WorldWideScience

Sample records for dynamic capture experiments

  1. Small Particles Intact Capture Experiment (SPICE)

    Science.gov (United States)

    Nishioka, Ken-Ji; Carle, G. C.; Bunch, T. E.; Mendez, David J.; Ryder, J. T.

    1994-01-01

    The Small Particles Intact Capture Experiment (SPICE) will develop technologies and engineering techniques necessary to capture nearly intact, uncontaminated cosmic and interplanetary dust particles (IDP's). Successful capture of such particles will benefit the exobiology and planetary science communities by providing particulate samples that may have survived unaltered since the formation of the solar system. Characterization of these particles may contribute fundamental data to our knowledge of how these particles could have formed into our planet Earth and, perhaps, contributed to the beginnings of life. The term 'uncontaminated' means that captured cosmic and IDP particles are free of organic contamination from the capture process and the term 'nearly intact capture' means that their chemical and elemental components are not materially altered during capture. The key to capturing cosmic and IDP particles that are organic-contamination free and nearly intact is the capture medium. Initial screening of capture media included organic foams, multiple thin foil layers, and aerogel (a silica gel); but, with the exception of aerogel, the requirements of no contamination or nearly intact capture were not met. To ensure no contamination of particles in the capture process, high-purity aerogel was chosen. High-purity aerogel results in high clarity (visual clearness), a useful quality in detection and recovery of embedded captured particles from the aerogel. P. Tsou at the Jet Propulsion Laboratory (JPL) originally described the use of aerogel for this purpose and reported laboratory test results. He has flown aerogel as a 'GAS-can Lid' payload on STS-47 and is evaluating the results. The Timeband Capture Cell Experiment (TICCE), a Eureca 1 experiment, is also flying aerogel and is scheduled for recovery in late April.

  2. Dynamics of RF captured cooled proton beams

    International Nuclear Information System (INIS)

    Kells, W.; Mills, F.

    1983-01-01

    In the course of electron cooling experiments at the Electron Cooling Ring (ECR) at Fermilab, several peculiar features of the longitudinal phase space of cold protons (200 MeV) captured in RF buckets were observed. Here we present the experimental facts, present a simple theory, and summarize computer simulation results which support the theory and facts

  3. Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments

    Science.gov (United States)

    Yamagishi, Akihiko; Yano, Hajime; Yamashita, Masamichi; Hashimoto, Hirofumi; Kobayashi, Kensei; Kawai, Hideyuki; Mita, Hajime; Yokobori, Shin-ichi; Tabata, Makoto; Yabuta, Hikaru

    2012-07-01

    There is a long history of the microbe-collection experiments at high altitude (1). Microbes have been collected using balloons, aircraft and meteorological rockets. Spore forming fungi and Bacilli, and Micrococci have been isolated in these experiments (1). It is not clear how high do microbes go up. If the microbes might have been present even at higher altitudes, the fact would endorse the possibility of interplanetary migration of life. Tanpopo, dandelion, is the name of a grass whose seeds with floss are spread by the wind. We propose the analyses of interplanetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module (JEM) of the International Space Station (ISS) (2). Ultra low-density aerogel will be used to capture micrometeoroid and debris. Particles captured by aerogel will be used for several analyses after the initial inspection of the gel and tracks. Careful analysis of the tracks in the aerogel will provide the size and velocity dependence of debris flux. The particles will be analyzed for mineralogical, organic and microbiological characteristics. Aerogels are ready for production in Japan. Aerogels and trays are space proven. All the analytical techniques are ready. In this presentation, we will present the recent results related to the microbiological analyses. The results suggested that the bleaching speeds and the spectra of fluorescence are different between different origins of the fluorescence: whether it is emitted from microbe or not. It is also shown that PCR analysis of the microbe can be used to determine the species. References 1)Yang, Y., Yokobori, S. and Yamagishi, A.: Assessing panspermia hypothesis by microorganisms collected from the high altitude atmosphere. Biol. Sci. Space, 23 (2009), pp. 151-163. 2) Yamagishi, A., H. Yano, K. Kobayashi, K. Kobayashi, S. Yokobori, M. Tabata, H. Kawai, M. Yamashita, H. Hashimoto, H. Naraoka, & H. Mita (2008) TANPOPO: astrobiology exposure and micrometeoroid capture

  4. How can you capture cultural dynamics?

    Directory of Open Access Journals (Sweden)

    Yoshihisa eKashima

    2014-09-01

    Full Text Available Cross-cultural comparison is a critical method by which we can examine the interaction between culture and psychological processes. However, comparative methods tend to overlook cultural dynamics – the formation, maintenance, and transformation of cultures over time. The present article gives a brief overview of four different types of research designs that have been used to examine cultural dynamics in the literature: (1 cross-temporal methods that trace medium- to long-term changes in a culture; (2 cross-generational methods that explore medium-term implications of cultural transmission; (3 experimental simulation methods that investigate micro-level mechanisms of cultural dynamics; and (4 formal models and computer simulation methods often used to investigate long-term and macro-level implications of micro-level mechanisms. These methods differ in terms of level of analysis for which they are designed (micro vs. macro-level, scale of time for which they are typically used (short-, medium-, or long-term, and direction of inference (deductive vs. empirical method that they imply. The paper describes examples of these methods, discuss their strengths and weaknesses, and point to their complementarity in inquiries about cultural change. Because cultural dynamics research is about meaning over time, issues deriving from interpretation of meaning and temporal distance between researchers and objects of inquiry can pose threats to the validity of the research and its findings. The methodological question about hermeneutic circle is recalled and further inquiries are encouraged.

  5. How can you capture cultural dynamics?

    Science.gov (United States)

    Kashima, Yoshihisa

    2014-01-01

    Cross-cultural comparison is a critical method by which we can examine the interaction between culture and psychological processes. However, comparative methods tend to overlook cultural dynamics – the formation, maintenance, and transformation of cultures over time. The present article gives a brief overview of four different types of research designs that have been used to examine cultural dynamics in the literature: (1) cross-temporal methods that trace medium- to long-term changes in a culture; (2) cross-generational methods that explore medium-term implications of cultural transmission; (3) experimental simulation methods that investigate micro-level mechanisms of cultural dynamics; and (4) formal models and computer simulation methods often used to investigate long-term and macro-level implications of micro-level mechanisms. These methods differ in terms of level of analysis for which they are designed (micro vs. macro-level), scale of time for which they are typically used (short-, medium-, or long-term), and direction of inference (deductive vs. empirical method) that they imply. The paper describes examples of these methods, discuss their strengths and weaknesses, and point to their complementarity in inquiries about cultural change. Because cultural dynamics research is about meaning over time, issues deriving from interpretation of meaning and temporal distance between researchers and objects of inquiry can pose threats to the validity of the research and its findings. The methodological question about hermeneutic circle is recalled and further inquiries are encouraged. PMID:25309476

  6. Dynamics and control of robot for capturing objects in space

    Science.gov (United States)

    Huang, Panfeng

    Space robots are expected to perform intricate tasks in future space services, such as satellite maintenance, refueling, and replacing the orbital replacement unit (ORU). To realize these missions, the capturing operation may not be avoided. Such operations will encounter some challenges because space robots have some unique characteristics unfound on ground-based robots, such as, dynamic singularities, dynamic coupling between manipulator and space base, limited energy supply and working without a fixed base, and so on. In addition, since contacts and impacts may not be avoided during capturing operation. Therefore, dynamics and control problems of space robot for capturing objects are significant research topics if the robots are to be deployed for the space services. A typical servicing operation mainly includes three phases: capturing the object, berthing and docking the object, then repairing the target. Therefore, this thesis will focus on resolving some challenging problems during capturing the object, berthing and docking, and so on. In this thesis, I study and analyze the dynamics and control problems of space robot for capturing objects. This work has potential impact in space robotic applications. I first study the contact and impact dynamics of space robot and objects. I specifically focus on analyzing the impact dynamics and mapping the relationship of influence and speed. Then, I develop the fundamental theory for planning the minimum-collision based trajectory of space robot and designing the configuration of space robot at the moment of capture. To compensate for the attitude of the space base during the capturing approach operation, a new balance control concept which can effectively balance the attitude of the space base using the dynamic couplings is developed. The developed balance control concept helps to understand of the nature of space dynamic coupling, and can be readily applied to compensate or minimize the disturbance to the space base

  7. Tactile Experience Shapes Prey-Capture Behavior in Etruscan Shrews

    Directory of Open Access Journals (Sweden)

    Michael eBrecht

    2012-06-01

    Full Text Available A crucial role of tactile experience for the maturation of neural response properties in the somatosensory system is well established, but little is known about the role of tactile experience in the development of tactile behaviors. Here we study how tactile experience affects prey capture behavior in Etruscan shrews, Suncus etruscus. Prey capture in adult shrews is a high-speed behavior that relies on precise attacks guided by tactile Gestalt cues. We studied the role of tactile experience by three different approaches. First, we analyzed the hunting skills of young shrews right after weaning. We found that prey capture in young animals is most but not all aspects similar to that of adults. Second we performed whisker trimming for three to four weeks after birth. Such deprivation resulted in a lasting disruption of prey capture even after whisker re-growth: attacks lacked precise targeting and had a lower success rate. Third, we presented adult shrews with an entirely novel prey species, the giant cockroach. The shape of this roach is very different from the shrew’s normal (cricket prey and the thorax – the preferred point of attack in crickets – is protected a heavy cuticle. Initially shrews attacked giant roaches the same way they attack crickets and targeted the thoracic region. With progressive experience, however, shrews adopted a new attack strategy targeting legs and underside of the roaches while avoiding other body parts. Speed and efficiency of attacks improved. These data suggest that tactile experience shapes prey capture behavior.

  8. Using lecture capture: a qualitative study of nursing faculty's experience.

    Science.gov (United States)

    Freed, Patricia E; Bertram, Julie E; McLaughlin, Dorcas E

    2014-04-01

    As lecture capture technology becomes widely available in schools of nursing, faculty will need to master new technological skills and make decisions about recording their classroom lectures or other activities. This study sought to understand faculty's experience of using a new lecture capture system. This qualitative study used Kruger's systematic approach to explore undergraduate nursing faculty's first-time experience using a lecture capture system purchased by the university. Four focus groups were conducted with a total of fourteen undergraduate faculty using lecture capture for the first-time. The interviews were recorded and transcribed and then analyzed by the researchers. Four themes were identified from the faculty interviews. Two of the themes expressed faculty's concerns about the teaching role, and two themes expressed the faculty's concerns about student learning. Participants experienced stress when learning to use the new lecture capture technology and struggled to resolve it with their own beliefs and teaching values. The impact of lecture capture on student learning, impact on class attendance, and the promotion of a culture of lecturing were revealed as important issues to consider when lecture capture becomes available. © 2013.

  9. Neutron capture experiments with 4π DANCE Calorimeter

    Directory of Open Access Journals (Sweden)

    Krtička M.

    2012-02-01

    Full Text Available In recent years we have performed a series of neutron capture experiments with the DANCE detector array located at the Los Alamos Neutron Science Center. The radiative decay spectrum from the compound nucleus contains important information about nuclear structure and the reaction mechanism. The primary goals of the measurements are to obtain improved capture cross sections, to determine properties of the photon strength function, to improve neutron level densities and strength functions by determining the spin and parity of the capturing states. We shall present examples of our recent results.

  10. 77 FR 19408 - Dynamic Mobility Applications and Data Capture Management Programs; Notice of Public Meeting

    Science.gov (United States)

    2012-03-30

    ... DEPARTMENT OF TRANSPORTATION Dynamic Mobility Applications and Data Capture Management Programs... stakeholders an update on the Data Capture and Management (DCM) and Dynamic Mobility Applications (DMA... critical issues designed to garner stakeholder feedback. About the Dynamic Mobility Application and Data...

  11. INDIANA: Beam dynamics experiments

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Beam dynamics experiments at the Indiana University Cooler Facility (IUCF) are helping to trace complicated non-linear effects in proton machines and could go on to pay important dividends in the detailed design of big new high energy proton storage rings

  12. Capture into resonance and phase space dynamics in optical centrifuge

    Science.gov (United States)

    Armon, Tsafrir; Friedland, Lazar

    2016-05-01

    The process of capture of a molecular enesemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1 , 2 characterising the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in a good agreement with simulations. The existing experiments satisfy the validity conditions of the theory. This work was supported by the Israel Science Foundation Grant 30/14.

  13. EJECTION AND CAPTURE DYNAMICS IN RESTRICTED THREE-BODY ENCOUNTERS

    International Nuclear Information System (INIS)

    Kobayashi, Shiho; Hainick, Yanir; Sari, Re'em; Rossi, Elena M.

    2012-01-01

    We study the tidal disruption of binaries by a massive point mass (e.g., the black hole at the Galactic center), and we discuss how the ejection and capture preference between unequal-mass binary members depends on which orbit they approach the massive object. We show that the restricted three-body approximation provides a simple and clear description of the dynamics. The orbit of a binary with mass m around a massive object M should be almost parabolic with an eccentricity of |1 – e| ∼ 1/3 1/3 times the binary rotation velocity, it would be abruptly disrupted, and the energy change at the encounter can be evaluated in a simple disruption model. We evaluate the probability distributions for the ejection and capture of circular binary members and for the final energies. In principle, for any hyperbolic (elliptic) orbit, the heavier member has more chance to be ejected (captured), because it carries a larger fraction of the orbital energy. However, if the orbital energy is close to zero, the difference between the two members becomes small, and there is practically no ejection and capture preferences. The preference becomes significant when the orbital energy is comparable to the typical energy change at the encounter. We discuss its implications to hypervelocity stars and irregular satellites around giant planets.

  14. On some problems of the dynamics of protons captured by geomagnetic fields

    International Nuclear Information System (INIS)

    Kudela, K.; Dubinski, Yu.

    1977-01-01

    Problems on the dynamics of protons captured by the geomagnetic field is reviewed using new experimental data obtained from artificial satellites. The problems on radial and pitch-angular diffusion of high-energy protons on different L-shells are considered. A good agreement is shown to exist between experimental data and diffusion analysis results. The experimental researches of the changes in the fluxes of quasi-captured, captured, and spilled protons are interpreted as a result of the scattering of protons on lowfrequency waves in the magnetosphere. Presented are the graphs of measurement of the flux of spilled and quasi-ca.ptured protons on different L-shells according to the data obtained from the ''ESRO-1A'' and ''Intercosmos-5'' satellites. To clarify the dynamics of the interaction of protons with waves, it is acknowledged as necessary to pay attention to enhancing the role played by a complex character of experiments

  15. Neutrino Signals in Electron-Capture Storage-Ring Experiments

    Directory of Open Access Journals (Sweden)

    Avraham Gal

    2016-06-01

    Full Text Available Neutrino signals in electron-capture decays of hydrogen-like parent ions P in storage-ring experiments at GSI are reconsidered, with special emphasis placed on the storage-ring quasi-circular motion of the daughter ions D in two-body decays P → D + ν e . It is argued that, to the extent that daughter ions are detected, these detection rates might exhibit modulations with periods of order seconds, similar to those reported in the GSI storage-ring experiments for two-body decay rates. New dedicated experiments in storage rings, or using traps, could explore these modulations.

  16. Experiment on muon-minus capture in 16O

    International Nuclear Information System (INIS)

    Giffon, M.; Guichon, P.; Bihoreau, B.; Goncalves, A.; Julien, J.; Roussel, L.; Samour, C.

    1977-01-01

    The experiment undertaken at the Saclay linac in order to measure partial capture rates for μ - in 16 O is described. This reaction lead to the 0 - and 1 - bound states of 16 N. The Saclay linac generates short pulses; it was thus possible to avoid any time correlation between incoming muons and outgoing γ rays. The first results obtained are in agreement with those from Berkeley and Virginia Laboratories [fr

  17. Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments

    International Nuclear Information System (INIS)

    MJ Trbovich; DP Barry; RE Slovacck; Y Danon; RC Block; JA Burke; NJ Drindak; G Leinweber; RV Ballad

    2004-01-01

    The focus of this work is to determine resonance parameters for stable hafnium isotopes in the 0.005-200 eV region, with special emphasis on the overlapping 176 Hf and 178 Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion resistance and excellent mechanical properties, make it a useful material for controlling nuclear reactions. Experiments measuring neutron capture and transmission were performed at the Rensselaer Polytechnic Institute (RPI) electron linear accelerator (LINAC) using the time of flight method. 6 Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m. Capture experiments were done using a sixteen section NaI(Tl) multiplicity detector at a flight path length of 25 m. These experiments utilized various thicknesses of metallic and isotopically-enriched liquid samples. The liquid samples were designed to provide information on the 176 Hf and 178 Hf contributions to the 8 eV doublet without saturation. Data analysis was done using the R-matrix Bayesian code SAMMY version M6 beta. SAMMY is able to account for experimental resolution effects for each of the experimental setups at the RPI LINAC, and also can correct for multiple scattering effects in neutron capture yield data. The combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005-200 eV. Resonance integrals were calculated along with errors for each hafnium isotope using the NJOY [1] and INTER [2] codes. The isotopic resonance integrals calculated were significantly different than previously published values; however the calculated elemental hafnium resonance integral changed very little

  18. Nonlinear dynamics experiment in the Tevatron

    International Nuclear Information System (INIS)

    Merminga, N.; Edwards, D.; Finley, D.

    1989-01-01

    Results of the continuing analysis of the nonlinear dynamics experiment E778 are presented. Sixteen special sextupoles introduced nonlinearities in the Tevatron. 'Smear,' which is one of the parameters used to quantify the degree of nonlinearity, was extracted from the data and compared with calculation. Injection efficiency in the presence of nonlinearities was studied. Measurements of the dynamic aperture were performed. The final results in one degree of freedom of the smear, the injection efficiency and the dynamic aperture are presented. Particles captured on nonlinear resonance islands were directly observed and measurements were performed. The capture efficiency was extracted from the data and compared with prediction. The influence of tune modulation on the stability of these islands was investigated. Plans for future measurements are discussed. 4 refs., 6 figs

  19. The microbe capture experiment in space: Fluorescence microscopic detection of microbes captured by aerogel

    Science.gov (United States)

    Sugino, Tomohiro; Yokobori, Shin-Ichi; Yang, Yinjie; Kawaguchi, Yuko; Okudaira, Kyoko; Tabata, Makoto; Kawai, Hideyuki; Hasegawa, Sunao; Yamagishi, Akihiko

    Microbes have been collected at the altitude up to about 70 km in the sampling experiment done by several groups[1]. We have also collected high altitude microbes, by using an airplane and balloons[2][3][4][5]. We collected new deinococcal strain (Deinococcus aetherius and Deinococ-cus aerius) and several strains of spore-forming bacilli from stratosphere[2][4][5]. However, microbe sampling in space has never been reported. On the other hand, "Panspermia" hy-pothesis, where terrestrial life is originated from outside of Earth, has been proposed[6][7][8][9]. Recent report suggesting existence of the possible microbe fossils in the meteorite of Mars origin opened the serious debate on the possibility of migration of life embedded in meteorites (and cosmic dusts)[10][11]. If we were able to find terrestrial microbes in space, it would suggest that the terrestrial life can travel between astronomical bodies. We proposed a mission "Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments" to examine possible inter-planetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module of the International Space Station (ISS)[12]. Two of six sub themes in this mission are directly related to interplanetary migration of microbes. One is the direct capturing experi-ment of microbes (probably within the particles such as clay) in space by the exposed ultra-low density aerogel. Another is the exposure experiment to examine survivability of the microbes in harsh space environment. They will tell us the possibility of interplanetary migration of microbes (life) from Earth to outside of Earth (or vise versa). In this report, we will report whether aerogel that have been used for the collection of space debris and cosmic dusts can be used for microbe sampling in space. We will discuss how captured particles by aerogel can be detected with DNA-specific fluorescent dye, and how to distinguish microbes from other mate-rials (i.e. aerogel and

  20. TANPOPO: Microbe and micrometeoroid capture experiments on International Space Station.

    Science.gov (United States)

    Yamagishi, Akihiko; Kobayashi, Kensei; Yano, Hajime; Yokobori, Shinichi; Hashimoto, Hirofumi; Kawai, Hideyuki; Yamashita, Masamichi

    There is a long history of the microbe-collection experiments at high altitude. Microbes have been collected using balloons, aircraft and meteorological rockets from 1936 to 1976. Spore forming fungi and Bacilli, and Micrococci have been isolated in these experiments. It is not clear how high do microbes go up. If the microbes might have been present even at higher altitudes, the fact would endorse the possibility of interplanetary migration of life. TANPOPO, dandelion, is the name of a grass whose seeds with floss are spread by the wind. We propose the analyses of interplanetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module (JEM) of the International Space Station (ISS). Ultra low-density aerogel will be used to capture micrometeoroid and debris. Particles captured by aerogel will be used for several analyses after the initial inspection of the gel and tracks. Careful analysis of the tracks in the aerogel will provide the size and velocity dependence of debris flux. The particles will be analyzed for mineralogical, organic and microbiological characteristics. Aerogels are ready for production in Japan. Aerogels and trays are space proven. All the analytical techniques are ready. The Tanpopo mission was accepted as a candidate experiments on Exposed Facility of ISS-JEM.

  1. POTENTIALS OF IMAGE BASED ACTIVE RANGING TO CAPTURE DYNAMIC SCENES

    Directory of Open Access Journals (Sweden)

    B. Jutzi

    2012-09-01

    Full Text Available Obtaining a 3D description of man-made and natural environments is a basic task in Computer Vision and Remote Sensing. To this end, laser scanning is currently one of the dominating techniques to gather reliable 3D information. The scanning principle inherently needs a certain time interval to acquire the 3D point cloud. On the other hand, new active sensors provide the possibility of capturing range information by images with a single measurement. With this new technique image-based active ranging is possible which allows capturing dynamic scenes, e.g. like walking pedestrians in a yard or moving vehicles. Unfortunately most of these range imaging sensors have strong technical limitations and are not yet sufficient for airborne data acquisition. It can be seen from the recent development of highly specialized (far-range imaging sensors – so called flash-light lasers – that most of the limitations could be alleviated soon, so that future systems will be equipped with improved image size and potentially expanded operating range. The presented work is a first step towards the development of methods capable for application of range images in outdoor environments. To this end, an experimental setup was set up for investigating these proposed possibilities. With the experimental setup a measurement campaign was carried out and first results will be presented within this paper.

  2. Experience of boron neutron capture therapy in Japan

    International Nuclear Information System (INIS)

    Kanda, K.

    2004-01-01

    Four research reactors are currently licensed for medical application in Japan. As of July 1995, approximately 210 clinical irradiations using these research reactors have been done for brain and skin tumors as shown. The number of chief medical doctors certified by the Government is eleven so far. Among them, eight doctors have already treated tumor patients using the Kyoto University Reactor (KUR, 5MW). Recently in USA clinical trials have been restarted using epithermal neutrons at MIT and BNL. In this paper, the experience of clinical trials of boron neutron capture therapy (BNCT) which have been performed in Japan, mainly physics studies, are reviewed, and current studies are also introduced

  3. Dynamic Synchronous Capture Algorithm for an Electromagnetic Flowmeter.

    Science.gov (United States)

    Fanjiang, Yong-Yi; Lu, Shih-Wei

    2017-04-10

    This paper proposes a dynamic synchronous capture (DSC) algorithm to calculate the flow rate for an electromagnetic flowmeter. The characteristics of the DSC algorithm can accurately calculate the flow rate signal and efficiently convert an analog signal to upgrade the execution performance of a microcontroller unit (MCU). Furthermore, it can reduce interference from abnormal noise. It is extremely steady and independent of fluctuations in the flow measurement. Moreover, it can calculate the current flow rate signal immediately (m/s). The DSC algorithm can be applied to the current general MCU firmware platform without using DSP (Digital Signal Processing) or a high-speed and high-end MCU platform, and signal amplification by hardware reduces the demand for ADC accuracy, which reduces the cost.

  4. The MuSun experiment. Muon capture on the deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Wauters, Frederik [Johannes Gutenberg University of Mainz, Mainz (Germany); University of Washington, Seattle (United States); Kammel, Peter; Ryan, Rachel; Salvat, Daniel; Muldoon, Ethan; Murray, Michael; Hertzog, David [University of Washington, Seattle (United States); Petitjean, Claude [Paul Scherrer Institute, Villigen (Switzerland); Vasilyev, Alexander [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Carrey, Robert [Boston University, Boston (United States); Gray, Frederick [Regis University, Denver (United States); Gorringe, Tim [University of Kentuky, Lexington (United States)

    2016-07-01

    The MuSun experiment measures the muon capture rate on the deuteron via a precise measurement of the lifetime of negative muons in deuterium, determining unambiguously the low energy constant (LEC) related to the strengths of the axial coupling to the two nucleon-system. LEC's are part of recently developed QCD-based effective field theories, which provide a first-principles description with predictive power for few-body nuclear systems. A quantitative relationship is established between astrophysical processes which cross sections can not be measured in the laboratory, such as the pp fusion in our sun, and muon capture rates. The MuSun experiment finished data taking at the Paul Scherrer Institute (Villigen, CH) in the summer of 2015. In this talk, I present the experimental program of the last 4 years and the progress of the data analysis towards a first physics result. I focus on our active-target time projection chamber, which provides the event selection for the 10 ppm lifetime analysis.

  5. The electron capture in 163Ho experiment - ECHo

    Science.gov (United States)

    Gastaldo, L.; Blaum, K.; Chrysalidis, K.; Day Goodacre, T.; Domula, A.; Door, M.; Dorrer, H.; Düllmann, Ch. E.; Eberhardt, K.; Eliseev, S.; Enss, C.; Faessler, A.; Filianin, P.; Fleischmann, A.; Fonnesu, D.; Gamer, L.; Haas, R.; Hassel, C.; Hengstler, D.; Jochum, J.; Johnston, K.; Kebschull, U.; Kempf, S.; Kieck, T.; Köster, U.; Lahiri, S.; Maiti, M.; Mantegazzini, F.; Marsh, B.; Neroutsos, P.; Novikov, Yu. N.; Ranitzsch, P. C. O.; Rothe, S.; Rischka, A.; Saenz, A.; Sander, O.; Schneider, F.; Scholl, S.; Schüssler, R. X.; Schweiger, Ch.; Simkovic, F.; Stora, T.; Szücs, Z.; Türler, A.; Veinhard, M.; Weber, M.; Wegner, M.; Wendt, K.; Zuber, K.

    2017-06-01

    Neutrinos, and in particular their tiny but non-vanishing masses, can be considered one of the doors towards physics beyond the Standard Model. Precision measurements of the kinematics of weak interactions, in particular of the 3H β-decay and the 163Ho electron capture (EC), represent the only model independent approach to determine the absolute scale of neutrino masses. The electron capture in 163Ho experiment, ECHo, is designed to reach sub-eV sensitivity on the electron neutrino mass by means of the analysis of the calorimetrically measured electron capture spectrum of the nuclide 163Ho. The maximum energy available for this decay, about 2.8 keV, constrains the type of detectors that can be used. Arrays of low temperature metallic magnetic calorimeters (MMCs) are being developed to measure the 163Ho EC spectrum with energy resolution below 3 eV FWHM and with a time resolution below 1 μs. To achieve the sub-eV sensitivity on the electron neutrino mass, together with the detector optimization, the availability of large ultra-pure 163Ho samples, the identification and suppression of background sources as well as the precise parametrization of the 163Ho EC spectrum are of utmost importance. The high-energy resolution 163Ho spectra measured with the first MMC prototypes with ion-implanted 163Ho set the basis for the ECHo experiment. We describe the conceptual design of ECHo and motivate the strategies we have adopted to carry on the present medium scale experiment, ECHo-1K. In this experiment, the use of 1 kBq 163Ho will allow to reach a neutrino mass sensitivity below 10 eV/ c 2. We then discuss how the results being achieved in ECHo-1k will guide the design of the next stage of the ECHo experiment, ECHo-1M, where a source of the order of 1 MBq 163Ho embedded in large MMCs arrays will allow to reach sub-eV sensitivity on the electron neutrino mass.

  6. Dynamics on the positron capture and accelerating sections of CLIC

    CERN Document Server

    Poirier, Freddy; Vivoli, Alessandro; Dadoun, Olivier; Lepercq, Pierre; Variola, Alessandro

    2011-01-01

    The CLIC Pre-Injector Linac for the e+ beam is composed of an Adiabatic Matching Device (AMD) followed by 4 (or 5) accelerating RF structures embedded in a solenoidal magnetic field. The accelerating sections are based on 2 GHz long travelling wave structures. In this note, the positrons capture strategy downstream the AMD is reviewed. The first RF structure can be phased either for full acceleration or for deceleration. In the latter case, the simulations results show that the number of e+ capture at the end of the 200 MeV Pre-Injector Linac is increased. Then the impact of the space charge is presented. Additional techniques are also studied to explore the potentiality of increasing the number of e+ namely an extra RF field at the beginning of the capture section and a higher solenoidal field.

  7. Commercial Capabilities and Entrepreneurial Value Capturing in Dynamic Maritime Markets

    DEFF Research Database (Denmark)

    Sløk-Madsen, Stefan Kirkegaard

    This paper develops and tests a theory of entrepreneurial value capturing in maritime markets. The framework is argued to be applicable in all maritime fields and other fields with similar attributes but is specifically tested on Oil Service companies operating in the North Sea region...... market process view; building on Kirznerian alertness, Hayekian capital heterogeneity, and Knightian uncertainty. The theory helps explain value capturing from a firm perspective but also subsequent new firm creation or value loss. The model is tested and relevant managerial implications, as well...

  8. Experiments and simulation of a net closing mechanism for tether-net capture of space debris

    Science.gov (United States)

    Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.

    2017-10-01

    This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.

  9. The Experience of Dynamic Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Kristensen, Ole

    2017-01-01

    of daylight openings and the experience of spatial form. However, current developments in LED light sources (light emitting diodes) and adaptive software control systems allow for an enhanced correlation between daylight and artificial lighting, where the variations of the daylight are dynamically...... supplemented by variations in the artificial lighting. The suggestion is to develop a particular type of Observational Instrument that situates detailed experiential investigations into the design potentials of integration of natural and artificial lighting, and thereby to enable differentiated dynamic...

  10. Solar array flight dynamic experiment

    Science.gov (United States)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  11. Capturing Context-Related Change in Emotional Dynamics via Fixed Moderated Time Series Analysis.

    Science.gov (United States)

    Adolf, Janne K; Voelkle, Manuel C; Brose, Annette; Schmiedek, Florian

    2017-01-01

    Much of recent affect research relies on intensive longitudinal studies to assess daily emotional experiences. The resulting data are analyzed with dynamic models to capture regulatory processes involved in emotional functioning. Daily contexts, however, are commonly ignored. This may not only result in biased parameter estimates and wrong conclusions, but also ignores the opportunity to investigate contextual effects on emotional dynamics. With fixed moderated time series analysis, we present an approach that resolves this problem by estimating context-dependent change in dynamic parameters in single-subject time series models. The approach examines parameter changes of known shape and thus addresses the problem of observed intra-individual heterogeneity (e.g., changes in emotional dynamics due to observed changes in daily stress). In comparison to existing approaches to unobserved heterogeneity, model estimation is facilitated and different forms of change can readily be accommodated. We demonstrate the approach's viability given relatively short time series by means of a simulation study. In addition, we present an empirical application, targeting the joint dynamics of affect and stress and how these co-vary with daily events. We discuss potentials and limitations of the approach and close with an outlook on the broader implications for understanding emotional adaption and development.

  12. DYNAMICS OF TIDALLY CAPTURED PLANETS IN THE GALACTIC CENTER

    International Nuclear Information System (INIS)

    Trani, Alessandro A.; Bressan, Alessandro; Mapelli, Michela; Spera, Mario

    2016-01-01

    Recent observations suggest ongoing planet formation in the innermost parsec of the Galactic center. The supermassive black hole (SMBH) might strip planets or planetary embryos from their parent star, bringing them close enough to be tidally disrupted. Photoevaporation by the ultraviolet field of young stars, combined with ongoing tidal disruption, could enhance the near-infrared luminosity of such starless planets, making their detection possible even with current facilities. In this paper, we investigate the chance of planet tidal captures by means of high-accuracy N -body simulations exploiting Mikkola's algorithmic regularization. We consider both planets lying in the clockwise (CW) disk and planets initially bound to the S-stars. We show that tidally captured planets remain on orbits close to those of their parent star. Moreover, the semimajor axis of the planetary orbit can be predicted by simple analytic assumptions in the case of prograde orbits. We find that starless planets that were initially bound to CW disk stars have mild eccentricities and tend to remain in the CW disk. However, we speculate that angular momentum diffusion and scattering by other young stars in the CW disk might bring starless planets into orbits with low angular momentum. In contrast, planets initially bound to S-stars are captured by the SMBH on highly eccentric orbits, matching the orbital properties of the clouds G1 and G2. Our predictions apply not only to planets but also to low-mass stars initially bound to the S-stars and tidally captured by the SMBH.

  13. CO2 Capture with Ionic Liquids : Experiments and Molecular Simulations

    NARCIS (Netherlands)

    Ramdin, M.

    2015-01-01

    In this thesis, we investigated the potential of physical ILs for CO2 capture at pre-combustion and natural gas sweetening conditions. The performance of ILs with respect to conventional solvents is assessed in terms of gas solubilities and selectivities. The work discussed in this thesis consists

  14. Dynamics and design of space nets for orbital capture

    CERN Document Server

    Yang, Leping; Zhen, Ming; Liu, Haitao

    2017-01-01

    This book covers the topics of theoretical principles, dynamics model and algorithm, mission analysis, system design and experimental studies of space nets system, aiming to provide an initial framework in this field and serve as a ready reference for those interested. Space nets system represents a forefront field in future development of aerospace technologies. However, it involves new challenges and problems such as nonlinear and distorted nets structure, complex rigid flexible coupling dynamics, orbital transfer of space flexible composite and dynamics control. Currently, no comprehensive books on space nets dynamics and design are available, so potential readers can get to know the working mechanism, dynamics elements, and mission design of the space nets system from a Chinese perspective.

  15. To Capture Dynamic Shop Floor Knowledge in Global Production Networks

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Riis, Jens Ove; Sørensen, Brian Vejrum

    2007-01-01

    ­ing of the jobs to be transferred and has led to a changed focus for training new workers. Secondly, the paper will address how to capture the knowl­edge associated with carrying out these jobs. And third, planning the trans­fer process will be discussed to form a basis for future continuous improve...... industrial companies with plans to transfer production units to an­other location, this paper addresses  the initial steps of pursuing this issue by presenting and testing a model for identification of the activities, task and  knowledge on the shop floor jobs. This has provided a broader understand...

  16. Resonance capture and dynamics of three-planet systems

    Science.gov (United States)

    Charalambous, C.; Martí, J. G.; Beaugé, C.; Ramos, X. S.

    2018-06-01

    We present a series of dynamical maps for fictitious three-planet systems in initially circular coplanar orbits. These maps have unveiled a rich resonant structure involving two or three planets, as well as indicating possible migration routes from secular to double resonances or pure three-planet commensurabilities. These structures are then compared to the present-day orbital architecture of observed resonant chains. In a second part of the paper, we describe N-body simulations of type-I migration. Depending on the orbital decay time-scale, we show that three-planet systems may be trapped in different combinations of independent commensurabilities: (i) double resonances, (ii) intersection between a two-planet and a first-order three-planet resonances, and (iii) simultaneous libration in two first-order three-planet resonances. These latter outcomes are found for slow migrations, while double resonances are almost always the final outcome in high-density discs. Finally, we discuss an application to the TRAPPIST-1 system. We find that, for low migration rates and planetary masses of the order of the estimated values, most three-planet sub-systems are able to reach the observed double resonances after following evolutionary routes defined by pure three-planet resonances. The final orbital configuration shows resonance offsets comparable with present-day values without the need of tidal dissipation. For the 8/5 resonance proposed to dominate the dynamics of the two inner planets, we find little evidence of its dynamical significance; instead, we propose that this relation between mean motions could be a consequence of the interaction between a pure three-planet resonance and a two-planet commensurability between planets c and d.

  17. Studies of collision dynamics in electron capture processes

    International Nuclear Information System (INIS)

    Hansen, J.P.

    1990-12-01

    This thesis presents some recent development in time-dependent coupled channel methods for one- and two-electron systems. The methods have been applied to detailed studies on several different aspects of charge transfer processes in ion-atom collisions at intermediate to low energies. Measurable quantities, such as partial and total cross sections, partial cross sections in projectile energy gain, orientation and alignment fractions, have been calculated. Confrontation with experiments has in general given good agreement. 29 refs

  18. Studies of collision dynamics in electron capture processes

    International Nuclear Information System (INIS)

    Hansen, J.P.

    1989-12-01

    The thesis presents some recent development in time-dependent coupled channel methods for one- and two-electron systems. The methods have been applied to detailed studies on several different aspects of charge transfer processes in ion-atom collisions at intermediate to low energies. Measurable quantities, such as partial and total cross sections, partial cross sections in projectile energy gain, orientation and alignment fractions, have been calculated. Confrontation with experiments has in general given good agreement. 14 refs., 2 figs

  19. Dynamic Operation and Simulation of Post-Combustion CO2 Capture

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Gladis, Arne; Jørgensen, John Bagterp

    2016-01-01

    Thermal power need to operate, on a daily basis, with frequent and fast load changes to balance the large variations of intermittent energy sources, such as wind and solar energy. To make the integration of carbon capture to power plants economically and technically feasible, the carbon capture...... process has to be able to follow these fast and large load changes without decreasing the overall performance of the carbon capture plant. Therefore, dynamic models for simulation, optimization and control system design are essential. In this work, we compare the transient behavior of the model against...

  20. Supporting aphasics for capturing, organizing and sharing personal experiences

    NARCIS (Netherlands)

    Mahmud, Al A.; Gross, T.; Gulliksen, J.; Kotzé, P.; Oestreicher, L.; Palanque, P; Oliveira Prates, R.; Winckler, M.

    2009-01-01

    When a person, due to brain injury or another disease, suffers in his or her ability to speak, it becomes inherently cumbersome to share needs, emotions, and experiences through personal stories and social interaction. This paper describes the aim and progress of the author’s dissertation, which

  1. Capture into resonance and phase-space dynamics in an optical centrifuge

    Science.gov (United States)

    Armon, Tsafrir; Friedland, Lazar

    2016-04-01

    The process of capture of a molecular ensemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase-space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1 ,2 characterizing the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in good agreement with simulations. The existing experiments satisfy the validity conditions of the theory.

  2. Dynamics of fragment capture for cluster structures of weakly bound 7Li

    Directory of Open Access Journals (Sweden)

    Shrivastava A.

    2013-12-01

    Full Text Available Role of cluster structures of 7Li on reaction dynamics have been studied by performing exclusive measurements of prompt-γ rays from residues with scattered particles at energy, E/Vb = 1.6, with 198Pt target. Yields of the residues resulting after capture of t and 4,5,6He, corresponding to different excitation energies of the composite system were estimated. The results were compared with three body classical-dynamical model for breakup fusion, constrained by the measured fusion, α and t capture cross-sections. The cross-section of residues from capture of α and t agreed well with the prediction of the model showing dominance of the two step process - breakup fusion, while those from tightly bound 6He showed massive transfer to be the dominant mechanism.

  3. Validation results of satellite mock-up capturing experiment using nets

    Science.gov (United States)

    Medina, Alberto; Cercós, Lorenzo; Stefanescu, Raluca M.; Benvenuto, Riccardo; Pesce, Vincenzo; Marcon, Marco; Lavagna, Michèle; González, Iván; Rodríguez López, Nuria; Wormnes, Kjetil

    2017-05-01

    The PATENDER activity (Net parametric characterization and parabolic flight), funded by the European Space Agency (ESA) via its Clean Space initiative, was aiming to validate a simulation tool for designing nets for capturing space debris. This validation has been performed through a set of different experiments under microgravity conditions where a net was launched capturing and wrapping a satellite mock-up. This paper presents the architecture of the thrown-net dynamics simulator together with the set-up of the deployment experiment and its trajectory reconstruction results on a parabolic flight (Novespace A-310, June 2015). The simulator has been implemented within the Blender framework in order to provide a highly configurable tool, able to reproduce different scenarios for Active Debris Removal missions. The experiment has been performed over thirty parabolas offering around 22 s of zero-g conditions. Flexible meshed fabric structure (the net) ejected from a container and propelled by corner masses (the bullets) arranged around its circumference have been launched at different initial velocities and launching angles using a pneumatic-based dedicated mechanism (representing the chaser satellite) against a target mock-up (the target satellite). High-speed motion cameras were recording the experiment allowing 3D reconstruction of the net motion. The net knots have been coloured to allow the images post-process using colour segmentation, stereo matching and iterative closest point (ICP) for knots tracking. The final objective of the activity was the validation of the net deployment and wrapping simulator using images recorded during the parabolic flight. The high-resolution images acquired have been post-processed to determine accurately the initial conditions and generate the reference data (position and velocity of all knots of the net along its deployment and wrapping of the target mock-up) for the simulator validation. The simulator has been properly

  4. Prototype Development: Context-Driven Dynamic XML Ophthalmologic Data Capture Application

    Science.gov (United States)

    Schwei, Kelsey M; Kadolph, Christopher; Finamore, Joseph; Cancel, Efrain; McCarty, Catherine A; Okorie, Asha; Thomas, Kate L; Allen Pacheco, Jennifer; Pathak, Jyotishman; Ellis, Stephen B; Denny, Joshua C; Rasmussen, Luke V; Tromp, Gerard; Williams, Marc S; Vrabec, Tamara R; Brilliant, Murray H

    2017-01-01

    Background The capture and integration of structured ophthalmologic data into electronic health records (EHRs) has historically been a challenge. However, the importance of this activity for patient care and research is critical. Objective The purpose of this study was to develop a prototype of a context-driven dynamic extensible markup language (XML) ophthalmologic data capture application for research and clinical care that could be easily integrated into an EHR system. Methods Stakeholders in the medical, research, and informatics fields were interviewed and surveyed to determine data and system requirements for ophthalmologic data capture. On the basis of these requirements, an ophthalmology data capture application was developed to collect and store discrete data elements with important graphical information. Results The context-driven data entry application supports several features, including ink-over drawing capability for documenting eye abnormalities, context-based Web controls that guide data entry based on preestablished dependencies, and an adaptable database or XML schema that stores Web form specifications and allows for immediate changes in form layout or content. The application utilizes Web services to enable data integration with a variety of EHRs for retrieval and storage of patient data. Conclusions This paper describes the development process used to create a context-driven dynamic XML data capture application for optometry and ophthalmology. The list of ophthalmologic data elements identified as important for care and research can be used as a baseline list for future ophthalmologic data collection activities. PMID:28903894

  5. Continuous CO2 capture and MSWI fly ash stabilization, utilizing novel dynamic equipment

    International Nuclear Information System (INIS)

    Jiang Jianguo; Du Xuejuan; Chen Maozhe; Zhang Chang

    2009-01-01

    Novel dynamic equipment with gas in and out continuously was developed to study the capture capacity of CO 2 . Municipal solid waste incineration (MSWI) fly ash has a high capture rate of CO 2 in CO 2 -rich gas. Fly ash can sequester pure CO 2 rapidly, and its capacity is 16.3 g CO 2 /100 g fly ash with no water added and 21.4 g CO 2 /100 g fly ash with 20% water added. For simulated incineration gas containing 12% CO 2 , the capture rate decreased and the capacity was 13.2 g CO 2 /100 g fly ash with no water added and 18.5 g CO 2 /100 g fly ash with 20% water added. After accelerated carbonation, the C and O contents increased, indicating CO 2 capture in the fly ash; CO 2 combines with Ca(OH) 2 to form CaCO 3 , which increased the CaCO 3 content from 12.5 to 54.3%. The leaching of Pb markedly decreased from 24.48 to 0.111 mg/L. - Novel dynamic equipment designed to capture CO 2 by fly ash is more suitable for engineering application.

  6. Role of the cluster structure of {sup 7}Li in the dynamics of fragment capture

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, A., E-mail: aradhana@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Navin, A. [GANIL, CEA/DSM - CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Diaz-Torres, A. [ECT, Villa Tambosi, I-38123 Villazzano, Trento (Italy); Nanal, V. [DNAP, Tata Institute of Fundamental Research, Mumbai 400005 (India); Ramachandran, K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Rejmund, M. [GANIL, CEA/DSM - CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Bhattacharyya, S. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Chatterjee, A.; Kailas, S. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Lemasson, A. [GANIL, CEA/DSM - CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Palit, R. [DNAP, Tata Institute of Fundamental Research, Mumbai 400005 (India); Parkar, V.V. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Pillay, R.G. [DNAP, Tata Institute of Fundamental Research, Mumbai 400005 (India); Rout, P.C. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sawant, Y. [DNAP, Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2013-01-08

    Exclusive measurements of prompt {gamma}-rays from the heavy-residues with various light charged particles in the {sup 7}Li + {sup 198}Pt system, at an energy near the Coulomb barrier (E/V{sub b}{approx}1.6) are reported. Recent dynamic classical trajectory calculations, constrained by the measured fusion, {alpha}- and t-capture cross-sections have been used to explain the excitation energy dependence of the residue cross-sections. These calculations distinctly illustrate a two-step process, breakup followed by fusion, in case of the capture of t and {alpha} clusters; whereas for {sup 6}He+p and {sup 5}He+d configurations, massive transfer is inferred to be the dominant mechanism. The present work clearly demonstrates the role played by the cluster structures of {sup 7}Li in understanding the reaction dynamics at energies around the Coulomb barrier.

  7. Capture dynamics of hot electrons on quantum dots in RTDs studied by noise measurement

    International Nuclear Information System (INIS)

    Hees, S S; Kardynal, B E; Shields, A J; Farrer, I; Ritchie, D A

    2008-01-01

    We investigate the noise in quantum dot resonant tunnelling diodes (QDRTDs), where the quantum dots (QDs) placed in the collector experience electric fields that vary in a wide range. The trapping/detrapping of electrons on the QDs dominated the measured electrical noise. The model that we derived for the noise explains the experimental data well. The QD capture cross-section is one to two orders of magnitude smaller than the physical size of the QDs due to the reduced probability of capturing a hot electron on the QD. The model is a powerful tool to design the noise characteristics of QDRTD single photon-detectors

  8. Capturing Dynamics in the Power Grid: Formulation of Dynamic State Estimation through Data Assimilation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ning [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Zhenyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meng, Da [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elbert, Stephen T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Shaobu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diao, Ruisheng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-31

    With the increasing complexity resulting from uncertainties and stochastic variations introduced by intermittent renewable energy sources, responsive loads, mobile consumption of plug-in vehicles, and new market designs, more and more dynamic behaviors are observed in everyday power system operation. To operate a power system efficiently and reliably, it is critical to adopt a dynamic paradigm so that effective control actions can be taken in time. The dynamic paradigm needs to include three fundamental components: dynamic state estimation; look-ahead dynamic simulation; and dynamic contingency analysis (Figure 1). These three components answer three basic questions: where the system is; where the system is going; and how secure the system is against accidents. The dynamic state estimation provides a solid cornerstone to support the other 2 components and is the focus of this study.

  9. Scaling criteria for rock dynamic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, Barbara K [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    A set of necessary conditions for performing scaled rock dynamics experiments is derived from the conservation equations of continuum mechanics. Performing scaled experiments in two different materials is virtually impossible because of the scaling restrictions imposed by two equations of state. However, performing dynamically scaled experiments in the same material is possible if time and distance use the same scaling factor and if the effects of gravity are insignificant. When gravity becomes significant, dynamic scaling is no longer possible. To illustrate these results, example calculations of megaton and kiloton experiments are considered. (author00.

  10. Prototype Development: Context-Driven Dynamic XML Ophthalmologic Data Capture Application.

    Science.gov (United States)

    Peissig, Peggy; Schwei, Kelsey M; Kadolph, Christopher; Finamore, Joseph; Cancel, Efrain; McCarty, Catherine A; Okorie, Asha; Thomas, Kate L; Allen Pacheco, Jennifer; Pathak, Jyotishman; Ellis, Stephen B; Denny, Joshua C; Rasmussen, Luke V; Tromp, Gerard; Williams, Marc S; Vrabec, Tamara R; Brilliant, Murray H

    2017-09-13

    The capture and integration of structured ophthalmologic data into electronic health records (EHRs) has historically been a challenge. However, the importance of this activity for patient care and research is critical. The purpose of this study was to develop a prototype of a context-driven dynamic extensible markup language (XML) ophthalmologic data capture application for research and clinical care that could be easily integrated into an EHR system. Stakeholders in the medical, research, and informatics fields were interviewed and surveyed to determine data and system requirements for ophthalmologic data capture. On the basis of these requirements, an ophthalmology data capture application was developed to collect and store discrete data elements with important graphical information. The context-driven data entry application supports several features, including ink-over drawing capability for documenting eye abnormalities, context-based Web controls that guide data entry based on preestablished dependencies, and an adaptable database or XML schema that stores Web form specifications and allows for immediate changes in form layout or content. The application utilizes Web services to enable data integration with a variety of EHRs for retrieval and storage of patient data. This paper describes the development process used to create a context-driven dynamic XML data capture application for optometry and ophthalmology. The list of ophthalmologic data elements identified as important for care and research can be used as a baseline list for future ophthalmologic data collection activities. ©Peggy Peissig, Kelsey M Schwei, Christopher Kadolph, Joseph Finamore, Efrain Cancel, Catherine A McCarty, Asha Okorie, Kate L Thomas, Jennifer Allen Pacheco, Jyotishman Pathak, Stephen B Ellis, Joshua C Denny, Luke V Rasmussen, Gerard Tromp, Marc S Williams, Tamara R Vrabec, Murray H Brilliant. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 13.09.2017.

  11. Dynamic imaging of cell-free and cell-associated viral capture in mature dendritic cells.

    Science.gov (United States)

    Izquierdo-Useros, Nuria; Esteban, Olga; Rodriguez-Plata, Maria T; Erkizia, Itziar; Prado, Julia G; Blanco, Julià; García-Parajo, Maria F; Martinez-Picado, Javier

    2011-12-01

    Dendritic cells (DCs) capture human immunodeficiency virus (HIV) through a non-fusogenic mechanism that enables viral transmission to CD4(+) T cells, contributing to in vivo viral dissemination. Although previous studies have provided important clues to cell-free viral capture by mature DCs (mDCs), dynamic and kinetic insight on this process is still missing. Here, we used three-dimensional video microscopy and single-particle tracking approaches to dynamically dissect both cell-free and cell-associated viral capture by living mDCs. We show that cell-free virus capture by mDCs operates through three sequential phases: virus binding through specific determinants expressed in the viral particle, polarized or directional movements toward concrete regions of the cell membrane and virus accumulation in a sac-like structure where trapped viral particles display a hindered diffusive behavior. Moreover, real-time imaging of cell-associated viral transfer to mDCs showed a similar dynamics to that exhibited by cell-free virus endocytosis leading to viral accumulation in compartments. However, cell-associated HIV type 1 transfer to mDCs was the most effective pathway, boosted throughout enhanced cellular contacts with infected CD4(+) T cells. Our results suggest that in lymphoid tissues, mDC viral uptake could occur either by encountering cell-free or cell-associated virus produced by infected cells generating the perfect scenario to promote HIV pathogenesis and impact disease progression. © 2011 John Wiley & Sons A/S.

  12. Toward Capturing Momentary Changes of Heart Rate Variability by a Dynamic Analysis Method.

    Directory of Open Access Journals (Sweden)

    Haoshi Zhang

    Full Text Available The analysis of heart rate variability (HRV has been performed on long-term electrocardiography (ECG recordings (12~24 hours and short-term recordings (2~5 minutes, which may not capture momentary change of HRV. In this study, we present a new method to analyze the momentary HRV (mHRV. The ECG recordings were segmented into a series of overlapped HRV analysis windows with a window length of 5 minutes and different time increments. The performance of the proposed method in delineating the dynamics of momentary HRV measurement was evaluated with four commonly used time courses of HRV measures on both synthetic time series and real ECG recordings from human subjects and dogs. Our results showed that a smaller time increment could capture more dynamical information on transient changes. Considering a too short increment such as 10 s would cause the indented time courses of the four measures, a 1-min time increment (4-min overlapping was suggested in the analysis of mHRV in the study. ECG recordings from human subjects and dogs were used to further assess the effectiveness of the proposed method. The pilot study demonstrated that the proposed analysis of mHRV could provide more accurate assessment of the dynamical changes in cardiac activity than the conventional measures of HRV (without time overlapping. The proposed method may provide an efficient means in delineating the dynamics of momentary HRV and it would be worthy performing more investigations.

  13. Dynamic experiments on cracked pipes

    International Nuclear Information System (INIS)

    Petit, M.; Brunet, G.; Buland, P.

    1991-01-01

    In order to apply the leak before break concept to piping systems, the behavior of cracked pipes under dynamic, and especially seismic loading must be studied. In a first phase, an experimental program on cracked stainless steel pipes under quasi-static monotonic loading has been conducted. In this paper, the dynamic tests on the same pipe geometry are described. These tests have been performed on a shaking table with a mono frequency input signal. The main parameter of the tests is the frequency of excitation versus the frequency of the system

  14. Discrete time population dynamics of a two-stage species with recruitment and capture

    International Nuclear Information System (INIS)

    Ladino, Lilia M.; Mammana, Cristiana; Michetti, Elisabetta; Valverde, Jose C.

    2016-01-01

    This work models and analyzes the dynamics of a two-stage species with recruitment and capture factors. It arises from the discretization of a previous model developed by Ladino and Valverde (2013), which represents a progress in the knowledge of the dynamics of exploited populations. Although the methods used here are related to the study of discrete-time systems and are different from those related to continuous version, the results are similar in both the discrete and the continuous case what confirm the skill in the selection of the factors to design the model. Unlike for the continuous-time case, for the discrete-time one some (non-negative) parametric constraints are derived from the biological significance of the model and become fundamental for the proofs of such results. Finally, numerical simulations show different scenarios of dynamics related to the analytical results which confirm the validity of the model.

  15. Simulation of dynamic magnetic particle capture and accumulation around a ferromagnetic wire

    Energy Technology Data Exchange (ETDEWEB)

    Choomphon-anomakhun, Natthaphon [Department of Physics, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330 (Thailand); Ebner, Armin D. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Natenapit, Mayuree [Department of Physics, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330 (Thailand); Ritter, James A. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2017-04-15

    A new approach for modeling high gradient magnetic separation (HGMS)-type systems during the time-dependent capture and accumulation of magnetic particles by a ferromagnetic wire was developed. This new approach assumes the fluid (slurry) viscosity, comprised of water and magnetic particles, is a function of the magnetic particle concentration in the fluid, with imposed maxima on both the particle concentration and fluid viscosity to avoid unrealistic limits. In 2-D, the unsteady-state Navier-Stokes equations for compressible fluid flow and the unsteady-state continuity equations applied separately to the water and magnetic particle phases in the slurry were solved simultaneously, along with the Laplace equations for the magnetic potential applied separately to the slurry and wire, to evaluate the velocities and concentrations around the wire in a narrow channel using COMSOL Multiphysics. The results from this model revealed very realistic magnetically attractive and repulsive zones forming in time around the wire. These collection zones formed their own impermeable viscous phase during accumulation that was also magnetic with its area and magnetism impacting locally both the fluid flow and magnetic fields around the wire. These collection zones increased with an increase in the applied magnetic field. For a given set of conditions, the capture ability peaked and then decreased to zero at infinite time during magnetic particle accumulation in the collection zones. Predictions of the collection efficiency from a steady-state, clean collector, trajectory model could not show this behavior; it also agreed only qualitatively with the dynamic model and then only at the early stages of collection and more so at a higher applied magnetic field. Also, the collection zones decreased in size when the accumulation regions included magnetic particle magnetization (realistic) compared to when they excluded it (unrealistic). Overall, this might be the first time a mathematical

  16. Dynamic Stability Experiment of Maglev Systems,

    Science.gov (United States)

    1995-04-01

    This report summarizes the research performed on maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also... maglev system, it is important to consider this phenomenon in the development of all maglev systems. This report presents dynamic stability experiments...on maglev systems and compares their numerical simulation with predictions calculated by a nonlinear dynamic computer code. Instabilities of an

  17. Sequential Design of Experiments to Maximize Learning from Carbon Capture Pilot Plant Testing

    Energy Technology Data Exchange (ETDEWEB)

    Soepyan, Frits B.; Morgan, Joshua C.; Omell, Benjamin P.; Zamarripa-Perez, Miguel A.; Matuszewski, Michael S.; Miller, David C.

    2018-02-06

    Pilot plant test campaigns can be expensive and time-consuming. Therefore, it is of interest to maximize the amount of learning and the efficiency of the test campaign given the limited number of experiments that can be conducted. This work investigates the use of sequential design of experiments (SDOE) to overcome these challenges by demonstrating its usefulness for a recent solvent-based CO2 capture plant test campaign. Unlike traditional design of experiments methods, SDOE regularly uses information from ongoing experiments to determine the optimum locations in the design space for subsequent runs within the same experiment. However, there are challenges that need to be addressed, including reducing the high computational burden to efficiently update the model, and the need to incorporate the methodology into a computational tool. We address these challenges by applying SDOE in combination with a software tool, the Framework for Optimization, Quantification of Uncertainty and Surrogates (FOQUS) (Miller et al., 2014a, 2016, 2017). The results of applying SDOE on a pilot plant test campaign for CO2 capture suggests that relative to traditional design of experiments methods, SDOE can more effectively reduce the uncertainty of the model, thus decreasing technical risk. Future work includes integrating SDOE into FOQUS and using SDOE to support additional large-scale pilot plant test campaigns.

  18. Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets

    OpenAIRE

    Tülin Erdem; Michael P. Keane

    1996-01-01

    We construct two models of the behavior of consumers in an environment where there is uncertainty about brand attributes. In our models, both usage experience and advertising exposure give consumers noisy signals about brand attributes. Consumers use these signals to update their expectations of brand attributes in a Bayesian manner. The two models are (1) a dynamic model with immediate utility maximization, and (2) a dynamic “forward-looking” model in which consumers maximize the expected pr...

  19. Capturing complexity in work disability research: application of system dynamics modeling methodology.

    Science.gov (United States)

    Jetha, Arif; Pransky, Glenn; Hettinger, Lawrence J

    2016-01-01

    Work disability (WD) is characterized by variable and occasionally undesirable outcomes. The underlying determinants of WD outcomes include patterns of dynamic relationships among health, personal, organizational and regulatory factors that have been challenging to characterize, and inadequately represented by contemporary WD models. System dynamics modeling (SDM) methodology applies a sociotechnical systems thinking lens to view WD systems as comprising a range of influential factors linked by feedback relationships. SDM can potentially overcome limitations in contemporary WD models by uncovering causal feedback relationships, and conceptualizing dynamic system behaviors. It employs a collaborative and stakeholder-based model building methodology to create a visual depiction of the system as a whole. SDM can also enable researchers to run dynamic simulations to provide evidence of anticipated or unanticipated outcomes that could result from policy and programmatic intervention. SDM may advance rehabilitation research by providing greater insights into the structure and dynamics of WD systems while helping to understand inherent complexity. Challenges related to data availability, determining validity, and the extensive time and technical skill requirements for model building may limit SDM's use in the field and should be considered. Contemporary work disability (WD) models provide limited insight into complexity associated with WD processes. System dynamics modeling (SDM) has the potential to capture complexity through a stakeholder-based approach that generates a simulation model consisting of multiple feedback loops. SDM may enable WD researchers and practitioners to understand the structure and behavior of the WD system as a whole, and inform development of improved strategies to manage straightforward and complex WD cases.

  20. Capturing Dynamics of Biased Attention: Are New Attention Variability Measures the Way Forward?

    Directory of Open Access Journals (Sweden)

    Anne-Wil Kruijt

    Full Text Available New indices, calculated on data from the widely used Dot Probe Task, were recently proposed to capture variability in biased attention allocation. We observed that it remains unclear which data pattern is meant to be indicative of dynamic bias and thus to be captured by these indices. Moreover, we hypothesized that the new indices are sensitive to SD differences at the response time (RT level in the absence of bias.Randomly generated datasets were analyzed to assess properties of the Attention Bias Variability (ABV and Trial Level Bias Score (TL-BS indices. Sensitivity to creating differences in 1 RT standard deviation, 2 mean RT, and 3 bias magnitude were assessed. In addition, two possible definitions of dynamic attention bias were explored by creating differences in 4 frequency of bias switching, and 5 bias magnitude in the presence of constant switching.ABV and TL-BS indices were found highly sensitive to increasing SD at the response time level, insensitive to increasing bias, linearly sensitive to increasing bias magnitude in the presence of bias switches, and non-linearly sensitive to increasing the frequency of bias switches. The ABV index was also found responsive to increasing mean response times in the absence of bias.Recently proposed DPT derived variability indices cannot uncouple measurement error from bias variability. Significant group differences may be observed even if there is no bias present in any individual dataset. This renders the new indices in their current form unfit for empirical purposes. Our discussion focuses on fostering debate and ideas for new research to validate the potentially very important notion of biased attention being dynamic.

  1. Multiphase, multicomponent simulations and experiments of reactive flow, relevant for combining geologic CO2 sequestration with geothermal energy capture

    Science.gov (United States)

    Saar, Martin O.

    2011-11-01

    Understanding the fluid dynamics of supercritical carbon dioxide (CO2) in brine- filled porous media is important for predictions of CO2 flow and brine displacement during geologic CO2 sequestration and during geothermal energy capture using sequestered CO2 as the subsurface heat extraction fluid. We investigate multiphase fluid flow in porous media employing particle image velocimetry experiments and lattice-Boltzmann fluid flow simulations at the pore scale. In particular, we are interested in the motion of a drop (representing a CO2 bubble) through an orifice in a plate, representing a simplified porous medium. In addition, we study single-phase/multicomponent reactive transport experimentally by injecting water with dissolved CO2 into rocks/sediments typically considered for CO2 sequestration to investigate how resultant fluid-mineral reactions modify permeability fields. Finally, we investigate numerically subsurface CO2 and heat transport at the geologic formation scale.

  2. Determination of the Electron Neutrino Mass from Experiments on Electron-Capture Beta-Decay (EC)

    CERN Multimedia

    2002-01-01

    The aim of the programme is to measure the electron-neutrino mass, for which at present an upper limit of 500~eV is known. \\\\ \\\\ The experiment studies the shape of the internal bremsstrahlung spectrum in electron-capture near its upper end-point and deduces a mass from small shape changes completely analogous to those in the well-known determination of the electron antineutrino mass in the tritium beta-minus decay. \\\\ \\\\ In a low-energy bremsstrahlung process, the capture takes place from a virtual S state associated with a radiative P~@A~S electromagnetic transition, and the resonant nature of the process leads to important enhancements of the photon intensities at low energy, in particular near the resonance energies co (X-rays). This effect gives this type of experiment a chance to compete with experiments on continuous beta spectra. \\\\ \\\\ The programme concentrates on two long-lived isotopes: \\\\ \\\\ 1)~~|1|6|3Ho. The Q value for this isotope has been found to be 2.6-2.7 keV. A detector specially construct...

  3. Dynamic culture substrate that captures a specific extracellular matrix protein in response to light

    International Nuclear Information System (INIS)

    Nakanishi, Jun; Nakayama, Hidekazu; Horiike, Yasuhiro; Yamaguchi, Kazuo; Garcia, Andres J

    2011-01-01

    The development of methods for the off-on switching of immobilization or presentation of cell-adhesive peptides and proteins during cell culture is important because such surfaces are useful for the analysis of the dynamic processes of cell adhesion and migration. This paper describes a chemically functionalized gold substrate that captures a genetically tagged extracellular matrix protein in response to light. The substrate was composed of mixed self-assembled monolayers (SAMs) of three disulfide compounds containing (i) a photocleavable poly(ethylene glycol) (PEG), (ii) nitrilotriacetic acid (NTA) and (iii) hepta(ethylene glycol) (EG 7 ). Although the NTA group has an intrinsic high affinity for oligohistidine tag (His-tag) sequences in its Ni 2+ -ion complex, the interaction was suppressed by the steric hindrance of coexisting PEG on the substrate surface. Upon photoirradiation of the substrate to release the PEG chain from the surface, this interaction became possible and hence the protein was captured at the irradiated regions, while keeping the non-specific adsorption of non-His-tagged proteins blocked by the EG 7 underbrush. In this way, we selectively immobilized a His-tagged fibronectin fragment (FNIII 7-10 ) to the irradiated regions. In contrast, when bovine serum albumin-a major serum protein-was added as a non-His-tagged protein, the surface did not permit its capture, with or without irradiation. In agreement with these results, cells were selectively attached to the irradiated patterns only when a His-tagged FNIII 7-10 was added to the medium. These results indicate that the present method is useful for studying the cellular behavior on the specific extracellular matrix protein in cell-culturing environments.

  4. Dynamic culture substrate that captures a specific extracellular matrix protein in response to light

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Jun; Nakayama, Hidekazu; Horiike, Yasuhiro [World Premier International (WPI) Research Center Initiative, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science - NIMS (Japan); Yamaguchi, Kazuo [Department of Chemistry, Faculty of Science and Research Institute for Photofunctionalized Materials, Kanagawa University (Japan); Garcia, Andres J, E-mail: NAKANISHI.Jun@nims.go.jp [Institute for Bioengineering and Bioscience, Woodruff School of Mechanical Engineering, Georgia Institute of Technology (United States)

    2011-08-15

    The development of methods for the off-on switching of immobilization or presentation of cell-adhesive peptides and proteins during cell culture is important because such surfaces are useful for the analysis of the dynamic processes of cell adhesion and migration. This paper describes a chemically functionalized gold substrate that captures a genetically tagged extracellular matrix protein in response to light. The substrate was composed of mixed self-assembled monolayers (SAMs) of three disulfide compounds containing (i) a photocleavable poly(ethylene glycol) (PEG), (ii) nitrilotriacetic acid (NTA) and (iii) hepta(ethylene glycol) (EG{sub 7}). Although the NTA group has an intrinsic high affinity for oligohistidine tag (His-tag) sequences in its Ni{sup 2+}-ion complex, the interaction was suppressed by the steric hindrance of coexisting PEG on the substrate surface. Upon photoirradiation of the substrate to release the PEG chain from the surface, this interaction became possible and hence the protein was captured at the irradiated regions, while keeping the non-specific adsorption of non-His-tagged proteins blocked by the EG{sub 7} underbrush. In this way, we selectively immobilized a His-tagged fibronectin fragment (FNIII{sub 7-10}) to the irradiated regions. In contrast, when bovine serum albumin-a major serum protein-was added as a non-His-tagged protein, the surface did not permit its capture, with or without irradiation. In agreement with these results, cells were selectively attached to the irradiated patterns only when a His-tagged FNIII{sub 7-10} was added to the medium. These results indicate that the present method is useful for studying the cellular behavior on the specific extracellular matrix protein in cell-culturing environments.

  5. Dynamic culture substrate that captures a specific extracellular matrix protein in response to light

    Directory of Open Access Journals (Sweden)

    Jun Nakanishi, Hidekazu Nakayama, Kazuo Yamaguchi, Andres J Garcia and Yasuhiro Horiike

    2011-01-01

    Full Text Available The development of methods for the off–on switching of immobilization or presentation of cell-adhesive peptides and proteins during cell culture is important because such surfaces are useful for the analysis of the dynamic processes of cell adhesion and migration. This paper describes a chemically functionalized gold substrate that captures a genetically tagged extracellular matrix protein in response to light. The substrate was composed of mixed self-assembled monolayers (SAMs of three disulfide compounds containing (i a photocleavable poly(ethylene glycol (PEG, (ii nitrilotriacetic acid (NTA and (iii hepta(ethylene glycol (EG7. Although the NTA group has an intrinsic high affinity for oligohistidine tag (His-tag sequences in its Ni2+-ion complex, the interaction was suppressed by the steric hindrance of coexisting PEG on the substrate surface. Upon photoirradiation of the substrate to release the PEG chain from the surface, this interaction became possible and hence the protein was captured at the irradiated regions, while keeping the non-specific adsorption of non-His-tagged proteins blocked by the EG7 underbrush. In this way, we selectively immobilized a His-tagged fibronectin fragment (FNIII7–10 to the irradiated regions. In contrast, when bovine serum albumin—a major serum protein—was added as a non-His-tagged protein, the surface did not permit its capture, with or without irradiation. In agreement with these results, cells were selectively attached to the irradiated patterns only when a His-tagged FNIII7-10 was added to the medium. These results indicate that the present method is useful for studying the cellular behavior on the specific extracellular matrix protein in cell-culturing environments.

  6. Capturing dynamic processes of change in GROW mutual help groups for mental health.

    Science.gov (United States)

    Finn, Lizzie D; Bishop, Brian J; Sparrow, Neville

    2009-12-01

    The need for a model that can portray dynamic processes of change in mutual help groups for mental health (MHGMHs) is emphasized. A dynamic process model has the potential to capture a more comprehensive understanding of how MHGMHs may assist their members. An investigation into GROW, a mutual help organization for mental health, employed ethnographic, phenomenological and collaborative research methods. The study examined how GROW impacts on psychological well being. Study outcomes aligned with the social ecological paradigm (Maton in Understanding the self-help organization: frameworks and findings. Sage, Thousand Oaks 1994) indicating multifactorial processes of change at and across three levels of analysis: group level, GROW program/community level and individual level. Outcome themes related to life skills acquisition and a change in self-perception in terms of belonging within community and an increased sense of personal value. The GROW findings are used to assist development of a dynamic multi-dimensional process model to explain how MHGMHs may promote positive change.

  7. Spatial dynamics in the Experience Economy

    DEFF Research Database (Denmark)

    The volume consists of 14 chapters, each presenting original research contributions. The book explores the dynamics of place, location and territories related to the experience economy. Three overall perspectives permeate the contributions of the book. The first is related to innovation and innov...... and innovation processes in the experience economy. The second is related to the governance of experiential innnovation and development. The third is the role of place in creating experiential value and vice versa....

  8. Application of the GEM Inventory Data Capture Tools for Dynamic Vulnerability Assessment and Recovery Modelling

    Science.gov (United States)

    Verrucci, Enrica; Bevington, John; Vicini, Alessandro

    2014-05-01

    A set of open-source tools to create building exposure datasets for seismic risk assessment was developed from 2010-13 by the Inventory Data Capture Tools (IDCT) Risk Global Component of the Global Earthquake Model (GEM). The tools were designed to integrate data derived from remotely-sensed imagery, statistically-sampled in-situ field data of buildings to generate per-building and regional exposure data. A number of software tools were created to aid the development of these data, including mobile data capture tools for in-field structural assessment, and the Spatial Inventory Data Developer (SIDD) for creating "mapping schemes" - statistically-inferred distributions of building stock applied to areas of homogeneous urban land use. These tools were made publically available in January 2014. Exemplar implementations in Europe and Central Asia during the IDCT project highlighted several potential application areas beyond the original scope of the project. These are investigated here. We describe and demonstrate how the GEM-IDCT suite can be used extensively within the framework proposed by the EC-FP7 project SENSUM (Framework to integrate Space-based and in-situ sENSing for dynamic vUlnerability and recovery Monitoring). Specifically, applications in the areas of 1) dynamic vulnerability assessment (pre-event), and 2) recovery monitoring and evaluation (post-event) are discussed. Strategies for using the IDC Tools for these purposes are discussed. The results demonstrate the benefits of using advanced technology tools for data capture, especially in a systematic fashion using the taxonomic standards set by GEM. Originally designed for seismic risk assessment, it is clear the IDCT tools have relevance for multi-hazard risk assessment. When combined with a suitable sampling framework and applied to multi-temporal recovery monitoring, data generated from the tools can reveal spatio-temporal patterns in the quality of recovery activities and resilience trends can be

  9. Capturing Chemistry in Action with Electrons: Realization of Atomically Resolved Reaction Dynamics.

    Science.gov (United States)

    Ischenko, Anatoly A; Weber, Peter M; Miller, R J Dwayne

    2017-08-23

    One of the grand challenges in chemistry has been to directly observe atomic motions during chemical processes. The depiction of the nuclear configurations in space-time to understand barrier crossing events has served as a unifying intellectual theme connecting the different disciplines of chemistry. This challenge has been cast as an imaging problem in which the technical issues reduce to achieving not only sufficient simultaneous space-time resolution but also brightness for sufficient image contrast to capture the atomic motions. This objective has been met with electrons as the imaging source. The review chronicles the first use of electron structural probes to study reactive intermediates, to the development of high bunch charge electron pulses with sufficient combined spatial-temporal resolution and intensity to literally light up atomic motions, as well as the means to characterize the electron pulses in terms of temporal brightness and image reconstruction. The use of femtosecond Rydberg spectroscopy as a novel means to use internal electron scattering within the molecular reference frame to obtain similar information on reaction dynamics is also discussed. The focus is on atomically resolved chemical reaction dynamics with pertinent references to work in other areas and forms of spectroscopy that provide additional information. Effectively, we can now directly observe the far-from-equilibrium atomic motions involved in barrier crossing and categorize chemistry in terms of a power spectrum of a few dominant reaction modes. It is this reduction in dimensionality that makes chemical reaction mechanisms transferrable to seemingly arbitrarily complex (large N) systems, up to molecules as large as biological macromolecules (N > 1000 atoms). We now have a new way to reformulate reaction mechanisms using an experimentally determined dynamic mode basis that in combination with recent theoretical advances has the potential to lead to a new conceptual basis for

  10. Dynamic plasma screening effects on electron capture process in hydrogenic ion fully stripped ion collisions in dense plasmas

    International Nuclear Information System (INIS)

    Jung, Y.

    1997-01-01

    In dense plasmas, dynamic plasma screening effects are investigated on electron capture from hydrogenic ions by past fully stripped ions. The classical Bohr Lindhard model has been applied to obtain the electron capture probability. The interaction potential in dense plasmas is represented in terms of the longitudinal dielectric function. The classical straight-line trajectory approximation is applied to the motion of the projectile ion in order to visualize the electron capture probability as a function of the impact parameter, projectile energy, and plasma parameters. The electron capture probability including the dynamic plasma screening effect is always greater than that including the static plasma screening effect. When the projectile velocity is smaller than the electron thermal velocity, the dynamic polarization screening effect becomes the static plasma screening effect. When the projectile velocity is greater than the plasma electron thermal velocity, the interaction potential is almost unshielded. The difference between the dynamic and static plasma screening effects is more significant for low energy projectiles. It is found that the static screening formula obtained by the Debye Hueckel model overestimates the plasma screening effects on the electron capture processes in dense plasmas. copyright 1997 American Institute of Physics

  11. Bubble and Drop Nonlinear Dynamics experiment

    Science.gov (United States)

    2003-01-01

    The Bubble and Drop Nonlinear Dynamics (BDND) experiment was designed to improve understanding of how the shape and behavior of bubbles respond to ultrasound pressure. By understanding this behavior, it may be possible to counteract complications bubbles cause during materials processing on the ground. This 12-second sequence came from video downlinked from STS-94, July 5 1997, MET:3/19:15 (approximate). The BDND guest investigator was Gary Leal of the University of California, Santa Barbara. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced fluid dynamics experiments will be a part of investigations plarned for the International Space Station. (189KB JPEG, 1293 x 1460 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300163.html.

  12. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components

    DEFF Research Database (Denmark)

    Alabert, Constance; Bukowski-Wills, Jimi-Carlo; Lee, Sung-Po

    2014-01-01

    To maintain genome function and stability, DNA sequence and its organization into chromatin must be duplicated during cell division. Understanding how entire chromosomes are copied remains a major challenge. Here, we use nascent chromatin capture (NCC) to profile chromatin proteome dynamics during...... replication in human cells. NCC relies on biotin-dUTP labelling of replicating DNA, affinity purification and quantitative proteomics. Comparing nascent chromatin with mature post-replicative chromatin, we provide association dynamics for 3,995 proteins. The replication machinery and 485 chromatin factors...... such as CAF-1, DNMT1 and SUV39h1 are enriched in nascent chromatin, whereas 170 factors including histone H1, DNMT3, MBD1-3 and PRC1 show delayed association. This correlates with H4K5K12diAc removal and H3K9me1 accumulation, whereas H3K27me3 and H3K9me3 remain unchanged. Finally, we combine NCC enrichment...

  13. A user-orientated approach to provenance capture and representation for in silico experiments, explored within the atmospheric chemistry community.

    Science.gov (United States)

    Martin, Chris J; Haji, Mohammed H; Jimack, Peter K; Pilling, Michael J; Dew, Peter M

    2009-07-13

    We present a novel user-orientated approach to provenance capture and representation for in silico experiments, contrasted against the more systems-orientated approaches that have been typical within the e-Science domain. In our approach, we seek to capture the scientist's reasoning in the form of annotations as an experiment evolves, while using the scientist's terminology in the representation of process provenance. Our user-orientated approach is applied in a case study within the atmospheric chemistry domain: we consider the design, development and evaluation of an electronic laboratory notebook, a provenance capture and storage tool, for iterative model development.

  14. Non-Markovian dynamics of quantum systems: decay rate, capture and pure states

    International Nuclear Information System (INIS)

    Kanokov, Z.; Palchikov, Yu.V.; Antonenko, N.V.; Adamian, G.G.; Kanokov, Z.; Adamian, G.G.; Scheid, W.

    2004-01-01

    Full text: With the exact numerical solution of the equation for the reduced density matrix we found a minor role of the time dependence of the friction and diffusion coefficients in the escape rate from a potential well [1]. Since the used friction and diffusion coefficients were self- consistently under certain approximations derived, they preserve the positivity of the density matrix at any time. The mixed diffusion coefficient leads to a decrease of the escape rate. Since the used value of quantum diffusion coefficient in momentum is larger than the one following from a 'classic' treatment, the obtained escape rate is close to the rate calculated with the 'classic' set of diffusion coefficients. If the regime of motion is close to the under damped case or the temperature is small, the quasi-stationary escape rate can increase with friction. This is explained by the larger role of the increasing diffusion in the decay process. The agreement of the escape rate obtained with the analytical expressions in comparison to numerically calculated data depends on the characteristics of the considered system. The agreement is better in the overdamped regime. However, for any regime the deviations are not larger than in the case of the classical Kramers formula. Therefore, the analytical expressions can be applied in a large range of parameters for the potential and diffusion coefficients. We demonstrated that the uncertainty function is related to the linear entropy. The diffusion coefficients supplying the purity of states were elaborated for the non-Markovian dynamics. The obtained dependences of the capture probability on the friction proves that the quantum nature of this process should be taken into consideration when one calculates the capture cross section in nucleus-nucleus collisions

  15. Using Grounded Theory Method to Capture and Analyze Health Care Experiences

    Science.gov (United States)

    Foley, Geraldine; Timonen, Virpi

    2015-01-01

    Objective Grounded theory (GT) is an established qualitative research method, but few papers have encapsulated the benefits, limits, and basic tenets of doing GT research on user and provider experiences of health care services. GT can be used to guide the entire study method, or it can be applied at the data analysis stage only. Methods We summarize key components of GT and common GT procedures used by qualitative researchers in health care research. We draw on our experience of conducting a GT study on amyotrophic lateral sclerosis patients’ experiences of health care services. Findings We discuss why some approaches in GT research may work better than others, particularly when the focus of study is hard-to-reach population groups. We highlight the flexibility of procedures in GT to build theory about how people engage with health care services. Conclusion GT enables researchers to capture and understand health care experiences. GT methods are particularly valuable when the topic of interest has not previously been studied. GT can be applied to bring structure and rigor to the analysis of qualitative data. PMID:25523315

  16. SFINX: Soviet-French integral experiment on measuring the capture and fission at Masurca and BFS

    International Nuclear Information System (INIS)

    Doulin, V.A.; Mikhailov, J.M.; Mozhaev, V.K.

    1990-01-01

    The SFINX experiment was aimed at the comparison of experimental procedures used at the MASURCA and the BFS critical assemblies for measuring the ratio of the 238 U and 239 Pu average fission cross-sections to the 235 U average cross-section (F8/F5, F9/F5) and of the 238 U average capture cross-section to the 239 Pu average fission cross section (C8/F9). As part of the calibration of the measurements F8/F5 and F9/F5 were also measured in a thermal column. To obtain C8/F9, absolute measurements of capture rates in 238 U and fission rates in 239 Pu and 235 U were carried out. The measurements were made in September 1987 at the MASURCA facility (FRANCE) in the BALZAC 1 critical assembly and in the thermal column of the HARMONIE facility. In April 1989 these measurements were complemented by joint measurements of the 239 Pu absolute fission rate at the BFS 55-1 critical assembly (USSR)

  17. Data Mining to Capture User-Experience: A Case Study in Notebook Product Appearance Design

    OpenAIRE

    Rhoann Kerh; Chen-Fu Chien; Kuo-Yi Lin

    2014-01-01

    In the era of rapidly increasing notebook market, consumer electronics manufacturers are facing a highly dynamic and competitive environment. In particular, the product appearance is the first part for user to distinguish the product from the product of other brands. Notebook product should differ in its appearance to engage users and contribute to the user experience (UX). The UX evaluates various product concepts to find the design for user needs; in addition, help the designer to further u...

  18. MISTY ECHO tunnel dynamics experiment data report

    International Nuclear Information System (INIS)

    Phillips, J.S.; Luke, B.A.; Long, J.W.; Lee, J.G.

    1992-04-01

    Tunnel damage resulting from seismic loading is an important issue for the Yucca Mountain nuclear waste repository. The tunnel dynamics experiment was designed to obtain and document ground motions, permanent displacements, observable changes in fracture patterns, and visible damage at ground motion levels of interest to the Yucca Mountain Project. Even though the maximum free-field loading on this tunnel was 28 g, the damage observed was minor. Fielding details, data obtained, and supporting documentation are reported

  19. Electronic data capture in a rural African setting: evaluating experiences with different systems in Malawi.

    Science.gov (United States)

    King, Carina; Hall, Jenny; Banda, Masford; Beard, James; Bird, Jon; Kazembe, Peter; Fottrell, Ed

    2014-01-01

    As hardware for electronic data capture (EDC), such as smartphones or tablets, becomes cheaper and more widely available, the potential for using such hardware as data capture tools in routine healthcare and research is increasing. We aim to highlight the advantages and disadvantages of four EDC systems being used simultaneously in rural Malawi: two for Android devices (CommCare and ODK Collect), one for PALM and Windows OS (Pendragon), and a custom-built application for Android (Mobile InterVA--MIVA). We report on the personal field and development experience of fieldworkers, project managers, and EDC system developers. Fieldworkers preferred using EDC to paper-based systems, although some struggled with the technology at first. Highlighted features include in-built skip patterns for all systems, and specifically the 'case' function that CommCare offers. MIVA as a standalone app required considerably more time and expertise than the other systems to create and could not be customised for our specific research needs; however, it facilitates standardised routine data collection. CommCare and ODK Collect both have user-friendly web-interfaces for form development and good technical support. CommCare requires Internet to build an application and download it to a device, whereas all steps can be done offline with ODK Collect, a desirable feature in low connectivity settings. Pendragon required more complex programming of logic, using a Microsoft Access application, and generally had less technical support. Start-up costs varied between systems, and all were considered more expensive than setting up a paper-based system; however running costs were generally low and therefore thought to be cost-effective over the course of our projects. EDC offers many opportunities for efficient data collection, but brings some issues requiring consideration when designing a study; the decision of which hardware and software to use should be informed by the aim of data collection

  20. Capturing the Experience: Reflections of Women With Breast Cancer Engaged in an Expressive Writing Intervention.

    Science.gov (United States)

    Gripsrud, Birgitta Haga; Brassil, Kelly J; Summers, Barbara; Søiland, Håvard; Kronowitz, Steven; Lode, Kirsten

    2016-01-01

    Expressive writing has been shown to improve quality of life, fatigue, and posttraumatic stress among breast cancer patients across cultures. Understanding how and why the method may be beneficial to patients can increase awareness of the psychosocial impact of breast cancer and enhance interventional work within this population. Qualitative research on experiential aspects of interventions may inform the theoretical understanding and generate hypotheses for future studies. The aim of the study was to explore and describe the experience and feasibility of expressive writing among women with breast cancer following mastectomy and immediate or delayed reconstructive surgery. Seven participants enrolled to undertake 4 episodes of expressive writing at home, with semistructured interviews conducted afterward and analyzed using experiential thematic analysis. Three themes emerged through analysis: writing as process, writing as therapeutic, and writing as a means to help others. Findings illuminate experiential variations in expressive writing and how storytelling encourages a release of cognitive and emotional strains, surrendering these to reside in the text. The method was said to process feelings and capture experiences tied to a new and overwhelming illness situation, as impressions became expressions through writing. Expressive writing, therefore, is a valuable tool for healthcare providers to introduce into the plan of care for patients with breast cancer and potentially other cancer patient groups. This study augments existing evidence to support the appropriateness of expressive writing as an intervention after a breast cancer diagnosis. Further studies should evaluate its feasibility at different time points in survivorship.

  1. Dynamic consideration of smog chamber experiments

    Directory of Open Access Journals (Sweden)

    W. K. Chuang

    2017-08-01

    Full Text Available Recent studies of the α-pinene + ozone reaction that address particle nucleation show relatively high molar yields of highly oxidized multifunctional organic molecules with very low saturation concentrations that can form and grow new particles on their own. However, numerous smog-chamber experiments addressing secondary organic aerosol (SOA mass yields, interpreted via equilibrium partitioning theory, suggest that the vast majority of SOA from α-pinene is semivolatile. We explore this paradox by employing a dynamic volatility basis set (VBS model that reproduces the new-particle growth rates observed in the CLOUD experiment at CERN and then modeling SOA mass yield experiments conducted at Carnegie Mellon University (CMU. We find that the base-case simulations do overpredict observed SOA mass but by much less than an equilibrium analysis would suggest; this is because delayed condensation of vapors suppresses the apparent mass yields early in the chamber experiments. We further find that a second VBS model featuring substantial oligomerization of semivolatile monomers can match the CLOUD growth rates with substantially lower SOA mass yields; this is because the lighter monomers have a higher velocity and thus a higher condensation rate for a given mass concentration. The oligomerization simulations are a closer match to the CMU experiments than the base-case simulations, though they overpredict the observations somewhat. However, we also find that if the chemical conditions in CLOUD and the CMU chamber were identical, substantial nucleation would have occurred in the CMU experiments when in fact none occurred. This suggests that the chemical mechanisms differed in the two experiments, perhaps because the high oxidation rates in the SOA formation experiments led to rapid termination of peroxy radical chemistry.

  2. Dynamic consideration of smog chamber experiments

    Science.gov (United States)

    Chuang, Wayne K.; Donahue, Neil M.

    2017-08-01

    Recent studies of the α-pinene + ozone reaction that address particle nucleation show relatively high molar yields of highly oxidized multifunctional organic molecules with very low saturation concentrations that can form and grow new particles on their own. However, numerous smog-chamber experiments addressing secondary organic aerosol (SOA) mass yields, interpreted via equilibrium partitioning theory, suggest that the vast majority of SOA from α-pinene is semivolatile. We explore this paradox by employing a dynamic volatility basis set (VBS) model that reproduces the new-particle growth rates observed in the CLOUD experiment at CERN and then modeling SOA mass yield experiments conducted at Carnegie Mellon University (CMU). We find that the base-case simulations do overpredict observed SOA mass but by much less than an equilibrium analysis would suggest; this is because delayed condensation of vapors suppresses the apparent mass yields early in the chamber experiments. We further find that a second VBS model featuring substantial oligomerization of semivolatile monomers can match the CLOUD growth rates with substantially lower SOA mass yields; this is because the lighter monomers have a higher velocity and thus a higher condensation rate for a given mass concentration. The oligomerization simulations are a closer match to the CMU experiments than the base-case simulations, though they overpredict the observations somewhat. However, we also find that if the chemical conditions in CLOUD and the CMU chamber were identical, substantial nucleation would have occurred in the CMU experiments when in fact none occurred. This suggests that the chemical mechanisms differed in the two experiments, perhaps because the high oxidation rates in the SOA formation experiments led to rapid termination of peroxy radical chemistry.

  3. A dynamic mathematical model for packed columns in carbon capture plants

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Jørgensen, John Bagterp; Fosbøl, Philip Loldrup

    2015-01-01

    simulation using monoethanolamine (MEA) and piperazine (PZ) as solvent. MEA is considered as the base-case solvent in the carbon capture business. The effect of changes in the flue gas flow rate and changes in the available steam are investigated to determine their influence on the performance of the capture...

  4. Capturing the experiences of patients across multiple complex interventions: a meta-qualitative approach.

    Science.gov (United States)

    Webster, Fiona; Christian, Jennifer; Mansfield, Elizabeth; Bhattacharyya, Onil; Hawker, Gillian; Levinson, Wendy; Naglie, Gary; Pham, Thuy-Nga; Rose, Louise; Schull, Michael; Sinha, Samir; Stergiopoulos, Vicky; Upshur, Ross; Wilson, Lynn

    2015-09-08

    The perspectives, needs and preferences of individuals with complex health and social needs can be overlooked in the design of healthcare interventions. This study was designed to provide new insights on patient perspectives drawing from the qualitative evaluation of 5 complex healthcare interventions. Patients and their caregivers were recruited from 5 interventions based in primary, hospital and community care in Ontario, Canada. We included 62 interviews from 44 patients and 18 non-clinical caregivers. Our team analysed the transcripts from 5 distinct projects. This approach to qualitative meta-evaluation identifies common issues described by a diverse group of patients, therefore providing potential insights into systems issues. This study is a secondary analysis of qualitative data; therefore, no outcome measures were identified. We identified 5 broad themes that capture the patients' experience and highlight issues that might not be adequately addressed in complex interventions. In our study, we found that: (1) the emergency department is the unavoidable point of care; (2) patients and caregivers are part of complex and variable family systems; (3) non-medical issues mediate patients' experiences of health and healthcare delivery; (4) the unanticipated consequences of complex healthcare interventions are often the most valuable; and (5) patient experiences are shaped by the healthcare discourses on medically complex patients. Our findings suggest that key assumptions about patients that inform intervention design need to be made explicit in order to build capacity to better understand and support patients with multiple chronic diseases. Across many health systems internationally, multiple models are being implemented simultaneously that may have shared features and target similar patients, and a qualitative meta-evaluation approach, thus offers an opportunity for cumulative learning at a system level in addition to informing intervention design and

  5. Seasonal Synchronization of a Simple Stochastic Dynamical Model Capturing El Niño Diversity

    Science.gov (United States)

    Thual, S.; Majda, A.; Chen, N.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) has significant impact on global climate and seasonal prediction. Recently, a simple ENSO model was developed that automatically captures the ENSO diversity and intermittency in nature, where state-dependent stochastic wind bursts and nonlinear advection of sea surface temperature (SST) are coupled to simple ocean-atmosphere processes that are otherwise deterministic, linear and stable. In the present article, it is further shown that the model can reproduce qualitatively the ENSO synchronization (or phase-locking) to the seasonal cycle in nature. This goal is achieved by incorporating a cloud radiative feedback that is derived naturally from the model's atmosphere dynamics with no ad-hoc assumptions and accounts in simple fashion for the marked seasonal variations of convective activity and cloud cover in the eastern Pacific. In particular, the weak convective response to SSTs in boreal fall favors the eastern Pacific warming that triggers El Niño events while the increased convective activity and cloud cover during the following spring contributes to the shutdown of those events by blocking incoming shortwave solar radiations. In addition to simulating the ENSO diversity with realistic non-Gaussian statistics in different Niño regions, both the eastern Pacific moderate and super El Niño, the central Pacific El Niño as well as La Niña show a realistic chronology with a tendency to peak in boreal winter as well as decreased predictability in spring consistent with the persistence barrier in nature. The incorporation of other possible seasonal feedbacks in the model is also documented for completeness.

  6. Dynamic infrared imaging for cancer: research and development in the Argentine Boron neutron capture therapy

    International Nuclear Information System (INIS)

    Santa Cruz, Gustavo A.; Bertotti, J.; Marin, J.

    2009-01-01

    In the framework of the Argentine Boron Neutron Capture Therapy (BNCT) project for treating metastatic cutaneous melanoma, we have initiated a research and development program aimed at obtaining a noninvasive methodology for following-up the treated patients. The technique is called Dynamic Infrared Imaging (DIRI) and comprises the acquisition of infrared images as a function of time of the anatomical part under study, when the region is subjected to a mild cold stress. Vascular, metabolic and regulating differences between normal and tumor tissues appear as differences in the pattern of temperature evolution, which can be correlated with the anatomical and functional aspects of both. Two patients enrolled in the BNCT protocol were studied with DIRI. A good spatial correlation between dose, temperature recovery velocity and skin reaction distributions was observed at the time of maximum expression of the erythematous reaction. Melanoma nodules appear as highly localized hyperthermic regions, surrounded and interconnected by elevated temperature areas. Their temperature recovery velocity after the thermal cold stress was substantially faster than that of normal skin with an appreciably large temperature difference (6 degreesC to 10 degreesC). These tissue differences can be related with the thermal conductivity and metabolic rate as explained by a simple one-directional heat transport model. Compared with other imaging modalities (CT and Doppler ultrasound) DIRI has had a similar ability for confirming the already diagnosed nodules. Together with the clinical observation, DIRI provides a potentially useful amount of information, at a competitive cost-benefit relationship suitable for performing a non-invasive functional assessment of this kind of cutaneous lesions and the evaluation of the acute skin reaction following irradiation. (author)

  7. Capturing the dynamics of response variability in the brain in ADHD

    Directory of Open Access Journals (Sweden)

    Janna van Belle

    2015-01-01

    Full Text Available ADHD is characterized by increased intra-individual variability in response times during the performance of cognitive tasks. However, little is known about developmental changes in intra-individual variability, and how these changes relate to cognitive performance. Twenty subjects with ADHD aged 7–24 years and 20 age-matched, typically developing controls participated in an fMRI-scan while they performed a go-no-go task. We fit an ex-Gaussian distribution on the response distribution to objectively separate extremely slow responses, related to lapses of attention, from variability on fast responses. We assessed developmental changes in these intra-individual variability measures, and investigated their relation to no-go performance. Results show that the ex-Gaussian measures were better predictors of no-go performance than traditional measures of reaction time. Furthermore, we found between-group differences in the change in ex-Gaussian parameters with age, and their relation to task performance: subjects with ADHD showed age-related decreases in their variability on fast responses (sigma, but not in lapses of attention (tau, whereas control subjects showed a decrease in both measures of variability. For control subjects, but not subjects with ADHD, this age-related reduction in variability was predictive of task performance. This group difference was reflected in neural activation: for typically developing subjects, the age-related decrease in intra-individual variability on fast responses (sigma predicted activity in the dorsal anterior cingulate gyrus (dACG, whereas for subjects with ADHD, activity in this region was related to improved no-go performance with age, but not to intra-individual variability. These data show that using more sophisticated measures of intra-individual variability allows the capturing of the dynamics of task performance and associated neural changes not permitted by more traditional measures.

  8. Preliminary analysis of the MER magnetic properties experiment using a computational fluid dynamics model

    DEFF Research Database (Denmark)

    Kinch, K.M.; Merrison, J.P.; Gunnlaugsson, H.P.

    2006-01-01

    Motivated by questions raised by the magnetic properties experiments on the NASA Mars Pathfinder and Mars Exploration Rover (MER) missions, we have studied in detail the capture of airborne magnetic dust by permanent magnets using a computational fluid dynamics (CFD) model supported by laboratory...... simulations. The magnets studied are identical to the capture magnet and filter magnet on MER, though results are more generally applicable. The dust capture process is found to be dependent upon wind speed, dust magnetization, dust grain size and dust grain mass density. Here we develop an understanding...... of how these parameters affect dust capture rates and patterns on the magnets and set bounds for these parameters based on MER data and results from the numerical model. This results in a consistent picture of the dust as containing varying amounts of at least two separate components with different...

  9. Response trajectories capture the continuous dynamics of the size congruity effect.

    Science.gov (United States)

    Faulkenberry, Thomas J; Cruise, Alexander; Lavro, Dmitri; Shaki, Samuel

    2016-01-01

    In a comparison task involving numbers, the size congruity effect refers to the general finding that responses are usually faster when there is a match between numerical size and physical size (e.g., 2-8) than when there is a mismatch (e.g., 2-8). In the present study, we used computer mouse tracking to test two competing models of the size congruity effect: an early interaction model, where interference occurs at an early representational stage, and a late interaction model, where interference occurs as dynamic competition between response options. In three experiments, we found that the curvature of responses for incongruent trials was greater than for congruent trials. In Experiment 2 we showed that this curvature effect was reliably modulated by the numerical distance between the two stimulus numbers, with large distance pairs exhibiting a larger curvature effect than small distance pairs. In Experiment 3 we demonstrated that the congruity effects persist into response execution. These findings indicate that incongruities between numerical and physical sizes are carried throughout the response process and result from competition between parallel and partially active response options, lending further support to a late interaction model of the size congruity effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Examples of the nonlinear dynamics of ballistic capture and escape in the earth-moon system

    Science.gov (United States)

    Belbruno, Edward A.

    1990-01-01

    An example of a trajectory is given which is initially captured in an elliptic resonant orbit about the earth and then ballistically escapes the earth-moon system. This is demonstrated by a numerical example in three-dimensions using a planetary ephemeris. Another example shows a mechanism of how an elliptic orbit about the earth can increase its energy by performing a complex nonlinear transition to an elliptic orbit of a larger semi-major axis. Capture is also considered. An application of ballistic capture at the moon via an unstable periodic orbit using the four-body sun-earth-moon-S/C interaction is described.

  11. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview

    Science.gov (United States)

    2018-01-01

    With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA–ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field. PMID:29297679

  12. Electronic data capture in a rural African setting: evaluating experiences with different systems in Malawi

    Directory of Open Access Journals (Sweden)

    Carina King

    2014-10-01

    Full Text Available Background: As hardware for electronic data capture (EDC, such as smartphones or tablets, becomes cheaper and more widely available, the potential for using such hardware as data capture tools in routine healthcare and research is increasing. Objective: We aim to highlight the advantages and disadvantages of four EDC systems being used simultaneously in rural Malawi: two for Android devices (CommCare and ODK Collect, one for PALM and Windows OS (Pendragon, and a custom-built application for Android (Mobile InterVA – MIVA. Design: We report on the personal field and development experience of fieldworkers, project managers, and EDC system developers. Results: Fieldworkers preferred using EDC to paper-based systems, although some struggled with the technology at first. Highlighted features include in-built skip patterns for all systems, and specifically the ‘case’ function that CommCare offers. MIVA as a standalone app required considerably more time and expertise than the other systems to create and could not be customised for our specific research needs; however, it facilitates standardised routine data collection. CommCare and ODK Collect both have user-friendly web-interfaces for form development and good technical support. CommCare requires Internet to build an application and download it to a device, whereas all steps can be done offline with ODK Collect, a desirable feature in low connectivity settings. Pendragon required more complex programming of logic, using a Microsoft Access application, and generally had less technical support. Start-up costs varied between systems, and all were considered more expensive than setting up a paper-based system; however running costs were generally low and therefore thought to be cost-effective over the course of our projects. Conclusions: EDC offers many opportunities for efficient data collection, but brings some issues requiring consideration when designing a study; the decision of which hardware

  13. Visual capture of action, experience of ownership, and the illusion of self-touch: a new rubber hand paradigm.

    Science.gov (United States)

    Aimola Davies, Anne M; White, Rebekah C; Thew, Graham; Aimola, Natalie M V; Davies, Martin

    2010-01-01

    A new rubber hand paradigm evokes an illusion with three conceptually distinct components: (i) the participant experiences her/his hidden right hand as administering touch at the location of the examiner's viewed administering hand (visual capture of action); (ii) the participant experiences the examiner's administering hand as being the participant's own hand (experience of ownership); and (iii) the participant experiences her/his two hands as being in contact, as if she/he were touching her/his own hand (illusion of self-touch). The presence of these illusory experiences was confirmed by questionnaire responses and proprioceptive drift data.

  14. Hardware for dynamic quantum computing experiments: Part I

    Science.gov (United States)

    Johnson, Blake; Ryan, Colm; Riste, Diego; Donovan, Brian; Ohki, Thomas

    Static, pre-defined control sequences routinely achieve high-fidelity operation on superconducting quantum processors. Efforts toward dynamic experiments depending on real-time information have mostly proceeded through hardware duplication and triggers, requiring a combinatorial explosion in the number of channels. We provide a hardware efficient solution to dynamic control with a complete platform of specialized FPGA-based control and readout electronics; these components enable arbitrary control flow, low-latency feedback and/or feedforward, and scale far beyond single-qubit control and measurement. We will introduce the BBN Arbitrary Pulse Sequencer 2 (APS2) control system and the X6 QDSP readout platform. The BBN APS2 features: a sequencer built around implementing short quantum gates, a sequence cache to allow long sequences with branching structures, subroutines for code re-use, and a trigger distribution module to capture and distribute steering information. The X6 QDSP features a single-stage DSP pipeline that combines demodulation with arbitrary integration kernels, and multiple taps to inspect data flow for debugging and calibration. We will show system performance when putting it all together, including a latency budget for feedforward operations. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office Contract No. W911NF-10-1-0324.

  15. Dynamical phase separation using a microfluidic device: experiments and modeling

    Science.gov (United States)

    Aymard, Benjamin; Vaes, Urbain; Radhakrishnan, Anand; Pradas, Marc; Gavriilidis, Asterios; Kalliadasis, Serafim; Complex Multiscale Systems Team

    2017-11-01

    We study the dynamical phase separation of a binary fluid by a microfluidic device both from the experimental and from the modeling points of view. The experimental device consists of a main channel (600 μm wide) leading into an array of 276 trapezoidal capillaries of 5 μm width arranged on both sides and separating the lateral channels from the main channel. Due to geometrical effects as well as wetting properties of the substrate, and under well chosen pressure boundary conditions, a multiphase flow introduced into the main channel gets separated at the capillaries. Understanding this dynamics via modeling and numerical simulation is a crucial step in designing future efficient micro-separators. We propose a diffuse-interface model, based on the classical Cahn-Hilliard-Navier-Stokes system, with a new nonlinear mobility and new wetting boundary conditions. We also propose a novel numerical method using a finite-element approach, together with an adaptive mesh refinement strategy. The complex geometry is captured using the same computer-aided design files as the ones adopted in the fabrication of the actual device. Numerical simulations reveal a very good qualitative agreement between model and experiments, demonstrating also a clear separation of phases.

  16. New Approaches to Capture High Frequency Agricultural Dynamics in Africa through Mobile Phones

    Science.gov (United States)

    Evans, T. P.; Attari, S.; Plale, B. A.; Caylor, K. K.; Estes, L. D.; Sheffield, J.

    2015-12-01

    Crop failure early warning systems relying on remote sensing constitute a new critical resource to assess areas where food shortages may arise, but there is a disconnect between the patterns of crop production on the ground and the environmental and decision-making dynamics that led to a particular crop production outcome. In Africa many governments use mid-growing season household surveys to get an on-the-ground assessment of current agricultural conditions. But these efforts are cost prohibitive over large scales and only offer a one-time snapshot at a particular time point. They also rely on farmers to recall past decisions and farmer recall may be imperfect when answering retrospectively on a decision made several months back (e.g. quantity of seed planted). We introduce a novel mobile-phone based approach to acquire information from farmers over large spatial extents, at high frequency at relatively low-cost compared to household survey approaches. This system makes compromises in number of questions which can feasibly be asked of a respondent (compared to household interviews), but the benefit of capturing weekly data from farmers is very exciting. We present data gathered from farmers in Kenya and Zambia to understand key dimensions of agricultural decision making such as choice of seed variety/planting date, frequency and timing of weeding/fertilizing and coping strategies such as pursuing off-farm labor. A particularly novel aspect of this work is reporting from farmers of what their expectation of end-season harvest will be on a week-by-week basis. Farmer's themselves can serve as sentinels of crop failure in this system. And farmers responses to drought are as much driven by their expectations of looming crop failure that may be different from that gleaned from remote sensing based assessment. This work is one piece of a larger design to link farmers to high-density meteorological data in Africa as an additional tool to improve crop failure early warning

  17. Phantom experiment of depth-dose distributions for gadolinium neutron capture therapy

    International Nuclear Information System (INIS)

    Matsumoto, T.; Kato, K.; Sakuma, Y.; Tsuruno, A.; Matsubayashi, M.

    1993-01-01

    Depth-dose distributions in a tumor simulated phantom were measured for thermal neutron flux, capture gamma-ray and internal conversion electron dose rates for gadolinium neutron capture therapy. The results show that (i) a significant dose enhancement can be achieved in the tumor by capture gamma-rays and internal conversion electrons but the dose is mainly due to capture gamma-rays from the Gd(n, γ) reactions, therefore, is not selective at the cellular level, (ii) the dose distribution was a function of strongly interrelated parameters such as gadolinium concentrations, tumor site and neutron beam size (collimator aperture size), and (iii) the Gd-NCT by thermal neutrons appears to be a potential for treatment of superficial tumor. (author)

  18. Flexible dynamic operation of solar-integrated power plant with solvent based post-combustion carbon capture (PCC) process

    International Nuclear Information System (INIS)

    Qadir, Abdul; Sharma, Manish; Parvareh, Forough; Khalilpour, Rajab; Abbas, Ali

    2015-01-01

    Highlights: • Flexible operation of power and PCC plant may significantly increase operational revenue. • Higher optimal carbon capture rates observed with solar thermal energy input. • Solar thermal repowering of the power plant provides highest net revenue. • Constant optimal capture rate observed for one of the flexible operation cases. • Up to 42% higher revenue generation observed between two cases with solar input. - Abstract: This paper examines flexible operation of solvent-based post-combustion carbon capture (PCC) for the reduction of power plant carbon emissions while minimizing revenue loss due to the reduced power plant electricity output. The study is conducted using a model superstructure enveloping three plants; a power plant, a PCC plant and a solar thermal field where the power plant and PCC plant are operated flexibly under the influence of hourly electricity market and weather conditions. Reduced (surrogate) models for the reboiler duty and auxiliary power requirement for the carbon capture plant are generated and applied to simulate and compare four cases, (A) power plant with PCC, (B) power plant with solar assisted PCC, (C) power plant with PCC and solar repowering – variable net electricity output and (D) power plant with PCC and solar repowering – fixed net electricity output. Such analyses are conducted under dynamic conditions including power plant part-load operation while varying the capture rate to optimize the revenue of the power plant. Each case was simulated with a lower carbon price of $25/tonne-CO 2 and a higher price of $50/tonne-CO 2 . The comparison of cases B–D found that optimal revenue generation for case C can be up to 42% higher than that of solar-assisted PCC (case B). Case C is found to be the most profitable with the lowest carbon emissions intensity and is found to exhibit a constant capture rate for both carbon prices. The optimal revenue for case D is slightly lower than case C for the lower carbon

  19. Dynamic simulation and optimization of an industrial-scale absorption tower for CO2 capturing from ethane gas

    Directory of Open Access Journals (Sweden)

    Babak Pouladi

    2016-11-01

    Full Text Available This article considers a process technology based on absorption for CO2 capturing of ethane gas in phase 9 and 10 of south pars in Iran using diethanolamine (DEA as absorbent solvent. This CO2 capture plant was designed to achieve 85% CO2 recovery and obtain 19 ppm the CO2 concentration in the outlet of absorber. ASPEN–HYSYS software was used for the dynamic simulation of a commercial-scale CO2 capture plant and amine Pkg equation was chosen from the fluid property package for calculating the thermodynamic properties of the process. A static approach for optimization was used to evaluate the optimum conditions. This research revealed that pressure variation does not have any considerable changes in the absorption process, while both amine inlet temperature and volumetric flow rate increment enhance the absorption tower efficiency. The effect of temperature was very significant as shown in the dynamic study plots. The optimum condition for CO2 absorption from a stream of ethane gas with molar flow rate of 2118 kg mol h−1 was obtained 75 m3  h−1 of amine at 53 °C and 24 bar. This optimized condition is acceptable from economical, safe as well as feasible point of view.

  20. Electronic data capture in a rural African setting: evaluating experiences with different systems in Malawi

    OpenAIRE

    King, Carina; Hall, Jenny; Banda, Masford; Beard, James; Bird, Jon; Kazembe, Peter; Fottrell, Ed

    2014-01-01

    Background\\ud \\ud As hardware for electronic data capture (EDC), such as smartphones or tablets, becomes cheaper and more widely available, the potential for using such hardware as data capture tools in routine healthcare and research is increasing.\\ud \\ud Objective\\ud \\ud We aim to highlight the advantages and disadvantages of four EDC systems being used simultaneously in rural Malawi: two for Android devices (CommCare and ODK Collect), one for PALM and Windows OS (Pendragon), and a custom-b...

  1. Capturing the added value of three-dimensional television : viewing experience and naturalness of stereoscopic images

    NARCIS (Netherlands)

    Seuntiëns, P.J.H.; Heynderickx, I.E.J.; IJsselsteijn, W.A.

    2008-01-01

    The term "image quality" is often used to describe the performance of an imaging system. Recent research showed however that image quality may not be the most appropriate term to capture the evaluative processes associated with experiencing three-dimensional (3D) images. The added value of depth in

  2. Proposed gravity-gradient dynamics experiments in lunar orbit using the RAE-B spacecraft

    Science.gov (United States)

    Blanchard, D. L.; Walden, H.

    1973-01-01

    A series of seven gravity-gradient dynamics experiments is proposed utilizing the Radio Astronomy Explorer (RAE-B) spacecraft in lunar orbit. It is believed that none of the experiments will impair the spacecraft structure or adversely affect the continuation of the scientific mission of the satellite. The first experiment is designed to investigate the spacecraft dynamical behavior in the absence of libration damper action and inertia. It requires stable gravity-gradient capture of the spacecraft in lunar orbit with small amplitude attitude librations as a prerequisite. Four subsequent experiments involve partial retraction, ultimately followed by full redeployment, of one or two of the 230-meter booms forming the lunar-directed Vee-antenna. These boom length change operations will induce moderate amplitude angular librations of the spacecraft.

  3. Capturing lived experiences in movement educational contexts through videographic participation and visual narratives

    DEFF Research Database (Denmark)

    Svendler Nielsen, Charlotte; Degerbøl, Stine Mikés

    visualizing and communicating the meaning-making of the participants and emphasizes the role of the researcher’s embodied involvement when ‘looking for lived experiences’. The paper exemplifies the use of videographic participation and presents (audio)visual narratives from two educational contexts: children...... of how meaning-making of the participants can be captured and disseminated through (audio)visual narratives....

  4. Capturing the guest experience in hotels phase one : theoretical background and development of the guest experience scan

    NARCIS (Netherlands)

    Marle, van R.S.F. (Rienk); Pijls, R. (Ruth); Schreiber, G.H. (Gerrit)

    2011-01-01

    The goal for the coming years is to get insight in the guest experience in hotels. What is guest experience? How to measure guest experience? What is the relation between guest experience and guest loyalty? And finally, what tangible elements in the physical environment of hotels and the contact

  5. Capture reactions at astrophysically relevant energies: extended gas target experiments and GEANT simulations

    CERN Document Server

    Kölle, V; Braitmayer, S E; Mohr, P J; Wilmes, S; Staudt, G; Hammer, J W; Jäger, M; Knee, H; Kunz, R; Mayer, A

    1999-01-01

    Several resonances of the capture reaction sup 2 sup 0 Ne(alpha, gamma) sup 2 sup 4 Mg were measured using an extended windowless gas target system. Detailed GEANT simulations were performed to derive the strength and the total width of the resonances from the measured yield curve. The crucial experimental parameters, which are mainly the density profile in the gas target and the efficiency of the gamma-ray detector, were analyzed by a comparison between the measured data and the corresponding simulation calculations. The excellent agreement between the experimental data and the simulations gives detailed insight into these parameters. (author)

  6. Experience with dynamic material control subsystems

    International Nuclear Information System (INIS)

    Severe, W.R.; Hagen, J.; Siebelist, R.; Wagner, R.P.; Olson, W.M.

    1977-01-01

    Operation of a Dynamic Material Control (DYMAC) prototype system has yielded some useful information for installing the final system. We discovered a bias between two methods for measuring filtrates. Evaluation of a unit process dynamic balance brought to light an operating procedure that weakens the accountability goals of the DYMAC system. We were able to correct both situations for the final system and learned that we must regularly monitor the system once it is operational for similar discrepancies

  7. Rose bush leaf and internode expansion dynamics: analysis and development of a model capturing interplant variability

    Directory of Open Access Journals (Sweden)

    Sabine eDemotes-Mainard

    2013-10-01

    Full Text Available Bush rose architecture, among other factors, such as plant health, determines plant visual quality. The commercial product is the individual plant and interplant variability may be high within a crop. Thus, both mean plant architecture and interplant variability should be studied. Expansion is an important feature of architecture, but it has been little studied at the level of individual organs in bush roses. We investigated the expansion kinetics of primary shoot organs, to develop a model reproducing the organ expansion of real crops from non destructive input variables. We took interplant variability in expansion kinetics and the model’s ability to simulate this variability into account. Changes in leaflet and internode dimensions over thermal time were recorded for primary shoot expansion, on 83 plants from three crops grown in different climatic conditions and densities. An empirical model was developed, to reproduce organ expansion kinetics for individual plants of a real crop of bush rose primary shoots. Leaflet or internode length was simulated as a logistic function of thermal time. The model was evaluated by cross-validation. We found that differences in leaflet or internode expansion kinetics between phytomer positions and between plants at a given phytomer position were due mostly to large differences in time of organ expansion and expansion rate, rather than differences in expansion duration. Thus, in the model, the parameters linked to expansion duration were predicted by values common to all plants, whereas variability in final size and organ expansion time was captured by input data. The model accurately simulated leaflet and internode expansion for individual plants (RMSEP = 7.3% and 10.2% of final length, respectively. Thus, this study defines the measurements required to simulate expansion and provides the first model simulating organ expansion in rosebush to capture interplant variability.

  8. Corroboration of dynamic characteristics of FBR main vessels by pseudo-dynamic and dynamic buckling experiments

    International Nuclear Information System (INIS)

    Kokubo, K.; Nakagawa, M.; Kawamoto, Y.; Murakami, T.; Matuura, S.; Hagiwara, Y.

    1991-01-01

    Shaking table tests for small-scale models and pseudo-dynamic buckling tests for moderate-scale models are conducted in order to investigate nonlinear pre- and post-buckling characteristics of fast breeder reactor vessels under the seismic lateral load. Two types of ground acceleration waves are used in the experiments. Nonlinear one-degree-of-freedom numerical simulations are also conducted using the hysteresis rules obtained by the tests. Good agreements are obtained between the experiments and calculations. The design method for vessels based on the estimation of nonlinear buckling behaviors is considered. (author)

  9. An autonomous dynamical system captures all LCSs in three-dimensional unsteady flows.

    Science.gov (United States)

    Oettinger, David; Haller, George

    2016-10-01

    Lagrangian coherent structures (LCSs) are material surfaces that shape the finite-time tracer patterns in flows with arbitrary time dependence. Depending on their deformation properties, elliptic and hyperbolic LCSs have been identified from different variational principles, solving different equations. Here we observe that, in three dimensions, initial positions of all variational LCSs are invariant manifolds of the same autonomous dynamical system, generated by the intermediate eigenvector field, ξ 2 (x 0 ), of the Cauchy-Green strain tensor. This ξ 2 -system allows for the detection of LCSs in any unsteady flow by classical methods, such as Poincaré maps, developed for autonomous dynamical systems. As examples, we consider both steady and time-aperiodic flows, and use their dual ξ 2 -system to uncover both hyperbolic and elliptic LCSs from a single computation.

  10. Capturing change: the duality of time-lapse imagery to acquire data and depict ecological dynamics

    Science.gov (United States)

    Brinley Buckley, Emma M.; Allen, Craig R.; Forsberg, Michael; Farrell, Michael; Caven, Andrew J.

    2017-01-01

    We investigate the scientific and communicative value of time-lapse imagery by exploring applications for data collection and visualization. Time-lapse imagery has a myriad of possible applications to study and depict ecosystems and can operate at unique temporal and spatial scales to bridge the gap between large-scale satellite imagery projects and observational field research. Time-lapse data sequences, linking time-lapse imagery with data visualization, have the ability to make data come alive for a wider audience by connecting abstract numbers to images that root data in time and place. Utilizing imagery from the Platte Basin Timelapse Project, water inundation and vegetation phenology metrics are quantified via image analysis and then paired with passive monitoring data, including streamflow and water chemistry. Dynamic and interactive time-lapse data sequences elucidate the visible and invisible ecological dynamics of a significantly altered yet internationally important river system in central Nebraska.

  11. Capturing change: the duality of time-lapse imagery to acquire data and depict ecological dynamics

    Directory of Open Access Journals (Sweden)

    Emma M. Brinley Buckley

    2017-09-01

    Full Text Available We investigate the scientific and communicative value of time-lapse imagery by exploring applications for data collection and visualization. Time-lapse imagery has a myriad of possible applications to study and depict ecosystems and can operate at unique temporal and spatial scales to bridge the gap between large-scale satellite imagery projects and observational field research. Time-lapse data sequences, linking time-lapse imagery with data visualization, have the ability to make data come alive for a wider audience by connecting abstract numbers to images that root data in time and place. Utilizing imagery from the Platte Basin Timelapse Project, water inundation and vegetation phenology metrics are quantified via image analysis and then paired with passive monitoring data, including streamflow and water chemistry. Dynamic and interactive time-lapse data sequences elucidate the visible and invisible ecological dynamics of a significantly altered yet internationally important river system in central Nebraska.

  12. Capturing the Interplay of Dynamics and Networks through Parameterizations of Laplacian Operators

    Science.gov (United States)

    2016-08-24

    we describe an umbrella framework that unifies some of the well known measures, connecting the ideas of centrality , communities and dynamical processes...change of basis. Parameterized centrality also leads to the definition of parameterized volume for subsets of vertices. Parameterized conductance...behind this definition is to establish a direct connection between centrality and community measures, as we will later demonstrate with the notion of

  13. Near-membrane dynamics and capture of TRPM8 channels within transient confinement domains.

    Directory of Open Access Journals (Sweden)

    Luis A Veliz

    Full Text Available BACKGROUND: The cold and menthol receptor, TRPM8, is a non-selective cation channel expressed in a subset of peripheral neurons that is responsible for neuronal detection of environmental cold stimuli. It was previously shown that members of the transient receptor potential (TRP family of ion channels are translocated toward the plasma membrane (PM in response to agonist stimulation. Because the spatial and temporal dynamics of cold receptor cell-surface residence may determine neuronal activity, we hypothesized that the movement of TRPM8 to and from the PM might be a regulated process. Single particle tracking (SPT is a useful tool for probing the organization and dynamics of protein constituents in the plasma membrane. METHODOLOGY/PRINCIPAL FINDINGS: We used SPT to study the receptor dynamics and describe membrane/near-membrane behavior of particles containing TRPM8-EGFP in transfected HEK-293T and F-11 cells. Cells were imaged using total internal reflection fluorescence (TIRF microscopy and the 2D and 3D trajectories of TRPM8 molecules were calculated by analyzing mean-square particle displacement against time. Four characteristic types of motion were observed: stationary mode, simple Brownian diffusion, directed motion, and confined diffusion. In the absence of cold or menthol to activate the channel, most TRPM8 particles move in network covering the PM, periodically lingering for 2-8 s in confined microdomains of about 800 nm radius. Removing cholesterol with methyl-beta-cyclodextrin (MβCD stabilizes TRPM8 motion in the PM and is correlated with larger TRPM8 current amplitude that results from an increase in the number of available channels without a change in open probability. CONCLUSIONS/SIGNIFICANCE: These results reveal a novel mechanism for regulating TRPM8 channel activity, and suggest that PM dynamics may play an important role in controlling electrical activity in cold-sensitive neurons.

  14. Regeneration dynamics of potassium-based sediment sorbents for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li-wei; Diao, Yong-fa; Wang, Lin-lin; Shi, Xiao-fang; Tai, Xiao-yan [Donghua University, Shanghai (China)

    2013-08-15

    Simulating regeneration tests of Potassium-Based sorbents that supported by Suzhou River Channel Sediment were carried out in order to obtain parameters of regeneration reaction. Potassium-based sediment sorbents have a better morphology with the surface area of 156.73 m{sup 2}·g{sup −1}, the pore volume of 357.5x10{sup −3} cm{sup 3}·g{sup −1} and the distribution of pore diameters about 2-20 nm. As a comparison, those of hexagonal potassium-based sorbents are only 2.83 m{sup 2}g{sup −1}, 7.45x10{sup −3} cm{sup 3}g{sup −1} and 1.72-5.4 nm, respectively. TGA analysis shows that the optimum final temperature of regeneration is 200 and the optimum loading is about 40%, with the best heating rate of 10 .deg. C·min{sup −1}. By the modified Coats-Redfern integral method, the activation energy of 40% KHCO{sub 3} sorbents is 102.43 kJ·mol{sup −1}. The results obtained can be used as basic data for designing and operating CO{sub 2} capture process.

  15. Use of integral experiments for the assessment of the 235U capture cross section within the CIELO Project

    Directory of Open Access Journals (Sweden)

    Ichou Raphaelle

    2016-01-01

    Full Text Available A new 235U capture cross-section evaluation, evaluated by ORNL and the CEA Bruyères-le-Châtel (BRC has been proposed within the CIELO project. IRSN, who participates in the CIELO project, contributes with data testing and has carried out benchmark calculations using few benchmarks, extracted from the ICSBEP database, for testing the new 235U evaluation. The benchmarks have been selected by privileging the experiments showing small experimental uncertainties and a significant sensitivity to 235U capture cross-section. The keff calculations were performed with both the MCNP 6 code and the 5.C.1 release of the MORET 5 code, using the ENDF/B-VII.1 library for all isotopes except 235U, for which both the ENDF/B-VII.1 and the new 235U evaluation was used. The benchmark selection allowed highlighting a significant effect on keff of the new 235U capture cross-section. The results of this data testing, provided as input for the evaluators, are presented here.

  16. A multiframe soft x-ray camera with fast video capture for the LSX field reversed configuration (FRC) experiment

    International Nuclear Information System (INIS)

    Crawford, E.A.

    1992-01-01

    Soft x-ray pinhole imaging has proven to be an exceptionally useful diagnostic for qualitative observation of impurity radiation from field reversed configuration plasmas. We used a four frame device, similar in design to those discussed in an earlier paper [E. A. Crawford, D. P. Taggart, and A. D. Bailey III, Rev. Sci. Instrum. 61, 2795 (1990)] as a routine diagnostic during the last six months of the Large s Experiment (LSX) program. Our camera is an improvement over earlier implementations in several significant aspects. It was designed and used from the onset of the LSX experiments with a video frame capture system so that an instant visual record of the shot was available to the machine operator as well as facilitating quantitative interpretation of intensity information recorded in the images. The camera was installed in the end region of the LSX on axis approximately 5.5 m from the plasma midplane. Experience with bolometers on LSX showed serious problems with ''particle dumps'' at the axial location at various times during the plasma discharge. Therefore, the initial implementation of the camera included an effective magnetic sweeper assembly. Overall performance of the camera, video capture system, and sweeper is discussed

  17. Understanding calcium dynamics experiments and theory

    CERN Document Server

    Malchow, Dieter

    2003-01-01

    Intracellular Calcium is an important messenger in living cells. Calcium dynamics display complex temporal and spatial structures created by the concentration patterns which are characteristic for a nonlinear system operating far from thermodynamic equilibrium. Written as a set of tutorial reviews on both experimental facts and theoretical modelling, this volume is intended as an introduction and modern reference in the field for graduate students and researchers in biophysics, biochemistry and applied mathematics.

  18. A cylindrical drift chamber for radiative muon capture experiments at TRIUMF

    International Nuclear Information System (INIS)

    Henderson, R.S.; Dawson, R.J.; Azuelos, G.; Robertson, B.C.; Hasinoff, M.D.; Ahamad, S.; Gorringe, T.P.; Serna-Angel, A.; Blecher, M.; Wright, D.H.

    1990-01-01

    In the Standard Model, the weak interaction is purely V-A in character. However in semileptonic reactions the strong force induces additional couplings. Radiative muon capture (RMC), μ - Z → ν(Z-1)γ, is a process which is particularly sensitive to the induced pseudoscalar coupling constant, g p , which is still very poorly determined experimentally. Due to the extremely small branching ratio (∼ 6 x 10 -8 ), the elementary reaction μ - p → νnγ has never been measured. Effort to date has concentrated on nuclear RMC where the branching ratio is much larger, but the interpretation of these results is hindered by nuclear structure uncertainties. A measurement is being carried out at TRIUMF to determine the rate of RMC on hydrogen to a precision of 8% leading to a determination of g p with an error of 10%. The detection system is based on a large volume cylindrical drift chamber, in an axial magnetic field, acting as an e + e - pair spectrometer with a solid angle of ≅ 2 π. The design, construction and performance of the cylindrical drift chamber are discussed

  19. Dynamics of soft Nanomaterials captured by transmission electron microscopy in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Proetto, Maria T.; Rush, Anthony M.; Chien, Miao-Ping; Abellan Baeza, Patricia; Patterson, Joseph P.; Thompson, Matthew P.; Olson, Norman H.; Moore, Curtis E.; Rheingold, Arnold L.; Andolina, Christopher; Millstone, Jill; Howell, Stephen B.; Browning, Nigel D.; Evans, James E.; Gianneschi, Nathan C.

    2014-01-14

    In this paper we present in situ transmission electron microscopy (TEM) of soft, synthetic nanoparticles with a comparative analysis using conventional TEM methods. This comparison is made with the simple aim of describing what is an unprecedented example of in situ imaging by TEM. However, we contend the technique will quickly become essential in the characterization of analogous systems, especially where dynamics are of interest in the solvated state. In this case, particles were studied which were obtained from the direct polymerization of an oxaliplatin analog, designed for an ongoing program in novel chemotherapeutic delivery systems. The resulting nanoparticles provided sufficient contrast for facile imaging in situ, and point toward key design parameters that enable this new characterization approach for organic nanomaterials. We describe the preparation of the synthetic micellar nanoparticles to- gether with their characterization in liquid water.

  20. Capturing Parenting as a Multidimensional and Dynamic Construct with a Person-Oriented Approach.

    Science.gov (United States)

    Zheng, Yao; Pasalich, Dave S; Oberth, Carla; McMahon, Robert J; Pinderhughes, Ellen E

    2017-04-01

    Although parenting is one of the most commonly studied predictors of child problem behavior, few studies have examined parenting as a multidimensional and dynamic construct. This study investigated different patterns of developmental trajectories of two parenting dimensions (harsh discipline [HD] and parental warmth [PW]) with a person-oriented approach and examined the associations between different parenting patterns and child externalizing problems and callous-unemotional traits. Data were drawn from the combined high-risk control and normative sample (n = 753) of the Fast Track Project. Parent-reported HD and observer-reported PW from kindergarten to grade 2 were fit to growth mixture models. Two subgroups were identified for HD (low decreasing, 83.0 %; high stable, 17.0 %) and PW (high increasing, 78.7 %; low increasing, 21.3 %). The majority of parents (67.0 %) demonstrated the low decreasing HD and high increasing PW pattern, while the prevalence of the high stable HD and low increasing PW pattern was the lowest (6.8 %). Parenting satisfaction, parental depression, family socioeconomic status, and neighborhood safety predicted group memberships jointly defined by the two dimensions. Children from the high stable HD and low increasing PW pattern showed the highest levels of externalizing problems in grades 4 and 5. Children from the low decreasing HD and low increasing PW pattern showed the highest levels of callous-unemotional traits in grade 7. These findings demonstrate the utility and significance of a person-oriented approach to measuring parenting as a multidimensional and dynamic construct and reveal the interplay between HD and PW in terms of their influences on child developmental outcomes.

  1. SEDNA: Sea ice Experiment - Dynamic Nature of the Arctic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sea Ice Experiment - Dynamic Nature of the Arctic (SEDNA) is an international collaborative effort to improve the understanding of the interaction between sea...

  2. Satellite stories: capturing professional experiences of academic health sciences librarians working in delocalized health sciences programs

    Directory of Open Access Journals (Sweden)

    Jackie Phinney

    2018-01-01

    Conclusions: The results from this survey suggest that the role of the academic health sciences librarian at the satellite campus needs to be clearly communicated and defined. This, in turn, will enhance the experience for the librarian and provide better service to the client.

  3. Learning Practice-Based Research Methods: Capturing the Experiences of MSW Students

    Science.gov (United States)

    Natland, Sidsel; Weissinger, Erika; Graaf, Genevieve; Carnochan, Sarah

    2016-01-01

    The literature on teaching research methods to social work students identifies many challenges, such as dealing with the tensions related to producing research relevant to practice, access to data to teach practice-based research, and limited student interest in learning research methods. This is an exploratory study of the learning experiences of…

  4. Capturing Thoughts, Capturing Minds?

    DEFF Research Database (Denmark)

    Nielsen, Janni

    2004-01-01

    Think Aloud is cost effective, promises access to the user's mind and is the applied usability technique. But 'keep talking' is difficult, besides, the multimodal interface is visual not verbal. Eye-tracking seems to get around the verbalisation problem. It captures the visual focus of attention...

  5. Narratives of health and illness: Arts-based research capturing the lived experience of dementia.

    Science.gov (United States)

    Moss, Hilary; O'Neill, Desmond

    2017-01-01

    Introduction This paper presents three artists' residencies in a geriatric medicine unit in a teaching hospital. The aim of the residencies was creation of new work of high artistic quality reflecting the lived experience of the person with dementia and greater understanding of service user experience of living with dementia. This paper also explores arts-based research methodologies in a medical setting. Method Arts-based research and narrative enquiry were the method used in this study. Artists had extensive access to service users with dementia, family carers and clinical team. Projects were created through collaboration between clinical staff, arts and health director, artist, patients and family carers. Each performance was accompanied by a public seminar discussing dementia. Evaluations were undertaken following each residency. The process of creating artistic responses to dementia is outlined, presented and discussed. Results The artworks were well received with repeat performances and exhibitions requested. Evaluations of each residency indicated increased understanding of dementia. The narratives within the artworks aided learning about dementia. The results are a new chamber music composition, a series of visual artworks created collaboratively between visual artist and patients and family carers and a dance film inspired by a dancer's residency, all created through narrative enquiry. These projects support the role of arts-based research as creative process and qualitative research method which contributes to illuminating and exploring the lived experience of dementia. The arts act as a reflective tool for learning and understanding a complex health condition, as well as creating opportunities for increased understanding and public awareness of dementia. Issues arising in arts-based research in medical settings are highlighted, including ethical issues, the importance of service user narrative and multidisciplinary collaboration in arts and health

  6. Population dynamics of light-limited phytoplankton : Microcosm experiments

    NARCIS (Netherlands)

    Huisman, Jef

    This paper investigates the extent to which the predictions of an elementary model for light-limited growth are matched by laboratory experiments with light-limited phytoplankton. The model and experiments link the population dynamics of phytoplankton species with changes in the light gradient

  7. Satellite stories: capturing professional experiences of academic health sciences librarians working in delocalized health sciences programs.

    Science.gov (United States)

    Phinney, Jackie; Horsman, Amanda Rose

    2018-01-01

    Health sciences training programs have progressively expanded onto satellite campuses, allowing students the opportunity to learn in communities away from an academic institution's main campus. This expansion has encouraged a new role for librarians to assume, in that a subset of health sciences librarians identify as "satellite librarians" who are permanently located at a distance from the main campus. Due to the unique nature of this role and lack of existing data on the topic, the authors investigated the experiences and perceptions of this unique group of information professionals. An electronic survey was distributed to health sciences librarians via two prominent North American email discussion lists. Questions addressed the librarians' demographics, feelings of social inclusion, technological support, autonomy, professional support, and more. Eighteen surveys were analyzed. While several respondents stated that they had positive working relationships with colleagues, many cited issues with technology, scheduling, and lack of consideration as barriers to feeling socially included at both the parent and local campuses. Social inclusion, policy creation, and collection management issues were subject to their unique situations and their colleagues' perceptions of their roles as satellite librarians. The results from this survey suggest that the role of the academic health sciences librarian at the satellite campus needs to be clearly communicated and defined. This, in turn, will enhance the experience for the librarian and provide better service to the client.

  8. Experiments on continuum electron capture in atomic hydrogen and collisional interaction of trapped ions. Progress report

    International Nuclear Information System (INIS)

    Sellin, I.A.; Elston, S.B.

    1981-01-01

    This section describes the background and scope of as well as progress made on experiments designed to test the present theory of charge exchange to continuum for the case of bare nuclei on atomic hydrogen. The charge transfer process is well known to be an essential ingredient of any attempt to understand the ionization of gaseous media traversed by highly-charged energetic ions. Surprisingly, a sometimes dominant contribution to such ionization remained undiscovered until the past decade. This process, known as charge transfer to the continuum, involves the ionization of electrons from the target species into unbound states closely matched in exit direction and speed to the charged particles which generate them. Subsequent measurements of the resultant forward electron production, performed by University of Tennessee searchers at Oak Ridge and Brookhaven National Laboratories, were unique in employing more highly charged projectiles than previously

  9. Dynamics of core voiding during boiloff experiments

    International Nuclear Information System (INIS)

    Analytis, G.T.; Aksan, S.N.; Stierli, F.; Yadigaroglu, G.

    1987-01-01

    A series of boiloff experiments were conducted at the EIR NEPTUN test facility with a bundle consisting of 37 PWR fuel rod simulators. The test section was filled with subcooled coolant and the power was turned on. After an initial heatup phase, coolant was expelled from the test section due to rapid vapor generation near the mid-plane where the power generation was highest. Gradual boiloff of the remaining water followed. It was found that the ''collapsed liquid level'' (CLL) and the rod temperature histories could be predicted well, provided the initial expulsion of the coolant was calculated correctly. The axial void fraction and enthalpy profiles calculated with TRAC-BD/MOD1 provided the information needed for understanding the importance of heat transfer to the coolant before the inception of vapor generation, and the sensitivity of the results to the interfacial friction correlation used

  10. Dynamic Choice Behavior in a Natural Experiment

    DEFF Research Database (Denmark)

    Andersen, Steffen; Harrison, Glenn W.; Lau, Morten

    evidence of some probability weighting, but no loss aversion. We also find evidence that contestants make decisions as if using more than one latent criteria, mixing traditional utility evaluations, probability weighting, and aspiration levels. Fourth, we design and implement laboratory experiments...... linked to current choices. We have four major findings. First, we show that popular utility functions that assume constant relative or absolute risk aversion and expected utility theory defined over the prizes cannot characterize these choices, which exhibit increasing relative risk aversion over prizes...... the income that they bring to the game show. Allowing for this integration of income and game show prizes leads to choice behavior consistent with constant relative risk aversion. Third, we examine th e effects of allowing contestants to make choices characterized by non-standard decision models. We find...

  11. Developments of multibody system dynamics: computer simulations and experiments

    International Nuclear Information System (INIS)

    Yoo, Wan-Suk; Kim, Kee-Nam; Kim, Hyun-Woo; Sohn, Jeong-Hyun

    2007-01-01

    It is an exceptional success when multibody dynamics researchers Multibody System Dynamics journal one of the most highly ranked journals in the last 10 years. In the inaugural issue, Professor Schiehlen wrote an interesting article explaining the roots and perspectives of multibody system dynamics. Professor Shabana also wrote an interesting article to review developments in flexible multibody dynamics. The application possibilities of multibody system dynamics have grown wider and deeper, with many application examples being introduced with multibody techniques in the past 10 years. In this paper, the development of multibody dynamics is briefly reviewed and several applications of multibody dynamics are described according to the author's research results. Simulation examples are compared to physical experiments, which show reasonableness and accuracy of the multibody formulation applied to real problems. Computer simulations using the absolute nodal coordinate formulation (ANCF) were also compared to physical experiments; therefore, the validity of ANCF for large-displacement and large-deformation problems was shown. Physical experiments for large deformation problems include beam, plate, chain, and strip. Other research topics currently being carried out in the author's laboratory are also briefly explained

  12. Beyond the standard two-film theory: Computational fluid dynamics simulations for carbon dioxide capture in a wetted wall column

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao; Xu, Zhijie; Lai, Canhai; Sun, Xin

    2018-07-01

    The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO2) capture to predict the CO2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive and reactive mass transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.

  13. Protein dynamics in individual human cells: experiment and theory.

    Directory of Open Access Journals (Sweden)

    Ariel Aharon Cohen

    Full Text Available A current challenge in biology is to understand the dynamics of protein circuits in living human cells. Can one define and test equations for the dynamics and variability of a protein over time? Here, we address this experimentally and theoretically, by means of accurate time-resolved measurements of endogenously tagged proteins in individual human cells. As a model system, we choose three stable proteins displaying cell-cycle-dependant dynamics. We find that protein accumulation with time per cell is quadratic for proteins with long mRNA life times and approximately linear for a protein with short mRNA lifetime. Both behaviors correspond to a classical model of transcription and translation. A stochastic model, in which genes slowly switch between ON and OFF states, captures measured cell-cell variability. The data suggests, in accordance with the model, that switching to the gene ON state is exponentially distributed and that the cell-cell distribution of protein levels can be approximated by a Gamma distribution throughout the cell cycle. These results suggest that relatively simple models may describe protein dynamics in individual human cells.

  14. Experiment and simulation study on unidirectional carbon fiber composite component under dynamic 3 point bending loading

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Guowei; Sun, Qingping; Zeng, Danielle; Li, Dayong; Su, Xuming

    2018-04-10

    In current work, unidirectional (UD) carbon fiber composite hatsection component with two different layups are studied under dynamic 3 point bending loading. The experiments are performed at various impact velocities, and the effects of impactor velocity and layup on acceleration histories are compared. A macro model is established with LS-Dyna for more detailed study. The simulation results show that the delamination plays an important role during dynamic 3 point bending test. Based on the analysis with high speed camera, the sidewall of hatsection shows significant buckling rather than failure. Without considering the delamination, current material model cannot capture the post failure phenomenon correctly. The sidewall delamination is modeled by assumption of larger failure strain together with slim parameters, and the simulation results of different impact velocities and layups match the experimental results reasonable well.

  15. SB2. Experiment on secondary gamma-ray production cross sections arising from thermal-neutron capture in each of 14 different elements plus a stainless steel

    International Nuclear Information System (INIS)

    Maerker, R.E.

    1976-01-01

    The experimental and calculational details for a CSEWG integral data testing shielding experiment are presented. This particular experiment measured the secondary gamma-ray production cross sections arising from thermal-neutron capture in iron, nitrogen, sodium, aluminum, copper, titanium, calcium, potassium, chlorine, silicon, ickel, zinc, barium, sulfur and a type 321 stainless steel. 1 figure, 30 tables

  16. Capturing the Transformation and Dynamic Nature of an Elementary Teacher Candidate's Identity Development as a Teacher of Science

    Science.gov (United States)

    Naidoo, Kara

    2017-12-01

    This study examines the transformation and dynamic nature of one teacher candidate's (Susan) identity as a learner and teacher of science throughout an innovative science methods course. The goal of this paper is to use theoretically derived themes grounded in cultural-historical activity theory (CHAT) and situated learning theory to determine the ways in which Susan's identity as a learner and teacher of science was influenced by her experiences in the course, and to describe how she made meaning of her transformative process. The following are the three theoretical themes: (1) learning contributes to identity development, (2) identity development is a dialogical process that occurs between individuals, not within individuals, and (3) social practice leads to transformations and transformations lead to the creation of new social practices. Within each theme, specific experiences in the science methods course are identified that influenced Susan's identity development as a teacher of science. Knowing how context and experiences influence identity development can inform design decisions concerning teacher education programs, courses, and experiences for candidates.

  17. Combined Steady-State and Dynamic Heat Exchanger Experiment

    Science.gov (United States)

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  18. Dynamic Incentive Effects of Relative Performance Pay: A Field Experiment

    NARCIS (Netherlands)

    J. Delfgaauw (Josse); A.J. Dur (Robert); J.A. Non (Arjan); W.J.M.I. Verbeke (Willem)

    2010-01-01

    textabstractWe conduct a field experiment among 189 stores of a retail chain to study dynamic incentive effects of relative performance pay. Employees in the randomly selected treatment stores could win a bonus by outperforming three comparable stores from the control group over the course of four

  19. Dynamically Scaled Model Experiment of a Mooring Cable

    Directory of Open Access Journals (Sweden)

    Lars Bergdahl

    2016-01-01

    Full Text Available The dynamic response of mooring cables for marine structures is scale-dependent, and perfect dynamic similitude between full-scale prototypes and small-scale physical model tests is difficult to achieve. The best possible scaling is here sought by means of a specific set of dimensionless parameters, and the model accuracy is also evaluated by two alternative sets of dimensionless parameters. A special feature of the presented experiment is that a chain was scaled to have correct propagation celerity for longitudinal elastic waves, thus providing perfect geometrical and dynamic scaling in vacuum, which is unique. The scaling error due to incorrect Reynolds number seemed to be of minor importance. The 33 m experimental chain could then be considered a scaled 76 mm stud chain with the length 1240 m, i.e., at the length scale of 1:37.6. Due to the correct elastic scale, the physical model was able to reproduce the effect of snatch loads giving rise to tensional shock waves propagating along the cable. The results from the experiment were used to validate the newly developed cable-dynamics code, MooDy, which utilises a discontinuous Galerkin FEM formulation. The validation of MooDy proved to be successful for the presented experiments. The experimental data is made available here for validation of other numerical codes by publishing digitised time series of two of the experiments.

  20. Polarized neutron inelastic scattering experiments on spin dynamics

    International Nuclear Information System (INIS)

    Kakurai, Kazuhisa

    2016-01-01

    The principles of polarized neutron scattering are introduced and examples of polarized neutron inelastic scattering experiments on spin dynamics investigation are presented. These examples should demonstrate the importance of the polarized neutron utilization for the investigation of non-trivial magnetic ground and excited states in frustrated and low dimensional quantum spin systems. (author)

  1. Design of experiment existing parameter physics for supporting of Boron Neutron Capture Therapy (BNCT) method a t the piercing radial beam port of Kartini research reactor

    International Nuclear Information System (INIS)

    Indry Septiana Novitasari; Yosaphat Sumardi; Widarto

    2014-01-01

    The experiment existing parameters physics for supporting of in vivo and in vitro test facility of Boron Neutron Capture Therapy (BNCT) preliminary study at the piercing radial beam port has been done. The existing experiments is needed for determining that the parameter physics is fulfill the BNCT method requirement. To realize the existing experiment have been done by design analysis, methodology, calculation method and some procedure related with radiation safety analysis and environment. Preparation for existing experiment physics such as foil detector of Gold (Au) should be irradiated for 30 minute, irradiation instrument and procedure related with the experiment for radiation safety. (author)

  2. Tempo-Spatial Dynamics of Adult Plum Curculio (Coleoptera: Curculionidae) Based on Semiochemical-Baited Trap Captures in Blueberries.

    Science.gov (United States)

    Hernandez-Cumplido, Johnattan; Leskey, Tracy C; Holdcraft, Robert; Zaman, Faruque U; Hahn, Noel G; Rodriguez-Saona, Cesar

    2017-06-01

    Plum curculio, Conotrachelus nenuphar (Herbst), has become an important pest of highbush blueberries in the northeastern United States. Here, we conducted experiments in 2010-2013 to compare the efficacy of semiochemical-baited traps for C. nenuphar versus conventional (beating cloth) sampling methods in blueberries, and to understand the seasonal abundance and distribution of C. nenuphar adults within and among blueberry fields using these traps. Black pyramid traps baited with the C. nenuphar aggregation pheromone grandisoic acid and the fruit volatile benzaldehyde caught three to four times more adults than unbaited traps without causing an increase in injury to berries in neighboring bushes. Numbers of adult weevils caught in traps correlated with those on bushes (beating cloth samples), indicating that trap counts can predict C. nenuphar abundance in the field. Early in the season, traps placed 20 m from field edges near a forest caught higher C. nenuphar numbers than traps placed at farther distances, suggesting movement of overwintered weevils from outside fields. Using a trapping network across multiple fields in an organic farm, we found evidence of C. nenuphar aggregation in "hotspots"; early in the season, C. nenuphar numbers in traps were higher in the middle of fields, and there was a correlation between these numbers and distance from the forest in 2013 but not in 2012. These results show that semiochemical-baited traps are effective in capturing C. nenuphar adults in blueberries, and that these traps should be placed in the interior of fields preferably, but not exclusively, near wooded habitats to maximize their efficacy. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Task-related Functional Connectivity Dynamics in a Block-designed Visual Experiment

    Directory of Open Access Journals (Sweden)

    Xin eDi

    2015-09-01

    Full Text Available Studying task modulations of brain connectivity using functional magnetic resonance imaging (fMRI is critical to understand brain functions that support cognitive and affective processes. Existing methods such as psychophysiological interaction (PPI and dynamic causal modelling (DCM usually implicitly assume that the connectivity patterns are stable over a block-designed task with identical stimuli. However, this assumption lacks empirical verification on high-temporal resolution fMRI data with reliable data-driven analysis methods. The present study performed a detailed examination of dynamic changes of functional connectivity (FC in a simple block-designed visual checkerboard experiment with a sub-second sampling rate (TR = 0.645 s by estimating time-varying correlation coefficient (TVCC between BOLD responses of different brain regions. We observed reliable task-related FC changes (i.e., FCs were transiently decreased after task onset and went back to the baseline afterward among several visual regions of the bilateral middle occipital gyrus (MOG and the bilateral fusiform gyrus (FuG. Importantly, only the FCs between higher visual regions (MOG and lower visual regions (FuG exhibited such dynamic patterns. The results suggested that simply assuming a sustained FC during a task block may be insufficient to capture distinct task-related FC changes. The investigation of FC dynamics in tasks could improve our understanding of condition shifts and the coordination between different activated brain regions.

  4. PPOOLEX experiments on dynamic loading with pressure feedback

    International Nuclear Information System (INIS)

    Puustinen, M.; Laine, J.; Raesaenen, A.

    2011-01-01

    This report summarizes the results of the dynamic loading experiments (DYN series) carried out with the scaled down, two compartment PPOOLEX test facility designed and constructed at LUT. Steam was blown into the dry well compartment and from there through the DN200 vertical blowdown pipe to the condensation pool filled with sub-cooled water. The main purpose of the experiments was to study dynamic loads caused by different condensation modes. Particularly, the effect of counterpressure on loads due to pressure oscillations induced by chugging was of interest. Before the experiments the condensation pool was filled with isothermal water so that the blowdown pipe outlet was submerged by 1.03-1.11 m. The initial temperature of the pool water varied from 11 deg. C to 63 deg. C, the steam flow rate from 290 g/s to 1220 g/s and the temperature of incoming steam from 132 deg. C to 182 deg. C. Non-condensables were pushed from the dry well into the gas space of the wet well with a short discharge of steam before the recorded period of the experiments. As a result of this procedure, the system pressure was at an elevated level in the beginning of the actual experiments. An increased counterpressure was used in the last experiment of the series. The diminishing effect of increased system pressure on chugging intensity and on measured loads is evident from the results of the last experiment. The highest pressure pulses both inside the blowdown pipe and in the condensation pool were about half of those measured with a lower system pressure but otherwise with similar test parameters. The experiments on dynamic loading gave expected results. The loads experienced by pool structures depended strongly on the steam mass flow rate, pool water temperature and system pressure. The DYN experiments indicated that chugging and condensation within the blowdown pipe cause significant dynamic loads in case of strongly sub-cooled pool water. The level of pool water temperature is decisive

  5. PPOOLEX experiments on dynamic loading with pressure feedback

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-01-15

    This report summarizes the results of the dynamic loading experiments (DYN series) carried out with the scaled down, two compartment PPOOLEX test facility designed and constructed at LUT. Steam was blown into the dry well compartment and from there through the DN200 vertical blowdown pipe to the condensation pool filled with sub-cooled water. The main purpose of the experiments was to study dynamic loads caused by different condensation modes. Particularly, the effect of counterpressure on loads due to pressure oscillations induced by chugging was of interest. Before the experiments the condensation pool was filled with isothermal water so that the blowdown pipe outlet was submerged by 1.03-1.11 m. The initial temperature of the pool water varied from 11 deg. C to 63 deg. C, the steam flow rate from 290 g/s to 1220 g/s and the temperature of incoming steam from 132 deg. C to 182 deg. C. Non-condensables were pushed from the dry well into the gas space of the wet well with a short discharge of steam before the recorded period of the experiments. As a result of this procedure, the system pressure was at an elevated level in the beginning of the actual experiments. An increased counterpressure was used in the last experiment of the series. The diminishing effect of increased system pressure on chugging intensity and on measured loads is evident from the results of the last experiment. The highest pressure pulses both inside the blowdown pipe and in the condensation pool were about half of those measured with a lower system pressure but otherwise with similar test parameters. The experiments on dynamic loading gave expected results. The loads experienced by pool structures depended strongly on the steam mass flow rate, pool water temperature and system pressure. The DYN experiments indicated that chugging and condensation within the blowdown pipe cause significant dynamic loads in case of strongly sub-cooled pool water. The level of pool water temperature is decisive

  6. Inferences about population dynamics from count data using multi-state models: A comparison to capture-recapture approaches

    Science.gov (United States)

    Grant, Evan H. Campbell; Zipkin, Elise; Scott, Sillett T.; Chandler, Richard; Royle, J. Andrew

    2014-01-01

    Wildlife populations consist of individuals that contribute disproportionately to growth and viability. Understanding a population's spatial and temporal dynamics requires estimates of abundance and demographic rates that account for this heterogeneity. Estimating these quantities can be difficult, requiring years of intensive data collection. Often, this is accomplished through the capture and recapture of individual animals, which is generally only feasible at a limited number of locations. In contrast, N-mixture models allow for the estimation of abundance, and spatial variation in abundance, from count data alone. We extend recently developed multistate, open population N-mixture models, which can additionally estimate demographic rates based on an organism's life history characteristics. In our extension, we develop an approach to account for the case where not all individuals can be assigned to a state during sampling. Using only state-specific count data, we show how our model can be used to estimate local population abundance, as well as density-dependent recruitment rates and state-specific survival. We apply our model to a population of black-throated blue warblers (Setophaga caerulescens) that have been surveyed for 25 years on their breeding grounds at the Hubbard Brook Experimental Forest in New Hampshire, USA. The intensive data collection efforts allow us to compare our estimates to estimates derived from capture–recapture data. Our model performed well in estimating population abundance and density-dependent rates of annual recruitment/immigration. Estimates of local carrying capacity and per capita recruitment of yearlings were consistent with those published in other studies. However, our model moderately underestimated annual survival probability of yearling and adult females and severely underestimates survival probabilities for both of these male stages. The most accurate and precise estimates will necessarily require some amount of intensive

  7. Dynamic Modeling and Control Studies of a Two-Stage Bubbling Fluidized Bed Adsorber-Reactor for Solid-Sorbent CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Modekurti, Srinivasarao; Bhattacharyya, Debangsu; Zitney, Stephen E.

    2013-07-31

    A one-dimensional, non-isothermal, pressure-driven dynamic model has been developed for a two-stage bubbling fluidized bed (BFB) adsorber-reactor for solid-sorbent carbon dioxide (CO{sub 2}) capture using Aspen Custom Modeler® (ACM). The BFB model for the flow of gas through a continuous phase of downward moving solids considers three regions: emulsion, bubble, and cloud-wake. Both the upper and lower reactor stages are of overflow-type configuration, i.e., the solids leave from the top of each stage. In addition, dynamic models have been developed for the downcomer that transfers solids between the stages and the exit hopper that removes solids from the bottom of the bed. The models of all auxiliary equipment such as valves and gas distributor have been integrated with the main model of the two-stage adsorber reactor. Using the developed dynamic model, the transient responses of various process variables such as CO{sub 2} capture rate and flue gas outlet temperatures have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the incoming flue gas from pulverized coal-fired power plants. In control studies, the performance of a proportional-integral-derivative (PID) controller, feedback-augmented feedforward controller, and linear model predictive controller (LMPC) are evaluated for maintaining the overall CO{sub 2} capture rate at a desired level in the face of typical disturbances.

  8. Group dynamics challenges: Insights from Biosphere 2 experiments

    Science.gov (United States)

    Nelson, Mark; Gray, Kathelin; Allen, John P.

    2015-07-01

    Successfully managing group dynamics of small, physically isolated groups is vital for long duration space exploration/habitation and for terrestrial CELSS (Controlled Environmental Life Support System) facilities with human participants. Biosphere 2 had important differences and shares some key commonalities with both Antarctic and space environments. There were a multitude of stress factors during the first two year closure experiment as well as mitigating factors. A helpful tool used at Biosphere 2 was the work of W.R. Bion who identified two competing modalities of behavior in small groups. Task-oriented groups are governed by conscious acceptance of goals, reality-thinking in relation to time and resources, and intelligent management of challenges. The opposing unconscious mode, the "basic-assumption" ("group animal") group, manifests through Dependency/Kill the Leader, Fight/Flight and Pairing. These unconscious dynamics undermine and can defeat the task group's goal. The biospherians experienced some dynamics seen in other isolated teams: factions developing reflecting personal chemistry and disagreements on overall mission procedures. These conflicts were exacerbated by external power struggles which enlisted support of those inside. Nevertheless, the crew evolved a coherent, creative life style to deal with some of the deprivations of isolation. The experience of the first two year closure of Biosphere 2 vividly illustrates both vicissitudes and management of group dynamics. The crew overrode inevitable frictions to creatively manage both operational and research demands and opportunities of the facility, thus staying 'on task' in Bion's group dynamics terminology. The understanding that Biosphere 2 was their life support system may also have helped the mission to succeed. Insights from the Biosphere 2 experience can help space and remote missions cope successfully with the inherent challenges of small, isolated crews.

  9. Group dynamics challenges: Insights from Biosphere 2 experiments.

    Science.gov (United States)

    Nelson, Mark; Gray, Kathelin; Allen, John P

    2015-07-01

    Successfully managing group dynamics of small, physically isolated groups is vital for long duration space exploration/habitation and for terrestrial CELSS (Controlled Environmental Life Support System) facilities with human participants. Biosphere 2 had important differences and shares some key commonalities with both Antarctic and space environments. There were a multitude of stress factors during the first two year closure experiment as well as mitigating factors. A helpful tool used at Biosphere 2 was the work of W.R. Bion who identified two competing modalities of behavior in small groups. Task-oriented groups are governed by conscious acceptance of goals, reality-thinking in relation to time and resources, and intelligent management of challenges. The opposing unconscious mode, the "basic-assumption" ("group animal") group, manifests through Dependency/Kill the Leader, Fight/Flight and Pairing. These unconscious dynamics undermine and can defeat the task group's goal. The biospherians experienced some dynamics seen in other isolated teams: factions developing reflecting personal chemistry and disagreements on overall mission procedures. These conflicts were exacerbated by external power struggles which enlisted support of those inside. Nevertheless, the crew evolved a coherent, creative life style to deal with some of the deprivations of isolation. The experience of the first two year closure of Biosphere 2 vividly illustrates both vicissitudes and management of group dynamics. The crew overrode inevitable frictions to creatively manage both operational and research demands and opportunities of the facility, thus staying 'on task' in Bion's group dynamics terminology. The understanding that Biosphere 2 was their life support system may also have helped the mission to succeed. Insights from the Biosphere 2 experience can help space and remote missions cope successfully with the inherent challenges of small, isolated crews. Copyright © 2015 The Committee on

  10. MISTY ECHO Tunnel Dynamics Experiment--Data report: Volume 1

    International Nuclear Information System (INIS)

    Phillips, J.S.; Luke, B.A.; Long, J.W.; Lee, J.G.

    1992-04-01

    Tunnel damage resulting from seismic loading is an important issue for the Yucca Mountain nuclear waste repository. The tunnel dynamics experiment was designed to obtain and document ground motions, permanent displacements, observable changes in fracture patterns, and visible damage at ground motion levels of interest to the Yucca Mountain Project. Even though the maximum free-field loading on this tunnel was 28 g, the damage observed was minor. Fielding details, data obtained, and supporting documentation are reported

  11. Integrating atomistic molecular dynamics simulations, experiments and network analysis to study protein dynamics: strength in unity

    Directory of Open Access Journals (Sweden)

    Elena ePapaleo

    2015-05-01

    Full Text Available In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.

  12. Fusion-fission dynamics and perspectives of future experiments

    International Nuclear Information System (INIS)

    Zagrebaev, V.I.; Itkis, M.G.; Oganessian, Yu.Ts.

    2003-01-01

    The paper is focused on reaction dynamics of superheavy-nucleus formation and decay at beam energies near the Coulomb barrier. The aim is to review the things we have learned from recent experiments on fusion-fission reactions leading to the formation of compound nuclei with Z ≥ 102 and from their extensive theoretical analysis. Major attention is paid to the dynamics of formation of very heavy compound nuclei taking place in strong competition with the process of fast fission (quasifission). The choice of collective degrees of freedom playing a fundamental role and finding the multidimensional driving potential and the corresponding dynamic equation regulating the whole process are discussed. A possibility of deriving the fission barriers of superheavy nuclei directly from performed experiments is of particular interest here. In conclusion, the results of a detailed theoretical analysis of available experimental data on the 'cold' and 'hot' fusion-fission reactions are presented. Perspectives of future experiments are discussed along with additional theoretical studies in this field needed for deeper understanding of the fusion-fission processes of very heavy nuclear systems

  13. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics

    DEFF Research Database (Denmark)

    Papaleo, Elena

    2015-01-01

    that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome...... with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties...... simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations....

  14. The Episodic Nature of Experience: A Dynamical Systems Analysis.

    Science.gov (United States)

    Sreekumar, Vishnu; Dennis, Simon; Doxas, Isidoros

    2017-07-01

    Context is an important construct in many domains of cognition, including learning, memory, and emotion. We used dynamical systems methods to demonstrate the episodic nature of experience by showing a natural separation between the scales over which within-context and between-context relationships operate. To do this, we represented an individual's emails extending over about 5 years in a high-dimensional semantic space and computed the dimensionalities of the subspaces occupied by these emails. Personal discourse has a two-scaled geometry with smaller within-context dimensionalities than between-context dimensionalities. Prior studies have shown that reading experience (Doxas, Dennis, & Oliver, 2010) and visual experience (Sreekumar, Dennis, Doxas, Zhuang, & Belkin, 2014) have a similar two-scaled structure. Furthermore, the recurrence plot of the emails revealed that experience is predictable and hierarchical, supporting the constructs of some influential theories of memory. The results demonstrate that experience is not scale-free and provide an important target for accounts of how experience shapes cognition. Copyright © 2016 Cognitive Science Society, Inc.

  15. Mercury's capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics.

    Science.gov (United States)

    Correia, Alexandre C M; Laskar, Jacques

    2004-06-24

    Mercury is locked into a 3/2 spin-orbit resonance where it rotates three times on its axis for every two orbits around the sun. The stability of this equilibrium state is well established, but our understanding of how this state initially arose remains unsatisfactory. Unless one uses an unrealistic tidal model with constant torques (which cannot account for the observed damping of the libration of the planet) the computed probability of capture into 3/2 resonance is very low (about 7 per cent). This led to the proposal that core-mantle friction may have increased the capture probability, but such a process requires very specific values of the core viscosity. Here we show that the chaotic evolution of Mercury's orbit can drive its eccentricity beyond 0.325 during the planet's history, which very efficiently leads to its capture into the 3/2 resonance. In our numerical integrations of 1,000 orbits of Mercury over 4 Gyr, capture into the 3/2 spin-orbit resonant state was the most probable final outcome of the planet's evolution, occurring 55.4 per cent of the time.

  16. Clustering Molecular Dynamics Trajectories for Optimizing Docking Experiments

    Directory of Open Access Journals (Sweden)

    Renata De Paris

    2015-01-01

    Full Text Available Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand.

  17. Experience with technology dynamics of user experience with mobile media devices

    CERN Document Server

    al-Azzawi, Ali

    2013-01-01

    With a focus on gaining an empirically derived understanding of the underlying psychological dimensions and processes behind people’s experiences with technology, this book contributes to the debate of user experience (UX) within several disciplines, including HCI, design and marketing. It analyses UX dynamics at various time scales, and explores the very nature of time and meaning in the context of UX.Experience with Technology uses personal construct theory (PCT) as a theoretical and methodological starting point to this project. Major case-studies are described that examine people’s exp

  18. Adaptive wave filtering for dynamic positioning of marine vessels using maximum likelihood identification: Theory and experiments

    Digital Repository Service at National Institute of Oceanography (India)

    Hassani, V.; Sorensen, A.J.; Pascoal, A.M.

    This paper addresses a filtering problem that arises in the design of dynamic positioning systems for ships and offshore rigs subjected to the influence of sea waves. The dynamic model of the vessel captures explicitly the sea state as an uncertain...

  19. Experiences in sulphur capture in a 30 MWth Circulating Fluidized Bed boiler under oxy-combustion conditions

    International Nuclear Information System (INIS)

    Gómez, M.; Fernández, A.; Llavona, I.; Kuivalainen, R.

    2014-01-01

    CO 2 and SO 2 from fossil fuel combustion are contributors to greenhouse effect and acid rain respectively. Oxy-combustion technology produces a highly concentrated CO 2 stream almost ready for capture. Circulating Fluidized Bed (CFB) boiler technology allows in-situ injection of calcium-based sorbents for efficient SO 2 capture. CIUDEN's 30 MWth CFB boiler, supplied by Foster Wheeler and located at the Technology Development Centre for CO 2 Capture and Transport (es.CO 2 ) in Spain, is the first of its kind for executing test runs at large pilot scale under both air-combustion and oxy-combustion conditions. In this work, SO 2 emissions under different scenarios have been evaluated. Variables such as limestone composition, Ca/S molar ratio and bed temperature among others have been considered along different test runs in both air-combustion and oxy-combustion conditions to analyse its influence on SO 2 abatement. Fly and bottom ash, together with flue gas analysis have been carried-out. Desulphurization performance tests results are presented. - Highlights: •Sulphur capture efficiency (%) was higher in oxy-combustion compared to air-combustion in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. •For a Ca/S molar ratio higher than 2.6 there was barely any improvement on sulphur capture efficiency for both air-combustion and oxy-combustion conditions in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. •Optimum temperature for sulphur capture at a fixed Ca/S molar ratio is around 880–890 °C under oxy-combustion conditions and for anthracite coal with limestone as sorbent in a 30 MW thermal CFB boiler

  20. Onboard software of Plasma Wave Experiment aboard Arase: instrument management and signal processing of Waveform Capture/Onboard Frequency Analyzer

    Science.gov (United States)

    Matsuda, Shoya; Kasahara, Yoshiya; Kojima, Hirotsugu; Kasaba, Yasumasa; Yagitani, Satoshi; Ozaki, Mitsunori; Imachi, Tomohiko; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ota, Mamoru; Kurita, Satoshi; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Matsuoka, Ayako; Shinohara, Iku

    2018-05-01

    We developed the onboard processing software for the Plasma Wave Experiment (PWE) onboard the Exploration of energization and Radiation in Geospace, Arase satellite. The PWE instrument has three receivers: Electric Field Detector, Waveform Capture/Onboard Frequency Analyzer (WFC/OFA), and the High-Frequency Analyzer. We designed a pseudo-parallel processing scheme with a time-sharing system and achieved simultaneous signal processing for each receiver. Since electric and magnetic field signals are processed by the different CPUs, we developed a synchronized observation system by using shared packets on the mission network. The OFA continuously measures the power spectra, spectral matrices, and complex spectra. The OFA obtains not only the entire ELF/VLF plasma waves' activity but also the detailed properties (e.g., propagation direction and polarization) of the observed plasma waves. We performed simultaneous observation of electric and magnetic field data and successfully obtained clear wave properties of whistler-mode chorus waves using these data. In order to measure raw waveforms, we developed two modes for the WFC, `chorus burst mode' (65,536 samples/s) and `EMIC burst mode' (1024 samples/s), for the purpose of the measurement of the whistler-mode chorus waves (typically in a frequency range from several hundred Hz to several kHz) and the EMIC waves (typically in a frequency range from a few Hz to several hundred Hz), respectively. We successfully obtained the waveforms of electric and magnetic fields of whistler-mode chorus waves and ion cyclotron mode waves along the Arase's orbit. We also designed the software-type wave-particle interaction analyzer mode. In this mode, we measure electric and magnetic field waveforms continuously and transfer them to the mission data recorder onboard the Arase satellite. We also installed an onboard signal calibration function (onboard SoftWare CALibration; SWCAL). We performed onboard electric circuit diagnostics and

  1. Gravitational capture

    International Nuclear Information System (INIS)

    Bondi, H.

    1979-01-01

    In spite of the strength of gravitational focres between celestial bodies, gravitational capture is not a simple concept. The principles of conservation of linear momentum and of conservation of angular momentum, always impose severe constraints, while conservation of energy and the vital distinction between dissipative and non-dissipative systems allows one to rule out capture in a wide variety of cases. In complex systems especially those without dissipation, long dwell time is a more significant concept than permanent capture. (author)

  2. Experience with dynamic reinforcement rates decreases resistance to extinction.

    Science.gov (United States)

    Craig, Andrew R; Shahan, Timothy A

    2016-03-01

    The ability of organisms to detect reinforcer-rate changes in choice preparations is positively related to two factors: the magnitude of the change in rate and the frequency with which rates change. Gallistel (2012) suggested similar rate-detection processes are responsible for decreases in responding during operant extinction. Although effects of magnitude of change in reinforcer rate on resistance to extinction are well known (e.g., the partial-reinforcement-extinction effect), effects of frequency of changes in rate prior to extinction are unknown. Thus, the present experiments examined whether frequency of changes in baseline reinforcer rates impacts resistance to extinction. Pigeons pecked keys for variable-interval food under conditions where reinforcer rates were stable and where they changed within and between sessions. Overall reinforcer rates between conditions were controlled. In Experiment 1, resistance to extinction was lower following exposure to dynamic reinforcement schedules than to static schedules. Experiment 2 showed that resistance to presession feeding, a disruptor that should not involve change-detection processes, was unaffected by baseline-schedule dynamics. These findings are consistent with the suggestion that change detection contributes to extinction. We discuss implications of change-detection processes for extinction of simple and discriminated operant behavior and relate these processes to the behavioral-momentum based approach to understanding extinction. © 2016 Society for the Experimental Analysis of Behavior.

  3. Reactor dynamics experiment of nuclear ship Mutsu using pseudo random signal (II). The second experiment

    International Nuclear Information System (INIS)

    Hayashi, Koji; Shimazaki, Junya; Nabeshima, Kunihiko; Ochiai, Masaaki; Shinohara, Yoshikuni; Inoue, Kimihiko.

    1995-01-01

    In order to investigate dynamics of the reactor plant of the nuclear ship Mutsu, the second reactor noise experiment using pseudo random binary sequences (PRBS) was performed on August 30, 1991 in the third experimental navigation. The experiments using both reactivity and load disturbances were performed at 50% of reactor power and under a quiet sea condition. Each PRBS was applied by manual operation of the control rod or the main steam valve. Various signals of the plant responses and of the acceleration of ship motion were measured. Furthermore, natural reactor noise signals were measured after each PRBS experiment in order to evaluate the effects of the PRBS disturbances. This paper summarizes the planning of the experiment, the instruction for the experiment and logs, the data recording conditions, recorded signal wave forms and the results of power spectral analysis. (author)

  4. Reactor dynamics experiment of nuclear ship Mutsu using pseudo random signal (III). The third experiment

    International Nuclear Information System (INIS)

    Hayashi, Koji; Shimazaki, Junya; Nabeshima, Kunihiko; Ochiai, Masaaki; Shinohara, Yoshikuni; Inoue, Kimihiko.

    1995-03-01

    In order to investigate dynamics of the reactor plant of the nuclear ship Mutsu, the third reactor noise experiment using pseudo random binary sequences (PRBS) was performed on September 16, 1991 in the third experimental navigation. The experiments using both reactivity and load disturbances were performed at 70% of reactor power and under a normal sea condition. Each PRBS was applied by manual operation of the control rod or the main steam valve. Various signals of the plant responses and of the acceleration of ship motion were measured. Furthermore, natural reactor noise signals were measured after each PRBS experiment in order to evaluate the effects of the PRBS disturbances. This paper summarizes the planning of the experiment, the instruction for the experiment and logs, the data recording conditions, recorded signal wave forms and the results of power spectral analysis. (author)

  5. Experiments of reconstructing discrete atmospheric dynamic models from data (I)

    Science.gov (United States)

    Lin, Zhenshan; Zhu, Yanyu; Deng, Ziwang

    1995-03-01

    In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, x n + 1 = 1- μx {2/n}, could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.

  6. Design of Experiment Using Simulation of a Discrete Dynamical System

    Directory of Open Access Journals (Sweden)

    Mašek Jan

    2016-12-01

    Full Text Available The topic of the presented paper is a promising approach to achieve optimal Design of Experiment (DoE, i.e. spreading of points within a design domain, using a simulation of a discrete dynamical system of interacting particles within an n-dimensional design space. The system of mutually repelling particles represents a physical analogy of the Audze-Eglājs (AE optimization criterion and its periodical modification (PAE, respectively. The paper compares the performance of two approaches to implementation: a single-thread process using the JAVA language environment and a massively parallel solution employing the nVidia CUDA platform.

  7. Assessing the ability of potential evapotranspiration models in capturing dynamics of evaporative demand across various biomes and climatic regimes with ChinaFLUX measurements

    Science.gov (United States)

    Zheng, Han; Yu, Guirui; Wang, Qiufeng; Zhu, Xianjin; Yan, Junhua; Wang, Huimin; Shi, Peili; Zhao, Fenghua; Li, Yingnian; Zhao, Liang; Zhang, Junhui; Wang, Yanfen

    2017-08-01

    Estimates of atmospheric evaporative demand have been widely required for a variety of hydrological analyses, with potential evapotranspiration (PET) being an important measure representing evaporative demand of actual vegetated surfaces under given metrological conditions. In this study, we assessed the ability of various PET models in capturing long-term (typically 2003-2011) dynamics of evaporative demand at eight ecosystems across various biomes and climatic regimes in China. Prior to assessing PET dynamics, we first examined the reasonability of fourteen PET models in representing the magnitudes of evaporative demand using eddy-covariance actual evapotranspiration (AET) as an indicator. Results showed that the robustness of the fourteen PET models differed somewhat across the sites, and only three PET models could produce reasonable magnitudes of evaporative demand (i.e., PET ≥ AET on average) for all eight sites, including the: (i) Penman; (ii) Priestly-Taylor and (iii) Linacre models. Then, we assessed the ability of these three PET models in capturing dynamics of evaporative demand by comparing the annual and seasonal trends in PET against the equivalent trends in AET and precipitation (P) for particular sites. Results indicated that nearly all the three PET models could faithfully reproduce the dynamics in evaporative demand for the energy-limited conditions at both annual and seasonal scales, while only the Penman and Linacre models could represent dynamics in evaporative demand for the water-limited conditions. However, the Linacre model was unable to reproduce the seasonal switches between water- and energy-limited states for some sites. Our findings demonstrated that the choice of PET models would be essential for the evaporative demand analyses and other related hydrological analyses at different temporal and spatial scales.

  8. Experiences in running a complex electronic data capture system using mobile phones in a large-scale population trial in southern Nepal

    OpenAIRE

    Style, S.; Beard, B. J.; Harris-Fry, H.; Sengupta, A.; Jha, S.; Shrestha, B. P.; Rai, A.; Paudel, V.; Thondoo, M.; Pulkki-Brannstrom, A-M; Skordis-Worrall, J.; Manandhar, D. S.; Costello, A.; Saville, N. M.

    2017-01-01

    The increasing availability and capabilities of mobile phones make them a feasible means of data collection. Electronic Data Capture (EDC) systems have been used widely for public health monitoring and surveillance activities, but documentation of their use in complicated research studies requiring multiple systems is limited. This paper shares our experiences of designing and implementing a complex multi-component EDC system for a community-based four-armed cluster-Randomised Controlled Tria...

  9. Experiences in running a complex electronic data capture system using mobile phones in a large-scale population trial in southern Nepal

    OpenAIRE

    Style, Sarah; Beard, B. James; Harris-Fry, Helen; Sengupta, Aman; Jha, Sonali; Shrestha, Bhim P.; Rai, Anjana; Paudel, Vikas; Thondoo, Meelan; Pulkki-Brannstrom, Anni-Maria; Skordis-Worrall, Jolene; Manandhar, Dharma S.; Costello, Anthony; Saville, Naomi M.

    2017-01-01

    ABSTRACT The increasing availability and capabilities of mobile phones make them a feasible means of data collection. Electronic Data Capture (EDC) systems have been used widely for public health monitoring and surveillance activities, but documentation of their use in complicated research studies requiring multiple systems is limited. This paper shares our experiences of designing and implementing a complex multi-component EDC system for a community-based four-armed cluster-Randomised Contro...

  10. Specifically Prescribed Dynamic Thermodynamic Paths and Resolidification Experiments

    International Nuclear Information System (INIS)

    Nguyen, J; Orlikowski, D; Streitz, F; Holmes, N; Moriarty, J

    2003-11-01

    We describe here a series of dynamic compression experiments using impactors with specifically prescribed density profiles. Building upon previous impactor designs, we compose our functionally graded density impactors of materials whose densities vary from about 0.1 g/cc to more than 15 g/cc. These impactors, whose density profiles are not restricted to be monotonic, can be used to generate prescribed thermodynamic paths in the targets. These paths include quasi-isentropes as well as combinations of shock, rarefraction, and quasi-isentropic compression waves. The time-scale of these experiments ranges from nanoseconds to several microseconds. Strain-rates in the quasi-isentropic compression experiments vary from approximately 10 4 s -1 to 10 6 s -1 . We applied this quasi-isentropic compression technique to resolidify water where ice is at a higher temperature than the initial water sample. The particle velocity of quasi-isentropically compressed water exhibits a two-wave structure and sample thickness scales consistently with water-ice phase transition time. Experiments on resolidification of molten bismuth are also promising

  11. An Approach Toward Synthesis of Bridgmanite in Dynamic Compression Experiments

    Science.gov (United States)

    Reppart, J. J.

    2015-12-01

    Bridgmanite occurs in heavily shocked meteorites and provides a useful constraint on pressure-temperature conditions during shock-metamorphism. Its occurrence also provides constraints on the shock release path. Shock-release and shock duration are important parameters in estimating the size of impactors that generate the observed shock metamorphic record. Thus, it is timely to examine if bridgmanite can be synthesized in dynamic compression experiments with the goal of establishing a correlation between shock duration and grainsize. Up to now only one high pressure polymorph of an Mg-silicate has been synthesized AND recovered in a shock experiment (wadsleyite). Therefore, it is not given that shock synthesis of bridgmanite is possible. This project started recently, so we present an outline of shock experiment designs and potentially results from the first experiments. FUNDING ACKNOWLEDGMENT UNLV HiPSEC: This research was sponsored (or sponsored in part) by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement #DE-NA0001982. HPCAT: "[Portions of this work were]/[This work was] performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357."

  12. Dynamics of vortices in complex wakes: Modeling, analysis, and experiments

    Science.gov (United States)

    Basu, Saikat

    The thesis develops singly-periodic mathematical models for complex laminar wakes which are formed behind vortex-shedding bluff bodies. These wake structures exhibit a variety of patterns as the bodies oscillate or are in close proximity of one another. The most well-known formation comprises two counter-rotating vortices in each shedding cycle and is popularly known as the von Karman vortex street. Of the more complex configurations, as a specific example, this thesis investigates one of the most commonly occurring wake arrangements, which consists of two pairs of vortices in each shedding period. The paired vortices are, in general, counter-rotating and belong to a more general definition of the 2P mode, which involves periodic release of four vortices into the flow. The 2P arrangement can, primarily, be sub-classed into two types: one with a symmetric orientation of the two vortex pairs about the streamwise direction in a periodic domain and the other in which the two vortex pairs per period are placed in a staggered geometry about the wake centerline. The thesis explores the governing dynamics of such wakes and characterizes the corresponding relative vortex motion. In general, for both the symmetric as well as the staggered four vortex periodic arrangements, the thesis develops two-dimensional potential flow models (consisting of an integrable Hamiltonian system of point vortices) that consider spatially periodic arrays of four vortices with their strengths being +/-Gamma1 and +/-Gamma2. Vortex formations observed in the experiments inspire the assumed spatial symmetry. The models demonstrate a number of dynamic modes that are classified using a bifurcation analysis of the phase space topology, consisting of level curves of the Hamiltonian. Despite the vortex strengths in each pair being unequal in magnitude, some initial conditions lead to relative equilibrium when the vortex configuration moves with invariant size and shape. The scaled comparisons of the

  13. Dynamic crack initiation toughness : experiments and peridynamic modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Foster, John T.

    2009-10-01

    This is a dissertation on research conducted studying the dynamic crack initiation toughness of a 4340 steel. Researchers have been conducting experimental testing of dynamic crack initiation toughness, K{sub Ic}, for many years, using many experimental techniques with vastly different trends in the results when reporting K{sub Ic} as a function of loading rate. The dissertation describes a novel experimental technique for measuring K{sub Ic} in metals using the Kolsky bar. The method borrows from improvements made in recent years in traditional Kolsky bar testing by using pulse shaping techniques to ensure a constant loading rate applied to the sample before crack initiation. Dynamic crack initiation measurements were reported on a 4340 steel at two different loading rates. The steel was shown to exhibit a rate dependence, with the recorded values of K{sub Ic} being much higher at the higher loading rate. Using the knowledge of this rate dependence as a motivation in attempting to model the fracture events, a viscoplastic constitutive model was implemented into a peridynamic computational mechanics code. Peridynamics is a newly developed theory in solid mechanics that replaces the classical partial differential equations of motion with integral-differential equations which do not require the existence of spatial derivatives in the displacement field. This allows for the straightforward modeling of unguided crack initiation and growth. To date, peridynamic implementations have used severely restricted constitutive models. This research represents the first implementation of a complex material model and its validation. After showing results comparing deformations to experimental Taylor anvil impact for the viscoplastic material model, a novel failure criterion is introduced to model the dynamic crack initiation toughness experiments. The failure model is based on an energy criterion and uses the K{sub Ic} values recorded experimentally as an input. The failure model

  14. Dynamic magnetic resonance of pelvic floor: experience in 38 patients

    International Nuclear Information System (INIS)

    Ocantos, Jorge; Fattal Jaef, Virginia; Pietrani, Marcelo; Seclen, Maria F.; Seehaus, Alberto; Sarsotti, Carlos

    2005-01-01

    Purpose: To show the experience in the evaluation of dysfunctions of pelvic floor by dynamic magnetic resonance (DMR) and to describe the structural and dynamic disorders of pelvis organs. Material and Methods: From March 2004 to March 2005 38 patients with pelvic floor disorders have been studied, 33/38 women (86, 84 %) and 5/38 men (15,16 %), ages between 16 and 74 years old. An evacuating rectal enema has been indicated 4 hours before the examination with bladder retention of 3 hours. 180-240 cc of semisolid paste (thin oats and saline solution) has been used to distend rectum until patients refer sensation of rectum full or a maximum of 240 cm 3 . The study has been performed in a Siemens Magnetom Vision (1.5 T) body array and coil CP Body Array Flex. T2 turbo spin eco axial and sagittal (TR 4700, TE1, 32), T1 coronal (TR 580 TE 14) with a 4 mm slice were selected for static sequences and Siemens TRUFI sagittal (TR 4.8 TE 2.3) for dynamic acquisitions during rectal and voiding evacuations. The morphology and symmetry of peri urethral ligaments (PUL), elevator anus muscle (LA), and vagina (V) was evaluated. The organs prolapse was evaluated at rest and maximal pelvis strain in accord with Comiter parameters (Fielding J.R.). Results: At 10/38 (26, 32 %) patients was not detected lesions. In 28/38 P (73,68 %) 75 defects of the pelvic supports (54,6 % of LA, 14,6% of the vagina V, 9,3% of PUL and other 21,3 %). The dynamic sequences show 59 defects, 50, 84 % of posterior compartment and 49,16% of anterior. In 8/38 (28, 57 %) patients the lesions affected both compartment. Conclusion: Dynamic magnetic resonance allows the direct interpretation of the very small pelvic floor structure and its disorders (not available by other methods) and the dynamic study of prolapse, providing a more accurate interpretation of its causes. DRM can be very useful in patients with multi-compartment involvement, complex prolapse or recurrence of symptoms post surgical repair. (author

  15. Design, economics and parameter uncertainty in dynamic operation of post-combustion CO2 capture using piperazine (PZ) and MEA

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Ricardez-Sandoval, Luis; Jørgensen, John Bagterp

    2017-01-01

    of the plant. Flexibility is particularly crucial from an economic and operational point of view since plants must balance the power production and the electricity demand on a daily basis. This work shows the impact of design decisions and uncertainties on the dynamic operation and economics of a CO2 capture...... plant using piperazine (PZ), compared to the benchmark MEA solvent. This is exemplified through dynamic model calculations. The results show that the capacity of the buffer tank is a key parameter for the flexibility of the plant. A small tank corresponds to lower capital cost but it leads to increased...... operation cost and also to flexibility/controllability issues. Both, the PZ and MEA plants present inverse response for small tanks. These plants are challenging to control....

  16. Capturing multi-stage fuzzy uncertainties in hybrid system dynamics and agent-based models for enhancing policy implementation in health systems research.

    Science.gov (United States)

    Liu, Shiyong; Triantis, Konstantinos P; Zhao, Li; Wang, Youfa

    2018-01-01

    In practical research, it was found that most people made health-related decisions not based on numerical data but on perceptions. Examples include the perceptions and their corresponding linguistic values of health risks such as, smoking, syringe sharing, eating energy-dense food, drinking sugar-sweetened beverages etc. For the sake of understanding the mechanisms that affect the implementations of health-related interventions, we employ fuzzy variables to quantify linguistic variable in healthcare modeling where we employ an integrated system dynamics and agent-based model. In a nonlinear causal-driven simulation environment driven by feedback loops, we mathematically demonstrate how interventions at an aggregate level affect the dynamics of linguistic variables that are captured by fuzzy agents and how interactions among fuzzy agents, at the same time, affect the formation of different clusters(groups) that are targeted by specific interventions. In this paper, we provide an innovative framework to capture multi-stage fuzzy uncertainties manifested among interacting heterogeneous agents (individuals) and intervention decisions that affect homogeneous agents (groups of individuals) in a hybrid model that combines an agent-based simulation model (ABM) and a system dynamics models (SDM). Having built the platform to incorporate high-dimension data in a hybrid ABM/SDM model, this paper demonstrates how one can obtain the state variable behaviors in the SDM and the corresponding values of linguistic variables in the ABM. This research provides a way to incorporate high-dimension data in a hybrid ABM/SDM model. This research not only enriches the application of fuzzy set theory by capturing the dynamics of variables associated with interacting fuzzy agents that lead to aggregate behaviors but also informs implementation research by enabling the incorporation of linguistic variables at both individual and institutional levels, which makes unstructured linguistic data

  17. A dynamically adaptive wavelet approach to stochastic computations based on polynomial chaos - capturing all scales of random modes on independent grids

    International Nuclear Information System (INIS)

    Ren Xiaoan; Wu Wenquan; Xanthis, Leonidas S.

    2011-01-01

    Highlights: → New approach for stochastic computations based on polynomial chaos. → Development of dynamically adaptive wavelet multiscale solver using space refinement. → Accurate capture of steep gradients and multiscale features in stochastic problems. → All scales of each random mode are captured on independent grids. → Numerical examples demonstrate the need for different space resolutions per mode. - Abstract: In stochastic computations, or uncertainty quantification methods, the spectral approach based on the polynomial chaos expansion in random space leads to a coupled system of deterministic equations for the coefficients of the expansion. The size of this system increases drastically when the number of independent random variables and/or order of polynomial chaos expansions increases. This is invariably the case for large scale simulations and/or problems involving steep gradients and other multiscale features; such features are variously reflected on each solution component or random/uncertainty mode requiring the development of adaptive methods for their accurate resolution. In this paper we propose a new approach for treating such problems based on a dynamically adaptive wavelet methodology involving space-refinement on physical space that allows all scales of each solution component to be refined independently of the rest. We exemplify this using the convection-diffusion model with random input data and present three numerical examples demonstrating the salient features of the proposed method. Thus we establish a new, elegant and flexible approach for stochastic problems with steep gradients and multiscale features based on polynomial chaos expansions.

  18. Capturing public opinion on public health topics: a comparison of experiences from a systematic review, focus group study, and analysis of online, user-generated content

    Directory of Open Access Journals (Sweden)

    Emma Louise Giles

    2015-08-01

    Full Text Available BackgroundCapturing public opinion towards public health topics is important to ensure that services, policy and research are aligned with the beliefs and priorities of the general public. A number of approaches can be used to capture public opinion. MethodsWe are conducting a programme of work on the effectiveness and acceptability of health promoting financial incentive interventions. We have captured public opinion on financial incentive interventions using three methods: a systematic review, focus group study, and analysis of online user-generated comments to news media reports. In this short, editorial-style, piece we compare and contrast our experiences with these three methods.ResultsEach of these methods had their advantages and disadvantages. Advantages include tailoring of the research question for systematic reviews, probing of answers during focus groups, and the ability to aggregate a large data set using online user-generated content. However, disadvantages include needing to update systematic reviews, participants conforming to a dominant perspective in focus groups, and being unable to collect respondent characteristics during analysis of user-generated online content. That said, analysis of user-generated online content offers additional time and resource advantages, and we found it elicited similar findings to those obtained via more traditional methods, such as systematic reviews and focus groups. ConclusionsA number of methods for capturing public opinions on public health topics are available. Public health researchers, policy makers and practitioners should choose methods appropriate to their aims. Analysis user-generated online content, especially in the context of news media reports, may be a quicker and cheaper alternative to more traditional methods, without compromising on the breadth of opinions captured.

  19. Capturing Public Opinion on Public Health Topics: A Comparison of Experiences from a Systematic Review, Focus Group Study, and Analysis of Online, User-Generated Content.

    Science.gov (United States)

    Giles, Emma Louise; Adams, Jean M

    2015-01-01

    Capturing public opinion toward public health topics is important to ensure that services, policy, and research are aligned with the beliefs and priorities of the general public. A number of approaches can be used to capture public opinion. We are conducting a program of work on the effectiveness and acceptability of health promoting financial incentive interventions. We have captured public opinion on financial incentive interventions using three methods: a systematic review, focus group study, and analysis of online user-generated comments to news media reports. In this short editorial-style piece, we compare and contrast our experiences with these three methods. Each of these methods had their advantages and disadvantages. Advantages include tailoring of the research question for systematic reviews, probing of answers during focus groups, and the ability to aggregate a large data set using online user-generated content. However, disadvantages include needing to update systematic reviews, participants conforming to a dominant perspective in focus groups, and being unable to collect respondent characteristics during analysis of user-generated online content. That said, analysis of user-generated online content offers additional time and resource advantages, and we found it elicited similar findings to those obtained via more traditional methods, such as systematic reviews and focus groups. A number of methods for capturing public opinions on public health topics are available. Public health researchers, policy makers, and practitioners should choose methods appropriate to their aims. Analysis of user-generated online content, especially in the context of news media reports, may be a quicker and cheaper alternative to more traditional methods, without compromising on the breadth of opinions captured.

  20. Muon capture by the 1p shell of 10B, 12C and 14N nuclei. Experiments and interpretation

    International Nuclear Information System (INIS)

    Moura Goncalves, A.C. de.

    1980-12-01

    The main elements necessary to treat weak interactions in a nucleus including the contributions of exchange meson currents are presented. The case of a transition between an initial (Z,A) nucleus and a final (Z-1,A) nucleus in a well defined bound state is treated. The form of the single body operator taking into account the nucleonic degrees of freedom (impulse approximation) is recalled. The construction of a two-body operator taking mesonic degrees of freedom into account is outlined. Measurements of partial capture rates in 10 B, 12 C and 14 N target nuclei leading to excited bound states of 10 Be, 12 B and 14 C residual nuclei are described. Results are given and comparisons made with the calculations performed, nuclear states being described by various wave functions. Measurements of the polarization of the 1 + ground state of 12 B after N capture in 12 C are briefly described. An attempt is made to interpret the 0 + 1 + transition occurring in the A = 12 triad. A convenient parametrization is obtained from the expression for these observable quantities as a function of the nuclear shape factors. This analysis enables a strict choice to be made from the available wavefunctions. It demonstrates that experimental data are well reproduced by the microscopy approach performed using the effective Sussex potential and single pion exchange currents. Finally, the hitherto unexplored domain of muon capture is tackled. A high energy transfer is involved in which the neutrino remains practically at rest. In this case, the vector part is not very important and the axial current time part contributes as much is the space part. The (μ - ,pn) reaction was used for exploratory measurements in this domain. Practical limits are determined [fr

  1. Preliminary results of statistical dynamic experiments on a heat exchanger

    International Nuclear Information System (INIS)

    Corran, E.R.; Cummins, J.D.

    1962-10-01

    The inherent noise signals present in a heat exchanger have been recorded and analysed in order to determine some of the statistical dynamic characteristics of the heat exchanger. These preliminary results show that the primary side temperature frequency response may be determined by analysing the inherent noise. The secondary side temperature frequency response and cross coupled temperature frequency responses between primary and secondary are poorly determined because of the presence of a non-stationary noise source in the secondary circuit of this heat exchanger. This may be overcome by correlating the dependent variables with an externally applied noise signal. Some preliminary experiments with an externally applied random telegraph type of signal are reported. (author)

  2. A natural experiment of social network formation and dynamics.

    Science.gov (United States)

    Phan, Tuan Q; Airoldi, Edoardo M

    2015-05-26

    Social networks affect many aspects of life, including the spread of diseases, the diffusion of information, the workers' productivity, and consumers' behavior. Little is known, however, about how these networks form and change. Estimating causal effects and mechanisms that drive social network formation and dynamics is challenging because of the complexity of engineering social relations in a controlled environment, endogeneity between network structure and individual characteristics, and the lack of time-resolved data about individuals' behavior. We leverage data from a sample of 1.5 million college students on Facebook, who wrote more than 630 million messages and 590 million posts over 4 years, to design a long-term natural experiment of friendship formation and social dynamics in the aftermath of a natural disaster. The analysis shows that affected individuals are more likely to strengthen interactions, while maintaining the same number of friends as unaffected individuals. Our findings suggest that the formation of social relationships may serve as a coping mechanism to deal with high-stress situations and build resilience in communities.

  3. Beam Dynamics Studies for a Laser Acceleration Experiment

    CERN Document Server

    Spencer, James; Noble, Robert; Palmer, Dennis T; Siemann, Robert

    2005-01-01

    The NLC Test Accelerator at SLAC was built to address various beam dynamics issues for the Next Linear Collider. An S-Band RF gun, originally proposed for the NLCTA, is being installed together with a large-angle extraction line at 60 MeV. This is followed by a matching section, final focus and buncher for the laser acceleration experiment, E163. The laser-electron interaction area is followed by a broad range, high resolution spectrometer (HES) for electron bunch analysis. The RF gun is discussed in another paper. We discuss only the beam dynamics and high resolution analysis system at 6 MeV based on using Parmela and high-order Transport for bunch charges from 50 pC to 1 nC. Beyond the diagnostics, this system uses the emittance compensating solenoids and a low energy, high resolution spectrometer (LES) to help tune for best operating point and match to the linac. Optical symmetries in the design of the 25.5° extraction line provide 1:1 phase space transfer without linear dispersion or use of sextu...

  4. Dynamic behavior of IREB in a collective ion acceleration experiment

    International Nuclear Information System (INIS)

    Fine, T.A.; Rhee, M.J.

    1989-01-01

    The authors report an experimental study of dynamic behavior of net current in conjunction with collective ion acceleration. In the presence of neutral gas, either puffed in or released from the anode foil, the IREB injected is subject to the charge and current neutralizations, resulting in a complicated time and space dependent beam distribution in the drift tube. To investigate the dynamic behavior of the current in the drift tube, typically a 0.5 MeV, 70 kA, 100 ns electron beam of 2.54 cm diam is injected through a foil anode into a drift tube of 15 cm diam. Reproducibility of experiment was improved by using a specially designed anode system with a foil changer which allowed the production of many shots of high current electron beam without disturbing the vacuum condition. The net currents were measured by a Rogowski coil built in the anode system, and a movable Faraday cup along the drift tube. The ions accelerated were diagnosed mainly by a Thomson spectrometer system placed at the end of the drift tube

  5. Dynamic stellar neutron-capture nucleosynthesis: the need for more nuclear data for the s-process

    International Nuclear Information System (INIS)

    Mathews, G.J.; Howard, W.M.; Takahashi, K.; Ward, R.A.

    1984-09-01

    We summarize results from a detailed parameter study of the s-process in models which produce an exponential distribution of exposures by sequential irradiations and dredge up in the stellar environment. The calculations are based on a complete network of measured and calculated neutron capture and beta-decay rates as well as estimates for their temperature dependence. In the framework of these models we identify and systematically vary the astrophysical variables which affect the observed solar-system sigmaN (cross section times abundance) curve. Constraints are placed on the s-process neutron exposure and flux as well as the temperatures, densities, neutron pulse shape and inter-pulse period. The results also highlight important needs for better nuclear data in various mass regions. 26 references

  6. A Wideband Magnetoresistive Sensor for Monitoring Dynamic Fault Slip in Laboratory Fault Friction Experiments.

    Science.gov (United States)

    Kilgore, Brian D

    2017-12-02

    A non-contact, wideband method of sensing dynamic fault slip in laboratory geophysical experiments employs an inexpensive magnetoresistive sensor, a small neodymium rare earth magnet, and user built application-specific wideband signal conditioning. The magnetoresistive sensor generates a voltage proportional to the changing angles of magnetic flux lines, generated by differential motion or rotation of the near-by magnet, through the sensor. The performance of an array of these sensors compares favorably to other conventional position sensing methods employed at multiple locations along a 2 m long × 0.4 m deep laboratory strike-slip fault. For these magnetoresistive sensors, the lack of resonance signals commonly encountered with cantilever-type position sensor mounting, the wide band response (DC to ≈ 100 kHz) that exceeds the capabilities of many traditional position sensors, and the small space required on the sample, make them attractive options for capturing high speed fault slip measurements in these laboratory experiments. An unanticipated observation of this study is the apparent sensitivity of this sensor to high frequency electomagnetic signals associated with fault rupture and (or) rupture propagation, which may offer new insights into the physics of earthquake faulting.

  7. Attention Capture by Faces

    Science.gov (United States)

    Langton, Stephen R. H.; Law, Anna S.; Burton, A. Mike; Schweinberger, Stefan R.

    2008-01-01

    We report three experiments that investigate whether faces are capable of capturing attention when in competition with other non-face objects. In Experiment 1a participants took longer to decide that an array of objects contained a butterfly target when a face appeared as one of the distracting items than when the face did not appear in the array.…

  8. Possibility of a crossed-beam experiment involving slow-neutron capture by unstable nuclei - ``rapid-process tron''

    Science.gov (United States)

    Yamazaki, T.; Katayama, I.; Uwamino, Y.

    1993-02-01

    The possibility of a crossed beam facility of slow neutrons capturing unstable nuclei is examined in connection with the Japanese Hadron Project. With a pulsed proton beam of 50 Hz repetition and with a 100 μA average beam current, one obtains a spallation neutron source of 2.4 × 10 8 thermal neutrons/cm 3/spill over a 60 cm length with a 3 ms average duration time by using a D 2O moderator. By confining radioactive nuclei of 10 9 ions in a beam circulation ring of 0.3 MHz revolution frequency, so that nuclei pass through the neutron source, one obtains a collision luminosity of 3.9 × 10 24/cm 2/s. A new research domain aimed at studying rapid processes in nuclear genetics in a laboratory will be created.

  9. Constrained Multi-Body Dynamics for Modular Underwater Robots — Theory and Experiments

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Cornelius; Eidsvik, Ole Alexander; Blanke, Mogens

    2018-01-01

    This paper investigates the problem of modelling a system of interconnected underwater robots with highly coupled dynamics. The objective is to develop a mathematical description of the system that captures its most significant dynamics. The proposed modelling method is based on active constraint...... on a BlueROV vehicle to determine the model parameters. The applicability of the modelling approach is assessed by comparing experimental data to simulations of an equivalent model synthesised using the proposed theory....

  10. A Parallel, Multi-Scale Watershed-Hydrologic-Inundation Model with Adaptively Switching Mesh for Capturing Flooding and Lake Dynamics

    Science.gov (United States)

    Ji, X.; Shen, C.

    2017-12-01

    Flood inundation presents substantial societal hazards and also changes biogeochemistry for systems like the Amazon. It is often expensive to simulate high-resolution flood inundation and propagation in a long-term watershed-scale model. Due to the Courant-Friedrichs-Lewy (CFL) restriction, high resolution and large local flow velocity both demand prohibitively small time steps even for parallel codes. Here we develop a parallel surface-subsurface process-based model enhanced by multi-resolution meshes that are adaptively switched on or off. The high-resolution overland flow meshes are enabled only when the flood wave invades to floodplains. This model applies semi-implicit, semi-Lagrangian (SISL) scheme in solving dynamic wave equations, and with the assistant of the multi-mesh method, it also adaptively chooses the dynamic wave equation only in the area of deep inundation. Therefore, the model achieves a balance between accuracy and computational cost.

  11. Contingent capture effects in temporal order judgments.

    Science.gov (United States)

    Born, Sabine; Kerzel, Dirk; Pratt, Jay

    2015-08-01

    The contingent attentional capture hypothesis proposes that visual stimuli that do not possess characteristics relevant for the current task will not capture attention, irrespective of their bottom-up saliency. Typically, contingent capture is tested in a spatial cuing paradigm, comparing manual reaction times (RTs) across different conditions. However, attention may act through several mechanisms and RTs may not be ideal to disentangle those different components. In 3 experiments, we examined whether color singleton cues provoke cuing effects in temporal order judgments (TOJs) and whether they would be contingent on attentional control sets. Experiment 1 showed that color singleton cues indeed produce cuing effects in TOJs, even in a cluttered and dynamic target display containing multiple heterogeneous distractors. In Experiment 2, consistent with contingent capture, we observed reliable cuing effects only when the singleton cue matched participants' current attentional control set. Experiment 3 suggests that a sensory interaction account of the differences found in Experiment 2 is unlikely. Our results help to discern the attentional components that may play a role in contingent capture. Further, we discuss a number of other effects (e.g., reversed cuing effects) that are found in RTs, but so far have not been reported in TOJs. Those differences suggest that RTs are influenced by a multitude of mechanisms; however, not all of these mechanisms may affect TOJs. We conclude by highlighting how the study of attentional capture in TOJs provides valuable insights for the attention literature, but also for studies concerned with the perceived timing between stimuli. (c) 2015 APA, all rights reserved).

  12. Petmanship: Understanding Elderly Filipinos' Self-Perceived Health and Self-Esteem Captured from Their Lived Experiences with Pet Companions

    Science.gov (United States)

    de Guzman, Allan B.; Cucueco, Denise S.; Cuenco, Ian Benedict V.; Cunanan, Nigel Gerome C.; Dabandan, Robel T.; Dacanay, Edgar Joseph E.

    2009-01-01

    Understanding of the lived experiences of geriatric clients with pets, particularly in the Western cultures, has been the subject of many studies. However, little is known about how Asian cultures, particularly the Filipino elderly, view their experiences with their pets in regard to their self-esteem and self-perceived health. This…

  13. Understanding and Modelling the Effect of Dissolved Metals on Solvent Degradation in Post Combustion CO2 Capture Based on Pilot Plant Experience

    Directory of Open Access Journals (Sweden)

    Sanjana Dhingra

    2017-05-01

    Full Text Available Oxidative degradation is a serious concern for upscaling of amine-based carbon capture technology. Different kinetic models have been proposed based on laboratory experiments, however the kinetic parameters included are limited to those relevant for a lab-scale system and not a capture plant. Besides, most of the models fail to recognize the catalytic effect of metals. The objective of this work is to develop a representative kinetic model based on an apparent auto-catalytic reaction mechanism between solvent degradation, corrosion and ammonia emissions. Measurements from four different pilot plants: (i EnBW’s plant at Heilbronn, Germany (ii TNO’s plant at Maasvlakte, The Netherlands; (iii CSIRO’s plants at Loy Yang and Tarong, Australia and (iv DONG Energy’s plant at Esbjerg, Denmark are utilized to propose a degradation kinetic model for 30 wt % ethanolamine (MEA as the capture solvent. The kinetic parameters of the model were regressed based on the pilot plant campaign at EnBW. The kinetic model was validated by comparing it with the measurements at the remaining pilot campaigns. The model predicted the trends of ammonia emissions and metal concentration within the same order of magnitude. This study provides a methodology to establish a quantitative approach for predicting the onset of unacceptable degradation levels which can be further used to devise counter-measure strategies such as reclaiming and metal removal.

  14. Assessing innovation in emerging energy technologies: Socio-technical dynamics of carbon capture and storage (CCS) and enhanced geothermal systems (EGS) in the USA

    International Nuclear Information System (INIS)

    Stephens, Jennie C.; Jiusto, Scott

    2010-01-01

    This study applies a socio-technical systems perspective to explore innovation dynamics of two emerging energy technologies with potential to reduce greenhouse gas emissions from electrical power generation in the United States: carbon capture and storage (CCS) and enhanced geothermal systems (EGS). The goal of the study is to inform sustainability science theory and energy policy deliberations by examining how social and political dynamics are shaping the struggle for resources by these two emerging, not-yet-widely commercializable socio-technical systems. This characterization of socio-technical dynamics of CCS and EGS innovation includes examining the perceived technical, environmental, and financial risks and benefits of each system, as well as the discourses and actor networks through which the competition for resources - particularly public resources - is being waged. CCS and EGS were selected for the study because they vary considerably with respect to their social, technical, and environmental implications and risks, are unproven at scale and uncertain with respect to cost, feasibility, and life-cycle environmental impacts. By assessing the two technologies in parallel, the study highlights important social and political dimensions of energy technology innovation in order to inform theory and suggest new approaches to policy analysis.

  15. Dynamics of a radially expanding liquid sheet: Experiments

    Science.gov (United States)

    Majumdar, Nayanika; Tirumkudulu, Mahesh

    2017-11-01

    A recent theory predicts that sinuous waves generated at the center of a radially expanding liquid sheet grow spatially even in absence of a surrounding gas phase. Unlike flat liquid sheets, the thickness of a radially expanding liquid sheet varies inversely with distance from the center of the sheet. To test the predictions of the theory, experiments were carried out on a horizontal, radially expanding liquid sheet formed by collision of a single jet on a solid impactor. The latter was placed on a speaker-vibrator with controlled amplitude and frequency. The growth of sinuous waves was determined by measuring the wave surface inclination angle using reflected laser light under both atmospheric and sub-atmospheric pressure conditions. It is shown that the measured growth rate matches with the predictions of the theory over a large range of Weber numbers for both pressure conditions suggesting that the thinning of the liquid sheet plays a dominant role in setting the growth rate of sinuous waves with minimal influence of the surrounding gas phase on its dynamics. IIT Bombay.

  16. Dynamic hohlraum and ICF pellet implosion experiments on Z

    International Nuclear Information System (INIS)

    Nash, T.J.; Derzon, M.S.; Chandler, G.A.

    1999-01-01

    By stabilizing an imploding z-pinch on Z (20 MA, 100 ns) with a solid current return can and a nested wire array the authors have achieved dynamic hohlraum radiation temperatures over 200 eV at a diameter of approximately 1 mm. The pinch configuration yielding this temperature is a nested tungsten wire array of 240 and 120 wires at 4 and 2 cm diameters weighing 2 and 1 mg, 1 cm long, imploding onto a 5 mm diameter, 14 mg/cc cylindrical CH foam, weighing 3 mg. They have used a single 4 cm diameter tungsten wire array to drive a 1.6 mm diameter ICF capsule mounted in a 6 mg/cc foam inside a 3 mg copper annulus at 5 mm diameter, and measured x-ray emissions indicative of the pellet implosion. Mounting the pellet in foam may have caused the hohlraum to become equator-hot. They will present results from upcoming pellet experiments in which the pellet is mounted by thread and driven by a larger diameter, 6 or 7 mm, copper annulus to improve radiation drive symmetry. They will also discuss designs for tapered foam annular targets that distort a cylindrical pinch into a quasi-sphere that will wrap around an ICF pellet to further improve drive symmetry

  17. Nuclear muon capture

    CERN Document Server

    Mukhopadhyay, N C

    1977-01-01

    Our present knowledge of the nuclear muon capture reactions is surveyed. Starting from the formation of the muonic atom, various phenomena, having a bearing on the nuclear capture, are reviewed. The nuclear reactions are then studied from two angles-to learn about the basic muon+nucleon weak interaction process, and to obtain new insights on the nuclear dynamics. Future experimental prospects with the newer generation muon 'factories' are critically examined. Possible modification of the muon+nucleon weak interaction in complex nuclei remains the most important open problem in this field. (380 refs).

  18. Installation, commissioning and performance of the trigger system of the Double Chooz experiment and the analysis of hydrogen capture neutrino events

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, Sebastian

    2013-11-18

    neutrino oscillation analysis with the Double Chooz experiment based on neutron captures by Hydrogen. This analysis allows to use a three times larger fiducial volume compared to the standard analysis based on neutron captures by Gadolinium. Due to the different fiducial volume, systematic uncertainties related to background estimations are partly independent from the standard analysis. Therefore, the analysis provides a partly independent crosscheck of the recent analyses results of the measurement of sin{sup 2}(2θ{sub 13}). The presented analysis results in a value of sin{sup 2}(2θ{sub 13})=0.097±0.034 (stat.)±0.034 (syst.) which is in good agreement with all the other measurements of sin{sup 2}(2θ{sub 13}) presented in 2012.

  19. Modeling Island-Growth Capture Zone Distributions (CZD) with the Generalized Wigner Distribution (GWD): New Developments in Theory and Experiment

    Science.gov (United States)

    Pimpinelli, Alberto; Einstein, T. L.; González, Diego Luis; Sathiyanarayanan, Rajesh; Hamouda, Ajmi Bh.

    2011-03-01

    Earlier we showed [PRL 99, 226102 (2007)] that the CZD in growth could be well described by P (s) = asβ exp (-bs2) , where s is the CZ area divided by its average value. Painstaking simulations by Amar's [PRE 79, 011602 (2009)] and Evans's [PRL 104, 149601 (2010)] groups showed inadequacies in our mean field Fokker-Planck argument relating β to the critical nucleus size. We refine our derivation to retrieve their β ~ i + 2 [PRL 104, 149602 (2010)]. We discuss applications of this formula and methodology to experiments on Ge/Si(001) and on various organics on Si O2 , as well as to kinetic Monte Carlo studies homoepitaxial growth on Cu(100) with codeposited impurities of different sorts. In contrast to theory, there can be significant changes to β with coverage. Some experiments also show temperature dependence. Supported by NSF-MRSEC at UMD, Grant DMR 05-20471.

  20. Maximizing research study effectiveness in malaria elimination settings: a mixed methods study to capture the experiences of field-based staff.

    Science.gov (United States)

    Canavati, Sara E; Quintero, Cesia E; Haller, Britt; Lek, Dysoley; Yok, Sovann; Richards, Jack S; Whittaker, Maxine Anne

    2017-09-11

    In a drug-resistant, malaria elimination setting like Western Cambodia, field research is essential for the development of novel anti-malarial regimens and the public health solutions necessary to monitor the spread of resistance and eliminate infection. Such field studies often face a variety of similar implementation challenges, but these are rarely captured in a systematic way or used to optimize future study designs that might overcome similar challenges. Field-based research staff often have extensive experience and can provide valuable insight regarding these issues, but their perspectives and experiences are rarely documented and seldom integrated into future research protocols. This mixed-methods analysis sought to gain an understanding of the daily challenges encountered by research field staff in the artemisinin-resistant, malaria elimination setting of Western Cambodia. In doing so, this study seeks to understand how the experiences and opinions of field staff can be captured, and used to inform future study designs. Twenty-two reports from six field-based malaria studies conducted in Western Cambodia were reviewed using content analysis to identify challenges to conducting the research. Informal Interviews, Focus Group Discussions and In-depth Interviews were also conducted among field research staff. Thematic analysis of the data was undertaken using Nvivo 9 ® software. Triangulation and critical case analysis was also used. There was a lack of formalized avenues through which field workers could report challenges experienced when conducting the malaria studies. Field research staff faced significant logistical barriers to participant recruitment and data collection, including a lack of available transportation to cover long distances, and the fact that mobile and migrant populations (MMPs) are usually excluded from studies because of challenges in follow-up. Cultural barriers to communication also hindered participant recruitment and created

  1. Visual capture and the experience of having two bodies – Evidence from two different virtual reality techniques

    Directory of Open Access Journals (Sweden)

    Lukas eHeydrich

    2013-12-01

    Full Text Available In neurology and psychiatry the detailed study of illusory own body perceptions has suggested close links between bodily processing and self-consciousness. One such illusory own body perception is heautoscopy where patients have the sensation of being reduplicated and to exist at two or even more locations. In previous experiments, using a video head-mounted display, self-location and self-identification were manipulated by applying conflicting visuo-tactile information. Yet the experienced singularity of the self was not affected, i.e. participants did not experience having multiple bodies or selves. In two experiments presented in this paper, we investigated self-location and self-identification while participants saw two virtual bodies (video-generated in study 1 and 3D computer generated in study 2 that were stroked either synchronously or asynchronously with their own body. In both experiments, we report that self-identification with two virtual bodies was stronger during synchronous stroking. Furthermore, in the video generated setup with synchronous stroking participants reported a greater feeling of having multiple bodies than in the control conditions. In study 1, but not in study 2, we report that self-location – measured by anterior posterior drift – was significantly shifted towards the two bodies in the synchronous condition only. Self-identification with two bodies, the sensation of having multiple bodies, and the changes in self-location show that the experienced singularity of the self can be studied experimentally. We discuss our data with respect to ownership for supernumerary hands and heautoscopy. We finally compare the effects of the video and 3D computer generated head-mounted display technology and discuss the possible benefits of using either technology to induce changes in illusory self-identification with a virtual body.

  2. Presence capture cameras - a new challenge to the image quality

    Science.gov (United States)

    Peltoketo, Veli-Tapani

    2016-04-01

    Commercial presence capture cameras are coming to the markets and a new era of visual entertainment starts to get its shape. Since the true presence capturing is still a very new technology, the real technical solutions are just passed a prototyping phase and they vary a lot. Presence capture cameras have still the same quality issues to tackle as previous phases of digital imaging but also numerous new ones. This work concentrates to the quality challenges of presence capture cameras. A camera system which can record 3D audio-visual reality as it is has to have several camera modules, several microphones and especially technology which can synchronize output of several sources to a seamless and smooth virtual reality experience. Several traditional quality features are still valid in presence capture cameras. Features like color fidelity, noise removal, resolution and dynamic range create the base of virtual reality stream quality. However, co-operation of several cameras brings a new dimension for these quality factors. Also new quality features can be validated. For example, how the camera streams should be stitched together with 3D experience without noticeable errors and how to validate the stitching? The work describes quality factors which are still valid in the presence capture cameras and defines the importance of those. Moreover, new challenges of presence capture cameras are investigated in image and video quality point of view. The work contains considerations how well current measurement methods can be used in presence capture cameras.

  3. Probing the hydrogen equilibrium and kinetics in zeolite imidazolate frameworks via molecular dynamics and quasi-elastic neutron scattering experiments.

    Science.gov (United States)

    Pantatosaki, Evangelia; Jobic, Hervé; Kolokolov, Daniil I; Karmakar, Shilpi; Biniwale, Rajesh; Papadopoulos, George K

    2013-01-21

    The problem of simulating processes involving equilibria and dynamics of guest sorbates within zeolitic imidazolate frameworks (ZIF) by means of molecular dynamics (MD) computer experiments is of growing importance because of the promising role of ZIFs as molecular "traps" for clean energy applications. A key issue for validating such an atomistic modeling attempt is the possibility of comparing the MD results, with real experiments being able to capture analogous space and time scales to the ones pertained to the computer experiments. In the present study, this prerequisite is fulfilled through the quasi-elastic neutron scattering technique (QENS) for measuring self-diffusivity, by elaborating the incoherent scattering signal of hydrogen nuclei. QENS and MD experiments were performed in parallel to probe the hydrogen motion, for the first time in ZIF members. The predicted and measured dynamics behaviors show considerable concentration variation of the hydrogen self-diffusion coefficient in the two topologically different ZIF pore networks of this study, the ZIF-3 and ZIF-8. Modeling options such as the flexibility of the entire matrix versus a rigid framework version, the mobility of the imidazolate ligand, and the inclusion of quantum mechanical effects in the potential functions were examined in detail for the sorption thermodynamics and kinetics of hydrogen and also of deuterium, by employing MD combined with Widom averaging towards studying phase equilibria. The latter methodology ensures a rigorous and efficient way for post-processing the dynamics trajectory, thereby avoiding stochastic moves via Monte Carlo simulation, over the large number of configurational degrees of freedom a nonrigid framework encompasses.

  4. Adiabatic capture and debunching

    International Nuclear Information System (INIS)

    Ng, K.Y.

    2012-01-01

    In the study of beam preparation for the g-2 experiment, adiabatic debunching and adiabatic capture are revisited. The voltage programs for these adiabbatic processes are derived and their properties discussed. Comparison is made with some other form of adiabatic capture program. The muon g-2 experiment at Fermilab calls for intense proton bunches for the creation of muons. A booster batch of 84 bunches is injected into the Recycler Ring, where it is debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires short bunches with total width less than 100 ns. The transport line from the Recycler to the muon-production target has a low momentum aperture of ∼ ±22 MeV. Thus each of the 4 intense proton bunches required to have an emittance less than ∼ 3.46 eVs. The incoming booster bunches have total emittance ∼ 8.4 eVs, or each one with an emittance ∼ 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are debunched. There will be even larger emittance increase during adiabatic capture into the buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances larger than 0.1 eVs. In this article, we will concentrate on the analysis of the adiabatic capture process with the intention of preserving the beam emittance as much as possible. At this moment, beam preparation experiment is being performed at the Main Injector. Since the Main Injector and the Recycler Ring have roughly the same lattice properties, we are referring to adiabatic capture in the Main Injector instead in our discussions.

  5. Monte Carlo analysis of the long-lived fission product neutron capture rates at the Transmutation by Adiabatic Resonance Crossing (TARC) experiment

    International Nuclear Information System (INIS)

    Abánades, A.; Álvarez-Velarde, F.; González-Romero, E.M.; Ismailov, K.; Lafuente, A.; Nishihara, K.; Saito, M.; Stanculescu, A.; Sugawara, T.

    2013-01-01

    Highlights: ► TARC experiment benchmark capture rates results. ► Utilization of updated databases, included ADSLib. ► Self-shielding effect in reactor design for transmutation. ► Effect of Lead nuclear data. - Abstract: The design of Accelerator Driven Systems (ADS) requires the development of simulation tools that are able to describe in a realistic way their nuclear performance and transmutation rate capability. In this publication, we present an evaluation of state of the art Monte Carlo design tools to assess their performance concerning transmutation of long-lived fission products. This work, performed under the umbrella of the International Atomic Energy Agency, analyses two important aspects for transmutation systems: moderation on Lead and neutron captures of 99 Tc, 127 I and 129 I. The analysis of the results shows how shielding effects due to the resonances at epithermal energies of these nuclides affects strongly their transmutation rate. The results suggest that some research effort should be undertaken to improve the quality of Iodine nuclear data at epithermal and fast neutron energy to obtain a reliable transmutation estimation.

  6. Monte Carlo analysis of the long-lived fission product neutron capture rates at the Transmutation by Adiabatic Resonance Crossing (TARC) experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [Grupo de Modelizacion de Sistemas Termoenergeticos, ETSII, Universidad Politecnica de Madrid, c/Ramiro de Maeztu, 7, 28040 Madrid (Spain); Alvarez-Velarde, F.; Gonzalez-Romero, E.M. [Centro de Investigaciones Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense, 40, Ed. 17, 28040 Madrid (Spain); Ismailov, K. [Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Lafuente, A. [Grupo de Modelizacion de Sistemas Termoenergeticos, ETSII, Universidad Politecnica de Madrid, c/Ramiro de Maeztu, 7, 28040 Madrid (Spain); Nishihara, K. [Transmutation Section, J-PARC Center, JAEA, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Saito, M. [Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Stanculescu, A. [International Atomic Energy Agency (IAEA), Vienna (Austria); Sugawara, T. [Transmutation Section, J-PARC Center, JAEA, Tokai-mura, Ibaraki-ken 319-1195 (Japan)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer TARC experiment benchmark capture rates results. Black-Right-Pointing-Pointer Utilization of updated databases, included ADSLib. Black-Right-Pointing-Pointer Self-shielding effect in reactor design for transmutation. Black-Right-Pointing-Pointer Effect of Lead nuclear data. - Abstract: The design of Accelerator Driven Systems (ADS) requires the development of simulation tools that are able to describe in a realistic way their nuclear performance and transmutation rate capability. In this publication, we present an evaluation of state of the art Monte Carlo design tools to assess their performance concerning transmutation of long-lived fission products. This work, performed under the umbrella of the International Atomic Energy Agency, analyses two important aspects for transmutation systems: moderation on Lead and neutron captures of {sup 99}Tc, {sup 127}I and {sup 129}I. The analysis of the results shows how shielding effects due to the resonances at epithermal energies of these nuclides affects strongly their transmutation rate. The results suggest that some research effort should be undertaken to improve the quality of Iodine nuclear data at epithermal and fast neutron energy to obtain a reliable transmutation estimation.

  7. Entirely irrelevant distractors can capture and captivate attention.

    Science.gov (United States)

    Forster, Sophie; Lavie, Nilli

    2011-12-01

    The question of whether a stimulus onset may capture attention when it is entirely irrelevant to the task and even in the absence of any attentional settings for abrupt onset or any dynamic changes has been highly controversial. In the present study, we designed a novel irrelevant capture task to address this question. Participants engaged in a continuous task making sequential forced choice (letter or digit) responses to each item in an alphanumeric matrix that remained on screen throughout many responses. This task therefore involved no attentional settings for onset or indeed any dynamic changes, yet the brief onset of an entirely irrelevant distractor (a cartoon picture) resulted in significant slowing of the two (Experiment 1) or three (Experiment 2) responses immediately following distractor appearance These findings provide a clear demonstration of attention being captured and captivated by a distractor that is entirely irrelevant to any attentional settings of the task.

  8. 4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments.

    Science.gov (United States)

    Raviram, Ramya; Rocha, Pedro P; Müller, Christian L; Miraldi, Emily R; Badri, Sana; Fu, Yi; Swanzey, Emily; Proudhon, Charlotte; Snetkova, Valentina; Bonneau, Richard; Skok, Jane A

    2016-03-01

    4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of interest (or "bait") that can be important for gene regulation. However, analysis of 4C-Seq data is complicated by the many biases inherent to the technique. An important consideration when dealing with 4C-Seq data is the differences in resolution of signal across the genome that result from differences in 3D distance separation from the bait. This leads to the highest signal in the region immediately surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to analyze data generated using different enzymes and to identify interactions across the entire genome. Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length scales. In addition, some methods also fail in experiments where chromatin fragments are generated using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies regions throughout the genome that interact with the 4C bait locus. In addition, we incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected from different genotypes or experimental conditions. Adaptive window sizes are used to correct for differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges with different resolution enzymes.

  9. Dynamic Wetting and Dewetting: Comparison of Experiment with Theories

    Directory of Open Access Journals (Sweden)

    Orlova Evgeniya.G.

    2016-01-01

    Full Text Available The dynamics wetting/dewetting of a metal surface by distilled water drop was studied experimentally. The advancing and receding dynamic contact angles were obtained as a function of a contact line speed. The hydrodynamic and molecular-kinetic models have been applied to the experimental data to interpret the obtained results. The independent variables of the molecular-kinetic and hydrodynamic models, and the determination coefficient were determined by fitting procedure. The receding contact angles are found to be fitted better to the wetting models in comparison with the advancing dynamic contact angles.

  10. 4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments.

    Directory of Open Access Journals (Sweden)

    Ramya Raviram

    2016-03-01

    Full Text Available 4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of interest (or "bait" that can be important for gene regulation. However, analysis of 4C-Seq data is complicated by the many biases inherent to the technique. An important consideration when dealing with 4C-Seq data is the differences in resolution of signal across the genome that result from differences in 3D distance separation from the bait. This leads to the highest signal in the region immediately surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to analyze data generated using different enzymes and to identify interactions across the entire genome. Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length scales. In addition, some methods also fail in experiments where chromatin fragments are generated using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies regions throughout the genome that interact with the 4C bait locus. In addition, we incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected from different genotypes or experimental conditions. Adaptive window sizes are used to correct for differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges with different resolution enzymes.

  11. Density functional theory study of the structural, electronic, lattice dynamical, and thermodynamic properties of Li4SiO4 and its capability for CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua; Parlinski, K.

    2011-01-01

    The structural, electronic, lattice dynamical, optical, thermodynamic, and CO{sub 2} capture properties of monoclinic and triclinic phases of Li{sub 4}SiO{sub 4} are investigated by combining density functional theory with phonon lattice dynamics calculations. We found that these two phases have some similarities in their bulk and thermodynamic properties. The calculated bulk modulus and the cohesive energies of these two phases are close to each other. Although both of them are insulators, the monoclinic phase of Li{sub 4}SiO{sub 4} has a direct band gap of 5.24 eV while the triclinic Li{sub 4}SiO{sub 4} phase has an indirect band gap of 4.98 eV. In both phases of Li{sub 4}SiO{sub 4}, the s orbital of O mainly contributes to the lower-energy second valence band (VB{sub 2}) and the p orbitals contribute to the fist valence band (VB{sub 1}) and the conduction bands (CBs). The s orbital of Si mainly contributes to the lower portions of the VB1 and VB{sub 2}, and Si p orbitals mainly contribute to the higher portions of the VB{sub 1} and VB{sub 2}. The s and p orbitals of Li contribute to both VBs and to CBs, and Li p orbitals have a higher contribution than the Li s orbital. There is possibly a phonon soft mode existing in triclinic {gamma}-Li{sub 4}SiO{sub 4}; in the monoclinic Li{sub 4}SiO{sub 4}, there are three phonon soft modes, which correspond to the one type of Li disordered over a few sites. Their LO-TO splitting indicates that both phases of Li{sub 4}SiO{sub 4} are polar anisotropic materials. The calculated infrared absorption spectra for LO and TO modes are different for these two phases of Li{sub 4}SiO{sub 4}. The calculated relationships of the chemical potential versus temperature and CO{sub 2} pressure for reaction of Li{sub 4}SiO{sub 4} with CO{sub 2} shows that Li{sub 4}SiO{sub 4} could be a good candidate for a high-temperature CO{sub 2} sorbent while used for postcombustion capture technology.

  12. Motion Capturing Emotions

    OpenAIRE

    Wood Karen; Cisneros Rosemary E.; Whatley Sarah

    2017-01-01

    The paper explores the activities conducted as part of WhoLoDancE: Whole Body Interaction Learning for Dance Education which is an EU-funded Horizon 2020 project. In particular, we discuss the motion capture sessions that took place at Motek, Amsterdam as well as the dancers’ experience of being captured and watching themselves or others as varying visual representations through the HoloLens. HoloLens is Microsoft’s first holographic computer that you wear as you would a pair of glasses. The ...

  13. Customer Experience Creation : Determinants, Dynamics and Management Strategies

    NARCIS (Netherlands)

    Verhoef, Peter C.; Lemon, Katherine N.; Parasuraman, A.; Roggeveen, Anne; Tsiros, Michael; Schlesinger, Leonard A.; Schlessinger, L.L.

    2009-01-01

    Retailers, such as Starbucks and Victoria's Secret, aim to provide customers a great experience across channels, In this paper we provide an overview of the existing literature on customer experience and expand on it to examine the creation of a customer experience front a holistic perspective. We

  14. Experiences in running a complex electronic data capture system using mobile phones in a large-scale population trial in southern Nepal.

    Science.gov (United States)

    Style, Sarah; Beard, B James; Harris-Fry, Helen; Sengupta, Aman; Jha, Sonali; Shrestha, Bhim P; Rai, Anjana; Paudel, Vikas; Thondoo, Meelan; Pulkki-Brannstrom, Anni-Maria; Skordis-Worrall, Jolene; Manandhar, Dharma S; Costello, Anthony; Saville, Naomi M

    2017-01-01

    The increasing availability and capabilities of mobile phones make them a feasible means of data collection. Electronic Data Capture (EDC) systems have been used widely for public health monitoring and surveillance activities, but documentation of their use in complicated research studies requiring multiple systems is limited. This paper shares our experiences of designing and implementing a complex multi-component EDC system for a community-based four-armed cluster-Randomised Controlled Trial in the rural plains of Nepal, to help other researchers planning to use EDC for complex studies in low-income settings. We designed and implemented three interrelated mobile phone data collection systems to enrol and follow-up pregnant women (trial participants), and to support the implementation of trial interventions (women's groups, food and cash transfers). 720 field staff used basic phones to send simple coded text messages, 539 women's group facilitators used Android smartphones with Open Data Kit Collect, and 112 Interviewers, Coordinators and Supervisors used smartphones with CommCare. Barcoded photo ID cards encoded with participant information were generated for each enrolled woman. Automated systems were developed to download, recode and merge data for nearly real-time access by researchers. The systems were successfully rolled out and used by 1371 staff. A total of 25,089 pregnant women were enrolled, and 17,839 follow-up forms completed. Women's group facilitators recorded 5717 women's groups and the distribution of 14,647 food and 13,482 cash transfers. Using EDC sped up data collection and processing, although time needed for programming and set-up delayed the study inception. EDC using three interlinked mobile data management systems (FrontlineSMS, ODK and CommCare) was a feasible and effective method of data capture in a complex large-scale trial in the plains of Nepal. Despite challenges including prolonged set-up times, the systems met multiple data

  15. A test-type hyper-thermal neutron generator for neutron capture therapy - estimation of neutron energy spectrum by simulation calculations and TOF experiments

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kobayashi, Katsuhei

    1999-01-01

    In order to clarify the irradiation characteristics of hyper-thermal neutrons and the feasibility of a hyper-thermal neutron irradiation field for neutron capture therapy, a 'test-type' hyper-thermal neutron generator was designed and made. Graphite of 6 cm thickness and 21 cm diameter was selected as the high temperature scatterer. The scatterer is heated up to 1200 deg. C maximum using molybdenum heaters. The radiation heat is shielded by reflectors of molybdenum and stainless steel. The temperature is measured using three R-type thermo-couples and controlled by a program controller. The total thickness of the generator is designed to be as thin as possible, 20 cm in maximum, in the standing point of the neutron beam intensity. The thermal stability, controllability and safety of the generator at high temperature employment were confirmed by the heating tests. As one of the experiments for the characteristics estimation, the neutron energy spectrum dependent on the scatterer temperature was measured by the TOF (time of flight) method using the LINAC neutron generator. The estimations by simulation calculations were also performed. From the experiment and calculation results, it was confirmed that the neutron temperature shifted higher as the scatterer temperature was higher. The prospect of the feasibility of the 'hyper-thermal neutron irradiation field for NCT' was opened from the estimation results of the generator characteristics by the simulation calculations and experiments

  16. US Spacesuit Knowledge Capture

    Science.gov (United States)

    Chullen, Cinda; Thomas, Ken; McMann, Joe; Dolan, Kristi; Bitterly, Rose; Lewis, Cathleen

    2011-01-01

    The ability to learn from both the mistakes and successes of the past is vital to assuring success in the future. Due to the close physical interaction between spacesuit systems and human beings as users, spacesuit technology and usage lends itself rather uniquely to the benefits realized from the skillful organization of historical information; its dissemination; the collection and identification of artifacts; and the education of those in the field. The National Aeronautics and Space Administration (NASA), other organizations and individuals have been performing United States (U.S.) Spacesuit Knowledge Capture since the beginning of space exploration. Avenues used to capture the knowledge have included publication of reports; conference presentations; specialized seminars; and classes usually given by veterans in the field. More recently the effort has been more concentrated and formalized whereby a new avenue of spacesuit knowledge capture has been added to the archives in which videotaping occurs engaging both current and retired specialists in the field presenting technical scope specifically for education and preservation of knowledge. With video archiving, all these avenues of learning can now be brought to life with the real experts presenting their wealth of knowledge on screen for future learners to enjoy. Scope and topics of U.S. spacesuit knowledge capture have included lessons learned in spacesuit technology, experience from the Gemini, Apollo, Skylab and Shuttle programs, hardware certification, design, development and other program components, spacesuit evolution and experience, failure analysis and resolution, and aspects of program management. Concurrently, U.S. spacesuit knowledge capture activities have progressed to a level where NASA, the National Air and Space Museum (NASM), Hamilton Sundstrand (HS) and the spacesuit community are now working together to provide a comprehensive closed-looped spacesuit knowledge capture system which includes

  17. CO(2) capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study.

    Science.gov (United States)

    Duan, Yuhua; Sorescu, Dan C

    2010-08-21

    By combining density functional theory and lattice phonon dynamics, the thermodynamic properties of CO(2) absorption/desorption reactions with alkaline earth metal oxides MO and hydroxides M(OH)(2) (where M=Be,Mg,Ca,Sr,Ba) are analyzed. The heats of reaction and the chemical potential changes of these solids upon CO(2) capture reactions have been calculated and used to evaluate the energy costs. Relative to CaO, a widely used system in practical applications, MgO and Mg(OH)(2) systems were found to be better candidates for CO(2) sorbent applications due to their lower operating temperatures (600-700 K). In the presence of H(2)O, MgCO(3) can be regenerated into Mg(OH)(2) at low temperatures or into MgO at high temperatures. This transition temperature depends not only on the CO(2) pressure but also on the H(2)O pressure. Based on our calculated results and by comparing with available experimental data, we propose a general computational search methodology which can be used as a general scheme for screening a large number of solids for use as CO(2) sorbents.

  18. Brownian dynamic simulations and experiments of MR fluids

    International Nuclear Information System (INIS)

    Segovia-Gutiérrez, J P; Vicente, J de; Hidalgo, R; Puertas, A M

    2013-01-01

    The use of computational techniques in magnetorheology is not new. I general, these approaches assume dipolar magnetic interactions, hard sphere repulsions, and no-slip conditions. In this contribution we focus on the dynamics of the equilibrium state in the presence of uniaxial DC fields. To achieve this goal we make use of Brownian Dynamic Simulations. We highlight the importance of the Brownian forces versus magnetic dipolar interaction in the range of low magnetic field strengths. We monitor the formation of columnar structures and their dynamics, in competition with the Brownian motion, until a hexatic crystal phase appears at high field strengths for monodisperse systems. The shear viscosity is computed from the Einstein relation and eventually compared with experimental data at very low-shear rates. A reasonably good agreement between both data sets is observed.

  19. Modeling dynamic acousto-elastic testing experiments: validation and perspectives.

    Science.gov (United States)

    Gliozzi, A S; Scalerandi, M

    2014-10-01

    Materials possessing micro-inhomogeneities often display a nonlinear response to mechanical solicitations, which is sensitive to the confining pressure acting on the sample. Dynamic acoustoelastic testing allows measurement of the instantaneous variations in the elastic modulus due to the change of the dynamic pressure induced by a low-frequency wave. This paper shows that a Preisach-Mayergoyz space based hysteretic multi-state elastic model provides an explanation for experimental observations in consolidated granular media and predicts memory and nonlinear effects comparable to those measured in rocks.

  20. Gravity-gradient dynamics experiments performed in orbit utilizing the Radio Astronomy Explorer (RAE-1) spacecraft

    Science.gov (United States)

    Walden, H.

    1973-01-01

    Six dynamic experiments were performed in earth orbit utilizing the RAE spacecraft in order to test the accuracy of the mathematical model of RAE dynamics. The spacecraft consisted of four flexible antenna booms, mounted on a rigid cylindrical spacecraft hub at center, for measuring radio emissions from extraterrestrial sources. Attitude control of the gravity stabilized spacecraft was tested by using damper clamping, single lower leading boom operations, and double lower boom operations. Results and conclusions of the in-orbit dynamic experiments proved the accuracy of the analytic techniques used to model RAE dynamical behavior.

  1. Experiences on dynamic simulation software in chemical engineering education

    DEFF Research Database (Denmark)

    Komulainen, Tiina M.; Enemark-rasmussen, Rasmus; Sin, Gürkan

    2012-01-01

    Commercial process simulators are increasing interest in the chemical engineer education. In this paper, the use of commercial dynamic simulation software, D-SPICE® and K-Spice®, for three different chemical engineering courses is described and discussed. The courses cover the following topics...

  2. Dynamical analysis of an optical rocking ratchet: Theory and experiment

    Czech Academy of Sciences Publication Activity Database

    Arzola, Alejandro V.; Volke-Sepúlveda, K.; Mateos, J.L.

    2013-01-01

    Roč. 87, č. 6 (2013), 062910:1-9 ISSN 1539-3755 R&D Projects: GA MŠk LH12018; GA MŠk EE2.4.31.0016 Institutional support: RVO:68081731 Keywords : deterministic optical rocking ratchet * analysis of the dynamics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.326, year: 2013

  3. Dynamic shear-bending buckling experiments of cylindrical shells

    International Nuclear Information System (INIS)

    Hagiwara, Y.; Akiyama, H.

    1995-01-01

    Dynamic experimental studies of the plastic shear/bending buckling of cylindrical shells were performed. They clarified the inelastic response reduction and the seismic margin of FBR reactor vessels. The test results were incorporated into the draft of the seismic buckling design guidelines of FBR. (author). 15 refs., 3 figs

  4. Chaotic expression dynamics implies pluripotency: when theory and experiment meet

    Directory of Open Access Journals (Sweden)

    Furusawa Chikara

    2009-05-01

    Full Text Available Abstract Background During normal development, cells undergo a unidirectional course of differentiation that progressively decreases the number of cell types they can potentially become. Pluripotent stem cells can differentiate into several types of cells, but terminally differentiated cells cannot differentiate any further. A fundamental problem in stem cell biology is the characterization of the difference in cellular states, e.g., gene expression profiles, between pluripotent stem cells and terminally differentiated cells. Presentation of the hypothesis To address the problem, we developed a dynamical systems model of cells with intracellular protein expression dynamics and interactions with each other. According to extensive simulations, cells with irregular (chaotic oscillations in gene expression dynamics have the potential to differentiate into other cell types. During development, such complex oscillations are lost successively, leading to a loss of pluripotency. These simulation results, together with recent single-cell-level measurements in stem cells, led us to the following hypothesis regarding pluripotency: Chaotic oscillation in the expression of some genes leads to cell pluripotency and affords cellular state heterogeneity, which is supported by itinerancy over quasi-stable states. Differentiation stabilizes these states, leading to a loss of pluripotency. Testing the hypothesis To test the hypothesis, it is crucial to measure the time course of gene expression levels at the single-cell level by fluorescence microscopy and fluorescence-activated cell sorting (FACS analysis. By analyzing the time series of single-cell-level expression data, one can distinguish whether the variation in protein expression level over time is due only to stochasticity in expression dynamics or originates from the chaotic dynamics inherent to cells, as our hypothesis predicts. By further analyzing the expression in differentiated cell types, one can

  5. CO2 Capture Dynamic and Steady-State Model Development, Optimization and Control: Applied to Piperazine and Enzyme Promoted MEA/MDEA

    DEFF Research Database (Denmark)

    Gaspar, Jozsef

    the market in the coming decades. However, the growing focus on mitigation of anthropogenic CO2 requires integration of fossil-fuel fired power plant with CO2 capture units. Post-combustion capture is the most mature capture technology and it is suitable for various processes in power plants, steel industry......, cement production, and bio-chemical industry. However, to make CO2 capture economically attractive, design of innovative solvents, optimization of operation conditions/process configuration and operational flexibility are of crucial importance. This thesis aims to contribute to the development...

  6. Vertical hydraulic generators experience with dynamic air gap monitoring

    International Nuclear Information System (INIS)

    Pollock, G.B.; Lyles, J.F.

    1992-01-01

    Until recently, dynamic monitoring of the rotor to stator air gap of hydraulic generators was not practical. Cost effective and reliable dyamic air gap monitoring equipment has been developed in recent years. Dynamic air gap monitoring was originally justified because of the desire of the owner to minimize the effects of catastrophic air gap failure. However, monitoring air gaps on a time basis has been shown to be beneficial by assisting in the assessment of hydraulic generator condition. The air gap monitor provides useful information on rotor and stator condition and generator vibration. The data generated by air gap monitors will assist managers in the decision process with respect to the timing and extent of required maintenance for a particular generating unit

  7. Weak hierarchy of turbulent dynamics in a semiconductor experiment

    International Nuclear Information System (INIS)

    Parisi, J.; Peinke, J.; Huebener, R.P.; Stoop, R.; Duong, M. van

    1989-01-01

    Nonlinear current transport behavior during low-temperature impact ionization breakdown of extrinsic germanium comprises the self-sustained development of both filamentary spatial and oscillatory temporal dissipative structures in the formerly homogeneous semiconductor. It is studied the cooperative spatio-temporal breakdown phenomena via both probabilistic and dynamical characterization methods. Agreement between the results obtained from the different numerical concepts gives a self-consistent picture of the physical situation investigated. (A.C.A.S.) [pt

  8. Laboratory experiments on dynamics of anthropogenic ferrimagnetics in sand formations

    Czech Academy of Sciences Publication Activity Database

    Kapička, Aleš; Fialová, Hana; Petrovský, Eduard; Kodešová, R.; Kopáč, J.

    2008-01-01

    Roč. 38, Special issue (2008), s. 52-53 ISSN 1335-2806. [Paleo, Rock and Environmental Magnetism. Castle Meeting /11./. 22.06.2008-28.06.2008, Bojnice] R&D Projects: GA AV ČR IAA300120701 Institutional research plan: CEZ:AV0Z30120515 Keywords : soil pollution * dynamics of anthropogenic particles * magnetic susceptibility Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  9. Dynamic-chemistry-aerosol modelling interaction: the ESCOMPTE 2001 experiment

    International Nuclear Information System (INIS)

    Cousin, F.

    2004-09-01

    After most pollution studies independently devoted to gases and aerosols, there now appears an urgent need to consider their interactions. In this view, an aerosol module has been implemented in the Meso-NH-C model to simulate two IOPs documented during the ESCOMPTE campaign which took place in the Marseille/Fos-Berre region in June-July 2001. First, modelled dynamic parameters (winds, temperatures, boundary layer thickness) and gaseous chemistry have been validated with measurements issued from the exhaustive ESCOMPTE database. Sensitivity analysis have also been performed using different gaseous emission inventories at various resolution. These simulations have illustrated the deep impact of both synoptic and local dynamics on observed ozone concentrations on June 24 (IOP2b) in the ESCOMPTE domain. Afterwards, the ORISAM aerosol module has been introduced into the Meso-NH-C model. Dynamics, gaseous chemistry and aerosol processes have thus been coupled on-line. The particulate pollution episode on June 24 (IOP2b) has been characterised through a satisfactory comparison, specially from sub-micron particles, between modelling and measurements at different representative stations in the domain. This study, with validation of the particulate emission inventory has also highlighted the need for future improvements, such as further characterisation of organic and inorganic aerosol species and consideration of coarse particles. Aerosol impact on gaseous chemistry has been preliminary approached in view of future development and modification to be given to the Meso-NH-C model. (author)

  10. Lab experiments in demographic fieldwork: Understanding gender dynamics in Africa

    Directory of Open Access Journals (Sweden)

    F. Nii-Amoo Dodoo

    2014-12-01

    Full Text Available Background: Anthropological literature has long linked bridewealth payments to decision-making about fertility. Recent research underscores the significance of men's preferences regarding women's reproductive behavior, and suggests that bridewealth payments place constraints on women's reproductive autonomy. Yet because survey data on bridewealth are rare, and the collection of new survey data on bridewealth presents serious challenges, this explanation could not be tested. Objective: Our objective in this paper is to highlight the potential utility of lab experiments (in particular, vignette experiments for improving our understanding of gender relations in Africa, using the hypothesized effect of bridewealth on normative constraints on women's reproductive autonomy as an illustration. Methods: We discuss our reasons for turning to lab experiments, and to vignette experiments in particular. We also summarize a series of studies (Horne, Dodoo, and Dodoo 2013; Dodoo, Horne, and Biney 2014 which have implemented our experimental approach. Results: Our experimental evidence shows that bridewealth payments are associated with greater normative constraints on women's reproductive autonomy. We also find that these negative effects of bridewealth are consistent across participant ages, and do not appear to be ameliorated by female schooling. Conclusions: We conclude that lab experiments in general (and vignette experiments in particular are underutilized methodological tools that may be useful for helping us gain a better understanding of the cultural context of gender relations in Africa; and that demographic research more generally may benefit from taking advantage of the strengths of experimental methods.

  11. Observation Platform for Dynamic Biomedical and Biotechnology Experiments using the ISS Light Microscopy Module, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed "Observation platform for dynamic biomedical and biotechnology experiments using the ISS Light Microscopy Module" consists of a platen sized to fit the...

  12. Sensitivity analysis and optimization of system dynamics models : Regression analysis and statistical design of experiments

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    1995-01-01

    This tutorial discusses what-if analysis and optimization of System Dynamics models. These problems are solved, using the statistical techniques of regression analysis and design of experiments (DOE). These issues are illustrated by applying the statistical techniques to a System Dynamics model for

  13. A dynamic analysis of crack propagation and arrest of pressurized thermal shock experiments (PTSE)

    International Nuclear Information System (INIS)

    Brickstad, B.; Nilsson, F.

    1984-01-01

    The PTS-experiments performed at ORNL are dynamically analysed by aid ot a two-dimensional FEM-code with capability of simulating rapid crack growth.It is found that both a quasistatic and a dynamic treatment agree well with the experimentally obtained crack arrest lengths. (author)

  14. Flux ropes and 3D dynamics in the relaxation scaling experiment

    International Nuclear Information System (INIS)

    Intrator, T P; Feng, Y; Weber, T E; Swan, H O; Sun, X; Dorf, L; Sears, J A

    2013-01-01

    Flux ropes form basic building blocks for magnetic dynamics in many plasmas, are macroscopic analogues of magnetic field lines, and are irreducibly three dimensional (3D). We have used the relaxation scaling experiment (RSX) to study flux ropes, and have found many new features involving 3D dynamics, kink instability driven reconnection, nonlinearly stable but kinking flux ropes, and large flows. (paper)

  15. Total chain dynamical assessment with an integrated model of a Post Combustion Capture Plant at a Pulverized Coal Plant and CO2 downstream infrastructure

    NARCIS (Netherlands)

    Kler, R.C.F. de; Haar, A.M. van de

    2013-01-01

    The application of Post Combustion Capture has a significant advantage for mitigating the anthropogenic greenhouse gases in our atmosphere, in comparison to other capture technologies, since it is a so called “End of the Pipe” retrofit and therefore potentially applicable to existing power plants.

  16. Uptake of selenate on hydrated and degraded cement: batch and dynamic experiments

    International Nuclear Information System (INIS)

    Rojo, I.; Rovira, I.; Marti, V.; Pablo, J. de; Duro, L.; Gaona, X.; Colas, E.; Grive, M.

    2009-01-01

    The evaluation of selenate sorption and retardation in batch and dynamic experiments on hydrated and degraded cement has been studied. Desorption studies have also been carried in order to assess the reversibility of the sorption process. Sorption data onto degraded cement have been treated assuming the formation of surface complexes, whereas sorption kinetics has been fitted by using a pseudo-first order kinetic equation. Dynamic flow experiments have also been modelled. (authors)

  17. Binary codes with impulse autocorrelation functions for dynamic experiments

    International Nuclear Information System (INIS)

    Corran, E.R.; Cummins, J.D.

    1962-09-01

    A series of binary codes exist which have autocorrelation functions approximating to an impulse function. Signals whose behaviour in time can be expressed by such codes have spectra which are 'whiter' over a limited bandwidth and for a finite time than signals from a white noise generator. These codes are used to determine system dynamic responses using the correlation technique. Programmes have been written to compute codes of arbitrary length and to compute 'cyclic' autocorrelation and cross-correlation functions. Complete listings of these programmes are given, and a code of 1019 bits is presented. (author)

  18. Mesocosm experiments on tritium dynamics in carp fish

    International Nuclear Information System (INIS)

    Reji, T.K.; Vishnu, M.S.; Joshi, R.M.; Dileep, B.N.; Baburajan, A.; Ravi, P.M.

    2013-01-01

    Tritium dynamics in carp fish (Cyprinus carpio) was studied in a locally designed mesocosm simulating a lake condition. The fishes were reared in an experimental tank containing tritiated water. Tissue Free water tritium (TFWT) concentration and Organically Bound Tritium (OBT) was measured for 3 months period. TFWT reached equilibrium with exposed water within one day. Detectable amount of OBT was observed after two months of exposure. OBT to TFWT ratio was 0.1. Estimated OBT was in agreement with that calculated using IAEA specific activity model. (author)

  19. Dynamics of Plug Formation in a Circular Cylinder Under Low Bond Number Conditions: Experiment and Simulation

    Science.gov (United States)

    Hallaby, Ghazi; Kizito, John P.

    2016-08-01

    The goal of the current study is to investigate the dynamics of two phase interface under a low Bond number condition. Silicone oil is injected into a cylinder under a Bond number of about 0.47 via a side tube forming a T-junction with the former. The time evolution of the interface of silicon oil in a cylinder is captured using a high speed camera. The volume at which the plug is formed is then determined using an image processing tool to analyze the captured images. A numerical simulation is carried out where fluid is injected into a cylinder, under a less than unity Bond number condition, via a side tube. Numerical and experimental results are then compared.

  20. Salmonella capture using orbiting magnetic microbeads

    Science.gov (United States)

    Owen, Drew; Ballard, Matthew; Mills, Zachary; Hanasoge, Srinivas; Hesketh, Peter; Alexeev, Alexander

    2014-11-01

    Using three-dimensional simulations and experiments, we examine capture of salmonella from a complex fluid sample flowing through a microfluidic channel. Capture is performed using orbiting magnetic microbeads, which can easily be extracted from the system for analysis after salmonella capture. Numerical simulations are used to model the dynamics of the system, which consists of a microchannel filled with a viscous fluid, model salmonella, magnetic microbeads and a series of angled parallel ridges lining the top of the microchannel. Simulations provide a statistical measure of the ability of the system to capture target salmonella. Our modeling findings guide the design of a lab-on-a-chip experimental device to be used for the detection of salmonella from complex food samples, allowing for the detection of the bacteria at the food source and preventing the consumption of contaminated food. Such a device can be used as a generic platform for the detection of a variety of biomaterials from complex fluids. This work is supported by a grant from the United States Department of Agriculture.

  1. Interaction of pricing, advertising and experience quality : A dynamic analysis

    NARCIS (Netherlands)

    Caulkins, J.P.; Feichtinger, G.; Grass, D.; Hartl, R.F.; Seidl, A.; Kort, Peter

    2017-01-01

    For certain goods or services, the quality of the product can be assessed by customers only after consumption. We determine the optimal time paths for pricing, advertising and quality for a profit-maximizing firm facing demand that is influenced both by this experience quality as well as by

  2. A pilot project in distance education: nurse practitioner students' experience of personal video capture technology as an assessment method of clinical skills.

    Science.gov (United States)

    Strand, Haakan; Fox-Young, Stephanie; Long, Phil; Bogossian, Fiona

    2013-03-01

    This paper reports on a pilot project aimed at exploring postgraduate distance students' experiences using personal video capture technology to complete competency assessments in physical examination. A pre-intervention survey gathered demographic data from nurse practitioner students (n=31) and measured their information communication technology fluency. Subsequently, thirteen (13) students were allocated a hand held video camera to use in their clinical setting. Those participating in the trial completed a post-intervention survey and further data were gathered using semi-structured interviews. Data were analysed by descriptive statistics and deductive content analysis, and the Unified Theory of Acceptance and Use of Technology (Venkatesh et al., 2003) were used to guide the project. Uptake of the intervention was high (93%) as students recognised the potential benefit. Students were video recorded while performing physical examinations. They described high level of stress and some anxiety, which decreased rapidly while assessment was underway. Barriers experienced were in the areas of facilitating conditions (technical character e.g. upload of files) and social influence (e.g. local ethical approval). Students valued the opportunity to reflect on their recorded performance with their clinical mentors and by themselves. This project highlights the demands and difficulties of introducing technology to support work-based learning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Dynamics of psychological crisis experience with psychological consulting by gestalt therapy methods.

    Science.gov (United States)

    Fahrutdinova, Liliya Raifovna; Nugmanova, Dzhamilia Renatovna

    2015-01-01

    Dynamics of experience as such and its corporeal, emotional and cognitive elements in the situation of psychological consulting provisioning is covered. The aim of research was to study psychological crisis experience dynamics in the situation when psychological consulting by gestalt therapy methods is provided. Theoretical analysis of the problem of crisis situations, phenomenon and structural, and dynamic organization of experience of the subject of consulting have been carried out. To fulfill research project test subjects experience crisis situation have been selected, studied in the situation when they provided psychological consulting by methods of gestalt therapy, and methodology of study of crisis situations experience has been prepared. Specifics of psychological crisis experience have been revealed and its elements in different stages of psychological consulting by gestalt therapy methods. Dynamics of experience of psychological crisis and its structural elements have been revealed and reliable changes in it have been revealed. Dynamics of psychological crisis experience and its structural elements have been revealed and reliable changes in it have been revealed. "Desiccation" of experience is being observed, releasing its substantiality of negative impression to the end of consulting and development of the new experience of control over crisis situation. Interrelations of structural elements of experience in the process of psychological consulting have been shown. Effecting one structure causes reliable changes in all others structural elements of experience. Giving actual psychological help to clients in crisis situation by methods of gestalt therapy is possible as it was shown in psychological consulting sessions. Structure of client's request has been revealed - problems of personal sense are fixed as the most frequent cause of clients' applications, as well as absence of choices, obtrusiveness of negative thoughts, tend to getting stuck on events

  4. Dynamic Planning of Experiments for the Optimisation of Managerial Scheduling

    Directory of Open Access Journals (Sweden)

    Tomáš Macák

    2016-01-01

    Full Text Available Time management has a crucial role in organizations and also in our personal lives. Managerial scheduling is an important tool for the time management, especially It can serve as a tool for the first phase, of time management - namely for effective planning. This paper focusses on finding the best possible setting for determining significant the best layout for activities according to the criteria of urgency and importance using a modified steepest ascent method, which can be referred as dynamic scheduling. This term indicates the nature of the method; wherein the experimental design space is changed to look for the best conditions for adjustment factors influencing a managerial process. Existing methods for layout optimization mentioned in the literature and conventionally implemented in practice have only shown local optima.

  5. Offering memorable patient experience through creative, dynamic marketing strategy

    Science.gov (United States)

    Raţiu, M; Purcărea, T

    2008-01-01

    Creative, dynamic strategies are the ones that identify new and better ways of uniquely offering the target customers what they want or need. A business can achieve competitive advantage if it chooses a marketing strategy that sets the business apart from anyone else. Healthcare services companies have to understand that the customer should be placed in the centre of all specific marketing operations. The brand message should reflect the focus on the patient. Healthcare products and services offered must represent exactly the solutions that customers expect. The touchpoints with the patients must be well mastered in order to convince them to accept the proposed solutions. Healthcare service providers must be capable to look beyond customer's behaviour or product and healthcare service aquisition. This will demand proactive and far–reaching changes, including focusing specifically on customer preference, quality, and technological interfaces; rewiring strategy to find new value from existing and unfamiliar sources; disintegrating and radically reassembling operational processes; and restructuring the organization to accommodate new typess of work and skill. PMID:20108466

  6. Electron density and plasma dynamics of a colliding plasma experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wiechula, J., E-mail: wiechula@physik.uni-frankfurt.de; Schönlein, A.; Iberler, M.; Hock, C.; Manegold, T.; Bohlender, B.; Jacoby, J. [Plasma Physics Group, Institute of Applied Physics, Goethe University, 60438 Frankfurt am Main (Germany)

    2016-07-15

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor of 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.

  7. Excipient-assisted vinpocetine nanoparticles: experiments and molecular dynamic simulations.

    Science.gov (United States)

    Li, Cai-Xia; Wang, Hao-Bo; Oppong, Daniel; Wang, Jie-Xin; Chen, Jian-Feng; Le, Yuan

    2014-11-03

    Hydrophilic excipients can be used to increase the solubility and bioavailability of poorly soluble drugs. In this work, the conventional water-soluble pharmaceutical excipients hydroxypropylmethylcellulose (HPMC), polyvinylpyrrolidone (PVP), and lactose (LAC) were used as solid supports to prevent drug nanoparticles from aggregation and enhance drug dissolution. Excipient-assisted vinpocetine (VIN) nanoparticles were prepared by reactive precipitation. The analysis results indicated that HPMC was a suitable excipient to prepare VIN nanoparticles. VIN/HPMC nanoparticles had a mean size of 130 nm within a narrow distribution. The dissolution rate of VIN nanoparticles was significantly faster than those of a physical mixture of VIN/HPMC and raw VIN. VIN/HPMC nanoparticles had a higher dissolution profile than VIN/PVP and VIN/LAC nanoparticles. Besides, molecular dynamics (MD) simulation was applied to investigate the molecular interactions between VIN and excipients. The calculated results revealed that VIN interacted with excipients by Coulomb and Lennard-Jones (LJ) interactions. Few hydrogen bonds were formed between VIN and excipients. The HPMC affording smaller particle size may be a result of the stronger interactions between VIN and HPMC (mainly LJ interaction) and the property of HPMC. These characteristics may greatly influence the adsorption behavior and may be the crucial parameter for the better performance of HPMC.

  8. Offering memorable patient experience through creative, dynamic marketing strategy.

    Science.gov (United States)

    Purcărea, Victor Lorín; Raţíu, Monica; Purcărea, Theodor; Davila, Carol

    2008-01-01

    Creative, dynamic strategies are the ones that identify new and better ways of uniquely offering the target customers what they want or need. A business can achieve competitive advantage if it chooses a marketing strategy that sets the business apart from anyone else. Healthcare services companies have to understand that the customer should be placed in the centre of all specific marketing operations. The brand message should reflect the focus on the patient. Healthcare products and services offered must represent exactly the solutions that customers expect. The touchpoints with the patients must be well mastered in order to convince them to accept the proposed solutions. Healthcare service providers must be capable to look beyond customer's behaviour or product and healthcare service aquisition. This will demand proactive and far-reaching changes, including focusing specifically on customer preference, quality, and technological interfaces; rewiring strategy to find new value from existing and unfamiliar sources: disintegrating and radically reassembling operational processes: and restructuring the organization to accommodate new types of work and skill.

  9. Vertical-axis wind turbine experiments at full dynamic similarity

    Science.gov (United States)

    Duvvuri, Subrahmanyam; Miller, Mark; Brownstein, Ian; Dabiri, John; Hultmark, Marcus

    2017-11-01

    This study presents results from pressurized (upto 200 atm) wind tunnel tests of a self-spinning 5-blade model Vertical-Axis Wind Turbine (VAWT). The model is geometrically similar (scale ratio 1:22) to a commercially available VAWT, which has a rotor diameter of 2.17 meters and blade span of 3.66 meters, and is used at the Stanford university field lab. The use of pressurized air as working fluid allows for the unique ability to obtain full dynamic similarity with field conditions in terms of matched Reynolds numbers (Re), tip-speed ratios (λ), and Mach number (M). Tests were performed across a wide range of Re and λ, with the highest Re exceeding the maximum operational field Reynolds number (Remax) by a factor of 3. With an extended range of accessible Re conditions, the peak turbine power efficiency was seen to occur roughly at Re = 2 Remax and λ = 1 . Beyond Re > 2 Remax the turbine performance is invariant in Re for all λ. A clear demonstration of Reynolds number invariance for an actual full-scale wind turbine lends novelty to this study, and overall the results show the viability of the present experimental technique in testing turbines at field conditions.

  10. Decision dynamics of departure times: Experiments and modeling

    Science.gov (United States)

    Sun, Xiaoyan; Han, Xiao; Bao, Jian-Zhang; Jiang, Rui; Jia, Bin; Yan, Xiaoyong; Zhang, Boyu; Wang, Wen-Xu; Gao, Zi-You

    2017-10-01

    A fundamental problem in traffic science is to understand user-choice behaviors that account for the emergence of complex traffic phenomena. Despite much effort devoted to theoretically exploring departure time choice behaviors, relatively large-scale and systematic experimental tests of theoretical predictions are still lacking. In this paper, we aim to offer a more comprehensive understanding of departure time choice behaviors in terms of a series of laboratory experiments under different traffic conditions and feedback information provided to commuters. In the experiment, the number of recruited players is much larger than the number of choices to better mimic the real scenario, in which a large number of commuters will depart simultaneously in a relatively small time window. Sufficient numbers of rounds are conducted to ensure the convergence of collective behavior. Experimental results demonstrate that collective behavior is close to the user equilibrium, regardless of different scales and traffic conditions. Moreover, the amount of feedback information has a negligible influence on collective behavior but has a relatively stronger effect on individual choice behaviors. Reinforcement learning and Fermi learning models are built to reproduce the experimental results and uncover the underlying mechanism. Simulation results are in good agreement with the experimentally observed collective behaviors.

  11. Experiments and simulations of flux rope dynamics in a plasma

    Science.gov (United States)

    Intrator, Thomas; Abbate, Sara; Ryutov, Dmitri

    2005-10-01

    The behavior of flux ropes is a key issue in solar, space and astrophysics. For instance, magnetic fields and currents on the Sun are sheared and twisted as they store energy, experience an as yet unidentified instability, open into interplanetary space, eject the plasma trapped in them, and cause a flare. The Reconnection Scaling Experiment (RSX) provides a simple means to systematically characterize the linear and non-linear evolution of driven, dissipative, unstable plasma-current filaments. Topology evolves in three dimensions, supports multiple modes, and can bifurcate to quasi-helical equilibria. The ultimate saturation to a nonlinear force and energy balance is the link to a spectrum of relaxation processes. RSX has adjustable energy density β1 to β 1, non-negligible equilibrium plasma flows, driven steady-state scenarios, and adjustable line tying at boundaries. We will show magnetic structure of a kinking, rotating single line tied column, magnetic reconnection between two flux ropes, and pictures of three braided flux ropes. We use computed simulation movies to bridge the gap between the solar physics scales and experimental data with computational modeling. In collaboration with Ivo Furno, Tsitsi Madziwa-Nussinovm Giovanni Lapenta, Adam Light, Los Alamos National Laboratory; Sara Abbate, Torino Polytecnico; and Dmitri Ryutov, Lawrence Livermore National Laboratory.

  12. Reactor Dynamics Experiments with a Sub-Critical Assembly

    International Nuclear Information System (INIS)

    Miley, G.H.; Yang, Y.; Wu, L.; Momota, H.

    2004-01-01

    A resurgence in use of nuclear power is now underway worldwide. However due to the shutdown of many university research reactors , student laboratories must rely more heavily on use of sub-critical assemblies. Here a driven sub-critical is described that uses a cylindrical Inertial Electrostatic Confinement (IEC) device to provide a fusion neutron source. The small IEC neutron source would be inserted in a fuel element position, with its power input controlled externally at a control panel. This feature opens the way to use of the critical assembly for a number of transient experiments such as sub-critical pulsing and neutron wave propagation. That in turn adds important new insights and excitement for the student teaching laboratory

  13. A Dynamic Methodology for Improving the Search Experience

    Directory of Open Access Journals (Sweden)

    Marcia D. Kerchner

    2006-06-01

    Full Text Available In the early years of modern information retrieval, the fundamental way in which we understood and evaluated search performance was by measuring precision and recall. In recent decades, however, models of evaluation have expanded to incorporate the information-seeking task and the quality of its outcome, as well as the value of the information to the user. We have developed a systems engineering-based methodology for improving the whole search experience. The approach focuses on understanding users’ information-seeking problems, understanding who has the problems, and applying solutions that address these problems. This information is gathered through ongoing analysis of site-usage reports, satisfaction surveys, Help Desk reports, and a working relationship with the business owners.

  14. Phonon Sensor Dynamics for Cryogenic Dark Matter Search Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Jeffrey [Stanford Univ., CA (United States)

    2015-01-01

    Understanding the quasiparticle diffusion process inside sputtered aluminum (Al thin films (~ 0.1-1 μm is critical for the Cryogenic Dark Matter Search (CDMS experiment to further optimize its detectors to directly search for dark matter. An initial study with Al films was undertaken by our group ~ 20 years ago, but some important questions were not answered at the time. This thesis can be considered a continuation of that critical study. The CDMS experiment utilizes high purity silicon and germanium crystals to simultaneously measure ionization and phonons created by particle interactions. In addition to describing some of the rich physics involved in simultaneously detecting ionization and phonons with a CDMS detector, this thesis focuses on the detailed physics of the phonon sensors themselves, which are patterned onto CDMS detector surfaces. CDMS detectors use thin sputtered Al films to collect phonon energy when it propagates to the surfaces of the detector crystals. The phonon energy breaks Cooper pairs and creates quasiparticles (qps). These qps diffuse until they get trapped in an proximitized “overlap” region where lower-Tc tungsten films connect to the Al film. These tungsten films are the transition edge sensors (W-TESs CDMS uses to readout phonon signals. We performed a wide range of experiments using several sets of test devices designed and fabricated specifically for this work. The devices were used mostly to study quasiparticle (qp transport in Al films and qp transmission through Al/W interfaces. The results of this work are being used to optimize the design of detectors for SuperCDMS SNOLAB. This thesis is intended for CDMS collaborators who are interested in knowing more about the detailed fundamentals of how our phonon sensors work so they can take full advantage of their benefits. However, this work can also be read by general readers who are interested in particle detection using TES technology. This thesis contains eight chapters. The

  15. The Effectiveness of Classroom Capture Technology

    Science.gov (United States)

    Ford, Maire B.; Burns, Colleen E.; Mitch, Nathan; Gomez, Melissa M.

    2012-01-01

    The use of classroom capture systems (systems that capture audio and video footage of a lecture and attempt to replicate a classroom experience) is becoming increasingly popular at the university level. However, research on the effectiveness of classroom capture systems in the university classroom has been limited due to the recent development and…

  16. Experience with Aero- and Fluid-Dynamic Testing for Engineering and CFD Validation

    Science.gov (United States)

    Ross, James C.

    2016-01-01

    Ever since computations have been used to simulate aerodynamics the need to ensure that the computations adequately represent real life has followed. Many experiments have been performed specifically for validation and as computational methods have improved, so have the validation experiments. Validation is also a moving target because computational methods improve requiring validation for the new aspect of flow physics that the computations aim to capture. Concurrently, new measurement techniques are being developed that can help capture more detailed flow features pressure sensitive paint (PSP) and particle image velocimetry (PIV) come to mind. This paper will present various wind-tunnel tests the author has been involved with and how they were used for validation of various kinds of CFD. A particular focus is the application of advanced measurement techniques to flow fields (and geometries) that had proven to be difficult to predict computationally. Many of these difficult flow problems arose from engineering and development problems that needed to be solved for a particular vehicle or research program. In some cases the experiments required to solve the engineering problems were refined to provide valuable CFD validation data in addition to the primary engineering data. All of these experiments have provided physical insight and validation data for a wide range of aerodynamic and acoustic phenomena for vehicles ranging from tractor-trailers to crewed spacecraft.

  17. Instrumented anvil-on-rod impact experiments for validating constitutive strength model for simulating transient dynamic deformation response of metals

    International Nuclear Information System (INIS)

    Martin, M.; Shen, T.; Thadhani, N.N.

    2008-01-01

    Instrumented anvil-on-rod impact experiments were performed to access the applicability of this approach for validating a constitutive strength model for dynamic, transient-state deformation and elastic-plastic wave interactions in vanadium, 21-6-9 stainless steel, titanium, and Ti-6Al-4V. In addition to soft-catching the impacted rod-shaped samples, their transient deformation states were captured by high-speed imaging, and velocity interferometry was used to record the sample back (free) surface velocity and monitor elastic-plastic wave interactions. Simulations utilizing AUTODYN-2D hydrocode with Steinberg-Guinan constitutive equation were used to generate simulated free surface velocity traces and final/transient deformation profiles for comparisons with experiments. The simulations were observed to under-predict the radial strain for bcc vanadium and fcc steel, but over-predict the radial strain for hcp titanium and Ti-6Al-4V. The correlations illustrate the applicability of the instrumented anvil-on-rod impact test as a method for providing robust model validation based on the entire deformation event, and not just the final deformed state

  18. Carbon Capture: A Technology Assessment

    Science.gov (United States)

    2013-10-21

    whereas laboratory-scale experiments typically seek to validate or obtain data for specific components of a system. Laboratory- and bench-scale processes...Plant,” Energy, vol. 35 (2010), pp. 841-850. E. Favre, R. Bounaceur, and D. Roizard, “ Biogas , Membranes and Carbon Dioxide Capture,” Journal of...pp. 1-49. 64 Favre, “ Biogas , Membranes.” Carbon Capture: A Technology Assessment Congressional Research Service 42 materials have pore sizes

  19. Radiative muon capture on hydrogen

    International Nuclear Information System (INIS)

    Bertl, W.; Ahmad, S.; Chen, C.Q.; Gumplinger, P.; Hasinoff, M.D.; Larabee, A.J.; Sample, D.G.; Schott, W.; Wright, D.H.; Armstrong, D.S.; Blecher, M.; Azuelos, G.; Depommier, P.; Jonkmans, G.; Gorringe, T.P.; Henderson, R.; Macdonald, J.A.; Poutissou, J.M.; Poutissou, R.; Von Egidy, T.; Zhang, N.S.; Robertson, B.D.

    1992-01-01

    The radiative capture of negative muons by protons can be used to measure the weak induced pseudoscalar form factor. Brief arguments why this method is preferable to ordinary muon capture are given followed by a discussion of the experimental difficulties. The solution to these problems as attempted by experiment no. 452 at TRIUMF is presented together with preliminary results from the first run in August 1990. An outlook on the expected final precision and the experimental schedule is also given. (orig.)

  20. Radiative muon capture on hydrogen

    International Nuclear Information System (INIS)

    Schott, W.; Ahmad, S.; Chen, C.Q.; Gumplinger, P.; Hasinoff, M.D.; Larabee, A.J.; Sample, D.G.; Zhang, N.S.; Armstrong, D.S.; Blecher, M.; Serna-Angel, A.; Azuelos, G.; von Egidy, T.; Macdonald, J.A.; Poutissou, J.M.; Poutissou, R.; Wright, D.H.; Henderson, R.S.; McDonald, S.C.; Taylor, G.N.; Doyle, B.; Depommier, P.; Jonkmans, G.; Bertl, W.; Gorringe, T.P.; Robertson, B.C.

    1991-03-01

    The induced pseudoscalar coupling constant, g P , of the weak hadronic current can be determined from the measurement of the branching ratio of radiative muon capture (RMC) on hydrogen. This rare process is being investigated in the TRIUMF RMC experiment which is now taking data. This paper describes the experiment and indicates the status of the data analysis. (Author) 8 refs., 7 figs

  1. Motion Capturing Emotions

    Directory of Open Access Journals (Sweden)

    Wood Karen

    2017-12-01

    Full Text Available The paper explores the activities conducted as part of WhoLoDancE: Whole Body Interaction Learning for Dance Education which is an EU-funded Horizon 2020 project. In particular, we discuss the motion capture sessions that took place at Motek, Amsterdam as well as the dancers’ experience of being captured and watching themselves or others as varying visual representations through the HoloLens. HoloLens is Microsoft’s first holographic computer that you wear as you would a pair of glasses. The study embraced four dance genres: Ballet, Contemporary, Flamenco and Greek Folk dance. We are specifically interested in the kinesthetic and emotional engagement with the moving body and what new corporeal awareness may be experienced. Positioning the moving, dancing body as fundamental to technological advancements, we discuss the importance of considering the dancer’s experience in the real and virtual space. Some of the artists involved in the project have offered their experiences, which are included, and they form the basis of the discussion. In addition, we discuss the affect of immersive environments, how these environments expand reality and what effect (emotionally and otherwise that has on the body. The research reveals insights into relationships between emotion, movement and technology and what new sensorial knowledge this evokes for the dancer.

  2. Single-polymer dynamics under constraints: scaling theory and computer experiment

    International Nuclear Information System (INIS)

    Milchev, Andrey

    2011-01-01

    The relaxation, diffusion and translocation dynamics of single linear polymer chains in confinement is briefly reviewed with emphasis on the comparison between theoretical scaling predictions and observations from experiment or, most frequently, from computer simulations. Besides cylindrical, spherical and slit-like constraints, related problems such as the chain dynamics in a random medium and the translocation dynamics through a nanopore are also considered. Another particular kind of confinement is imposed by polymer adsorption on attractive surfaces or selective interfaces-a short overview of single-chain dynamics is also contained in this survey. While both theory and numerical experiments consider predominantly coarse-grained models of self-avoiding linear chain molecules with typically Rouse dynamics, we also note some recent studies which examine the impact of hydrodynamic interactions on polymer dynamics in confinement. In all of the aforementioned cases we focus mainly on the consequences of imposed geometric restrictions on single-chain dynamics and try to check our degree of understanding by assessing the agreement between theoretical predictions and observations. (topical review)

  3. Monitoring conformational dynamics with solid-state R1ρ experiments

    International Nuclear Information System (INIS)

    Quinn, Caitlin M.; McDermott, Ann E.

    2009-01-01

    A new application of solid-state rotating frame (R 1ρ ) relaxation experiments to observe conformational dynamics is presented. Studies on a model compound, dimethyl sulfone (DMS), show that R 1ρ relaxation due to reorientation of a chemical shift anisotropy (CSA) tensor undergoing chemical exchange can be used to monitor slow-to-intermediate timescale conformational exchange processes. Control experiments used d 6 -DMS and alanine to confirm that the technique is monitoring reorientation of the CSA tensor rather than dipolar interactions or methyl group rotation. The application of this method to proteins could represent a new site-specific probe of conformational dynamics

  4. Reprint of “Experiences in sulphur capture in a 30 MWth Circulating Fluidized Bed boiler under oxy-combustion conditions”

    International Nuclear Information System (INIS)

    Gómez, M.; Fernández, A.; Llavona, I.; Kuivalainen, R.

    2015-01-01

    CO 2 and SO 2 from fossil fuel combustion are contributors to greenhouse effect and acid rain respectively. Oxy-combustion technology produces a highly concentrated CO 2 stream almost ready for capture. Circulating Fluidized Bed (CFB) boiler technology allows in-situ injection of calcium-based sorbents for efficient SO 2 capture. CIUDEN's 30 MWth CFB boiler, supplied by Foster Wheeler and located at the Technology Development Centre for CO 2 Capture and Transport (es.CO 2 ) in Spain, is the first of its kind for executing test runs at large pilot scale under both air-combustion and oxy-combustion conditions. In this work, SO 2 emissions under different scenarios have been evaluated. Variables such as limestone composition, Ca/S molar ratio and bed temperature among others have been considered along different test runs in both air-combustion and oxy-combustion conditions to analyse its influence on SO 2 abatement. Fly and bottom ash, together with flue gas analysis have been carried-out. Desulphurization performance tests results are presented. - Highlights: • Sulphur capture efficiency (%) was higher in oxy-combustion compared to air-combustion in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. • For a Ca/S molar ratio higher than 2.6 there was barely any improvement on sulphur capture efficiency for both air-combustion and oxy-combustion conditions in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. • Optimum temperature for sulphur capture at a fixed Ca/S molar ratio is around 880–890 °C under oxy-combustion conditions and for anthracite coal with limestone as sorbent in a 30 MW thermal CFB boiler

  5. Investigating the effects of smart technology on customer dynamics and customer experience

    OpenAIRE

    Foroudi, Pantea; Gupta, Suraksha; Sivarajah, Uthayasankar; Broderick, Amanda

    2018-01-01

    Increased use of smart technologies by customers is leading to recognition of their influence on the shopping experiences of customers by practitioners. However, the academic literature fails to acknowledge the influence of smart technology usage, combined with behavioural intention of the customer, on the dynamics and experience of customers. This research utilises explanatory research at the preliminary stage to examine this phenomenon in a retail setting. A conceptual framework was created...

  6. Software complex for developing dynamically packed program system for experiment automation

    International Nuclear Information System (INIS)

    Baluka, G.; Salamatin, I.M.

    1985-01-01

    Software complex for developing dynamically packed program system for experiment automation is considered. The complex includes general-purpose programming systems represented as the RT-11 standard operating system and specially developed problem-oriented moduli providing execution of certain jobs. The described complex is realized in the PASKAL' and MAKRO-2 languages and it is rather flexible to variations of the technique of the experiment

  7. Classical description of the electron capture to the continuum cusp formation in ion-atom collisions

    International Nuclear Information System (INIS)

    Illescas, Clara; Pons, B.; Riera, A.

    2002-01-01

    Classical calculations are used to describe the dynamics of the electron capture to the continuum (ECC) cusp formation in H + +He collisions. We illustrate the frontier character of the ECC electrons between capture and ionization, and confirm that it is a temporary capture, through projectile focusing, that is responsible for the ECC cusp. Furthermore, the cusp is not a divergence smoothed by the experiment, and is slightly shifted from the impact-velocity value because of the residual pull from the target after ionization. This shift is larger the smaller the nuclear velocity

  8. Atmospheric statistical dynamic models. Climate experiments: albedo experiments with a zonal atmospheric model

    International Nuclear Information System (INIS)

    Potter, G.L.; Ellsaesser, H.W.; MacCracken, M.C.; Luther, F.M.

    1978-06-01

    The zonal model experiments with modified surface boundary conditions suggest an initial chain of feedback processes that is largest at the site of the perturbation: deforestation and/or desertification → increased surface albedo → reduced surface absorption of solar radiation → surface cooling and reduced evaporation → reduced convective activity → reduced precipitation and latent heat release → cooling of upper troposphere and increased tropospheric lapse rates → general global cooling and reduced precipitation. As indicated above, although the two experiments give similar overall global results, the location of the perturbation plays an important role in determining the response of the global circulation. These two-dimensional model results are also consistent with three-dimensional model experiments. These results have tempted us to consider the possibility that self-induced growth of the subtropical deserts could serve as a possible mechanism to cause the initial global cooling that then initiates a glacial advance thus activating the positive feedback loop involving ice-albedo feedback (also self-perpetuating). Reversal of the cycle sets in when the advancing ice cover forces the wave-cyclone tracks far enough equatorward to quench (revegetate) the subtropical deserts

  9. Chemical Kinetics, Heat Transfer, and Sensor Dynamics Revisited in a Simple Experiment

    Science.gov (United States)

    Sad, Maria E.; Sad, Mario R.; Castro, Alberto A.; Garetto, Teresita F.

    2008-01-01

    A simple experiment about thermal effects in chemical reactors is described, which can be used to illustrate chemical reactor models, the determination and validation of their parameters, and some simple principles of heat transfer and sensor dynamics. It is based in the exothermic reaction between aqueous solutions of sodium thiosulfate and…

  10. Nanojets, Electrospray, and Ion Field Evaporation: Molecular Dynamics Simulations and Laboratory Experiments

    National Research Council Canada - National Science Library

    Luedtke, W. D; Landman, Uzi; Chiu, Y. H; Levandier, D. J; Dressler, R. A; Sok, S; Gordon, M. S

    2008-01-01

    ... experiment and using molecular dynamics (MD) simulations. The electrospray source is operated in a Taylor cone-jet mode, with the nanojet that forms being characterized by high surface-normal electric field strengths in the vicinity of I V/nm...

  11. Statistical properties of compartmental model parameters extracted from dynamic positron emission tomography experiments

    International Nuclear Information System (INIS)

    Mazoyer, B.M.; Huesman, R.H.; Budinger, T.F.; Knittel, B.L.

    1986-01-01

    Over the past years a major focus of research in physiologic studies employing tracers has been the computer implementation of mathematical methods of kinetic modeling for extracting the desired physiological parameters from tomographically derived data. A study is reported of factors that affect the statistical properties of compartmental model parameters extracted from dynamic positron emission tomography (PET) experiments

  12. Views of Pre-Service Teachers Following Teaching Experience on Use of Dynamic Geometry Software

    Science.gov (United States)

    Günes, Kardelen; Tapan-Broutin, Menekse Seden

    2017-01-01

    The study aims to determine the views of final-year pre-service mathematics teachers towards their experience of the use of dynamic geometry software in teaching, following the implementation processes that they carried out when using this software in a real classroom environment. The study was designed as a case study, which is one of the…

  13. Fast-scan em with digital image processing for dynamic experiments

    Science.gov (United States)

    Charles W. McMillin; Fred C. Billingsley; Robert E. Frazer

    1973-01-01

    The recent introduction of accessory instrumentation capable of display at television scan rates suggests a broadened application for the scanning electron microscope - the direct observation of motion (dynamic events) at magnifactions otherwise unattainable. In one illustrative experiment, the transverse surface of southern pine was observed when subjected to large...

  14. Dynamics control of autonomous vehicle at driving limits and experiment on an autonomous formula racing car

    Science.gov (United States)

    Ni, Jun; Hu, Jibin

    2017-06-01

    In this paper, a novel dynamics controller for autonomous vehicle to simultaneously control it to the driving limits and follow the desired path is proposed. The dynamics controller consists of longitudinal and lateral controllers. In longitudinal controller, the G-G diagram is utilized to describe the driving and handling limits of the vehicle. The accurate G-G diagram is obtained based on phase plane approach and a nonlinear vehicle dynamic model with accurate tyre model. In lateral controller, the tyre cornering stiffness is estimated to improve the robustness of the controller. The stability analysis of the closed-looped error dynamics shows that the controller remains stable against parameters uncertainties in extreme condition such as tyre saturation. Finally, an electric autonomous Formula race car developed by the authors is used to validate the proposed controller. The autonomous driving experiment on an oval race track shows the efficiency and robustness of the proposed controller.

  15. Visual Field Asymmetry in Attentional Capture

    Science.gov (United States)

    Du, Feng; Abrams, Richard A.

    2010-01-01

    The present study examined the spatial distribution of involuntary attentional capture over the two visual hemi-fields. A new experiment, and an analysis of three previous experiments showed that distractors in the left visual field that matched a sought-for target in color produced a much larger capture effect than identical distractors in the…

  16. Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and modeling

    International Nuclear Information System (INIS)

    Cole, David M.; Hopkins, Mark A.; Ketcham, Stephen A.

    2013-01-01

    High fidelity treatments of the generation and propagation of seismic waves in naturally occurring granular materials is becoming more practical given recent advancements in our ability to model complex particle shapes and their mechanical interaction. Of particular interest are the grain-scale processes that are activated by impact events and the characteristics of force transmission through grain contacts. To address this issue, we have developed a physics based approach that involves laboratory experiments to quantify the dynamic contact and impact behavior of granular materials and incorporation of the observed behavior indiscrete element models. The dynamic experiments do not involve particle damage and emphasis is placed on measured values of contact stiffness and frictional loss. The normal stiffness observed in dynamic contact experiments at low frequencies (e.g., 10 Hz) are shown to be in good agreement with quasistatic experiments on quartz sand. The results of impact experiments – which involve moderate to extensive levels of particle damage – are presented for several types of naturally occurring granular materials (several quartz sands, magnesite and calcium carbonate ooids). Implementation of the experimental findings in discrete element models is discussed and the results of impact simulations involving up to 5 × 105 grains are presented.

  17. Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Cole, David M.; Hopkins, Mark A.; Ketcham, Stephen A. [Engineer Research and Development Center - Cold Regions Research and Engineering Laboratory, 72 Lyme Rd., Hanover, NH 03755 (United States)

    2013-06-18

    High fidelity treatments of the generation and propagation of seismic waves in naturally occurring granular materials is becoming more practical given recent advancements in our ability to model complex particle shapes and their mechanical interaction. Of particular interest are the grain-scale processes that are activated by impact events and the characteristics of force transmission through grain contacts. To address this issue, we have developed a physics based approach that involves laboratory experiments to quantify the dynamic contact and impact behavior of granular materials and incorporation of the observed behavior indiscrete element models. The dynamic experiments do not involve particle damage and emphasis is placed on measured values of contact stiffness and frictional loss. The normal stiffness observed in dynamic contact experiments at low frequencies (e.g., 10 Hz) are shown to be in good agreement with quasistatic experiments on quartz sand. The results of impact experiments - which involve moderate to extensive levels of particle damage - are presented for several types of naturally occurring granular materials (several quartz sands, magnesite and calcium carbonate ooids). Implementation of the experimental findings in discrete element models is discussed and the results of impact simulations involving up to 5 Multiplication-Sign 105 grains are presented.

  18. Microtubules become more dynamic but not shorter during preprophase band formation: A possible "search-and-capture" mechanism for microtubule translocation

    NARCIS (Netherlands)

    Vos, J.W.; Dogterom, M.; Emons, A.M.C.

    2004-01-01

    The dynamic behavior of the microtubule cytoskeleton plays a crucial role in cellular organization, but the physical mechanisms underlying microtubule (re)organization in plant cells are poorly understood. We investigated microtubule dynamics in tobacco BY-2 suspension cells during interphase and

  19. Reactor dynamics experiment of N.S. Mutsu using pseudo random signal. 1

    International Nuclear Information System (INIS)

    Hayashi, Koji; Nabeshima, Kunihiko; Shinohara, Yoshikuni; Shimazaki, Junya; Inoue, Kimihiko; Ochiai, Masaaki.

    1993-10-01

    In order to investigate dynamics of the reactor plant of the nuclear ship Mutsu, reactor noise experiments using pseudo random binary sequences (PRBS) have been planned, and a preliminary experiment was performed on March 4, 1991 in the first experimental navigation with the aim of checking the experimental procedures and conditions. The experiments using both reactivity and load disturbances were performed at 70 % of reactor power and under a quiet sea condition. Each PRBS was applied by manual operation of the control rod or the main steam valve. Various signals of the plant responses and of the acceleration of ship motion were measured. From the results obtained, we confirmed that (1) the procedures and experimental conditions determined prior to the experiment were suitable for performing the PRBS experiments, (2) when the PRBS disturbances were applied, the plant state remained quite stable, and (3) the quality of the measured data is adequate for the purpose of dynamics analysis. This paper summarizes the planning and preparation of the experiment, the instruction for the experiment and logs, the data recording conditions, recorded signal wave forms and the results of power spectral analysis. (author)

  20. Drum-mate: interaction dynamics and gestures in human-humanoid drumming experiments

    Science.gov (United States)

    Kose-Bagci, Hatice; Dautenhahn, Kerstin; Syrdal, Dag S.; Nehaniv, Chrystopher L.

    2010-06-01

    This article investigates the role of interaction kinesics in human-robot interaction (HRI). We adopted a bottom-up, synthetic approach towards interactive competencies in robots using simple, minimal computational models underlying the robot's interaction dynamics. We present two empirical, exploratory studies investigating a drumming experience with a humanoid robot (KASPAR) and a human. In the first experiment, the turn-taking behaviour of the humanoid is deterministic and the non-verbal gestures of the robot accompany its drumming to assess the impact of non-verbal gestures on the interaction. The second experiment studies a computational framework that facilitates emergent turn-taking dynamics, whereby the particular dynamics of turn-taking emerge from the social interaction between the human and the humanoid. The results from the HRI experiments are presented and analysed qualitatively (in terms of the participants' subjective experiences) and quantitatively (concerning the drumming performance of the human-robot pair). The results point out a trade-off between the subjective evaluation of the drumming experience from the perspective of the participants and the objective evaluation of the drumming performance. A certain number of gestures was preferred as a motivational factor in the interaction. The participants preferred the models underlying the robot's turn-taking which enable the robot and human to interact more and provide turn-taking closer to 'natural' human-human conversations, despite differences in objective measures of drumming behaviour. The results are consistent with the temporal behaviour matching hypothesis previously proposed in the literature which concerns the effect that the participants adapt their own interaction dynamics to the robot's.

  1. Differing Dynamics of Intrapersonal and Interpersonal Coordination: Two-finger and Four-Finger Tapping Experiments.

    Directory of Open Access Journals (Sweden)

    Kentaro Kodama

    Full Text Available Finger-tapping experiments were conducted to examine whether the dynamics of intrapersonal and interpersonal coordination systems can be described equally by the Haken-Kelso-Bunz model, which describes inter-limb coordination dynamics. This article reports the results of finger-tapping experiments conducted in both systems. Two within-subject factors were investigated: the phase mode and the number of fingers. In the intrapersonal experiment (Experiment 1, the participants were asked to tap, paced by a gradually hastening auditory metronome, looking at their fingers moving, using the index finger in the two finger condition, or the index and middle finger in the four-finger condition. In the interpersonal experiment (Experiment 2, pairs of participants performed the task while each participant used the outside hand, tapping with the index finger in the two finger condition, or the index and middle finger in the four-finger condition. Some results did not agree with the HKB model predictions. First, from Experiment 1, no significant difference was observed in the movement stability between the in-phase and anti-phase modes in the two finger condition. Second, from Experiment 2, no significant difference was found in the movement stability between the in-phase and anti-phase mode in the four-finger condition. From these findings, different coordination dynamics were inferred between intrapersonal and interpersonal coordination systems against prediction from the previous studies. Results were discussed according to differences between intrapersonal and interpersonal coordination systems in the availability of perceptual information and the complexity in the interaction between limbs derived from a nested structure.

  2. Hydration and Ion Pairing in Aqueous Mg2+ and Zn2+ Solutions: Force-Field Description Aided by Neutron Scattering Experiments and Ab Initio Molecular Dynamics Simulations.

    Science.gov (United States)

    Duboué-Dijon, Elise; Mason, Philip E; Fischer, Henry E; Jungwirth, Pavel

    2018-04-05

    Magnesium and zinc dications possess the same charge and have an almost identical size, yet they behave very differently in aqueous solutions and play distinct biological roles. It is thus crucial to identify the origins of such different behaviors and to assess to what extent they can be captured by force-field molecular dynamics simulations. In this work, we combine neutron scattering experiments in a specific mixture of H 2 O and D 2 O (the so-called null water) with ab initio molecular dynamics simulations to probe the difference in the hydration structure and ion-pairing properties of chloride solutions of the two cations. The obtained data are used as a benchmark to develop a scaled-charge force field for Mg 2+ that includes electronic polarization in a mean field way. We show that using this electronic continuum correction we can describe aqueous magnesium chloride solutions well. However, in aqueous zinc chloride specific interaction terms between the ions need to be introduced to capture ion pairing quantitatively.

  3. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I. (University of California, San Diego); Winey, J. Michael (Washington State University); Gupta, Yogendra Mohan (Washington State University); Lane, J. Matthew D.; Ditmire, Todd (University of Texas at Austin); Quevedo, Hernan J. (University of Texas at Austin)

    2011-10-01

    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  4. The Robben Island diversity experience. An exploration of South African diversity dynamics

    Directory of Open Access Journals (Sweden)

    Marius Pretorius

    2012-03-01

    Research purpose: The purpose of the research was to describe the experiences of participants attending the Robben Island Diversity Experience (RIDE in order to understand South African diversity dynamics from a depth psychology perspective. Motivation for the study: Of the many and different diversity events presented in South African organisations, RIDE is the only annual systems psycho-dynamically designed and presented event. This research was an effort to explore the nature of these dynamics which manifest themselves from below the surface. Research design, approach and method: Qualitative and descriptive research from a hermeneutic phenomenology paradigm was used. The 15 participants who attended a RIDE event formed a case study. The data from an unstructured interview was content-analysed and interpreted using the systems psychodynamic perspective. The themes were integrated into a research hypothesis. Main findings: Five themes manifested themselves, namely, crossing boundaries, engaging the brave new world, ties that bind, being imprisoned and the struggle. Practical/managerial implications: The research highlighted the importance of understanding unconscious dynamics in the context of diversity in order to inform consultants about diversity management interventions in organisations. Contribution/value-add: The research contributed towards how South African diversity dynamics manifest themselves and how that can be addressed in organisations.

  5. Capture by colour: evidence for dimension-specific singleton capture.

    Science.gov (United States)

    Harris, Anthony M; Becker, Stefanie I; Remington, Roger W

    2015-10-01

    Previous work on attentional capture has shown the attentional system to be quite flexible in the stimulus properties it can be set to respond to. Several different attentional "modes" have been identified. Feature search mode allows attention to be set for specific features of a target (e.g., red). Singleton detection mode sets attention to respond to any discrepant item ("singleton") in the display. Relational search sets attention for the relative properties of the target in relation to the distractors (e.g., redder, larger). Recently, a new attentional mode was proposed that sets attention to respond to any singleton within a particular feature dimension (e.g., colour; Folk & Anderson, 2010). We tested this proposal against the predictions of previously established attentional modes. In a spatial cueing paradigm, participants searched for a colour target that was randomly either red or green. The nature of the attentional control setting was probed by presenting an irrelevant singleton cue prior to the target display and assessing whether it attracted attention. In all experiments, the cues were red, green, blue, or a white stimulus rapidly rotated (motion cue). The results of three experiments support the existence of a "colour singleton set," finding that all colour cues captured attention strongly, while motion cues captured attention only weakly or not at all. Notably, we also found that capture by motion cues in search for colour targets was moderated by their frequency; rare motion cues captured attention (weakly), while frequent motion cues did not.

  6. Computational fluid dynamics modeling and analysis of Pd-based membrane module for CO{sub 2} capture from H{sub 2}/CO{sub 2} binary gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong-Yoon; Park, Myung-June [Ajou University, Suwon (Korea, Republic of); Hwang, Kyung-Ran; Park, Jong-Soo [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-07-15

    A Pd-based membrane module for the capture of CO{sub 2} from a H{sub 2}/CO{sub 2} binary gas mixture was considered, and computational fluid dynamics modeling was used to predict the module performance. Detailed models of momentum and mass balances, including local flux as a function of local linear velocity, satisfactorily described CO{sub 2} fraction in a retentate tube when compared to the experimental data under various feed flow rates. By using the model, several cases having different geometries, including the location and diameter of feed tube and the number and location of the feed and retentate tubes, were considered. Among tested geometries, the case of two feed tubes with each offset by an angle, θ, of 45° from the center line, and a feed tube diameter of 2.45mm showed the increase of the feed flow rate up to 11.80% compared to the reference case while a CO{sub 2} fraction of 90% in the retentate, which was the criterion for effective CO{sub 2} capture in the present study, was guaranteed. This would result in a plausible reduction in capital expenditures for the CO{sub 2} capture process.

  7. Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Hussmann

    2015-12-01

    Full Text Available Ribosome profiling produces snapshots of the locations of actively translating ribosomes on messenger RNAs. These snapshots can be used to make inferences about translation dynamics. Recent ribosome profiling studies in yeast, however, have reached contradictory conclusions regarding the average translation rate of each codon. Some experiments have used cycloheximide (CHX to stabilize ribosomes before measuring their positions, and these studies all counterintuitively report a weak negative correlation between the translation rate of a codon and the abundance of its cognate tRNA. In contrast, some experiments performed without CHX report strong positive correlations. To explain this contradiction, we identify unexpected patterns in ribosome density downstream of each type of codon in experiments that use CHX. These patterns are evidence that elongation continues to occur in the presence of CHX but with dramatically altered codon-specific elongation rates. The measured positions of ribosomes in these experiments therefore do not reflect the amounts of time ribosomes spend at each position in vivo. These results suggest that conclusions from experiments in yeast using CHX may need reexamination. In particular, we show that in all such experiments, codons decoded by less abundant tRNAs were in fact being translated more slowly before the addition of CHX disrupted these dynamics.

  8. Capturing Attention When Attention "Blinks"

    Science.gov (United States)

    Wee, Serena; Chua, Fook K.

    2004-01-01

    Four experiments addressed the question of whether attention may be captured when the visual system is in the midst of an attentional blink (AB). Participants identified 2 target letters embedded among distractor letters in a rapid serial visual presentation sequence. In some trials, a square frame was inserted between the targets; as the only…

  9. CHAOTIC CAPTURE OF NEPTUNE TROJANS

    International Nuclear Information System (INIS)

    Nesvorny, David; Vokrouhlicky, David

    2009-01-01

    Neptune Trojans (NTs) are swarms of outer solar system objects that lead/trail planet Neptune during its revolutions around the Sun. Observations indicate that NTs form a thick cloud of objects with a population perhaps ∼10 times more numerous than that of Jupiter Trojans and orbital inclinations reaching ∼25 deg. The high inclinations of NTs are indicative of capture instead of in situ formation. Here we study a model in which NTs were captured by Neptune during planetary migration when secondary resonances associated with the mean-motion commensurabilities between Uranus and Neptune swept over Neptune's Lagrangian points. This process, known as chaotic capture, is similar to that previously proposed to explain the origin of Jupiter's Trojans. We show that chaotic capture of planetesimals from an ∼35 Earth-mass planetesimal disk can produce a population of NTs that is at least comparable in number to that inferred from current observations. The large orbital inclinations of NTs are a natural outcome of chaotic capture. To obtain the ∼4:1 ratio between high- and low-inclination populations suggested by observations, planetary migration into a dynamically excited planetesimal disk may be required. The required stirring could have been induced by Pluto-sized and larger objects that have formed in the disk.

  10. Structure and dynamics of amorphous polymers: computer simulations compared to experiment and theory

    International Nuclear Information System (INIS)

    Paul, Wolfgang; Smith, Grant D

    2004-01-01

    This contribution considers recent developments in the computer modelling of amorphous polymeric materials. Progress in our capabilities to build models for the computer simulation of polymers from the detailed atomistic scale up to coarse-grained mesoscopic models, together with the ever-improving performance of computers, have led to important insights from computer simulations into the structural and dynamic properties of amorphous polymers. Structurally, chain connectivity introduces a range of length scales from that of the chemical bond to the radius of gyration of the polymer chain covering 2-4 orders of magnitude. Dynamically, this range of length scales translates into an even larger range of time scales observable in relaxation processes in amorphous polymers ranging from about 10 -13 to 10 -3 s or even to 10 3 s when glass dynamics is concerned. There is currently no single simulation technique that is able to describe all these length and time scales efficiently. On large length and time scales basic topology and entropy become the governing properties and this fact can be exploited using computer simulations of coarse-grained polymer models to study universal aspects of the structure and dynamics of amorphous polymers. On the largest length and time scales chain connectivity is the dominating factor leading to the strong increase in longest relaxation times described within the reptation theory of polymer melt dynamics. Recently, many of the universal aspects of this behaviour have been further elucidated by computer simulations of coarse-grained polymer models. On short length scales the detailed chemistry and energetics of the polymer are important, and one has to be able to capture them correctly using chemically realistic modelling of specific polymers, even when the aim is to extract generic physical behaviour exhibited by the specific chemistry. Detailed studies of chemically realistic models highlight the central importance of torsional dynamics

  11. Robust automated knowledge capture.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt

    2011-10-01

    This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.

  12. The two dynamical states in sinusoidal potentials: An analog simulation experiment

    Science.gov (United States)

    Sawkmie, Ivan Skhem; Mahato, Mangal C.

    2018-04-01

    The phenomenon of stochastic resonance (SR) is usually found to occur theoretically as well as experimentally in bi-stable systems [1]. Recently, it was numerically shown that SR is found to occur in underdamped (friction coefficient γ) sinusoidal potentials also. The occurrence of SR is explained in terms of two competing dynamical states of trajectories as a response to the external periodic drive. We setup an analog simulation experiment similar to the analog simulation work done earlier to study stochastic nonlinear dynamics [2], to verify the existence of the two dynamical states and to investigate the occurrence of SR in sinusoidal potentials obtained earlier [3]. We discuss our experimental setup and the results obtained in detail.

  13. Attachment and Jealousy: Understanding the Dynamic Experience of Jealousy Using the Response Escalation Paradigm.

    Science.gov (United States)

    Huelsnitz, Chloe O; Farrell, Allison K; Simpson, Jeffry A; Griskevicius, Vladas; Szepsenwol, Ohad

    2018-04-01

    Jealousy is a complex, dynamic experience that unfolds over time in relationship-threatening situations. Prior research has used retrospective reports that cannot disentangle initial levels and change in jealousy in response to escalating threat. In three studies, we examined responses to the Response Escalation Paradigm (REP)-a 5-stage hypothetical scenario in which individuals are exposed to increasing levels of relationship threat-as a function of attachment orientations. Highly anxious individuals exhibited hypervigilant, slow escalation response patterns, interfered earlier in the REP, felt more jealousy, sadness, and worry when they interfered, and wanted to engage in more vigilant, destructive, and passive behaviors aimed at their partner. Highly avoidant individuals felt more anger when they interfered in the REP and wanted to engage in more partner-focused, destructive behaviors. The REP offers a dynamic method for inducing and examining jealousy and introduces a novel approach to studying other emotional experiences.

  14. Dynamic SEM wear studies of tungsten carbide cermets. [friction and wear experiments

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined, and etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the tungsten carbide (WC) and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation, and the wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation, and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  15. The Strata-1 Regolith Dynamics Experiment: Class 1E Science on ISS

    Science.gov (United States)

    Fries, Marc; Graham, Lee; John, Kristen

    2016-01-01

    The Strata-1 experiment studies the evolution of small body regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). This study will record segregation and mechanical dynamics of regolith simulants in a microgravity and vibration environment similar to that experienced by regolith on small Solar System bodies. Strata-1 will help us understand regolith dynamics and will inform design and procedures for landing and setting anchors, safely sampling and moving material on asteroidal surfaces, processing large volumes of material for in situ resource utilization (ISRU) purposes, and, in general, predicting the behavior of large and small particles on disturbed asteroid surfaces. This experiment is providing new insights into small body surface evolution.

  16. A Study of Particle Beam Spin Dynamics for High Precision Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew J. [Northern Illinois Univ., DeKalb, IL (United States)

    2017-05-01

    In the search for physics beyond the Standard Model, high precision experiments to measure fundamental properties of particles are an important frontier. One group of such measurements involves magnetic dipole moment (MDM) values as well as searching for an electric dipole moment (EDM), both of which could provide insights about how particles interact with their environment at the quantum level and if there are undiscovered new particles. For these types of high precision experiments, minimizing statistical uncertainties in the measurements plays a critical role. \\\\ \\indent This work leverages computer simulations to quantify the effects of statistical uncertainty for experiments investigating spin dynamics. In it, analysis of beam properties and lattice design effects on the polarization of the beam is performed. As a case study, the beam lines that will provide polarized muon beams to the Fermilab Muon \\emph{g}-2 experiment are analyzed to determine the effects of correlations between the phase space variables and the overall polarization of the muon beam.

  17. Mechanical Properties of Boehmite Evaluated by Atomic Force Microscopy Experiments and Molecular Dynamic Finite Element Simulations

    International Nuclear Information System (INIS)

    Fankhanel, J.; Daum, B.; Kempe, A.; Rolfes, R.; Silbernagl, D.; Khorasani, M.Gh.Z.; Sturm, H.; Sturm, H.

    2016-01-01

    Boehmite nanoparticles show great potential in improving mechanical properties of fiber reinforced polymers. In order to predict the properties of nanocomposites, knowledge about the material parameters of the constituent phases, including the boehmite particles, is crucial. In this study, the mechanical behavior of boehmite is investigated using Atomic Force Microscopy (AFM) experiments and Molecular Dynamic Finite Element Method (MDFEM) simulations. Young’s modulus of the perfect crystalline boehmite nanoparticles is derived from numerical AFM simulations. Results of AFM experiments on boehmite nanoparticles deviate significantly. Possible causes are identified by experiments on complementary types of boehmite, that is, geological and hydrothermally synthesized samples, and further simulations of imperfect crystals and combined boehmite/epoxy models. Under certain circumstances, the mechanical behavior of boehmite was found to be dominated by inelastic effects that are discussed in detail in the present work. The studies are substantiated with accompanying X-ray diffraction and Raman experiments.

  18. An economic perspective on experience curves and dynamic economies in renewable energy technologies

    International Nuclear Information System (INIS)

    Papineau, Maya

    2006-01-01

    This paper analyzes dynamic economies in renewable energy technologies. The paper has two contributions. The first is to test the robustness of experience in solar photovoltaic, solar thermal and wind energy to the addition of an explicit time trend, which has been done in experience studies for other industries, but not for renewable energy technologies. Estimation is carried out on the assumption that cumulative capacity, industry production, average firm production, and electricity generation affect experience and thus the fall in price. The second contribution is to test the impact of R and D on price reduction. In general cumulative experience is found to be highly statistically significant when estimated alone, and highly statistically insignificant when time is added to the model. The effect of R and D is small and statistically significant in solar photovoltaic technology and statistically insignificant in solar thermal and wind technologies

  19. Radiative electron capture

    International Nuclear Information System (INIS)

    Biggerstaff, J.A.; Appleton, B.R.; Datz, S.; Moak, C.D.; Neelavathi, V.N.; Noggle, T.S.; Ritchie, R.H.; VerBeek, H.

    1975-01-01

    Some data are presented for radiative electron capture by fast moving ions. The radiative electron capture spectrum is shown for O 8+ in Ag, along with the energy dependence of the capture cross-section. A discrepancy between earlier data, theoretical prediction, and the present data is pointed out. (3 figs) (U.S.)

  20. A laboratory plasma experiment for studying magnetic dynamics of accretion discs and jets

    OpenAIRE

    Hsu, S. C.; Bellan, P. M.

    2002-01-01

    This work describes a laboratory plasma experiment and initial results which should give insight into the magnetic dynamics of accretion discs and jets. A high-speed multiple-frame CCD camera reveals images of the formation and helical instability of a collimated plasma, similar to MHD models of disc jets, and also plasma detachment associated with spheromak formation, which may have relevance to disc winds and flares. The plasmas are produced by a planar magnetized coaxial gun. The resulting...

  1. Conversation in the museum: experiments in dynamic hypermedia with the intelligent labelling explorer

    OpenAIRE

    Oberlander, Jon; O'donnell, Mick; Mellish, Chris; Knott, Alistair

    1998-01-01

    We outline experience with the Intelligent Labelling Explorer, a dynamic hypertext system developed at the University of Edinburgh, in collaboration with the National Museums of Scotland. First, we indicate a number of ways in which labels on museum objects ought to be tuned to take into account types of visit, the interests of visitors, and their evolving knowledge during a visit. Secondly, we sketch the general architecture of our system, and then focus on the conversational effects which t...

  2. Dynamics of fault slip near the stability transition combining laboratory and numerical experiments

    Science.gov (United States)

    Mele Veedu, D.; Giorgetti, C.; Scuderi, M. M.; Barbot, S.; Marone, C.; Collettini, C.

    2017-12-01

    Frictional stability controls the seismogenic potential of faults. Laboratory (1) and theoretical (2) studies document and predict the conditions under which fault slip is seismic or aseismic. However, the full gamut of fault slip behavior near the stable/unstable boundary is still poorly known. Here, we combine insight from laboratory and numerical experiments to identify the wide spectrum of frictional instabilities around that transition, including slow-slip events, period-multiplying events, and chaos. We present a synoptic picture of the dynamics of fault slip in a bifurcation diagram obtained from a series of laboratory and numerical experiments. We compare the laboratory observations with spring-slider and finite-fault numerical models. In the laboratory, we vary the stiffness of the system by modulating the stress field around the experimental fault. In the numerical experiments, we vary the characteristic weakening distance to explore a range of critical nucleation sizes. Contrarily to previously found (3), complex fault dynamics can be obtained with a rate-and-state constitutive law with a single state variable. While the dynamics of fault slip is complicated on large faults by the presence of morphological and rheological heterogeneities, the range of instabilities identified in the laboratory is reminiscent of the variety of slow and fast earthquakes found along subduction zones (4). The accord between laboratory data and theoretical models affords more realistic predictions of fault behavior at slow slip speeds. (1) Scuderi et al., (2016), (2) Ruina (1983), (3) Gu & Wong (1994), (4) Obara & Kato (2016)

  3. Combustion-Powered Actuation for Dynamic Stall Suppression - Simulations and Low-Mach Experiments

    Science.gov (United States)

    Matalanis, Claude G.; Min, Byung-Young; Bowles, Patrick O.; Jee, Solkeun; Wake, Brian E.; Crittenden, Tom; Woo, George; Glezer, Ari

    2014-01-01

    An investigation on dynamic-stall suppression capabilities of combustion-powered actuation (COMPACT) applied to a tabbed VR-12 airfoil is presented. In the first section, results from computational fluid dynamics (CFD) simulations carried out at Mach numbers from 0.3 to 0.5 are presented. Several geometric parameters are varied including the slot chordwise location and angle. Actuation pulse amplitude, frequency, and timing are also varied. The simulations suggest that cycle-averaged lift increases of approximately 4% and 8% with respect to the baseline airfoil are possible at Mach numbers of 0.4 and 0.3 for deep and near-deep dynamic-stall conditions. In the second section, static-stall results from low-speed wind-tunnel experiments are presented. Low-speed experiments and high-speed CFD suggest that slots oriented tangential to the airfoil surface produce stronger benefits than slots oriented normal to the chordline. Low-speed experiments confirm that chordwise slot locations suitable for Mach 0.3-0.4 stall suppression (based on CFD) will also be effective at lower Mach numbers.

  4. Dynamics of bubble collapse under vessel confinement in 2D hydrodynamic experiments

    Science.gov (United States)

    Shpuntova, Galina; Austin, Joanna

    2013-11-01

    One trauma mechanism in biomedical treatment techniques based on the application of cumulative pressure pulses generated either externally (as in shock-wave lithotripsy) or internally (by laser-induced plasma) is the collapse of voids. However, prediction of void-collapse driven tissue damage is a challenging problem, involving complex and dynamic thermomechanical processes in a heterogeneous material. We carry out a series of model experiments to investigate the hydrodynamic processes of voids collapsing under dynamic loading in configurations designed to model cavitation with vessel confinement. The baseline case of void collapse near a single interface is also examined. Thin sheets of tissue-surrogate polymer materials with varying acoustic impedance are used to create one or two parallel material interfaces near the void. Shadowgraph photography and two-color, single-frame particle image velocimetry quantify bubble collapse dynamics including jetting, interface dynamics and penetration, and the response of the surrounding material. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading.''

  5. Capture, Electron-Cooling and Compression of Antiprotons in a Large Penning-Trap for Physics Experiments with an Ultra-Low Energy Extracted Antiproton Beam

    CERN Multimedia

    2002-01-01

    % PS200 \\\\ \\\\The availability of ultra-low energy antiprotons is a crucial ingredient for the execution of the gravity measurements PS200. We have developed a method to provide such low energy antiprotons based on a large Penning trap (the PS200 catching trap). This system can accept a fast-extracted pulse from LEAR, reduce the energy of the antiprotons in the pulse from 5.9~MeV to several tens of kilovolts using a degrading foil, and then capture the antiprotons in a large Penning trap. These antiprotons are cooled by electrons previously admitted to the trap and are collected in a small region at the center of the trap. We have demonstrated our capability to capture up to 1~million antiprotons from LEAR in a single shot, electron cool these antiprotons, and transfer up to 95\\% of them into the inner, harmonic region. A storage time in excess of 1 hour was observed. These results have been obtained with the cryogenic trap vacuum coupled to a room temperature vacuum at about l0$ ^- ^{1} ^0 $ Torr, which is an...

  6. Global sampling of the seasonal changes in vegetation biophysical properties and associated carbon flux dynamics: using the synergy of information captured by spectral time series

    Science.gov (United States)

    Campbell, P. K. E.; Huemmrich, K. F.; Middleton, E.; Voorhis, S.; Landis, D.

    2016-12-01

    Spatial heterogeneity and seasonal dynamics in vegetation function contribute significantly to the uncertainties in regional and global CO2 budgets. High spectral resolution imaging spectroscopy ( 10 nm, 400-2500 nm) provides an efficient tool for synoptic evaluation of the factors significantly affecting the ability of the vegetation to sequester carbon and to reflect radiation, due to changes in vegetation chemical and structural composition. EO-1 Hyperion has collected more than 15 years of repeated observations for vegetation studies, and currently Hyperion time series are available for study of vegetation carbon dynamics at a number of FLUX sites. This study presents results from the analysis of EO-1 Hyperion and FLUX seasonal composites for a range of ecosystems across the globe. Spectral differences and seasonal trends were evaluated for each vegetation type and specific phenology. Evaluating the relationships between CO2 flux parameters (e.g., Net ecosystem production - NEP; Gross Ecosystem Exchange - GEE, CO2 flux, μmol m-2 s-1) and spectral parameters for these very different ecosystems, high correlations were established to parameters associated with canopy water and chlorophyll content for deciduous, and photosynthetic function for conifers. Imaging spectrometry provided high spatial resolution maps of CO2 fluxes absorbed by vegetation, and was efficient in tracing seasonal flux dynamics. This study will present examples for key ecosystem tipes to demonstrate the ability of imaging spectrometry and EO-1 Hyperion to map and compare CO2 flux dynamics across the globe.

  7. Capturing the Transformation and Dynamic Nature of an Elementary Teacher Candidate's Identity Development as a Teacher of Science

    Science.gov (United States)

    Naidoo, Kara

    2017-01-01

    This study examines the transformation and dynamic nature of one teacher candidate's (Susan) identity as a learner and teacher of science throughout an innovative science methods course. The goal of this paper is to use theoretically derived themes grounded in cultural-historical activity theory (CHAT) and situated learning theory to determine the…

  8. Uncovering the secret lives of sewer rats (Rattus norvegicus): Movements, distribution and population dynamics revealed by a capture-mark-recapture study

    DEFF Research Database (Denmark)

    Heiberg, Ann-Charlotte; Sluydts, Vincent; Leirs, Herwig E.l.

    2012-01-01

    Context.: In many parts of the world, brown rats have colonised sewer systems and the rat populations in sewers are often thought to be a source of problems with rats on the surface. The management of sewer rat populations is usually performed with little, if any, knowledge of the dynamics and be...

  9. Bayesian model calibration of computational models in velocimetry diagnosed dynamic compression experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hund, Lauren [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Dynamic compression experiments are being performed on complicated materials using increasingly complex drivers. The data produced in these experiments are beginning to reach a regime where traditional analysis techniques break down; requiring the solution of an inverse problem. A common measurement in dynamic experiments is an interface velocity as a function of time, and often this functional output can be simulated using a hydrodynamics code. Bayesian model calibration is a statistical framework to estimate inputs into a computational model in the presence of multiple uncertainties, making it well suited to measurements of this type. In this article, we apply Bayesian model calibration to high pressure (250 GPa) ramp compression measurements in tantalum. We address several issues speci c to this calibration including the functional nature of the output as well as parameter and model discrepancy identi ability. Speci cally, we propose scaling the likelihood function by an e ective sample size rather than modeling the autocorrelation function to accommodate the functional output and propose sensitivity analyses using the notion of `modularization' to assess the impact of experiment-speci c nuisance input parameters on estimates of material properties. We conclude that the proposed Bayesian model calibration procedure results in simple, fast, and valid inferences on the equation of state parameters for tantalum.

  10. Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments

    Energy Technology Data Exchange (ETDEWEB)

    La Lone, B. M., E-mail: lalonebm@nv.doe.gov; Marshall, B. R.; Miller, E. K.; Stevens, G. D.; Turley, W. D. [National Security Technologies, LLC, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Veeser, L. R. [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States)

    2015-02-15

    A diagnostic was developed to simultaneously measure both the distance and velocity of rapidly moving surfaces in dynamic compression experiments, specifically non-planar experiments where integrating the velocity in one direction does not always give the material position accurately. The diagnostic is constructed mainly from fiber-optic telecommunications components. The distance measurement is based on a technique described by Xia and Zhang [Opt. Express 18, 4118 (2010)], which determines the target distance every 20 ns and is independent of the target speed. We have extended the full range of the diagnostic to several centimeters to allow its use in dynamic experiments, and we multiplexed it with a photonic Doppler velocimetry (PDV) system so that distance and velocity histories can be measured simultaneously using one fiber-optic probe. The diagnostic was demonstrated on a spinning square cylinder to show how integrating a PDV record can give an incorrect surface position and how the ranging diagnostic described here obtains it directly. The diagnostic was also tested on an explosive experiment where copper fragments and surface ejecta were identified in both the distance and velocity signals. We show how the distance measurements complement the velocity data. Potential applications are discussed.

  11. The dynamic process of interspecific interactions of competitive nitrogen capture between intercropped wheat (Triticum aestivum L. and Faba Bean (Vicia faba L..

    Directory of Open Access Journals (Sweden)

    Chunjie Li

    Full Text Available Wheat (Triticum aestivum L./faba bean (Vicia faba L. intercropping shows significant overyielding and high nitrogen (N-use efficiency, but the dynamics of plant interactions have rarely been estimated. The objective of the present study was to investigate the temporal dynamics of competitive N acquisition between intercropped wheat and faba bean with the logistic model. Wheat and faba bean were grown together or alone with limited N supply in pots. Data of shoot and root biomass and N content measured from 14 samplings were fitted to logistic models to determine instantaneous rates of growth and N uptake. The superiority of instantaneous biomass production and N uptake shifted from faba bean to wheat with their growth. Moreover, the shift of superiority on N uptake occurred 7-12 days earlier than that of biomass production. Interspecific competition stimulated intercropped wheat to have a much earlier and stronger superiority on instantaneous N uptake compared with isolated wheat. The modeling methodology characterized the temporal dynamics of biomass production and N uptake of intercropped wheat and faba bean in different planting systems, which helps to understand the underlying process of plant interaction for intercropping plants.

  12. The dynamic process of interspecific interactions of competitive nitrogen capture between intercropped wheat (Triticum aestivum L.) and Faba Bean (Vicia faba L.).

    Science.gov (United States)

    Li, Chunjie; Dong, Yan; Li, Haigang; Shen, Jianbo; Zhang, Fusuo

    2014-01-01

    Wheat (Triticum aestivum L.)/faba bean (Vicia faba L.) intercropping shows significant overyielding and high nitrogen (N)-use efficiency, but the dynamics of plant interactions have rarely been estimated. The objective of the present study was to investigate the temporal dynamics of competitive N acquisition between intercropped wheat and faba bean with the logistic model. Wheat and faba bean were grown together or alone with limited N supply in pots. Data of shoot and root biomass and N content measured from 14 samplings were fitted to logistic models to determine instantaneous rates of growth and N uptake. The superiority of instantaneous biomass production and N uptake shifted from faba bean to wheat with their growth. Moreover, the shift of superiority on N uptake occurred 7-12 days earlier than that of biomass production. Interspecific competition stimulated intercropped wheat to have a much earlier and stronger superiority on instantaneous N uptake compared with isolated wheat. The modeling methodology characterized the temporal dynamics of biomass production and N uptake of intercropped wheat and faba bean in different planting systems, which helps to understand the underlying process of plant interaction for intercropping plants.

  13. Constitutive Investigation on Viscoelasticity of PolyVinyl Butyral: Experiments Based on Dynamic Mechanical Analysis Method

    Directory of Open Access Journals (Sweden)

    Bohan Liu

    2014-01-01

    Full Text Available PolyVinyl Butyral (PVB film is now widely used in automotive industry and architectures serving as the protective interlayer. The dynamic modulus of PVB is measured through systematic experiments based on Dynamic Mechanical Analysis (DMA method at various temperatures, heating rates, and vibration frequencies. Further, viscoelasticity of PVB influenced by time and temperature is systematically studied. Fitted empirical formulas describing the relationship between glass transition temperature and frequency, as well as the heating rate of PVB, are established. The master curve of PVB at 293 K is suggested based on the experiment data as to express the dynamic modulus variation at various frequencies in a wider range. Constitutive behavior of PVB is then analyzed based on Generalized Maxwell (GM model and Fractional Derivative (FD model, respectively. It is shown that PVB has higher efficiency of energy dissipation in its high energy absorption state, while both fifth-order GM model and FD model can characterize the viscoelasticity of PVB at glassy transition area. Results may offer useful fundamental experimental data and important constitutive characteristics of PVB and shed lights on further studies on viscoelasticity behavior of PVB and energy mitigation ability of laminated glass.

  14. Web-based experiments for the study of collective social dynamics in cultural markets.

    Science.gov (United States)

    Salganik, Matthew J; Watts, Duncan J

    2009-07-01

    Social scientists are often interested in understanding how the dynamics of social systems are driven by the behavior of individuals that make up those systems. However, this process is hindered by the difficulty of experimentally studying how individual behavioral tendencies lead to collective social dynamics in large groups of people interacting over time. In this study, we investigate the role of social influence, a process well studied at the individual level, on the puzzling nature of success for cultural products such as books, movies, and music. Using a "multiple-worlds" experimental design, we are able to isolate the causal effect of an individual-level mechanism on collective social outcomes. We employ this design in a Web-based experiment in which 2,930 participants listened to, rated, and downloaded 48 songs by up-and-coming bands. Surprisingly, despite relatively large differences in the demographics, behavior, and preferences of participants, the experimental results at both the individual and collective levels were similar to those found in Salganik, Dodds, and Watts (2006). Further, by comparing results from two distinct pools of participants, we are able to gain new insights into the role of individual behavior on collective outcomes. We conclude with a discussion of the strengths and weaknesses of Web-based experiments to address questions of collective social dynamics. Copyright © 2009 Cognitive Science Society, Inc.

  15. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    Science.gov (United States)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  16. Study of CO2 bubble dynamics in seawater from QICS field Experiment

    Science.gov (United States)

    Chen, B.; Dewar, M.; Sellami, N.; Stahl, H.; Blackford, J.

    2013-12-01

    One of the concerns of employing CCS at engineering scale is the risk of leakage of storage CO2 on the environment and especially on the marine life. QICS, a scientific research project was launched with an aim to study the effects of a potential leak from a CCS system on the UK marine environment [1]. The project involves the injection of CO2 from a shore-based lab into shallow marine sediments. One of the main objectives of the project is to generate experimental data to be compared with the developed physical models. The results of the models are vital for the biogeochemical and ecological models in order to predict the impact of a CO2 leak in a variety of situations. For the evaluation of the fate of the CO2 bubbles into the surrounding seawater, the physical model requires two key parameters to be used as input which are: (i) a correlation of the drag coefficient as function of the CO2 bubble Reynolds number and (ii) the CO2 bubble size distribution. By precisely measuring the CO2 bubble size and rising speed, these two parameters can be established. For this purpose, the dynamical characteristics of the rising CO2 bubbles in Scottish seawater were investigated experimentally within the QICS project. Observations of the CO2 bubbles plume rising freely in the in seawater column were captured by video survey using a ruler positioned at the leakage pockmark as dimension reference. This observation made it possible, for the first time, to discuss the dynamics of the CO2 bubbles released in seawater. [1] QICS, QICS: Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage. (Accessed 15.07.13), http://www.bgs.ac.uk/qics/home.html

  17. Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments?

    International Nuclear Information System (INIS)

    Wolf, D.; Yamakov, V.; Phillpot, S.R.; Mukherjee, A.; Gleiter, H.

    2005-01-01

    We review the results of recent molecular-dynamics simulations of the structure and deformation behavior of nanocrystalline materials, i.e., polycrystalline materials with a grain size of typically less than about 100 nm. These simulations have now become large enough and sophisticated enough that they are beginning to cover the entire range of grain sizes over which the experimentally suggested transition from a dislocation-based deformation mechanism to one involving GB processes takes place. Their atomic-level resolution provides novel insights into the intricate interplay between the dislocation and GB processes responsible for this crossover. These simulations also reveal how and why this crossover in the dominant mechanism leads to a transition in the mechanical behavior. However, in spite of these early successes, these simulations are inherently limited to rather idealized model microstructures and extremely high deformation rates. We therefore address the critical question as to the degree to which they begin to capture the experimentally observed, albeit controversial, deformation behavior of real nanocrystalline materials. (Supplementary material to this article, in the form of color graphs of some of the figures and several deformation-simulation movies, can be viewed at http://phillpot.mse.ufl.edu/review.html.)

  18. Robot Comedy Lab: Experimenting with the Social Dynamics of Live Performance

    Directory of Open Access Journals (Sweden)

    Kleomenis eKatevas

    2015-08-01

    Full Text Available The success of live comedy depends on a performer's ability to 'work' an audience. Ethnographic studies suggest that this involves the co-ordinated use of subtle social signals such as body orientation, gesture, gaze by both performers and audience members. Robots provide a unique opportunity to test the effects of these signals experimentally. Using a life-size humanoid robot, programmed to perform a stand-up comedy routine, we manipulated the robot's patterns of gesture and gaze and examined their effects on the real-time responses of a live audience. The strength and type of responses were captured using SHOREtm computer vision analytics. The results highlight the complex, reciprocal social dynamics of performer and audience behavior. People respond more positively when the robot looks at them, negatively when it looks away and that different performative gestures elicit systematically different patterns of audience response. This demonstrates that the responses of individual audience members depend on the specific interaction they're having with the performer. This work provides insights into how to design more effective, more socially engaging, forms of robot interaction that can be used in a variety of service contexts.

  19. Intrinsic dynamics of heart regulatory systems on short timescales: from experiment to modelling

    International Nuclear Information System (INIS)

    Khovanov, I A; Khovanova, N A; McClintock, P V E; Stefanovska, A

    2009-01-01

    We discuss open problems related to the stochastic modelling of cardiac function. The work is based on an experimental investigation of the dynamics of heart rate variability (HRV) in the absence of respiratory perturbations. We consider first the cardiac control system on short timescales via an analysis of HRV within the framework of a random walk approach. Our experiments show that HRV on timescales of less than a minute takes the form of free diffusion, close to Brownian motion, which can be described as a non-stationary process with stationary increments. Secondly, we consider the inverse problem of modelling the state of the control system so as to reproduce the experimentally observed HRV statistics of. We discuss some simple toy models and identify open problems for the modelling of heart dynamics

  20. NATO Advanced Research Workshop on Time-Dependent Quantum Molecular Dynamics : Theory and Experiment

    CERN Document Server

    Lathouwers, L

    1992-01-01

    From March 30th to April 3rd, 1992, a NATO Advanced Research workshop entitled "Time Dependent Quantum Molecular Dynamics: Theory and Experiment" was held at Snowbird, Utah. The organizing committee consisted of J. BROECKHOVE (Antwerp, Belgium), L. CEDERBAUM (Heidelberg, Germany), L. LATHOUWERS (Antwerp, Belgium), N. OHRN (Gainesville, Florida) and J. SIMONS (Salt Lake City, Utah). Fifty-two participants from eleven different countries attended the meeting at which thirty-three talks and one poster session were held. Twenty-eight participants submitted contributions to the proceedings of the meeting, which are reproduced in this volume. The workshop brought together experts in different areas 0 f molecular quantum dynamics, all adhering to the time dependent approach. The aim was to discuss and compare methods and applications. The ~amiliarityo~ the aUdience with the concepts o~ time dependent approaches greatly facilitated topical discussions and probing towards new applications. A broad area of subject matt...

  1. ALM-FATES: Using dynamic vegetation and demography to capture changes in forest carbon cycling and competition at the global scale

    Science.gov (United States)

    Holm, J. A.; Knox, R. G.; Koven, C.; Riley, W. J.; Bisht, G.; Fisher, R.; Christoffersen, B. O.; Dietze, M.; Chambers, J. Q.

    2017-12-01

    The inclusion of dynamic vegetation demography in Earth System Models (ESMs) has been identified as a critical step in moving ESMs towards more realistic representations of plant ecology and the processes that govern climatically important fluxes of carbon, energy, and water. Successful application of dynamic vegetation models, and process-based approaches to simulate plant demography, succession, and response to disturbances without climate envelopes at the global scale is a challenging endeavor. We integrated demographic processes using the Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) in the newly developed ACME Land Model (ALM). We then use an ALM-FATES globally gridded simulation for the first time to investigate plant functional type (PFT) distributions and dynamic turnover rates. Initial global simulations successfully include six interacting and competing PFTs (ranging from tropical to boreal, evergreen, deciduous, needleleaf and broadleaf); including more PFTs is planned. Global maps of net primary productivity, leaf area index, and total vegetation biomass by ALM-FATES matched patterns and values when compared to CLM4.5-BGC and MODIS estimates. We also present techniques for PFT parameterization based on the Predictive Ecosystem Analyzer (PEcAn), field based turnover rates, improved PFT groupings based on trait-tradeoffs, and improved representation of multiple canopy positions. Finally, we applied the improved ALM-FATES model at a central Amazon tropical and western U.S. temperate sites and demonstrate improvements in predicted PFT size- and age-structure and regional distribution. Results from the Amazon tropical site investigate the ability and magnitude of a tropical forest to act as a carbon sink by 2100 with a doubling of CO2, while results from the temperate sites investigate the response of forest mortality with increasing droughts.

  2. Experience Replay for Optimal Control of Nonzero-Sum Game Systems With Unknown Dynamics.

    Science.gov (United States)

    Zhao, Dongbin; Zhang, Qichao; Wang, Ding; Zhu, Yuanheng

    2016-03-01

    In this paper, an approximate online equilibrium solution is developed for an N -player nonzero-sum (NZS) game systems with completely unknown dynamics. First, a model identifier based on a three-layer neural network (NN) is established to reconstruct the unknown NZS games systems. Moreover, the identifier weight vector is updated based on experience replay technique which can relax the traditional persistence of excitation condition to a simplified condition on recorded data. Then, the single-network adaptive dynamic programming (ADP) with experience replay algorithm is proposed for each player to solve the coupled nonlinear Hamilton- (HJ) equations, where only the critic NN weight vectors are required to tune for each player. The feedback Nash equilibrium is provided by the solution of the coupled HJ equations. Based on the experience replay technique, a novel critic NN weights tuning law is proposed to guarantee the stability of the closed-loop system and the convergence of the value functions. Furthermore, a Lyapunov-based stability analysis shows that the uniform ultimate boundedness of the closed-loop system is achieved. Finally, two simulation examples are given to verify the effectiveness of the proposed control scheme.

  3. Stimulus-driven capture and contingent capture

    NARCIS (Netherlands)

    Theeuwes, J.; Olivers, C.N.L.; Belopolsky, A.V.

    2010-01-01

    Whether or not certain physical events can capture attention has been one of the most debated issues in the study of attention. This discussion is concerned with how goal-directed and stimulus-driven processes interact in perception and cognition. On one extreme of the spectrum is the idea that

  4. Continuum capture in the three-body problem

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1980-01-01

    The three-body problem, especially the problem of electron capture to the continuum in heavy particle collisions is reviewed. Major topics covered include: second born-induced asymmetry in electron capture to the continuum; historical context, links to other tests of atomic scattering theory; experiments characterizing the velocity distribution of ECC electrons; other atomic physics tests of high velocity Born expansions; atom capture; capture by positrons; and pion capture to the continuum

  5. Capturing the dynamics of systemic Renin-Angiotensin-Aldosterone System (RAAS) peptides heightens the understanding of the effect of benazepril in dogs.

    Science.gov (United States)

    Mochel, J P; Peyrou, M; Fink, M; Strehlau, G; Mohamed, R; Giraudel, J M; Ploeger, B; Danhof, M

    2013-04-01

    In dogs, activation of the Renin-Angiotensin-Aldosterone System (RAAS) is an important feature of congestive heart failure (CHF). Long-term increases in angiotensin II (AII) and aldosterone (ALD) lead to the progression of heart failure to its end stage. Angiotensin-converting enzyme inhibitors (ACEIs) are the foremost therapeutic option in the management of CHF. Recent literature has challenged the efficacy of ACEIs, based on modest reduction in urinary aldosterone (UALD) excretion despite marked inhibition of ACE activity. This study was designed to heighten the understanding of the effect of benazepril, a potent ACEI, on the RAAS, using a low-sodium diet as an experimental model of RAAS activation. Time course profiles of RAAS peptides and related areas under the curve (AUC) were used for comparison between benazepril and placebo groups. Results indicated substantial changes in the dynamics of these biomarkers. At presumed benazeprilat steady state, significant differences in AUC of plasma renin activity (+90%), angiotensin I (+43%), and AII (-53%) were found between benazepril and placebo-treated dogs. ALD decreased by 73% in plasma but only by 5% in urine. In conclusion, despite modest reduction in UALD excretion, benazepril markedly influences RAAS dynamics in dogs. © 2012 Blackwell Publishing Ltd.

  6. Investigating pyroclast ejection dynamics using shock-tube experiments: temperature, grain size and vent geometry effects.

    Science.gov (United States)

    Cigala, V.; Kueppers, U.; Dingwell, D. B.

    2015-12-01

    Explosive volcanic eruptions eject large quantities of gas and particles into the atmosphere. The portion directly above the vent commonly shows characteristics of underexpanded jets. Understanding the factors that influence the initial pyroclast ejection dynamics is necessary in order to better assess the resulting near- and far-field hazards. Field observations are often insufficient for the characterization of volcanic explosions due to lack of safe access to such environments. Fortunately, their dynamics can be simulated in the laboratory where experiments are performed under controlled conditions. We ejected loose natural particles from a shock-tube while controlling temperature (25˚ and 500˚C), overpressure (15MPa), starting grain size distribution (1-2 mm, 0.5-1 mm and 0.125-0.250 mm), sample-to-vent distance and vent geometry. For each explosion we quantified the velocity of individual particles, the jet spreading angle and the production of fines. Further, we varied the setup to allow for different sample-to-gas ratios and deployed four different vent geometries: 1) cylindrical, 2) funnel with a flaring of 30˚, 3) funnel with a flaring of 15˚ and 4) nozzle. The results showed maximum particle velocities up to 296 m/s, gas spreading angles varying from 21˚ to 37˚ and particle spreading angles from 3˚ to 40˚. Moreover we observed dynamically evolving ejection characteristics and variations in the production of fines during the course of individual experiments. Our experiments mechanistically mimic the process of pyroclast ejection. Thus the capability for constraining the effects of input parameters (fragmentation conditions) and conduit/vent geometry on ballistic pyroclastic plumes has been clearly established. These data obtained in the presence of well-documented conduit and vent conditions, should greatly enhance our ability to numerically model explosive ejecta in nature.

  7. Calculation of 3D genome structures for comparison of chromosome conformation capture experiments with microscopy: An evaluation of single-cell Hi-C protocols.

    Science.gov (United States)

    Lando, David; Stevens, Tim J; Basu, Srinjan; Laue, Ernest D

    2018-01-01

    Single-cell chromosome conformation capture approaches are revealing the extent of cell-to-cell variability in the organization and packaging of genomes. These single-cell methods, unlike their multi-cell counterparts, allow straightforward computation of realistic chromosome conformations that may be compared and combined with other, independent, techniques to study 3D structure. Here we discuss how single-cell Hi-C and subsequent 3D genome structure determination allows comparison with data from microscopy. We then carry out a systematic evaluation of recently published single-cell Hi-C datasets to establish a computational approach for the evaluation of single-cell Hi-C protocols. We show that the calculation of genome structures provides a useful tool for assessing the quality of single-cell Hi-C data because it requires a self-consistent network of interactions, relating to the underlying 3D conformation, with few errors, as well as sufficient longer-range cis- and trans-chromosomal contacts.

  8. fatalityCMR: capture-recapture software to correct raw counts of wildlife fatalities using trial experiments for carcass detection probability and persistence time

    Science.gov (United States)

    Peron, Guillaume; Hines, James E.

    2014-01-01

    Many industrial and agricultural activities involve wildlife fatalities by collision, poisoning or other involuntary harvest: wind turbines, highway network, utility network, tall structures, pesticides, etc. Impacted wildlife may benefit from official protection, including the requirement to monitor the impact. Carcass counts can often be conducted to quantify the number of fatalities, but they need to be corrected for carcass persistence time (removal by scavengers and decay) and detection probability (searcher efficiency). In this article we introduce a new piece of software that fits a superpopulation capture-recapture model to raw count data. It uses trial data to estimate detection and daily persistence probabilities. A recurrent issue is that fatalities of rare, protected species are infrequent, in which case the software offers the option to switch to an ‘evidence of absence’ mode, i.e., estimate the number of carcasses that may have been missed by field crews. The software allows distinguishing between different turbine types (e.g. different vegetation cover under turbines, or different technical properties), as well between two carcass age-classes or states, with transition between those classes (e.g, fresh and dry). There is a data simulation capacity that may be used at the planning stage to optimize sampling design. Resulting mortality estimates can be used 1) to quantify the required amount of compensation, 2) inform mortality projections for proposed development sites, and 3) inform decisions about management of existing sites.

  9. Phase transitions and dynamic entropy in small two-dimensional systems: Experiment and numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Koss, K. G.; Petrov, O. F.; Myasnikov, M. I., E-mail: miasnikovmi@mail.ru; Statsenko, K. B.; Vasiliev, M. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-07-15

    The results of experimental and numerical analysis are presented for phase transitions in strongly nonequilibrium small systems of strongly interacting Brownian particles. The dynamic entropy method is applied to analysis of the state of these systems. Experiments are carried out with kinetic heating of the structures of micron-size particles in a laboratory rf discharge plasma. Three phase states of these small systems are observed: crystalline, liquid, and transient. The mechanism of phase transitions in cluster structures of strongly interacting particles is described.

  10. Dynamic chaos interference in Hamiltonian systems: experiment and potential radiophysics applications

    International Nuclear Information System (INIS)

    Evdokimov, Nikolai V; Komolov, Pavel V; Komolov, Vladimir P

    2001-01-01

    The sign correlation of quasiperiodic oscillations with close incommensurable frequencies forms a dynamic chaos, which interferes like noise with a single interference peak and is controlled by the delay of its constituent oscillations. This property of oscillations with incommensurable frequencies can be employed in multichannel information transfer systems to form radar reception patterns and obtain uninterrupted coherent key streams in symmetric cryptographic systems. The review of known results on the generation and properties of quasiperiodic oscillations is complemented by a description of new experiments. (methodological notes)

  11. Molecular dynamics stimulations to study laser dye aggregation in water (comparison with experiments)

    International Nuclear Information System (INIS)

    Dare-Doyen, St.; Doizi, D.

    2000-01-01

    A laser facility consists of dye laser chains where the active medium is composed of fluorescent dyes dissolved in ethanol. The use of water as a solvent would offer two major advantages: greater safety of the laser facility by drastically reducing fire risks, easier design of the laser beam correcting devices required at the end of the dye laser chains, thanks to the properties of water. Unfortunately, laser dyes exhibit poor optical properties in water, due to the formation of dye aggregates. Molecular dynamics simulations were used to study and develop means to prevent this behavior between two charged species. The results were compared with NMR (Nuclear Magnetic Resonance) experiments

  12. Design and experiments with scale model of a ship with dynamic positioning system

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Carlos Eduardo S.; Morishita, Helio M.; Moratelli Junior, Lazaro; Lago, Glenan A.; Tannuri, Eduardo A. [Universidade de Sao Paulo (USP), SP (Brazil)

    2008-07-01

    Dynamic Positioning Systems (DPS) are used to keep a floating vessel on a specific position or follow pre-defined path through the action of controlled propellers. This paper describes a facility used to experimentally analyze DPS and to validate a numerical simulator. It is composed by a scale model of a DP tanker with 3 thrusters, a measurement system based on computational vision and a control software with the same DP algorithms used in industrial systems. Simple wind and current generators were also implemented. This work shows preliminary results of experiments, which has been useful to calibrate the simulator and to validate the mathematical model. (author)

  13. The nature, meanings, and dynamics of lived experiences of a person with syringomyelia: a phenomenological study.

    Science.gov (United States)

    Hilton, Edith L; Henderson, Lesley J

    2003-01-01

    Syringomyelia, considered a rare neurological disease, is relatively uninvestigated in the nursing literature. The aims of this qualitative phenomenological case study were to discover the nature, meanings, and dynamics of lived experiences of a 52-year-old Caucasian male with syringomyelia. Using van Manen's Method of Phenomenological inquiry (van Manen, 1990), data were collected, checked, and analyzed according to the philosophy, approach, and methodological procedures of phenomenology. Findings revealed an overarching theme of engulfment by disease. Essential themes included loss of abilities, struggles to adapt to changes, and life as a person who was disabled. Eleven sub-themes were also identified. Implications for nursing practice are discussed.

  14. Dynamics of excited nitrogen molecular states in glow- and afterglow phases of discharge: experiment and modeling

    International Nuclear Information System (INIS)

    Napartovich, A.P.; Akishev, Yu.S.; Dyatko, N.A.; Grushin, M.E.; Filippov, A.V.; Trushkin, N.I.

    2001-01-01

    Population dynamics for a number of levels from N2 ( A 3 Σ + u ), N 2 (B 3 Π g ) and N 2 (C 3 Π u ) manifolds was studied spectroscopically in a long pulse glow discharge in pure nitrogen and in afterglow at pressure 50 Torr. Overshot in time behaviour of N 2 (A 3Σ + u ), N 2 (B 3 Π g ) and N 2 (C 3 Π u ) levels populations was revealed. A rather complete kinetic model is developed for conditions of the experiments. Results of comparison are analyzed

  15. Capture ready study

    Energy Technology Data Exchange (ETDEWEB)

    Minchener, A.

    2007-07-15

    There are a large number of ways in which the capture of carbon as carbon dioxide (CO{sub 2}) can be integrated into fossil fuel power stations, most being applicable for both gas and coal feedstocks. To add to the choice of technology is the question of whether an existing plant should be retrofitted for capture, or whether it is more attractive to build totally new. This miscellany of choices adds considerably to the commercial risk of investing in a large power station. An intermediate stage between the non-capture and full capture state would be advantageous in helping to determine the best way forward and hence reduce those risks. In recent years the term 'carbon capture ready' or 'capture ready' has been coined to describe such an intermediate stage plant and is now widely used. However a detailed and all-encompassing definition of this term has never been published. All fossil fuel consuming plant produce a carbon dioxide gas byproduct. There is a possibility of scrubbing it with an appropriate CO{sub 2} solvent. Hence it could be said that all fossil fuel plant is in a condition for removal of its CO{sub 2} effluent and therefore already in a 'capture ready' state. Evidently, the practical reality of solvent scrubbing could cost more than the rewards offered by such as the ETS (European Trading Scheme). In which case, it can be said that although the possibility exists of capturing CO{sub 2}, it is not a commercially viable option and therefore the plant could not be described as ready for CO{sub 2} capture. The boundary between a capture ready and a non-capture ready condition using this definition cannot be determined in an objective and therefore universally acceptable way and criteria must be found which are less onerous and less potentially contentious to assess. 16 refs., 2 annexes.

  16. Increase of the dynamic range of catchup experiments by high-pass filtering

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D.J.

    1995-08-01

    The release-catchup shock experiment is an important tool for measuring the speed of sound in compressed matter. The catchup of the release wave to the leading shock is sensitively detected optically, through an indicating fluid which produces light approximately to the 4th power of the shock pressure. However, this sensitivity demands a dynamic range which exceeds the capabilities of our digitizer. The catchup signature lies at the top of a flat pulse, thus any signal clipping is a catastrophic loss of data. We have invented a simple and accurate method for recording the catchup signature that is insensitive to signal clipping. A high pass circuit prior to the digitizer is used with post experiment integration. The insensitivity to clipping allows recording the catchup signature at higher gain, and thus with an improved signal to noise ratio.

  17. Probing Dynamics in Colloidal Crystals with Pump-Probe Experiments at LCLS: Methodology and Analysis

    Directory of Open Access Journals (Sweden)

    Nastasia Mukharamova

    2017-05-01

    Full Text Available We present results of the studies of dynamics in colloidal crystals performed by pump-probe experiments using an X-ray free-electron laser (XFEL. Colloidal crystals were pumped with an infrared laser at a wavelength of 800 nm with varying power and probed by XFEL pulses at an energy of 8 keV with a time delay up to 1000 ps. The positions of the Bragg peaks, and their radial and azimuthal widths were analyzed as a function of the time delay. The spectral analysis of the data did not reveal significant enhancement of frequencies expected in this experiment. This allowed us to conclude that the amplitude of vibrational modes excited in colloidal crystals was less than the systematic error caused by the noise level.

  18. Nuclear quantum effects in ab initio dynamics: Theory and experiments for lithium imide

    Science.gov (United States)

    Ceriotti, Michele; Miceli, Giacomo; Pietropaolo, Antonino; Colognesi, Daniele; Nale, Angeloclaudio; Catti, Michele; Bernasconi, Marco; Parrinello, Michele

    2010-11-01

    Owing to their small mass, hydrogen atoms exhibit strong quantum behavior even at room temperature. Including these effects in first-principles calculations is challenging because of the huge computational effort required by conventional techniques. Here we present the first ab initio application of a recently developed stochastic scheme, which allows to approximate nuclear quantum effects inexpensively. The proton momentum distribution of lithium imide, a material of interest for hydrogen storage, was experimentally measured by inelastic neutron-scattering experiments and compared with the outcome of quantum thermostatted ab initio dynamics. We obtain favorable agreement between theory and experiments for this purely quantum-mechanical property, thereby demonstrating that it is possible to improve the modeling of complex hydrogen-containing materials without additional computational effort.

  19. Theorizing One Learner’s Perceived Affective Experiences and Performances from a Dynamic Perspective

    Directory of Open Access Journals (Sweden)

    Luanyi Xiao

    2016-03-01

    Full Text Available This paper examines the perceptions of one Chinese learner of English at a university. From a Dynamic System Theory (DST perspective, the student’s perceptions, affective experiences and classroom learning will be explored by identifying the non-linear relationships between them. This paper aims to investigate the relationship between the student’s perceived affective experiences and her self-reported performances in a foreign language classroom. The participant was a second-year university student from a foreign language university in China. Diary, questionnaire, semi-structured interview, and class observation were applied to investigate this 6-month longitudinal study. Emotional ambivalence including several different affective patterns and five attractor states, namely, Integrative Disposition, Amotivation, Autonomy, Actual Learning Process and Language Awareness were identified.

  20. Quantitative tradeoffs between spatial, temporal, and thermometric resolution of nonresonant Raman thermometry for dynamic experiments.

    Science.gov (United States)

    McGrane, Shawn D; Moore, David S; Goodwin, Peter M; Dattelbaum, Dana M

    2014-01-01

    The ratio of Stokes to anti-Stokes nonresonant spontaneous Raman can provide an in situ thermometer that is noncontact, independent of any material specific parameters or calibrations, can be multiplexed spatially with line imaging, and can be time resolved for dynamic measurements. However, spontaneous Raman cross sections are very small, and thermometric measurements are often limited by the amount of laser energy that can be applied without damaging the sample or changing its temperature appreciably. In this paper, we quantitatively detail the tradeoff space between spatial, temporal, and thermometric accuracy measurable with spontaneous Raman. Theoretical estimates are pinned to experimental measurements to form realistic expectations of the resolution tradeoffs appropriate to various experiments. We consider the effects of signal to noise, collection efficiency, laser heating, pulsed laser ablation, and blackbody emission as limiting factors, provide formulae to help choose optimal conditions and provide estimates relevant to planning experiments along with concrete examples for single-shot measurements.

  1. Automated nuclear material recovery and decontamination of large steel dynamic experiment containers

    International Nuclear Information System (INIS)

    Dennison, D.K.; Gallant, D.A.; Nelson, D.C.; Stovall, L.A.; Wedman, D.E.

    1999-01-01

    A key mission of the Los Alamos National Laboratory (LANL) is to reduce the global nuclear danger through stockpile stewardship efforts that ensure the safety and reliability of nuclear weapons. In support of this mission LANL performs dynamic experiments on special nuclear materials (SNM) within large steel containers. Once these experiments are complete, these containers must be processed to recover residual SNM and to decontaminate the containers to below low level waste (LLW) disposal limits which are much less restrictive for disposal purposes than transuranic (TRU) waste limits. The purpose of this paper is to describe automation efforts being developed by LANL for improving the efficiency, increasing worker safety, and reducing worker exposure during the material cleanout and recovery activities performed on these containers

  2. Impact of transamination reactions and protein turnover on labeling dynamics in C-13-labeling experiments

    DEFF Research Database (Denmark)

    Grotkjær, Thomas; Åkesson, M.; Christensen, Bjarke

    2004-01-01

    A dynamic model describing carbon atom transitions in the central metabolism of Saccharomyces cerevisiae is used to investigate the influence of transamination reactions and protein turnover on the transient behavior of C-13-labeling chemostat experiments. The simulations performed suggest...... that carbon exchange due to transamination and protein turnover can significantly increase the required time needed for metabolites in the TCA cycle to reach isotopic steady state, which is in agreement with published experimental observations. On the other hand, transamination and protein turnover will speed...... behavior until after three residence times. These observations suggest that greater caution should be used while also pointing to new opportunities in the design and interpretation of C-13-labeling experiments....

  3. Keeping it together and falling apart: Women's dynamic experience of birth.

    Science.gov (United States)

    Hall, Priscilla J; Foster, Jennifer Whitman; Yount, Kathryn M; Jennings, Bonnie Mowinski

    2018-03-01

    To explore the complexity of women's birth experiences in the context in which they occur and to describe how these influence women's well-being in labor. Qualitative method with a phenomenological approach, following the analysis principles of van Manen. Eight women from different ethnic and socioeconomic backgrounds in Atlanta, Georgia, United States with a recent, healthy birth were interviewed twice about their experience of the labor journey. The first interview was 3-12 weeks post-partum, with the second interview at 10-22 weeks post-partum. The phenomenon of childbirth was a dynamic fluctuating between keeping it together and falling apart. The changes in emotion were created by a sensitive feedback loop between the woman and her environment, the physical space, and interactions with humans present. Four characteristics supported and created this phenomenon: confidence, comfort, agency and connection. Confidence was believing in one's physical ability to birth the baby while at the same time, having the emotional resources to cope with the experience. Comfort was essential to manage pain and difficult emotions. The presence of comfort changed the meaning and experience of pain and increased relaxation. Agency was overtly supported in labor, but compromised by hospital routine and unresponsive caregiver practices, and was diminished by women's vulnerability in labor. When agency was compromised, falling apart increased, and there was a move towards intense negative emotion. In labor, women wanted an authentic human connection, being known as a person. This connection was a mechanism to support the other characteristics of comfort, confidence, and agency. Clinicians need to accommodate the complex, dynamic fluctuations of emotion during birth addressing both the physical and non-physical aspects of the person. Birth care practices and childbirth research need to account for the complexity of birth as a holistic experience, specifically regarding the emotional

  4. What Online User Innovation Communities Can Teach Us about Capturing the Experiences of Patients Living with Chronic Health Conditions. A Scoping Review.

    Directory of Open Access Journals (Sweden)

    Julia Amann

    Full Text Available In order to adapt to societal changes, healthcare systems need to switch from a disease orientation to a patient-centered approach. Virtual patient networks are a promising tool to favor this switch and much can be learned from the open and user innovation literature where the involvement of online user communities in the innovation process is well-documented.The objectives of this study were 1 to describe the use of online communities as a tool to capture and harness innovative ideas of end users or consumers; and 2 to point to the potential value and challenges of these virtual platforms to function as a tool to inform and promote patient-centered care in the context of chronic health conditions.A scoping review was conducted. A total of seven databases were searched for scientific articles published in English between 1995 and 2014. The search strategy was refined through an iterative process.A total of 144 studies were included in the review. Studies were coded inductively according to their research focus to identify groupings of papers. The first set of studies focused on the interplay of factors related to user roles, motivations, and behaviors that shape the innovation process within online communities. Studies of the second set examined the role of firms in online user innovation initiatives, identifying different organizational strategies and challenges. The third set of studies focused on the idea selection process and measures of success with respect to online user innovation initiatives. Finally, the findings from the review are presented in the light of the particularities and challenges discussed in current healthcare research.The present paper highlights the potential of virtual patient communities to inform and promote patient-centered care, describes the key challenges involved in this process, and makes recommendations on how to address them.

  5. What Online User Innovation Communities Can Teach Us about Capturing the Experiences of Patients Living with Chronic Health Conditions. A Scoping Review.

    Science.gov (United States)

    Amann, Julia; Zanini, Claudia; Rubinelli, Sara

    2016-01-01

    In order to adapt to societal changes, healthcare systems need to switch from a disease orientation to a patient-centered approach. Virtual patient networks are a promising tool to favor this switch and much can be learned from the open and user innovation literature where the involvement of online user communities in the innovation process is well-documented. The objectives of this study were 1) to describe the use of online communities as a tool to capture and harness innovative ideas of end users or consumers; and 2) to point to the potential value and challenges of these virtual platforms to function as a tool to inform and promote patient-centered care in the context of chronic health conditions. A scoping review was conducted. A total of seven databases were searched for scientific articles published in English between 1995 and 2014. The search strategy was refined through an iterative process. A total of 144 studies were included in the review. Studies were coded inductively according to their research focus to identify groupings of papers. The first set of studies focused on the interplay of factors related to user roles, motivations, and behaviors that shape the innovation process within online communities. Studies of the second set examined the role of firms in online user innovation initiatives, identifying different organizational strategies and challenges. The third set of studies focused on the idea selection process and measures of success with respect to online user innovation initiatives. Finally, the findings from the review are presented in the light of the particularities and challenges discussed in current healthcare research. The present paper highlights the potential of virtual patient communities to inform and promote patient-centered care, describes the key challenges involved in this process, and makes recommendations on how to address them.

  6. Carbon Capture and Storage

    NARCIS (Netherlands)

    Benson, S.M.; Bennaceur, K.; Cook, P.; Davison, J.; Coninck, H. de; Farhat, K.; Ramirez, C.A.; Simbeck, D.; Surles, T.; Verma, P.; Wright, I.

    2012-01-01

    Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2

  7. CAPTURED India Country Evaluation

    NARCIS (Netherlands)

    O'Donoghue, R.; Brouwers, J.H.A.M.

    2012-01-01

    This report provides the findings of the India Country Evaluation and is produced as part of the overall CAPTURED End Evaluation. After five years of support by the CAPTURED project the End Evaluation has assessed that results are commendable. I-AIM was able to design an approach in which health

  8. Interatomic Coulombic electron capture

    International Nuclear Information System (INIS)

    Gokhberg, K.; Cederbaum, L. S.

    2010-01-01

    In a previous publication [K. Gokhberg and L. S. Cederbaum, J. Phys. B 42, 231001 (2009)] we presented the interatomic Coulombic electron capture process--an efficient electron capture mechanism by atoms and ions in the presence of an environment. In the present work we derive and discuss the mechanism in detail. We demonstrate thereby that this mechanism belongs to a family of interatomic electron capture processes driven by electron correlation. In these processes the excess energy released in the capture event is transferred to the environment and used to ionize (or to excite) it. This family includes the processes where the capture is into the lowest or into an excited unoccupied orbital of an atom or ion and proceeds in step with the ionization (or excitation) of the environment, as well as the process where an intermediate autoionizing excited resonance state is formed in the capturing center which subsequently deexcites to a stable state transferring its excess energy to the environment. Detailed derivation of the asymptotic cross sections of these processes is presented. The derived expressions make clear that the environment assisted capture processes can be important for many systems. Illustrative examples are presented for a number of model systems for which the data needed to construct the various capture cross sections are available in the literature.

  9. DYN1: a 66 MHz front end analog memory chip with first level trigger capture for use in future high luminosity particle physics experiments

    International Nuclear Information System (INIS)

    Anghinolfi, F.; Aspell, P.; Bonino, R.; Campbell, D.; Campbell, M.; Clark, A.G.; Heijne, E.H.M.; Jarron, P.; Santiard, J.C.; Verweij, H.

    1994-01-01

    DYN1 is a 32 channel, 128 cell analog memory with continuous write and read access. The chip amplifies the detector signals and integrates the signal currents onto capacitors within the memory during each bunch crossing interval. Dense dynamic logic circuitry accepts multiple first level triggers, freezes the corresponding analog data and stores their addresses in an external FIFO. The triggered data can then be read out at leisure whilst simultaneously sampling and storing new triggered events. A first level trigger latency of up to 2 μs is accepted at the maximum LHC clock frequency of 66 MHz. The chip shows an overall gain of 48.2 mV/25 000 e - . The mean channel noise is 4.5 mV and the pedestal variation from cell to cell within one channel is 1.9 mV. The total dynamic range has been measured at 4.6 V giving a resolution of 11 bits (0.05%) for the memory itself. (orig.)

  10. Dynamics Analysis and Experiment of Vibrating Screen for Asphalt Mixing Equipment

    Directory of Open Access Journals (Sweden)

    He ZHAO-XIA

    2014-04-01

    Full Text Available A dynamics model of vibration screen for asphalt mixing equipment is established in order to investigate the working performance of the system, which combines the lumped parameter method and substructure method in this paper. In order to acquire accurate results, the spring support stiffness, bearing stiffness and torsional stiffness of connecting link are considered in this model. The mass and stiffness matrixes of link are transformed to the master nodes according to the substructure method. Then the part is combined with the whole dynamics model by support points. Furthermore, the differential equations of motion are given by the Newton Second Law, and it is solved by Newmark time integration method. The centroid trajectory of vibrating screen is computed. At the same time, the reaction force of support springs and bearings are also acquired. And the strength of the product can meet the requirements of design by simulations. A vibration experiment is executed in factory, and the dynamics model is validated by comparing the results.

  11. Nonlinear dynamics of a pseudoelastic shape memory alloy system—theory and experiment

    International Nuclear Information System (INIS)

    Enemark, S; F Santos, I; A Savi, M

    2014-01-01

    In this work, a helical spring made from a pseudoelastic shape memory alloy was embedded in a dynamic system also composed of a mass, a linear spring and an excitation system. The mechanical behaviour of shape memory alloys is highly complex, involving hysteresis, which leads to damping capabilities and varying stiffness. Besides, these properties depend on the temperature and pretension conditions. Because of these capabilities, shape memory alloys are interesting in relation to engineering design of dynamic systems. A theoretical model based on a modification of the 1D Brinson model was established. Basically, the hardening and the sub-loop behaviour were altered. The model parameters were extracted from force–displacement tests of the spring at different constant temperatures as well as from differential scanning calorimetry. Model predictions were compared with experimental results of free and forced vibrations of the system setup under different temperature conditions. The experiments give a thorough insight into dynamic systems involving pseudoelastic shape memory alloys. Comparison between experimental results and the proposed model shows that the model is able to explain and predict the overall nonlinear behaviour of the system. (paper)

  12. Response to dynamic language tasks among typically developing Latino preschool children with bilingual experience.

    Science.gov (United States)

    Patterson, Janet L; Rodríguez, Barbara L; Dale, Philip S

    2013-02-01

    The purpose of this study was to determine whether typically developing preschool children with bilingual experience show evidence of learning within brief dynamic assessment language tasks administered in a graduated prompting framework. Dynamic assessment has shown promise for accurate identification of language impairment in bilingual children, and a graduated prompting approach may be well-suited to screening for language impairment. Three dynamic language tasks with graduated prompting were presented to 32 typically developing 4-year-olds in the language to which the child had the most exposure (16 Spanish, 16 English). The tasks were a novel word learning task, a semantic task, and a phonological awareness task. Children's performance was significantly higher on the last 2 items compared with the first 2 items for the semantic and the novel word learning tasks among children who required a prompt on the 1st item. There was no significant difference between the 1st and last items on the phonological awareness task. Within-task improvements in children's performance for some tasks administered within a brief, graduated prompting framework were observed. Thus, children's responses to graduated prompting may be an indicator of modifiability, depending on the task type and level of difficulty.

  13. On the characterisation of the dynamic compressive behaviour of silicon carbides subjected to isentropic compression experiments

    Directory of Open Access Journals (Sweden)

    Zinszner Jean-Luc

    2015-01-01

    Full Text Available Ceramic materials are commonly used as protective materials particularly due to their very high hardness and compressive strength. However, the microstructure of a ceramic has a great influence on its compressive strength and on its ballistic efficiency. To study the influence of microstructural parameters on the dynamic compressive behaviour of silicon carbides, isentropic compression experiments have been performed on two silicon carbide grades using a high pulsed power generator called GEPI. Contrary to plate impact experiments, the use of the GEPI device and of the lagrangian analysis allows determining the whole loading path. The two SiC grades studied present different Hugoniot elastic limit (HEL due to their different microstructures. For these materials, the experimental technique allowed evaluating the evolution of the equivalent stress during the dynamic compression. It has been observed that these two grades present a work hardening more or less pronounced after the HEL. The densification of the material seems to have more influence on the HEL than the grain size.

  14. Adsorption thermal energy storage for cogeneration in industrial batch processes: Experiment, dynamic modeling and system analysis

    International Nuclear Information System (INIS)

    Schreiber, Heike; Graf, Stefan; Lanzerath, Franz; Bardow, André

    2015-01-01

    Adsorption thermal energy storage is investigated for heat supply with cogeneration in industrial batch processes. The feasibility of adsorption thermal energy storage is demonstrated with a lab-scale prototype. Based on these experiments, a dynamic model is developed and successfully calibrated to measurement data. Thereby, a reliable description of the dynamic behavior of the adsorption thermal energy storage unit is achieved. The model is used to study and benchmark the performance of adsorption thermal energy storage combined with cogeneration for batch process energy supply. As benchmark, we consider both a peak boiler and latent thermal energy storage based on a phase change material. Beer brewing is considered as an example of an industrial batch process. The study shows that adsorption thermal energy storage has the potential to increase energy efficiency significantly; primary energy consumption can be reduced by up to 25%. However, successful integration of adsorption thermal storage requires appropriate integration of low grade heat: Preferentially, low grade heat is available at times of discharging and in demand when charging the storage unit. Thus, adsorption thermal energy storage is most beneficial if applied to a batch process with heat demands on several temperature levels. - Highlights: • A highly efficient energy supply for industrial batch processes is presented. • Adsorption thermal energy storage (TES) is analyzed in experiment and simulation. • Adsorption TES can outperform both peak boilers and latent TES. • Performance of adsorption TES strongly depends on low grade heat temperature.

  15. Attentional capture under high perceptual load.

    Science.gov (United States)

    Cosman, Joshua D; Vecera, Shaun P

    2010-12-01

    Attentional capture by abrupt onsets can be modulated by several factors, including the complexity, or perceptual load, of a scene. We have recently demonstrated that observers are less likely to be captured by abruptly appearing, task-irrelevant stimuli when they perform a search that is high, as opposed to low, in perceptual load (Cosman & Vecera, 2009), consistent with perceptual load theory. However, recent results indicate that onset frequency can influence stimulus-driven capture, with infrequent onsets capturing attention more often than did frequent onsets. Importantly, in our previous task, an abrupt onset was present on every trial, and consequently, attentional capture might have been affected by both onset frequency and perceptual load. In the present experiment, we examined whether onset frequency influences attentional capture under conditions of high perceptual load. When onsets were presented frequently, we replicated our earlier results; attentional capture by onsets was modulated under conditions of high perceptual load. Importantly, however, when onsets were presented infrequently, we observed robust capture effects. These results conflict with a strong form of load theory and, instead, suggest that exposure to the elements of a task (e.g., abrupt onsets) combines with high perceptual load to modulate attentional capture by task-irrelevant information.

  16. Optional carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Alderson, T.; Scott, S.; Griffiths, J. [Jacobs Engineering, London (United Kingdom)

    2007-07-01

    In the case of IGCC power plants, carbon capture can be carried out before combustion. The carbon monoxide in the syngas is catalytically shifted to carbon dioxide and then captured in a standard gas absorption system. However, the insertion of a shift converter into an existing IGCC plant with no shift would mean a near total rebuild of the gasification waste heat recovery, gas treatment system and HRSG, with only the gasifier and gas turbine retaining most of their original features. To reduce the extent, cost and time taken for the revamping, the original plant could incorporate the shift, and the plant would then be operated without capture to advantage, and converted to capture mode of operation when commercially appropriate. This paper examines this concept of placing a shift converter into an IGCC plant before capture is required, and operating the same plant first without and then later with CO{sub 2} capture in a European context. The advantages and disadvantages of this 'capture ready' option are discussed. 6 refs., 2 figs., 4 tabs.

  17. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Agblevor, Foster [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Klein, Michael [Univ. of Delaware, Newark, DE (United States); Sheikhi, Reza [Northeastern Univ., Boston, MA (United States)

    2015-12-31

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  18. MarsSedEx III: linking Computational Fluid Dynamics (CFD) and reduced gravity experiments

    Science.gov (United States)

    Kuhn, N. J.; Kuhn, B.; Gartmann, A.

    2015-12-01

    Nikolaus J. Kuhn (1), Brigitte Kuhn (1), and Andres Gartmann (2) (1) University of Basel, Physical Geography, Environmental Sciences, Basel, Switzerland (nikolaus.kuhn@unibas.ch), (2) Meteorology, Climatology, Remote Sensing, Environmental Sciences, University of Basel, Switzerland Experiments conducted during the MarsSedEx I and II reduced gravity experiments showed that using empirical models for sediment transport on Mars developed for Earth violates fluid dynamics. The error is caused by the interaction between runing water and sediment particles, which affect each other in a positive feedback loop. As a consequence, the actual flow conditions around a particle cannot be represented by drag coefficients derived on Earth. This study exmines the implications of such gravity effects on sediment movement on Mars, with special emphasis on the limits of sandstones and conglomerates formed on Earth as analogues for sedimentation on Mars. Furthermore, options for correctiong the errors using a combination of CFD and recent experiments conducted during the MarsSedEx III campaign are presented.

  19. Infragravity wave generation and dynamics over a mild slope beach : Experiments and numerical computations

    Science.gov (United States)

    Cienfuegos, R.; Duarte, L.; Hernandez, E.

    2008-12-01

    Charasteristic frequencies of gravity waves generated by wind and propagating towards the coast are usually comprised between 0.05Hz and 1Hz. Nevertheless, lower frequecy waves, in the range of 0.001Hz and 0.05Hz, have been observed in the nearshore zone. Those long waves, termed as infragravity waves, are generated by complex nonlinear mechanisms affecting the propagation of irregular waves up to the coast. The groupiness of an incident random wave field may be responsible for producing a slow modulation of the mean water surface thus generating bound long waves travelling at the group speed. Similarly, a quasi- periodic oscillation of the break-point location, will be accompained by a slow modulation of set-up/set-down in the surf zone and generation and release of long waves. If the primary structure of the carrying incident gravity waves is destroyed (e.g. by breaking), forced long waves can be freely released and even reflected at the coast. Infragravity waves can affect port operation through resonating conditions, or strongly affect sediment transport and beach morphodynamics. In the present study we investigate infragravity wave generation mechanisms both, from experiments and numerical computations. Measurements were conducted at the 70-meter long wave tank, located at the Instituto Nacional de Hidraulica (Chile), prepared with a beach of very mild slope of 1/80 in order to produce large surf zone extensions. A random JONSWAP type wave field (h0=0.52m, fp=0.25Hz, Hmo=0.17m) was generated by a piston wave-maker and measurements of the free surface displacements were performed all over its length at high spatial resolution (0.2m to 1m). Velocity profiles were also measured at four verticals inside the surf zone using an ADV. Correlation maps of wave group envelopes and infragravity waves are computed in order to identify long wave generation and dynamics in the experimental set-up. It appears that both mechanisms (groupiness and break-point oscillation) are

  20. 3D dynamic pituitary MR imaging with CAIPIRINHA: Initial experience and comparison with 2D dynamic MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, Yasutaka, E-mail: yfushimi@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Okada, Tomohisa; Kanagaki, Mitsunori; Yamamoto, Akira; Kanda, Yumiko; Sakamoto, Ryo [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Hojo, Masato; Takahashi, Jun C.; Miyamoto, Susumu [Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Togashi, Kaori [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan)

    2014-10-15

    Objectives: To evaluate the validity of 3D dynamic pituitary MR imaging with controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA), with special emphasis on demarcation of pituitary posterior lobe and stalk. Methods: Participants comprised 32 patients who underwent dynamic pituitary MR imaging due to pituitary or parasellar lesions. 3D dynamic MR with CAIPIRINHA was performed at 3 T with 20-s-interval, precontrast, 1st to 5th dynamic images. Normalized values and enhanced ratios (dynamic postcontrast image values divided by precontrast ones) were compared between 3D and 2D dynamic MR imaging for patients with visual identification of posterior lobe and stalk. Results: In 3D, stalk was identified in 29 patients and unidentified in 3, and posterior lobe was identified in 28 and unidentified in 4. In 2D, stalk was identified in 26 patients and unidentified in 6 patients, and posterior lobe was identified in 15 and unidentified in 17. Normalized values of pituitary posterior lobe and stalk were higher in 3D than 2D (P < 0.001). No significant difference in enhancement ratio was seen between 3D and 2D. Conclusions: 3D dynamic pituitary MR provided better identification and higher normalized values of pituitary posterior lobe and stalk than 2D.

  1. Characteristic analysis of rotor dynamics and experiments of active magnetic bearing for HTR-10GT

    International Nuclear Information System (INIS)

    Yang Guojun; Xu Yang; Shi Zhengang; Gu Huidong

    2005-01-01

    A 10 MW high-temperature gas-cooled reactor (HTR-10) was constructed by the Institute of Nuclear and New Energy Technology (INET) at Tsinghua University of China. The helium turbine and generator system of 10 MW high temperature gas-cooled reactor (HTR-10GT) is the second phase for the HTR-10 project. It is to set up a direct helium cycle to replace the current steam cycle. The active magnetic bearing (AMB) instead of ordinary mechanical bearing was chosen to support the rotor in the HTR-10GT. This rotor is vertically mounted to hold the turbine machine, compressors and the power generator together. The rotor's length is 7 m, its weight is about 1500 kg and the rotating speed is 15000 r/min. The structure of the rotor is so complicated that dynamic analysis of the rotor becomes difficult. One of the challenging problems is to exceed natural frequencies with enough stability and safety during reactor start up, power change and shutdown. The dynamic analysis of the rotor is the base for the design of control system. It is important for the rotor to exceed critical speeds. Some kinds of software and methods, such as MSC.Marc, Ansys, and the Transfer Matrix Method, are compared to fully analyze rotor dynamics characteristic in this paper. The modal analysis has been done for the HTR-10GT rotor. MSC.Marc was finally selected to analyze the vibration mode and the natural frequency of the rotor. The effects of AMB stiffness on the critical speeds of the rotor were studied. The design characteristics of the AMB control system for the HTR-10GT were studied and the related experiment to exceed natural frequencies was introduced. The experimental results demonstrate the system functions and validate the control scheme, which will be used in the HTR-10GT project. (authors)

  2. An experiment on the dynamics of ion implantation and sputtering of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wright, G. M.; Barnard, H. A.; Kesler, L. A.; Peterson, E. E.; Stahle, P. W.; Sullivan, R. M.; Whyte, D. G.; Woller, K. B. [Plasma Science and Fusion Center, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States)

    2014-02-15

    A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.

  3. An experiment on the dynamics of ion implantation and sputtering of surfaces

    International Nuclear Information System (INIS)

    Wright, G. M.; Barnard, H. A.; Kesler, L. A.; Peterson, E. E.; Stahle, P. W.; Sullivan, R. M.; Whyte, D. G.; Woller, K. B.

    2014-01-01

    A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface

  4. Calculations of Helium Bubble Evolution in the PISCES Experiments with Cluster Dynamics

    Science.gov (United States)

    Blondel, Sophie; Younkin, Timothy; Wirth, Brian; Lasa, Ane; Green, David; Canik, John; Drobny, Jon; Curreli, Davide

    2017-10-01

    Plasma surface interactions in fusion tokamak reactors involve an inherently multiscale, highly non-equilibrium set of phenomena, for which current models are inadequate to predict the divertor response to and feedback on the plasma. In this presentation, we describe the latest code developments of Xolotl, a spatially-dependent reaction diffusion cluster dynamics code to simulate the divertor surface response to fusion-relevant plasma exposure. Xolotl is part of a code-coupling effort to model both plasma and material simultaneously; the first benchmark for this effort is the series of PISCES linear device experiments. We will discuss the processes leading to surface morphology changes, which further affect erosion, as well as how Xolotl has been updated in order to communicate with other codes. Furthermore, we will show results of the sub-surface evolution of helium bubbles in tungsten as well as the material surface displacement under these conditions.

  5. Dynamic cell culture system: a new cell cultivation instrument for biological experiments in space

    Science.gov (United States)

    Gmunder, F. K.; Nordau, C. G.; Tschopp, A.; Huber, B.; Cogoli, A.

    1988-01-01

    The prototype of a miniaturized cell cultivation instrument for animal cell culture experiments aboard Spacelab is presented (Dynamic cell culture system: DCCS). The cell chamber is completely filled and has a working volume of 200 microliters. Medium exchange is achieved with a self-powered osmotic pump (flowrate 1 microliter h-1). The reservoir volume of culture medium is 230 microliters. The system is neither mechanically stirred nor equipped with sensors. Hamster kidney (Hak) cells growing on Cytodex 3 microcarriers were used to test the biological performance of the DCCS. Growth characteristics in the DCCS, as judged by maximal cell density, glucose consumption, lactic acid secretion and pH, were similar to those in cell culture tubes.

  6. Method for the deconvolution of incompletely resolved CARS spectra in chemical dynamics experiments

    International Nuclear Information System (INIS)

    Anda, A.A.; Phillips, D.L.; Valentini, J.J.

    1986-01-01

    We describe a method for deconvoluting incompletely resolved CARS spectra to obtain quantum state population distributions. No particular form for the rotational and vibrational state distribution is assumed, the population of each quantum state is treated as an independent quantity. This method of analysis differs from previously developed approaches for the deconvolution of CARS spectra, all of which assume that the population distribution is Boltzmann, and thus are limited to the analysis of CARS spectra taken under conditions of thermal equilibrium. The method of analysis reported here has been developed to deconvolute CARS spectra of photofragments and chemical reaction products obtained in chemical dynamics experiments under nonequilibrium conditions. The deconvolution procedure has been incorporated into a computer code. The application of that code to the deconvolution of CARS spectra obtained for samples at thermal equilibrium and not at thermal equilibrium is reported. The method is accurate and computationally efficient

  7. Short-range dynamics and prediction of mesoscale flow patterns in the MISTRAL field experiment

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R.O.; Kaufmann, P.; Talkner, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    In a limited area of about 50 km by 50 km with complex topography, wind measurements on a dense network were performed during the MISTRAL field experiment in 1991-1992. From these data the characteristic wind fields were identified by an automated classification method. The dynamics of the resulting twelve typical regional flow patterns is studied. It is discussed how transitions between the flow patterns take place and how well the transition probabilities can be described in the framework of a Markov model. Guided by this discussion, a variety of prediction models were tested which allow a short-term forecast of the flow pattern type. It is found that a prediction model which uses forecast information from the synoptic scale has the best forecast skill. (author) 2 figs., 7 refs.

  8. Structure and dynamics of gas phase ions: Interplay between experiments and computations in IRMPD spectroscopy

    Science.gov (United States)

    Coletti, Cecilia; Corinti, Davide; Paciotti, Roberto; Re, Nazzareno; Crestoni, Maria Elisa; Fornarini, Simonetta

    2017-11-01

    The investigation of the molecular structure and dynamics of ions in gas phase is an item of increasing interest, due the role such species play in many areas of chemistry and physics, not to mention that they often represent elusive intermediates in more complex reaction mechanisms. Infrared Multiple Photon Dissociation spectroscopy is today one of the most advanced technique to this purpose, because of its high sensitivity to even small structure changes. The interpretation of IRMPD spectra strongly relies on high level quantum mechanical computations, so that a close interplay is needed for a detailed understanding of structure and kinetics properties which can be gathered from the many applications of this powerful technique. Recent advances in experiment and theory in this field are here illustrated, with emphasis on recent progresses for the elucidation of the mechanism of action of cisplatin, one of the most widely used anticancer drugs.

  9. Radiolytic modelling of spent fuel oxidative dissolution mechanism. Calibration against UO2 dynamic leaching experiments

    International Nuclear Information System (INIS)

    Merino, J.; Cera, E.; Bruno, J.; Quinones, J.; Casas, I.; Clarens, F.; Gimenez, J.; Pablo, J. de; Rovira, M.; Martinez-Esparza, A.

    2005-01-01

    Calibration and testing are inherent aspects of any modelling exercise and consequently they are key issues in developing a model for the oxidative dissolution of spent fuel. In the present work we present the outcome of the calibration process for the kinetic constants of a UO 2 oxidative dissolution mechanism developed for using in a radiolytic model. Experimental data obtained in dynamic leaching experiments of unirradiated UO 2 has been used for this purpose. The iterative calibration process has provided some insight into the detailed mechanism taking place in the alteration of UO 2 , particularly the role of · OH radicals and their interaction with the carbonate system. The results show that, although more simulations are needed for testing in different experimental systems, the calibrated oxidative dissolution mechanism could be included in radiolytic models to gain confidence in the prediction of the long-term alteration rate of the spent fuel under repository conditions

  10. Exploring the Dynamics of Cell Processes through Simulations of Fluorescence Microscopy Experiments

    Science.gov (United States)

    Angiolini, Juan; Plachta, Nicolas; Mocskos, Esteban; Levi, Valeria

    2015-01-01

    Fluorescence correlation spectroscopy (FCS) methods are powerful tools for unveiling the dynamical organization of cells. For simple cases, such as molecules passively moving in a homogeneous media, FCS analysis yields analytical functions that can be fitted to the experimental data to recover the phenomenological rate parameters. Unfortunately, many dynamical processes in cells do not follow these simple models, and in many instances it is not possible to obtain an analytical function through a theoretical analysis of a more complex model. In such cases, experimental analysis can be combined with Monte Carlo simulations to aid in interpretation of the data. In response to this need, we developed a method called FERNET (Fluorescence Emission Recipes and Numerical routines Toolkit) based on Monte Carlo simulations and the MCell-Blender platform, which was designed to treat the reaction-diffusion problem under realistic scenarios. This method enables us to set complex geometries of the simulation space, distribute molecules among different compartments, and define interspecies reactions with selected kinetic constants, diffusion coefficients, and species brightness. We apply this method to simulate single- and multiple-point FCS, photon-counting histogram analysis, raster image correlation spectroscopy, and two-color fluorescence cross-correlation spectroscopy. We believe that this new program could be very useful for predicting and understanding the output of fluorescence microscopy experiments. PMID:26039162

  11. Experiments with mathematical models to simulate hepatitis A population dynamics under different levels of endemicity

    Directory of Open Access Journals (Sweden)

    Mariana Alves de Guimaraens

    Full Text Available Heterogeneous access to sanitation services is a characteristic of communities in Brazil. This heterogeneity leads to different patterns of hepatitis A endemicity: areas with low infection rates have higher probability of outbreaks, and areas with higher infection rates have high prevalence and low risk of outbreaks. Here we develop a mathematical model to study the effect of variable exposure to infection on the epidemiological dynamics of hepatitis A. Differential equations were used to simulate population dynamics and were numerically solved using the software StellaTM. The model uses parameters from serological surveys in the Greater Metropolitan Rio de Janeiro, in areas with different sanitation conditions. Computer simulation experiments show that the range of infection rates observed in these communities are characteristic of high and low levels of hepatitis A endemicity. We also found that the functional relationship between sanitation and exposure to infection is an important component of the model. The analysis of the public health impact of partial sanitation requires a better understanding of this relationship.

  12. Flight dynamics facility operational orbit determination support for the ocean topography experiment

    Science.gov (United States)

    Bolvin, D. T.; Schanzle, A. F.; Samii, M. V.; Doll, C. E.

    1991-01-01

    The Ocean Topography Experiment (TOPEX/POSEIDON) mission is designed to determine the topography of the Earth's sea surface across a 3 yr period, beginning with launch in June 1992. The Goddard Space Flight Center Dynamics Facility has the capability to operationally receive and process Tracking and Data Relay Satellite System (TDRSS) tracking data. Because these data will be used to support orbit determination (OD) aspects of the TOPEX mission, the Dynamics Facility was designated to perform TOPEX operational OD. The scientific data require stringent OD accuracy in navigating the TOPEX spacecraft. The OD accuracy requirements fall into two categories: (1) on orbit free flight; and (2) maneuver. The maneuver OD accuracy requirements are of two types; premaneuver planning and postmaneuver evaluation. Analysis using the Orbit Determination Error Analysis System (ODEAS) covariance software has shown that, during the first postlaunch mission phase of the TOPEX mission, some postmaneuver evaluation OD accuracy requirements cannot be met. ODEAS results also show that the most difficult requirements to meet are those that determine the change in the components of velocity for postmaneuver evaluation.

  13. Volatile decision dynamics: experiments, stochastic description, intermittency control and traffic optimization

    Science.gov (United States)

    Helbing, Dirk; Schönhof, Martin; Kern, Daniel

    2002-06-01

    The coordinated and efficient distribution of limited resources by individual decisions is a fundamental, unsolved problem. When individuals compete for road capacities, time, space, money, goods, etc, they normally make decisions based on aggregate rather than complete information, such as TV news or stock market indices. In related experiments, we have observed a volatile decision dynamics and far-from-optimal payoff distributions. We have also identified methods of information presentation that can considerably improve the overall performance of the system. In order to determine optimal strategies of decision guidance by means of user-specific recommendations, a stochastic behavioural description is developed. These strategies manage to increase the adaptibility to changing conditions and to reduce the deviation from the time-dependent user equilibrium, thereby enhancing the average and individual payoffs. Hence, our guidance strategies can increase the performance of all users by reducing overreaction and stabilizing the decision dynamics. These results are highly significant for predicting decision behaviour, for reaching optimal behavioural distributions by decision support systems and for information service providers. One of the promising fields of application is traffic optimization.

  14. Formaldehyde roaming dynamics: Comparison of quasi-classical trajectory calculations and experiments.

    Science.gov (United States)

    Houston, Paul L; Wang, Xiaohong; Ghosh, Aryya; Bowman, Joel M; Quinn, Mitchell S; Kable, Scott H

    2017-07-07

    The photodissociation dynamics of roaming in formaldehyde are studied by comparing quasi-classical trajectory calculations performed on a new potential energy surface (PES) to new and detailed experimental results detailing the CO + H 2 product state distributions and their correlations. The new PES proves to be a significant improvement over the past one, now more than a decade old. The new experiments probe both the CO and H 2 products of the formaldehyde dissociation. The experimental and trajectory data offer unprecedented detail about the correlations between internal states of the CO and H 2 dissociation products as well as information on how these distributions are different for the roaming and transition-state pathways. The data investigated include, for dissociation on the formaldehyde 2 1 4 3 band, (a) the speed distributions for individual vibrational/rotational states of the CO products, providing information about the correlated internal energy distributions of the H 2 product, and (b) the rotational and vibrational distributions for the CO and H 2 products as well as the contributions to each from both the transition state and roaming channels. The agreement between the trajectory and experimental data is quite satisfactory, although minor differences are noted. The general agreement provides support for future use of the experimental techniques and the new PES in understanding the dynamics of photodissociative processes.

  15. Full-scale HDR blowdown experiments as a tool for investigating dynamic fluid-structural coupling

    International Nuclear Information System (INIS)

    Krieg, R.; Schlechtendahl, E.G.; Scholl, K.-H.; Schumann, U.

    1977-01-01

    As an answer to rigorous safety requirements in reactor technology an experimental-theoretical program has been established to investigate safety-relevant mechanical aspects of LWR-blowdown accidents. Part of the program are several full-scale blowdown experiments which will be performed in the former HDR-reactor. As the conceptional study confirms, the primary goal is to find out, how big the safety margins of present LWR's in the case of a blowdown actually are, rather than simply to show that essential parts of the reactor will withstand such an accident. However, to determine the safety margins, the physical phenomena involved in the blowdown process must be understood and appropriate wave of description must be found. Therefore the experimental program is accompanied by the development of theoretical models and computer codes. A survey is given over existing methods for coupled fluid structural dynamics. The following approaches are used: - Specific finite difference-code for integrated treatment of both fluid and structure in 3D-geometry using the fast cyclic reduction scheme for solving Poisson's equation. - Modification of mass and stiffness matrices of FEM-models for shell dynamics by reducing the 3D incompressible fluid problem to 2D with the boundary integral equation method. This presently developed method has the capacity to deal with general problems in fluid-structural coupling. (Auth.)

  16. CAPTURE OF TROJANS BY JUMPING JUPITER

    International Nuclear Information System (INIS)

    Nesvorný, David; Vokrouhlický, David; Morbidelli, Alessandro

    2013-01-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here, we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to ∼5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the observed asymmetry in the number of leading and trailing Trojans. We find that the capture probability is (6-8) × 10 –7 for each particle in the original transplanetary disk, implying that the disk contained (3-4) × 10 7 planetesimals with absolute magnitude H disk ∼ 14-28 M Earth , is consistent with the mass deduced from recent dynamical simulations of the planetary instability.

  17. The Beam Dynamics and Beam Related Uncertainties in Fermilab Muon $g-2$ Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wanwei [Mississippi U.

    2018-05-01

    The anomaly of the muon magnetic moment, $a_{\\mu}\\equiv (g-2)/2$, has played an important role in constraining physics beyond the Standard Model for many years. Currently, the Standard Model prediction for $a_{\\mu}$ is accurate to 0.42 parts per million (ppm). The most recent muon $g-2$ experiment was done at Brookhaven National Laboratory (BNL) and determined $a_{\\mu}$ to 0.54 ppm, with a central value that differs from the Standard Model prediction by 3.3-3.6 standard deviations and provides a strong hint of new physics. The Fermilab Muon $g-2$ Experiment has a goal to measure $a_{\\mu}$ to unprecedented precision: 0.14 ppm, which could provide an unambiguous answer to the question whether there are new particles and forces that exist in nature. To achieve this goal, several items have been identified to lower the systematic uncertainties. In this work, we focus on the beam dynamics and beam associated uncertainties, which are important and must be better understood. We will discuss the electrostatic quadrupole system, particularly the hardware-related quad plate alignment and the quad extension and readout system. We will review the beam dynamics in the muon storage ring, present discussions on the beam related systematic errors, simulate the 3D electric fields of the electrostatic quadrupoles and examine the beam resonances. We will use a fast rotation analysis to study the muon radial momentum distribution, which provides the key input for evaluating the electric field correction to the measured $a_{\\mu}$.

  18. Space Shuttle Guidance, Navigation, and Rendezvous Knowledge Capture Reports. Revision 1

    Science.gov (United States)

    Goodman, John L.

    2011-01-01

    This document is a catalog and readers guide to lessons learned, experience, and technical history reports, as well as compilation volumes prepared by United Space Alliance personnel for the NASA/Johnson Space Center (JSC) Flight Dynamics Division.1 It is intended to make it easier for future generations of engineers to locate knowledge capture documentation from the Shuttle Program. The first chapter covers observations on documentation quality and research challenges encountered during the Space Shuttle and Orion programs. The second chapter covers the knowledge capture approach used to create many of the reports covered in this document. These chapters are intended to provide future flight programs with insight that could be used to formulate knowledge capture and management strategies. The following chapters contain descriptions of each knowledge capture report. The majority of the reports concern the Space Shuttle. Three are included that were written in support of the Orion Program. Most of the reports were written from the years 2001 to 2011. Lessons learned reports concern primarily the shuttle Global Positioning System (GPS) upgrade and the knowledge capture process. Experience reports on navigation and rendezvous provide examples of how challenges were overcome and how best practices were identified and applied. Some reports are of a more technical history nature covering navigation and rendezvous. They provide an overview of mission activities and the evolution of operations concepts and trajectory design. The lessons learned, experience, and history reports would be considered secondary sources by historians and archivists.

  19. Radiative electron capture by channeled ions

    International Nuclear Information System (INIS)

    Pitarke, J.M.; Ritchie, R.H.; Tennessee Univ., Knoxville, TN

    1989-01-01

    Considerable experimental data have been accumulated relative to the emission of photons accompanying electron capture by swift, highly stripped atoms penetrating crystalline matter under channeling conditions. Recent data suggest that the photon energies may be less than that expected from simple considerations of transitions from the valence band of the solid to hydrogenic states on the moving ion. We have studied theoretically the impact parameter dependence of the radiative electron capture (REC) process, the effect of the ion's wake and the effect of capture from inner shells of the solid on the photon emission probability, using a statistical approach. Numerical comparisons of our results with experiment are made. 13 refs., 6 figs

  20. Incremental learning for automated knowledge capture

    Energy Technology Data Exchange (ETDEWEB)

    Benz, Zachary O. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Basilico, Justin Derrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Davis, Warren Leon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dixon, Kevin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Brian S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Nathaniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wendt, Jeremy Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    People responding to high-consequence national-security situations need tools to help them make the right decision quickly. The dynamic, time-critical, and ever-changing nature of these situations, especially those involving an adversary, require models of decision support that can dynamically react as a situation unfolds and changes. Automated knowledge capture is a key part of creating individualized models of decision making in many situations because it has been demonstrated as a very robust way to populate computational models of cognition. However, existing automated knowledge capture techniques only populate a knowledge model with data prior to its use, after which the knowledge model is static and unchanging. In contrast, humans, including our national-security adversaries, continually learn, adapt, and create new knowledge as they make decisions and witness their effect. This artificial dichotomy between creation and use exists because the majority of automated knowledge capture techniques are based on traditional batch machine-learning and statistical algorithms. These algorithms are primarily designed to optimize the accuracy of their predictions and only secondarily, if at all, concerned with issues such as speed, memory use, or ability to be incrementally updated. Thus, when new data arrives, batch algorithms used for automated knowledge capture currently require significant recomputation, frequently from scratch, which makes them ill suited for use in dynamic, timecritical, high-consequence decision making environments. In this work we seek to explore and expand upon the capabilities of dynamic, incremental models that can adapt to an ever-changing feature space.

  1. 'Mathematical model of K Capture and its implications'

    International Nuclear Information System (INIS)

    Angus, Andrew C.

    2000-01-01

    The mechanism of K Capture, the nuclear absorption of electron in the K shell, as induced by electricity, is explained in this article. Furthermore, a mathematical model of K Capture is formulated. Then, K Capture is applied to explain the negative results obtained by Steven Jones and the positive results obtained by Pons-Fleischmann in Deuterium Oxide Electrolysis Experiments. The most important implication of K Capture is the possibility of obtaining nuclear energy by fusion at low temperature from heavy water

  2. Dynamics of multiple nuclei in Ashbya gossypii hyphae depend on the control of cytoplasmic microtubules length by Bik1, Kip2, Kip3, and not on a capture/shrinkage mechanism.

    Science.gov (United States)

    Grava, Sandrine; Philippsen, Peter

    2010-11-01

    Ashbya gossypii has a budding yeast-like genome but grows exclusively as multinucleated hyphae. In contrast to budding yeast where positioning of nuclei at the bud neck is a major function of cytoplasmic microtubules (cMTs), A. gossypii nuclei are constantly in motion and positioning is not an issue. To investigate the role of cMTs in nuclear oscillation and bypassing, we constructed mutants potentially affecting cMT lengths. Hyphae lacking the plus (+)end marker Bik1 or the kinesin Kip2 cannot polymerize long cMTs and lose wild-type nuclear movements. Interestingly, hyphae lacking the kinesin Kip3 display longer cMTs concomitant with increased nuclear oscillation and bypassing. Polymerization and depolymerization rates of cMTs are 3 times higher in A. gossypii than in budding yeast and cMT catastrophes are rare. Growing cMTs slide along the hyphal cortex and exert pulling forces on nuclei. Surprisingly, a capture/shrinkage mechanism seems to be absent in A. gossypii. cMTs reaching a hyphal tip do not shrink, and cMT +ends accumulate in hyphal tips. Thus, differences in cMT dynamics and length control between budding yeast and A. gossypii are key elements in the adaptation of the cMT cytoskeleton to much longer cells and much higher degrees of nuclear mobilities.

  3. Iodine neutron capture therapy

    Science.gov (United States)

    Ahmed, Kazi Fariduddin

    A new technique, Iodine Neutron Capture Therapy (INCT) is proposed to treat hyperthyroidism in people. Present thyroid therapies, surgical removal and 131I treatment, result in hypothyroidism and, for 131I, involve protracted treatment times and excessive whole-body radiation doses. The new technique involves using a low energy neutron beam to convert a fraction of the natural iodine stored in the thyroid to radioactive 128I, which has a 24-minute half-life and decays by emitting 2.12-MeV beta particles. The beta particles are absorbed in and damage some thyroid tissue cells and consequently reduce the production and release of thyroid hormones to the blood stream. Treatment times and whole-body radiation doses are thus reduced substantially. This dissertation addresses the first of the several steps needed to obtain medical profession acceptance and regulatory approval to implement this therapy. As with other such programs, initial feasibility is established by performing experiments on suitable small mammals. Laboratory rats were used and their thyroids were exposed to the beta particles coming from small encapsulated amounts of 128I. Masses of 89.0 mg reagent-grade elemental iodine crystals have been activated in the ISU AGN-201 reactor to provide 0.033 mBq of 128I. This activity delivers 0.2 Gy to the thyroid gland of 300-g male rats having fresh thyroid tissue masses of ˜20 mg. Larger iodine masses are used to provide greater doses. The activated iodine is encapsulated to form a thin (0.16 cm 2/mg) patch that is then applied directly to the surgically exposed thyroid of an anesthetized rat. Direct neutron irradiation of a rat's thyroid was not possible due to its small size. Direct in-vivo exposure of the thyroid of the rat to the emitted radiation from 128I is allowed to continue for 2.5 hours (6 half-lives). Pre- and post-exposure blood samples are taken to quantify thyroid hormone levels. The serum T4 concentration is measured by radioimmunoassay at

  4. Proton capture resonance studies

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, G.E. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bilpuch, E.G. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bybee, C.R. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Cox, J.M.; Fittje, L.M. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Labonte, M.A.; Moore, E.F.; Shriner, J.D. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Shriner, J.F. Jr. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Vavrina, G.A. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Wallace, P.M. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708

    1997-02-01

    The fluctuation properties of quantum systems now are used as a signature of quantum chaos. The analyses require data of extremely high quality. The {sup 29}Si(p,{gamma}) reaction is being used to establish a complete level scheme of {sup 30}P to study chaos and isospin breaking in this nuclide. Determination of the angular momentum J, the parity {pi}, and the isospin T from resonance capture data is considered. Special emphasis is placed on the capture angular distributions and on a geometric description of these angular distributions. {copyright} {ital 1997 American Institute of Physics.}

  5. CFD [computational fluid dynamics] And Safety Factors. Computer modeling of complex processes needs old-fashioned experiments to stay in touch with reality.

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.; Lee, Si Y.; Poirier, Michael R.; Steeper, Timothy J.; Ervin, Robert C.; Giddings, Billy J.; Stefanko, David B.; Harp, Keith D.; Fowley, Mark D.; Van Pelt, William B.

    2012-10-07

    Computational fluid dynamics (CFD) is recognized as a powerful engineering tool. That is, CFD has advanced over the years to the point where it can now give us deep insight into the analysis of very complex processes. There is a danger, though, that an engineer can place too much confidence in a simulation. If a user is not careful, it is easy to believe that if you plug in the numbers, the answer comes out, and you are done. This assumption can lead to significant errors. As we discovered in the course of a study on behalf of the Department of Energy's Savannah River Site in South Carolina, CFD models fail to capture some of the large variations inherent in complex processes. These variations, or scatter, in experimental data emerge from physical tests and are inadequately captured or expressed by calculated mean values for a process. This anomaly between experiment and theory can lead to serious errors in engineering analysis and design unless a correction factor, or safety factor, is experimentally validated. For this study, blending times for the mixing of salt solutions in large storage tanks were the process of concern under investigation. This study focused on the blending processes needed to mix salt solutions to ensure homogeneity within waste tanks, where homogeneity is required to control radioactivity levels during subsequent processing. Two of the requirements for this task were to determine the minimum number of submerged, centrifugal pumps required to blend the salt mixtures in a full-scale tank in half a day or less, and to recommend reasonable blending times to achieve nearly homogeneous salt mixtures. A full-scale, low-flow pump with a total discharge flow rate of 500 to 800 gpm was recommended with two opposing 2.27-inch diameter nozzles. To make this recommendation, both experimental and CFD modeling were performed. Lab researchers found that, although CFD provided good estimates of an average blending time, experimental blending times varied

  6. Modeling Lake Storage Dynamics to support Arctic Boreal Vulnerability Experiment (ABoVE)

    Science.gov (United States)

    Vimal, S.; Lettenmaier, D. P.; Smith, L. C.; Smith, S.; Bowling, L. C.; Pavelsky, T.

    2017-12-01

    The Arctic and Boreal Zone (ABZ) of Canada and Alaska includes vast areas of permafrost, lakes, and wetlands. Permafrost thawing in this area is expected to increase due to the projected rise of temperature caused by climate change. Over the long term, this may reduce overall surface water area, but in the near-term, the opposite is being observed, with rising paludification (lake/wetland expansion). One element of NASA's ABoVE field experiment is observations of lake and wetland extent and surface elevations using NASA's AirSWOT airborne interferometric radar, accompanied by a high-resolution camera. One use of the WSE retrievals will be to constrain model estimates of lake storage dynamics. Here, we compare predictions using the lake dynamics algorithm within the Variable Infiltration Capacity (VIC) land surface scheme. The VIC lake algorithm includes representation of sub-grid topography, where the depth and area of seasonally-flooded areas are modeled as a function of topographic wetness index, basin area, and slope. The topography data used is from a new global digital elevation model, MERIT-DEM. We initially set up VIC at sites with varying permafrost conditions (i.e., no permafrost, discontinuous, continuous) in Saskatoon and Yellowknife, Canada, and Toolik Lake, Alaska. We constrained the uncalibrated model with the WSE at the time of the first ABoVE flight, and quantified the model's ability to predict WSE and ΔWSE during the time of the second flight. Finally, we evaluated the sensitivity of the VIC-lakes model and compared the three permafrost conditions. Our results quantify the sensitivity of surface water to permafrost state across the target sites. Furthermore, our evaluation of the lake modeling framework contributes to the modeling and mapping framework for lake and reservoir storage change evaluation globally as part of the SWOT mission, planned for launch in 2021.

  7. Xeml Lab: a tool that supports the design of experiments at a graphical interface and generates computer-readable metadata files, which capture information about genotypes, growth conditions, environmental perturbations and sampling strategy.

    Science.gov (United States)

    Hannemann, Jan; Poorter, Hendrik; Usadel, Björn; Bläsing, Oliver E; Finck, Alex; Tardieu, Francois; Atkin, Owen K; Pons, Thijs; Stitt, Mark; Gibon, Yves

    2009-09-01

    Data mining depends on the ability to access machine-readable metadata that describe genotypes, environmental conditions, and sampling times and strategy. This article presents Xeml Lab. The Xeml Interactive Designer provides an interactive graphical interface at which complex experiments can be designed, and concomitantly generates machine-readable metadata files. It uses a new eXtensible Mark-up Language (XML)-derived dialect termed XEML. Xeml Lab includes a new ontology for environmental conditions, called Xeml Environment Ontology. However, to provide versatility, it is designed to be generic and also accepts other commonly used ontology formats, including OBO and OWL. A review summarizing important environmental conditions that need to be controlled, monitored and captured as metadata is posted in a Wiki (http://www.codeplex.com/XeO) to promote community discussion. The usefulness of Xeml Lab is illustrated by two meta-analyses of a large set of experiments that were performed with Arabidopsis thaliana during 5 years. The first reveals sources of noise that affect measurements of metabolite levels and enzyme activities. The second shows that Arabidopsis maintains remarkably stable levels of sugars and amino acids across a wide range of photoperiod treatments, and that adjustment of starch turnover and the leaf protein content contribute to this metabolic homeostasis.

  8. Torque controlled rotary-shear experiments reveal pseudotachilites formation-dynamics and precursor events

    Science.gov (United States)

    Tisato, Nicola; Cordonnier, Benoit; De Siena, Luca; Lavier, Luc; Di Toro, Giulio

    2017-04-01

    Except few cases, rotary shear tests, which are designed to study dynamic friction and strengthening/weakening mechanisms in seismogenic faults, are performed by imposing, to the specimens, a slipping velocity that is pre-defined. This approach has been adopted from engineering that typically, tests man-made objects that, when functioning, spin or slide at a pre-defined velocity under a pre-defined load. On the other hand, natural earthquakes are the effect of a rupture that nucleates, propagates and arrests in the subsurface. These three phases, and the consequent emerging fault slipping velocity, are controlled by the accumulated and released energy around the seismogenic fault before, during and after the earthquake. Thus, imposing the slipping velocity in laboratory experiments might not represent the best option to uncover many aspects of earthquake nucleation and fault slipping dynamics. Here we present some experiments performed with an innovative rotary shear apparatus that uses a clock-spring that when winded provides to the rotating sample a linearly increasing torque. Thus, the nucleation of simulated events occur spontaneously when the shear stress on the slipping surface overcomes the static friction times the normal load that is controlled by a deadweight. In addition, this method allows studying precursory seismic events resembling natural slow-slip earthquakes. We report some preliminary results for a transparent polymer that has melting point 340 K and allows observing the slipping surface (i.e., the contact between the two samples). By coupling: i) the rotary shear apparatus, ii) a video camera recording at 60 fps and a iii) laser pointer we observed the formation and evolution of a melt film that forms in the slipping surface after a phase of "dry" stick-slip. After each seismic event the melt layer solidify forming a pseudotachilite that partially welds the slipping surfaces. We also present the mechanical data that show rupture strengthening in

  9. Muon capture in deuterium

    Czech Academy of Sciences Publication Activity Database

    Ricci, P.; Truhlík, Emil; Mosconi, B.; Smejkal, J.

    2010-01-01

    Roč. 837, - (2010), s. 110-144 ISSN 0375-9474 Institutional research plan: CEZ:AV0Z10480505 Keywords : Negative muon capture * Deuteron * Potential models Subject RIV: BE - Theoretical Physics Impact factor: 1.986, year: 2010

  10. Capture Matrices Handbook

    Science.gov (United States)

    2014-04-01

    materials, the affinity ligand would need identification , as well as chemistries that graft the affinity ligand onto the surface of magnetic...ACTIVE CAPTURE MATRICES FOR THE DETECTION/ IDENTIFICATION OF PHARMACEUTICALS...6 As shown in Figure 2.3-1a, the spectra exhibit similar baselines and the spectral peaks lineup . Under these circumstances, the spectral

  11. Capacitance for carbon capture

    International Nuclear Information System (INIS)

    Landskron, Kai

    2018-01-01

    Metal recycling: A sustainable, capacitance-assisted carbon capture and sequestration method (Supercapacitive Swing Adsorption) can turn scrap metal and CO 2 into metal carbonates at an attractive energy cost. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Capacitance for carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Landskron, Kai [Department of Chemistry, Lehigh University, Bethlehem, PA (United States)

    2018-03-26

    Metal recycling: A sustainable, capacitance-assisted carbon capture and sequestration method (Supercapacitive Swing Adsorption) can turn scrap metal and CO{sub 2} into metal carbonates at an attractive energy cost. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Embedded enzymes catalyse capture

    Science.gov (United States)

    Kentish, Sandra

    2018-05-01

    Membrane technologies for carbon capture can offer economic and environmental advantages over conventional amine-based absorption, but can suffer from limited gas flux and selectivity to CO2. Now, a membrane based on enzymes embedded in hydrophilic pores is shown to exhibit combined flux and selectivity that challenges the state of the art.

  14. Lecture capturing assisted teaching and learning experience

    Science.gov (United States)

    Chen, Li

    2015-03-01

    When it comes to learning, a deep understanding of the material and a broadband of knowledge are equally important. However, provided limited amount of semester time, instructors often find themselves struggling to reach both aspects at the same time and are often forced to make a choice between the two. On one hand, we would like to spend much time to train our students, with demonstrations, step by step guidance and practice, to develop strong critical thinking skills and problem-solving skills. On the other hand, we also would like to cover a wide range of content topics to broaden our students' understanding. In this presentation, we propose a working scheme that may assist to achieve these two goals at the same time without sacrificing either one. With the help of recorded and pre-recorded lectures and other class materials, it allows instructors to spend more class time to focus on developing critical thinking skills and problem-solving skills, and to apply and connect principle knowledge with real life phenomena. It also allows our students to digest the material at a pace they are comfortable with by watching the recorded lectures over and over. Students now have something as a backup to refer to when they have random mistakes and/or missing spots on their notes, and hence take more ownership of their learning. Advanced technology have offered flexibility of how/when the content can be delivered, and have been assisting towards better teaching and learning strategies.

  15. Properties of vanadium-base alloys irradiated in the Dynamic Helium Charging Experiment*1

    Science.gov (United States)

    Chung, H. M.; Loomis, B. A.; Smith, D. L.

    1996-10-01

    One property of vanadium-base alloys that is not well understood in terms of their potential use a fusion reactor structural materials, is the effect of simultaneous generation of helium and neutron damage. In the present Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in the specimen at linear rates of ≈ 0.4 to 4.2 appm helium/dpa by the decay of tritium during irradiation to 18-31 dpa at 425-600°C in Li-filled capsules in a sodium-cooled fast reactor. This paper presents results of postirradiation examination and tests of microstructure and mechanical properties of V5Ti, V3Ti1Si, V8Cr6Ti, and V4Cr4Ti (the latter alloy has been identified as the most promising candidate vanadium alloy). Effects of helium on tensile strength and ductility were insignificant after irradiation and testing at > 420°C. However, postirradiation ductilities at irradiation. Ductile—brittle transition behavior of the DHCE specimens was also determined from bend tests and fracture appearance of transmission electron microscopy (TEM) disks and broken tensile specimens. No brittle behavior was observed at temperatures > - 150°C in DHCE specimens. Predominantly brittle-cleavage fracture morphologies were observed only at - 196°C in some specimens that were irradiated to 31 dpa at 425°C during the DHCE. For the helium generation rates in this experiment (≈ 0.4-4.2 appm He/dpa), grain-boundary coalescence of helium microcavities was negligible and intergranular fracture was not observed.

  16. Simultaneous ion and neutral evaporation in aqueous nanodrops: experiment, theory, and molecular dynamics simulations.

    Science.gov (United States)

    Higashi, Hidenori; Tokumi, Takuya; Hogan, Christopher J; Suda, Hiroshi; Seto, Takafumi; Otani, Yoshio

    2015-06-28

    We use a combination of tandem ion mobility spectrometry (IMS-IMS, with differential mobility analyzers), molecular dynamics (MD) simulations, and analytical models to examine both neutral solvent (H2O) and ion (solvated Na(+)) evaporation from aqueous sodium chloride nanodrops. For experiments, nanodrops were produced via electrospray ionization (ESI) of an aqueous sodium chloride solution. Two nanodrops were examined in MD simulations: a 2500 water molecule nanodrop with 68 Na(+) and 60 Cl(-) ions (an initial net charge of z = +8), and (2) a 1000 water molecule nanodrop with 65 Na(+) and 60 Cl(-) ions (an initial net charge of z = +5). Specifically, we used MD simulations to examine the validity of a model for the neutral evaporation rate incorporating both the Kelvin (surface curvature) and Thomson (electrostatic) influences, while both MD simulations and experimental measurements were compared to predictions of the ion evaporation rate equation of Labowsky et al. [Anal. Chim. Acta, 2000, 406, 105-118]. Within a single fit parameter, we find excellent agreement between simulated and modeled neutral evaporation rates for nanodrops with solute volume fractions below 0.30. Similarly, MD simulation inferred ion evaporation rates are in excellent agreement with predictions based on the Labowsky et al. equation. Measurements of the sizes and charge states of ESI generated NaCl clusters suggest that the charge states of these clusters are governed by ion evaporation, however, ion evaporation appears to have occurred with lower activation energies in experiments than was anticipated based on analytical calculations as well as MD simulations. Several possible reasons for this discrepancy are discussed.

  17. Recent development of capture of CO2

    CERN Document Server

    Chavez, Rosa Hilda

    2014-01-01

    "Recent Technologies in the capture of CO2" provides a comprehensive summary on the latest technologies available to minimize the emission of CO2 from large point sources like fossil-fuel power plants or industrial facilities. This ebook also covers various techniques that could be developed to reduce the amount of CO2 released into the atmosphere. The contents of this book include chapters on oxy-fuel combustion in fluidized beds, gas separation membrane used in post-combustion capture, minimizing energy consumption in CO2 capture processes through process integration, characterization and application of structured packing for CO2 capture, calcium looping technology for CO2 capture and many more. Recent Technologies in capture of CO2 is a valuable resource for graduate students, process engineers and administrative staff looking for real-case analysis of pilot plants. This eBook brings together the research results and professional experiences of the most renowned work groups in the CO2 capture field...

  18. The aesthetic experience as a characteristic feature of brain dynamics

    Directory of Open Access Journals (Sweden)

    Giuseppe Vitiello

    2015-05-01

    Full Text Available The brain constructs within itself an understanding of its surround which constitutes its own world. This is described as its Double in the frame of the dissipative quantum model of brain, where the perception-action arc in the Merleau-Ponty’s phenomenology of perception finds its formal description. In the dialog with the Double, the continuous attempt to reach the equilibrium shows that the real goal pursued by the brain activity is the aesthetical experience, the most harmonious “to-be-in-the-world” reached through reciprocal actions, the aesthetical dimension characterized by the “pleasure” of the perception. Aesthetical pleasure unavoidably implies disclosure, to manifest “signs”, artistic communication. An interpersonal, collective level of consciousness then arises, a larger stage where the actors are mutually dependent. The coherent structure of the brain background state manifests itself in the auto-similarity properties of fractal structures. These are observed to occur also in a large number of natural phenomena and systems. The conception of Nature divided in separated domains is replaced by the vision of Nature unified by laws of form implied by the underlying quantum dynamics of the coherent vacuum, an integrated ecological vision.

  19. Detailed spectral simulations in support of PBFA-Z dynamic hohlraum Z-pinch experiments

    International Nuclear Information System (INIS)

    MacFarlane, J.J.; Wang, P.; Derzon, M.S.; Haill, A.; Nash, T.J.; Peterson, D.L.

    1997-01-01

    In PBFA-Z dynamic hohlraum Z-pinch experiments, 16--18 MA of current is delivered to a load comprises of a tungsten wire array surrounding a low-density cylindrical CH foam. The magnetic field accelerates the W plasma radially inward at velocities ∼ 40--60 cm/micros. The W plasma impacts into the foam, generating a high T R radiation field which diffuses into the foam. The authors are investigating several types of spectral diagnostics which can be used to characterize the time-dependent conditions in the foam. In addition, they are examining the potential ramifications of axial jetting on the interpretation of axial x-ray diagnostics. In the analysis, results from 2-D radiation-magnetohydrodynamics simulations are post-processed using a hybrid spectral analysis code in which low-Z material is treated using a detailed collisional-radiative atomic model, while high-Z material is modeled using LTE UTA (unresolved transition array) opacities. They will present results from recent simulations and discuss ramifications for x-ray diagnostics

  20. An experience in dynamic seals of reduction and hydrofluorination furnaces in refining plant

    Energy Technology Data Exchange (ETDEWEB)

    Dhavamani, D; Shivakumar, L; Agrawal, A [Rare Materials Project, Bhabha Atomic Research Centre, Mysore (India)

    1994-06-01

    Reduction and hydrofluorination are some of the most important stages in the production of nuclear grade green salt, UF{sub 4}, involving solid-gas reactions. They are difficult steps considering the process conditions and nature of materials to be handled (reduction involves cracked ammonia at 600 deg C which is highly explosive, handling of brown oxide which is radioactive and pyroforic; hydrofluorination involves highly toxic and corrosive hydrofluoric acid diluted with cracked ammonia at 450 deg C). In view of the above, emphasis has to be given for efficient leak tightness of the equipment being employed for this purpose such that atmospheric air should not leak into the equipment as well as process gases, radioactive powder should not leak out. Previous experience from other Department of Atomic Energy (DAE) units, indicated that the failure of dynamic seals is the nagging problem with consequent bearing on safety, availability and ease of maintenance. The attempt made in improving the design, showed promising results at Rare Materials Plant (RMP), Mysore is described. (author). 6 figs.

  1. A simulated plasma disruption experiment using a magneto-plasma-dynamic arcjet

    International Nuclear Information System (INIS)

    Madarame, H.; Sukegawa, T.; Okamoto, K.

    1991-01-01

    If a melt layer is expelled by a strong electromagnetic force from some places during a plasma disruption, the wall thickness is reduced there remarkably. Although this phenomenon is considered as a very important issue, it has not been studied so far because of its difficulty and complexity. In this study, the phenomenon was simulated using a magneto-plasma-dynamic (MPD) arcjet. The MPD arcjet was used as both a heat source and an electric current source. The current flowed radially in a stainless steel test piece installed in a transverse magnetic field. The circumferential electromagnetic force generated a swirl flow in the melt layer, causing a centrifugal force, which thinned the central part of the round region and formed a circular embankment on the fringe. A numerical code was developed which could calculate the melting, the evaporation and the melt layer movement by the centrifugal force and the beam pressure. The calculational results on the melting depth and the thickness reduction in the central part were compared with experiment. (orig.)

  2. Experiments on vibro-impact dynamics of loosely supported tubes under harmonic excitation

    International Nuclear Information System (INIS)

    Axisa, F.; Izquierdo, P.

    1992-01-01

    Computational methods have been recently developed by the authors and others to predict the working life or the acceptable vibration limit of tubular structures experiencing fretting-wear caused by impact-sliding interaction with loose supports or adjacent structures. This problem is of practical interest in various nuclear and other industrial components. This paper reports an experimental work intended to validate the numerical techniques used to compute the tube non-linear vibration in presence of impact-sliding interaction. Attention is especially focused on the local and time averaged dynamical parameters governing the rate of fretting-wear. The experiments were carried out on a straight tube excited harmonically by a pair of electromagnetic shakers. The tube motion was limited by a loose support situated at about midspan. On the other hand, numerical simulations of the tests were also performed. Comparison between test and computational data resulted in rather satisfactory agreement, based on the averaged impact forces and the wear work rate. Results are also discussed in terms of detailed time histories of tube displacement and impact forces

  3. Ozone budgets from the Dynamics and Chemistry of Marine Stratocumulus experiment

    Science.gov (United States)

    Kawa, S. R.; Pearson, R., Jr.

    1989-01-01

    Measurements from the Dynamics and Chemistry of marine Stratocumulus experiment have been used to study components of the regional ozone budget. The surface destruction rate is determined by eddy correlation of ozone and vertical velocity measured by a low-flying aircraft. Significant variability is found in the measured surface resistance; it is partially correlated with friction velocity but appears to have other controlling influences as well. The mean resistance is 4190 s/m which is higher (slower destruction) than most previous estimates for seawater. Flux and mean measurements throughout the marine boundary layer are used to estimate the net rate of in situ photochemical production/destruction of ozone. Averaged over the flights, ozone concentration is found to be near steady state, and a net of photochemical destruction of 0.02-0.07 ng/cu m per sec is diagnosed. This is an important confirmation of photochemical model results for the remote marine boundary layer. Ozone vertical distributions above the boundary layer show a strongly layered structure with very sharp gradients. These distributions are possibly related to the stratospheric ozone source.

  4. The Dynamic Reactance Interaction - How Vested Interests Affect People's Experience, Behavior, and Cognition in Social Interactions.

    Science.gov (United States)

    Steindl, Christina; Jonas, Eva

    2015-01-01

    In social interactions, individuals may sometimes pursue their own interests at the expense of their interaction partner. Such self-interested behaviors impose a threat to the interaction partner's freedom to act. The current article investigates this threat in the context of interdependence and reactance theory. We explore how vested interests influence reactance process stages of an advisor-client interaction. We aim to explore the interactional process that evolves. In two studies, participants took the perspective of a doctor (advisor) or a patient (client). In both studies we incorporated a vested interest. In Study 1 (N = 82) we found that in response to a vested interest of their interaction partner, patients indicated a stronger experience of reactance, more aggressive behavioral intentions, and more biased cognitions than doctors. A serial multiple mediation revealed that a vested interest engendered mistrust toward the interaction partner and this mistrust led to an emerging reactance process. Study 2 (N = 207) further demonstrated that doctors expressed their reactance in a subtle way: they revealed a classic confirmation bias when searching for additional information on their preliminary decision preference, indicating stronger defense motivation. We discuss how these findings can help us to understand how social interactions develop dynamically.

  5. Gravitropism interferes with hydrotropism via counteracting auxin dynamics in cucumber roots: clinorotation and spaceflight experiments.

    Science.gov (United States)

    Morohashi, Keita; Okamoto, Miki; Yamazaki, Chiaki; Fujii, Nobuharu; Miyazawa, Yutaka; Kamada, Motoshi; Kasahara, Haruo; Osada, Ikuko; Shimazu, Toru; Fusejima, Yasuo; Higashibata, Akira; Yamazaki, Takashi; Ishioka, Noriaki; Kobayashi, Akie; Takahashi, Hideyuki

    2017-09-01

    Roots of land plants show gravitropism and hydrotropism in response to gravity and moisture gradients, respectively, for controlling their growth orientation. Gravitropism interferes with hydrotropism, although the mechanistic aspects are poorly understood. Here, we differentiated hydrotropism from gravitropism in cucumber roots by conducting clinorotation and spaceflight experiments. We also compared mechanisms regulating hydrotropism and auxin-regulated gravitropism. Clinorotated or microgravity (μG)-grown cucumber seedling roots hydrotropically bent toward wet substrate in the presence of moisture gradients, but they grew straight in the direction of normal gravitational force at the Earth's surface (1G) on the ground or centrifuge-generated 1G in space. The roots appeared to become hydrotropically more sensitive to moisture gradients under μG conditions in space. Auxin transport inhibitors significantly reduced the hydrotropic response of clinorotated seedling roots. The auxin efflux protein CsPIN5 was differentially expressed in roots of both clinorotated and μG-grown seedlings; with higher expression in the high-humidity (concave) side than the low-humidity (convex) side of hydrotropically responding roots. Our results suggest that roots become hydrotropically sensitive in μG, and CsPIN5-mediated auxin transport has an important role in inducing root hydrotropism. Thus, hydrotropic and gravitropic responses in cucumber roots may compete via differential auxin dynamics established in response to moisture gradients and gravity. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  6. Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot.

    Science.gov (United States)

    Calisti, M; Corucci, F; Arienti, A; Laschi, C

    2015-07-30

    This paper studies underwater legged locomotion (ULL) by means of a robotic octopus-inspired prototype and its associated model. Two different types of propulsive actions are embedded into the robot model: reaction forces due to leg contact with the ground and hydrodynamic forces such as the drag arising from the sculling motion of the legs. Dynamic parameters of the model are estimated by means of evolutionary techniques and subsequently the model is exploited to highlight some distinctive features of ULL. Specifically, the separation between the center of buoyancy (CoB)/center of mass and density affect the stability and speed of the robot, whereas the sculling movements contribute to propelling the robot even when its legs are detached from the ground. The relevance of these effects is demonstrated through robotic experiments and model simulations; moreover, by slightly changing the position of the CoB in the presence of the same feed-forward activation, a number of different behaviors (i.e. forward and backward locomotion at different speeds) are achieved.

  7. The design and implementation of the Dynamic Ionosphere Cubesat Experiment (DICE) science instruments

    Science.gov (United States)

    Burr, Steven Reed

    Dynamic Ionosphere Cubesat Experiment (DICE) is a satellite project funded by the National Science Foundation (NSF) to study the ionosphere, more particularly Storm Enhanced Densities (SED) with a payload consisting of plasma diagnostic instrumentation. Three instruments onboard DICE include an Electric Field Probe (EFP), Ion Langmuir Probe (ILP), and Three Axis Magnetometer (TAM). The EFP measures electric fields from +/-8V and consists of three channels a DC to 40Hz channel, a Floating Potential Probe (FPP), and an spectrographic channel with four bands from 16Hz to 512Hz. The ILP measures plasma densities from 1x104 cm--3 to 2x107 cm--3. The TAM measures magnetic field strength with a range +/-0.5 Gauss with a sensitivity of 2nT. To achieve desired mission requirements careful selection of instrument requirements and planning of the instrumentation design to achieve mission success. The analog design of each instrument is described in addition to the digital framework required to sample the science data at a 70Hz rate and prepare the data for the Command and Data Handing (C&DH) system. Calibration results are also presented and show fulfillment of the mission and instrumentation requirements.

  8. Cage-based performance capture

    CERN Document Server

    Savoye, Yann

    2014-01-01

    Nowadays, highly-detailed animations of live-actor performances are increasingly easier to acquire and 3D Video has reached considerable attentions in visual media production. In this book, we address the problem of extracting or acquiring and then reusing non-rigid parametrization for video-based animations. At first sight, a crucial challenge is to reproduce plausible boneless deformations while preserving global and local captured properties of dynamic surfaces with a limited number of controllable, flexible and reusable parameters. To solve this challenge, we directly rely on a skin-detached dimension reduction thanks to the well-known cage-based paradigm. First, we achieve Scalable Inverse Cage-based Modeling by transposing the inverse kinematics paradigm on surfaces. Thus, we introduce a cage inversion process with user-specified screen-space constraints. Secondly, we convert non-rigid animated surfaces into a sequence of optimal cage parameters via Cage-based Animation Conversion. Building upon this re...

  9. Brownian motion using video capture

    International Nuclear Information System (INIS)

    Salmon, Reese; Robbins, Candace; Forinash, Kyle

    2002-01-01

    Although other researchers had previously observed the random motion of pollen grains suspended in water through a microscope, Robert Brown's name is associated with this behaviour based on observations he made in 1828. It was not until Einstein's work in the early 1900s however, that the origin of this irregular motion was established to be the result of collisions with molecules which were so small as to be invisible in a light microscope (Einstein A 1965 Investigations on the Theory of the Brownian Movement ed R Furth (New York: Dover) (transl. Cowper A D) (5 papers)). Jean Perrin in 1908 (Perrin J 1923 Atoms (New York: Van Nostrand-Reinhold) (transl. Hammick D)) was able, through a series of painstaking experiments, to establish the validity of Einstein's equation. We describe here the details of a junior level undergraduate physics laboratory experiment where students used a microscope, a video camera and video capture software to verify Einstein's famous calculation of 1905. (author)

  10. Engagement and EMG in serious gaming : Experimenting with sound and dynamics in the levee patroller training game

    NARCIS (Netherlands)

    Schuurink, E.L.; Houtkamp, J.; Toet, A.

    2008-01-01

    We measured the effects of sound and visual dynamic elements on user experience of a serious game, with special interest in engagement and arousal. Engagement was measured through questionnaires and arousal through the SAM and electromyography (EMG). We adopted the EMG of the corrugator (frown

  11. Everyday social dynamics and cultural drivers of women's experiences with HIV/AIDS : voices from Buhaya, Tanzania

    NARCIS (Netherlands)

    Foster Githinji, V.E.

    2015-01-01

    Everyday social dynamics and cultural drivers of women’s experiences with HIV/AIDS: voices from Buhaya, Tanzania is based on ethnographic research conducted in the village of Nsisha in northwestern Tanzania. Like most households in this region, Nsisha has been indirectly or

  12. Dynamic Testing of the NASA Hypersonic Project Combined Cycle Engine Testbed for Mode Transition Experiments

    Science.gov (United States)

    2011-01-01

    NASA is interested in developing technology that leads to more routine, safe, and affordable access to space. Access to space using airbreathing propulsion systems has potential to meet these objectives based on Airbreathing Access to Space (AAS) system studies. To this end, the NASA Fundamental Aeronautics Program (FAP) Hypersonic Project is conducting fundamental research on a Turbine Based Combined Cycle (TBCC) propulsion system. The TBCC being studied considers a dual flow-path inlet system. One flow-path includes variable geometry to regulate airflow to a turbine engine cycle. The turbine cycle provides propulsion from take-off to supersonic flight. The second flow-path supports a dual-mode scramjet (DMSJ) cycle which would be initiated at supersonic speed to further accelerate the vehicle to hypersonic speed. For a TBCC propulsion system to accelerate a vehicle from supersonic to hypersonic speed, a critical enabling technology is the ability to safely and effectively transition from the turbine to the DMSJ-referred to as mode transition. To experimentally test methods of mode transition, a Combined Cycle Engine (CCE) Large-scale Inlet testbed was designed with two flow paths-a low speed flow-path sized for a turbine cycle and a high speed flow-path designed for a DMSJ. This testbed system is identified as the CCE Large-Scale Inlet for Mode Transition studies (CCE-LIMX). The test plan for the CCE-LIMX in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel (10x10 SWT) is segmented into multiple phases. The first phase is a matrix of inlet characterization (IC) tests to evaluate the inlet performance and establish the mode transition schedule. The second phase is a matrix of dynamic system identification (SysID) experiments designed to support closed-loop control development at mode transition schedule operating points for the CCE-LIMX. The third phase includes a direct demonstration of controlled mode transition using a closed loop control

  13. The Passy-2015 field experiment: wintertime atmospheric dynamics and air quality in a narrow alpine valley

    Science.gov (United States)

    Paci, Alexandre; Staquet, Chantal

    2016-04-01

    Wintertime anticyclonic conditions lead to the formation of persistent stable boundary layers which may induce severe air pollution episodes in urban or industrialized area, particularly in mountain regions. The Arve river valley in the Northern Alps is very sensitive to this phenomenon, in particular close to the city of Passy (Haute-Savoie), 20 km down valley past Chamonix. This place is indeed one of the worst place in France regarding air quality, the concentration of fine particles and Benzo(a)pyrene (a carcinogenic organic compound) regularly exceeding the EU legal admissible level during winter. Besides air quality measurements, such as the ones presently carried in the area by the local air quality agency Air Rhône-Alpes or in the DECOMBIO project led by LGGE, it is crucial to improve our knowledge of the atmospheric boundary layer dynamics and processes at the valley scale under these persistent stable conditions in order to improve our understanding on how it drives pollutant dispersion. These issues motivated the Passy-2015 field experiment which took place during the winter 2014-2015. A relatively large set-up of instruments was deployed on a main measurement site in the valley center and on four other satellite sites. It includes several remote sensing instruments, a surface flux station, a 10 m instrumented tower, a large aperture scintillometer, a fog monitoring station among others. Most of the instruments were present from early January to the end of February. During two intensive observation periods, 6-14 February and 17-20 February, the instrumental set-up was completed on the main site with high frequency radio-soundings (up to one per 1h30), a tethered balloon, a remote controlled drone quadcopter and a sodar. The field campaign, the instruments, the meteorological situations observed and preliminary results will be presented. This field experiment is part of the Passy project funded by ADEME through the French national programme LEFE/INSU and

  14. Simple generic model for dynamic experiments with Saccharomyces cerevisiae in continuous culture. Decoupling between anabolism and catabolism

    DEFF Research Database (Denmark)

    Duboc, Philippe Jean; von Stockar, U.; Villadsen, John

    1998-01-01

    The dynamic behavior of a continuous culture of Saccharomyces cerevisiae subjected to a sudden increase in the dilution rate has been successfully modelled for anaerobic growth on glucose, and for aerobic growth on acetate, on ethanol, and on glucose. The catabolism responded by an immediate jump...... identified in steady state continuous cultures or during batch experiments. Only the time constant of biosynthesis regeneration, tau(x), and the time constant of catabolic capacity regeneration, tau(cat), had to be identified during transient experiments. In most experiments 7, was around 3 h, and tau(cat...

  15. Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities

    Directory of Open Access Journals (Sweden)

    T. Maki

    2018-06-01

    Full Text Available The westerly wind travelling at high altitudes over eastern Asia transports aerosols from the Asian deserts and urban areas to downwind areas such as Japan. These long-range-transported aerosols include not only mineral particles but also microbial particles (bioaerosols, that impact the ice-cloud formation processes as ice nuclei. However, the detailed relations of airborne bacterial dynamics to ice nucleation in high-elevation aerosols have not been investigated. Here, we used the aerosol particles captured in the snow cover at altitudes of 2450 m on Mt Tateyama to investigate sequential changes in the ice-nucleation activities and bacterial communities in aerosols and elucidate the relationships between the two processes. After stratification of the snow layers formed on the walls of a snow pit on Mt Tateyama, snow samples, including aerosol particles, were collected from 70 layers at the lower (winter accumulation and upper (spring accumulation parts of the snow wall. The aerosols recorded in the lower parts mainly came from Siberia (Russia, northern Asia and the Sea of Japan, whereas those in the upper parts showed an increase in Asian dust particles originating from the desert regions and industrial coasts of Asia. The snow samples exhibited high levels of ice nucleation corresponding to the increase in Asian dust particles. Amplicon sequencing analysis using 16S rRNA genes revealed that the bacterial communities in the snow samples predominately included plant associated and marine bacteria (phyla Proteobacteria during winter, whereas during spring, when dust events arrived frequently, the majority were terrestrial bacteria of phyla Actinobacteria and Firmicutes. The relative abundances of Firmicutes (Bacilli showed a significant positive relationship with the ice nucleation in snow samples. Presumably, Asian dust events change the airborne bacterial communities over Mt Tateyama and carry terrestrial bacterial populations, which

  16. Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities

    Science.gov (United States)

    Maki, Teruya; Furumoto, Shogo; Asahi, Yuya; Lee, Kevin C.; Watanabe, Koichi; Aoki, Kazuma; Murakami, Masataka; Tajiri, Takuya; Hasegawa, Hiroshi; Mashio, Asami; Iwasaka, Yasunobu

    2018-06-01

    The westerly wind travelling at high altitudes over eastern Asia transports aerosols from the Asian deserts and urban areas to downwind areas such as Japan. These long-range-transported aerosols include not only mineral particles but also microbial particles (bioaerosols), that impact the ice-cloud formation processes as ice nuclei. However, the detailed relations of airborne bacterial dynamics to ice nucleation in high-elevation aerosols have not been investigated. Here, we used the aerosol particles captured in the snow cover at altitudes of 2450 m on Mt Tateyama to investigate sequential changes in the ice-nucleation activities and bacterial communities in aerosols and elucidate the relationships between the two processes. After stratification of the snow layers formed on the walls of a snow pit on Mt Tateyama, snow samples, including aerosol particles, were collected from 70 layers at the lower (winter accumulation) and upper (spring accumulation) parts of the snow wall. The aerosols recorded in the lower parts mainly came from Siberia (Russia), northern Asia and the Sea of Japan, whereas those in the upper parts showed an increase in Asian dust particles originating from the desert regions and industrial coasts of Asia. The snow samples exhibited high levels of ice nucleation corresponding to the increase in Asian dust particles. Amplicon sequencing analysis using 16S rRNA genes revealed that the bacterial communities in the snow samples predominately included plant associated and marine bacteria (phyla Proteobacteria) during winter, whereas during spring, when dust events arrived frequently, the majority were terrestrial bacteria of phyla Actinobacteria and Firmicutes. The relative abundances of Firmicutes (Bacilli) showed a significant positive relationship with the ice nucleation in snow samples. Presumably, Asian dust events change the airborne bacterial communities over Mt Tateyama and carry terrestrial bacterial populations, which possibly induce ice

  17. Revisiting the issue of elite capture in participatory initiatives

    DEFF Research Database (Denmark)

    Lund, Jens Friis; Saito-Jensen, Moeko

    2013-01-01

    of resistance orchestrated by initially disadvantaged groups. Based on the cases we argue that studies of elite capture should be based on in-depth and longitudinal empirical investigations that carefully characterize forms and outcomes of elite capture and consider both the changing dynamics of social settings...

  18. Gadolinium neutron capture therapy

    International Nuclear Information System (INIS)

    Akine, Yasuyuki; Tokita, Nobuhiko; Tokuuye, Koichi; Satoh, Michinao; Churei, Hisahiko

    1993-01-01

    Gadolinium neutron capture therapy makes use of photons and electrons produced by nuclear reactions between gadolinium and lower-energy neutrons which occur within the tumor. The results of our studies have shown that its radiation effect is mostly of low LET and that the electrons are the significant component in the over-all dose. The dose from gadolinium neutron capture reactions does not seem to increase in proportion to the gadolinium concentration, and the Gd-157 concentration of about 100 μg/ml appears most optimal for therapy. Close contact between gadolinium and the cell is not necessarily required for cell inactivation, however, the effect of electrons released from intracellular gadolinium may be significant. Experimental studies on tumor-bearing mice and rabbits have shown that this is a very promising modality though further improvements in gadolinium delivery to tumors are needed. (author)

  19. Snow mechanics and avalanche formation: field experiments on the dynamic response of the snow cover

    Science.gov (United States)

    Schweizer, Jürg; Schneebeli, Martin; Fierz, Charles; Föhn, Paul M. B.

    1995-11-01

    Knowledge about snow mechanics and snow avalanche formation forms the basis of any hazard mitigation measures. The crucial point is the snow stability. The most relevant mechanical properties - the compressive, tensile and shear strength of the individual snow layers within the snow cover - vary substantially in space and time. Among other things the strength of the snow layers depends strongly on the state of stress and the strain rate. The evaluation of the stability of the snow cover is hence a difficult task involving many extrapolations. To gain insight in the release mechanism of slab avalanches triggered by skiers, the skier's impact is measured with a load cell at different depths within the snow cover and for different snow conditions. The study focused on the effects of the dynamic loading and of the damping by snow compaction. In accordance with earlier finite-element (FE) calculations the results show the importance of the depth of the weak layer or interface and the snow conditions, especially the sublayering. In order to directly measure the impact force and to study the snow properties in more detail, a new instrument, called rammrutsch was developed. It combines the properties of the rutschblock with the defined impact properties of the rammsonde. The mechanical properties are determined using (i) the impact energy of the rammrutsch and (ii) the deformations of the snow cover measured with accelerometers and digital image processing of video sequences. The new method is well suited to detect and to measure the mechanical processes and properties of the fracturing layers. The duration of one test is around 10 minutes and the method seems appropriate for determining the spatial variability of the snow cover. A series of experiments in a forest opening showed a clear difference in the snow stability between sites below trees and ones in the free field of the opening.

  20. Probing cellular mechanoadaptation using cell-substrate de-adhesion dynamics: experiments and model.

    Science.gov (United States)

    S S, Soumya; Sthanam, Lakshmi Kavitha; Padinhateeri, Ranjith; Inamdar, Mandar M; Sen, Shamik

    2014-01-01

    Physical properties of the extracellular matrix (ECM) are known to regulate cellular processes ranging from spreading to differentiation, with alterations in cell phenotype closely associated with changes in physical properties of cells themselves. When plated on substrates of varying stiffness, fibroblasts have been shown to exhibit stiffness matching property, wherein cell cortical stiffness increases in proportion to substrate stiffness up to 5 kPa, and subsequently saturates. Similar mechanoadaptation responses have also been observed in other cell types. Trypsin de-adhesion represents a simple experimental framework for probing the contractile mechanics of adherent cells, with de-adhesion timescales shown to scale inversely with cortical stiffness values. In this study, we combine experiments and computation in deciphering the influence of substrate properties in regulating de-adhesion dynamics of adherent cells. We first show that NIH 3T3 fibroblasts cultured on collagen-coated polyacrylamide hydrogels de-adhere faster on stiffer substrates. Using a simple computational model, we qualitatively show how substrate stiffness and cell-substrate bond breakage rate collectively influence de-adhesion timescales, and also obtain analytical expressions of de-adhesion timescales in certain regimes of the parameter space. Finally, by comparing stiffness-dependent experimental and computational de-adhesion responses, we show that faster de-adhesion on stiffer substrates arises due to force-dependent breakage of cell-matrix adhesions. In addition to illustrating the utility of employing trypsin de-adhesion as a biophysical tool for probing mechanoadaptation, our computational results highlight the collective interplay of substrate properties and bond breakage rate in setting de-adhesion timescales.

  1. Recurrent and Dynamic Models for Predicting Streaming Video Quality of Experience.

    Science.gov (United States)

    Bampis, Christos G; Li, Zhi; Katsavounidis, Ioannis; Bovik, Alan C

    2018-07-01

    Streaming video services represent a very large fraction of global bandwidth consumption. Due to the exploding demands of mobile video streaming services, coupled with limited bandwidth availability, video streams are often transmitted through unreliable, low-bandwidth networks. This unavoidably leads to two types of major streaming-related impairments: compression artifacts and/or rebuffering events. In streaming video applications, the end-user is a human observer; hence being able to predict the subjective Quality of Experience (QoE) associated with streamed videos could lead to the creation of perceptually optimized resource allocation strategies driving higher quality video streaming services. We propose a variety of recurrent dynamic neural networks that conduct continuous-time subjective QoE prediction. By formulating the problem as one of time-series forecasting, we train a variety of recurrent neural networks and non-linear autoregressive models to predict QoE using several recently developed subjective QoE databases. These models combine multiple, diverse neural network inputs, such as predicted video quality scores, rebuffering measurements, and data related to memory and its effects on human behavioral responses, using them to predict QoE on video streams impaired by both compression artifacts and rebuffering events. Instead of finding a single time-series prediction model, we propose and evaluate ways of aggregating different models into a forecasting ensemble that delivers improved results with reduced forecasting variance. We also deploy appropriate new evaluation metrics for comparing time-series predictions in streaming applications. Our experimental results demonstrate improved prediction performance that approaches human performance. An implementation of this work can be found at https://github.com/christosbampis/NARX_QoE_release.

  2. Rotational and translational dynamics and their relation to hydrogen bond lifetimes in an ionic liquid by means of NMR relaxation time experiments and molecular dynamics simulation

    Science.gov (United States)

    Strate, Anne; Neumann, Jan; Overbeck, Viviane; Bonsa, Anne-Marie; Michalik, Dirk; Paschek, Dietmar; Ludwig, Ralf

    2018-05-01

    We report a concerted theoretical and experimental effort to determine the reorientational dynamics as well as hydrogen bond lifetimes for the doubly ionic hydrogen bond +OH⋯O- in the ionic liquid (2-hydroxyethyl)trimethylammonium bis(trifluoromethylsulfonyl)imide [Ch][NTf2] by using a combination of NMR relaxation time experiments, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. Due to fast proton exchange, the determination of rotational correlation times is challenging. For molecular liquids, 17O-enhanced proton relaxation time experiments have been used to determine the rotational correlation times for the OH vectors in water or alcohols. As an alternative to those expensive isotopic substitution experiments, we employed a recently introduced approach which is providing access to the rotational dynamics from a single NMR deuteron quadrupolar relaxation time experiment. Here, the deuteron quadrupole coupling constants (DQCCs) are obtained from a relation between the DQCC and the δ1H proton chemical shifts determined from a set of DFT calculated clusters in combination with experimentally determined proton chemical shifts. The NMR-obtained rotational correlation times were compared to those obtained from MD simulations and then related to viscosities for testing the applicability of popular hydrodynamic models. In addition, hydrogen bond lifetimes were derived, using hydrogen bond population correlation functions computed from MD simulations. Here, two different time domains were observed: The short-time contributions to the hydrogen lifetimes and the reorientational correlation times have roughly the same size and are located in the picosecond range, whereas the long-time contributions decay with relaxation times in the nanosecond regime and are related to rather slow diffusion processes. The computed average hydrogen bond lifetime is dominated by the long-time process, highlighting the importance and longevity of

  3. Basic Research Needs for Carbon Capture: Beyond 2020

    Energy Technology Data Exchange (ETDEWEB)

    Alivisatos, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buchanan, Michelle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2010-03-04

    mimic those encountered in actual separation processes. Such tools are needed to examine interfaces and thin films at the atomic and molecular levels, achieving an atomic/molecular-scale understanding of gas–host structures, kinetics, and dynamics, and understanding and control of nanoscale synthesis in multiple dimensions. A second major crosscutting theme was the development of new computational tools for theory, modeling, and simulation of separation processes. Computational techniques can be used to elucidate mechanisms responsible for observed separations, predict new desired features for advanced separations materials, and guide future experiments, thus complementing synthesis and characterization efforts. These two crosscut areas underscored the fact that the challenge for future carbon capture technologies will be met only with multidisciplinary teams of scientists and engineers. In addition, it was noted that success in this fundamental research area must be closely coupled with successful applied research to ensure the continuing assessment and maturation of new technologies as they undergo scale-up and deployment. Carbon capture is a very rich scientific problem, replete with opportunity for basic researchers to advance the frontiers of science as they engage on one of the most important technical challenges of our times. This workshop report outlines an ambitious agenda for addressing the very difficult problem of carbon capture by creating foundational new basic science. This new science will in turn pave the way for many additional advances across a broad range of scientific disciplines and technology sectors.

  4. Dynamic behaviour of AA 2024 under blast loading : experiments and simulations

    NARCIS (Netherlands)

    Mediavilla Varas, J.; Soetens, F.; van der Meulen, Ronald; Kroon, E.; Aanhold, van J.E.; Soetens, F.; Katgerman, L.

    2010-01-01

    The dynamic behaviour of AA2024-T3 is investigated. Dynamic tensile tests using a servo-hydraulic and a light weight shock testing machine (LSM) have been performed. The servo-hydraulic test machine proves to be more reliable and reaches higher strain rates. Neither test revealed any strain rate

  5. Radiative muon capture on nuclei and protons

    International Nuclear Information System (INIS)

    Azuelos, G.; Gorringe, T.P.; Henderson, R.; Macdonald, J.A.; Poutissou, J.M.; Azuelos, G.; Depommier, P.; Poutissou, R.; Ahmad, S.; Burnham, A.; Hasinoff, M.D.; Larabee, A.J.; Waltham, C.E.; Wright, D.H.; Armstrong, D.S.; Blecher, M.; Serna-Angel, A.; Bertl, W.; Chen, C.Q.; Zhang, N.S.; McDonald, S.C.; Taylor, G.N.; Robertson, B.C.

    1990-01-01

    A brief review is made of the study of gp, the induced pseudoscalar coupling constant, in radiative muon capture on light nuclei, and of motivations for a measurement on hydrogen, with particular emphasis on recent and ongoing experiments at TRIUMF [fr

  6. Realistic costs of carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

    2009-07-01

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS

  7. AMUC: Associated Motion capture User Categories.

    Science.gov (United States)

    Norman, Sally Jane; Lawson, Sian E M; Olivier, Patrick; Watson, Paul; Chan, Anita M-A; Dade-Robertson, Martyn; Dunphy, Paul; Green, Dave; Hiden, Hugo; Hook, Jonathan; Jackson, Daniel G

    2009-07-13

    The AMUC (Associated Motion capture User Categories) project consisted of building a prototype sketch retrieval client for exploring motion capture archives. High-dimensional datasets reflect the dynamic process of motion capture and comprise high-rate sampled data of a performer's joint angles; in response to multiple query criteria, these data can potentially yield different kinds of information. The AMUC prototype harnesses graphic input via an electronic tablet as a query mechanism, time and position signals obtained from the sketch being mapped to the properties of data streams stored in the motion capture repository. As well as proposing a pragmatic solution for exploring motion capture datasets, the project demonstrates the conceptual value of iterative prototyping in innovative interdisciplinary design. The AMUC team was composed of live performance practitioners and theorists conversant with a variety of movement techniques, bioengineers who recorded and processed motion data for integration into the retrieval tool, and computer scientists who designed and implemented the retrieval system and server architecture, scoped for Grid-based applications. Creative input on information system design and navigation, and digital image processing, underpinned implementation of the prototype, which has undergone preliminary trials with diverse users, allowing identification of rich potential development areas.

  8. Audiovisual Capture with Ambiguous Audiovisual Stimuli

    Directory of Open Access Journals (Sweden)

    Jean-Michel Hupé

    2011-10-01

    Full Text Available Audiovisual capture happens when information across modalities get fused into a coherent percept. Ambiguous multi-modal stimuli have the potential to be powerful tools to observe such effects. We used such stimuli made of temporally synchronized and spatially co-localized visual flashes and auditory tones. The flashes produced bistable apparent motion and the tones produced ambiguous streaming. We measured strong interferences between perceptual decisions in each modality, a case of audiovisual capture. However, does this mean that audiovisual capture occurs before bistable decision? We argue that this is not the case, as the interference had a slow temporal dynamics and was modulated by audiovisual congruence, suggestive of high-level factors such as attention or intention. We propose a framework to integrate bistability and audiovisual capture, which distinguishes between “what” competes and “how” it competes (Hupé et al., 2008. The audiovisual interactions may be the result of contextual influences on neural representations (“what” competes, quite independent from the causal mechanisms of perceptual switches (“how” it competes. This framework predicts that audiovisual capture can bias bistability especially if modalities are congruent (Sato et al., 2007, but that is fundamentally distinct in nature from the bistable competition mechanism.

  9. [Dynamics of Irreversible Evaporation of a Water-Protein Droplet and a Problem of Structural and Dynamical Experiments with Single Molecules].

    Science.gov (United States)

    Shaitan, K V; Armeev, G A; Shaytan, A K

    2016-01-01

    We discuss the effect of isothermal and adiabatic evaporation of water on the state of a water-protein droplet. The discussed problem is of current importance due to development of techniques to perform single molecule experiments using free electron lasers. In such structure-dynamic experiments the delivery of a sample into the X-ray beam is performed using the microdroplet injector. The time between the injection and delivery is in the order of microseconds. In this paper we developed a specialized variant of all-atom molecular dynamics simulations for the study of irreversible isothermal evaporation of the droplet. Using in silico experiments we determined the parameters of isothermal evaporation of the water-protein droplet with the sodium and chloride ions in the concentration range of 0.3 M at different temperatures. The energy of irreversible evaporation determined from in silico experiments at the initial stages of evaporation virtually coincides with the specific heat of evaporation for water. For the kinetics of irreversible adiabatic evaporation an exact analytical solution was obtained in the limit of high thermal conductivity of the droplet (or up to the droplet size of -100 Å). This analytical solution incorporates parameters that are determined using in silico. experiments on isothermal droplet evaporation. We show that the kinetics of adiabatic evaporation and cooling of the droplet scales with the droplet size. Our estimates of the water-protemi droplet. freezing rate in the adiabatic regime in a vacuum chamber show that additional techniques for stabilizing the temperature inside the droplet should be used in order to study the conformational transitions of the protein in single molecules. Isothermal and quasi-isothermal conditions are most suitable for studying the conformational transitions upon object functioning. However, in this case it is necessary to take into account the effects of dehydration and rapid increase of ionic strength in an

  10. Neutron capture therapy for melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Coderre, J.A.; Glass, J.D.; Micca, P.; Fairchild, R.G.

    1988-01-01

    The development of boron-containing compounds which localize selectively in tumor may require a tumor-by-tumor type of approach that exploits any metabolic pathways unique to the particular type of tumor. Melanin-producing melanomas actively transport and metabolize aromatic amino acids for use as precursors in the synthesis of the pigment melanin. It has been shown that the boron-containing amino acid analog p-borono-phenylalanine (BPA) is selectively accumulated in melanoma tissue, producing boron concentrations in tumor that are within the range estimated to be necessary for successful boron neutron capture therapy (BNCT). We report here the results of therapy experiments carried out at the Brookhaven Medical Research Reactor (BMRR). 21 refs., 5 figs., 3 tabs.

  11. Neutron capture therapy for melanoma

    International Nuclear Information System (INIS)

    Coderre, J.A.; Glass, J.D.; Micca, P.; Fairchild, R.G.

    1988-01-01

    The development of boron-containing compounds which localize selectively in tumor may require a tumor-by-tumor type of approach that exploits any metabolic pathways unique to the particular type of tumor. Melanin-producing melanomas actively transport and metabolize aromatic amino acids for use as precursors in the synthesis of the pigment melanin. It has been shown that the boron-containing amino acid analog p-borono-phenylalanine (BPA) is selectively accumulated in melanoma tissue, producing boron concentrations in tumor that are within the range estimated to be necessary for successful boron neutron capture therapy (BNCT). We report here the results of therapy experiments carried out at the Brookhaven Medical Research Reactor (BMRR). 21 refs., 5 figs., 3 tabs

  12. State-selective electron capture

    International Nuclear Information System (INIS)

    Dunford, R.W.; Liu, C.J.; Berry, H.G.; Pardo, R.C.; Raphaelian, M.L.A.

    1988-01-01

    We report results from a new atomic physics program using the Argonne PII ECR ion source which is being built as part of the upgrade of the Argonne Tandem-Linear Accelerator (ATLAS). Our initial experiments have been aimed at studying state-selective electron capture in ion-atom collisions using the technique of Photon Emission Spectroscopy. We are extending existing cross section measurements at low energy ( 6+ and O 7+ on He and H 2 targets in the energy range from 1-105 keV/amu. We also present uv spectra obtained in collisions of O 6+ , O 5+ and N 5+ on a sodium target. 4 refs., 2 figs., 1 tab

  13. Comparison of analysis and experiment for dynamics of low-contact-ratio spur gears

    Science.gov (United States)

    Oswald, Fred B.; Rebbechi, Brian; Zakrajsek, James J.; Townsend, Dennis P.; Lin, Hsiang Hsi

    1991-01-01

    Low-contact-ratio spur gears were tested in NASA gear-noise-rig to study gear dynamics including dynamic load, tooth bending stress, vibration, and noise. The experimental results were compared with a NASA gear dynamics code to validate the code as a design tool for predicting transmission vibration and noise. Analytical predictions and experimental data for gear-tooth dynamic loads and tooth-root bending stress were compared at 28 operating conditions. Strain gage data were used to compute the normal load between meshing teeth and the bending stress at the tooth root for direct comparison with the analysis. The computed and measured waveforms for dynamic load and stress were compared for several test conditions. These are very similar in shape, which means the analysis successfully simulates the physical behavior of the test gears. The predicted peak value of the dynamic load agrees with the measurement results within an average error of 4.9 percent except at low-torque, high-speed conditions. Predictions of peak dynamic root stress are generally within 10 to 15 percent of the measured values.

  14. Collisional Cascades Following Triton's Capture

    Science.gov (United States)

    Cuk, Matija; Hamilton, Douglas P.; Stewart-Mukhopadhyay, Sarah T.

    2017-10-01

    Neptune's moon Triton is widely thought to have been captured from heliocentric orbit, most likely through binary dissociation (Agnor and Hamilton, 2006). Triton's original eccentric orbit must have been subsequently circularized by satellite tides (Goldreich et al. 1989). Cuk and Gladman (2005) found that Kozai oscillations make early tidal evolution inefficient, and have proposed that collisions between Triton and debris from pre-existing satellites was the dominant mechanism of shrinking Triton's large post-capture orbit. However, Cuk and Hamilton (DPS 2016), using numerical simulations and results of Stewart and Leinhardt (2012), have found that collisions between regular satellites are unlikely to be destructive, while collisions between prograde moons and Triton are certainly erosive if not catastrophic. An obvious outcome would be pre-existing moon material gradually grinding down Triton and making it reaccrete in the local Laplace plane, in conflict with Triton's large current inclination. We propose that the crucial ingredient for understanding the early evolution of the Neptunian system are the collisions between the moons and the prograde and retrograde debris originating from the pre-existing moons and Triton. In particular, we expect early erosive impact(s) on Triton to generate debris that will, in subsequent collisions, disrupt the regular satellites. If the retrograde material were to dominate at some planetocentric distances, the end result may be a large cloud or disk of retrograde debris that would be accreted by Triton, shrinking Triton's orbit. Some of the prograde debris could survive in a compact disk interior to Triton's pericenter, eventually forming the inner moons of Neptune. We will present results of numerical modeling of these complex dynamical processes at the meeting.

  15. High-speed photography of dynamic photoelastic experiment with a highly accurate blasting machine

    Science.gov (United States)

    Katsuyama, Kunihisa; Ogata, Yuji; Wada, Yuji; Hashizume, K.

    1995-05-01

    A high accurate blasting machine which could control 1 microsecond(s) was developed. At first, explosion of a bridge wire in an electric detonator was observed and next the detonations of caps were observed with a high speed camera. It is well known that a compressed stress wave reflects at the free face, it propagates to the backward as a tensile stress wave, and cracks grow when the tensile stress becomes the dynamic tensile strength. The behavior of these cracks has been discussed through the observation of the dynamic photoelastic high speed photography and the three dimensional dynamic stress analysis.

  16. Group Dynamics as a Critical Component of Successful Space Exploration: Conceptual Theory and Insights from the Biosphere 2 Closure Experiment

    Science.gov (United States)

    Nelson, Mark; Allen, John P.

    As space exploration and eventually habitation achieves longer durations, successfully managing group dynamics of small, physically isolated groups will become vital. The paper summarizes important underlying research and conceptual theory and how these manifested in a well-documented example: the closure experiments of Biosphere 2. Key research breakthroughs in discerning the operation of small human groups comes from the pioneering work of W.R. Bion. He discovered two competing modalities of behavior. The first is the “task-oriented” or work group governed by shared acceptance of goals, reality-thinking in relation to time, resources and rational, and intelligent management of challenges presented. The opposing, usually unconscious, modality is what Bion called the “basic-assumption” group and alternates between three “group animal” groups: dependency/kill the leader; fight/flight and pairing. If not dealt with, these dynamics work to undermine and defeat the conscious task group’s goal achievement. The paper discusses crew training and selection, various approaches to structuring the work and hierarchy of the group, the importance of contact with a larger population through electronic communication and dealing with the “us-them” syndrome frequently observed between crew and Mission Control. The experience of the first two year closure of Biosphere 2 is drawn on in new ways to illustrate vicissitudes and management of group dynamics especially as both the inside team of biospherians and key members of Mission Control had training in working with group dynamics. Insights from that experience may help mission planning so that future groups in space cope successfully with inherent group dynamics challenges that arise.

  17. Synovectomy by Neutron capture

    International Nuclear Information System (INIS)

    Vega C, H.R.; Torres M, C.

    1998-01-01

    The Synovectomy by Neutron capture has as purpose the treatment of the rheumatoid arthritis, illness which at present does not have a definitive curing. This therapy requires a neutron source for irradiating the articulation affected. The energy spectra and the intensity of these neutrons are fundamental since these neutrons induce nuclear reactions of capture with Boron-10 inside the articulation and the freely energy of these reactions is transferred at the productive tissue of synovial liquid, annihilating it. In this work it is presented the neutron spectra results obtained with moderator packings of spherical geometry which contains in its center a Pu 239 Be source. The calculations were realized through Monte Carlo method. The moderators assayed were light water, heavy water base and the both combination of them. The spectra obtained, the average energy, the neutron total number by neutron emitted by source, the thermal neutron percentage and the dose equivalent allow us to suggest that the moderator packing more adequate is what has a light water thickness 0.5 cm (radius 2 cm) and 24.5 cm heavy water (radius 26.5 cm). (Author)

  18. The stream of experience when watching artistic movies. Dynamic aesthetic effects revealed by the continuous evaluation procedure (CEP

    Directory of Open Access Journals (Sweden)

    Claudia eMuth

    2015-03-01

    Full Text Available Research in perception and appreciation is often focused on snapshots, stills of experience. Static approaches allow for multidimensional assessment, but are unable to catch the crucial dynamics of affective and perceptual processes; for instance, aesthetic phenomena such as the ‘Aesthetic-Aha’ (the increase in liking after the sudden detection of Gestalt, effects of expectation, or Berlyne’s idea that ‘disorientation’ with a ‘promise of success’ elicits interest. We conducted empirical studies on indeterminate artistic movies depicting the evolution and metamorphosis of Gestalt and investigated (i the effects of sudden perceptual insights on liking; that is, Aesthetic Aha-effects, (ii the dynamics of interest before moments of insight, and (iii the dynamics of complexity before and after moments of insight. Via the so-called Continuous Evaluation Procedure (CEP enabling analogous evaluation in a continuous way, participants assessed the material on two aesthetic dimensions blockwise either in a gallery or a laboratory. The material’s inherent dynamics were described via assessments of liking, interest, determinacy and surprise along with a computational analysis on the variable complexity. We identified moments of insight as peaks in determinacy and surprise. Statistically significant changes in liking and interest demonstrated that: (i insights increase liking, (ii interest already increases 1,500 ms before such moments of insight, supporting the idea that it is evoked by an expectation of understanding, and (iii insights occur during increasing complexity. We propose a preliminary model of dynamics in liking and interest with regard to complexity and perceptual insight and discuss descriptions of participants’ experiences of insight. Our results point to the importance of systematic analyses of dynamics in art perception and appreciation.

  19. The stream of experience when watching artistic movies. Dynamic aesthetic effects revealed by the Continuous Evaluation Procedure (CEP).

    Science.gov (United States)

    Muth, Claudia; Raab, Marius H; Carbon, Claus-Christian

    2015-01-01

    Research in perception and appreciation is often focused on snapshots, stills of experience. Static approaches allow for multidimensional assessment, but are unable to catch the crucial dynamics of affective and perceptual processes; for instance, aesthetic phenomena such as the "Aesthetic-Aha" (the increase in liking after the sudden detection of Gestalt), effects of expectation, or Berlyne's idea that "disorientation" with a "promise of success" elicits interest. We conducted empirical studies on indeterminate artistic movies depicting the evolution and metamorphosis of Gestalt and investigated (i) the effects of sudden perceptual insights on liking; that is, "Aesthetic Aha"-effects, (ii) the dynamics of interest before moments of insight, and (iii) the dynamics of complexity before and after moments of insight. Via the so-called Continuous Evaluation Procedure (CEP) enabling analogous evaluation in a continuous way, participants assessed the material on two aesthetic dimensions blockwise either in a gallery or a laboratory. The material's inherent dynamics were described via assessments of liking, interest, determinacy, and surprise along with a computational analysis on the variable complexity. We identified moments of insight as peaks in determinacy and surprise. Statistically significant changes in liking and interest demonstrated that: (i) insights increase liking, (ii) interest already increases 1500 ms before such moments of insight, supporting the idea that it is evoked by an expectation of understanding, and (iii) insights occur during increasing complexity. We propose a preliminary model of dynamics in liking and interest with regard to complexity and perceptual insight and discuss descriptions of participants' experiences of insight. Our results point to the importance of systematic analyses of dynamics in art perception and appreciation.

  20. Impacts of dynamical ocean coupling in MJO experiments using NICAM/NICOCO

    Science.gov (United States)

    Miyakawa, T.

    2016-12-01

    The cloud-system resolving atmosphereic model NICAM has been successfull in producing Madden-Julian Oscillations(MJOs), having it's prediction skill estimated to be about 4 weeks in a series of hindcast experiments for winter MJO events during 2003-2012 (Miyakawa et al. 2014). A simple mixed-layer ocean model has been applied with nudging towards a prescribed "persistent anomaly SST", which maintains the initial anomaly with a time-varying climatological seasonal cycle. This setup enables the model to interact with an ocean with reasonably realistic SST, and also run in a "forecast mode", without using any observational information after the initial date. A limitation is that under this setup, the model skill drops if the oceanic anomaly rapidly changes after the initial date in the real world. Here we run a recently developed, full 3D-ocean coupled version NICAM-COCO (NICOCO) and explore its impact on MJO simulations. Dynamical ocean models can produce oceanic waves/currents, but will also have a bias and drift away from reality. In a sub-seasonal simulation (an initial problem), it is essential to compare the merit of having better represented oceanic signals and the demerit of bias/drift. A test case simulation series featuring an MJO that triggered the abrupt termination of a major El Nino in 1998 shows that the abrupt termination occurs in all 9 simulation members, highlighting the merit of ocean coupling. However, this is a case where oceanic signals are at its extremes. We carried out an estimation of MJO prediction skill for a preliminary 1-degree mesh ocean version of NICOCO in a similar manner to Miyakawa et al. (2014). The MJO skill was degraded for simulations that was initialized at RMM phases 1 and 2 (corresponding to the Indian Ocean), while those initialized at phase 8 (Africa) was not strongly affected. The tendency of the model ocean to overestimate the Maritime Continent warm pool SST possibly delays the eastward propagation of MJO convective

  1. CQESTR Simulation of Soil Organic Matter Dynamics in Long-term Agricultural Experiments across USA

    Science.gov (United States)

    Gollany, H.; Liang, Y.; Albrecht, S.; Rickman, R.; Follett, R.; Wilhelm, W.; Novak, J.

    2009-04-01

    Soil organic matter (SOM) has important chemical (supplies nutrients, buffers and adsorbs harmful chemical compounds), biological (supports the growth of microorganisms and micro fauna), and physical (improves soil structure and soil tilth, stores water, and reduces surface crusting, water runoff) functions. The loss of 20 to 50% of soil organic carbon (SOC) from USA soils after converting native prairie or forest to production agriculture is well documented. Sustainable management practices for SOC is critical for maintaining soil productivity and responsible utilization of crop residues. As crop residues are targeted for additional uses (e.g., cellulosic ethanol feedstock) developing C models that predict change in SOM over time with change in management becomes increasingly important. CQESTR, pronounced "sequester," is a process-based C balance model that relates organic residue additions, crop management and soil tillage to SOM accretion or loss. The model works on daily time-steps and can perform long-term (100-year) simulations. Soil organic matter change is computed by maintaining a soil C budget for additions, such as crop residue or added amendments like manure, and organic C losses through microbial decomposition. Our objective was to simulate SOM changes in agricultural soils under a range of soil parent materials, climate and management systems using the CQESTR model. Long-term experiments (e.g. Champaign, IL, >100 yrs; Columbia, MO, >100 yrs; Lincoln, NE, 20 yrs) under various tillage practices, organic amendments, crop rotations, and crop residue removal treatments were selected for their documented history of the long-term effects of management practice on SOM dynamics. Simulated and observed values from the sites were significantly related (r2 = 94%, P management issue. CQESTR successfully simulated a substantial decline in SOM with 90% of crop residue removal for 50 years under various rotations at Columbia, MO and Champaign, IL. An increase in SOM

  2. Capturing method for integral three-dimensional imaging using multiviewpoint robotic cameras

    Science.gov (United States)

    Ikeya, Kensuke; Arai, Jun; Mishina, Tomoyuki; Yamaguchi, Masahiro

    2018-03-01

    Integral three-dimensional (3-D) technology for next-generation 3-D television must be able to capture dynamic moving subjects with pan, tilt, and zoom camerawork as good as in current TV program production. We propose a capturing method for integral 3-D imaging using multiviewpoint robotic cameras. The cameras are controlled through a cooperative synchronous system composed of a master camera controlled by a camera operator and other reference cameras that are utilized for 3-D reconstruction. When the operator captures a subject using the master camera, the region reproduced by the integral 3-D display is regulated in real space according to the subject's position and view angle of the master camera. Using the cooperative control function, the reference cameras can capture images at the narrowest view angle that does not lose any part of the object region, thereby maximizing the resolution of the image. 3-D models are reconstructed by estimating the depth from complementary multiviewpoint images captured by robotic cameras arranged in a two-dimensional array. The model is converted into elemental images to generate the integral 3-D images. In experiments, we reconstructed integral 3-D images of karate players and confirmed that the proposed method satisfied the above requirements.

  3. A two-angle model of dynamic wetting in microscale capillaries under low capillary numbers with experiments.

    Science.gov (United States)

    Lei, Da; Lin, Mian; Li, Yun; Jiang, Wenbin

    2018-06-15

    An accurate model of the dynamic contact angle θ d is critical for the calculation of capillary force in applications like enhanced oil recovery, where the capillary number Ca ranges from 10 -10 to 10 -5 and the Bond number Bo is less than 10 -4 . The rate-dependence of the dynamic contact angle under such conditions remains blurred, and is the main target of this study. Featuring with pressure control and interface tracking, the innovative experimental system presented in this work achieves the desired ranges of Ca and Bo, and enables the direct optical measurement of dynamic contact angles in capillaries as tiny as 40 × 20 (width × height) μm and 80 × 20 μm. The advancing and receding processes of wetting and nonwetting liquids were tested. The dynamic contact angle was confirmed velocity-independent with 10 -9  contact line velocity V = 0.135-490 μm/s) and it can be described by a two-angle model with desirable accuracy. A modified two-angle model was developed and an empirical form was obtained from experiments. For different liquids contacting the same surface, the advancing angle θ adv approximately equals the static contact angle θ o . The receding angle θ rec was found to be a linear function of θ adv , in good agreement with our and other experiments from the literature. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Dynamics of ion–molecule reactions from beam experiments: A historical survey

    Czech Academy of Sciences Publication Activity Database

    Herman, Zdeněk; Futrell, J. H.

    2015-01-01

    Roč. 377, FEB 2015 (2015), s. 84-92 ISSN 1387-3806 Institutional support: RVO:61388955 Keywords : Ion–molecule reactions * Dynamics * Beam scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.183, year: 2015

  5. Investigation of the Dynamics of a Maglev Vehicle Traversing a Flexible Guideway : Theory and Experiment

    Science.gov (United States)

    1979-04-01

    This report presents the results of a research program conducted jointly by the United States Department of Transportation and the Federal Republic of Germany Ministry for Research and Technology. The object of this program was to study the dynamics ...

  6. Research on Dynamic Dissolving Model and Experiment for Rock Salt under Different Flow Conditions

    Directory of Open Access Journals (Sweden)

    Xinrong Liu

    2015-01-01

    Full Text Available Utilizing deep rock salt cavern is not only a widely recognized energy reserve method but also a key development direction for implementing the energy strategic reserve plan. And rock salt cavern adopts solution mining techniques to realize building cavity. In view of this, the paper, based on the dissolving properties of rock salt, being simplified and hypothesized the dynamic dissolving process of rock salt, combined conditions between dissolution effect and seepage effect in establishing dynamic dissolving models of rock salt under different flow quantities. Devices were also designed to test the dynamic dissolving process for rock salt samples under different flow quantities and then utilized the finite-difference method to find the numerical solution of the dynamic dissolving model. The artificial intelligence algorithm, Particle Swarm Optimization algorithm (PSO, was finally introduced to conduct inverse analysis of parameters on the established model, whose calculation results coincide with the experimental data.

  7. Bimanual coordination and musical experience : The role of intrinsic dynamics and behavioral information

    NARCIS (Netherlands)

    Verheul, M.H.G.; Geuze, RH

    Rhythmic interlimb coordination arises from the interaction of intrinsic dynamics and behavioral information, that is, intention, memory, or external information specifying the required coordination pattern. This study investigates the influence of the content of memorized behavioral information on

  8. A novel method for calculating the dynamic capillary force and correcting the pressure error in micro-tube experiment.

    Science.gov (United States)

    Wang, Shuoliang; Liu, Pengcheng; Zhao, Hui; Zhang, Yuan

    2017-11-29

    Micro-tube experiment has been implemented to understand the mechanisms of governing microcosmic fluid percolation and is extensively used in both fields of micro electromechanical engineering and petroleum engineering. The measured pressure difference across the microtube is not equal to the actual pressure difference across the microtube. Taking into account the additional pressure losses between the outlet of the micro tube and the outlet of the entire setup, we propose a new method for predicting the dynamic capillary pressure using the Level-set method. We first demonstrate it is a reliable method for describing microscopic flow by comparing the micro-model flow-test results against the predicted results using the Level-set method. In the proposed approach, Level-set method is applied to predict the pressure distribution along the microtube when the fluids flow along the microtube at a given flow rate; the microtube used in the calculation has the same size as the one used in the experiment. From the simulation results, the pressure difference across a curved interface (i.e., dynamic capillary pressure) can be directly obtained. We also show that dynamic capillary force should be properly evaluated in the micro-tube experiment in order to obtain the actual pressure difference across the microtube.

  9. Negative pion capture in chemical compounds

    International Nuclear Information System (INIS)

    Butsev, V.S.; Chultem, D.; Gavrilov, Yu.K.; Ganzorig, Dz.; Norseev, Yu.V.; Presperin, V.

    1976-01-01

    The results are reported of an experiment of determination of the probability of capture of resting negative pions by iodine nuclei in alkali metal iodides (LiI, NaI, KI, RbI, CsI). The yield of an isomer sup(116m)(Sb/8 - ) with a high spin number, formed in the reaction 127 I(π - , lp 10n) allows to determine the relative probability of the nuclear capture of pions in the above compounds. The results obrained are compared with the predictions of the Fermi-Teller Z-law

  10. Dynamics

    CERN Document Server

    Goodman, Lawrence E

    2001-01-01

    Beginning text presents complete theoretical treatment of mechanical model systems and deals with technological applications. Topics include introduction to calculus of vectors, particle motion, dynamics of particle systems and plane rigid bodies, technical applications in plane motions, theory of mechanical vibrations, and more. Exercises and answers appear in each chapter.

  11. Evaluating the effectiveness of methods for capturing meetings

    OpenAIRE

    Hall, Mark John; Bermell-Garcia, Pablo; McMahon, Chris A.; Johansson, Anders; Gonzalez-Franco, Mar

    2015-01-01

    The purpose of this paper is to evaluate the effectiveness of commonly used methods to capture synchronous meetings for information and knowledge retrieval. Four methods of capture are evaluated in the form of a case study whereby a technical design meeting was captured by; (i) transcription; (ii) diagrammatic argumentation; (iii) meeting minutes; and (iv) video. The paper describes an experiment where participants undertook an information retrieval task and provided feedback on the methods. ...

  12. Thermal neutron capture cross sections of tellurium isotopes

    International Nuclear Information System (INIS)

    Tomandl, I.; Honzatko, J.; Egidy, T. von; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2003-01-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122 Te, 124 Te, 125 Te, 126 Te, 128 Te, and 130 Te are reported. These values are based on a combination of newly determined partial γ-ray cross sections obtained from experiments on targets contained natural Te and γ intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given

  13. Thermal neutron capture cross sections of tellurium isotopes

    International Nuclear Information System (INIS)

    Tomandl, I.; Honzatko, J.; Egidy, T. von; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-01-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given

  14. Thermal neutron capture cross sections of tellurium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Tomandl, I.; Honzatko, J.; von Egidy, T.; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-03-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given.

  15. Fragment capture device

    Science.gov (United States)

    Payne, Lloyd R.; Cole, David L.

    2010-03-30

    A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point of the solid fragment is located within a cavity at least partially enclosed by the array of bars.

  16. Capturing the Daylight Dividend

    Energy Technology Data Exchange (ETDEWEB)

    Peter Boyce; Claudia Hunter; Owen Howlett

    2006-04-30

    Capturing the Daylight Dividend conducted activities to build market demand for daylight as a means of improving indoor environmental quality, overcoming technological barriers to effective daylighting, and informing and assisting state and regional market transformation and resource acquisition program implementation efforts. The program clarified the benefits of daylight by examining whole building systems energy interactions between windows, lighting, heating, and air conditioning in daylit buildings, and daylighting's effect on the human circadian system and productivity. The project undertook work to advance photosensors, dimming systems, and ballasts, and provided technical training in specifying and operating daylighting controls in buildings. Future daylighting work is recommended in metric development, technology development, testing, training, education, and outreach.

  17. Explaining Disparities in Unemployment Dynamics

    OpenAIRE

    Karanassou, Marika; Snower, Dennis J.

    1993-01-01

    This paper attempts to explain disparities among the unemployment experiences of different OECD countries in terms of the `fragility' of the short-run unemployment equilibrium (the impact of labour market shocks on the short-run unemployment rate) and the lag structure of the employment determination, wage setting, and labour force participation decisions. The effects of this lag structure on unemployment dynamics are captured through two general measures of `unemployment persistence' (occurr...

  18. Expansion dynamics and equilibrium conditions in a laser ablation plume of lithium: Modeling and experiment

    International Nuclear Information System (INIS)

    Stapleton, M.W.; McKiernan, A.P.; Mosnier, J.-P.

    2005-01-01

    The gas dynamics and atomic kinetics of a laser ablation plume of lithium, expanding adiabatically in vacuum, are included in a numerical model, using isothermal and isentropic self-similar analytical solutions and steady-state collisional radiative equations, respectively. Measurements of plume expansion dynamics using ultrafast imaging for various laser wavelengths (266-1064 nm), fluences (2-6.5 J cm -2 ), and spot sizes (50-1000 μm) are performed to provide input parameters for the model and, thereby, study the influence of laser spot size, wavelength, and fluence, respectively, on both the plume expansion dynamics and atomic kinetics. Target recoil pressure, which clearly affects plume dynamics, is included in the model. The effects of laser wavelength and spot size on plume dynamics are discussed in terms of plasma absorption of laser light. A transition from isothermal to isentropic behavior for spot sizes greater than 50 μm is clearly evidenced. Equilibrium conditions are found to exist only up to 300 ns after the plume creation, while complete local thermodynamic equilibrium is found to be confined to the very early parts of the expansion

  19. Population dynamics of the species Plantago major L. and Poa annua L. in a replacement series experiment

    Directory of Open Access Journals (Sweden)

    Mijović A.

    2009-01-01

    Full Text Available Population dynamics of the species Plantago major L. and Poa annua L., typical representatives of ruderal vegetation, was analyzed in a replacement series experiment. The analyzed species were sown in an area with meadow vegetation, where the vegetation present had been previously removed by a total herbicide and additionally by hoeing. The objective of the experiment was to monitor growth dynamics and the effect of intra- and inter-specific interaction of the species Plantago major and Poa annua in conditions of different sowing densities and proportions. The effects of intra- and inter-specific interference and the density-dependent responses were assessed on the basis of several parameters (natality, mortality, age structure, and measures of ontogenetic changes. Based on the study results, it can be concluded that the responses of the species in the experiment were different, which is explained by different adaptive mechanisms, i.e., strategies, in the specific environmental conditions. An effect of the density dependent response was present in both species in the replacement series experiment. The response was amplified by water deficit caused by intensive evapora­tion of the bare soil. No effect of inter-specific interference was observed at the given densities of the study species on the sample plots. An effect of intra-specific interference of the species Plantago major and Poa annua was observed in the guise of a density-negative response of the rate of ontogenetic changes and fecundity.

  20. Dynamic Load on a Pipe Caused by Acetylene Detonations – Experiments and Theoretical Approaches

    Directory of Open Access Journals (Sweden)

    Axel Sperber

    1999-01-01

    Full Text Available The load acting on the wall of a pipe by a detonation, which is travelling through, is not yet well characterized. The main reasons are the limited amount of sufficiently accurate pressure time history data and the requirement of considering the dynamics of the system. Laser vibrometry measurements were performed to determine the dynamic response of the pipe wall on a detonation. Different modelling approaches were used to quantify, theoretically, the radial displacements of the pipe wall. There is good agreement between measured and predicted values of vibration frequencies and the propagation velocities of transverse waves. Discrepancies mainly due to wave propagation effects were found in the amplitudes of the radial velocities. They might be overcome by the use of a dynamic load factor or improved modelling methods.

  1. Lateral Dynamics of Flexible Rotors Supported by Controllable Gas Bearings Theory & Experiment

    DEFF Research Database (Denmark)

    Pierart Vásquez, Fabián Gonzalo; Santos, Ilmar

    2015-01-01

    Active gas bearings might represent a mechatronic answer to the growing industrial need for high performance turbomachinery. In this framework, the paper gives a theoretical and experimental contribution to the improvement of lateral dynamics of rotating machines. The work aims at demonstrating...... theoretically as well as experimentally the feasibility of applying active lubrication to gas journal bearings. The operation principle is to generate active forces by regulating the radial injection of a compressible lubricant (gas) by means of piezoelectric actuators mounted on the back of the bearing sleeve....... The active control principle is built using eddy-current sensor signals to detect the lateral motion of the rotor. A feedback law is used to couple the lateral dynamics of a flexible rotor-bearing system with the pneumatic and dynamic characteristics of a piezoelectric actuated valve system. A proportional...

  2. The relationship between action-effect monitoring and attention capture.

    Science.gov (United States)

    Kumar, Neeraj; Manjaly, Jaison A; Sunny, Meera Mary

    2015-02-01

    Many recent findings suggest that stimuli that are perceived to be the consequence of one's own actions are processed with priority. According to the preactivation account of intentional binding, predicted consequences are preactivated and hence receive a temporal advantage in processing. The implications of the preactivation account are important for theories of attention capture, as temporal advantage often translates to attention capture. Hence, action might modulate attention capture by feature singletons. Experiment 1 showed that a motion onset and color change captured attention only when it was preceded by an action. Experiment 2 showed that the capture occurs only with predictable, but not with unpredictable, consequences of action. Experiment 3 showed that even when half the display changed color at display transition, they were all prioritized. The results suggest that action modulates attentional control.

  3. Radiative muon capture on hydrogen

    International Nuclear Information System (INIS)

    Wright, D.H.; Ahmad, S.; Gorringe, T.P.; Hasinoff, M.D.; Larabee, A.J.; Waltham, C.E.; Armstrong, D.S.; Blecher, M.; Serna-Angel, A.; Azuelos, G.; Macdonald, J.A.; Poutissou, J.M.; Bertl, W.; Chen, C.Q.; Ding, Z.H.; Zhang, N.S.; Henderson, R.; McDonald, S.; Taylor, G.N.; Robertson, B.C.

    1989-01-01

    In the Standard Model, the weak interaction is purely V-A in character. However in semileptonic reactions the strong force induces additional couplings. One of these, the induced pseudoscalar coupling g p , is still very poorly determined experimentally. Using PCAC and the Goldberger-Treiman relation, one can obtain the estimate g p /g a = 6.8 for the nucleon. At present, the world average of 5 measurements of the rate of ordinary muon capture (each with an error in excess of 40%) yields g p /g a = 6.9 ± 1.5. Radiative Muon Capture (RMC) is considerably more sensitive to the pseudoscalar coupling. Due to the extremely small branching ratio (∼ 6 x 10 -8 ), the elementary reaction μ - p→ μnγ has never been measured. Effort to date has concentrated on nuclear RMC where the branching ratio is much larger, but the interpretation of these results is hindered by nuclear structure uncertainties. A measurement is being carried out at TRIUMF to determine the rate of RMC on hydrogen to a precision of 8% leading to a determination of g p with an error of 10%. The detection system is based on a large-volume drift chamber acting as a pair spectrometer. The drift chamber covers a solid angle of about 2π. At a magnetic field of 2.4 kG the acceptance for 70 MeV photons is about 0.9% using a 1.2 mm thick Pb photon converter. The expected photon energy resolution is about 10% FWHM. A detailed discussion of the systematic errors expected in the experiment and the preliminary results on the performance of the detector will be presented

  4. Interpreters’ Experiences of Transferential Dynamics, Vicarious Traumatisation, and Their Need for Support and Supervision: A Systematic Literature Review

    Directory of Open Access Journals (Sweden)

    Emma Darroch

    2016-08-01

    Full Text Available Using thematic analysis, this systematic review aimed to explore sign language interpreters’ experiences of transferential dynamics and vicarious trauma. The notion of transferential dynamics, such as transference and countertransference, originate from psychodynamic therapy and refer to the mutual impact that client and therapist have on one another (Chessick, 1986. Psychodynamic models of therapy are predominantly concerned with unconscious processes and theorise that such processes have a powerful influence over an individuals’ thoughts, feelings and behaviours (Howard, 2011. In contrast to countertransference, which is a immediate response to a particular client, vicarious trauma is thought to develop as a result of continuous exposure to, and engagement across, many therapeutic interactions (Pearlman & Saakvitne, 1995a. A search of the available literature uncovered a striking lack of literature into the experiences of sign language interpreters, and in all, only two of the 11 identified empirical studies addressed sign language interpreters. The vast majority of the literature analysed reflected the experiences of spoken language interpreters. The results indicate that interpreters experience transferential dynamics as part of their work as well as suggesting the presence of vicarious trauma among interpreters. Additionally, a unique contribution to the fields of interpreting and psychology is offered, as it is consistently demonstrated that ‘service providers’ and ‘mental health workers’, which are umbrella terms for psychologists, immensely under-estimate the role of interpreters, as they fail to consider the emotional impact of their work and ignore the linguistic complexities of translation by failing to appreciate their need for information in order to ensure an effective translation.

  5. On Dynamic Analysis, Optimal Distribution of Cable Tention and Experiment of Cable NET Structures in Large Radio Telescope

    International Nuclear Information System (INIS)

    Duan, Baoyan

    2002-01-01

    This paper presents the researching activities, in which the nonlinear dynamic analysis, optimization of the cables' tension distribution, real 50 meters model experiment are discussed. The long cable structure has been utilized in new generation large radio telescope with the diameter of 500 meters. In design, there are six high concrete towers form which are six computer controlled long cables about 250 meters long met at a cabin, which is a hemisphere with 6 meters diameter. The cabin can be moved three dimensional to track the target. Within the cabin, there is a stable platform. The positioning precision for the platform and cabin are 4mm and 50cm respectively. By which means, the poisoning accuracy can be received becomes a sensible and important problem. For the sake of this, study on vibration of cable with respect to random wind, such as nonlinear response, vortex and galloping, is investigated in this paper. Desirable design is that the tension forces among the six long cables are the same, at least as even as possible. This will be benefit to the control of the system, so that the higher dynamic positioning precision is easy to be obtained. To meet this kind of requirement, the optimal distribution of the cable tensions among cables is discussed and pretty good result is received. Before the real 500 meters diameters antenna is built, an experiment model with 50 meters diameter was built in Xidian University of China, shown in figure 2. The dynamic analysis on vibration (random wind response, vortex and galloping), optimization of the cable tensions' distribution is made with good result. Lots of 50-meter-model site experiments are carried out with useful and valuable results, form which the theory and simulation model has been improved repeatedly until both the model simulation and experiment results are very closed so that the difference can be accepted from the viewpoint of thoroughly, systematically and deeply in the paper. The conclusion

  6. The Gender Dynamics of Educational Leadership Preparation: A Feminist Postmodern Critique of the Cohort Experience

    Science.gov (United States)

    Killingsworth, Molly F.; Cabezas, Christy T.; Kensler, Lisa A. W.; Brooks, Jeffrey S.

    2010-01-01

    The purpose of this study was to examine gender dynamics in educational leadership doctoral cohorts and explore the propensity for educational leadership programs to unintentionally perpetuate inequity through continued silence and unawareness of issues related to gender. The study includes narratives from two women cohort members and two…

  7. Dynamics of chemical reactions of multiply-charged cations: Information from beam scattering experiments

    Czech Academy of Sciences Publication Activity Database

    Herman, Zdeněk

    2015-01-01

    Roč. 378, FEB 2015 (2015), s. 113-126 ISSN 1387-3806 Institutional support: RVO:61388955 Keywords : Multiply-charged ions * Dynamics of chemical reactions * Beam scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.183, year: 2015

  8. Nanojets, Electrospray, and Ion Field Evaporation: Molecular Dynamics Simulations and Laboratory Experiments

    Science.gov (United States)

    2008-07-22

    Eft (d) (otherwise Coulomb fission occurs), and the solute residue diameter is less than the critical diameter at which E\\ = ER(</); i.e., in the...12 / tap " Figure 10. Atomic configurations taken from a molecular dynamics simulation of a 10 nm formamide droplet prior to and after the

  9. Climate effects and feedback structure determining weed population dynamics in a long-term experiment.

    Science.gov (United States)

    Lima, Mauricio; Navarrete, Luis; González-Andujar, José Luis

    2012-01-01

    Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements.

  10. Climate Effects and Feedback Structure Determining Weed Population Dynamics in a Long-Term Experiment

    Science.gov (United States)

    Lima, Mauricio; Navarrete, Luis; González-Andujar, José Luis

    2012-01-01

    Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements. PMID:22272362

  11. Climate effects and feedback structure determining weed population dynamics in a long-term experiment.

    Directory of Open Access Journals (Sweden)

    Mauricio Lima

    Full Text Available Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors. Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements.

  12. Job Performance as Multivariate Dynamic Criteria: Experience Sampling and Multiway Component Analysis

    Science.gov (United States)

    Spain, Seth M.; Miner, Andrew G.; Kroonenberg, Pieter M.; Drasgow, Fritz

    2010-01-01

    Questions about the dynamic processes that drive behavior at work have been the focus of increasing attention in recent years. Models describing behavior at work and research on momentary behavior indicate that substantial variation exists within individuals. This article examines the rationale behind this body of work and explores a method of…

  13. Nonlinear dynamics of a pseudoelastic shape memory alloy system - theory and experiment

    DEFF Research Database (Denmark)

    Enemark, Søren; A Savi, M.; Santos, Ilmar

    2014-01-01

    In this work, a helical spring made from a pseudoelastic shape memory alloy was embedded in a dynamic system also composed of a mass, a linear spring and an excitation system. The mechanical behaviour of shape memory alloys is highly complex, involving hysteresis, which leads to damping capabilit...

  14. Non-conscious vs. deliberate dynamic decision-making—a pilot experiment

    NARCIS (Netherlands)

    Grössler, A.; Rouwette, E.A.J.A.; Vennix, J.A.M.; Größler, A.

    2016-01-01

    The purpose of this paper is to explore the effects of non-conscious vs. deliberate ways of making decisions in a dynamic decision-making task. An experimental setting is used to study this question; three experimental groups are distinguished: immediate decision-making (only very limited time for

  15. Dynamic Design of Ground Transport With the Help of Computational Experiment

    Directory of Open Access Journals (Sweden)

    Kravets Victor

    2015-05-01

    Full Text Available Objectives of ground transport (motor transport vehicle have been considered. Mathematical model of nonlinear dynamics in spatial motion of asymmetric carriage in the form of Euler-Lagrange equations represented as symmetrical block structure in quaternion matrices has been developed. Kinematic equations and partition matrices of external action in which Rodrigues-Hamilton parameters have been applied describe quaternionic matrices.

  16. Mixed DPPC/POPC Monolayers: All-atom Molecular Dynamics Simulations and Langmuir Monolayer Experiments

    Czech Academy of Sciences Publication Activity Database

    Olžyńska, Agnieszka; Zubek, M.; Roeselová, Martina; Korchowiec, J.; Cwiklik, Lukasz

    2016-01-01

    Roč. 1858, č. 12 (2016), s. 3120-3130 ISSN 0005-2736 R&D Projects: GA ČR GA15-14292S Institutional support: RVO:61388955 ; RVO:61388963 Keywords : phospholipid monolayers * Lung surfactant * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.498, year: 2016

  17. Dynamics of magnetic particles near a surface : model and experiments on field-induced disaggregation

    NARCIS (Netherlands)

    van Reenen, A.; Gao, Y.; de Jong, Arthur; Hulsen, M.A.; den Toonder, J.M.J.; Prins, M.W.J.

    2014-01-01

    Magnetic particles are widely used in biological research and bioanalytical applications. As the corresponding tools are progressively being miniaturized and integrated, the understanding of particle dynamics and the control of particles down to the level of single particles become important. Here,

  18. Dynamics of water and nutrients for potted plants induced by flooded bench fertigation : experiments and simulation

    NARCIS (Netherlands)

    Otten, W.

    1994-01-01

    Dynamics of water and nutrients as affected by physical and chemical characteristics of a substrate, fertigation method and schedule, and plant uptake were studied for a flooded bench fertigation system for potted plants, through a detailed experimental study of the root environment and a

  19. Experiment selection for the discrimination of semi-quantitative models of dynamical systems

    NARCIS (Netherlands)

    Vatcheva, [No Value; de Jong, H; Bernard, O; Mars, NJI

    Modeling an experimental system often results in a number of alternative models that are all justified by the available experimental data. To discriminate among these models, additional experiments are needed. Existing methods for the selection of discriminatory experiments in statistics and in

  20. Observation Platform for Dynamic Biomedical and Biotechnology Experiments Using the International Space Station (ISS) Light Microscopy Module (LMM)

    Science.gov (United States)

    Kurk, Michael A. (Andy)

    2015-01-01

    Techshot, Inc., has developed an observation platform for the LMM on the ISS that will enable biomedical and biotechnology experiments. The LMM Dynamic Stage consists of an electronics module and the first two of a planned suite of experiment modules. Specimens and reagent solutions can be injected into a small, hollow microscope slide-the heart of the innovation-via a combination of small reservoirs, pumps, and valves. A life science experiment module allows investigators to load up to two different fluids for on-orbit, real-time image cytometry. Fluids can be changed to initiate a process, fix biological samples, or retrieve suspended cells. A colloid science experiment module conducts microparticle and nanoparticle tests for investigation of colloid self-assembly phenomena. This module includes a hollow glass slide and heating elements for the creation of a thermal gradient from one end of the slide to the other. The electronics module supports both experiment modules and contains a unique illuminator/condenser for bright and dark field and phase contrast illumination, power supplies for two piezoelectric pumps, and controller boards for pumps and valves. This observation platform safely contains internal fluids and will greatly accelerate the research and development (R&D) cycle of numerous experiments, products, and services aboard the ISS.

  1. Simulation of the capture process in the Fermilab Booster

    International Nuclear Information System (INIS)

    Stahl, S.; Ankenbrandt, C.

    1987-09-01

    A progress report on efforts to understand and improve adiabatic capture in the Fermilab Booster by experiment and simulation is presented. In particular, a new RF voltage program for capture which ameliorates transverse space-charge effects is described and simulated. 7 refs., 4 figs

  2. Neutron capture therapy: Years of experimentation---Years of reflection

    International Nuclear Information System (INIS)

    Farr, L.E.

    1991-01-01

    This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven's Medical Research Center program

  3. Simulation of the capture process in the Fermilab Booster

    International Nuclear Information System (INIS)

    Stahl, S.; Ankenbrandt, C.

    1987-01-01

    A progress report on efforts to understand and improve adiabatic capture in the Fermilab Booster by experiment and simulation is presented. In particular, a new Rf voltage program for capture which ameliorates transverse space-charge effects is described and simulated

  4. Circular Orbit Target Capture Using Space Tether-Net System

    Directory of Open Access Journals (Sweden)

    Guang Zhai

    2013-01-01

    Full Text Available The space tether-net system for on-orbit capture is proposed in this paper. In order to research the dynamic behaviors during system deployment, both free and nonfree deployment dynamics in circular orbit are developed; the system motion with respect to Local Vertical and Local Horizontal frame is also researched with analysis and simulation. The results show that in the case of free deployment, the capture net follows curve trajectories due to the relative orbit dynamic perturbation, and the initial deployment velocities are planned by state transformation equations for static and floating target captures; in the case of non-free deployment, the system undergoes an altitude libration along the Local Vertical, and the analytical solutions that describe the attitude libration are obtained by using variable separation and integration. Finally, the dynamics of postdeployment system is also proved marginally stable if the critical initial conditions are satisfied.

  5. Are fixed grain size ratios useful proxies for loess sedimentation dynamics? Experiences from Remizovka, Kazakhstan

    Science.gov (United States)

    Schulte, Philipp; Sprafke, Tobias; Rodrigues, Leonor; Fitzsimmons, Kathryn E.

    2018-04-01

    Loess-paleosol sequences (LPS) are sensitive terrestrial archives of past aeolian dynamics and paleoclimatic changes within the Quaternary. Grain size (GS) analysis is commonly used to interpret aeolian dynamics and climate influences on LPS, based on granulometric parameters such as specific GS classes, ratios of GS classes and statistical manipulation of GS data. However, the GS distribution of a loess sample is not solely a function of aeolian dynamics; rather complex polygenetic depositional and post-depositional processes must be taken into account. This study assesses the reliability of fixed GS ratios as proxies for past sedimentation dynamics using the case study of Remizovka in southeast Kazakhstan. Continuous sampling of the upper 8 m of the profile, which shows extremely weak pedogenic alteration and is therefore dominated by primary aeolian activity, indicates that fixed GS ratios do not adequately serve as proxies for loess sedimentation dynamics. We find through the calculation of single value parameters, that "true" variations within sensitive GS classes are masked by relative changes of the more frequent classes. Heatmap signatures provide the visualization of GS variability within LPS without significant data loss within the measured classes of a sample, or across all measured samples. We also examine the effect of two different commonly used laser diffraction devices on GS ratio calculation by duplicate measurements, the Beckman Coulter (LS13320) and a Malvern Mastersizer Hydro (MM2000), as well as the applicability and significance of the so-called "twin peak ratio" previously developed on samples from the same section. The LS13320 provides higher resolution results than the MM2000, nevertheless the GS ratios related to variations in the silt-sized fraction were comparable. However, we could not detect a twin peak within the coarse silt as detected in the original study using the same device. Our GS measurements differ from previous works at

  6. Preliminary experience using dynamic MRI at 3.0 Tesla for evaluation of soft tissue tumors.

    Science.gov (United States)

    Park, Michael Yong; Jee, Won-Hee; Kim, Sun Ki; Lee, So-Yeon; Jung, Joon-Yong

    2013-01-01

    We aimed to evaluate the use of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) at 3.0 T for differentiating the benign from malignant soft tissue tumors. Also we aimed to assess whether the shorter length of DCE-MRI protocols are adequate, and to evaluate the effect of temporal resolution. Dynamic contrast-enhanced magnetic resonance imaging, at 3.0 T with a 1 second temporal resolution in 13 patients with pathologically confirmed soft tissue tumors, was analyzed. Visual assessment of time-signal curves, subtraction images, maximal relative enhancement at the first (maximal peak enhancement [Emax]/1) and second (Emax/2) minutes, Emax, steepest slope calculated by using various time intervals (5, 30, 60 seconds), and the start of dynamic enhancement were analyzed. The 13 tumors were comprised of seven benign and six malignant soft tissue neoplasms. Washout on time-signal curves was seen on three (50%) malignant tumors and one (14%) benign one. The most discriminating DCE-MRI parameter was the steepest slope calculated, by using at 5-second intervals, followed by Emax/1 and Emax/2. All of the steepest slope values occurred within 2 minutes of the dynamic study. Start of dynamic enhancement did not show a significant difference, but no malignant tumor rendered a value greater than 14 seconds. The steepest slope and early relative enhancement have the potential for differentiating benign from malignant soft tissue tumors. Short-length rather than long-length DCE-MRI protocol may be adequate for our purpose. The steepest slope parameters require a short temporal resolution, while maximal peak enhancement parameter may be more optimal for a longer temporal resolution.

  7. Report on Microgravity Experiments of Dynamic Surface Deformation Effects on Marangoni Instability in High-Prandtl-Number Liquid Bridges

    Science.gov (United States)

    Yano, Taishi; Nishino, Koichi; Matsumoto, Satoshi; Ueno, Ichiro; Komiya, Atsuki; Kamotani, Yasuhiro; Imaishi, Nobuyuki

    2018-04-01

    This paper reports an overview and some important results of microgravity experiments called Dynamic Surf, which have been conducted on board the International Space Station from 2013 to 2016. The present project mainly focuses on the relations between the Marangoni instability in a high-Prandtl-number (Pr= 67 and 112) liquid bridge and the dynamic free surface deformation (DSD) as well as the interfacial heat transfer. The dynamic free surface deformations of large-scale liquid bridges (say, for diameters greater than 10 mm) are measured with good accuracy by an optical imaging technique. It is found that there are two causes of the dynamic free surface deformation in the present study: the first is the time-dependent flow behavior inside the liquid bridge due to the Marangoni instability, and the second is the external disturbance due to the residual acceleration of gravity, i.e., g-jitter. The axial distributions of DSD along the free surface are measured for several conditions. The critical parameters for the onset of oscillatory Marangoni convection are also measured for various aspect ratios (i.e., relative height to the diameter) of the liquid bridge and various thermal boundary conditions. The characteristics of DSD and the onset conditions of instability are discussed in this paper.

  8. Neutron capture therapy

    International Nuclear Information System (INIS)

    Jun, B. J.

    1998-11-01

    The overall state of the art related with neutron capture therapy(NCT) is surveyed. Since the field related with NCT is very wide, it is not intended to survey all related subjects in depth. The primary objective of this report is to help those working for the installation of a NCT facility and a PGNAA(prompt gamma ray neutron activation analysis) system for the boron analysis understand overall NCT at Hanaro. Therefore, while the parts of reactor neutron source and PGNAA are dealt in detail, other parts are limited to the level necessary to understand related fields. For example, the subject of chemical compound which requires intensive knowledge on chemistry, is not dealt as a separated item. However, the requirement of a compound for NCT, currently available compounds, their characteristics, etc. could be understood through this report. Although the subject of cancer treated by NCT is out of the capability of the author, it is dealt focussing its characteristics related with the success of NCT. Each detailed subject is expected to be dealt more detail by specialists in future. This report would be helpful for the researchers working for the NCT to understand related fields. (author). 128 refs., 3 tabs., 12 figs

  9. Captured by Aliens

    Science.gov (United States)

    Achenbach, Joel

    2000-03-01

    Captured by Aliens is a long and twisted voyage from science to the supernatural and back again. I hung out in Roswell, N.M., spent time with the Mars Society, met a guy who was figuring out the best way to build a spaceship to go to Alpha Centauri. I visited the set of the X-Files and talked to Mulder and Scully. One day over breakfast I was told by NASA administrator Dan Goldin, We live in a fog, man! He wants the big answers to the big questions. I spent a night in the base of a huge radio telescope in the boondocks of West Virginia, awaiting the signal from the aliens. I was hypnotized in a hotel room by someone who suspected that I'd been abducted by aliens and that this had triggered my interest in the topic. In the last months of his life, I talked to Carl Sagan, who believed that the galaxy riots with intelligent civilizations. He's my hero, for his steadfast adherence to the scientific method. What I found in all this is that the big question that needs immediate attention is not what's out THERE, but what's going on HERE, on Earth, and why we think the way we do, and how we came to be here in the first place.

  10. Understanding nucleic acid structural changes by comparing wide-angle x-ray scattering (WAXS) experiments to molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pabit, Suzette A.; Katz, Andrea M.; Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Tolokh, Igor S. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Drozdetski, Aleksander [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States); Baker, Nathan [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Onufriev, Alexey V. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2016-05-28

    Wide-angle x-ray scattering (WAXS) is emerging as a powerful tool for increasing the resolution of solution structure measurements of biomolecules. Compared to its better known complement, small angle x-ray scattering (SAXS), WAXS targets higher scattering angles and can enhance structural studies of molecules by accessing finer details of solution structures. Although the extension from SAXS to WAXS is easy to implement experimentally, the computational tools required to fully harness the power of WAXS are still under development. Currently, WAXS is employed to study structural changes and ligand binding in proteins; however, the methods are not as fully developed for nucleic acids. Here, we show how WAXS can qualitatively characterize nucleic acid structures as well as the small but significant structural changes driven by the addition of multivalent ions. We show the potential of WAXS to test all-atom molecular dynamics (MD) simulations and to provide insight into understanding how the trivalent ion cobalt(III) hexammine (CoHex) affects the structure of RNA and DNA helices. We find that MD simulations capture the RNA structural change that occurs due to addition of CoHex.

  11. An experiment for Shuttle aerodynamic force coefficient determination from inflight dynamical and atmospheric measurements

    Science.gov (United States)

    Compton, H. R.; Blanchard, R. C.; Walberg, G. D.

    1978-01-01

    A two-phase experiment is proposed which utilizes the Shuttle Orbiter and its unique series of repeated entries into the earth's atmosphere as an airborne in situ aerodynamic testing laboratory. The objective of the experiment is to determine static aerodynamic force coefficients, first of the orbiter, and later of various entry configurations throughout the high speed flight regime, including the transition from free molecule to continuum fluid flow. The objective will be accomplished through analysis of inflight measurements from both shuttle-borne and shuttle-launched instrumented packages. Results are presented to demonstrate the feasibility of such an experiment.

  12. Ion optics and beam dynamics optimization at the HESR storage ring for the SPARC experiments with highly charged heavy ions

    International Nuclear Information System (INIS)

    Kovalenko, Oleksandr

    2015-01-01

    The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U 90+ beam at the existing storage ring ESR, GSI.

  13. The effects of individual differences, prior experience and cognitive load on the transfer of dynamic decision-making performance.

    Science.gov (United States)

    Nicholson, Brad; O'Hare, David

    2014-01-01

    Situational awareness is recognised as an important factor in the performance of individuals and teams in dynamic decision-making (DDM) environments (Salmon et al. 2014 ). The present study was designed to investigate whether the scores on the WOMBAT™ Situational Awareness and Stress Tolerance Test (Roscoe and North 1980 ) would predict the transfer of DDM performance from training under different levels of cognitive load to a novel situation. Participants practised a simulated firefighting task under either low or high conditions of cognitive load and then performed a (transfer) test in an alternative firefighting environment under an intermediate level of cognitive load. WOMBAT™ test scores were a better predictor of DDM performance than scores on the Raven Matrices. Participants with high WOMBAT™ scores performed better regardless of their training condition. Participants with recent gaming experience who practised under low cognitive load showed better practice phase performance but worse transfer performance than those who practised under high cognitive load. The relationship between task experience, situational awareness ability, cognitive load and the transfer of dynamic decision-making (DDM) performance was investigated. Results showed that the WOMBAT™ test predicted transfer of DDM performance regardless of task cognitive load. The effects of cognitive load on performance varied according to previous task-relevant experience.

  14. Ion optics and beam dynamics optimization at the HESR storage ring for the SPARC experiments with highly charged heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleksandr

    2015-06-24

    The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U{sup 90+} beam at the existing storage ring ESR, GSI.

  15. On structural identifiability analysis of the cascaded linear dynamic systems in isotopically non-stationary 13C labelling experiments.

    Science.gov (United States)

    Lin, Weilu; Wang, Zejian; Huang, Mingzhi; Zhuang, Yingping; Zhang, Siliang

    2018-06-01

    The isotopically non-stationary 13C labelling experiments, as an emerging experimental technique, can estimate the intracellular fluxes of the cell culture under an isotopic transient period. However, to the best of our knowledge, the issue of the structural identifiability analysis of non-stationary isotope experiments is not well addressed in the literature. In this work, the local structural identifiability analysis for non-stationary cumomer balance equations is conducted based on the Taylor series approach. The numerical rank of the Jacobian matrices of the finite extended time derivatives of the measured fractions with respect to the free parameters is taken as the criterion. It turns out that only one single time point is necessary to achieve the structural identifiability analysis of the cascaded linear dynamic system of non-stationary isotope experiments. The equivalence between the local structural identifiability of the cascaded linear dynamic systems and the local optimum condition of the nonlinear least squares problem is elucidated in the work. Optimal measurements sets can then be determined for the metabolic network. Two simulated metabolic networks are adopted to demonstrate the utility of the proposed method. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. The Generic Data Capture Facility

    Science.gov (United States)

    Connell, Edward B.; Barnes, William P.; Stallings, William H.

    1987-01-01

    The Generic Data Capture Facility, which can provide data capture support for a variety of different types of spacecraft while enabling operations costs to be carefully controlled, is discussed. The data capture functions, data protection, isolation of users from data acquisition problems, data reconstruction, and quality and accounting are addressed. The TDM and packet data formats utilized by the system are described, and the development of generic facilities is considered.

  17. Do we ruin the moment?: exploring the design of novel capturing technologies

    NARCIS (Netherlands)

    Mols, I.; Broekhuijsen, M.; van den Hoven, E.; Markopoulos, P.; Eggen, B.

    2015-01-01

    By capturing our experiences we often strive to better remember them in the future. However, the act of media capturing also influences these same experiences in the present, an area which is underexplored. This paper describes a study with the aim to inform the design of novel media capturing

  18. Combining in situ transmission electron microscopy irradiation experiments with cluster dynamics modeling to study nanoscale defect agglomeration in structural metals

    International Nuclear Information System (INIS)

    Xu Donghua; Wirth, Brian D.; Li Meimei; Kirk, Marquis A.

    2012-01-01

    We present a combinatorial approach that integrates state-of-the-art transmission electron microscopy (TEM) in situ irradiation experiments and high-performance computing techniques to study irradiation defect dynamics in metals. Here, we have studied the evolution of visible defect clusters in nanometer-thick molybdenum foils under 1 MeV krypton ion irradiation at 80 °C through both cluster dynamics modeling and in situ TEM experiments. The experimental details are reported elsewhere; we focus here on the details of model construction and comparing the model with the experiments. The model incorporates continuous production of point defects and/or small clusters, and the accompanying interactions, which include clustering, recombination and loss to the surfaces that result from the diffusion of the mobile defects. To account for the strong surface effect in thin TEM foils, the model includes one-dimensional spatial dependence along the foil depth, and explicitly treats the surfaces as black sinks. The rich amount of data (cluster number density and size distribution at a variety of foil thickness, irradiation dose and dose rate) offered by the advanced in situ experiments has allowed close comparisons with computer modeling and permitted significant validation and optimization of the model in terms of both physical model construct (damage production mode, identities of mobile defects) and parameterization (diffusivities of mobile defects). The optimized model exhibits good qualitative and quantitative agreement with the in situ TEM experiments. The combinatorial approach is expected to bring a unique opportunity for the study of radiation damage in structural materials.

  19. Decision-Making in a Dynamic Environment: The Effects of Experience and Information Uncertainty

    National Research Council Canada - National Science Library

    Kobus, D

    2000-01-01

    .... Fifty-two Marines with varying amounts of command-post experience assessed the situation as it developed, determined tactical leverage points, formed a plan of action, and submitted battle orders...

  20. Dedicated Slosh Dynamics Experiment on ISS using SPHERES (Advanced Space Operations in CR)

    Data.gov (United States)

    National Aeronautics and Space Administration — At the Kennedy Space Center (KSC) the Launch Services Program is leading an effort to conduct an experiment aboard the International Space Station (ISS) to validate...