahi, Pascal Jahan; Pearce, Frazer R.; Power, Chris; Knebe, Alexander; Kay, Scott T.; Cui, Weiguang; Yepes, Gustavo; Beck, Alexander M.; Borgani, Stefano; Cunnama, Daniel; Davé, Romeel; February, Sean; Huang, Shuiyao; Katz, Neal; McCarthy, Ian G.; Murante, Giuseppe; Newton, Richard D. A.; Perret, Valentin; Puchwein, Ewald; Saro, Alexandro; Schaye, Joop; Teyssier, Romain

    2016-07-01

    We have simulated the formation of a massive galaxy cluster (M_{200}^crit = 1.1 × 1015 h-1 M⊙) in a Λ cold dark matter universe using 10 different codes (RAMSES, 2 incarnations of AREPO and 7 of GADGET), modelling hydrodynamics with full radiative subgrid physics. These codes include smoothed-particle hydrodynamics (SPH), spanning traditional and advanced SPH schemes, adaptive mesh and moving mesh codes. Our goal is to study the consistency between simulated clusters modelled with different radiative physical implementations - such as cooling, star formation and thermal active galactic nucleus (AGN) feedback. We compare images of the cluster at z = 0, global properties such as mass, and radial profiles of various dynamical and thermodynamical quantities. We find that, with respect to non-radiative simulations, dark matter is more centrally concentrated, the extent not simply depending on the presence/absence of AGN feedback. The scatter in global quantities is substantially higher than for non-radiative runs. Intriguingly, adding radiative physics seems to have washed away the marked code-based differences present in the entropy profile seen for non-radiative simulations in Sembolini et al.: radiative physics + classic SPH can produce entropy cores, at least in the case of non cool-core clusters. Furthermore, the inclusion/absence of AGN feedback is not the dividing line -as in the case of describing the stellar content - for whether a code produces an unrealistic temperature inversion and a falling central entropy profile. However, AGN feedback does strongly affect the overall stellar distribution, limiting the effect of overcooling and reducing sensibly the stellar fraction.

  2. Peculiarities of the dynamic behavior of bubbles in a cluster caused by their hydrodynamic interaction

    Science.gov (United States)

    Gubaidullin, A. A.; Gubkin, A. S.

    2015-07-01

    Numerical investigation of the collective interaction of bubbles in clusters of different configurations was carried out. The mathematical model was used, which accounted for the compressibility and viscosity of the liquid as well as the hydrodynamic interaction between the bubbles. The heat exchange of gas bubbles with liquid was handled within the framework of a two-temperature scheme. An expression for the heat flux to the bubble unit surface was used, which makes it possible to describe the heat exchange of gaseous bubbles with the liquid in a fairly wide range of the values of the liquid pressures and temperatures. The behavior of an individual bubble in the collective of bubbles at an instantaneous compression and at a periodic disturbance of different frequencies was investigated. It is shown that under certain conditions, considerable compression ratios and, as a consequence, high temperatures and temperatures are reached for some bubbles. The influence of the cluster configuration has been investigated. It is shown by the examples of a cluster of three embedded dodecahedra, linear and stochastic clusters that the configuration of the cluster may affect strongly its dynamics.

  3. Dynamics of alkyl chains in monolayer protected metal clusters and their superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, R [Solid State Physics Division, BARC, Mumbai 400085 (India); Mitra, S [Solid State Physics Division, BARC, Mumbai 400085 (India); Johnson, M [Institute Lau-Langevin, BP156, F-38042, Grenoble, Cedex 9 (France); Pradeep, T [Department of Chemistry and SAIF, IITm, Chennai 600 036 (India)

    2007-12-15

    Alkyl chains dynamics in monolayer protected metal cluster (MPC) systems of gold and silver have been studied by the quasielastic neutron scattering (QENS) technique. Isolated MPCs investigated are 6, 12 and 18 carbon n-alkyl chain thiolate protected 4 nm diameter gold clusters while the superlattices are their silver analogues. Evolution of dynamics with temperature is found to be very different in the isolated clusters and their superlattices. While continuous evolution of the dynamics of the monolayer was observed in isolated MPCs, it is abrupt in superlattice systems and occurs at a temperature consistent with the superlattice melting detected in calorimetry measurements. A model where the chain undergoes uniaxial rotational diffusion with additional body axis fluctuation was found to describe the data consistently. For the superlattice systems, the chains are found to be held by strong inter-chain interactions below the superlattice melting. The data from the planar silver thiolate systems show similar behavior like the superlattice systems, consistent with the calorimetric data.

  4. Outlier Identification in Model-Based Cluster Analysis.

    Science.gov (United States)

    Evans, Katie; Love, Tanzy; Thurston, Sally W

    2015-04-01

    In model-based clustering based on normal-mixture models, a few outlying observations can influence the cluster structure and number. This paper develops a method to identify these, however it does not attempt to identify clusters amidst a large field of noisy observations. We identify outliers as those observations in a cluster with minimal membership proportion or for which the cluster-specific variance with and without the observation is very different. Results from a simulation study demonstrate the ability of our method to detect true outliers without falsely identifying many non-outliers and improved performance over other approaches, under most scenarios. We use the contributed R package MCLUST for model-based clustering, but propose a modified prior for the cluster-specific variance which avoids degeneracies in estimation procedures. We also compare results from our outlier method to published results on National Hockey League data.

  5. Outlier Identification in Model-Based Cluster Analysis

    Science.gov (United States)

    Evans, Katie; Love, Tanzy; Thurston, Sally W.

    2015-01-01

    In model-based clustering based on normal-mixture models, a few outlying observations can influence the cluster structure and number. This paper develops a method to identify these, however it does not attempt to identify clusters amidst a large field of noisy observations. We identify outliers as those observations in a cluster with minimal membership proportion or for which the cluster-specific variance with and without the observation is very different. Results from a simulation study demonstrate the ability of our method to detect true outliers without falsely identifying many non-outliers and improved performance over other approaches, under most scenarios. We use the contributed R package MCLUST for model-based clustering, but propose a modified prior for the cluster-specific variance which avoids degeneracies in estimation procedures. We also compare results from our outlier method to published results on National Hockey League data. PMID:26806993

  6. Coupled-cluster methods for core-hole dynamics

    Science.gov (United States)

    Picon, Antonio; Cheng, Lan; Hammond, Jeff R.; Stanton, John F.; Southworth, Stephen H.

    2014-05-01

    Coupled cluster (CC) is a powerful numerical method used in quantum chemistry in order to take into account electron correlation with high accuracy and size consistency. In the CC framework, excited, ionized, and electron-attached states can be described by the equation of motion (EOM) CC technique. However, bringing CC methods to describe molecular dynamics induced by x rays is challenging. X rays have the special feature of interacting with core-shell electrons that are close to the nucleus. Core-shell electrons can be ionized or excited to a valence shell, leaving a core-hole that will decay very fast (e.g. 2.4 fs for K-shell of Ne) by emitting photons (fluorescence process) or electrons (Auger process). Both processes are a clear manifestation of a many-body effect, involving electrons in the continuum in the case of Auger processes. We review our progress of developing EOM-CC methods for core-hole dynamics. Results of the calculations will be compared with measurements on core-hole decays in atomic Xe and molecular XeF2. This work is funded by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.

  7. Dynamics of laser induced micro bubble clusters on tissue phantoms

    Science.gov (United States)

    Fritz, Andreas; Zegelin, Andrea; Ptaszynski, Lars; Birngruber, Reginald; Brinkmann, Ralf

    2011-03-01

    Selective retina treatment (SRT) is a laser based method to treat retinal diseases associated with disorders of the retinal pigment epithelium (RPE) while preserving photoreceptors and choroid. Applying microsecond laser pulses to the 100- 200 strongly absorbing melanin granules inside the RPE cells induces transient micro bubbles which disrupt the cells. Aim of this work is to understand bubble dynamics in clusters with respect to the influence of the adjacent retina. Bubble dynamics were investigated in vitro on porcine RPE. An about 200 μm thick layer of agarose gel was applied to the RPE layer in order to simulate the mechanical properties of retina. Different laser pulse durations from 1 ns (532 nm, Nd:YAG) to 1.7 μs (527 nm, Nd:YLF) were used. The bubbles were investigated interferometrically (fiber interferometer @ 830 nm) and with fast flash photography (25 ns flash duration). Bubble lifetimes were measured. The results show that with retina phantoms the bubble formation threshold was reached at 2.5 times higher irradiation than without retina phantom for 1.7 μs laser pulses. The microbubbles generated with 1 ns laser pulses were almost not influenced by the agarose layer. Irradiation twofold over bubble formation threshold resulted in 3.5 times longer bubble lifetimes for μs and 2 times longer for ns pulse durations, respectively.

  8. The effect of the dynamical state of clusters on gas expulsion and infant mortality

    CERN Document Server

    Goodwin, Simon P

    2008-01-01

    The star formation efficiency (SFE) of a star cluster is thought to be the critical factor in determining if the cluster can survive for a significant (>50 Myr) time. There is an often quoted critical SFE of ~30 per cent for a cluster to survive gas expulsion. I reiterate that the SFE is not the critical factor, rather it is the dynamical state of the stars (as measured by their virial ratio) immediately before gas expulsion that is the critical factor. If the stars in a star cluster are born in an even slightly cold dynamical state then the survivability of a cluster can be greatly increased.

  9. Multi-cluster dynamics in C13Λ and analogy to clustering in 12C

    Science.gov (United States)

    Funaki, Y.; Isaka, M.; Hiyama, E.; Yamada, T.; Ikeda, K.

    2017-10-01

    We investigate structure of C13Λ and discuss the difference and similarity between the structures of 12C and C13Λ by answering the questions if the linear-chain and gaslike cluster states, which are proposed to appear in 12C, survives, or new structure states appear or not. We introduce a microscopic cluster model called, Hyper-Tohsaki-Horiuchi-Schuck-Röpke (H-THSR) wave function, which is an extended version of the THSR wave function so as to describe Λ hypernuclei. We obtained two bound states and two resonance (quasi-bound) states for Jπ =0+ in C13Λ, corresponding to the four 0+ states in 12C. However, the inversion of level ordering between the spectra of 12C and C13Λ, i.e. that the 03+ and 04+ states in C13Λ correspond to the 04+ and 03+ states in 12C, respectively, is shown to occur. The additional Λ particle reduces sizes of the 02+ and 03+ states in C13Λ very much, but the shrinkage of the 04+ state is only a half of the other states, in spite of the fact that attractive Λ-N interaction makes nucleus contracted so much when the Λ particle occupies an S-orbit. In conclusion, the Hoyle state becomes quite a compact object with Be9Λ + α configuration in C13Λ and is no more gaslike state composed of the 3α clusters. Instead, the 04+ state in C13Λ, coming from the 12C (03+) state, appears as a gaslike state composed of α + α +Λ5He configuration, i.e. the Hoyle analog state. A linear-chain state in a Λ hypernucleus is for the first time predicted to exist as the 03+ state in C13Λ with more shrunk arrangement of the 3α clusters along z-axis than the 3α linear-chain configuration realized in the 12C (04+) state. All the excited states are shown to appear around the corresponding cluster-decay threshold, reflecting the threshold rule.

  10. Dynamic Cluster Head for Lifetime Efficiency in WSN

    Institute of Scientific and Technical Information of China (English)

    Hesham Abusaimeh; Shuang-Hua Yang

    2009-01-01

    Saving energy and increasing network lifetime are significant challenges in wireless sensor networks (WSNs).In this paper,we propose a mechanism to distribute the responsibility of cluster-heads among the wireless sensor nodes in the same cluster based on the ZigBee standard,which is the latest WSN standard.ZigBee supports ad hoc on-demand vector (AODV) and cluster-tree routing protocols in its routing layer. However,none of these protocols considers the energy level of the nodes in the network establishing process or in the data routing process. The cluster-tree routing protocol supports single or multi-cluster networks. However,each single cluster in the multi-cluster network has only one node acting as a cluster head. These cluster-heads are fixed in each cluster during the network lifetime.Consequently,using these cluster-heads will cause them to die quickly,and the entire linked nodes to these cluster-heads will be disconnected from the main network.Therefore,the proposed technique to distribute the role of the cluster head among the wireless sensor nodes in the same cluster is vital to increase the lifetime of the network.Our proposed technique is better in terms of performance than the original structure of these protocols.It has increased the lifetime of the wireless sensor nodes,and increased the lifetime of the WSN by around 50% of the original network lifetime.

  11. The globular cluster system of NGC 1399. V. dynamics of the cluster system out to 80 kpc

    Science.gov (United States)

    Schuberth, Y.; Richtler, T.; Hilker, M.; Dirsch, B.; Bassino, L. P.; Romanowsky, A. J.; Infante, L.

    2010-04-01

    Globular clusters (GCs) are tracers of the gravitational potential of their host galaxies. Moreover, their kinematic properties may provide clues for understanding the formation of GC systems and their host galaxies. We use the largest set of GC velocities obtained so far of any elliptical galaxy to revise and extend the previous investigations (Richtler et al. 2004) of the dynamics of NGC 1399, the central dominant galaxy of the nearby Fornax cluster of galaxies. The GC velocities are used to study the kinematics, their relation with population properties, and the dark matter halo of NGC 1399. We have obtained 477 new medium-resolution spectra (of these, 292 are spectra from 265 individual GCs, 241 of which are not in the previous data set). with the VLT FORS 2 and Gemini South GMOS multi-object spectrographs. We revise velocities for the old spectra and measure velocities for the new spectra, using the same templates to obtain an homogeneously treated data set. Our entire sample now comprises velocities for almost 700 GCs with projected galactocentric radii between 6 and 100 kpc. In addition, we use velocities of GCs at larger distances published elsewhere. Combining the kinematic data with wide-field photometric Washington data, we study the kinematics of the metal-poor and metal-rich subpopulations. We discuss in detail the velocity dispersions of subsamples and perform spherical Jeans modelling. The most important results are: the red GCs resemble the stellar field population of NGC 1399 in the region of overlap. The blue GCs behave kinematically more erratic. Both subpopulations are kinematically distinct and do not show a smooth transition. It is not possible to find a common dark halo which reproduces simultaneously the properties of both red and blue GCs. Some velocities of blue GCs are only to be explained by orbits with very large apogalactic distances, thus indicating a contamination with GCs which belong to the entire Fornax cluster rather than to NGC

  12. Comparing different dynamic stall models

    Energy Technology Data Exchange (ETDEWEB)

    Holierhoek, J.G. [Unit Wind Energy, Energy research Centre of the Netherlands, ZG, Petten (Netherlands); De Vaal, J.B.; Van Zuijlen, A.H.; Bijl, H. [Aerospace Engineering, Delft University of Technology, Delft (Netherlands)

    2012-07-16

    The dynamic stall phenomenon and its importance for load calculations and aeroelastic simulations is well known. Different models exist to model the effect of dynamic stall; however, a systematic comparison is still lacking. To investigate if one is performing better than another, three models are used to simulate the Ohio State University measurements and a set of data from the National Aeronautics and Space Administration Ames experimental study of dynamic stall and compare results. These measurements were at conditions and for aerofoils that are typical for wind turbines, and the results are publicly available. The three selected dynamic stall models are the ONERA model, the Beddoes-Leishman model and the Snel model. The simulations show that there are still significant differences between measurements and models and that none of the models is significantly better in all cases than the other models. Especially in the deep stall regime, the accuracy of each of the dynamic stall models is limited.

  13. A one-dimensional toy model of globular clusters

    CERN Document Server

    Fanelli, D; Ruffo, S; Fanelli, Duccio; Merafina, Marco; Ruffo, Stefano

    2001-01-01

    We introduce a one-dimensional toy model of globular clusters. The model is a version of the well-known gravitational sheets system, where we take additionally into account mass and energy loss by evaporation of stars at the boundaries. Numerical integration by the "exact" event-driven dynamics is performed, for initial uniform density and Gaussian random velocities. Two distinct quasi-stationary asymptotic regimes are attained, depending on the initial energy of the system. We guess the forms of the density and velocity profiles which fit numerical data extremely well and allow to perform an independent calculation of the self-consistent gravitational potential. Some power-laws for the asymptotic number of stars and for the collision times are suggested.

  14. Clustering Timber Harvests and the Effects of Dynamic Forest Management Policy on Forest Fragmentation

    Science.gov (United States)

    Eric J. Gustafson

    1998-01-01

    To integrate multiple uses (mature forest and commodity production) better on forested lands, timber management strategies that cluster harvests have been proposed. One such approach clusters harvest activity in space and time, and rotates timber production zones across the landscape with a long temporal period (dynamic zoning). Dynamic zoning has...

  15. Poissonian reducibility and thermal scaling within the lattice gas model and molecular dynamics model

    OpenAIRE

    Ma, Y.G.

    2000-01-01

    The emission of clusters in the nuclear disassembly is investigated within the framework of isospin dependent lattice gas model and classical molecular dynamics model. As observed in the recent experimental data, it is found that the emission of individual cluster is poissonian and thermal scaling is observed in the linear Arrhenius plots made from the average multiplicity of each cluster. The mass, isotope and charge dependent "emission barriers" are extracted from the slopes of the Arrheniu...

  16. Dynamic Linear Models with R

    CERN Document Server

    Campagnoli, Patrizia; Petris, Giovanni

    2009-01-01

    State space models have gained tremendous popularity in as disparate fields as engineering, economics, genetics and ecology. Introducing general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. It illustrates the fundamental steps needed to use dynamic linear models in practice, using R package.

  17. Effects of Mergers and Dynamical State on Galaxy Clusters in Cosmological Simulations

    Science.gov (United States)

    Nelson, Katherine L.; Nagai, Daisuke

    2015-01-01

    Cosmological constraints from X-ray and microwave observations of galaxy clusters are subjected to systematic uncertainties. Non-thermal pressure support due to internal gas motions in galaxy clusters is one of the major sources of astrophysical uncertainties, which result in large bias and scatter in the hydrostatic mass estimate. In this work, we analyze a sample of massive galaxy clusters from the Omega500 high-resolution hydrodynamic cosmological simulation to examine the effects of dynamical state on non-thermal pressure. We use the Adaptive Refinement Tree (ART) code, an Eulerian grid-based adaptive refinement mesh code, which is well suited for modeling shock heating of gas and generation of bulk and turbulent motions from cosmic accretion. We examine the effects of cluster mergers on the hydrostatic mass bias and the evolution of non-thermal pressure. We find that during a major merger about a third of the total pressure support in the system is in non-thermal pressure from random gas motions, which leads to a ~30% bias in the hydrostatic mass estimate. Even after the clusters relax, we find a residual 10% bias due to the residual non-thermal pressure sustained by continuous gas accretion and minor mergers in cluster outskirts. However, when the non-thermal pressure support is accounted for in the mass estimates of relaxed clusters, we are able to recover the true mass to within a few percent. Moreover, by accounting for the additional pressure contribution from gas accelerations, we find that the bias in the HSE can be reduced by about half for our whole cluster sample. We also characterize the non-thermal pressure fraction profile and study its dependence on redshift, mass, and mass accretion rate. We find a universal, redshift-independent fitting formula for describing the fractional pressure support due to bulk motions. Within the relation, we find that the mass accretion rate has a systematic effect on the amount of non-thermal pressure in clusters

  18. The globular cluster system of NGC 1399 V. dynamics of the cluster system out to 80 kpc

    CERN Document Server

    Schuberth, Y; Hilker, M; Dirsch, B; Bassino, L P; Romanowsky, A J; Infante, L

    2009-01-01

    (Abridged) We use the largest set of globular cluster velocities obtained so far of any elliptical galaxy to revise and extend the previous investigations of the dynamics of NGC 1399, the central dominant galaxy of the nearby Fornax cluster of galaxies. Our sample now comprises velocities for almost 700 GCs with projected galactocentric radii between 6 and 100 kpc. In addition, we use velocities published by Bergond et al. (2007). We study the kinematics of the metal-poor and metal-rich subpopulations and perform spherical Jeans modelling. The most important results are: The metal-rich (red) GCs resemble the stellar field population of NGC 1399 in the region of overlap. Both subpopulations are kinematically distinct and do not show a smooth transition. It is not possible to find a common dark halo which reproduces simultaneously the properties of both subpopulations. Some velocities of blue GCs are only to be explained by orbits with very large apogalactic distances, thus indicating a contamination with GCs w...

  19. A model for globular cluster extreme anomalies

    Science.gov (United States)

    D'Antona, F.; Ventura, P.

    2007-08-01

    In spite of the efforts made in recent years, there is still no comprehensive explanation for the chemical anomalies of globular cluster (GC) stars. Among these anomalies, the most striking is oxygen depletion, which reaches values down to [O/Fe] ~ -0.4 in most clusters, but in M13 it goes down to less than [O/Fe] ~ -1. In this work we suggest that the anomalies are due to the superposition of two different events, as follows. (i) Primordial self-enrichment; this is required to explain the oxygen depletion down to a minimum value [O/Fe] ~ -0.4. (ii) Extra mixing in a fraction of the stars already born with anomalous composition; these objects, starting with already low [O/Fe], will reduce the oxygen abundance down to the most extreme values. Contrary to other models that invoke extra mixing to explain the chemical anomalies, we suggest that this mixing is active only if there is a fraction of the stars in which the primordial composition is not only oxygen-depleted, but also extremely helium-rich (Y ~ 0.4), as found in a few GCs from their main-sequence multiplicity. We propose that the rotational evolution (and an associated extra mixing) of extremely helium-rich stars may be affected by the fact that they develop a very small or non-existent molecular weight barrier during the evolution. We show that extra mixing in these stars, having initial chemistry that has already been CNO processed, affects mainly the oxygen abundance, as well as (to a much smaller extent) the sodium abundance. The model also predicts a large fluorine depletion concomitant with the oxygen depletion, and a further enhancement of the surface helium abundance, which reaches values close to Y = 0.5 in the computed models. We stress that, in this tentative explanation, those stars that are primordially oxygen-depleted, but are not extremely helium-rich, do not suffer deep extra mixing.

  20. fast_protein_cluster: parallel and optimized clustering of large-scale protein modeling data.

    Science.gov (United States)

    Hung, Ling-Hong; Samudrala, Ram

    2014-06-15

    fast_protein_cluster is a fast, parallel and memory efficient package used to cluster 60 000 sets of protein models (with up to 550 000 models per set) generated by the Nutritious Rice for the World project. fast_protein_cluster is an optimized and extensible toolkit that supports Root Mean Square Deviation after optimal superposition (RMSD) and Template Modeling score (TM-score) as metrics. RMSD calculations using a laptop CPU are 60× faster than qcprot and 3× faster than current graphics processing unit (GPU) implementations. New GPU code further increases the speed of RMSD and TM-score calculations. fast_protein_cluster provides novel k-means and hierarchical clustering methods that are up to 250× and 2000× faster, respectively, than Clusco, and identify significantly more accurate models than Spicker and Clusco. fast_protein_cluster is written in C++ using OpenMP for multi-threading support. Custom streaming Single Instruction Multiple Data (SIMD) extensions and advanced vector extension intrinsics code accelerate CPU calculations, and OpenCL kernels support AMD and Nvidia GPUs. fast_protein_cluster is available under the M.I.T. license. (http://software.compbio.washington.edu/fast_protein_cluster) © The Author 2014. Published by Oxford University Press.

  1. PENERAPAN PENGOLAHAN PARALEL MODEL CLUSTER SEBAGAI WEB SERVER

    Directory of Open Access Journals (Sweden)

    Maman Somantri

    2009-06-01

    Full Text Available engolahan paralel merupakan suatu cara yang dilakukan untuk meningkatkan kecepatan pengolahandata dengan melakukan lebih dari satu pengolahan data tersebut secara bersamaan. Salah satu bentuk pengolahanparalel adalah model cluster. Pengolahan paralel model cluster ini akan digunakan untuk mengolah data Web,dengan membangun server Web yang di-cluster. Cluster server Web ini menggunakan teknologi Linux VirtualServer (LVS yang dapat dilakukan dengan NAT, IP tunneling, dan direct routing yang memiliki empat algoritmapenjadwalan.Pada penelitian ini akan digunakan teknologi LVS untuk membuat cluster Web Server denganmenggunakan NAT, diterapkannya teknologi Network File System, dan Network Block Device yang digunakansebagai media penyimpanan dalam jaringan. Dalam pengujian sistem cluster ini, pertama dilakukan pengujianjaringan yang digunakan untuk mengetahui kinerja sistem, dan pengujian sistem cluster dalam mengolah data Webdengan perangkat lunak WebBench dan script benchmark.

  2. Detecting Clusters in Atom Probe Data with Gaussian Mixture Models.

    Science.gov (United States)

    Zelenty, Jennifer; Dahl, Andrew; Hyde, Jonathan; Smith, George D W; Moody, Michael P

    2017-04-01

    Accurately identifying and extracting clusters from atom probe tomography (APT) reconstructions is extremely challenging, yet critical to many applications. Currently, the most prevalent approach to detect clusters is the maximum separation method, a heuristic that relies heavily upon parameters manually chosen by the user. In this work, a new clustering algorithm, Gaussian mixture model Expectation Maximization Algorithm (GEMA), was developed. GEMA utilizes a Gaussian mixture model to probabilistically distinguish clusters from random fluctuations in the matrix. This machine learning approach maximizes the data likelihood via expectation maximization: given atomic positions, the algorithm learns the position, size, and width of each cluster. A key advantage of GEMA is that atoms are probabilistically assigned to clusters, thus reflecting scientifically meaningful uncertainty regarding atoms located near precipitate/matrix interfaces. GEMA outperforms the maximum separation method in cluster detection accuracy when applied to several realistically simulated data sets. Lastly, GEMA was successfully applied to real APT data.

  3. Cluster Morphology-Polymer Dynamics Correlations in Sulfonated Polystyrene Melts: Computational Study

    Science.gov (United States)

    Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.

    2016-04-01

    Reaching exceptionally long times up to 500 ns in equilibrium and nonequilibrium molecular dynamics simulations studies, we have attained a fundamental molecular understanding of the correlation of ionomer clusters structure and multiscale dynamics, providing new insight into one critical, long-standing challenge in ionic polymer physics. The cluster structure in melts of sulfonated polystyrene with Na+ and Mg2 + counterions are resolved and correlated with the dynamics on multiple length and time scales extracted from measurements of the dynamic structure factor and shear rheology. We find that as the morphology of the ionic clusters changes from ladderlike for Na+ to disordered structures for Mg2 + , the dynamic structure factor is affected on the length scale corresponding to the ionic clusters. Rheology studies show that the viscosity for Mg2 + melts is higher than for Na+ ones for all shear rates, which is well correlated with the larger ionic clusters' size for the Mg2 + melts.

  4. 基于群集动力学和演化博弈论的网络舆情疏导模型%The Internet public opinion grooming model based on cluster dynamics and evolutionary game theory

    Institute of Scientific and Technical Information of China (English)

    宋彪; 朱建明; 黄启发

    2014-01-01

    The Internet is becoming a spreading platform for the public opinion and the crisis guidance issues of the Internet public opinion directly related to the safety and stability of the whole society.It's important to model the Internet public opinion activity as accurate as possible.Because of the Internet public opinion presents the group characteristics in the emergence and development process,the Internet public opinion groups flow process and individual flow process are studied and the Internet public opinion grooming mathematical model is presented based on the cluster dynamics and evolutionary game theory.By using multi-agent simulation for the proposed model,the validity of the model of the Internet public opinion grooming is proved.Results of this research provide a theoretical model for an effective solution to solve the Internet public opinion group crisis environment.%互联网已经成为公共舆情传播的主要平台,网络舆情的危机疏导问题直接关系到整个社会的安全和稳定,而对网络舆情的活动进行准确分析是网络舆情疏导的重要前提,基于网络舆情在产生和发展过程中所呈现的群体性,本文应用群集动力学和演化博弈论的方法,在研究网络舆情群体流动过程和个体流动过程的基础上,构建了网络舆情疏导模型.通过使用多Agent仿真,应用所提出的模型,寻求在相关约束下的最佳疏导策略,证明了网络舆情疏导模型的有效性.本文的研究成果为有效解决群体危机环境下的网络舆情疏导问题提供理论依据.

  5. Fuzzy Clustering Methods and their Application to Fuzzy Modeling

    DEFF Research Database (Denmark)

    Kroszynski, Uri; Zhou, Jianjun

    1999-01-01

    Fuzzy modeling techniques based upon the analysis of measured input/output data sets result in a set of rules that allow to predict system outputs from given inputs. Fuzzy clustering methods for system modeling and identification result in relatively small rule-bases, allowing fast, yet accurate...... prediction of outputs. This article presents an overview of some of the most popular clustering methods, namely Fuzzy Cluster-Means (FCM) and its generalizations to Fuzzy C-Lines and Elliptotypes. The algorithms for computing cluster centers and principal directions from a training data-set are described....... A method to obtain an optimized number of clusters is outlined. Based upon the cluster's characteristics, a behavioural model is formulated in terms of a rule-base and an inference engine. The article reviews several variants for the model formulation. Some limitations of the methods are listed...

  6. Computational Fluid Dynamics Modeling of Parachute Clusters

    Science.gov (United States)

    1997-11-01

    Ramakrishnan NOVEMBER 1997 19971205 022 Approved for public release; distribution is unlimited. ----- -------- The findings in this report are not...qR (left and right states) are obtained from a Taylor series I expansion of q about th~ centroid of the corresponding cell. The algorithm just...hexahedral cells. The solver does not require any information regarding tJe shapes of the cells and the faces. This property of the solver renders it

  7. A cluster expansion model for predicting activation barrier of atomic processes

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Tafizur; Jaipal, M. [Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016 (India); Chatterjee, Abhijit, E-mail: achatter@iitk.ac.in [Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016 (India); Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2013-06-15

    We introduce a procedure based on cluster expansion models for predicting the activation barrier of atomic processes encountered while studying the dynamics of a material system using the kinetic Monte Carlo (KMC) method. Starting with an interatomic potential description, a mathematical derivation is presented to show that the local environment dependence of the activation barrier can be captured using cluster interaction models. Next, we develop a systematic procedure for training the cluster interaction model on-the-fly, which involves: (i) obtaining activation barriers for handful local environments using nudged elastic band (NEB) calculations, (ii) identifying the local environment by analyzing the NEB results, and (iii) estimating the cluster interaction model parameters from the activation barrier data. Once a cluster expansion model has been trained, it is used to predict activation barriers without requiring any additional NEB calculations. Numerical studies are performed to validate the cluster expansion model by studying hop processes in Ag/Ag(100). We show that the use of cluster expansion model with KMC enables efficient generation of an accurate process rate catalog.

  8. Dynamics of cluster formation in driven magnetic colloids dispersed on a monolayer.

    Science.gov (United States)

    Jäger, Sebastian; Stark, Holger; Klapp, Sabine H L

    2013-05-15

    We report computer simulation results on the cluster formation of dipolar colloidal particles driven by a rotating external field in a quasi-two-dimensional setup. We focus on the interplay between permanent dipolar and hydrodynamic interactions and its influence on the dynamic behavior of the particles. This includes their individual as well as their collective motion. To investigate these characteristics, we employ Brownian dynamics simulations of a finite system with and without hydrodynamic interactions. Our results indicate that hydrodynamic interactions have a profound impact on the dynamic behavior of the clusters and the dynamics of the clustering process.

  9. Cluster analysis of dynamic contrast enhanced MRI reveals tumor subregions related to locoregional relapse for cervical cancer patients.

    Science.gov (United States)

    Torheim, Turid; Groendahl, Aurora R; Andersen, Erlend K F; Lyng, Heidi; Malinen, Eirik; Kvaal, Knut; Futsaether, Cecilia M

    2016-11-01

    Solid tumors are known to be spatially heterogeneous. Detection of treatment-resistant tumor regions can improve clinical outcome, by enabling implementation of strategies targeting such regions. In this study, K-means clustering was used to group voxels in dynamic contrast enhanced magnetic resonance images (DCE-MRI) of cervical cancers. The aim was to identify clusters reflecting treatment resistance that could be used for targeted radiotherapy with a dose-painting approach. Eighty-one patients with locally advanced cervical cancer underwent DCE-MRI prior to chemoradiotherapy. The resulting image time series were fitted to two pharmacokinetic models, the Tofts model (yielding parameters K(trans) and νe) and the Brix model (ABrix, kep and kel). K-means clustering was used to group similar voxels based on either the pharmacokinetic parameter maps or the relative signal increase (RSI) time series. The associations between voxel clusters and treatment outcome (measured as locoregional control) were evaluated using the volume fraction or the spatial distribution of each cluster. One voxel cluster based on the RSI time series was significantly related to locoregional control (adjusted p-value 0.048). This cluster consisted of low-enhancing voxels. We found that tumors with poor prognosis had this RSI-based cluster gathered into few patches, making this cluster a potential candidate for targeted radiotherapy. None of the voxels clusters based on Tofts or Brix parameter maps were significantly related to treatment outcome. We identified one group of tumor voxels significantly associated with locoregional relapse that could potentially be used for dose painting. This tumor voxel cluster was identified using the raw MRI time series rather than the pharmacokinetic maps.

  10. Cluster-based reduced-order modelling of a mixing layer

    CERN Document Server

    Kaiser, Eurika; Cordier, Laurent; Spohn, Andreas; Segond, Marc; Abel, Markus; Daviller, Guillaume; Niven, Robert K

    2013-01-01

    We propose a novel cluster-based reduced-order modelling (CROM) strategy of unsteady flows. CROM builds on the pioneering works of Gunzburger's group in cluster analysis (Burkardt et al. 2006) and Eckhardt's group in transition matrix models (Schneider et al. 2007) and constitutes a potential alternative to POD models. This strategy processes a time-resolved sequence of flow snapshots in two steps. First, the snapshot data is clustered into a small number of representative states, called centroids, in the state space. These centroids partition the state space in complementary non-overlapping regions (centroidal Voronoi cells). Departing from the standard algorithm, the probability of the clusters are determined, and the states are sorted by transition matrix consideration. Secondly, the transitions between the states are dynamically modelled via a Markov process. Physical mechanisms are then distilled by a refined analysis of the Markov process, e.g. with the finite-time Lyapunov exponent and entropic methods...

  11. Dynamical behavior of the Niedermayer algorithm applied to Potts models

    OpenAIRE

    Girardi, D.; Penna, T. J. P.; Branco, N. S.

    2012-01-01

    In this work we make a numerical study of the dynamic universality class of the Niedermayer algorithm applied to the two-dimensional Potts model with 2, 3, and 4 states. This algorithm updates clusters of spins and has a free parameter, $E_0$, which controls the size of these clusters, such that $E_0=1$ is the Metropolis algorithm and $E_0=0$ regains the Wolff algorithm, for the Potts model. For $-1

  12. Modelling dynamic roughness during floods

    NARCIS (Netherlands)

    Paarlberg, Andries; Dohmen-Janssen, Catarine M.; Hulscher, Suzanne J.M.H.; Termes, A.P.P.

    2007-01-01

    In this paper, we present a dynamic roughness model to predict water levels during floods. Hysteresis effects of dune development are explicitly included. It is shown that differences between the new dynamic roughness model, and models where the roughness coefficient is calibrated, are most

  13. The Evolution of Galaxy Clustering in Hierarchical Models

    OpenAIRE

    1999-01-01

    The main ingredients of recent semi-analytic models of galaxy formation are summarised. We present predictions for the galaxy clustering properties of a well specified LCDM model whose parameters are constrained by observed local galaxy properties. We present preliminary predictions for evolution of clustering that can be probed with deep pencil beam surveys.

  14. K­MEANS CLUSTERING FOR HIDDEN MARKOV MODEL

    NARCIS (Netherlands)

    Perrone, M.P.; Connell, S.D.

    2004-01-01

    An unsupervised k­means clustering algorithm for hidden Markov models is described and applied to the task of generating subclass models for individual handwritten character classes. The algorithm is compared to a related clustering method and shown to give a relative change in the error rate of as

  15. The quasicrystal model of cluster systems in condensed matter

    Science.gov (United States)

    Melnikov, G.

    2017-01-01

    The paper proposes a quasicrystal model of the structure of clusters. The model is based on the similarity of the structure of clusters and macroscopic structure of quasicrystals. It offers a formula to calculate the radii of successive coordination spheres in quasicrystalline films. The formula is based on the properties of Fibonacci sequence and characteristics of the power potential of interaction between particles.

  16. Dynamic causal modelling.

    Science.gov (United States)

    Friston, K J; Harrison, L; Penny, W

    2003-08-01

    In this paper we present an approach to the identification of nonlinear input-state-output systems. By using a bilinear approximation to the dynamics of interactions among states, the parameters of the implicit causal model reduce to three sets. These comprise (1) parameters that mediate the influence of extrinsic inputs on the states, (2) parameters that mediate intrinsic coupling among the states, and (3) [bilinear] parameters that allow the inputs to modulate that coupling. Identification proceeds in a Bayesian framework given known, deterministic inputs and the observed responses of the system. We developed this approach for the analysis of effective connectivity using experimentally designed inputs and fMRI responses. In this context, the coupling parameters correspond to effective connectivity and the bilinear parameters reflect the changes in connectivity induced by inputs. The ensuing framework allows one to characterise fMRI experiments, conceptually, as an experimental manipulation of integration among brain regions (by contextual or trial-free inputs, like time or attentional set) that is revealed using evoked responses (to perturbations or trial-bound inputs, like stimuli). As with previous analyses of effective connectivity, the focus is on experimentally induced changes in coupling (cf., psychophysiologic interactions). However, unlike previous approaches in neuroimaging, the causal model ascribes responses to designed deterministic inputs, as opposed to treating inputs as unknown and stochastic.

  17. Accretion and Dynamical Interactions in Small-N Star-Forming Clusters I. N=5 case

    CERN Document Server

    Delgado-Donate, E J; Bate, M R

    2003-01-01

    We present results from high-resolution hydrodynamical simulations which explore the effects of small scale clustering in star-forming regions. A large ensemble of small-N clusters with 5 stellar seeds have been modelled and the resulting properties of stars and brown dwarfs statistically derived and compared with observational data. Close dynamical interactions between the protostars and competitive accretion driven by the cloud collapse are shown to produce a distribution of final masses which is bimodal, with most of the mass residing in the binary components. When convolved with a suitable core mass function, the final distribution of masses resembles the observed IMF, both in the stellar and sub-stellar regime. Binaries and single stars are found to constitute two kinematically distinct populations, with about half of the singles attaining velocities > 2 km/s, which might deprive low mass star-forming regions of their lightest members in a few crossing times. The eccentricity distribution of binaries and...

  18. Parallel Genetic Algorithms with Dynamic Topology using Cluster Computing

    Directory of Open Access Journals (Sweden)

    ADAR, N.

    2016-08-01

    Full Text Available A parallel genetic algorithm (PGA conducts a distributed meta-heuristic search by employing genetic algorithms on more than one subpopulation simultaneously. PGAs migrate a number of individuals between subpopulations over generations. The layout that facilitates the interactions of the subpopulations is called the topology. Static migration topologies have been widely incorporated into PGAs. In this article, a PGA with a dynamic migration topology (D-PGA is proposed. D-PGA generates a new migration topology in every epoch based on the average fitness values of the subpopulations. The D-PGA has been tested against ring and fully connected migration topologies in a Beowulf Cluster. The D-PGA has outperformed the ring migration topology with comparable communication cost and has provided competitive or better results than a fully connected migration topology with significantly lower communication cost. PGA convergence behaviors have been analyzed in terms of the diversities within and between subpopulations. Conventional diversity can be considered as the diversity within a subpopulation. A new concept of permeability has been introduced to measure the diversity between subpopulations. It is shown that the success of the proposed D-PGA can be attributed to maintaining a high level of permeability while preserving diversity within subpopulations.

  19. Photodissociation of Cl 2 in helium clusters: an application of hybrid method of quantum wavepacket dynamics and path integral centroid molecular dynamics

    Science.gov (United States)

    Takayanagi, Toshiyuki; Shiga, Motoyuki

    2003-04-01

    The photodissociation dynamics of Cl 2 embedded in helium clusters is studied by numerical simulation with an emphasis on the effect of quantum character of helium motions. The simulation is based on the hybrid model in which Cl-Cl internuclear dynamics is treated in a wavepacket technique, while the helium motions are described by a path integral centroid molecular dynamics approach. It is found that the cage effect largely decreases when the helium motion is treated quantum mechanically. The mechanism is affected not only by the zero-point vibration in the helium solvation structure, but also by the quantum dynamics of helium.

  20. Dynamic Head Cluster Election Algorithm for Clustered Ad-Hoc Networks

    Directory of Open Access Journals (Sweden)

    Arwa Zabian

    2008-01-01

    Full Text Available In distributed system, the concept of clustering consists on dividing the geographical area covered by a set of nodes into small zones. In mobile network, the clustering mechanism varied due to the mobility of the nodes any time in any direction. That causes the partitioning of the network or the joining of nodes. Several existing centralized or globalized algorithm have been proposed for clustering technique, in a manner that no one node becomes isolated and no cluster becomes overloaded. A particular node called head cluster or leader is elected, has the role to organize the distribution of nodes in clusters. We propose a distributed clustering and leader election mechanism for Ad-Hoc mobile networks, in which the leader is a mobile node. Our results show that, in the case of leader mobility the time needed to elect a new leader is smaller than the time needed a significant topological change in the network is happens.

  1. Cluster Analysis of Atmospheric Dynamics and Pollution Transport in a Coastal Area

    Science.gov (United States)

    Sokolov, Anton; Dmitriev, Egor; Maksimovich, Elena; Delbarre, Hervé; Augustin, Patrick; Gengembre, Cyril; Fourmentin, Marc; Locoge, Nadine

    2016-06-01

    Summertime atmospheric dynamics in the coastal zone of the industrialized Dunkerque agglomeration in northern France was characterized by a cluster analysis of back trajectories in the context of pollution transport. The MESO-NH atmospheric model was used to simulate the local dynamics at multiple scales with horizontal resolution down to 500 m, and for the online calculation of the Lagrangian backward trajectories with 30-min temporal resolution. Airmass transport was performed along six principal pathways obtained by the weighted k-means clustering technique. Four of these centroids corresponded to a range of wind speeds over the English Channel: two for wind directions from the north-east and two from the south-west. Another pathway corresponded to a south-westerly continental transport. The backward trajectories of the largest and most dispersed sixth cluster contained low wind speeds, including sea-breeze circulations. Based on analyses of meteorological data and pollution measurements, the principal atmospheric pathways were related to local air-contamination events. Continuous air quality and meteorological data were collected during the Benzene-Toluene-Ethylbenzene-Xylene 2006 campaign. The sites of the pollution measurements served as the endpoints for the backward trajectories. Pollutant transport pathways corresponding to the highest air contamination were defined.

  2. Cluster Analysis of Atmospheric Dynamics and Pollution Transport in a Coastal Area

    Science.gov (United States)

    Sokolov, Anton; Dmitriev, Egor; Maksimovich, Elena; Delbarre, Hervé; Augustin, Patrick; Gengembre, Cyril; Fourmentin, Marc; Locoge, Nadine

    2016-11-01

    Summertime atmospheric dynamics in the coastal zone of the industrialized Dunkerque agglomeration in northern France was characterized by a cluster analysis of back trajectories in the context of pollution transport. The MESO-NH atmospheric model was used to simulate the local dynamics at multiple scales with horizontal resolution down to 500 m, and for the online calculation of the Lagrangian backward trajectories with 30-min temporal resolution. Airmass transport was performed along six principal pathways obtained by the weighted k-means clustering technique. Four of these centroids corresponded to a range of wind speeds over the English Channel: two for wind directions from the north-east and two from the south-west. Another pathway corresponded to a south-westerly continental transport. The backward trajectories of the largest and most dispersed sixth cluster contained low wind speeds, including sea-breeze circulations. Based on analyses of meteorological data and pollution measurements, the principal atmospheric pathways were related to local air-contamination events. Continuous air quality and meteorological data were collected during the Benzene-Toluene-Ethylbenzene-Xylene 2006 campaign. The sites of the pollution measurements served as the endpoints for the backward trajectories. Pollutant transport pathways corresponding to the highest air contamination were defined.

  3. SUCCESSFUL INNOVATIVE CLUSTERS IN ROMANIA – A POSSIBLE MODEL

    Directory of Open Access Journals (Sweden)

    Liliana SCUTARU

    2016-08-01

    Full Text Available The present study proposes the construction of a successful innovative cluster model which will help creating strategies and policies to support the Romanian economic growth and development in the medium and long term. One such architecture designed for supporting innovative clusters, including by attracting foreign capital within clusters order to increase their competitiveness, addresses some concrete measures both in terms of organizational system and management strategy as well as the funding system of clusters. The paper is also emphasizing the multiplicity of factors that are contributing to the creation, to the progressive development and to the success of clusters, the activities developed and the relationships established internationally, so as to ensure that the clusters remain on the market and have a good visibility at national and international levels, essentially contributing to the success of cluster.

  4. Dynamics of fragment capture for cluster structures of weakly bound 7Li

    Directory of Open Access Journals (Sweden)

    Shrivastava A.

    2013-12-01

    Full Text Available Role of cluster structures of 7Li on reaction dynamics have been studied by performing exclusive measurements of prompt-γ rays from residues with scattered particles at energy, E/Vb = 1.6, with 198Pt target. Yields of the residues resulting after capture of t and 4,5,6He, corresponding to different excitation energies of the composite system were estimated. The results were compared with three body classical-dynamical model for breakup fusion, constrained by the measured fusion, α and t capture cross-sections. The cross-section of residues from capture of α and t agreed well with the prediction of the model showing dominance of the two step process - breakup fusion, while those from tightly bound 6He showed massive transfer to be the dominant mechanism.

  5. Microscopic three-cluster model of 10Be

    Science.gov (United States)

    Lashko, Yu. A.; Filippov, G. F.; Vasilevsky, V. S.

    2017-02-01

    We investigate spectrum of bound and resonance states in 10Be, and scattering of alpha-particles on 6He. For this aim we make use of a three-cluster microscopic model. This model incorporates Gaussian and oscillator basis functions and reduces three-cluster Schrödinger equation to a two-body like many-channel problem with the two-cluster subsystem being in a bound or a pseudo-bound state. Much attention is given to the effects of cluster polarization on spectrum of bound and resonance states in 10Be, and on elastic and inelastic 6He + α scattering.

  6. Wind Farm Dynamic Equivalence Based on the Wind Turbine Output Active Power Sequence Clustering

    Directory of Open Access Journals (Sweden)

    Zhang Ge

    2016-01-01

    Full Text Available In order to reduce the complexity of simulation model containing wind farms in the context of keeping the accuracy static, this paper put forward a kind of Dynamic Equivalence method aiming at making output characteristic of the connecting point of wind farm consistent. Based on the output power sequence of wind turbines, geometric template matching algorithm is used to obtain the characteristic of that power sequence and then Attribute Threshold Clustering Algorithm is used to classify wind turbine. In each cluster, the parameter of wind turbine is made equal according to the principle of constant power output character and then be distinguished according to AMPSO. At last, this paper takes a practical wind farm as an example and respectively simulates the conditions of fault of system side and variation of wind speed, which is used in comparing the output characteristic of detailed model and Equivalent model. Results show that the output characteristic of the connecting point of wind farm keeps consistent after equivalent and that the Clustering Algorithm can reflect the operating characteristics of the wind turbine in the whole moment of any time period. It can also be saw that Equivalent method is reasonable and effective, which has certain value in engineering application.

  7. Cluster fusion-fission dynamics in the Singapore stock exchange

    Science.gov (United States)

    Teh, Boon Kin; Cheong, Siew Ann

    2015-10-01

    In this paper, we investigate how the cross-correlations between stocks in the Singapore stock exchange (SGX) evolve over 2008 and 2009 within overlapping one-month time windows. In particular, we examine how these cross-correlations change before, during, and after the Sep-Oct 2008 Lehman Brothers Crisis. To do this, we extend the complete-linkage hierarchical clustering algorithm, to obtain robust clusters of stocks with stronger intracluster correlations, and weaker intercluster correlations. After we identify the robust clusters in all time windows, we visualize how these change in the form of a fusion-fission diagram. Such a diagram depicts graphically how the cluster sizes evolve, the exchange of stocks between clusters, as well as how strongly the clusters mix. From the fusion-fission diagram, we see a giant cluster growing and disintegrating in the SGX, up till the Lehman Brothers Crisis in September 2008 and the market crashes of October 2008. After the Lehman Brothers Crisis, clusters in the SGX remain small for few months before giant clusters emerge once again. In the aftermath of the crisis, we also find strong mixing of component stocks between clusters. As a result, the correlation between initially strongly-correlated pairs of stocks decay exponentially with average life time of about a month. These observations impact strongly how portfolios and trading strategies should be formulated.

  8. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters.

    Science.gov (United States)

    Turi, László

    2016-04-21

    We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory(DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions with n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavitystructure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.

  9. An Otto Engine Dynamic Model

    OpenAIRE

    Florian Ion Tiberiu Petrescu; Relly Victoria Virgil Petrescu

    2016-01-01

    Otto engine dynamics are similar in almost all common internal combustion engines. We can speak so about dynamics of engines: Lenoir, Otto, and Diesel. The dynamic presented model is simple and original. The first thing necessary in the calculation of Otto engine dynamics, is to determine the inertial mass reduced at the piston. One uses then the Lagrange equation. Kinetic energy conservation shows angular speed variation (from the shaft) with inertial masses. One uses and elastic constant of...

  10. Electron-gas clusters: the ultimate jellium model

    Science.gov (United States)

    Koskinen, M.; Lipas, P. O.; Manninen, M.

    1995-12-01

    The local spin-density approximation is used to calculate ground- and isomeric-state geometries of jellium clusters with 2 to 22 electrons. The positive background charge of the model is completely deformable, both in shape and in density. The model has no input parameters. The resulting shapes of the clusters exhibit breaking of axial and inversion symmetries; in general the shapes are far from ellipsoidal. Those clusters which lack inversion symmetry are extremely soft against odd-multipole deformations. Some clusters can be interpreted as molecules built from magic clusters. The deformation produces a gap at the Fermi level. This results in a regular odd-even staggering of the total energy per electron and of the HOMO level. The strongly deformed 14-electron cluster is semimagic. Stable isomers are predicted. The splitting of the plasmon resonance due to deformation is estimated on a classical argument.

  11. Photodissociation spectroscopy and dynamics of free radicals, clusters, and ions

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon, Choi

    1999-12-16

    The photodissociation spectroscopy and dynamics of free radicals and ions is studied to characterize the dissociative electronic states in these species. To accomplish this, a special method of radical production, based on the photodetachment of the corresponding negative ion, has been combined with the technique of fast beam photofragment translational spectroscopy. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states. Branching ratios to various product channels, the translational energy distributions of the fragments, and bond dissociation energies are then determined at selected photon energies. The detailed picture of photodissociation dynamics is provided with the aid of ab initio calculations and a statistical model to interpret the observed data. Important reaction intermediates in combustion reactions have been studied: CCO, C{sub 2}H{sub 5}O, and linear C{sub n} (n = 4--6).

  12. Photodissociation spectroscopy and dynamics of free radicals, clusters, and ions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeon [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    The photodissociation spectroscopy and dynamics of free radicals and ions is studied to characterize the dissociative electronic states in these species. To accomplish this, a special method of radical production, based on the photodetachment of the corresponding negative ion, has been combined with the technique of fast beam photofragment translational spectroscopy. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states. Branching ratios to various product channels, the translational energy distributions of the fragments, and bond dissociation energies are then determined at selected photon energies. The detailed picture of photodissociation dynamics is provided with the aid of ab initio calculations and a statistical model to interpret the observed data. Important reaction intermediates in combustion reactions have been studied: CCO, C2H5O, and linear Cn (n = 4--6).

  13. An Extended Clustering Algorithm for Statistical Language Models

    CERN Document Server

    Ueberla, J P

    1994-01-01

    Statistical language models frequently suffer from a lack of training data. This problem can be alleviated by clustering, because it reduces the number of free parameters that need to be trained. However, clustered models have the following drawback: if there is ``enough'' data to train an unclustered model, then the clustered variant may perform worse. On currently used language modeling corpora, e.g. the Wall Street Journal corpus, how do the performances of a clustered and an unclustered model compare? While trying to address this question, we develop the following two ideas. First, to get a clustering algorithm with potentially high performance, an existing algorithm is extended to deal with higher order N-grams. Second, to make it possible to cluster large amounts of training data more efficiently, a heuristic to speed up the algorithm is presented. The resulting clustering algorithm can be used to cluster trigrams on the Wall Street Journal corpus and the language models it produces can compete with exi...

  14. The dynamics of cavity clusters in ultrasonic (vibratory) cavitation erosion

    DEFF Research Database (Denmark)

    Hansson, I.; Mørch, Knud Aage

    1980-01-01

    The erosion of solids caused by cavitating liquids is a result of the concerted collapse of clusters of cavities. In vibratory cavitation equipment the clusters grow and collapse adjacent to a solid surface and are typically of hemispherical or cylindrical form. In the present paper the collapse...... process of these clusters is described and the collapse equations are developed and solved. The theoretical results are compared with results from high-speed photography of the clusters and with the initial stages of cavitation erosion on metal specimens. Experimental and theoretical results show...... the ambient pressure. Therefore the collapse velocity of the individual cavities increases towards the cluster center, which explains that the erosion, being caused by the individual cavities, occurs predominantly in this region. Likewise, the pressure increase at the cluster boundary explains why materials...

  15. Fragmentation dynamics of ammonia cluster ions after single photon ionisation

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, E.; Vries, J. de; Steger, H.; Menzel, C.; Kamke, W.; Hertel, I.V. (Freiburg Univ. (Germany, F.R.). Fakultaet fuer Physik Freiburg Univ. (Germany, F.R.). Freiburger Materialforschungszentrum)

    1991-01-01

    A reflecting time of flight mass spectrometer (RETOF) is used to study unimolecular and collision induced fragmentation of ammonia cluster ions. Synchrotron radiation from the BESSY electron storage ring is used in a range of photon energies from 9.08 up to 17.7 eV for single photon ionisation of neutral clusters in a supersonic beam. The threshold photoelectron photoion coincidence technique (TPEPICO) is used to define the energy initially deposited into the cluster ions. Metastable unimolecular decay ({mu}s range) is studied using the RETOF's capacity for energy analysis. Under collision free conditions the by far most prominent metastable process is the evaporation of one neutral NH{sub 3} monomer from protonated clusters (NH{sub 3}){sub x}NH{sub 4}{sup +}. Abundance of homogeneous vs. protonated cluster ions and of metastable fragments are reported as a function of photon energy and cluster size up to n=10. (orig.).

  16. Single-cluster-update Monte Carlo method for the random anisotropy model

    Science.gov (United States)

    Rößler, U. K.

    1999-06-01

    A Wolff-type cluster Monte Carlo algorithm for random magnetic models is presented. The algorithm is demonstrated to reduce significantly the critical slowing down for planar random anisotropy models with weak anisotropy strength. Dynamic exponents zcluster algorithms are estimated for models with ratio of anisotropy to exchange constant D/J=1.0 on cubic lattices in three dimensions. For these models, critical exponents are derived from a finite-size scaling analysis.

  17. Molecular Dynamics Simulation of Icosahedral Transformations in Solid Cu-Co Clusters

    Institute of Scientific and Technical Information of China (English)

    LI Guo-Jian; WANG Qiang; LIU Tie; LI Dong-Gang; LU Xiao; HE Ji-Cheng

    2009-01-01

    We study the icosahedral transformations of solid Cu-Co clusters with different initial configurations by using molecular dynamics with the embedded atom method.It is found that the formation of symmetric icosahedral cluster is strongly related to the atomic number and initial configuration.The transformation originates from the surface into the interior of the cluster and is a structural change which is rapid and diffusionless.The icosahedral clusters with any composition and configuration,such as core-shell or three-shell cluster,can be prepared by the means of solid-solid phase transition in bimetallic dusters.

  18. Stretching the threshold of reversible dynamics in silicon clusters: A case of carbon alloyed Si6

    Science.gov (United States)

    Nazrulla, Mohammed Azeezulla; Krishnamurty, Sailaja

    2016-09-01

    Silicon clusters with 3-50 atoms undergo isomerization/reversible dynamics or structural deformation at significantly lower temperatures of 350 K-500 K. Through Born Oppenheimer Molecular Dynamical (BOMD) simulations, the current study demonstrates that carbon alloying enhances the thermal stability of a silicon cluster. The study is carried out on a Si6 cluster which has been recently reported to undergo reversible dynamical movements using aberration-corrected transmission electron microscopy. Present BOMD simulations validate the experimentally observed reversible atomic displacements (reversible dynamical movements) at finite temperatures which are seen to persist nearly up to 2000 K. Carbon alloying of Si6 is seen to stretch the threshold of reversible dynamics from 200 K to 600 K depending upon the alloying concentration of carbon in the cluster.

  19. State selective dynamics of molecules, clusters, and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Keto, John W. [Univ. of Texas, Austin, TX (United States)

    2005-06-01

    Early objectives of this grant were: (1) Measure two-photon excitation of even parity excitons in liquid an solid xenon, (2) Study state-to-state energy transver between two-photon laser excited states or rare-gas atoms to other rare has atoms, (3) study reactive half-collisions between xenon and chlorine leading to the XeCl* B state, (4) measure the spectra of ro-vibrational states of cluster ions and radicals formed in high-pressure discharges and to study their dynamics, (5) measure the surface and bulk electronic states of nanoparticles produced by a unique method of synthesis--laser ablation of microspheres (LAM). Using near-field and microluminescence techniques, we obtained spectra of single nanocrystals to compare with spectra obtained in a supersonic jet apparatus using resonance excitation followed by photoionization (REMPI) with time-of-flight mass analysis. These materials combine the functional advantages obtained from the size-tunable properties of nanocomposite materials with the fabrication and direct-write advantages of NPs manufactured by LAM. We demostrated that CdSe nanoparticles produced by LAM were efficiient fluorescers, even when deposited dry on sapphire substrates. Si nanoparticles were fluorescent when captured in ethylene glycol. We also obtiained efficient fluorescence from Er doped phosphate glass nanopartiicles which have application to gain wafeguides in integrated optics or to nanoslush lasers. We used a femptosecond laser to study the nonlinear spectra of NC composites. We are currently measuring fluorescence and second and third-order susceptibilities of composites of Ag, Si, and GaN nanoparticles encapsulated within thin films of sapphire or SiO 2.

  20. Shaping the Globular Cluster Mass Function by Stellar-Dynamical Evaporation

    CERN Document Server

    McLaughlin, Dean E

    2007-01-01

    Dynamical-evolution models of old globular cluster mass functions (GCMFs), in which the depletion of an initial power-law distribution at low masses is caused predominantly by evaporation driven by internal two-body relaxation, can explain the turnover mass scale M_{TO} and the generic shape of the GCMF at M < M_{TO}. We point out that such models inherently predict that the GCMF should depend on the cluster half-mass density, rho_h, and we show that the Galactic GCMF exhibits precisely the expected variations: M_{TO} increases systematically with rho_h, while the width of the distribution decreases. The quantitative details are consistent with a cluster mass-loss rate, -dM/dt = mu_{ev} ~ rho_h^{1/2} with rho_h approximately constant in time, which we adopt as the simplest description of evaporation. The normalization of mu_{ev} is within a factor of two of standard theoretical expectations. We show that the known, weak dependence of the Milky Way GCMF on Galactocentric position r_{gc} results from its bas...

  1. A Human Activity Recognition System Based on Dynamic Clustering of Skeleton Data

    Science.gov (United States)

    Manzi, Alessandro; Dario, Paolo; Cavallo, Filippo

    2017-01-01

    Human activity recognition is an important area in computer vision, with its wide range of applications including ambient assisted living. In this paper, an activity recognition system based on skeleton data extracted from a depth camera is presented. The system makes use of machine learning techniques to classify the actions that are described with a set of a few basic postures. The training phase creates several models related to the number of clustered postures by means of a multiclass Support Vector Machine (SVM), trained with Sequential Minimal Optimization (SMO). The classification phase adopts the X-means algorithm to find the optimal number of clusters dynamically. The contribution of the paper is twofold. The first aim is to perform activity recognition employing features based on a small number of informative postures, extracted independently from each activity instance; secondly, it aims to assess the minimum number of frames needed for an adequate classification. The system is evaluated on two publicly available datasets, the Cornell Activity Dataset (CAD-60) and the Telecommunication Systems Team (TST) Fall detection dataset. The number of clusters needed to model each instance ranges from two to four elements. The proposed approach reaches excellent performances using only about 4 s of input data (~100 frames) and outperforms the state of the art when it uses approximately 500 frames on the CAD-60 dataset. The results are promising for the test in real context. PMID:28492486

  2. Testing lowered isothermal models with direct N-body simulations of globular clusters

    CERN Document Server

    Zocchi, Alice; Hénault-Brunet, Vincent; Varri, Anna Lisa

    2016-01-01

    Several self-consistent models have been proposed, aiming at describing the phase space distribution of stars in globular clusters. This study explores the ability of the recently proposed LIMEPY models (Gieles & Zocchi) to reproduce the dynamical properties of direct N-body models of a cluster in a tidal field, during its entire evolution. These dynamical models include prescriptions for the truncation and the degree of radially-biased anisotropy contained in the system, allowing us to explore the interplay between the role of anisotropy and tides in various stages of the life of star clusters. We show that the amount of anisotropy in an initially tidally underfilling cluster increases in the pre-collapse phase, and then decreases with time, due to the effect of the external tidal field on its spatial truncation. This is reflected in the correspondent model parameters, and the best-fit models reproduce the main properties of the cluster at all stages of its evolution, except for the phases immediately pr...

  3. Orbital Magnetism and Dynamics in Alkali Metal Clusters

    CERN Document Server

    Nesterenko, V O; De Souza-Cruz, F F; Marinelli, J R

    2000-01-01

    Two remarkable orbital magnetic resonances, M1 scissor mode and M2 twist mode, are predicted in deformed and spherical metal clusters, respectively. We show that these resonances provide a valuable information about many cluster properties (quadrupole deformation, magnetic susceptibility, single-particle spectrum, etc.)

  4. Alpha-cluster model of atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sosin, Zbigniew; Kallunkathariyil, Jinesh [Jagiellonian University, M. Smoluchowski Institute of Physics, Krakow (Poland); Blocki, Jan [NCBJ, Theoretical Physics Division (BP2), Swierk (Poland); Lukasik, Jerzy; Pawlowski, Piotr [IFJ PAN, Krakow (Poland)

    2016-05-15

    The description of a nuclear system in its ground state and at low excitations based on the equation of state (EoS) around normal density is presented. In the expansion of the EoS around the saturation point, additional spin polarization terms are taken into account. These terms, together with the standard symmetry term, are responsible for the appearance of the α-like clusters in the ground-state configurations of the N=Z even-even nuclei. At the nuclear surface these clusters can be identified as alpha particles. A correction for the surface effects is introduced for atomic nuclei. Taking into account an additional interaction between clusters the binding energies and sizes of the considered nuclei are very accurately described. The limits of the EoS parameters are established from the properties of the α, {sup 3}He and t particles. (orig.)

  5. Identifying phase synchronization clusters in spatially extended dynamical systems

    CERN Document Server

    Bialonski, Stephan; 10.1103/PhysRevE.74.051909

    2010-01-01

    We investigate two recently proposed multivariate time series analysis techniques that aim at detecting phase synchronization clusters in spatially extended, nonstationary systems with regard to field applications. The starting point of both techniques is a matrix whose entries are the mean phase coherence values measured between pairs of time series. The first method is a mean field approach which allows to define the strength of participation of a subsystem in a single synchronization cluster. The second method is based on an eigenvalue decomposition from which a participation index is derived that characterizes the degree of involvement of a subsystem within multiple synchronization clusters. Simulating multiple clusters within a lattice of coupled Lorenz oscillators we explore the limitations and pitfalls of both methods and demonstrate (a) that the mean field approach is relatively robust even in configurations where the single cluster assumption is not entirely fulfilled, and (b) that the eigenvalue dec...

  6. On scaling properties of cluster distributions in Ising models

    Science.gov (United States)

    Ruge, C.; Wagner, F.

    1992-01-01

    Scaling relations of cluster distributions for the Wolff algorithm are derived. We found them to be well satisfied for the Ising model in d=3 dimensions. Using scaling and a parametrization of the cluster distribution, we determine the critical exponent β/ν=0.516(6) with moderate effort in computing time.

  7. Ab initio calculations and modelling of atomic cluster structure

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Lyalin, Andrey G.; Greiner, Walter

    2004-01-01

    framework for modelling the fusion process of noble gas clusters is presented. We report the striking correspondence of the peaks in the experimentally measured abundance mass spectra with the peaks in the size-dependence of the second derivative of the binding energy per atom calculated for the chain...... of the noble gas clusters up to 150 atoms....

  8. The dynamical importance of binary systems in young massive star clusters

    CERN Document Server

    de Grijs, Richard; Geller, Aaron M

    2015-01-01

    Characterization of the binary fractions in star clusters is of fundamental importance for many fields in astrophysics. Observations indicate that the majority of stars are found in binary systems, while most stars with masses greater than $0.5 M_\\odot$ are formed in star clusters. In addition, since binaries are on average more massive than single stars, in resolved star clusters these systems are thought to be good tracers of (dynamical) mass segregation. Over time, dynamical evolution through two-body relaxation will cause the most massive objects to migrate to the cluster center, while the relatively lower-mass objects remain in or migrate to orbits at greater radii. This process will globally dominate a cluster's stellar distribution. However, close encounters involving binary systems may disrupt `soft' binaries. This process will occur more frequently in a cluster's central, dense region than in its periphery, which may mask the effects of mass segregation. Using high resolution Hubble Space Telescope o...

  9. Dynamic Clustering in Object-Oriented Databases: An Advocacy for Simplicity

    CERN Document Server

    Darmont, Jérôme; Régnier, Stéphane; Gruenwald, Le; Schneider, Michel

    2007-01-01

    We present in this paper three dynamic clustering techniques for Object-Oriented Databases (OODBs). The first two, Dynamic, Statistical & Tunable Clustering (DSTC) and StatClust, exploit both comprehensive usage statistics and the inter-object reference graph. They are quite elaborate. However, they are also complex to implement and induce a high overhead. The third clustering technique, called Detection & Reclustering of Objects (DRO), is based on the same principles, but is much simpler to implement. These three clustering algorithm have been implemented in the Texas persistent object store and compared in terms of clustering efficiency (i.e., overall performance increase) and overhead using the Object Clustering Benchmark (OCB). The results obtained showed that DRO induced a lighter overhead while still achieving better overall performance.

  10. Fitting Latent Cluster Models for Networks with latentnet

    Directory of Open Access Journals (Sweden)

    Pavel N. Krivitsky

    2007-12-01

    Full Text Available latentnet is a package to fit and evaluate statistical latent position and cluster models for networks. Hoff, Raftery, and Handcock (2002 suggested an approach to modeling networks based on positing the existence of an latent space of characteristics of the actors. Relationships form as a function of distances between these characteristics as well as functions of observed dyadic level covariates. In latentnet social distances are represented in a Euclidean space. It also includes a variant of the extension of the latent position model to allow for clustering of the positions developed in Handcock, Raftery, and Tantrum (2007.The package implements Bayesian inference for the models based on an Markov chain Monte Carlo algorithm. It can also compute maximum likelihood estimates for the latent position model and a two-stage maximum likelihood method for the latent position cluster model. For latent position cluster models, the package provides a Bayesian way of assessing how many groups there are, and thus whether or not there is any clustering (since if the preferred number of groups is 1, there is little evidence for clustering. It also estimates which cluster each actor belongs to. These estimates are probabilistic, and provide the probability of each actor belonging to each cluster. It computes four types of point estimates for the coefficients and positions: maximum likelihood estimate, posterior mean, posterior mode and the estimator which minimizes Kullback-Leibler divergence from the posterior. You can assess the goodness-of-fit of the model via posterior predictive checks. It has a function to simulate networks from a latent position or latent position cluster model.

  11. Modelling Catalyst Surfaces Using DFT Cluster Calculations

    Directory of Open Access Journals (Sweden)

    Oliver Kröcher

    2009-09-01

    Full Text Available We review our recent theoretical DFT cluster studies of a variety of industrially relevant catalysts such as TiO2, γ-Al2O3, V2O5-WO3-TiO2 and Ni/Al2O3. Aspects of the metal oxide surface structure and the stability and structure of metal clusters on the support are discussed as well as the reactivity of surfaces, including their behaviour upon poisoning. It is exemplarily demonstrated how such theoretical considerations can be combined with DRIFT and XPS results from experimental studies.

  12. Modelling catalyst surfaces using DFT cluster calculations.

    Science.gov (United States)

    Czekaj, Izabela; Wambach, Jörg; Kröcher, Oliver

    2009-11-20

    We review our recent theoretical DFT cluster studies of a variety of industrially relevant catalysts such as TiO(2), gamma-Al(2)O(3), V(2)O(5)-WO(3)-TiO(2) and Ni/Al(2)O(3). Aspects of the metal oxide surface structure and the stability and structure of metal clusters on the support are discussed as well as the reactivity of surfaces, including their behaviour upon poisoning. It is exemplarily demonstrated how such theoretical considerations can be combined with DRIFT and XPS results from experimental studies.

  13. The Norma Cluster (ACO 3627): I. A Dynamical Analysis of the Most Massive Cluster in the Great Attractor

    CERN Document Server

    Woudt, P A; Lucey, J; Fairall, A P; Moore, S A W

    2007-01-01

    A detailed dynamical analysis of the nearby rich Norma cluster (ACO 3627) is presented. From radial velocities of 296 cluster members, we find a mean velocity of 4871 +/- 54 km/s and a velocity dispersion of 925 km/s. The mean velocity of the E/S0 population (4979 +/- 85 km/s) is offset with respect to that of the S/Irr population (4812 +/- 70 km/s) by `Delta' v = 164 km/s in the cluster rest frame. This offset increases towards the core of the cluster. The E/S0 population is free of any detectable substructure and appears relaxed. Its shape is clearly elongated with a position angle that is aligned along the dominant large-scale structures in this region, the so-called Norma wall. The central cD galaxy has a very large peculiar velocity of 561 km/s which is most probably related to an ongoing merger at the core of the cluster. The spiral/irregular galaxies reveal a large amount of substructure; two dynamically distinct subgroups within the overall spiral-population have been identified, located along the Nor...

  14. Stopping dynamics of ions passing through correlated honeycomb clusters

    Science.gov (United States)

    Balzer, Karsten; Schlünzen, Niclas; Bonitz, Michael

    2016-12-01

    A combined nonequilibrium Green functions-Ehrenfest dynamics approach is developed that allows for a time-dependent study of the energy loss of a charged particle penetrating a strongly correlated system at zero and finite temperatures. Numerical results are presented for finite inhomogeneous two-dimensional Fermi-Hubbard models, where the many-electron dynamics in the target are treated fully quantum mechanically and the motion of the projectile is treated classically. The simulations are based on the solution of the two-time Dyson (Keldysh-Kadanoff-Baym) equations using the second-order Born, third-order, and T -matrix approximations of the self-energy. As application, we consider protons and helium nuclei with a kinetic energy between 1 and 500 keV/u passing through planar fragments of the two-dimensional honeycomb lattice and, in particular, examine the influence of electron-electron correlations on the energy exchange between projectile and electron system. We investigate the time dependence of the projectile's kinetic energy (stopping power), the electron density, the double occupancy, and the photoemission spectrum. Finally, we show that, for a suitable choice of the Hubbard model parameters, the results for the stopping power are in fair agreement with ab initio simulations for particle irradiation of single-layer graphene.

  15. The adhesion model as a field theory for cosmological clustering

    Energy Technology Data Exchange (ETDEWEB)

    Rigopoulos, Gerasimos, E-mail: rigopoulos@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 12, Heidelberg, 69120 Germany (Germany)

    2015-01-01

    The adhesion model has been proposed in the past as an improvement of the Zel'dovich approximation, providing a good description of the formation of the cosmic web. We recast the model as a field theory for cosmological large scale structure, adding a stochastic force to account for power generated from very short, highly non-linear scales that is uncorrelated with the initial power spectrum. The dynamics of this Stochastic Adhesion Model (SAM) is reminiscent of the well known Kardar-Parisi-Zhang equation with the difference that the viscosity and the noise spectrum are time dependent. Choosing the viscosity proportional to the growth factor D restricts the form of noise spectrum through a 1-loop renormalization argument. For this choice, the SAM field theory is renormalizable to one loop. We comment on the suitability of this model for describing the non-linear regime of the CDM power spectrum and its utility as a relatively simple approach to cosmological clustering.

  16. Model-based clustering in networks with Stochastic Community Finding

    CERN Document Server

    McDaid, Aaron F; Friel, Nial; Hurley, Neil J

    2012-01-01

    In the model-based clustering of networks, blockmodelling may be used to identify roles in the network. We identify a special case of the Stochastic Block Model (SBM) where we constrain the cluster-cluster interactions such that the density inside the clusters of nodes is expected to be greater than the density between clusters. This corresponds to the intuition behind community-finding methods, where nodes tend to clustered together if they link to each other. We call this model Stochastic Community Finding (SCF) and present an efficient MCMC algorithm which can cluster the nodes, given the network. The algorithm is evaluated on synthetic data and is applied to a social network of interactions at a karate club and at a monastery, demonstrating how the SCF finds the 'ground truth' clustering where sometimes the SBM does not. The SCF is only one possible form of constraint or specialization that may be applied to the SBM. In a more supervised context, it may be appropriate to use other specializations to guide...

  17. A Novel Dynamic Clustering Algorithm Based on Immune Network and Tabu Search

    Institute of Scientific and Technical Information of China (English)

    ZHONGJiang; WUZhongfu; WUKaigui; YANGQiang

    2005-01-01

    It's difficult to indicate the rational number of partitions in the data set before clustering usually.The problem can't be solved by traditional clustering algorithm, such as k-means or its variations. This paper proposes a novel Dynamic clustering algorithm based on the artificial immune network and tabu search (DCBIT). It optimizes the number and the location of the clusters at the same time. The algorithm includes two phases, it begins by running immune network algorithm to find a Clustering feasible solution (CFS), then it employs tabu search to get the optimum cluster number and cluster centers on the CFS. Also, the probabilities acquiring the CFS through immune network algorithm have been discussed in this paper. Some experimental results show that new algorithm has satisfied convergent probability and convergent speed.

  18. An Exactly Soluble Hierarchical Clustering Model Inverse Cascades, Self-Similarity, and Scaling

    CERN Document Server

    Gabrielov, A; Turcotte, D L

    1999-01-01

    We show how clustering as a general hierarchical dynamical process proceeds via a sequence of inverse cascades to produce self-similar scaling, as an intermediate asymptotic, which then truncates at the largest spatial scales. We show how this model can provide a general explanation for the behavior of several models that has been described as ``self-organized critical,'' including forest-fire, sandpile, and slider-block models.

  19. Theory of galaxy dynamics in clusters and groups

    CERN Document Server

    Mamon, G A

    2000-01-01

    Analytical estimates of the mass and radial dependence of the rates of galaxy mergers and of tidal interactions are derived for clusters and groups of galaxies, taking into account the tides from the system potential that limit the sizes of galaxies. Only high mass galaxies undergo significant major merging before being themselves cannibalized by more massive galaxies. Strong tides from the group/cluster potential severely limit the merger/tide cross-sections in the central regions, and while tides are most efficient at the periphery, one should see merging encounters further inside rich clusters.

  20. Dynamics of the Globular Cluster NGC 665 with WFPC2

    Institute of Scientific and Technical Information of China (English)

    CHEN Ding; CHEN Li; WANG Jia-Ji

    2004-01-01

    @@ We have used the Hubble Space Telescope observations to measure proper motion of the globular cluster NGC6656 (M22) with respect to the background bulge stars and its internal velocity dispersion profile. Based on the proper motion of the cluster, its space velocity (II, (-) , W) = (184 ± 3, 209 ±14, 132 ± 15) km s- 1 and galactic orbit are also obtained. The central velocity dispersion in radial and tangential components of the internal motion of cluster stars is 16.99 km s-1. We derive the mass-to-light ratio M/ LV ~ 3.3 ± 0.2, which is relatively higher than the previous results.

  1. Computer Modelling of Dynamic Processes

    Directory of Open Access Journals (Sweden)

    B. Rybakin

    2000-10-01

    Full Text Available Results of numerical modeling of dynamic problems are summed in the article up. These problems are characteristic for various areas of human activity, in particular for problem solving in ecology. The following problems are considered in the present work: computer modeling of dynamic effects on elastic-plastic bodies, calculation and determination of performances of gas streams in gas cleaning equipment, modeling of biogas formation processes.

  2. One- and two-particle correlation functions in the dynamical quantum cluster approach

    Energy Technology Data Exchange (ETDEWEB)

    Hochkeppel, Stephan

    2008-07-25

    This thesis is dedicated to a theoretical study of the 1-band Hubbard model in the strong coupling limit. The investigation is based on the Dynamical Cluster Approximation (DCA) which systematically restores non-local corrections to the Dynamical Mean Field approximation (DMFA). The DCA is formulated in momentum space and is characterised by a patching of the Brillouin zone where momentum conservation is only recovered between two patches. The approximation works well if k-space correlation functions show a weak momentum dependence. In order to study the temperature and doping dependence of the spin- and charge excitation spectra, we explicitly extend the Dynamical Cluster Approximation to two-particle response functions. The full irreducible two-particle vertex with three momenta and frequencies is approximated by an effective vertex dependent on the momentum and frequency of the spin and/or charge excitations. The effective vertex is calculated by using the Quantum Monte Carlo method on the finite cluster whereas the analytical continuation of dynamical quantities is performed by a stochastic version of the maximum entropy method. A comparison with high temperature auxiliary field quantum Monte Carlo data serves as a benchmark for our approach to two-particle correlation functions. Our method can reproduce basic characteristics of the spin- and charge excitation spectrum. Near and beyond optimal doping, our results provide a consistent overall picture of the interplay between charge, spin and single-particle excitations: a collective spin mode emerges at optimal doping and sufficiently low temperatures in the spin response spectrum and exhibits the energy scale of the magnetic exchange interaction J. Simultaneously, the low energy single-particle excitations are characterised by a coherent quasiparticle with bandwidth J. The origin of the quasiparticle can be quite well understood in a picture of a more or less antiferromagnetic ordered background in which holes

  3. Multicolor Photometry of the Merging Galaxy Cluster A2319: Dynamics and Star Formation Properties

    Science.gov (United States)

    Yan, Peng-Fei; Yuan, Qi-Rong; Zhang, Li; Zhou, Xu

    2014-05-01

    Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622^{+91}_{-70} km s-1, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ~10' northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ~ 20 mag. A u-band (~3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h BATC = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have shorter SFR time scales, older stellar ages, and

  4. Neutral cluster debris dynamics in droplet-based laser-produced plasma sources

    Science.gov (United States)

    Hudgins, Duane; Gambino, Nadia; Rollinger, Bob; Abhari, Reza

    2016-05-01

    The neutral cluster debris dynamics of a droplet-based laser-produced plasma is studied experimentally and analytically. Experiments were done imaging the debris with a high-speed shadowgraph system and using image processing to determine the droplet debris mean radial velocity \\overline{V} dependence on laser pulse irradiance E e. The data shows a power law dependence between the mean radial debris velocity and the incident irradiance giving \\overline{V}\\propto E\\text{e}n with n≈ 0.65 . A scaled analytical model was derived modeling the plasma ablation pressure on the droplet surface as the primary momentum exchange mechanism between the unablated droplet material and the laser pulse. The relationship between droplet debris trajectory and the droplet alignment with the laser was quantified analytically. The derived analytical model determines that the neutral cluster debris trajectory for an ablated droplet is a function of the laser profile f L, the droplet diameter D and the axial misalignment h between the laser axis and the droplet center. The analytical calculations from these models were found to be in good agreement with the measurements. This analysis has practical significance for understanding ablated droplet debris, droplet deformation by laser pulsing, and droplet breakup from very short timescale shocks.

  5. Dynamics of cluster structures in a financial market network

    Science.gov (United States)

    Kocheturov, Anton; Batsyn, Mikhail; Pardalos, Panos M.

    2014-11-01

    In the course of recent fifteen years the network analysis has become a powerful tool for studying financial markets. In this work we analyze stock markets of the USA and Sweden. We study cluster structures of a market network constructed from a correlation matrix of returns of the stocks traded in each of these markets. Such cluster structures are obtained by means of the P-Median Problem (PMP) whose objective is to maximize the total correlation between a set of stocks called medians of size p and other stocks. Every cluster structure is an undirected disconnected weighted graph in which every connected component (cluster) is a star, or a tree with one central node (called a median) and several leaf nodes connected with the median by weighted edges. Our main observation is that in non-crisis periods of time cluster structures change more chaotically, while during crises they show more stable behavior and fewer changes. Thus an increasing stability of a market graph cluster structure obtained via the PMP could be used as an indicator of a coming crisis.

  6. Old star clusters: Bench tests of low mass stellar models

    Directory of Open Access Journals (Sweden)

    Salaris M.

    2013-03-01

    Full Text Available Old star clusters in the Milky Way and external galaxies have been (and still are traditionally used to constrain the age of the universe and the timescales of galaxy formation. A parallel avenue of old star cluster research considers these objects as bench tests of low-mass stellar models. This short review will highlight some recent tests of stellar evolution models that make use of photometric and spectroscopic observations of resolved old star clusters. In some cases these tests have pointed to additional physical processes efficient in low-mass stars, that are not routinely included in model computations. Moreover, recent results from the Kepler mission about the old open cluster NGC6791 are adding new tight constraints to the models.

  7. A Collaboration Service Model for a Global Port Cluster

    National Research Council Canada - National Science Library

    Toh, Keith K.T; Welsh, Karyn; Hassall, Kim

    2010-01-01

    ... between business entities within the cluster. The maturity of technologies providing portals, web and middleware services provides an opportunity to push the boundaries of contemporary service reference models and service catalogues to what...

  8. Some Abnormal Properties of Water in the Cluster Model

    Directory of Open Access Journals (Sweden)

    G.A. Melnikov

    2013-12-01

    Full Text Available In the framework of the cluster model developed by the structure of liquids for the anomalous dependences of the speed of sound and thermal conductivity of water temperature along the liquid-vapor equilibrium are explained.

  9. Cluster-size dependent randomization traffic flow model

    Institute of Scientific and Technical Information of China (English)

    Gao Kun; Wang Bing-Hong; Fu Chuan-Ji; Lu Yu-Feng

    2007-01-01

    In order to exhibit the meta-stable states, several slow-to-start rules have been investigated as modification to Nagel-Schreckenberg (NS) model. These models can reproduce some realistic phenomena which are absent in the original NS model. But in these models, the size of cluster is still not considered as a useful parameter. In real traffic,the slow-to-start motion of a standing vehicle often depends on the degree of congestion which can be measured by the clusters'size. According to this idea, we propose a cluster-size dependent slow-to-start model based on the speeddependent slow-to-start rule (VDR) model. It gives expected results through simulations. Comparing with the VDR model, our new model has a better traffic efficiency and shows richer complex characters.

  10. Wind farms model aggregation using probabilistic clustering

    Science.gov (United States)

    Fernandes, Paula Odete; Ferreira, Ángela Paula

    2013-10-01

    The main objective of this research is the identification of homogeneous groups within wind farms of a major operator playing in the energy sector in Portugal, based on two multivariate analyses: Hierarchical Cluster Analysis and Discriminant Analysis, by using two independent variables: annual liquid hours and net production. From the produced outputs there were identified three homogenous groups of wind farms: (1) medium Installed Capacity and Induction Generator based Technology, (2) high Installed Capacity and Synchronous Generator based Technology and (3) medium Installed Capacity and Synchronous Generator based Technology, which includes the wind farms with the higher annual liquid hours. It has been found that the results obtained by cluster analysis are well classified, with a total percentage of correct classification of 97,1%, which can be considered excellent.

  11. Clustering Dynamics of Ultra-fine Particulate Systems

    Science.gov (United States)

    Dutt, Meenakshi; Elliott, James

    2008-03-01

    Length scales of particles and their surrounding medium strongly determines the nature of their interactions with one another and their responses to external fields. We are interested in systems of ultrafine particles (0.1 - 1.0 micron) such as volcanic ash, solid aerosols, or fine powders for pharmaceutical ihalation applications. We develop a numerical model for these systems using the Derjaguin-Muller-Toporov (DMT) adhesion theory along with the van der Waals attraction between the particles and their contact mechanical interactions. We study the dynamics of these systems in the absence and presence of gravity by controlling the particle size, and thereby, the surface properties of the particles. The high surface energies of these particles causes them to agglomerate as they gravitationally settle. We explore their internal structure as a function of their particle size.

  12. A liquid drop model for embedded atom method cluster energies

    Science.gov (United States)

    Finley, C. W.; Abel, P. B.; Ferrante, J.

    1996-01-01

    Minimum energy configurations for homonuclear clusters containing from two to twenty-two atoms of six metals, Ag, Au, Cu, Ni, Pd, and Pt have been calculated using the Embedded Atom Method (EAM). The average energy per atom as a function of cluster size has been fit to a liquid drop model, giving estimates of the surface and curvature energies. The liquid drop model gives a good representation of the relationship between average energy and cluster size. As a test the resulting surface energies are compared to EAM surface energy calculations for various low-index crystal faces with reasonable agreement.

  13. Launch Vehicle Dynamics Demonstrator Model

    Science.gov (United States)

    1963-01-01

    Launch Vehicle Dynamics Demonstrator Model. The effect of vibration on launch vehicle dynamics was studied. Conditions included three modes of instability. The film includes close up views of the simulator fuel tank with and without stability control. [Entire movie available on DVD from CASI as Doc ID 20070030984. Contact help@sti.nasa.gov

  14. Dynamical behavior of the Niedermayer algorithm applied to Potts models

    Science.gov (United States)

    Girardi, D.; Penna, T. J. P.; Branco, N. S.

    2012-08-01

    In this work, we make a numerical study of the dynamic universality class of the Niedermayer algorithm applied to the two-dimensional Potts model with 2, 3, and 4 states. This algorithm updates clusters of spins and has a free parameter, E0, which controls the size of these clusters, such that E0=1 is the Metropolis algorithm and E0=0 regains the Wolff algorithm, for the Potts model. For -1clusters of equal spins can be formed: we show that the mean size of the clusters of (possibly) turned spins initially grows with the linear size of the lattice, L, but eventually saturates at a given lattice size L˜, which depends on E0. For L≥L˜, the Niedermayer algorithm is in the same dynamic universality class of the Metropolis one, i.e, they have the same dynamic exponent. For E0>0, spins in different states may be added to the cluster but the dynamic behavior is less efficient than for the Wolff algorithm (E0=0). Therefore, our results show that the Wolff algorithm is the best choice for Potts models, when compared to the Niedermayer's generalization.

  15. A comparative study of model ingredients: Fragmentation in heavy-ion collisions using quantum molecular dynamics model

    Indian Academy of Sciences (India)

    Sanjeev Kumar; Suneel Kumar

    2010-05-01

    We aim to understand the role of NN cross-sections, equation of state as well as different model ingredients such as width of Gaussian, clusterization range and different clusterization algorithms in multifragmentation using quantum molecular dynamics model. We notice that all model ingredients have sizable effect on the fragment pattern.

  16. Generative models of conformational dynamics.

    Science.gov (United States)

    Langmead, Christopher James

    2014-01-01

    Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term 'generative' refers to a model of the joint probability distribution over the behaviors of the constituent atoms. In the context of molecular modeling, generative models reveal the correlation structure between the atoms, and may be used to predict how the system will respond to structural perturbations. We begin by discussing traditional methods, which produce multivariate Gaussian models. We then discuss GAMELAN (GRAPHICAL MODELS OF ENERGY LANDSCAPES), which produces generative models of complex, non-Gaussian conformational dynamics (e.g., allostery, binding, folding, etc.) from long timescale simulation data.

  17. Fractal Models of Earthquake Dynamics

    CERN Document Server

    Bhattacharya, Pathikrit; Kamal,; Samanta, Debashis

    2009-01-01

    Our understanding of earthquakes is based on the theory of plate tectonics. Earthquake dynamics is the study of the interactions of plates (solid disjoint parts of the lithosphere) which produce seismic activity. Over the last about fifty years many models have come up which try to simulate seismic activity by mimicking plate plate interactions. The validity of a given model is subject to the compliance of the synthetic seismic activity it produces to the well known empirical laws which describe the statistical features of observed seismic activity. Here we present a review of two such models of earthquake dynamics with main focus on a relatively new model namely The Two Fractal Overlap Model.

  18. Clustering of European winter storms: A multi-model perspective

    Science.gov (United States)

    Renggli, Dominik; Buettner, Annemarie; Scherb, Anke; Straub, Daniel; Zimmerli, Peter

    2016-04-01

    The storm series over Europe in 1990 (Daria, Vivian, Wiebke, Herta) and 1999 (Anatol, Lothar, Martin) are very well known. Such clusters of severe events strongly affect the seasonally accumulated damage statistics. The (re)insurance industry has quantified clustering by using distribution assumptions deduced from the historical storm activity of the last 30 to 40 years. The use of storm series simulated by climate models has only started recently. Climate model runs can potentially represent 100s to 1000s of years, allowing a more detailed quantification of clustering than the history of the last few decades. However, it is unknown how sensitive the representation of clustering is to systematic biases. Using a multi-model ensemble allows quantifying that uncertainty. This work uses CMIP5 decadal ensemble hindcasts to study clustering of European winter storms from a multi-model perspective. An objective identification algorithm extracts winter storms (September to April) in the gridded 6-hourly wind data. Since the skill of European storm predictions is very limited on the decadal scale, the different hindcast runs are interpreted as independent realizations. As a consequence, the available hindcast ensemble represents several 1000 simulated storm seasons. The seasonal clustering of winter storms is quantified using the dispersion coefficient. The benchmark for the decadal prediction models is the 20th Century Reanalysis. The decadal prediction models are able to reproduce typical features of the clustering characteristics observed in the reanalysis data. Clustering occurs in all analyzed models over the North Atlantic and European region, in particular over Great Britain and Scandinavia as well as over Iberia (i.e. the exit regions of the North Atlantic storm track). Clustering is generally weaker in the models compared to reanalysis, although the differences between different models are substantial. In contrast to existing studies, clustering is driven by weak

  19. Iron-carbide cluster thermal dynamics for catalyzed carbon nanotube growth

    Science.gov (United States)

    Ding, Feng; Bolton, Kim; Rosén, Arne

    2004-07-01

    Molecular dynamics simulations have been used to study the thermal behavior of FeN-mCm clusters where N, the total number of atoms, extends up to 2400. Comparison of the computed results with experimental data shows that the simulations yield the correct trends for the liquid-solid region of the iron-carbide phase diagram as well as the correct dependence of cluster melting point as a function of cluster size. The calculation indicates that, when carbon nanotubes (CNTs) are grown on large (>3-4 nm) catalyst particles at low temperatures (melting of the cluster. .

  20. Angular momenta, dynamical masses, and mergers of brightest cluster galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Jimmy; Tran, Kim-Vy [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Brough, Sarah [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Gebhardt, Karl [Department of Astronomy, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712 (United States); Von der Linden, Anja [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085 (United States); Couch, Warrick J. [Centre for Astrophysics and Supercomputing, Swinburne University, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Sharp, Rob [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2013-12-01

    Using the VIMOS integral field unit (IFU) spectrograph on the Very Large Telescope, we have spatially mapped the kinematic properties of 10 nearby brightest cluster galaxies (BCGs) and 4 BCG companion galaxies located within a redshift of z = 0.1. In the hierarchical formation model, these massive galaxies (10{sup 10.5} M {sub ☉} < M {sub dyn} < 10{sup 11.9} M {sub ☉}) are expected to undergo more mergers than lower mass galaxies, and simulations show that dry minor mergers can remove angular momentum. We test whether BCGs have low angular momenta by using the λ {sub Re} parameter developed by the SAURON and ATLAS{sup 3D} teams and combine our kinematics with Sloan Digital Sky Survey photometry to analyze the BCGs' merger status. We find that 30% (3/10) of the BCGs and 100% of the companion galaxies (4/4) are fast rotators as defined by the ATLAS{sup 3D} criteria. Our fastest rotating BCG has a λ {sub Re} = 0.35 ± 0.05. We increase the number of BCGs analyzed from 1 in the combined SAURON and ATLAS{sup 3D} surveys to 11 BCGs total and find that above M {sub dyn} ∼ 11.5 M {sub ☉}, virtually all galaxies, regardless of environment, are slow rotators. To search for signs of recent merging, we analyze the photometry of each system and use the G – M {sub 20} selection criteria to identify mergers. We find that 40% ± 20% of our BCGs are currently undergoing or have recently undergone a merger (within 0.2 Gyr). Surprisingly, we find no correlation between galaxies with high angular momentum and morphological signatures of merging.

  1. Dynamic programming models and applications

    CERN Document Server

    Denardo, Eric V

    2003-01-01

    Introduction to sequential decision processes covers use of dynamic programming in studying models of resource allocation, methods for approximating solutions of control problems in continuous time, production control, more. 1982 edition.

  2. Building dynamic spatial environmental models

    NARCIS (Netherlands)

    Karssenberg, D.J.

    2003-01-01

    An environmental model is a representation or imitation of complex natural phenomena that can be discerned by human cognitive processes. This thesis deals with the type of environmental models referred to as dynamic spatial environmental models. The word ‘spatial’ refers to the geographic domain whi

  3. Dynamical models of the Galaxy

    Directory of Open Access Journals (Sweden)

    McMillan P.J.

    2012-02-01

    Full Text Available I discuss the importance of dynamical models for exploiting survey data, focusing on the advantages of “torus” models. I summarize a number of applications of these models to the study of the Milky Way, including the determination of the peculiar Solar velocity and investigation of the Hyades moving group.

  4. The dynamical state of the galaxy cluster: Theoretical insights from cosmological simulations

    CERN Document Server

    Cui, Weiguang; Borgani, Stefano; Knebe, Alexander; Lewis, Geraint F; Murante, Giuseppe; Poole, Greg B

    2016-01-01

    Following the work of Cui et al. (2016b, hereafter Paper I), we investigate the dynamical state of the galaxy clusters from the theoretical point of view. After extending to vrial radius $R_{vir}$, we reselect out 123 clusters with $\\log(M_{DM, vir}) \\le 14.5$ from the galaxy cluster samples in Paper I, here DM indicate the dark-matter-only run. These clusters from the two hydro-dynamical runs are matched to the dark-matter-only run using the unique dark matter particle ID. We investigate 4 independent parameters, which are normally used to classify the cluster dynamical state. We find that the virial ratio $\\eta$ from both hydro-dynamical runs is $\\sim$ 10 per cent lower than from the dark-matter-only run; there is no clear bimodal distribution between the relaxed and un-relaxed clusters for all investigated parameters. Further, using the velocity dispersion deviation parameter $\\zeta$ , which is defined as the ratio between cluster velocity dispersion $\\sigma$ and the theoretical prediction $\\sigma_t = \\sqr...

  5. Possible Self-Organised Criticality and Dynamical Clustering of Traffic flow in Open Systems

    CERN Document Server

    Larraga, M E; Mehta, A; Mehta, Anita

    1999-01-01

    We focus in this work on the study of traffic in open systems using a modified version of an existing cellular automaton model. We demonstrate that the open system is rather different from the closed system in its 'choice' of a unique steady-state density and velocity distribution, independently of the initial conditions, reminiscent of self-organised criticality. Quantities of interest such as average densities and velocities of cars, exhibit phase transitions between free flow and the jammed state, as a function of the braking probability R in a way that is very different from closed systems. Velocity correlation functions show that the concept of a dynamical cluster, introduced earlier in the context of granular flow is also relevant for traffic flow models.

  6. Modeling the Tenuous Intracluster Medium in Globular Clusters

    CERN Document Server

    Naiman, J; Ramirez-Ruiz, E

    2013-01-01

    We employ hydrodynamical simulations to investigate the underlying mechanism responsible for the low levels of gas and dust in globular clusters. Our models examine the competing effects of mass supply from the evolved stellar population and energy injection from the main sequence stellar members for globular clusters 47 Tucanae, M15, NGC 6440, and NGC 6752. Disregarding all other gas evacuation processes, we find that the energy output from the main sequence stellar population alone is capable of effectively clearing the evolved stellar ejecta and producing intracluster gas densities consistent with current observational constraints. This result distinguishes a viable ubiquitous gas and dust evacuation mechanism for globular clusters. In addition, we extend our analysis to probe the efficiency of pulsar wind feedback in globular clusters. The detection of intracluster ionized gas in cluster 47 Tucanae allows us to place particularly strict limits on pulsar wind thermalization efficiency, which must be extrem...

  7. CLUSTERS AS A MODEL OF ECONOMIC DEVELOPMENT OF SERBIA

    Directory of Open Access Journals (Sweden)

    Marko Laketa

    2013-12-01

    Full Text Available Insufficient competitiveness of small and medium enterprises in Serbia can be significantly improved by a system of business associations through clusters, business incubators and technology parks. This connection contributes to the growth and development of not only the cluster members, but has a regional and national dimension as well because without it there is no significant breakthrough on the international market. The process of association of small and medium enterprises in clusters and other forms of interconnection in Serbia is far from the required and potential level.The awareness on the importance of clusters in a local economic development through contributions to the advancement of small and medium sized enterprises is not yet sufficiently mature. Support to associating into clusters and usage of their benefits after the model of highly developed countries is the basis for leading a successful economic policy and in Serbia there are all necessary prerequisites for it.

  8. Emergence of Clustering in an Acquaintance Model without Homophily

    CERN Document Server

    Bhat, Uttam; Redner, S

    2014-01-01

    We introduce an agent-based acquaintance model in which social links are created by processes in which there is no explicit homophily. In spite of this constraint, highly-clustered social networks can arise. The crucial feature of our model is that of variable transitive interactions. That is, when an agent introduces two unconnected friends, the rate at which a connection actually occurs between them is controllable. As this transitive interaction rate is varied, the social network undergoes a dramatic clustering transition and the network consists of a collection of well-defined communities close to the transition. As a function of time, the network can undergo an incomplete gelation transition, in which the gel, or giant cluster, does not constitute the entire network, even at infinite time. Some of the clustering properties of our model also arise, albeit less dramatically, in Facebook networks.

  9. Hubble Frontier Fields: The Geometry and Dynamics of the Massive Galaxy Cluster Merger MACSJ0416.1-2403

    CERN Document Server

    Jauzac, Mathilde; Eckert, Dominique; Ebeling, Harald; Richard, Johan; Limousin, Marceau; Atek, Hakim; Kneib, Jean-Paul; Clément, Benjamin; Egami, Eiichi; Harvey, David; Knowles, Kenda; Massey, Richard; Natarajan, Priyamvada; Rexroth, Markus

    2014-01-01

    We use a joint optical/X-ray analysis to constrain the geometry and history of the ongoing merging event in the massive galaxy cluster MACSJ0416.1-2403 (z=0.397). Our investigation of cluster substructure rests primarily on a strong- and weak-lensing mass reconstruction based on the deep, high-resolution images obtained for the Hubble Frontier Fields initiative. To reveal the system's dynamics, we complement this lensing analysis with a study of the intra-cluster gas using shallow Chandra data, and a three-dimensional model of the distribution and motions of cluster galaxies derived from over 100 spectroscopic redshifts. The multi-scale grid model obtained from our combined weak- and strong-lensing analysis provides a high-precision mass reconstruction to cluster-centric distances of almost 1 Mpc. Our analysis detects the two well known mass concentrations near the centre of the field. A pronounced offset between collisional and collisionless matter is only observed for the SW cluster component, while excelle...

  10. Dynamics of the supermarket model

    CERN Document Server

    MacPhee, I M; Vachkovskaia, M

    2010-01-01

    We consider the long term behaviour of a Markov chain \\xi(t) on \\Z^N based on the N station supermarket model. Different routing policies for the supermarket model give different Markov chains. We show that for a general class of local routing policies, "join the least weighted queue" (JLW), the N one-dimensional components \\xi_i(t) can be partitioned into disjoint clusters C_k. Within each cluster C_k the "speed" of each component \\xi_j converges to a constant V_k and under certain conditions \\xi is recurrent in shape on each cluster. To establish these results we have assembled methods from two distinct areas of mathematics, semi-martingale techniques used for showing stability of Markov chains together with the theory of optimal flows in networks. As corollaries to our main result we obtain the stability classification of the supermarket model under any JLW policy and can explicitly compute the C_k and V_k for any instance of the model and specific JLW policy.

  11. Validated dynamic flow model

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2011-01-01

    The purpose with this deliverable 2.5 is to use fresh experimental data for validation and selection of a flow model to be used for control design in WP3-4. Initially the idea was to investigate the models developed in WP2. However, in the project it was agreed to include and focus on a additive...... model turns out not to be useful for prediction of the flow. Moreover, standard Box Jenkins model structures and multiple output auto regressive models proves to be superior as they can give useful predictions of the flow....

  12. A dynamic network model for interbank market

    Science.gov (United States)

    Xu, Tao; He, Jianmin; Li, Shouwei

    2016-12-01

    In this paper, a dynamic network model based on agent behavior is introduced to explain the formation mechanism of interbank market network. We investigate the impact of credit lending preference on interbank market network topology, the evolution of interbank market network and stability of interbank market. Experimental results demonstrate that interbank market network is a small-world network and cumulative degree follows the power-law distribution. We find that the interbank network structure keeps dynamic stability in the network evolution process. With the increase of bank credit lending preference, network clustering coefficient increases and average shortest path length decreases monotonously, which improves the stability of the network structure. External shocks are main threats for the interbank market and the reduction of bank external investment yield rate and deposits fluctuations contribute to improve the resilience of the banking system.

  13. Cluster as a Service for Disaster Recovery in Intercloud Systems: Design and Modeling

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Khoshkholghi

    2014-06-01

    Full Text Available Nowadays, all modern IT technologies aim to create dynamic and flexible environments. For this reason, InterCloud has been designed to provide a vast and flexible virtualized environment in which many clouds can interact with one another in a dynamic way. Disaster recovery is one of the main applications of InterCloud which can be supported by Cluster as a Service. However, the previous studies addressed disaster recovery and Cluster as a Service separately. In addition, system backup and disaster recovery methods are not sufficiently effective in InterCloud. In this paper, we propose an InterCloud system which integrates both Cluster as a Service and disaster recovery in a harmonious manner. Also, we present a heuristic approach to select the best locations for system backup and disaster recovery in InterCloud systems. Finally, the proposed system is modeled and analyzed using Continuous-time Markov chains.

  14. Predictive models of forest dynamics.

    Science.gov (United States)

    Purves, Drew; Pacala, Stephen

    2008-06-13

    Dynamic global vegetation models (DGVMs) have shown that forest dynamics could dramatically alter the response of the global climate system to increased atmospheric carbon dioxide over the next century. But there is little agreement between different DGVMs, making forest dynamics one of the greatest sources of uncertainty in predicting future climate. DGVM predictions could be strengthened by integrating the ecological realities of biodiversity and height-structured competition for light, facilitated by recent advances in the mathematics of forest modeling, ecological understanding of diverse forest communities, and the availability of forest inventory data.

  15. Cluster analysis in kinetic modelling of the brain: A noninvasive alternative to arterial sampling

    DEFF Research Database (Denmark)

    Liptrot, Matthew George; Adams, K.H.; Martiny, L.

    2004-01-01

    by the 'within-variance' measure and by 3D visual inspection of the homogeneity of the determined clusters. The cluster-determined input curve was then used in Logan plot analysis and compared with the arterial and venous blood samples, and additionally with one of the currently used alternatives to arterial...... acts as a proof-of-principle that the use of cluster analysis on a PET data set could obviate the requirement for arterial cannulation when determining the input function for kinetic modelling of ligand binding, and that this may be a superior approach as compared to the other noninvasive alternatives......) extracted directly from dynamic positron emission tomography (PET) scans by cluster analysis. Five healthy subjects were injected with the 5HT2A- receptor ligand [18F]-altanserin and blood samples were subsequently taken from the radial artery and cubital vein. Eight regions-of-interest (ROI) TACs were...

  16. Alpha-clustered hypernuclei and chiral SU(3) dynamics

    CERN Document Server

    Hiyama, Emiko; Kaiser, Norbert; Weise, Wolfram

    2013-01-01

    Light hypernuclei with an $\\alpha$ cluster substructure of the core nucleus are studied using an accurate cluster approach (the Hyper-THSR wave function) in combination with a density-dependent $\\Lambda$ hyperon-nuclear interaction derived from chiral SU(3) effective field theory. This interaction includes important two-pion exchange processes involving $\\Sigma N$ intermediate states and associated three-body mechanisms as well as effective mass and surface terms arising in a derivative expansion of the in-medium $\\Lambda$ self-energy. Applications and calculated results are presented and discussed for $_\\Lambda^9$Be and $^{13}_\\Lambda$C. Furthermore, the result of the lightest $\\alpha$ clustered hypernucleus, $^5_{\\Lambda}$He using realistic $ab initio$ four nucleon density is shown.

  17. Cluster Galaxy Dynamics and the Effects of Large Scale Environment

    CERN Document Server

    White, Martin; Smit, Renske

    2010-01-01

    We use a high-resolution N-body simulation to study how the influence of large-scale structure in and around clusters causes correlated signals in different physical probes and discuss some implications this has for multi-physics probes of clusters. We pay particular attention to velocity dispersions, matching galaxies to subhalos which are explicitly tracked in the simulation. We find that not only do halos persist as subhalos when they fall into a larger host, groups of subhalos retain their identity for long periods within larger host halos. The highly anisotropic nature of infall into massive clusters, and their triaxiality, translates into an anisotropic velocity ellipsoid: line-of-sight galaxy velocity dispersions for any individual halo show large variance depending on viewing angle. The orientation of the velocity ellipsoid is correlated with the large-scale structure, and thus velocity outliers correlate with outliers caused by projection in other probes. We quantify this orientation uncertainty and ...

  18. Cluster-cluster clustering

    Science.gov (United States)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C. S.

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales.

  19. Cluster-cluster clustering

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.

    1985-08-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references.

  20. COLD-SAT dynamic model

    Science.gov (United States)

    Adams, Neil S.; Bollenbacher, Gary

    1992-01-01

    This report discusses the development and underlying mathematics of a rigid-body computer model of a proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer spacecraft (COLD-SAT). This model, referred to in this report as the COLD-SAT dynamic model, consists of both a trajectory model and an attitudinal model. All disturbance forces and torques expected to be significant for the actual COLD-SAT spacecraft are modeled to the required degree of accuracy. Control and experimental thrusters are modeled, as well as fluid slosh. The model also computes microgravity disturbance accelerations at any specified point in the spacecraft. The model was developed by using the Boeing EASY5 dynamic analysis package and will run on Apollo, Cray, and other computing platforms.

  1. DYNAMIC REQUEST DISPATCHING ALGORITHM FOR WEB SERVER CLUSTER

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The overall increase in traffic on the WWWcauses a disproportionate increase in client requeststo popular web sites.Site administrators constantlyface the requirement to i mprove server's capacity.Web server cluster is a popular solution.It usesgroup of independent servers that are managed as asingle systemfor higher availability,easier manage-ability and greater scalability.Many web sites haveadopted this solution.Request dispatching[1-2]is one of the core tech-nologies used by parallel web server clusters...

  2. MC-Tree: Dynamic Index Structure for Partially Clustered Multi-Dimensional Database

    Institute of Scientific and Technical Information of China (English)

    靳晓明; 王丽坤; 陆玉昌; 石纯一

    2003-01-01

    Index structure that enables efficient similarity queries in high-dimensional space is crucial formany applications. This paper discusses the indexing problem in dataset composed of partially clustered data,which exists in many applications. Current index methods are inefficient with partially clustered datasets. Thedynamic and adaptive index structure presented here, called a multi-cluster tree (MC-tree), consists of a setof height-balanced trees for indexing. This index structure improves the querying efficiency in three ways: 1)Most bounding regions achieve uniform distributions, which results in fewer splits and less overlap comparedwith a single indexing tree. 2) The clusters in the dataset are dynamically detected when the index is updated.3) The query process does not involve a sequential scan. The MC-tree was shown to be better thanhierarchical and cluster-based indexes for the partially clustered datasets.

  3. Modelling Market Dynamics with a "Market Game"

    Science.gov (United States)

    Katahira, Kei; Chen, Yu

    In the financial market, traders, especially speculators, typically behave as to yield capital gains by the difference between selling and buying prices. Making use of the structure of Minority Game, we build a novel market toy model which takes account of such the speculative mind involving a round-trip trade to analyze the market dynamics as a system. Even though the micro-level behavioral rules of players in this new model is quite simple, its macroscopic aggregational output has the reproducibility of the well-known stylized facts such as volatility clustering and heavy tails. The proposed model may become a new alternative bottom-up approach in order to study the emerging mechanism of those stylized qualitative properties of asset returns.

  4. The cluster beam route to model catalysts and beyond.

    Science.gov (United States)

    Ellis, Peter R; Brown, Christopher M; Bishop, Peter T; Yin, Jinlong; Cooke, Kevin; Terry, William D; Liu, Jian; Yin, Feng; Palmer, Richard E

    2016-07-01

    The generation of beams of atomic clusters in the gas phase and their subsequent deposition (in vacuum) onto suitable catalyst supports, possibly after an intermediate mass filtering step, represents a new and attractive approach for the preparation of model catalyst particles. Compared with the colloidal route to the production of pre-formed catalytic nanoparticles, the nanocluster beam approach offers several advantages: the clusters produced in the beam have no ligands, their size can be selected to arbitrarily high precision by the mass filter, and metal particles containing challenging combinations of metals can be readily produced. However, until now the cluster approach has been held back by the extremely low rates of metal particle production, of the order of 1 microgram per hour. This is more than sufficient for surface science studies but several orders of magnitude below what is desirable even for research-level reaction studies under realistic conditions. In this paper we describe solutions to this scaling problem, specifically, the development of two new generations of cluster beam sources, which suggest that cluster beam yields of grams per hour may ultimately be feasible. Moreover, we illustrate the effectiveness of model catalysts prepared by cluster beam deposition onto agitated powders in the selective hydrogenation of 1-pentyne (a gas phase reaction) and 3-hexyn-1-ol (a liquid phase reaction). Our results for elemental Pd and binary PdSn and PdTi cluster catalysts demonstrate favourable combinations of yield and selectivity compared with reference materials synthesised by conventional methods.

  5. Dynamic Response and Ground-Motion Effects of Building Clusters During Large Earthquakes

    Science.gov (United States)

    Isbiliroglu, Y. D.; Taborda, R.; Bielak, J.

    2012-12-01

    The objective of this study is to analyze the response of building clusters during earthquakes, the effect that they have on the ground motion, and how individual buildings interact with the surrounding soil and with each other. We conduct a series of large-scale, physics-based simulations that synthesize the earthquake source and the response of entire building inventories. The configuration of the clusters, defined by the total number of buildings, their number of stories, dynamic properties, and spatial distribution and separation, is varied for each simulation. In order to perform these simulations efficiently while recurrently modifying these characteristics without redoing the entire "source to building structure" simulation every time, we use the Domain Reduction Method (DRM). The DRM is a modular two-step finite-element methodology for modeling wave propagation problems in regions with localized features. It allows one to store and reuse the background motion excitation of subdomains without loss of information. Buildings are included in the second step of the DRM. Each building is represented by a block model composed of additional finite-elements in full contact with the ground. These models are adjusted to emulate the general geometric and dynamic properties of real buildings. We conduct our study in the greater Los Angeles basin, using the main shock of the 1994 Northridge earthquake for frequencies up to 5Hz. In the first step of the DRM we use a domain of 82 km x 82 km x 41 km. Then, for the second step, we use a smaller sub-domain of 5.12 km x 5.12 km x 1.28 km, with the buildings. The results suggest that site-city interaction effects are more prominent for building clusters in soft-soil areas. These effects consist in changes in the amplitude of the ground motion and dynamic response of the buildings. The simulations are done using Hercules, the parallel octree-based finite-element earthquake simulator developed by the Quake Group at Carnegie

  6. Differential dynamic microscopy of weakly scattering and polydisperse protein-rich clusters.

    Science.gov (United States)

    Safari, Mohammad S; Vorontsova, Maria A; Poling-Skutvik, Ryan; Vekilov, Peter G; Conrad, Jacinta C

    2015-10-01

    Nanoparticle dynamics impact a wide range of biological transport processes and applications in nanomedicine and natural resource engineering. Differential dynamic microscopy (DDM) was recently developed to quantify the dynamics of submicron particles in solutions from fluctuations of intensity in optical micrographs. Differential dynamic microscopy is well established for monodisperse particle populations, but has not been applied to solutions containing weakly scattering polydisperse biological nanoparticles. Here we use bright-field DDM (BDDM) to measure the dynamics of protein-rich liquid clusters, whose size ranges from tens to hundreds of nanometers and whose total volume fraction is less than 10(-5). With solutions of two proteins, hemoglobin A and lysozyme, we evaluate the cluster diffusion coefficients from the dependence of the diffusive relaxation time on the scattering wave vector. We establish that for weakly scattering populations, an optimal thickness of the sample chamber exists at which the BDDM signal is maximized at the smallest sample volume. The average cluster diffusion coefficient measured using BDDM is consistently lower than that obtained from dynamic light scattering at a scattering angle of 90°. This apparent discrepancy is due to Mie scattering from the polydisperse cluster population, in which larger clusters preferentially scatter more light in the forward direction.

  7. Cluster Development of Zhengzhou Urban Agriculture Based on Diamond Model

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Based on basic theory of Diamond Model,this paper analyzes the competitive power of Zhengzhou urban agriculture from production factors,demand conditions,related and supporting industries,business strategies and structure,and horizontal competition.In line with these situations,it introduces that the cluster development is an effective approach to lifting competitive power of Zhengzhou urban agriculture.Finally,it presents following countermeasures and suggestions:optimize spatial distribution for cluster development of urban agriculture;cultivate leading enterprises and optimize organizational form of urban agriculture;energetically develop low-carbon agriculture to create favorable ecological environment for cluster development of urban agriculture.

  8. Logistics Enterprise Evaluation Model Based On Fuzzy Clustering Analysis

    Science.gov (United States)

    Fu, Pei-hua; Yin, Hong-bo

    In this thesis, we introduced an evaluation model based on fuzzy cluster algorithm of logistics enterprises. First of all,we present the evaluation index system which contains basic information, management level, technical strength, transport capacity,informatization level, market competition and customer service. We decided the index weight according to the grades, and evaluated integrate ability of the logistics enterprises using fuzzy cluster analysis method. In this thesis, we introduced the system evaluation module and cluster analysis module in detail and described how we achieved these two modules. At last, we gave the result of the system.

  9. Assessing clustering strategies for Gaussian mixture filtering a subsurface contaminant model

    KAUST Repository

    Liu, Bo

    2016-02-03

    An ensemble-based Gaussian mixture (GM) filtering framework is studied in this paper in term of its dependence on the choice of the clustering method to construct the GM. In this approach, a number of particles sampled from the posterior distribution are first integrated forward with the dynamical model for forecasting. A GM representation of the forecast distribution is then constructed from the forecast particles. Once an observation becomes available, the forecast GM is updated according to Bayes’ rule. This leads to (i) a Kalman filter-like update of the particles, and (ii) a Particle filter-like update of their weights, generalizing the ensemble Kalman filter update to non-Gaussian distributions. We focus on investigating the impact of the clustering strategy on the behavior of the filter. Three different clustering methods for constructing the prior GM are considered: (i) a standard kernel density estimation, (ii) clustering with a specified mixture component size, and (iii) adaptive clustering (with a variable GM size). Numerical experiments are performed using a two-dimensional reactive contaminant transport model in which the contaminant concentration and the heterogenous hydraulic conductivity fields are estimated within a confined aquifer using solute concentration data. The experimental results suggest that the performance of the GM filter is sensitive to the choice of the GM model. In particular, increasing the size of the GM does not necessarily result in improved performances. In this respect, the best results are obtained with the proposed adaptive clustering scheme.

  10. Galaxy Luminosity Function of Dynamically Young Abell 119 Cluster: Probing the Cluster Assembly

    CERN Document Server

    Lee, Youngdae; Hilker, Michael; Sheen, Yun-Kyeong; Yi, Sukyoung K

    2016-01-01

    We present the galaxy luminosity function (LF) of the Abell 119 cluster down to $M_r\\sim-14$ mag based on deep images in the $u$-, $g$-, and $r$-bands taken by using MOSAIC II CCD mounted on the Blanco 4m telescope at the CTIO. The cluster membership was accurately determined based on the radial velocity information as well as on the color-magnitude relation for bright galaxies and the scaling relation for faint galaxies. The overall LF exhibits a bimodal behavior with a distinct dip at $r\\sim18.5$ mag ($M_r\\sim-17.8$ mag), which is more appropriately described by a two-component function. The shape of the LF strongly depends on the cluster-centric distance and on the local galaxy density. The LF of galaxies in the outer, low-density region exhibits a steeper slope and more prominent dip compared with that of counterparts in the inner, high-density region. We found evidence for a substructure in the projected galaxy distribution in which several overdense regions in the Abell 119 cluster appear to be closely ...

  11. Variable cluster analysis method for building neural network model

    Institute of Scientific and Technical Information of China (English)

    王海东; 刘元东

    2004-01-01

    To address the problems that input variables should be reduced as much as possible and explain output variables fully in building neural network model of complicated system, a variable selection method based on cluster analysis was investigated. Similarity coefficient which describes the mutual relation of variables was defined. The methods of the highest contribution rate, part replacing whole and variable replacement are put forwarded and deduced by information theory. The software of the neural network based on cluster analysis, which can provide many kinds of methods for defining variable similarity coefficient, clustering system variable and evaluating variable cluster, was developed and applied to build neural network forecast model of cement clinker quality. The results show that all the network scale, training time and prediction accuracy are perfect. The practical application demonstrates that the method of selecting variables for neural network is feasible and effective.

  12. Gas phase metal cluster model systems for heterogeneous catalysis.

    Science.gov (United States)

    Lang, Sandra M; Bernhardt, Thorsten M

    2012-07-14

    Since the advent of intense cluster sources, physical and chemical properties of isolated metal clusters are an active field of research. In particular, gas phase metal clusters represent ideal model systems to gain molecular level insight into the energetics and kinetics of metal-mediated catalytic reactions. Here we summarize experimental reactivity studies as well as investigations of thermal catalytic reaction cycles on small gas phase metal clusters, mostly in relation to the surprising catalytic activity of nanoscale gold particles. A particular emphasis is put on the importance of conceptual insights gained through the study of gas phase model systems. Based on these concepts future perspectives are formulated in terms of variation and optimization of catalytic materials e.g. by utilization of bimetals and metal oxides. Furthermore, the future potential of bio-inspired catalytic material systems are highlighted and technical developments are discussed.

  13. Communities recognition in the Chesapeake Bay ecosystem by dynamical clustering algorithms based on different oscillators systems

    CERN Document Server

    Pluchino, Alessandro; Latora, Vito

    2008-01-01

    We have recently introduced an efficient method for the detection and identification of modules in complex networks, based on the de-synchronization properties (dynamical clustering) of phase oscillators. In this paper we apply the dynamical clustering tecnique to the identification of communities of marine organisms living in the Chesapeake Bay food web. We show that our algorithm is able to perform a very reliable classification of the real communities existing in this ecosystem by using different kinds of dynamical oscillators. We compare also our results with those of other methods for the detection of community structures in complex networks.

  14. The MOND External Field Effect on the Dynamics of the Globular Clusters: General Considerations and Application to NGC 2419

    Science.gov (United States)

    Derakhshani, Kamran

    2014-03-01

    In this paper, we investigate the external field effect in the context of the MOdified Newtonian Dynamics (MOND) on the surface brightness and velocity dispersion profiles of globular clusters (GCs). Using N-MODY, which is an N-body simulation code with a MOND potential solver, we show that the general effect of the external field for diffuse clusters, which obey MOND in most of their parts, is that it pushes the dynamics toward the Newtonian regime. On the other hand, for more compact clusters, which are essentially Newtonian in their inner parts, the external field is effective mainly in the outer parts of compact clusters. As a case study, we then choose the remote Galactic GC NGC 2419. By varying the cluster mass, half-light radius, and mass-to-light ratio, we aim to find a model that will reproduce the observational data most effectively, using N-MODY. We find that even if we take the Galactic external field into account, a Newtonian Plummer sphere represents the observational data better than MOND to an order of magnitude in terms of the total χ2 of surface brightness and velocity dispersion.

  15. The mond external field effect on the dynamics of the globular clusters: general considerations and application to NGC 2419

    Energy Technology Data Exchange (ETDEWEB)

    Derakhshani, Kamran, E-mail: kderakhshani@iasbs.ac.ir [Institute for Advanced Studies in Basic Sciences, P. O. Box 45195-1159 Zanjan (Iran, Islamic Republic of)

    2014-03-01

    In this paper, we investigate the external field effect in the context of the MOdified Newtonian Dynamics (MOND) on the surface brightness and velocity dispersion profiles of globular clusters (GCs). Using N-MODY, which is an N-body simulation code with a MOND potential solver, we show that the general effect of the external field for diffuse clusters, which obey MOND in most of their parts, is that it pushes the dynamics toward the Newtonian regime. On the other hand, for more compact clusters, which are essentially Newtonian in their inner parts, the external field is effective mainly in the outer parts of compact clusters. As a case study, we then choose the remote Galactic GC NGC 2419. By varying the cluster mass, half-light radius, and mass-to-light ratio, we aim to find a model that will reproduce the observational data most effectively, using N-MODY. We find that even if we take the Galactic external field into account, a Newtonian Plummer sphere represents the observational data better than MOND to an order of magnitude in terms of the total χ{sup 2} of surface brightness and velocity dispersion.

  16. The MOND External Field Effect on the Dynamics of the Globular Clusters: General Considerations and Application to NGC 2419

    CERN Document Server

    Derakhshani, Kamran

    2014-01-01

    In this paper, we investigate the external field effect in the context of the MOdified Newtonian Dynamics (MOND) on the surface brightness and velocity dispersion profiles of globular clusters (GCs). Using N-MODY, which is an N-body simulation code with a MOND potential solver, we show that the general effect of the external field for diffuse clusters, which obey MOND in most of their parts, is that it pushes the dynamics towards the Newtonian regime. On the other hand, for more compact clusters, which are essentially Newtonian in their inner parts, the external field is effective mainly in the outer parts of compact clusters. As a case study, we then choose the remote Galactic GC NGC 2419. By varying the cluster mass, half-light radius, and mass-to-light ratio we aim to find a model that will reproduce the observational data most effectively, using N-MODY. We find that even if we take the Galactic external field into account, a Newtonian Plummer sphere represents the observational data better than MOND to an...

  17. Dynamic Boolean models

    OpenAIRE

    Berg, van den, Aad; Meester, R.; White, Damien

    1997-01-01

    Consider an ordinary Boolean model, that is, a homogeneous Poisson point process in Rd, where the points are all centres of random balls with i.i.d. radii. Now let these points move around according to i.i.d. stochastic processes. It is not hard to show that at each xed time t we again have a Boolean model with the original distribution. Hence if the original model is supercritical then, for any t, the probability of having an unbounded occupied component at time t equals 1. We show that unde...

  18. Fragmentation dynamics of ionized neon clusters (Ne(n), n=3-14) embedded in helium nanodroplets.

    Science.gov (United States)

    Bonhommeau, David; Halberstadt, Nadine; Viel, Alexandra

    2006-01-14

    We report a theoretical study of the nonadiabatic fragmentation dynamics of ionized neon clusters embedded in helium nanodroplets for cluster sizes up to n=14 atoms. The dynamics of the neon atoms is modeled using the molecular dynamics with quantum transitions method of Tully [J. Chem. Phys. 93, 1061 (1990)] with the nuclei treated classically and transitions between electronic states quantum mechanically. The potential-energy surfaces are derived from a diatomics-in-molecules model to which induced dipole-induced dipole interactions are added. The effect of the spin-orbit interaction is also discussed. The helium environment is modeled by a friction force acting on charged atoms whose speed exceeds the critical Landau velocity. The dependence of the fragment size distribution on the friction strength and on the initial nanodroplet size is investigated. By comparing with the available experimental data obtained for Ne3+ and Ne4+, a reasonable value for the friction coefficient, the only parameter of the model, is deduced. This value is then used to predict the effect of the helium environment on the dissociation dynamics of larger neon clusters, n=5-14. The results show stabilization of larger fragments than in the gas phase, but fragmentation is not completely caged. In addition, two types of dynamics are characterized for Ne4+: fast and explosive, therefore leaving no time for friction to cool down the process when dynamics starts on one of the highest electronic states, and slower, therefore leading to some stabilization by helium when it starts on one of the lowest electronic states.

  19. Theoretical dynamical studies of metal clusters and cluster-ligand systems

    Energy Technology Data Exchange (ETDEWEB)

    Jellinek, J.

    1995-06-01

    In what follows we use the term cluster to designate a cohesive group of like atoms (molecules), i.e., bare ({open_quotes}neet{close_quotes} {open_quotes}naked{close_quotes}) clusters. More generally, the term is also used for organo- and inorganometallic compounds, i.e., ligated clusters. Although the approaches and techniques used by the various disciplines to study metal-ligand interactions are quite different, many of the central subjects and issues are common for them. The common subjects include possible geometric structures and isomeric forms, structural (isomerization) transitions, stability, fluxionality, structure-reactivity correlation (or lack of it), role of coordination, etc. However, the precise interpretation of these issues and the details emphasized by the different disciplines are dictated by the nature of the objects studied and may not, therefore, be identical. For example, questions regarding structures, isomerization transitions, fluxionality or even melting of metal clusters refer to the state and properties of the metal network itself. The same questions, when asked in connection with organo- and inorganometallic compounds, often refer to the arrangements and rearrangements of the ligands attached to a metal framework of a fixed structure. Of course, when required, the state of and changes in the metal framework are considered as well. The fields of metal-containing molecular compounds, surface science, and physics and chemistry of clusters furnish complementary information on a broad variety of metal-ligand systems. A comprehensive understanding of the nature and properties of these systems, as defined by the type and number of metal atoms and ligands involved, can be achieved only through a mutual awareness of and continuing progress in all of these research areas.

  20. Modeling the Color Magnitude Relation for Galaxy Clusters

    CERN Document Server

    Jimenez, Noelia; Castelli, Analia Smith; Bassino, Lilia P

    2011-01-01

    We investigate the origin of the colour-magnitude relation (CMR) observed in cluster galaxies by using a combination of a cosmological N-body simulation of a cluster of galaxies and a semi-analytic model of galaxy formation. The departure of galaxies in the bright end of the CMR with respect to the trend denoted by less luminous galaxies could be explained by the influence of minor mergers

  1. The Atacama Cosmology Telescope: Dynamical masses for 44 SZ-selected galaxy clusters over 755 square degrees

    CERN Document Server

    Sifón, Cristóbal; Menanteau, Felipe; Hasselfield, Matthew; Barrientos, L Felipe; Bond, J Richard; Crichton, Devin; Devlin, Mark J; Dünner, Rolando; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, John P; Infante, Leopoldo; Kosowsky, Arthur; Marsden, Danica; Marriage, Tobias A; Moodley, Kavilan; Niemack, Michael D; Page, Lyman A; Spergel, David N; Staggs, Suzanne T; Trac, Hy; Wollack, Edward J

    2015-01-01

    We present galaxy velocity dispersions and dynamical mass estimates for 44 galaxy clusters selected via the Sunyaev-Zel'dovich (SZ) effect by the Atacama Cosmology Telescope. Dynamical masses for 18 clusters are reported here for the first time. Using N-body simulations, we model the different observing strategies used to measure the velocity dispersions and account for systematic effects resulting from these strategies. We find that the galaxy velocity distributions may be treated as isotropic, and that an aperture correction of up to 7 per cent in the velocity dispersion is required if the spectroscopic galaxy sample is sufficiently concentrated towards the cluster centre. Accounting for the radial profile of the velocity dispersion in simulations enables consistent dynamical mass estimates regardless of the observing strategy. Cluster masses $M_{200}$ are in the range $(1-15)\\times10^{14}M_\\odot$. Comparing with masses estimated from the SZ distortion assuming a gas pressure profile derived from X-ray obse...

  2. EVIDENCE FOR TWO DISTINCT STELLAR INITIAL MASS FUNCTIONS: REVISITING THE EFFECTS OF CLUSTER DYNAMICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Zaritsky, Dennis [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Colucci, Janet E.; Bernstein, Rebecca A. [Department of Astronomy and Astrophysics, 1156 High Street, UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Pessev, Peter M. [Gemini South Observatory, c/o AURA Inc., Casilla 603, La Serena (Chile); Chandar, Rupali, E-mail: dzaritsky@as.arizona.edu [Department of Physics and Astronomy, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States)

    2013-06-20

    We measure the velocity dispersions of six galactic globular clusters using spatially integrated spectra, to test for the effects of internal dynamical evolution in the stellar mass-to-light ratios, Y{sub *}, of star clusters. In particular, we revisit whether the low values of Y{sub *} that we found in our previous study, from which we concluded that there are at least two population of stellar clusters with distinct stellar initial mass functions, are artificially depressed by relaxation driven mass loss. The combination of our previous sample of five old clusters and these six now provide an order of magnitude range in cluster mass with which to explore this issue. We find no relationship between cluster mass, or relaxation time, and Y{sub *}. Because relaxation is mass dependent, we conclude that the values of Y{sub *} for these clusters are not strongly affected by dynamical effects, and so confirm the presence of the population of clusters with low Y{sub *}.

  3. Modelling group dynamic animal movement

    DEFF Research Database (Denmark)

    Langrock, Roland; Hopcraft, J. Grant C.; Blackwell, Paul G.

    2014-01-01

    Group dynamic movement is a fundamental aspect of many species' movements. The need to adequately model individuals' interactions with other group members has been recognised, particularly in order to differentiate the role of social forces in individual movement from environmental factors. However......, to date, practical statistical methods which can include group dynamics in animal movement models have been lacking. We consider a flexible modelling framework that distinguishes a group-level model, describing the movement of the group's centre, and an individual-level model, such that each individual...... makes its movement decisions relative to the group centroid. The basic idea is framed within the flexible class of hidden Markov models, extending previous work on modelling animal movement by means of multi-state random walks. While in simulation experiments parameter estimators exhibit some bias...

  4. Modeling Cultural Dynamics

    CERN Document Server

    Gabora, Liane

    2008-01-01

    EVOC (for EVOlution of Culture) is a computer model of culture that enables us to investigate how various factors such as barriers to cultural diffusion, the presence and choice of leaders, or changes in the ratio of innovation to imitation affect the diversity and effectiveness of ideas. It consists of neural network based agents that invent ideas for actions, and imitate neighbors' actions. The model is based on a theory of culture according to which what evolves through culture is not memes or artifacts, but the internal models of the world that give rise to them, and they evolve not through a Darwinian process of competitive exclusion but a Lamarckian process involving exchange of innovation protocols. EVOC shows an increase in mean fitness of actions over time, and an increase and then decrease in the diversity of actions. Diversity of actions is positively correlated with population size and density, and with barriers between populations. Slowly eroding borders increase fitness without sacrificing diver...

  5. Molecular dynamics computer simulation studies of aqueous solutions in clusters, in bulk, and at interfaces

    Science.gov (United States)

    Yeh, In-Chul

    1999-10-01

    This dissertation investigates the structural and dynamical properties of aqueous solutions in clusters, in bulk, and at interfaces using molecular dynamics computer simulations. First, the photodetachment spectra of Cl- (H 2O)n (n = 2,3,...15) clusters have been calculated. The dependence of the spectra on the variations in the temperature of the clusters, the potential parameter for the postejected ion, and the type of the potential (pair-wise non-polarizable vs. many-body polarizable) has been investigated. Next, I have compared structural and dynamical properties of bulk water calculated by the simple point charge (SPC) and extended simple point charge (SPC/E) models. Tetrahedral network in SPC water is found to be weaker than those in SPC/E water due to smaller point charges, resulting in a larger self-diffusion coefficient. As a model interfacial system, I discuss the structure of water next to metal surfaces: Pt(100) and Pt(111). The two dimensional Ewald summation technique has been used for the calculation of long range Coulombic forces. Water next to an uncharged metallic surface is perturbed to a distance of 1 nm. Next to the charged surface water is reorienting and when the external field is strong, undergoes a layering transition. The dielectric constant of water as a function of electric fields has been also calculated. Simulations of water between walls and bulk water have been done to confirm the macroscopic nature of the dielectric constant. Calculated dielectric constants have been compared with those obtained by a theoretical prediction and a recent simulation study. Distance dependent density profiles of water near charged Ag(111) surfaces have been calculated and compared with experimental profiles. The effect of ionic screening is accounted for by an exponetially decaying electric field. Finally, I propose a modification in the three dimensional Ewald summation technique for calculations of long-range Coulombic forces for systems with a slab

  6. Adaptive partitioning by local density-peaks: An efficient density-based clustering algorithm for analyzing molecular dynamics trajectories.

    Science.gov (United States)

    Liu, Song; Zhu, Lizhe; Sheong, Fu Kit; Wang, Wei; Huang, Xuhui

    2017-01-30

    We present an efficient density-based adaptive-resolution clustering method APLoD for analyzing large-scale molecular dynamics (MD) trajectories. APLoD performs the k-nearest-neighbors search to estimate the density of MD conformations in a local fashion, which can group MD conformations in the same high-density region into a cluster. APLoD greatly improves the popular density peaks algorithm by reducing the running time and the memory usage by 2-3 orders of magnitude for systems ranging from alanine dipeptide to a 370-residue Maltose-binding protein. In addition, we demonstrate that APLoD can produce clusters with various sizes that are adaptive to the underlying density (i.e., larger clusters at low-density regions, while smaller clusters at high-density regions), which is a clear advantage over other popular clustering algorithms including k-centers and k-medoids. We anticipate that APLoD can be widely applied to split ultra-large MD datasets containing millions of conformations for subsequent construction of Markov State Models. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Swimmers’ Collective Dynamics Modelization

    OpenAIRE

    Ferré Porta, Guillem

    2011-01-01

    English: We describe a new model in order to study the properties of collections of self-propelled particles swimming in a two-dimensional fluid. Our model consist in two types of particles, the first interacting with each other with a soft potential and thus representing the fluid while the second type are self-propelled particles of biological nature capable of changing its orientation following the velocity field of the fluid. The results of the simulations show how a super-diffusive regim...

  8. Model of THz Magnetization Dynamics

    Science.gov (United States)

    Bocklage, Lars

    2016-01-01

    Magnetization dynamics can be coherently controlled by THz laser excitation, which can be applied in ultrafast magnetization control and switching. Here, transient magnetization dynamics are calculated for excitation with THz magnetic field pulses. We use the ansatz of Smit and Beljers, to formulate dynamic properties of the magnetization via partial derivatives of the samples free energy density, and extend it to solve the Landau-Lifshitz-equation to obtain the THz transients of the magnetization. The model is used to determine the magnetization response to ultrafast multi- and single-cycle THz pulses. Control of the magnetization trajectory by utilizing the THz pulse shape and polarization is demonstrated. PMID:26956997

  9. Parameterization of geophysical inversion model using particle clustering

    CERN Document Server

    Yang, Dikun

    2015-01-01

    This paper presents a new method of constructing physical models in a geophysical inverse problem, when there are only a few possible physical property values in the model and they are reasonably known but the geometry of the target is sought. The model consists of a fixed background and many small "particles" as building blocks that float around in the background to resemble the target by clustering. This approach contrasts the conventional geometric inversions requiring the target to be regularly shaped bodies, since here the geometry of the target can be arbitrary and does not need to be known beforehand. Because of the lack of resolution in the data, the particles may not necessarily cluster when recovering compact targets. A model norm, called distribution norm, is introduced to quantify the spread of particles and incorporated into the objective function to encourage further clustering of the particles. As proof of concept, 1D magnetotelluric inversion is used as example. My experiments reveal that the ...

  10. Ab initio quantum dynamics using coupled-cluster.

    Science.gov (United States)

    Kvaal, Simen

    2012-05-21

    The curse of dimensionality (COD) limits the current state-of-the-art ab initio propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schrödinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster, and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given.

  11. Ab initio quantum dynamics using coupled-cluster

    CERN Document Server

    Kvaal, Simen

    2012-01-01

    The curse of dimensionality (COD) limits the current state-of-the-art {\\it ab initio} propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schr\\"odinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster (OATDCC), and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given.

  12. Modeling Internet Topology Dynamics

    NARCIS (Netherlands)

    Haddadi, H.; Uhlig, S.; Moore, A.; Mortier, R.; Rio, M.

    Despite the large number of papers on network topology modeling and inference, there still exists ambiguity about the real nature of the Internet AS and router level topology. While recent findings have illustrated the inaccuracies in maps inferred from BGP peering and traceroute measurements, exist

  13. The DANCE Project: Dynamical Analysis of Nearby Clusters

    Science.gov (United States)

    Bouy, H.; Bertin, E.; Cuillandre, J. C.; Moraux, E.; Bouvier, J.; Arevalo Sánchez, M.; Barrado Y Navascués, D.

    We present the results of the DANCE project, a ground-based survey meant to prepare and complement Gaia i) down to the planetary mass regime; ii) in regions of high extinction. The DANCE project takes advantage of archival wide-field surveys to derive precise astrometry, and in particular proper motions, for millions of stars in young nearby associations. We present the first preliminary results obtained for the Pleiades cluster, as well as our immediate objectives for other associations.

  14. Structure and Dynamics in Metal-Containing Clusters

    Science.gov (United States)

    2010-03-11

    produced composed of a metal ion bound to one or more molecular "ligands" (e.g., water, nitrogen, acetylene , methanol, etc.). These gas phase...NUMBER OF PAGES metal clusters, metal ions, metal-ligand interactions, solvation 12 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION...which confirms the it-complex structure. Vibrational frequencies in the excited state are measured for the metal- acetylene stretch, the C-C stretch, the

  15. Molecular Dynamics Simulation of the Clustering of Minor Lead Additives in Liquid Sodium

    Directory of Open Access Journals (Sweden)

    Alexander L. Shimkevich

    2011-01-01

    Full Text Available A strong influence of minor lead additives on the liquid sodium microstructure is revealed in the molecular dynamics (MD simulation of the Na0.98Pb0.02 alloy. The obtained results can be explained by the existence of lead-sodium clusters in liquid sodium built up by ionic bonds, Na+–Pb−, due to essential distinction of the alloy components in the electronegativity. On this reason, MD simulation of the Na0.98Pb0.02 alloy is carried out within the framework of a three-component bipolar model, Na + Na+ + Pb−, with Na↔Na+ recharging the nearest-neighbor particles of solvent in every 3 ps (an optimal period during the numerical run.

  16. Cluster Dynamics: Laying the Foundation for Tailoring the Design of Cluster ASSE

    Science.gov (United States)

    2016-02-25

    UNIVERSITY 201 OLD MAIN UNIVERSITY PARK , PA 16802-1505 02/25/2016 Final Report DISTRIBUTION A: Distribution approved for public release. Air Force...5f.  WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) PENNSYLVANIA STATE UNIVERSITY 201 OLD MAIN UNIVERSITY PARK , PA 16802-1505 US 8...interrelated themes : the first comprises the investigation of fundamental physical and chemical properties of cluster building blocks in isolation, while

  17. Cluster Dynamics: Laying the Foundations for Tailoring the Design of Cluster Assembled Nanoscale Materials

    Science.gov (United States)

    2009-11-30

    photoelectron images were obtained by a time-of-flight ( TOF ) mass spectrometer coupled to a photoelectron imaging apparatus. The anions were created...gas (He). The anions are extracted using the TOF grid setup and the arrival times of the Pt- and WC- are noted. The photodetachment laser (Nd3+:YAG...Met- Cars , M8C12, were discovered in our laboratory13 and implementing them into cluster-assembled materials requires detailed knowledge of their

  18. Molecular dynamics simulation of nanoscale surface diffusion of heterogeneous adatoms clusters

    Institute of Scientific and Technical Information of China (English)

    Muhammad Imran; Fayyaz Hussain; Muhammad Rashid; Muhammad Ismail; Hafeez Ullah; Yongqing Cai; M Arshad Javid; Ejaz Ahmad; S A Ahmad

    2016-01-01

    Molecular dynamics simulation employing the embedded atom method potential is utilized to investigate nanoscale surface diffusion mechanisms of binary heterogeneous adatoms clusters at 300 K, 500 K, and 700 K. Surface diffusion of heterogeneous adatoms clusters can be vital for the binary island growth on the surface and can be useful for the formation of alloy-based thin film surface through atomic exchange process. The results of the diffusion process show that at 300 K, the diffusion of small adatoms clusters shows hopping, sliding, and shear motion;whereas for large adatoms clusters (hexamer and above), the diffusion is negligible. At 500 K, small adatoms clusters, i.e., dimer, show almost all possible diffusion mechanisms including the atomic exchange process;however no such exchange is observed for adatoms clusters greater than dimer. At 700 K, the exchange mechanism dominates for all types of clusters, where Zr adatoms show maximum tendency and Ag adatoms show minimum or no tendency toward the exchange process. Separation and recombination of one or more adatoms are also observed at 500 K and 700 K. The Ag adatoms also occupy pop-up positions over the adatoms clusters for short intervals. At 700 K, the vacancies are also generated in the vicinity of the adatoms cluster, vacancy formation, filling, and shifting can be observed from the results.

  19. Molecular dynamics simulation of nanoscale surface diffusion of heterogeneous adatoms clusters

    Science.gov (United States)

    Muhammad, Imran; Fayyaz, Hussain; Muhammad, Rashid; Muhammad, Ismail; Hafeez, Ullah; Yongqing, Cai; M Arshad, Javid; Ejaz, Ahmad; S, A. Ahmad

    2016-07-01

    Molecular dynamics simulation employing the embedded atom method potential is utilized to investigate nanoscale surface diffusion mechanisms of binary heterogeneous adatoms clusters at 300 K, 500 K, and 700 K. Surface diffusion of heterogeneous adatoms clusters can be vital for the binary island growth on the surface and can be useful for the formation of alloy-based thin film surface through atomic exchange process. The results of the diffusion process show that at 300 K, the diffusion of small adatoms clusters shows hopping, sliding, and shear motion; whereas for large adatoms clusters (hexamer and above), the diffusion is negligible. At 500 K, small adatoms clusters, i.e., dimer, show almost all possible diffusion mechanisms including the atomic exchange process; however no such exchange is observed for adatoms clusters greater than dimer. At 700 K, the exchange mechanism dominates for all types of clusters, where Zr adatoms show maximum tendency and Ag adatoms show minimum or no tendency toward the exchange process. Separation and recombination of one or more adatoms are also observed at 500 K and 700 K. The Ag adatoms also occupy pop-up positions over the adatoms clusters for short intervals. At 700 K, the vacancies are also generated in the vicinity of the adatoms cluster, vacancy formation, filling, and shifting can be observed from the results.

  20. Correlating structure and fluorescence dynamics of quantum dot clusters using super-resolution imaging

    Science.gov (United States)

    Ryan, Duncan P.; Goodwin, Peter M.; Sheehan, Chris J.; Whitcomb, Kevin J.; Gelfand, Martin P.; Van Orden, Alan

    2016-02-01

    Clusters of quantum dots exhibit fluorescent behavior that differs from that of individual particles. Bulk measurements involving a large number of particles obscure these dynamics. Synthesizing clusters with 5-10 particles enables the study of collective behavior where single-molecule fluorescence techniques can be applied. Super-resolution microscopy of these clusters correlated with SEM imaging reveals the influence of geometry and structure on emission dynamics. Signatures of energy transfer can be seen in the form of enhanced blinking. Motion of the emission center of the cluster is tracked, made possible by the independent blinking events of the individual particles. Discrete steps in the localization are observed as random switching between various on/off configurations moves the location of the emission center.