WorldWideScience

Sample records for dynamic biomechanical model

  1. Biomechanical Analysis and Evaluation Technology Using Human Multi-Body Dynamic Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Hyuk; Shin, June Ho; Khurelbaatar, Tsolmonbaatar [Kyung Hee University, Yongin (Korea, Republic of)

    2011-10-15

    This paper presents the biomechanical analysis and evaluation technology of musculoskeletal system by multi-body human dynamic model and 3-D motion capture data. First, medical image based geometric model and material properties of tissue were used to develop the human dynamic model and 3-D motion capture data based motion analysis techniques were develop to quantify the in-vivo joint kinematics, joint moment, joint force, and muscle force. Walking and push-up motion was investigated using the developed model. The present model and technologies would be useful to apply the biomechanical analysis and evaluation of human activities.

  2. DYNAMIC MAGNIFICATION OF BIOMECHANICAL SYSTEM MOTION

    Directory of Open Access Journals (Sweden)

    A. E. Pokatilov

    2017-01-01

    Full Text Available Methods for estimation of dynamic magnification pertaining to motion in biomechanics have been developed and approbаted in the paper. It has been ascertained that widely-used characteristics for evaluation of motion influence on mechanisms and machinery such as a dynamic coefficient and acceleration capacity factor become irrelevant while investigating human locomotion under elastic support conditions. The reason is an impossibility to compare human motion in case when there is a contact with elastic and rigid supports because while changing rigidity of the support exercise performing technique is also changing. In this case the technique still depends on a current state of a specific sportsman. Such situation is observed in sports gymnastics. Structure of kinematic and dynamic models for human motion has been investigated in the paper. It has been established that properties of an elastic support are reflected in models within two aspects: in an explicit form, when models have parameters of dynamic deformation for a gymnastic apparatus, and in an implicit form, when we have numerically changed parameters of human motion. The first part can be evaluated quantitatively while making comparison with calculations made in accordance with complete models. For this reason notions of selected and complete models have been introduced in the paper. It has been proposed to specify models for support and models of biomechanical system that represent models pertaining only to human locomotor system. It has been revealed that the selected models of support in kinematics and dynamics have structural difference. Kinematics specifies only parameters of elastic support deformation and dynamics specifies support parameters in an explicit form and additionally in models of human motion in an explicit form as well. Quantitative estimation of a dynamic motion magnification in kinematics and dynamics models has been given while using computing experiment for grand

  3. Modelling and Analysis on Biomechanical Dynamic Characteristics of Knee Flexion Movement under Squatting

    Directory of Open Access Journals (Sweden)

    Jianping Wang

    2014-01-01

    Full Text Available The model of three-dimensional (3D geometric knee was built, which included femoral-tibial, patellofemoral articulations and the bone and soft tissues. Dynamic finite element (FE model of knee was developed to simulate both the kinematics and the internal stresses during knee flexion. The biomechanical experimental system of knee was built to simulate knee squatting using cadaver knees. The flexion motion and dynamic contact characteristics of knee were analyzed, and verified by comparing with the data from in vitro experiment. The results showed that the established dynamic FE models of knee are capable of predicting kinematics and the contact stresses during flexion, and could be an efficient tool for the analysis of total knee replacement (TKR and knee prosthesis design.

  4. Masticatory biomechanics in the rabbit: a multi-body dynamics analysis.

    Science.gov (United States)

    Watson, Peter J; Gröning, Flora; Curtis, Neil; Fitton, Laura C; Herrel, Anthony; McCormack, Steven W; Fagan, Michael J

    2014-10-06

    Multi-body dynamics is a powerful engineering tool which is becoming increasingly popular for the simulation and analysis of skull biomechanics. This paper presents the first application of multi-body dynamics to analyse the biomechanics of the rabbit skull. A model has been constructed through the combination of manual dissection and three-dimensional imaging techniques (magnetic resonance imaging and micro-computed tomography). Individual muscles are represented with multiple layers, thus more accurately modelling muscle fibres with complex lines of action. Model validity was sought through comparing experimentally measured maximum incisor bite forces with those predicted by the model. Simulations of molar biting highlighted the ability of the masticatory system to alter recruitment of two muscle groups, in order to generate shearing or crushing movements. Molar shearing is capable of processing a food bolus in all three orthogonal directions, whereas molar crushing and incisor biting are predominately directed vertically. Simulations also show that the masticatory system is adapted to process foods through several cycles with low muscle activations, presumably in order to prevent rapidly fatiguing fast fibres during repeated chewing cycles. Our study demonstrates the usefulness of a validated multi-body dynamics model for investigating feeding biomechanics in the rabbit, and shows the potential for complementing and eventually reducing in vivo experiments.

  5. Biomechanically Excited SMD Model of a Walking Pedestrian

    DEFF Research Database (Denmark)

    Zhang, Mengshi; Georgakis, Christos T.; Chen, Jun

    2016-01-01

    Through their biomechanical properties, pedestrians interact with the structures they occupy. Although this interaction has been recognized by researchers, pedestrians' biomechanical properties have not been fully addressed. In this paper, a spring-mass-damper (SMD) system, with a pair of biomech......Through their biomechanical properties, pedestrians interact with the structures they occupy. Although this interaction has been recognized by researchers, pedestrians' biomechanical properties have not been fully addressed. In this paper, a spring-mass-damper (SMD) system, with a pair...... produced the pedestrian's center of mass (COM) trajectories from the captured motion markers. The vertical COM trajectory was approximated to be the pedestrian SMD dynamic responses under the excitation of biomechanical forces. SMD model parameters of a pedestrian for a specific walking frequency were...... estimated from a known walking frequency and the pedestrian's weight, assuming that pedestrians always walk in displacement resonance and retain a constant damping ratio of 0.3. Thus, biomechanical forces were extracted using the measured SMD dynamic responses and the estimated SMD parameters. Extracted...

  6. Static and dynamic biomechanical properties of the regenerating rabbit Achilles tendon.

    Science.gov (United States)

    Nagasawa, Koji; Noguchi, Masahiko; Ikoma, Kazuya; Kubo, Toshikazu

    2008-07-01

    Since tendons show viscoelastic behavior, dynamic viscoelastic properties should be assessed in addition to static biomechanical properties. We evaluated differences between static and dynamic biomechanical properties of the regenerating rabbit Achilles tendon following tenotomy. At 3, 6, or 12 weeks after right Achilles tenotomy, the right (regenerating) and left (control) tendons were collected with the calcaneus from 49 rabbits. A unidirectional failure test and a dynamic viscoelastic test were conducted. Tensile strength and Young's modulus (static biomechanical properties) in the regenerating group at Week 6 were significantly greater than at Week 3, while at Week 12, these were significantly greater than at Week 6. However, even at Week 12, both parameters were less than in the control group. The value of tan delta represents dynamic viscoelasticity, a smaller tan delta indicates greater elasticity. tan delta for the regenerating group was significantly greater than for the control group at Week 3, but regenerating and control groups did not significantly differ at Week 6. No marked change was seen from Weeks 6 to 12 in the regenerating group, and no significant difference in tan delta was evident between the regenerating and control groups at Week 12. Dynamic biomechanical properties of regenerating rabbit Achilles tendons may improve more rapidly than static biomechanical properties. Ability to tolerate dynamic movement in the healing Achilles tendon may improve more rapidly than ability to withstand static stresses.

  7. Computational modeling in biomechanics

    CERN Document Server

    Mofrad, Mohammad

    2010-01-01

    This book provides a glimpse of the diverse and important roles that modern computational technology is playing in various areas of biomechanics. It includes unique chapters on ab initio quantum mechanical, molecular dynamic and scale coupling methods..

  8. Fluid-structure interaction-based biomechanical perception model for tactile sensing.

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    Full Text Available The reproduced tactile sensation of haptic interfaces usually selectively reproduces a certain object attribute, such as the object's material reflected by vibration and its surface shape by a pneumatic nozzle array. Tactile biomechanics investigates the relation between responses to an external load stimulus and tactile perception and guides the design of haptic interface devices via a tactile mechanism. Focusing on the pneumatic haptic interface, we established a fluid-structure interaction-based biomechanical model of responses to static and dynamic loads and conducted numerical simulation and experiments. This model provides a theoretical basis for designing haptic interfaces and reproducing tactile textures.

  9. Biomechanical simulation of vocal fold dynamics in adults based on laryngeal high-speed videoendoscopy.

    Directory of Open Access Journals (Sweden)

    Michael Döllinger

    Full Text Available Human voice is generated in the larynx by the two oscillating vocal folds. Owing to the limited space and accessibility of the larynx, endoscopic investigation of the actual phonatory process in detail is challenging. Hence the biomechanics of the human phonatory process are still not yet fully understood. Therefore, we adapt a mathematical model of the vocal folds towards vocal fold oscillations to quantify gender and age related differences expressed by computed biomechanical model parameters.The vocal fold dynamics are visualized by laryngeal high-speed videoendoscopy (4000 fps. A total of 33 healthy young subjects (16 females, 17 males and 11 elderly subjects (5 females, 6 males were recorded. A numerical two-mass model is adapted to the recorded vocal fold oscillations by varying model masses, stiffness and subglottal pressure. For adapting the model towards the recorded vocal fold dynamics, three different optimization algorithms (Nelder-Mead, Particle Swarm Optimization and Simulated Bee Colony in combination with three cost functions were considered for applicability. Gender differences and age-related kinematic differences reflected by the model parameters were analyzed.The biomechanical model in combination with numerical optimization techniques allowed phonatory behavior to be simulated and laryngeal parameters involved to be quantified. All three optimization algorithms showed promising results. However, only one cost function seems to be suitable for this optimization task. The gained model parameters reflect the phonatory biomechanics for men and women well and show quantitative age- and gender-specific differences. The model parameters for younger females and males showed lower subglottal pressures, lower stiffness and higher masses than the corresponding elderly groups. Females exhibited higher subglottal pressures, smaller oscillation masses and larger stiffness than the corresponding similar aged male groups. Optimizing

  10. Biomechanical simulation of vocal fold dynamics in adults based on laryngeal high-speed videoendoscopy.

    Science.gov (United States)

    Döllinger, Michael; Gómez, Pablo; Patel, Rita R; Alexiou, Christoph; Bohr, Christopher; Schützenberger, Anne

    2017-01-01

    Human voice is generated in the larynx by the two oscillating vocal folds. Owing to the limited space and accessibility of the larynx, endoscopic investigation of the actual phonatory process in detail is challenging. Hence the biomechanics of the human phonatory process are still not yet fully understood. Therefore, we adapt a mathematical model of the vocal folds towards vocal fold oscillations to quantify gender and age related differences expressed by computed biomechanical model parameters. The vocal fold dynamics are visualized by laryngeal high-speed videoendoscopy (4000 fps). A total of 33 healthy young subjects (16 females, 17 males) and 11 elderly subjects (5 females, 6 males) were recorded. A numerical two-mass model is adapted to the recorded vocal fold oscillations by varying model masses, stiffness and subglottal pressure. For adapting the model towards the recorded vocal fold dynamics, three different optimization algorithms (Nelder-Mead, Particle Swarm Optimization and Simulated Bee Colony) in combination with three cost functions were considered for applicability. Gender differences and age-related kinematic differences reflected by the model parameters were analyzed. The biomechanical model in combination with numerical optimization techniques allowed phonatory behavior to be simulated and laryngeal parameters involved to be quantified. All three optimization algorithms showed promising results. However, only one cost function seems to be suitable for this optimization task. The gained model parameters reflect the phonatory biomechanics for men and women well and show quantitative age- and gender-specific differences. The model parameters for younger females and males showed lower subglottal pressures, lower stiffness and higher masses than the corresponding elderly groups. Females exhibited higher subglottal pressures, smaller oscillation masses and larger stiffness than the corresponding similar aged male groups. Optimizing numerical models

  11. Development of a Dynamic Biomechanical Model for Load Carriage: Phase 4, Parts A and B: Development of a Dynamic Biomechanical Model Version 2 of Human Load Carriage

    National Research Council Canada - National Science Library

    Reid, S. A; Bryant, J. T; Stevenson, J. M; Abdoli, M

    2005-01-01

    ... on human health and mobility. This research is directed at creating a method of determining several of the biomechanical factors to be used as inputs to the Load Conditions Limit model as described in DRDC report...

  12. [Evaluation of corneal biomechanics in keratoconus using dynamic ultra-high-speed Scheimpflug measurements].

    Science.gov (United States)

    Brettl, S; Franko Zeitz, P; Fuchsluger, T A

    2018-06-22

    The in vivo analysis of corneal biomechanics in patients with keratoconus is especially of interest with respect to diagnosis, follow-up and monitoring of the disease. For a better understanding it is necessary to describe the potential of dynamic Scheimpflug measurements for the detection and interpretation of biomechanical changes in keratoconus. The current state of analyzing biomechanical changes in keratoconus with the Corvis ST (Oculus Optikgeräte GmbH, Wetzlar, Germany) is described. This technique represents a new approach for understanding corneal biomechanics. Furthermore, it was investigated whether the device can biomechanically quantify a rigidity increasing effect of therapeutic UV-crosslinking and whether early stages of keratoconus can be detected using dynamic Scheimpflug analysis. In patients with keratoconus, the in vivo analysis of corneal biomechanics using dynamic Scheimpflug measurements as a supplementary procedure can be of advantage with respect to disease management. By optimization of screening of subclinical keratoconus stages, this method widens the analytic spectrum regarding diagnosis and follow-up of the disease; however, further studies are required to evaluate whether visual outcome of affected patients can be improved by earlier diagnosis.

  13. An ocular biomechanic model for dynamic simulation of different eye movements.

    Science.gov (United States)

    Iskander, J; Hossny, M; Nahavandi, S; Del Porto, L

    2018-04-11

    Simulating and analysing eye movement is useful for assessing visual system contribution to discomfort with respect to body movements, especially in virtual environments where simulation sickness might occur. It can also be used in the design of eye prosthesis or humanoid robot eye. In this paper, we present two biomechanic ocular models that are easily integrated into the available musculoskeletal models. The model was previously used to simulate eye-head coordination. The models are used to simulate and analyse eye movements. The proposed models are based on physiological and kinematic properties of the human eye. They incorporate an eye-globe, orbital suspension tissues and six muscles with their connective tissues (pulleys). Pulleys were incorporated in rectus and inferior oblique muscles. The two proposed models are the passive pulleys and the active pulleys models. Dynamic simulations of different eye movements, including fixation, saccade and smooth pursuit, are performed to validate both models. The resultant force-length curves of the models were similar to the experimental data. The simulation results show that the proposed models are suitable to generate eye movement simulations with results comparable to other musculoskeletal models. The maximum kinematic root mean square error (RMSE) is 5.68° and 4.35° for the passive and active pulley models, respectively. The analysis of the muscle forces showed realistic muscle activation with increased muscle synergy in the active pulley model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Modelling biomechanics of bark patterning in grasstrees.

    Science.gov (United States)

    Dale, Holly; Runions, Adam; Hobill, David; Prusinkiewicz, Przemyslaw

    2014-09-01

    Bark patterns are a visually important characteristic of trees, typically attributed to fractures occurring during secondary growth of the trunk and branches. An understanding of bark pattern formation has been hampered by insufficient information regarding the biomechanical properties of bark and the corresponding difficulties in faithfully modelling bark fractures using continuum mechanics. This study focuses on the genus Xanthorrhoea (grasstrees), which have an unusual bark-like structure composed of distinct leaf bases connected by sticky resin. Due to its discrete character, this structure is well suited for computational studies. A dynamic computational model of grasstree development was created. The model captures both the phyllotactic pattern of leaf bases during primary growth and the changes in the trunk's width during secondary growth. A biomechanical representation based on a system of masses connected by springs is used for the surface of the trunk, permitting the emergence of fractures during secondary growth to be simulated. The resulting fracture patterns were analysed statistically and compared with images of real trees. The model reproduces key features of grasstree bark patterns, including their variability, spanning elongated and reticulate forms. The patterns produced by the model have the same statistical character as those seen in real trees. The model was able to support the general hypothesis that the patterns observed in the grasstree bark-like layer may be explained in terms of mechanical fractures driven by secondary growth. Although the generality of the results is limited by the unusual structure of grasstree bark, it supports the hypothesis that bark pattern formation is primarily a biomechanical phenomenon.

  15. The biomechanical and physiological effect of two dynamic workstations

    NARCIS (Netherlands)

    Botter, J.; Burford, E.M.; Commissaris, D.; Könemann, R.; Mastrigt, S.H.V.; Ellegast, R.P.

    2013-01-01

    The aim of this research paper was to investigate the effect, both biomechanically and physiologically, of two dynamic workstations currently available on the commercial market. The dynamic workstations tested, namely the Treadmill Desk by LifeSpan and the LifeBalance Station by RightAngle, were

  16. High resolution extremity CT for biomechanics modeling

    International Nuclear Information System (INIS)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-01-01

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling

  17. High resolution extremity CT for biomechanics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  18. Biomechanical Strain Exacerbates Inflammation on a Progeria-on-a-Chip Model

    NARCIS (Netherlands)

    Ribas, J.; Zhang, Y.S.; Pitrez, P.R.; Leijten, Jeroen Christianus Hermanus; Miscuglio, M.; Rouwkema, Jeroen; Dokmeci, M.R.; Nissan, X.; Ferreira, L.; Khademhosseini, A.

    2017-01-01

    A progeria-on-a-chip model is engineered to recapitulate the biomechanical dynamics of vascular disease and aging. The model shows an exacerbated injury response to strain and is rescued by pharmacological treatments. The progeria-on-a-chip is expected to drive the discovery of new drugs and to

  19. Computational biomechanics for medicine from algorithms to models and applications

    CERN Document Server

    Joldes, Grand; Nielsen, Poul; Doyle, Barry; Miller, Karol

    2017-01-01

    This volume comprises the latest developments in both fundamental science and patient-specific applications, discussing topics such as: cellular mechanics; injury biomechanics; biomechanics of heart and vascular system; medical image analysis; and both patient-specific fluid dynamics and solid mechanics simulations. With contributions from researchers world-wide, the Computational Biomechanics for Medicine series of titles provides an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements.

  20. Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement.

    Science.gov (United States)

    Yekutieli, Yoram; Sagiv-Zohar, Roni; Aharonov, Ranit; Engel, Yaakov; Hochner, Binyamin; Flash, Tamar

    2005-08-01

    The octopus arm requires special motor control schemes because it consists almost entirely of muscles and lacks a rigid skeletal support. Here we present a 2D dynamic model of the octopus arm to explore possible strategies of movement control in this muscular hydrostat. The arm is modeled as a multisegment structure, each segment containing longitudinal and transverse muscles and maintaining a constant volume, a prominent feature of muscular hydrostats. The input to the model is the degree of activation of each of its muscles. The model includes the external forces of gravity, buoyancy, and water drag forces (experimentally estimated here). It also includes the internal forces generated by the arm muscles and the forces responsible for maintaining a constant volume. Using this dynamic model to investigate the octopus reaching movement and to explore the mechanisms of bend propagation that characterize this movement, we found the following. 1) A simple command producing a wave of muscle activation moving at a constant velocity is sufficient to replicate the natural reaching movements with similar kinematic features. 2) The biomechanical mechanism that produces the reaching movement is a stiffening wave of muscle contraction that pushes a bend forward along the arm. 3) The perpendicular drag coefficient for an octopus arm is nearly 50 times larger than the tangential drag coefficient. During a reaching movement, only a small portion of the arm is oriented perpendicular to the direction of movement, thus minimizing the drag force.

  1. Hand Posture Prediction Using Neural Networks within a Biomechanical Model

    Directory of Open Access Journals (Sweden)

    Marta C. Mora

    2012-10-01

    Full Text Available This paper proposes the use of artificial neural networks (ANNs in the framework of a biomechanical hand model for grasping. ANNs enhance the model capabilities as they substitute estimated data for the experimental inputs required by the grasping algorithm used. These inputs are the tentative grasping posture and the most open posture during grasping. As a consequence, more realistic grasping postures are predicted by the grasping algorithm, along with the contact information required by the dynamic biomechanical model (contact points and normals. Several neural network architectures are tested and compared in terms of prediction errors, leading to encouraging results. The performance of the overall proposal is also shown through simulation, where a grasping experiment is replicated and compared to the real grasping data collected by a data glove device.

  2. Selecting Sensitive Parameter Subsets in Dynamical Models With Application to Biomechanical System Identification.

    Science.gov (United States)

    Ramadan, Ahmed; Boss, Connor; Choi, Jongeun; Peter Reeves, N; Cholewicki, Jacek; Popovich, John M; Radcliffe, Clark J

    2018-07-01

    Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods.

  3. Three-dimensional biomechanical properties of human vocal folds: Parameter optimization of a numerical model to match in vitro dynamics

    Science.gov (United States)

    Yang, Anxiong; Berry, David A.; Kaltenbacher, Manfred; Döllinger, Michael

    2012-01-01

    The human voice signal originates from the vibrations of the two vocal folds within the larynx. The interactions of several intrinsic laryngeal muscles adduct and shape the vocal folds to facilitate vibration in response to airflow. Three-dimensional vocal fold dynamics are extracted from in vitro hemilarynx experiments and fitted by a numerical three-dimensional-multi-mass-model (3DM) using an optimization procedure. In this work, the 3DM dynamics are optimized over 24 experimental data sets to estimate biomechanical vocal fold properties during phonation. Accuracy of the optimization is verified by low normalized error (0.13 ± 0.02), high correlation (83% ± 2%), and reproducible subglottal pressure values. The optimized, 3DM parameters yielded biomechanical variations in tissue properties along the vocal fold surface, including variations in both the local mass and stiffness of vocal folds. That is, both mass and stiffness increased along the superior-to-inferior direction. These variations were statistically analyzed under different experimental conditions (e.g., an increase in tension as a function of vocal fold elongation and an increase in stiffness and a decrease in mass as a function of glottal airflow). The study showed that physiologically relevant vocal fold tissue properties, which cannot be directly measured during in vivo human phonation, can be captured using this 3D-modeling technique. PMID:22352511

  4. Detecting dynamical boundaries from kinematic data in biomechanics

    Science.gov (United States)

    Ross, Shane D.; Tanaka, Martin L.; Senatore, Carmine

    2010-03-01

    Ridges in the state space distribution of finite-time Lyapunov exponents can be used to locate dynamical boundaries. We describe a method for obtaining dynamical boundaries using only trajectories reconstructed from time series, expanding on the current approach which requires a vector field in the phase space. We analyze problems in musculoskeletal biomechanics, considered as exemplars of a class of experimental systems that contain separatrix features. Particular focus is given to postural control and balance, considering both models and experimental data. Our success in determining the boundary between recovery and failure in human balance activities suggests this approach will provide new robust stability measures, as well as measures of fall risk, that currently are not available and may have benefits for the analysis and prevention of low back pain and falls leading to injury, both of which affect a significant portion of the population.

  5. 4th International Plant Biomechanics Conference Proceedings (Abstracts)

    Energy Technology Data Exchange (ETDEWEB)

    Frank W. Telewski; Lothar H. Koehler; Frank W. Ewers

    2003-07-20

    The 4th International Plant Biomechanics Conference facilitated an interdisciplinary exchange between scientists, engineers, and educators addressing the major questions encountered in the field of Plant Biomechanics. Subjects covered by the conference include: Evolution; Ecology; Mechanoreception; Cell Walls; Genetic Modification; Applied Biomechanics of Whole Plants, Plant Products, Fibers & Composites; Fluid Dynamics; Wood & Trees; Fracture Mechanics; Xylem Pressure & Water Transport; Modeling; and Introducing Plant Biomechanics in Secondary School Education.

  6. Vehicle-pedestrian collisions - Aspects regarding pedestrian kinematics, dynamics and biomechanics

    Science.gov (United States)

    Petrescu, L.; Petrescu, Al

    2017-10-01

    Vehicle-pedestrian collisions result in a substantial number of pedestrian fatalities and injuries worldwide. Concern continues to limit and reduce the tragic consequences suffered by pedestrians involved in road accidents, caused the vehicle-pedestrian accident reconstruction become an important area and distinctly outlined in the reconstruction of road incidents involving vehicle. This paper analyzes the dynamics of vehicle-pedestrian impact influence over pedestrian biomechanics, which is directly connected with the severity of injury after contact with the vehicle profile and with the place where the pedestrian is projected. The main goal of this paper is to highlight some features of reconstruction of road accidents involving pedestrian, looking at the kinematics and dynamics of pedestrian impact for a better understanding of the phenomena that occur. The study on the dynamics and biomechanics of the pedestrian hit by the vehicle is useful in order to understand how the injuries, including the lethal ones, are generated in the collision, what is essential in road accidents reconstruction.

  7. Multiscale modeling in biomechanics and mechanobiology

    CERN Document Server

    Hwang, Wonmuk; Kuhl, Ellen

    2015-01-01

    Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models.   Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these...

  8. Soft Tissue Biomechanical Modeling for Computer Assisted Surgery

    CERN Document Server

    2012-01-01

      This volume focuses on the biomechanical modeling of biological tissues in the context of Computer Assisted Surgery (CAS). More specifically, deformable soft tissues are addressed since they are the subject of the most recent developments in this field. The pioneering works on this CAS topic date from the 1980's, with applications in orthopaedics and biomechanical models of bones. More recently, however, biomechanical models of soft tissues have been proposed since most of the human body is made of soft organs that can be deformed by the surgical gesture. Such models are much more complicated to handle since the tissues can be subject to large deformations (non-linear geometrical framework) as well as complex stress/strain relationships (non-linear mechanical framework). Part 1 of the volume presents biomechanical models that have been developed in a CAS context and used during surgery. This is particularly new since most of the soft tissues models already proposed concern Computer Assisted Planning, with ...

  9. Evaluation of corneal biomechanics in patients with keratectasia following LASIK using dynamic Scheimpflug analyzer.

    Science.gov (United States)

    Ueki, Ryotaro; Maeda, Naoyuki; Fuchihata, Mutsumi; Asai, Tomoko; Koh, Shizuka; Fujimoto, Hisataka; Uematsu, Masafumi; Nishida, Kohji

    2018-04-26

    To investigate the corneal biomechanics in eyes with keratectasia following LASIK using a dynamic Scheimpflug analyzer. Case-Control study. The subjects in the study included 12 eyes with keratectasia after LASIK (KE), 24 eyes with keratoconus (KC), 17 eyes without keratectasia after LASIK (LASIK), and 34 eyes with normal corneas (Normal). Corneal biomechanics of the four groups were evaluated using a dynamic Scheimpflug analyzer. Compared with Normal (7.06 ± 0.54), the radius at the highest concavity (radius, mm) of LASIK (5.96 ± 0.76), KE (4.93 ± 0.61) and KC (5.39 ± 1.02) were significantly small. The Deflection Amplitude (HCDLA, mm) of Normal (0.94 ± 0.07) was significantly lower than those of KE (1.11 ± 0.10) and KC (1.06 ± 0.16), and was not significantly different from that of LASIK (0.98 ± 0.07). There were significant differences between LASIK and KE in radius and HCDLA (P biomechanical features evaluated using the dynamic Scheimpflug analyzer suggest that biomechanical properties in eyes with keratectasia, keratoconus, and LASIK are different from those of normal eyes. Although the biomechanics in eyes with keratectasia differs from that in eyes with LASIK, it is similar to that in eyes with keratoconus.

  10. Biomechanical interpretation of a free-breathing lung motion model

    International Nuclear Information System (INIS)

    Zhao Tianyu; White, Benjamin; Lamb, James; Low, Daniel A; Moore, Kevin L; Yang Deshan; Mutic, Sasa; Lu Wei

    2011-01-01

    The purpose of this paper is to develop a biomechanical model for free-breathing motion and compare it to a published heuristic five-dimensional (5D) free-breathing lung motion model. An ab initio biomechanical model was developed to describe the motion of lung tissue during free breathing by analyzing the stress–strain relationship inside lung tissue. The first-order approximation of the biomechanical model was equivalent to a heuristic 5D free-breathing lung motion model proposed by Low et al in 2005 (Int. J. Radiat. Oncol. Biol. Phys. 63 921–9), in which the motion was broken down to a linear expansion component and a hysteresis component. To test the biomechanical model, parameters that characterize expansion, hysteresis and angles between the two motion components were reported independently and compared between two models. The biomechanical model agreed well with the heuristic model within 5.5% in the left lungs and 1.5% in the right lungs for patients without lung cancer. The biomechanical model predicted that a histogram of angles between the two motion components should have two peaks at 39.8° and 140.2° in the left lungs and 37.1° and 142.9° in the right lungs. The data from the 5D model verified the existence of those peaks at 41.2° and 148.2° in the left lungs and 40.1° and 140° in the right lungs for patients without lung cancer. Similar results were also observed for the patients with lung cancer, but with greater discrepancies. The maximum-likelihood estimation of hysteresis magnitude was reported to be 2.6 mm for the lung cancer patients. The first-order approximation of the biomechanical model fit the heuristic 5D model very well. The biomechanical model provided new insights into breathing motion with specific focus on motion trajectory hysteresis.

  11. Two-Segment Foot Model for the Biomechanical Analysis of Squat.

    Science.gov (United States)

    Panero, E; Gastaldi, L; Rapp, W

    2017-01-01

    Squat exercise is acquiring interest in many fields, due to its benefits in improving health and its biomechanical similarities to a wide range of sport motions and the recruitment of many body segments in a single maneuver. Several researches had examined considerable biomechanical aspects of lower limbs during squat, but not without limitations. The main goal of this study focuses on the analysis of the foot contribution during a partial body weight squat, using a two-segment foot model that considers separately the forefoot and the hindfoot. The forefoot and hindfoot are articulated by the midtarsal joint. Five subjects performed a series of three trials, and results were averaged. Joint kinematics and dynamics were obtained using motion capture system, two force plates closed together, and inverse dynamics techniques. The midtarsal joint reached a dorsiflexion peak of 4°. Different strategies between subjects revealed 4° supination and 2.5° pronation of the forefoot. Vertical GRF showed 20% of body weight concentrated on the forefoot and 30% on the hindfoot. The percentages varied during motion, with a peak of 40% on the hindfoot and correspondently 10% on the forefoot, while the traditional model depicted the unique constant 50% value. Ankle peak of plantarflexion moment, power absorption, and power generation was consistent with values estimated by the one-segment model, without statistical significance.

  12. Two-Segment Foot Model for the Biomechanical Analysis of Squat

    Directory of Open Access Journals (Sweden)

    E. Panero

    2017-01-01

    Full Text Available Squat exercise is acquiring interest in many fields, due to its benefits in improving health and its biomechanical similarities to a wide range of sport motions and the recruitment of many body segments in a single maneuver. Several researches had examined considerable biomechanical aspects of lower limbs during squat, but not without limitations. The main goal of this study focuses on the analysis of the foot contribution during a partial body weight squat, using a two-segment foot model that considers separately the forefoot and the hindfoot. The forefoot and hindfoot are articulated by the midtarsal joint. Five subjects performed a series of three trials, and results were averaged. Joint kinematics and dynamics were obtained using motion capture system, two force plates closed together, and inverse dynamics techniques. The midtarsal joint reached a dorsiflexion peak of 4°. Different strategies between subjects revealed 4° supination and 2.5° pronation of the forefoot. Vertical GRF showed 20% of body weight concentrated on the forefoot and 30% on the hindfoot. The percentages varied during motion, with a peak of 40% on the hindfoot and correspondently 10% on the forefoot, while the traditional model depicted the unique constant 50% value. Ankle peak of plantarflexion moment, power absorption, and power generation was consistent with values estimated by the one-segment model, without statistical significance.

  13. Arch index and running biomechanics in children aged 10-14 years.

    Science.gov (United States)

    Hollander, Karsten; Stebbins, Julie; Albertsen, Inke Marie; Hamacher, Daniel; Babin, Kornelia; Hacke, Claudia; Zech, Astrid

    2018-03-01

    While altered foot arch characteristics (high or low) are frequently assumed to influence lower limb biomechanics and are suspected to be a contributing factor for injuries, the association between arch characteristics and lower limb running biomechanics in children is unclear. Therefore, the aim of this study was to investigate the relationship between a dynamically measured arch index and running biomechanics in healthy children. One hundred and one children aged 10-14 years were included in this study and underwent a biomechanical investigation. Plantar distribution (Novel, Emed) was used to determine the dynamic arch index and 3D motion capture (Vicon) to measure running biomechanics. Linear mixed models were established to determine the association between dynamic arch index and foot strike patterns, running kinematics, kinetics and temporal-spatial outcomes. No association was found between dynamic arch index and rate of rearfoot strikes (p = 0.072). Of all secondary outcomes, only the foot progression angle was associated with the dynamic arch index (p = 0.032) with greater external rotation in lower arched children. Overall, we found only few associations between arch characteristics and running biomechanics in children. However, altered foot arch characteristics are of clinical interest. Future studies should focus on detailed foot biomechanics and include clinically diagnosed high and low arched children. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The medical simulation markup language - simplifying the biomechanical modeling workflow.

    Science.gov (United States)

    Suwelack, Stefan; Stoll, Markus; Schalck, Sebastian; Schoch, Nicolai; Dillmann, Rüdiger; Bendl, Rolf; Heuveline, Vincent; Speidel, Stefanie

    2014-01-01

    Modeling and simulation of the human body by means of continuum mechanics has become an important tool in diagnostics, computer-assisted interventions and training. This modeling approach seeks to construct patient-specific biomechanical models from tomographic data. Usually many different tools such as segmentation and meshing algorithms are involved in this workflow. In this paper we present a generalized and flexible description for biomechanical models. The unique feature of the new modeling language is that it not only describes the final biomechanical simulation, but also the workflow how the biomechanical model is constructed from tomographic data. In this way, the MSML can act as a middleware between all tools used in the modeling pipeline. The MSML thus greatly facilitates the prototyping of medical simulation workflows for clinical and research purposes. In this paper, we not only detail the XML-based modeling scheme, but also present a concrete implementation. Different examples highlight the flexibility, robustness and ease-of-use of the approach.

  15. Emulating facial biomechanics using multivariate partial least squares surrogate models.

    Science.gov (United States)

    Wu, Tim; Martens, Harald; Hunter, Peter; Mithraratne, Kumar

    2014-11-01

    A detailed biomechanical model of the human face driven by a network of muscles is a useful tool in relating the muscle activities to facial deformations. However, lengthy computational times often hinder its applications in practical settings. The objective of this study is to replace precise but computationally demanding biomechanical model by a much faster multivariate meta-model (surrogate model), such that a significant speedup (to real-time interactive speed) can be achieved. Using a multilevel fractional factorial design, the parameter space of the biomechanical system was probed from a set of sample points chosen to satisfy maximal rank optimality and volume filling. The input-output relationship at these sampled points was then statistically emulated using linear and nonlinear, cross-validated, partial least squares regression models. It was demonstrated that these surrogate models can mimic facial biomechanics efficiently and reliably in real-time. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Comparing dynamical systems concepts and techniques for biomechanical analysis

    OpenAIRE

    van Emmerik, Richard E.A.; Ducharme, Scott W.; Amado, Avelino C.; Hamill, Joseph

    2016-01-01

    Traditional biomechanical analyses of human movement are generally derived from linear mathematics. While these methods can be useful in many situations, they do not describe behaviors in human systems that are predominately nonlinear. For this reason, nonlinear analysis methods based on a dynamical systems approach have become more prevalent in recent literature. These analysis techniques have provided new insights into how systems (1) maintain pattern stability, (2) transition into new stat...

  17. Modeling the Biomechanical Influence of Epilaryngeal Stricture on the Vocal Folds: A Low-Dimensional Model of Vocal-Ventricular Fold Coupling

    Science.gov (United States)

    Moisik, Scott R.; Esling, John H.

    2014-01-01

    Purpose: Physiological and phonetic studies suggest that, at moderate levels of epilaryngeal stricture, the ventricular folds impinge upon the vocal folds and influence their dynamical behavior, which is thought to be responsible for constricted laryngeal sounds. In this work, the authors examine this hypothesis through biomechanical modeling.…

  18. Recent software developments for biomechanical assessment

    Science.gov (United States)

    Greaves, John O. B.

    1990-08-01

    While much of the software developed in research laboratories is narrow in focus and suited for a specific experiment, some of it is broad enough and of high enough quality to be useful to others in solving similar problems. Several biomechanical assessment packages are now beginning to emerge, including: * 3D research biomechanics (5- and 6-DOF) with kinematics, kinetics, 32-channel analog data subsystem, and project management. * 3D full-body gait analysis with kinematics, kinetics, EMG charts, and force plate charts. * 2D dynamic rear-foot assessment. * 2D occupational biomechanics lifting task and personnel assessments. * 2D dynamic gait analysis. * Multiple 2D dynamic spine assessments. * 2D sport and biomechanics assessments with kinematics and kinetics. * 2D and 3D equine gait assessments.

  19. Biomedical Imaging and Computational Modeling in Biomechanics

    CERN Document Server

    Iacoviello, Daniela

    2013-01-01

    This book collects the state-of-art and new trends in image analysis and biomechanics. It covers a wide field of scientific and cultural topics, ranging from remodeling of bone tissue under the mechanical stimulus up to optimizing the performance of sports equipment, through the patient-specific modeling in orthopedics, microtomography and its application in oral and implant research, computational modeling in the field of hip prostheses, image based model development and analysis of the human knee joint, kinematics of the hip joint, micro-scale analysis of compositional and mechanical properties of dentin, automated techniques for cervical cell image analysis, and iomedical imaging and computational modeling in cardiovascular disease.   The book will be of interest to researchers, Ph.D students, and graduate students with multidisciplinary interests related to image analysis and understanding, medical imaging, biomechanics, simulation and modeling, experimental analysis.

  20. An introduction to biomechanics solids and fluids, analysis and design

    CERN Document Server

    Humphrey, Jay D

    2004-01-01

    Designed to meet the needs of undergraduate students, Introduction to Biomechanics takes the fresh approach of combining the viewpoints of both a well-respected teacher and a successful student. With an eye toward practicality without loss of depth of instruction, this book seeks to explain the fundamental concepts of biomechanics. With the accompanying web site providing models, sample problems, review questions and more, Introduction to Biomechanics provides students with the full range of instructional material for this complex and dynamic field.

  1. Perspectives on Sharing Models and Related Resources in Computational Biomechanics Research.

    Science.gov (United States)

    Erdemir, Ahmet; Hunter, Peter J; Holzapfel, Gerhard A; Loew, Leslie M; Middleton, John; Jacobs, Christopher R; Nithiarasu, Perumal; Löhner, Rainlad; Wei, Guowei; Winkelstein, Beth A; Barocas, Victor H; Guilak, Farshid; Ku, Joy P; Hicks, Jennifer L; Delp, Scott L; Sacks, Michael; Weiss, Jeffrey A; Ateshian, Gerard A; Maas, Steve A; McCulloch, Andrew D; Peng, Grace C Y

    2018-02-01

    The role of computational modeling for biomechanics research and related clinical care will be increasingly prominent. The biomechanics community has been developing computational models routinely for exploration of the mechanics and mechanobiology of diverse biological structures. As a result, a large array of models, data, and discipline-specific simulation software has emerged to support endeavors in computational biomechanics. Sharing computational models and related data and simulation software has first become a utilitarian interest, and now, it is a necessity. Exchange of models, in support of knowledge exchange provided by scholarly publishing, has important implications. Specifically, model sharing can facilitate assessment of reproducibility in computational biomechanics and can provide an opportunity for repurposing and reuse, and a venue for medical training. The community's desire to investigate biological and biomechanical phenomena crossing multiple systems, scales, and physical domains, also motivates sharing of modeling resources as blending of models developed by domain experts will be a required step for comprehensive simulation studies as well as the enhancement of their rigor and reproducibility. The goal of this paper is to understand current perspectives in the biomechanics community for the sharing of computational models and related resources. Opinions on opportunities, challenges, and pathways to model sharing, particularly as part of the scholarly publishing workflow, were sought. A group of journal editors and a handful of investigators active in computational biomechanics were approached to collect short opinion pieces as a part of a larger effort of the IEEE EMBS Computational Biology and the Physiome Technical Committee to address model reproducibility through publications. A synthesis of these opinion pieces indicates that the community recognizes the necessity and usefulness of model sharing. There is a strong will to facilitate

  2. Sensitivity of Tumor Motion Simulation Accuracy to Lung Biomechanical Modeling Approaches and Parameters

    OpenAIRE

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-01-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional com...

  3. Computational biomechanics for medicine imaging, modeling and computing

    CERN Document Server

    Doyle, Barry; Wittek, Adam; Nielsen, Poul; Miller, Karol

    2016-01-01

    The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This volume comprises eighteen of the newest approaches and applications of computational biomechanics, from researchers in Australia, New Zealand, USA, UK, Switzerland, Scotland, France and Russia. Some of the interesting topics discussed are: tailored computational models; traumatic brain injury; soft-tissue mechanics; medical image analysis; and clinically-relevant simulations. One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. We hope the research presented within this book series will contribute to overcoming this grand challenge.

  4. Effect of material property heterogeneity on biomechanical modeling of prostate under deformation

    International Nuclear Information System (INIS)

    Samavati, Navid; McGrath, Deirdre M; Ménard, Cynthia; Jewett, Michael A S; Van der Kwast, Theo; Brock, Kristy K

    2015-01-01

    Biomechanical model based deformable image registration has been widely used to account for prostate deformation in various medical imaging procedures. Biomechanical material properties are important components of a biomechanical model. In this study, the effect of incorporating tumor-specific material properties in the prostate biomechanical model was investigated to provide insight into the potential impact of material heterogeneity on the prostate deformation calculations. First, a simple spherical prostate and tumor model was used to analytically describe the deformations and demonstrate the fundamental effect of changes in the tumor volume and stiffness in the modeled deformation. Next, using a clinical prostate model, a parametric approach was used to describe the variations in the heterogeneous prostate model by changing tumor volume, stiffness, and location, to show the differences in the modeled deformation between heterogeneous and homogeneous prostate models. Finally, five clinical prostatectomy examples were used in separately performed homogeneous and heterogeneous biomechanical model based registrations to describe the deformations between 3D reconstructed histopathology images and ex vivo magnetic resonance imaging, and examine the potential clinical impact of modeling biomechanical heterogeneity of the prostate. The analytical formulation showed that increasing the tumor volume and stiffness could significantly increase the impact of the heterogeneous prostate model in the calculated displacement differences compared to the homogeneous model. The parametric approach using a single prostate model indicated up to 4.8 mm of displacement difference at the tumor boundary compared to a homogeneous model. Such differences in the deformation of the prostate could be potentially clinically significant given the voxel size of the ex vivo MR images (0.3  ×  0.3  ×  0.3 mm). However, no significant changes in the registration accuracy were

  5. Tree Branching: Leonardo da Vinci's Rule versus Biomechanical Models

    Science.gov (United States)

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule. PMID:24714065

  6. Tree branching: Leonardo da Vinci's rule versus biomechanical models.

    Science.gov (United States)

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule.

  7. Biomechanical model-based displacement estimation in micro-sensor motion capture

    International Nuclear Information System (INIS)

    Meng, X L; Sun, S Y; Wu, J K; Zhang, Z Q; 3 Building, 21 Heng Mui Keng Terrace (Singapore))" data-affiliation=" (Department of Electrical and Computer Engineering, National University of Singapore (NUS), 02-02-10 I3 Building, 21 Heng Mui Keng Terrace (Singapore))" >Wong, W C

    2012-01-01

    In micro-sensor motion capture systems, the estimation of the body displacement in the global coordinate system remains a challenge due to lack of external references. This paper proposes a self-contained displacement estimation method based on a human biomechanical model to track the position of walking subjects in the global coordinate system without any additional supporting infrastructures. The proposed approach makes use of the biomechanics of the lower body segments and the assumption that during walking there is always at least one foot in contact with the ground. The ground contact joint is detected based on walking gait characteristics and used as the external references of the human body. The relative positions of the other joints are obtained from hierarchical transformations based on the biomechanical model. Anatomical constraints are proposed to apply to some specific joints of the lower body to further improve the accuracy of the algorithm. Performance of the proposed algorithm is compared with an optical motion capture system. The method is also demonstrated in outdoor and indoor long distance walking scenarios. The experimental results demonstrate clearly that the biomechanical model improves the displacement accuracy within the proposed framework. (paper)

  8. Biological variability in biomechanical engineering research: Significance and meta-analysis of current modeling practices.

    Science.gov (United States)

    Cook, Douglas; Julias, Margaret; Nauman, Eric

    2014-04-11

    Biological systems are characterized by high levels of variability, which can affect the results of biomechanical analyses. As a review of this topic, we first surveyed levels of variation in materials relevant to biomechanics, and compared these values to standard engineered materials. As expected, we found significantly higher levels of variation in biological materials. A meta-analysis was then performed based on thorough reviews of 60 research studies from the field of biomechanics to assess the methods and manner in which biological variation is currently handled in our field. The results of our meta-analysis revealed interesting trends in modeling practices, and suggest a need for more biomechanical studies that fully incorporate biological variation in biomechanical models and analyses. Finally, we provide some case study example of how biological variability may provide valuable insights or lead to surprising results. The purpose of this study is to promote the advancement of biomechanics research by encouraging broader treatment of biological variability in biomechanical modeling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Correlation of breast image alignment using biomechanical modelling

    Science.gov (United States)

    Lee, Angela; Rajagopal, Vijay; Bier, Peter; Nielsen, Poul M. F.; Nash, Martyn P.

    2009-02-01

    Breast cancer is one of the most common causes of cancer death among women around the world. Researchers have found that a combination of imaging modalities (such as x-ray mammography, magnetic resonance, and ultrasound) leads to more effective diagnosis and management of breast cancers because each imaging modality displays different information about the breast tissues. In order to aid clinicians in interpreting the breast images from different modalities, we have developed a computational framework for generating individual-specific, 3D, finite element (FE) models of the breast. Medical images are embedded into this model, which is subsequently used to simulate the large deformations that the breasts undergo during different imaging procedures, thus warping the medical images to the deformed views of the breast in the different modalities. In this way, medical images of the breast taken in different geometric configurations (compression, gravity, etc.) can be aligned according to physically feasible transformations. In order to analyse the accuracy of the biomechanical model predictions, squared normalised cross correlation (NCC2) was used to provide both local and global comparisons of the model-warped images with clinical images of the breast subject to different gravity loaded states. The local comparison results were helpful in indicating the areas for improvement in the biomechanical model. To improve the modelling accuracy, we will need to investigate the incorporation of breast tissue heterogeneity into the model and altering the boundary conditions for the breast model. A biomechanical image registration tool of this kind will help radiologists to provide more reliable diagnosis and localisation of breast cancer.

  10. Emulating facial biomechanics using multivariate partial least squares surrogate models

    OpenAIRE

    Martens, Harald; Wu, Tim; Hunter, Peter; Mithraratne, Kumar

    2014-01-01

    This is the author’s final, accepted and refereed manuscript to the article. Locked until 2015-05-06 A detailed biomechanical model of the human face driven by a network of muscles is a useful tool in relating the muscle activities to facial deformations. However, lengthy computational times often hinder its applications in practical settings. The objective of this study is to replace precise but computationally demanding biomechanical model by a much faster multivariate meta-mode...

  11. Computational biomechanics

    International Nuclear Information System (INIS)

    Ethier, C.R.

    2004-01-01

    Computational biomechanics is a fast-growing field that integrates modern biological techniques and computer modelling to solve problems of medical and biological interest. Modelling of blood flow in the large arteries is the best-known application of computational biomechanics, but there are many others. Described here is work being carried out in the laboratory on the modelling of blood flow in the coronary arteries and on the transport of viral particles in the eye. (author)

  12. Biomechanical modelling and evaluation of construction jobs for performance improvement.

    Science.gov (United States)

    Parida, Ratri; Ray, Pradip Kumar

    2012-01-01

    Occupational risk factors, such as awkward posture, repetition, lack of rest, insufficient illumination and heavy workload related to construction-related MMH activities may cause musculoskeletal disorders and poor performance of the workers, ergonomic design of construction worksystems was a critical need for improving their health and safety wherein a dynamic biomechanical models were required to be empirically developed and tested at a construction site of Tata Steel, the largest steel making company of India in private sector. In this study, a comprehensive framework is proposed for biomechanical evaluation of shovelling and grinding under diverse work environments. The benefit of such an analysis lies in its usefulness in setting guidelines for designing such jobs with minimization of risks of musculoskeletal disorders (MSDs) and enhancing correct methods of carrying out the jobs leading to reduced fatigue and physical stress. Data based on direct observations and videography were collected for the shovellers and grinders over a number of workcycles. Compressive forces and moments for a number of segments and joints are computed with respect to joint flexion and extension. The results indicate that moments and compressive forces at L5/S1 link are significant for shovellers while moments at elbow and wrist are significant for grinders.

  13. Biomechanics of Posterior Dynamic Fusion Systems in the Lumbar Spine: Implications for Stabilization With Improved Arthrodesis.

    Science.gov (United States)

    Yu, Alexander K; Siegfried, Catherine M; Chew, Brandon; Hobbs, Joseph; Sabersky, Abraham; Jho, Diana J; Cook, Daniel J; Bellotte, Jonathan Brad; Whiting, Donald M; Cheng, Boyle C

    2016-08-01

    A comparative biomechanical human cadaveric spine study of a dynamic fusion rod and a traditional titanium rod. The purpose of this study was to measure and compare the biomechanical metrics associated with a dynamic fusion device, Isobar TTL Evolution, and a rigid rod. Dynamic fusion rods may enhance arthrodesis compared with a rigid rod. Wolff's law implies that bone remodeling and growth may be enhanced through anterior column loading (AL). This is important for dynamic fusion rods because their purpose is to increase AL. Six fresh-frozen lumbar cadaveric specimens were used. Each untreated specimen (Intact) underwent biomechanical testing. Next, each specimen had a unilateral transforaminal lumbar interbody fusion performed at L3-L4 using a cage with an integrated load cell. Pedicle screws were also placed at this time. Subsequently, the Isobar was implanted and tested, and finally, a rigid rod replaced the Isobar in the same pedicle screw arrangement. In terms of range of motion, the Isobar performed comparably to the rigid rod and there was no statistical difference found between Isobar and rigid rod. There was a significant difference between the intact and rigid rod and also between intact and Isobar conditions in flexion extension. For interpedicular displacement, there was a significant increase in flexion extension (P=0.017) for the Isobar compared with the rigid rod. Isobar showed increased AL under axial compression compared with the rigid rod (P=0.024). Isobar provided comparable stabilization to a rigid rod when using range of motion as the metric, however, AL was increased because of the greater interpedicular displacement of dynamic rod compared with a rigid rod. By increasing interpedicular displacement and AL, it potentially brings clinical benefit to procedures relying on arthrodesis.

  14. The role of the sutures in biomechanical dynamic simulation of a macaque cranial finite element model: Implications for the evolution of craniofacial form

    Science.gov (United States)

    Wang, Qian; Wood, Sarah A.; Grosse, Ian R.; Ross, Callum F.; Zapata, Uriel; Byron, Craig D.; Wright, Barth W.; Strait, David S.

    2012-01-01

    The global biomechanical impact of cranial sutures on the face and cranium during dynamic conditions is not well understood. It is hypothesized that sutures act as energy absorbers protecting skulls subjected to dynamic loads. This hypothesis predicts that sutures have a significant impact on global patterns of strain and cranial structural stiffness when analyzed using dynamic simulations; and that this global impact is influenced by suture material properties. In a finite element model developed from a juvenile Rhesus macaque cranium, five different sets of suture material properties for the zygomaticotemporal sutures were tested. The static and dynamic analyses produced similar results in terms of strain patterns and reaction forces, indicating that the zygomaticotemporal sutures have limited impact on global skull mechanics regardless of loading design. Contrary to the functional hypothesis tested here, the zygomaticotemporal sutures did not absorb significant amounts of energy during dynamic simulations regardless of loading speed. It is alternatively hypothesized that sutures are mechanically significant only insofar as they are weak points on the cranium that must be shielded from unduly high stresses so as not to disrupt vitally important growth processes. Thus, sutural and overall cranial form in some vertebrates may be optimized to minimize or otherwise modulate sutural stress and strain. PMID:22190334

  15. A biomechanical model of mammographic compressions.

    Science.gov (United States)

    Chung, J H; Rajagopal, V; Nielsen, P M F; Nash, M P

    2008-02-01

    A number of biomechanical models have been proposed to improve nonrigid registration techniques for multimodal breast image alignment. A deformable breast model may also be useful for overcoming difficulties in interpreting 2D X-ray projections (mammograms) of 3D volumes (breast tissues). If a deformable model could accurately predict the shape changes that breasts undergo during mammography, then the model could serve to localize suspicious masses (visible in mammograms) in the unloaded state, or in any other deformed state required for further investigations (such as biopsy or other medical imaging modalities). In this paper, we present a validation study that was conducted in order to develop a biomechanical model based on the well-established theory of continuum mechanics (finite elasticity theory with contact mechanics) and demonstrate its use for this application. Experimental studies using gel phantoms were conducted to test the accuracy in predicting mammographic-like deformations. The material properties of the gel phantom were estimated using a nonlinear optimization process, which minimized the errors between the experimental and the model-predicted surface data by adjusting the parameter associated with the neo-Hookean constitutive relation. Two compressions (the equivalent of cranio-caudal and medio-lateral mammograms) were performed on the phantom, and the corresponding deformations were recorded using a MRI scanner. Finite element simulations were performed to mimic the experiments using the estimated material properties with appropriate boundary conditions. The simulation results matched the experimental recordings of the deformed phantom, with a sub-millimeter root-mean-square error for each compression state. Having now validated our finite element model of breast compression, the next stage is to apply the model to clinical images.

  16. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters.

    Science.gov (United States)

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-21

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation.

  17. A novel biomechanical model assessing continuous orthodontic archwire activation

    Science.gov (United States)

    Canales, Christopher; Larson, Matthew; Grauer, Dan; Sheats, Rose; Stevens, Clarke; Ko, Ching-Chang

    2013-01-01

    Objective The biomechanics of a continuous archwire inserted into multiple orthodontic brackets is poorly understood. The purpose of this research was to apply the birth-death technique to simulate insertion of an orthodontic wire and consequent transfer of forces to the dentition in an anatomically accurate model. Methods A digital model containing the maxillary dentition, periodontal ligament (PDL), and surrounding bone was constructed from human computerized tomography data. Virtual brackets were placed on four teeth (central and lateral incisors, canine and first premolar), and a steel archwire (0.019″ × 0.025″) with a 0.5 mm step bend to intrude the lateral incisor was virtually inserted into the bracket slots. Forces applied to the dentition and surrounding structures were simulated utilizing the birth-death technique. Results The goal of simulating a complete bracket-wire system on accurate anatomy including multiple teeth was achieved. Orthodontic force delivered by the wire-bracket interaction was: central incisor 19.1 N, lateral incisor 21.9 N, and canine 19.9 N. Loading the model with equivalent point forces showed a different stress distribution in the PDL. Conclusions The birth-death technique proved to be a useful biomechanical simulation method for placement of a continuous archwire in orthodontic brackets. The ability to view the stress distribution throughout proper anatomy and appliances advances understanding of orthodontic biomechanics. PMID:23374936

  18. Two-Segment Foot Model for the Biomechanical Analysis of Squat

    OpenAIRE

    Panero, E.; Gastaldi, L.; Rapp, W.

    2017-01-01

    Squat exercise is acquiring interest in many fields, due to its benefits in improving health and its biomechanical similarities to a wide range of sport motions and the recruitment of many body segments in a single maneuver. Several researches had examined considerable biomechanical aspects of lower limbs during squat, but not without limitations. The main goal of this study focuses on the analysis of the foot contribution during a partial body weight squat, using a two-segment foot model tha...

  19. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters

    International Nuclear Information System (INIS)

    Tehrani, Joubin Nasehi; Wang, Jing; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu

    2015-01-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney–Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney–Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney–Rivlin material model along left-right, anterior–posterior, and superior–inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation. (paper)

  20. Quantitative modelling of the biomechanics of the avian syrinx

    DEFF Research Database (Denmark)

    Elemans, Coen P. H.; Larsen, Ole Næsbye; Hoffmann, Marc R.

    2003-01-01

    We review current quantitative models of the biomechanics of bird sound production. A quantitative model of the vocal apparatus was proposed by Fletcher (1988). He represented the syrinx (i.e. the portions of the trachea and bronchi with labia and membranes) as a single membrane. This membrane acts...

  1. Modeling the impact of prostate edema on LDR brachytherapy: a Monte Carlo dosimetry study based on a 3D biphasic finite element biomechanical model

    Science.gov (United States)

    Mountris, K. A.; Bert, J.; Noailly, J.; Rodriguez Aguilera, A.; Valeri, A.; Pradier, O.; Schick, U.; Promayon, E.; Gonzalez Ballester, M. A.; Troccaz, J.; Visvikis, D.

    2017-03-01

    Prostate volume changes due to edema occurrence during transperineal permanent brachytherapy should be taken under consideration to ensure optimal dose delivery. Available edema models, based on prostate volume observations, face several limitations. Therefore, patient-specific models need to be developed to accurately account for the impact of edema. In this study we present a biomechanical model developed to reproduce edema resolution patterns documented in the literature. Using the biphasic mixture theory and finite element analysis, the proposed model takes into consideration the mechanical properties of the pubic area tissues in the evolution of prostate edema. The model’s computed deformations are incorporated in a Monte Carlo simulation to investigate their effect on post-operative dosimetry. The comparison of Day1 and Day30 dosimetry results demonstrates the capability of the proposed model for patient-specific dosimetry improvements, considering the edema dynamics. The proposed model shows excellent ability to reproduce previously described edema resolution patterns and was validated based on previous findings. According to our results, for a prostate volume increase of 10-20% the Day30 urethra D10 dose metric is higher by 4.2%-10.5% compared to the Day1 value. The introduction of the edema dynamics in Day30 dosimetry shows a significant global dose overestimation identified on the conventional static Day30 dosimetry. In conclusion, the proposed edema biomechanical model can improve the treatment planning of transperineal permanent brachytherapy accounting for post-implant dose alterations during the planning procedure.

  2. Comparing dynamical systems concepts and techniques for biomechanical analysis

    Institute of Scientific and Technical Information of China (English)

    Richard E.A. van Emmerik; Scott W. Ducharme; Avelino C. Amado; Joseph Hamill

    2016-01-01

    Traditional biomechanical analyses of human movement are generally derived from linear mathematics. While these methods can be useful in many situations, they do not describe behaviors in human systems that are predominately nonlinear. For this reason, nonlinear analysis methods based on a dynamical systems approach have become more prevalent in recent literature. These analysis techniques have provided new insights into how systems (1) maintain pattern stability, (2) transition into new states, and (3) are governed by short-and long-term (fractal) correlational processes at different spatio-temporal scales. These different aspects of system dynamics are typically investigated using concepts related to variability, stability, complexity, and adaptability. The purpose of this paper is to compare and contrast these different concepts and demonstrate that, although related, these terms represent fundamentally different aspects of system dynamics. In particular, we argue that variability should not uniformly be equated with stability or complexity of movement. In addition, current dynamic stability measures based on nonlinear analysis methods (such as the finite maximal Lyapunov exponent) can reveal local instabilities in movement dynamics, but the degree to which these local instabilities relate to global postural and gait stability and the ability to resist external perturbations remains to be explored. Finally, systematic studies are needed to relate observed reductions in complexity with aging and disease to the adaptive capabilities of the movement system and how complexity changes as a function of different task constraints.

  3. Comparing dynamical systems concepts and techniques for biomechanical analysis

    Directory of Open Access Journals (Sweden)

    Richard E.A. van Emmerik

    2016-03-01

    Full Text Available Traditional biomechanical analyses of human movement are generally derived from linear mathematics. While these methods can be useful in many situations, they do not describe behaviors in human systems that are predominately nonlinear. For this reason, nonlinear analysis methods based on a dynamical systems approach have become more prevalent in recent literature. These analysis techniques have provided new insights into how systems (1 maintain pattern stability, (2 transition into new states, and (3 are governed by short- and long-term (fractal correlational processes at different spatio-temporal scales. These different aspects of system dynamics are typically investigated using concepts related to variability, stability, complexity, and adaptability. The purpose of this paper is to compare and contrast these different concepts and demonstrate that, although related, these terms represent fundamentally different aspects of system dynamics. In particular, we argue that variability should not uniformly be equated with stability or complexity of movement. In addition, current dynamic stability measures based on nonlinear analysis methods (such as the finite maximal Lyapunov exponent can reveal local instabilities in movement dynamics, but the degree to which these local instabilities relate to global postural and gait stability and the ability to resist external perturbations remains to be explored. Finally, systematic studies are needed to relate observed reductions in complexity with aging and disease to the adaptive capabilities of the movement system and how complexity changes as a function of different task constraints.

  4. Multiscale modeling of the dynamics of multicellular systems

    Science.gov (United States)

    Kosztin, Ioan

    2011-03-01

    Describing the biomechanical properties of cellular systems, regarded as complex highly viscoelastic materials, is a difficult problem of great conceptual and practical value. Here we present a novel approach, referred to as the Cellular Particle Dynamics (CPD) method, for: (i) quantitatively relating biomechanical properties at the cell level to those at the multicellular and tissue level, and (ii) describing and predicting the time evolution of multicellular systems that undergo biomechanical relaxations. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. Cell and multicellular level biomechanical properties (e.g., viscosity, surface tension and shear modulus) are determined through the combined use of experiments and theory of continuum viscoelastic media. The same biomechanical properties are also ``measured'' computationally by employing the CPD method, the results being expressed in terms of CPD parameters. Once these parameters have been calibrated experimentally, the formalism provides a systematic framework to predict the time evolution of complex multicellular systems during shape-changing biomechanical transformations. By design, the CPD method is rather flexible and most suitable for multiscale modeling of multicellular system. The spatial level of detail of the system can be easily tuned by changing the number of CPs in a cell. Thus, CPD can be used equally well to describe both cell level processes (e.g., the adhesion of two cells) and tissue level processes (e.g., the formation of 3D constructs of millions of cells through bioprinting). Work supported by NSF [FIBR-0526854 and PHY-0957914

  5. Modeling the biomechanics of swine mastication--an inverse dynamics approach.

    Science.gov (United States)

    Basafa, Ehsan; Murphy, Ryan J; Gordon, Chad R; Armand, Mehran

    2014-08-22

    A novel reconstructive alternative for patients with severe facial structural deformity is Le Fort-based, face-jaw-teeth transplantation (FJTT). To date, however, only ten surgeries have included underlying skeletal and jaw-teeth components, all yielding sub-optimal results and a need for a subsequent revision surgery, due to size mismatch and lack of precise planning. Numerous studies have proven swine to be appropriate candidates for translational studies including pre-operative planning of transplantation. An important aspect of planning FJTT is determining the optimal muscle attachment sites on the recipient's jaw, which requires a clear understanding of mastication and bite mechanics in relation to the new donated upper and/or lower jaw. A segmented CT scan coupled with data taken from literature defined a biomechanical model of mandible and jaw muscles of a swine. The model was driven using tracked motion and external force data of one cycle of chewing published earlier, and predicted the muscle activation patterns as well as temporomandibular joint (TMJ) reaction forces and condylar motions. Two methods, polynomial and min/max optimization, were used for solving the muscle recruitment problem. Similar performances were observed between the two methods. On average, there was a mean absolute error (MAE) of <0.08 between the predicted and measured activation levels of all muscles, and an MAE of <7 N for TMJ reaction forces. Simulated activations qualitatively followed the same patterns as the reference data and there was very good agreement for simulated TMJ forces. The polynomial optimization produced a smoother output, suggesting that it is more suitable for studying such motions. Average MAE for condylar motion was 1.2mm, which reduced to 0.37 mm when the input incisor motion was scaled to reflect the possible size mismatch between the current and original swine models. Results support the hypothesis that the model can be used for planning of facial

  6. Graphic-based musculoskeletal model for biomechanical analyses and animation.

    Science.gov (United States)

    Chao, Edmund Y S

    2003-04-01

    The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the 'Virtual Human' reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. This paper details the design, capabilities, and features of the VIMS development at Johns Hopkins University, an effort possible only through academic and commercial collaborations. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of this unique database and simulation technology. This integrated system will impact on medical education, basic research, device development and application, and clinical patient care related to musculoskeletal diseases, trauma, and rehabilitation.

  7. Biomechanics-based in silico medicine: the manifesto of a new science.

    Science.gov (United States)

    Viceconti, Marco

    2015-01-21

    In this perspective article we discuss the role of contemporary biomechanics in the light of recent applications such as the development of the so-called Virtual Physiological Human technologies for physiology-based in silico medicine. In order to build Virtual Physiological Human (VPH) models, computer models that capture and integrate the complex systemic dynamics of living organisms across radically different space-time scales, we need to re-formulate a vast body of existing biology and physiology knowledge so that it is formulated as a quantitative hypothesis, which can be expressed in mathematical terms. Once the predictive accuracy of these models is confirmed against controlled experiments and against clinical observations, we will have VPH model that can reliably predict certain quantitative changes in health status of a given patient, but also, more important, we will have a theory, in the true meaning this word has in the scientific method. In this scenario, biomechanics plays a very important role, biomechanics is one of the few areas of life sciences where we attempt to build full mechanistic explanations based on quantitative observations, in other words, we investigate living organisms like physical systems. This is in our opinion a Copernican revolution, around which the scope of biomechanics should be re-defined. Thus, we propose a new definition for our research domain "Biomechanics is the study of living organisms as mechanistic systems". Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Development of esMOCA Biomechanic, Motion Capture Instrumentation for Biomechanics Analysis

    Science.gov (United States)

    Arendra, A.; Akhmad, S.

    2018-01-01

    This study aims to build motion capture instruments using inertial measurement unit sensors to assist in the analysis of biomechanics. Sensors used are accelerometer and gyroscope. Estimation of orientation sensors is done by digital motion processing in each sensor nodes. There are nine sensor nodes attached to the upper limbs. This sensor is connected to the pc via a wireless sensor network. The development of kinematics and inverse dynamamic models of the upper limb is done in simulink simmechanic. The kinematic model receives streaming data of sensor nodes mounted on the limbs. The output of the kinematic model is the pose of each limbs and visualized on display. The dynamic inverse model outputs the reaction force and reaction moment of each joint based on the limb motion input. Model validation in simulink with mathematical model of mechanical analysis showed results that did not differ significantly

  9. Biomechanics: basic and applied research

    International Nuclear Information System (INIS)

    Bergmann, G.; Rohlmann, A.; Koelbel, R.

    1987-01-01

    This volume presents the state of the art in biomechanics. The most recent achievements of biomechanical research in the fields of orthopaedics, dynamics of the musculoskeletal system, hard and soft tissues, rehabilitation, sports, cardiovascular problems and research methodology have been selected and edited by a distinguished panel of reviewers. The material is such that the volume will serve as a reference for many years for bioengineers, sports scientists, clinicians and clinical researchers in rehabilitation, orthopaedics and cardiovascular surgery

  10. Optical spectroscopic characterization of human meniscus biomechanical properties

    Science.gov (United States)

    Ala-Myllymäki, Juho; Danso, Elvis K.; Honkanen, Juuso T. J.; Korhonen, Rami K.; Töyräs, Juha; Afara, Isaac O.

    2017-12-01

    This study investigates the capacity of optical spectroscopy in the visible (VIS) and near-infrared (NIR) spectral ranges for estimating the biomechanical properties of human meniscus. Seventy-two samples obtained from the anterior, central, and posterior locations of the medial and lateral menisci of 12 human cadaver joints were used. The samples were subjected to mechanical indentation, then traditional biomechanical parameters (equilibrium and dynamic moduli) were calculated. In addition, strain-dependent fibril network modulus and permeability strain-dependency coefficient were determined via finite-element modeling. Subsequently, absorption spectra were acquired from each location in the VIS (400 to 750 nm) and NIR (750 to 1100 nm) spectral ranges. Partial least squares regression, combined with spectral preprocessing and transformation, was then used to investigate the relationship between the biomechanical properties and spectral response. The NIR spectral region was observed to be optimal for model development (83.0%≤R2≤90.8%). The percentage error of the models are: Eeq (7.1%), Edyn (9.6%), Eɛ (8.4%), and Mk (8.9%). Thus, we conclude that optical spectroscopy in the NIR range is a potential method for rapid and nondestructive evaluation of human meniscus functional integrity and health in real time during arthroscopic surgery.

  11. Dr Dapertutto's biomechanics

    Directory of Open Access Journals (Sweden)

    Stojmenović Dragan

    2015-01-01

    Full Text Available The subject matter of the research is the basic models of Meyerhold's biomechanics, which were used to define its theoretical principles. Professor Meyerhold, the theatrical leader of an eccentric stream, with which he changed the modern understanding of the theatre, established the technique of biomechanics by analysing the calculated type of movement. The analysis determines the answers to the questions: What kind of influence does Taylor's 'scientific management of work' have on defining the principles of Meyerhold's techniques of biomechanics? Which aesthetic models of stage movement were some of the basic subjects of Meyerhold's research? Meyerhold's theatrical work has been researched by a number of theatre theorists. However, how much does his work influence the film medium?.

  12. Investigation of biomechanical behavior of lumbar vertebral segments with dynamic stabilization device using finite element approach

    Science.gov (United States)

    Deoghare, Ashish B.; Kashyap, Siddharth; Padole, Pramod M.

    2013-03-01

    Degenerative disc disease is a major source of lower back pain and significantly alters the biomechanics of the lumbar spine. Dynamic stabilization device is a remedial technique which uses flexible materials to stabilize the affected lumbar region while preserving the natural anatomy of the spine. The main objective of this research work is to investigate the stiffness variation of dynamic stabilization device under various loading conditions under compression, axial rotation and flexion. Three dimensional model of the two segment lumbar spine is developed using computed tomography (CT) scan images. The lumbar structure developed is analyzed in ANSYS workbench. Two types of dynamic stabilization are considered: one with stabilizing device as pedicle instrumentation and second with stabilization device inserted around the inter-vertebral disc. Analysis suggests that proper positioning of the dynamic stabilization device is of paramount significance prior to the surgery. Inserting the device in the posterior region indicates the adverse effects as it shows increase in the deformation of the inter-vertebral disc. Analysis executed by positioning stabilizing device around the inter-vertebral disc yields better result for various stiffness values under compression and other loadings. [Figure not available: see fulltext.

  13. The biomechanics of upper extremity kinematic and kinetic modeling: applications to rehabilitation engineering.

    Science.gov (United States)

    Slavens, Brooke A; Harris, Gerald F

    2008-01-01

    Human motion analysis has evolved from the lower extremity to the upper extremity. Rehabilitation engineering is reliant upon three-dimensional biome-chanical models for a thorough understanding of upper body motions and forces in order to improve treatment methods, rehabilitation strategies and to prevent injury. Due to the complex nature of upper body movements, a standard biomechanical model does not exist. This paper reviews several kinematic and kinetic rehabilitation engineering models from the literature. These models may capture a single joint; multijoints such as the shoulder, elbow and wrist; or a combination of joints and an ambulatory aid, which serves as the extension of the upper arm. With advances in software and hardware, new models continuously arise due to the clinical questions at hand. When designing a biomechanical upper extremity model, several key components must be determined. These include deciding on the anatomic segments of the model, the number of markers and placement on bony landmarks, the definition of joint coordinate systems, and the description of the joint motions. It is critical to apply the proper model to further our understanding of pathologic populations.

  14. Individuals with chronic ankle instability exhibit dynamic postural stability deficits and altered unilateral landing biomechanics: A systematic review.

    Science.gov (United States)

    Simpson, Jeffrey D; Stewart, Ethan M; Macias, David M; Chander, Harish; Knight, Adam C

    2018-06-13

    To evaluate the literature regarding unilateral landing biomechanics and dynamic postural stability in individuals with and without chronic ankle instability (CAI). Four online databases (PubMed, ScienceDirect, Scopus, and SportDiscus) were searched from the earliest records to 31 January 2018, as well as reference sections of related journal articles, to complete the systematic search. Studies investigating the influence of CAI on unilateral landing biomechanics and dynamic postural stability were systematically reviewed and evaluated. Twenty articles met the criteria and were included in the systematic review. Individuals with CAI were found to have deficits in dynamic postural stability on the affected limb with medium to large effect sizes and altered lower extremity kinematics, most notably in the ankle and knee, with medium to large effect sizes. Additionally, greater loading rates and peak ground reaction forces, in addition to reductions in ankle muscle activity were also found in individuals with CAI during unilateral jump-landing tasks. Individuals with CAI demonstrate dynamic postural stability deficits, lower extremity kinematic alterations, and reduced neuromuscular control during unilateral jump-landings. These are likely factors that contribute recurrent lateral ankle sprain injuries during dynamic activity in individuals with CAI. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Biomechanical Modeling Analysis of Loads Configuration for Squat Exercise

    Science.gov (United States)

    Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen; De Witt, John K.

    2017-01-01

    INTRODUCTION: Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to assist loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft for travel to the Moon or to Mars is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. METHODS The computational models currently under development utilize the OpenSim [1] software platform, consisting of open source code for musculoskeletal modeling, using biomechanical input data from test subjects for estimation of muscle and joint loads. The OpenSim Full Body Model [2] is used for all analyses. The model incorporates simplified wrap surfaces, a new knee model and updated lower body muscle parameters derived from cadaver measurements and magnetic resonance imaging of young adults. The upper body uses torque actuators at the lumbar and extremity joints. The test subjects who volunteer for this study are instrumented with reflective markers for motion capture data collection while performing squat exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device (ZIN Technologies, Middleburg Heights, OH). Ground reaction force data is collected with force plates under the feet, and device loading is recorded through load cells internal to the HULK. Test variables include

  16. Cellular Particle Dynamics simulation of biomechanical relaxation processes of multi-cellular systems

    Science.gov (United States)

    McCune, Matthew; Kosztin, Ioan

    2013-03-01

    Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  17. Dynamic ultra high speed Scheimpflug imaging for assessing corneal biomechanical properties

    Directory of Open Access Journals (Sweden)

    Renato Ambrósio Jr

    2013-04-01

    Full Text Available OBJECTIVE: To describe a novel technique for clinical characterization of corneal biomechanics using non-invasive dynamic imaging. METHODS: Corneal deformation response during non contact tonometry (NCT is monitored by ultra-high-speed (UHS photography. The Oculus Corvis ST (Scheimpflug Technology; Wetzlar, Germany has a UHS Scheimpflug camera, taking over 4,300 frames per second and of a single 8mm horizontal slit, for monitoring corneal deformation response to NCT. The metered collimated air pulse or puff has a symmetrical configuration and fixed maximal internal pump pressure of 25 kPa. The bidirectional movement of the cornea in response to the air puff is monitored. RESULTS: Measurement time is 30ms, with 140 frames acquired. Advanced algorithms for edge detection of the front and back corneal contours are applied for every frame. IOP is calculated based on the first applanation moment. Deformation amplitude (DA is determined as the highest displacement of the apex in the highest concavity (HC moment. Applanation length (AL and corneal velocity (CVel are recorded during ingoing and outgoing phases. CONCLUSION: Corneal deformation can be monitored during non contact tonometry. The parameters generated provide clinical in vivo characterization of corneal biomechanical properties in two dimensions, which is relevant for different applications in Ophthalmology.

  18. Modeling Analysis of Biomechanical Changes of Middle Ear and Cochlea in Otitis Media

    Science.gov (United States)

    Gan, Rong Z.; Zhang, Xiangming; Guan, Xiying

    2011-11-01

    A comprehensive finite element (FE) model of the human ear including the ear canal, middle ear, and spiral cochlea was developed using histological sections of human temporal bone. The cochlea was modeled with three chambers separated by the basilar membrane and Reissner's membrane and filled with perilymphatic fluid. The viscoelastic material behavior was applied to middle ear soft tissues based on dynamic measurements of tissues in our lab. The model was validated using the experimental data obtained in human temporal bones and then used to simulate various stages of otitis media (OM) including the changes of morphology, mechanical properties, pressure, and fluid level in the middle ear. Function alterations of the middle ear and cochlea in OM were derived from the model and compared with the measurements from temporal bones. This study indicates that OM can be simulated in the FE model to predict the hearing loss induced by biomechanical changes of the middle ear and cochlea.

  19. A review on application of finite element modelling in bone biomechanics

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar Parashar

    2016-09-01

    Full Text Available In the past few decades the finite element modelling has been developed as an effective tool for modelling and simulation of the biomedical engineering system. Finite element modelling (FEM is a computational technique which can be used to solve the biomedical engineering problems based on the theories of continuum mechanics. This paper presents the state of art review on finite element modelling application in the four areas of bone biomechanics, i.e., analysis of stress and strain, determination of mechanical properties, fracture fixation design (implants, and fracture load prediction. The aim of this review is to provide a comprehensive detail about the development in the area of application of FEM in bone biomechanics during the last decades. It will help the researchers and the clinicians alike for the better treatment of patients and future development of new fixation designs.

  20. A novel biomechanical analysis of gait changes in the MPTP mouse model of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Werner J. Geldenhuys

    2015-08-01

    Full Text Available Parkinson’s disease (PD is an age-associated neurodegenerative disorder hallmarked by a loss of mesencephalic dopaminergic neurons. Accurate recapitulation of the PD movement phenotype in animal models of the disease is critical for understanding disease etiology and developing novel therapeutic treatments. However, most existing behavioral assays currently applied to such animal models fail to adequately detect and subsequently quantify the subtle changes associated with the progressive stages of PD. In this study, we used a video-based analysis system to develop and validate a novel protocol for tracking locomotor performance in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of PD. We anticipated that (1 treated mice should use slower, shorter, and less frequent strides and (2 that gait deficits should monotonically increase following MPTP administration, as the effects of neurodegeneration become manifest. Video-based biomechanical analyses, utilizing behavioral measures motivated by the comparative biomechanics literature, were used to quantify gait dynamics over a seven-day period following MPTP treatment. Analyses revealed shuffling behaviors consistent with the gait symptoms of advanced PD in humans. Here we also document dramatic gender-based differences in locomotor performance during the progression of the MPTP-induced lesion, despite male and female mice showing similar losses of striatal dopaminergic cells following MPTP administration. Whereas female mice appeared to be protected against gait deficits, males showed multiple changes in gait kinematics, consistent with the loss of locomotor agility and stability. Overall, these data show that the novel video analysis protocol presented here is a robust method capable of detecting subtle changes in gait biomechanics in a mouse model of PD. Our findings indicate that this method is a useful means by which to easily and economically screen preclinical therapeutic

  1. Computational biomechanics for medicine fundamental science and patient-specific applications

    CERN Document Server

    Miller, Karol; Wittek, Adam; Nielsen, Poul

    2014-01-01

    One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This latest installment comprises nine of the latest developments in both fundamental science and patient-specific applications, from researchers in Australia, New Zealand, USA, UK, France, Ireland, and China. Some of the interesting topics discussed are: cellular mechanics; tumor growth and modeling; medical image analysis; and both patient-specific fluid dynamics and solid mechanics simulations.

  2. Are cranial biomechanical simulation data linked to known diets in extant taxa? A method for applying diet-biomechanics linkage models to infer feeding capability of extinct species.

    Directory of Open Access Journals (Sweden)

    Zhijie Jack Tseng

    Full Text Available Performance of the masticatory system directly influences feeding and survival, so adaptive hypotheses often are proposed to explain craniodental evolution via functional morphology changes. However, the prevalence of "many-to-one" association of cranial forms and functions in vertebrates suggests a complex interplay of ecological and evolutionary histories, resulting in redundant morphology-diet linkages. Here we examine the link between cranial biomechanical properties for taxa with different dietary preferences in crown clade Carnivora, the most diverse clade of carnivorous mammals. We test whether hypercarnivores and generalists can be distinguished based on cranial mechanical simulation models, and how such diet-biomechanics linkages relate to morphology. Comparative finite element and geometric morphometrics analyses document that predicted bite force is positively allometric relative to skull strain energy; this is achieved in part by increased stiffness in larger skull models and shape changes that resist deformation and displacement. Size-standardized strain energy levels do not reflect feeding preferences; instead, caniform models have higher strain energy than feliform models. This caniform-feliform split is reinforced by a sensitivity analysis using published models for six additional taxa. Nevertheless, combined bite force-strain energy curves distinguish hypercarnivorous versus generalist feeders. These findings indicate that the link between cranial biomechanical properties and carnivoran feeding preference can be clearly defined and characterized, despite phylogenetic and allometric effects. Application of this diet-biomechanics linkage model to an analysis of an extinct stem carnivoramorphan and an outgroup creodont species provides biomechanical evidence for the evolution of taxa into distinct hypercarnivorous and generalist feeding styles prior to the appearance of crown carnivoran clades with similar feeding preferences.

  3. Modeling the Biomechanics of Swine Mastication – An Inverse Dynamics Approach

    Science.gov (United States)

    Basafa, Ehsan; Murphy, Ryan J.; Gordon, Chad R.; Armand, Mehran

    2014-01-01

    A novel reconstructive alternative for patients with severe facial structural deformity is Le Fort-based, face-jaw-teeth transplantation (FJTT). To date, however, only ten surgeries have included underlying skeletal and jaw-teeth components, all yielding sub-optimal results and a need for a subsequent revision surgery, due to size mismatch and lack of precise planning. Numerous studies have proven swine to be appropriate candidates for translational studies including pre-operative planning of transplantation. An important aspect of planning FJTT is determining the optimal muscle attachment sites on the recipient’s jaw, which requires a clear understanding of mastication and bite mechanics in relation to the new donated upper and/or lower jaw. A segmented CT scan coupled with data taken from literature defined a biomechanical model of mandible and jaw muscles of a swine. The model was driven using tracked motion and external force data of one cycle of chewing published earlier, and predicted the muscle activation patterns as well as temporomandibular joint (TMJ) reaction forces and condylar motions. Two methods, polynomial and min/max optimization, were used for solving the muscle recruitment problem. Similar performances were observed between the two methods. On average, there was a mean absolute error (MAE) of <0.08 between the predicted and measured activation levels of all muscles, and an MAE of <7N for TMJ reaction forces. Simulated activations qualitatively followed the same patterns as the reference data and there was very good agreement for simulated TMJ forces. The polynomial optimization produced a smoother output, suggesting that it is more suitable for studying such motions. Average MAE for condylar motion was 1.2mm, which reduced to 0.37mm when the input incisor motion was scaled to reflect the possible size mismatch between the current and original swine models. Results support the hypothesis that the model can be used for planning of facial

  4. Evaluation of Nitinol staples for the Lapidus arthrodesis in a reproducible biomechanical model

    Directory of Open Access Journals (Sweden)

    Nicholas Alexander Russell

    2015-12-01

    Full Text Available While the Lapidus procedure is a widely accepted technique for treatment of hallux valgus, the optimal fixation method to maintain joint stability remains controversial. The purpose of this study was to evaluate the biomechanical properties of new Shape Memory Alloy staples arranged in different configurations in a repeatable 1st Tarsometatarsal arthrodesis model. Ten sawbones models of the whole foot (n=5 per group were reconstructed using a single dorsal staple or two staples in a delta configuration. Each construct was mechanically tested in dorsal four-point bending, medial four-point bending, dorsal three-point bending and plantar cantilever bending with the staples activated at 37°C. The peak load, stiffness and plantar gapping were determined for each test. Pressure sensors were used to measure the contact force and area of the joint footprint in each group. There was a significant (p < 0.05 increase in peak load in the two staple constructs compared to the single staple constructs for all testing modalities. Stiffness also increased significantly in all tests except dorsal four-point bending. Pressure sensor readings showed a significantly higher contact force at time zero and contact area following loading in the two staple constructs (p < 0.05. Both groups completely recovered any plantar gapping following unloading and restored their initial contact footprint. The biomechanical integrity and repeatability of the models was demonstrated with no construct failures due to hardware or model breakdown. Shape memory alloy staples provide fixation with the ability to dynamically apply and maintain compression across a simulated arthrodesis following a range of loading conditions.

  5. First Reported Cases of Biomechanically Adaptive Bone Modeling in Non-Avian Dinosaurs.

    Directory of Open Access Journals (Sweden)

    Jorge Cubo

    Full Text Available Predator confrontation or predator evasion frequently produces bone fractures in potential prey in the wild. Although there are reports of healed bone injuries and pathologies in non-avian dinosaurs, no previously published instances of biomechanically adaptive bone modeling exist. Two tibiae from an ontogenetic sample of fifty specimens of the herbivorous dinosaur Maiasaura peeblesorum (Ornithopoda: Hadrosaurinae exhibit exostoses. We show that these outgrowths are cases of biomechanically adaptive periosteal bone modeling resulting from overstrain on the tibia after a fibula fracture. Histological and biomechanical results are congruent with predictions derived from this hypothesis. Histologically, the outgrowths are constituted by radial fibrolamellar periosteal bone tissue formed at very high growth rates, as expected in a process of rapid strain equilibration response. These outgrowths show greater compactness at the periphery, where tensile and compressive biomechanical constraints are higher. Moreover, these outgrowths increase the maximum bending strength in the direction of the stresses derived from locomotion. They are located on the antero-lateral side of the tibia, as expected in a presumably bipedal one year old individual, and in the posterior position of the tibia, as expected in a presumably quadrupedal individual at least four years of age. These results reinforce myological evidence suggesting that Maiasaura underwent an ontogenetic shift from the primitive ornithischian bipedal condition when young to a derived quadrupedal posture when older.

  6. First Reported Cases of Biomechanically Adaptive Bone Modeling in Non-Avian Dinosaurs.

    Science.gov (United States)

    Cubo, Jorge; Woodward, Holly; Wolff, Ewan; Horner, John R

    2015-01-01

    Predator confrontation or predator evasion frequently produces bone fractures in potential prey in the wild. Although there are reports of healed bone injuries and pathologies in non-avian dinosaurs, no previously published instances of biomechanically adaptive bone modeling exist. Two tibiae from an ontogenetic sample of fifty specimens of the herbivorous dinosaur Maiasaura peeblesorum (Ornithopoda: Hadrosaurinae) exhibit exostoses. We show that these outgrowths are cases of biomechanically adaptive periosteal bone modeling resulting from overstrain on the tibia after a fibula fracture. Histological and biomechanical results are congruent with predictions derived from this hypothesis. Histologically, the outgrowths are constituted by radial fibrolamellar periosteal bone tissue formed at very high growth rates, as expected in a process of rapid strain equilibration response. These outgrowths show greater compactness at the periphery, where tensile and compressive biomechanical constraints are higher. Moreover, these outgrowths increase the maximum bending strength in the direction of the stresses derived from locomotion. They are located on the antero-lateral side of the tibia, as expected in a presumably bipedal one year old individual, and in the posterior position of the tibia, as expected in a presumably quadrupedal individual at least four years of age. These results reinforce myological evidence suggesting that Maiasaura underwent an ontogenetic shift from the primitive ornithischian bipedal condition when young to a derived quadrupedal posture when older.

  7. Finite element simulation and clinical follow-up of lumbar spine biomechanics with dynamic fixations.

    Directory of Open Access Journals (Sweden)

    Yolanda Más

    Full Text Available Arthrodesis is a recommended treatment in advanced stages of degenerative disc disease. Despite dynamic fixations were designed to prevent abnormal motions with better physiological load transmission, improving lumbar pain and reducing stress on adjacent segments, contradictory results have been obtained. This study was designed to compare differences in the biomechanical behaviour between the healthy lumbar spine and the spine with DYNESYS and DIAM fixation, respectively, at L4-L5 level. Behaviour under flexion, extension, lateral bending and axial rotation are compared using healthy lumbar spine as reference. Three 3D finite element models of lumbar spine (healthy, DYNESYS and DIAM implemented, respectively were developed, together a clinical follow-up of 58 patients operated on for degenerative disc disease. DYNESYS produced higher variations of motion with a maximum value for lateral bending, decreasing intradiscal pressure and facet joint forces at instrumented level, whereas screw insertion zones concentrated stress. DIAM increased movement during flexion, decreased it in another three movements, and produced stress concentration at the apophyses at instrumented level. Dynamic systems, used as single systems without vertebral fusion, could be a good alternative to degenerative disc disease for grade II and grade III of Pfirrmann.

  8. Corneal biomechanical properties from air-puff corneal deformation imaging

    Science.gov (United States)

    Marcos, Susana; Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos

    2014-02-01

    The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.

  9. Biomechanics trends in modeling and simulation

    CERN Document Server

    Ogden, Ray

    2017-01-01

    The book presents a state-of-the-art overview of biomechanical and mechanobiological modeling and simulation of soft biological tissues. Seven well-known scientists working in that particular field discuss topics such as biomolecules, networks and cells as well as failure, multi-scale, agent-based, bio-chemo-mechanical and finite element models appropriate for computational analysis. Applications include arteries, the heart, vascular stents and valve implants as well as adipose, brain, collagenous and engineered tissues. The mechanics of the whole cell and sub-cellular components as well as the extracellular matrix structure and mechanotransduction are described. In particular, the formation and remodeling of stress fibers, cytoskeletal contractility, cell adhesion and the mechanical regulation of fibroblast migration in healing myocardial infarcts are discussed. The essential ingredients of continuum mechanics are provided. Constitutive models of fiber-reinforced materials with an emphasis on arterial walls ...

  10. Biomechanics of Pediatric Manual Wheelchair Mobility.

    Science.gov (United States)

    Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Tarima, Sergey; Vogel, Lawrence C; Harris, Gerald F

    2015-01-01

    Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting, and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the handrim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces, and moments of 14 children with spinal cord injury (SCI) during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI.

  11. Multiscale computer modeling in biomechanics and biomedical engineering

    CERN Document Server

    2013-01-01

    This book reviews the state-of-the-art in multiscale computer modeling, in terms of both accomplishments and challenges. The information in the book is particularly useful for biomedical engineers, medical physicists and researchers in systems biology, mathematical biology, micro-biomechanics and biomaterials who are interested in how to bridge between traditional biomedical engineering work at the organ and tissue scales, and the newer arenas of cellular and molecular bioengineering.

  12. Shoulder biomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Lugo, Roberto; Kung, Peter; Ma, C. Benjamin [Sports Medicine and Shoulder Service, University of California, San Francisco, 500 Parnassus Avenue, MU 320W-0728 San Francisco, CA 914143 (United States)], E-mail: maben@orthosurg.ucsf.edu

    2008-10-15

    The biomechanics of the glenohumeral joint depend on the interaction of both static and dynamic-stabilizing structures. Static stabilizers include the bony anatomy, negative intra-articular pressure, the glenoid labrum, and the glenohumeral ligaments along with the joint capsule. The dynamic-stabilizing structures include the rotator cuff muscles and the other muscular structures surrounding the shoulder joint. The combined effect of these stabilizers is to support the multiple degrees of motion within the glenohumeral joint. The goal of this article is to review how these structures interact to provide optimal stability and how failure of some of these mechanisms can lead to shoulder joint pathology.

  13. Exoskeleton-Based Robotic Platform Applied in Biomechanical Modelling of the Human Upper Limb

    Directory of Open Access Journals (Sweden)

    Andres F. Ruiz

    2009-01-01

    Full Text Available One of the approaches to study the human motor system, and specifically the motor strategies implied during postural tasks of the upper limbs, is to manipulate the mechanical conditions of each joint of the upper limbs independently. At the same time, it is essential to pick up biomechanical signals and bio-potentials generated while the human motor system adapts to the new condition. The aim of this paper is two-fold: first, to describe the design, development and validation of an experimental platform designed to modify or perturb the mechanics of human movement, and simultaneously acquire, process, display and quantify bioelectric and biomechanical signals; second, to characterise the dynamics of the elbow joint during postural control. A main goal of the study was to determine the feasibility of estimating human elbow joint dynamics using EMG-data during maintained posture. In particular, the experimental robotic platform provides data to correlate electromyographic (EMG activity, kinetics and kinematics information from the upper limb motion. The platform aims consists of an upper limb powered exoskeleton, an EMG acquisition module, a control unit and a software system. Important concerns of the platform such as dependability and safety were addressed in the development. The platform was evaluated with 4 subjects to identify, using system identification methods, the human joint dynamics, i.e. visco-elasticity. Results obtained in simulations and experimental phase are introduced.

  14. Biomechanical models of damage and healing processes for voice health

    DEFF Research Database (Denmark)

    Granados Corsellas, Alba; Brunskog, Jonas; Jacobsen, Finn

    2013-01-01

    the vocal-fold plane are available. This data is used to improve existing continuum biomechanical models of the vocal-folds by analyzing the injury processes. The project is expected to result in methods that objectively demonstrate the impact of high voice-load on voice. A detailed description...

  15. Evaluation of Nitinol Staples for the Lapidus Arthrodesis in a Reproducible Biomechanical Model.

    Science.gov (United States)

    Russell, Nicholas A; Regazzola, Gianmarco; Aiyer, Amiethab; Nomura, Tomohiro; Pelletier, Matthew H; Myerson, Mark; Walsh, William R

    2015-01-01

    While the Lapidus procedure is a widely accepted technique for treatment of hallux valgus, the optimal fixation method to maintain joint stability remains controversial. The purpose of this study is to evaluate the biomechanical properties of new shape memory alloy (SMA) staples arranged in different configurations in a repeatable first tarsometatarsal arthrodesis model. Ten sawbones models of the whole foot (n = 5 per group) were reconstructed using a single dorsal staple or two staples in a delta configuration. Each construct was mechanically tested non-destructively in dorsal four-point bending, medial four-point bending, dorsal three-point bending, and plantar cantilever bending with the staples activated at 37°C. The peak load (newton), stiffness (newton per millimeter), and plantar gapping (millimeter) were determined for each test. Pressure sensors were used to measure the contact force and area of the joint footprint in each group. There was a statistically significant increase in peak load in the two staple constructs compared to the single staple constructs for all testing modalities with P values range from 0.016 to 0.000. Stiffness also increased significantly in all tests except dorsal four-point bending. Pressure sensor readings showed a significantly higher contact force at time zero (P = 0.037) and contact area following loading in the two staple constructs (P = 0.045). Both groups completely recovered any plantar gapping following unloading and restored their initial contact footprint. The biomechanical integrity and repeatability of the models was demonstrated with no construct failures due to hardware or model breakdown. SMA staples provide fixation with the ability to dynamically apply and maintain compression across a simulated arthrodesis following a range of loading conditions.

  16. Canine stifle joint biomechanics associated with tibial plateau leveling osteotomy predicted by use of a computer model.

    Science.gov (United States)

    Brown, Nathan P; Bertocci, Gina E; Marcellin-Little, Denis J

    2014-07-01

    To evaluate effects of tibial plateau leveling osteotomy (TPLO) on canine stifle joint biomechanics in a cranial cruciate ligament (CrCL)-deficient stifle joint by use of a 3-D computer model simulating the stance phase of gait and to compare biomechanics in TPLO-managed, CrCL-intact, and CrCL-deficient stifle joints. Computer simulations of the pelvic limb of a Golden Retriever. A previously developed computer model of the canine pelvic limb was used to simulate TPLO stabilization to achieve a tibial plateau angle (TPA) of 5° (baseline value) in a CrCL-deficient stifle joint. Sensitivity analysis was conducted for tibial fragment rotation of 13° to -3°. Ligament loads, relative tibial translation, and relative tibial rotation were determined and compared with values for CrCL-intact and CrCL-deficient stifle joints. TPLO with a 5° TPA converted cranial tibial translation to caudal tibial translation and increased loads placed on the remaining stifle joint ligaments, compared with results for a CrCL-intact stifle joint. Lateral collateral ligament load was similar, medial collateral ligament load increased, and caudal cruciate ligament load decreased after TPLO, compared with loads for a CrCL-deficient stifle joint. Relative tibial rotation after TPLO was similar to that of a CrCL-deficient stifle joint. Stifle joint biomechanics were affected by TPLO fragment rotation. In the model, stifle joint biomechanics were partially improved after TPLO, compared with CrCL-deficient stifle joint biomechanics, but TPLO did not fully restore CrCL-intact stifle joint biomechanics. Overrotation of the tibial fragment negatively influenced stifle joint biomechanics by increasing caudal tibial translation.

  17. Coupled Immunological and Biomechanical Model of Emphysema Progression

    Directory of Open Access Journals (Sweden)

    Mario Ceresa

    2018-04-01

    Full Text Available Chronic Obstructive Pulmonary Disease (COPD is a disabling respiratory pathology, with a high prevalence and a significant economic and social cost. It is characterized by different clinical phenotypes with different risk profiles. Detecting the correct phenotype, especially for the emphysema subtype, and predicting the risk of major exacerbations are key elements in order to deliver more effective treatments. However, emphysema onset and progression are influenced by a complex interaction between the immune system and the mechanical properties of biological tissue. The former causes chronic inflammation and tissue remodeling. The latter influences the effective resistance or appropriate mechanical response of the lung tissue to repeated breathing cycles. In this work we present a multi-scale model of both aspects, coupling Finite Element (FE and Agent Based (AB techniques that we would like to use to predict the onset and progression of emphysema in patients. The AB part is based on existing biological models of inflammation and immunological response as a set of coupled non-linear differential equations. The FE part simulates the biomechanical effects of repeated strain on the biological tissue. We devise a strategy to couple the discrete biological model at the molecular /cellular level and the biomechanical finite element simulations at the tissue level. We tested our implementation on a public emphysema image database and found that it can indeed simulate the evolution of clinical image biomarkers during disease progression.

  18. Radiological features and biomechanical patterns in Perthes disease

    International Nuclear Information System (INIS)

    Choo, B.S.; Hogg, A.D.C.; Burwell, R.G.; Moulton, A.; Worthington, B.S.

    1990-01-01

    This paper examines the relationship between radiologic features and biomechanical patterns in Perthes disease as shown in finite element models. A two-dimensional finite element model of a child's hip that allowed for movement at the joint line was loaded to simulate normal heel strike. The finite element method is a computer-based technique of mathematical modeling that permits calculation of the magnitude and direction of stresses, deformation, and dynamic behavior of continuous structures. In the normal hip model, maximum compressive stresses occur superolaterally and inferomedially in the femoral head, corresponding to the radiographic features of flattening and increased tear drop distance, attributable to cartilage thickening, seen in Perthes disease

  19. Computer Models in Biomechanics From Nano to Macro

    CERN Document Server

    Kuhl, Ellen

    2013-01-01

    This book contains a collection of papers that were presented at the IUTAM Symposium on “Computer Models in Biomechanics: From Nano to Macro” held at Stanford University, California, USA, from August 29 to September 2, 2011. It contains state-of-the-art papers on: - Protein and Cell Mechanics: coarse-grained model for unfolded proteins, collagen-proteoglycan structural interactions in the cornea, simulations of cell behavior on substrates - Muscle Mechanics: modeling approaches for Ca2+–regulated smooth muscle contraction, smooth muscle modeling using continuum thermodynamical frameworks, cross-bridge model describing the mechanoenergetics of actomyosin interaction, multiscale skeletal muscle modeling - Cardiovascular Mechanics: multiscale modeling of arterial adaptations by incorporating molecular mechanisms, cardiovascular tissue damage, dissection properties of aortic aneurysms, intracranial aneurysms, electromechanics of the heart, hemodynamic alterations associated with arterial remodeling followin...

  20. DLS 5.0--the biomechanical effects of dynamic locking screws.

    Directory of Open Access Journals (Sweden)

    Stefan Döbele

    Full Text Available INTRODUCTION: Indirect reduction of dia-/metaphyseal fractures with minimally invasive implant application bridges the fracture zone in order to protect the soft-tissue and blood supply. The goal of this fixation strategy is to allow stable motion at the fracture site to achieve indirect bone healing with callus formation. However, concerns have arisen that the high axial stiffness and eccentric position of locked plating constructs may suppress interfragmentary motion and callus formation, particularly under the plate. The reason for this is an asymmetric fracture movement. The biological need for sufficient callus formation and secondary bone healing is three-dimensional micro movement in the fracture zone. The DLS was designed to allow for increased fracture site motion. The purpose of the current study was to determine the biomechanical effect of the DLS_5.0. METHODS: Twelve surrogate bone models were used for analyzing the characteristics of the DLS_5.0. The axial stiffness and the interfragmentary motion of locked plating constructs with DLS were compared to conventional constructs with Locking Head Screws (LS_5.0. A quasi-static axial load of 0 to 2.5 kN was applied. Relative motion was measured. RESULTS: The dynamic system showed a biphasic axial stiffness distribution and provided a significant reduction of the initial axial stiffness of 74.4%. Additionally, the interfragmentary motion at the near cortex increased significantly from 0.033 mm to 0.210 mm (at 200N. CONCLUSIONS: The DLS may ultimately be an improvement over the angular stable plate osteosynthesis. The advantages of the angular stability are not only preserved but even supplemented by a dynamic element which leads to homogenous fracture movement and to a potentially uniform callus distribution.

  1. Development Model of Basic Technique Skills Training Shot-Put Obrien Style Based Biomechanics Review

    Directory of Open Access Journals (Sweden)

    danang rohmat hidayanto

    2018-03-01

    Full Text Available The background of this research is the unavailability of learning model of basic technique technique of O'Brien style force that integrated in skill program based on biomechanics study which is used as a reference to build the basic technique skill of the O'Brien style force among students. The purpose of this study is to develop a model of basic-style technique of rejecting the O'Brien-style shot put based on biomechanical studies for beginner levels, including basic prefix technique, glide, final stage, repulsion, further motion and repulsion performance of O'Brien style, all of which arranged in a medium that is easily accessible whenever, by anyone and anywhere, especially in SMK Negeri 1 Kalijambe Sragen . The research method used is "Reasearch and Developement" approach. "Preliminary studies show that 43.0% of respondents considered that the O'Brien style was very important to be developed with a model of skill-based exercise based on biomechanics, as many as 40.0% ressponden stated that it is important to be developed with biomechanics based learning media. Therefore, it is deemed necessary to develop the learning media of the O'Brien style-based training skills based on biomechanical studies. Development of media starts from the design of the storyboard and script form that will be used as media. The design of this model is called the draft model. Draft models that have been prepared are reviewed by the multimedia expert and the O'Brien style expert to get the product's validity. A total of 78.24% of experts declare a viable product with some input. In small groups with n = 6, earned value 72.2% was obtained or valid enough to be tested in large groups. In the large group test with n = 12,values obtained 70.83% or quite feasible to be tested in the field. In the field test, experimental group was prepared with treatment according to media and control group with free treatment. From result of counting of significance test can be

  2. Problems of Sport Biomechanics and Robotics

    Directory of Open Access Journals (Sweden)

    Wlodzimierz S. Erdmann

    2013-02-01

    Full Text Available This paper presents many common areas of interest of different specialists. There are problems described from sport, biomechanics, sport biomechanics, sport engineering, robotics, biomechanics and robotics, sport biomechanics and robotics. There are many approaches to sport from different sciences and engineering. Robotics is a relatively new area and has had moderate attention from sport specialists. The aim of this paper is to present several areas necessary to develop sport robots based on biomechanics and also to present different types of sport robots: serving balls, helping to provide sports training, substituting humans during training, physically participating in competitions, physically participating in competitions against humans, serving as models of real sport performance, helping organizers of sport events and robot toys. Examples of the application of robots in sports communities are also given.

  3. Additional Tension Screws Improve Stability in Elastic Stable Intramedullary Nailing: Biomechanical Analysis of a Femur Spiral Fracture Model.

    Science.gov (United States)

    Zachert, Gregor; Rapp, Marion; Eggert, Rebecca; Schulze-Hessing, Maaike; Gros, Nina; Stratmann, Christina; Wendlandt, Robert; Kaiser, Martin M

    2015-08-01

    For pediatric femoral shaft fractures, elastic stable intramedullary nailing (ESIN) is an accepted method of treatment. But problems regarding stability with shortening or axial deviation are well known in complex fracture types and heavier children. Biomechanical in vitro testing was performed to determine whether two modified osteosyntheses with an additional tension screw fixation or screw fixation alone without nails could significantly improve the stability in comparison to classical ESIN. A total of 24 synthetic adolescent-sized femoral bone models (Sawbones, 4th generation; Vashon, Washington, United States) with an identical spiral fracture (length 100 mm) were used. All grafts underwent retrograde fixation with two C-shaped steel nails (2C). Of the 24, 8 osteosyntheses were supported by one additional tension screw (2C1S) and another 8 by two screws (2S) in which the intramedullary nails were removed before testing. Each configuration underwent biomechanical testing in 4-point bending, external rotation (ER) and internal rotation (IR). Furthermore, the modifications were tested in axial physiological 9 degrees position for shifting and dynamic compression as well as dynamic load. Both screw configurations (2C1S and 2S) demonstrated a significantly higher stability in comparison to the 2C configuration in 4-point bending (anterior-posterior, 0.95 Nm/mm [2C] spiral fracture model, the stability of ESIN could be significantly improved by two modifications with additional tension screws. If transferred in clinical practice, these modifications might offer earlier weight bearing and less problems of shortening or axial deviation. Georg Thieme Verlag KG Stuttgart · New York.

  4. Ergonomic Models of Anthropometry, Human Biomechanics and Operator-Equipment Interfaces

    Science.gov (United States)

    Kroemer, Karl H. E. (Editor); Snook, Stover H. (Editor); Meadows, Susan K. (Editor); Deutsch, Stanley (Editor)

    1988-01-01

    The Committee on Human Factors was established in October 1980 by the Commission on Behavioral and Social Sciences and Education of the National Research Council. The committee is sponsored by the Office of Naval Research, the Air Force Office of Scientific Research, the Army Research Institute for the Behavioral and Social Sciences, the National Aeronautics and Space Administration, and the National Science Foundation. The workshop discussed the following: anthropometric models; biomechanical models; human-machine interface models; and research recommendations. A 17-page bibliography is included.

  5. A theoretical analysis of hemodynamic and biomechanical alterations in intracranial AVMs after radiosurgery

    International Nuclear Information System (INIS)

    Lo, E.H.

    1993-01-01

    Stereotactic radiosurgery is being increasingly used to treat intracranial arteriovenous malformations (AVMs). However, successful radiosurgery may involve latent periods of 1-2 years prior to AVM obliteration. This latent period include states of altered flow patterns that may not influence hemorrhage probabilities. The probability of hemorrhage is likely to be related to the degree of biomechanical stress across the AVM shunt walls. This paper describes a theoretical analysis of the altered hemodynamics and biomechanical stresses within AVM shunts post-radiosurgery. The mathematical model is comprised of linked flow compartments that represent the AVM and adjacent normal vasculature. As obliteration of the irradiated shunts occurs, changes in flow rates and pressure gradients are calculated based on first order fluid dynamics. Stress on the AVM shunt walls is calculated based on tangential forces due to intramural pressure. Two basic models are presented: a distribution of shunts with fixed thin walls subject to step-function obliteration, and a distribution of shunts subject to luminal obliteration from slowly thickening walls. Variations on these models are analyzed, including sequential, selective and random shunt obliteration, and uniform or Poisson distributions of shunt radii. Model I reveals that the range of pressure alterations in the radiosurgically-treated AVM include the possibility of transient increases in the total biomechanical stress within the shunt walls prior to obliteration. Model II demonstrates that uniform luminal narrowing via thickened walls should lead to reduced transmural stresses. The precise temporal pattern of AVM flow decrease and biomechanical stress reduction depends on the selection of shunts that are obliterated. 34 refs., 5 figs., 1 tab

  6. Stents: Biomechanics, Biomaterials, and Insights from Computational Modeling.

    Science.gov (United States)

    Karanasiou, Georgia S; Papafaklis, Michail I; Conway, Claire; Michalis, Lampros K; Tzafriri, Rami; Edelman, Elazer R; Fotiadis, Dimitrios I

    2017-04-01

    Coronary stents have revolutionized the treatment of coronary artery disease. Improvement in clinical outcomes requires detailed evaluation of the performance of stent biomechanics and the effectiveness as well as safety of biomaterials aiming at optimization of endovascular devices. Stents need to harmonize the hemodynamic environment and promote beneficial vessel healing processes with decreased thrombogenicity. Stent design variables and expansion properties are critical for vessel scaffolding. Drug-elution from stents, can help inhibit in-stent restenosis, but adds further complexity as drug release kinetics and coating formulations can dominate tissue responses. Biodegradable and bioabsorbable stents go one step further providing complete absorption over time governed by corrosion and erosion mechanisms. The advances in computing power and computational methods have enabled the application of numerical simulations and the in silico evaluation of the performance of stent devices made up of complex alloys and bioerodible materials in a range of dimensions and designs and with the capacity to retain and elute bioactive agents. This review presents the current knowledge on stent biomechanics, stent fatigue as well as drug release and mechanisms governing biodegradability focusing on the insights from computational modeling approaches.

  7. FUNDAMENTALS OF BIOMECHANICS

    Directory of Open Access Journals (Sweden)

    Duane Knudson

    2007-09-01

    Full Text Available DESCRIPTION This book provides a broad and in-depth theoretical and practical description of the fundamental concepts in understanding biomechanics in the qualitative analysis of human movement. PURPOSE The aim is to bring together up-to-date biomechanical knowledge with expert application knowledge. Extensive referencing for students is also provided. FEATURES This textbook is divided into 12 chapters within four parts, including a lab activities section at the end. The division is as follows: Part 1 Introduction: 1.Introduction to biomechanics of human movement; 2.Fundamentals of biomechanics and qualitative analysis; Part 2 Biological/Structural Bases: 3.Anatomical description and its limitations; 4.Mechanics of the musculoskeletal system; Part 3 Mechanical Bases: 5.Linear and angular kinematics; 6.Linear kinetics; 7.Angular kinetics; 8.Fluid mechanics; Part 4 Application of Biomechanics in Qualitative Analysis :9.Applying biomechanics in physical education; 10.Applying biomechanics in coaching; 11.Applying biomechanics in strength and conditioning; 12.Applying biomechanics in sports medicine and rehabilitation. AUDIENCE This is an important reading for both student and educators in the medicine, sport and exercise-related fields. For the researcher and lecturer it would be a helpful guide to plan and prepare more detailed experimental designs or lecture and/or laboratory classes in exercise and sport biomechanics. ASSESSMENT The text provides a constructive fundamental resource for biomechanics, exercise and sport-related students, teachers and researchers as well as anyone interested in understanding motion. It is also very useful since being clearly written and presenting several ways of examples of the application of biomechanics to help teach and apply biomechanical variables and concepts, including sport-related ones

  8. On the inference of function from structure using biomechanical modelling and simulation of extinct organisms

    Science.gov (United States)

    Hutchinson, John R.

    2012-01-01

    Biomechanical modelling and simulation techniques offer some hope for unravelling the complex inter-relationships of structure and function perhaps even for extinct organisms, but have their limitations owing to this complexity and the many unknown parameters for fossil taxa. Validation and sensitivity analysis are two indispensable approaches for quantifying the accuracy and reliability of such models or simulations. But there are other subtleties in biomechanical modelling that include investigator judgements about the level of simplicity versus complexity in model design or how uncertainty and subjectivity are dealt with. Furthermore, investigator attitudes toward models encompass a broad spectrum between extreme credulity and nihilism, influencing how modelling is conducted and perceived. Fundamentally, more data and more testing of methodology are required for the field to mature and build confidence in its inferences. PMID:21666064

  9. Augmentation of tendon healing with butyric acid-impregnated sutures: biomechanical evaluation in a rabbit model.

    Science.gov (United States)

    Leek, Bryan T; Tasto, James P; Tibor, Lisa M; Healey, Robert M; Freemont, Anthony; Linn, Michael S; Chase, Derek E; Amiel, David

    2012-08-01

    Butyric acid (BA) has been shown to be angiogenic and to enhance transcriptional activity in tissue. These properties of BA have the potential to augment biological healing of a repaired tendon. To evaluate this possibility both biomechanically and histologically in an animal tendon repair model. Controlled laboratory study. A rabbit Achilles tendon healing model was used to evaluate the biomechanical strength and histological properties at 6 and 12 weeks after repair. Unilateral tendon defects were created in the middle bundle of the Achilles tendon of each rabbit, which were repaired equivalently with either Ultrabraid BA-impregnated sutures or control Ultrabraid sutures. After 6 weeks, BA-impregnated suture repairs had a significantly increased (P Tendons repaired with BA-impregnated sutures demonstrated improved biomechanical properties at 6 weeks relative to control sutures, suggesting a neoangiogenic mechanism of enhanced healing through an increased myofibroblast presence. These findings demonstrate that a relatively simple alteration of suture material may augment early tendon healing to create a stronger repair construct during this time.

  10. Current computational modelling trends in craniomandibular biomechanics and their clinical implications.

    Science.gov (United States)

    Hannam, A G

    2011-03-01

    Computational models of interactions in the craniomandibular apparatus are used with increasing frequency to study biomechanics in normal and abnormal masticatory systems. Methods and assumptions in these models can be difficult to assess by those unfamiliar with current practices in this field; health professionals are often faced with evaluating the appropriateness, validity and significance of models which are perhaps more familiar to the engineering community. This selective review offers a foundation for assessing the strength and implications of a craniomandibular modelling study. It explores different models used in general science and engineering and focuses on current best practices in biomechanics. The problem of validation is considered at some length, because this is not always fully realisable in living subjects. Rigid-body, finite element and combined approaches are discussed, with examples of their application to basic and clinically relevant problems. Some advanced software platforms currently available for modelling craniomandibular systems are mentioned. Recent studies of the face, masticatory muscles, tongue, craniomandibular skeleton, temporomandibular joint, dentition and dental implants are reviewed, and the significance of non-linear and non-isotropic material properties is emphasised. The unique challenges in clinical application are discussed, and the review concludes by posing some questions which one might reasonably expect to find answered in plausible modelling studies of the masticatory apparatus. © 2010 Blackwell Publishing Ltd.

  11. Biomechanical Evaluations of Hip Fracture Using Finite Element Model that Models Individual Differences of Femur

    OpenAIRE

    田中, 英一; TANAKA, Eiichi; 山本, 創太; YAMAMOTO, Sota; 坂本, 誠二; SAKAMOTO, Seiji; 中西, 孝文; NAKANISHI, Takafumi; 原田, 敦; HARADA, Atsushi; 水野, 雅士; MIZUNO, Masashi

    2004-01-01

    This paper is concerned with an individual finite element modeling system for femur and biomechanical evaluations of the influences of loading conditions, bone shape and bone density on risks of hip fracture. Firstly, a method to construct an individual finite element model by morphological parameters that represent femoral shapes was developed. Using the models with different shapes constructed by this method, the effects of fall direction, posture of upper body, femur shape and bone density...

  12. Muscle-skeletal model of the thigh: a tool for understanding the biomechanics of gait in patients with cerebral palsy

    Science.gov (United States)

    Ravera, Emiliano Pablo; Catalfamo Formento, Paola Andrea; José Crespo, Marcos; Andrés Braidot, Ariel

    2011-12-01

    Cerebral Palsy represents the most common cause of physical disability in modern world and within the pediatrics orthopedics units. The gait analysis provides great contributions to the understanding of gait disorders in CP. Giving a more comprehensive treatment plan, including or excluding surgical procedures that can potentially decrease the number of surgical interventions in the life of these patients. Recommendations for orthopedic surgery may be based on a quantitative description of how to alter the properties probably muscle force generation, and how this affects the action of the muscle to determine how these muscles, impaired by disease or surgery, contributing to the movement of the segments of the limb during crouch gait. So the causes and appropriate treatment of gait abnormalities are difficult to determine because the movements generated by the muscular forces of these patients are not clearly understood. A correct determination of the etiology of abnormal patterns of the knee is the key to select the appropriate therapy, presenting a major challenge at present since there is no theoretical basis to determine the biomechanical causes of abnormal gait of these patients. The potential and necessity of using correct biomechanical models that consistently study the abnormalities becomes clear. Reinforcing and correcting a simple gait analysis and eliminating the unknowns when selecting the appropriate treatment is crucial in clinical settings. In this paper a computer muscle-skeletal model is proposed. The model represents a person's thigh simulating the six most representative muscles and joints of the hip and knee. In this way you can have a better understanding of gait abnormalities present in these patients. So the quality of these estimates of individual muscle dynamics facilitate better understanding of the biomechanics of gait pathologies helping to reach better diagnosis prior to surgery and rehabilitation treatments.

  13. Muscle-skeletal model of the thigh: a tool for understanding the biomechanics of gait in patients with cerebral palsy

    International Nuclear Information System (INIS)

    Ravera, Emiliano Pablo; Catalfamo Formento, Paola Andrea; Crespo, Marcos José; Braidot, Ariel Andrés

    2011-01-01

    Cerebral Palsy represents the most common cause of physical disability in modern world and within the pediatrics orthopedics units. The gait analysis provides great contributions to the understanding of gait disorders in CP. Giving a more comprehensive treatment plan, including or excluding surgical procedures that can potentially decrease the number of surgical interventions in the life of these patients. Recommendations for orthopedic surgery may be based on a quantitative description of how to alter the properties probably muscle force generation, and how this affects the action of the muscle to determine how these muscles, impaired by disease or surgery, contributing to the movement of the segments of the limb during crouch gait. So the causes and appropriate treatment of gait abnormalities are difficult to determine because the movements generated by the muscular forces of these patients are not clearly understood. A correct determination of the etiology of abnormal patterns of the knee is the key to select the appropriate therapy, presenting a major challenge at present since there is no theoretical basis to determine the biomechanical causes of abnormal gait of these patients. The potential and necessity of using correct biomechanical models that consistently study the abnormalities becomes clear. Reinforcing and correcting a simple gait analysis and eliminating the unknowns when selecting the appropriate treatment is crucial in clinical settings. In this paper a computer muscle-skeletal model is proposed. The model represents a person's thigh simulating the six most representative muscles and joints of the hip and knee. In this way you can have a better understanding of gait abnormalities present in these patients. So the quality of these estimates of individual muscle dynamics facilitate better understanding of the biomechanics of gait pathologies helping to reach better diagnosis prior to surgery and rehabilitation treatments.

  14. Biomechanical and histological effects of augmented soft tissue mobilization therapy on achilles tendinopathy in a rabbit model.

    Science.gov (United States)

    Imai, Kan; Ikoma, Kazuya; Chen, Qingshan; Zhao, Chunfeng; An, Kai-Nan; Gay, Ralph E

    2015-02-01

    Augmented soft tissue mobilization (ASTM) has been used to treat Achilles tendinopathy and is thought to promote collagen fiber realignment and hasten tendon regeneration. The objective of this study was to evaluate the biomechanical and histological effects of ASTM therapy on rabbit Achilles tendons after enzymatically induced injury. This study was a non-human bench controlled research study using a rabbit model. Both Achilles tendons of 12 rabbits were injected with collagenase to produce tendon injury simulating Achilles tendinopathy. One side was then randomly allocated to receive ASTM, while the other received no treatment (control). ASTM was performed on the Achilles tendon on postoperative days 21, 24, 28, 31, 35, and 38. Tendons were harvested 10 days after treatment and examined with dynamic viscoelasticity and light microscopy. Cross-sectional area in the treated tendons was significantly greater than in controls. Storage modulus tended to be lower in the treated tendons but elasticity was not significantly increased. Loss modulus was significantly lower in the treated tendons. There was no significant difference found in tangent delta (loss modulus/storage modulus). Microscopy of control tendons showed that the tendon fibers were wavy and type III collagen was well stained. The tendon fibers of the augmented soft tissue mobilization treated tendons were not wavy and type III collagen was not prevalent. Biomechanical and histological findings showed that the Achilles tendons treated with ASTM had better recovery of biomechanical function than did control tendons. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  15. Fusion of intraoperative force sensoring, surface reconstruction and biomechanical modeling

    Science.gov (United States)

    Röhl, S.; Bodenstedt, S.; Küderle, C.; Suwelack, S.; Kenngott, H.; Müller-Stich, B. P.; Dillmann, R.; Speidel, S.

    2012-02-01

    Minimally invasive surgery is medically complex and can heavily benefit from computer assistance. One way to help the surgeon is to integrate preoperative planning data into the surgical workflow. This information can be represented as a customized preoperative model of the surgical site. To use it intraoperatively, it has to be updated during the intervention due to the constantly changing environment. Hence, intraoperative sensor data has to be acquired and registered with the preoperative model. Haptic information which could complement the visual sensor data is still not established. In addition, biomechanical modeling of the surgical site can help in reflecting the changes which cannot be captured by intraoperative sensors. We present a setting where a force sensor is integrated into a laparoscopic instrument. In a test scenario using a silicone liver phantom, we register the measured forces with a reconstructed surface model from stereo endoscopic images and a finite element model. The endoscope, the instrument and the liver phantom are tracked with a Polaris optical tracking system. By fusing this information, we can transfer the deformation onto the finite element model. The purpose of this setting is to demonstrate the principles needed and the methods developed for intraoperative sensor data fusion. One emphasis lies on the calibration of the force sensor with the instrument and first experiments with soft tissue. We also present our solution and first results concerning the integration of the force sensor as well as accuracy to the fusion of force measurements, surface reconstruction and biomechanical modeling.

  16. The biomechanics of seed germination.

    Science.gov (United States)

    Steinbrecher, Tina; Leubner-Metzger, Gerhard

    2017-02-01

    From a biomechanical perspective, the completion of seed (and fruit) germination depends on the balance of two opposing forces: the growth potential of the embryonic axis (radicle-hypocotyl growth zone) and the restraint of the seed-covering layers (endosperm, testa, and pericarp). The diverse seed tissues are composite materials which differ in their dynamic properties based on their distinct cell wall composition and water uptake capacities. The biomechanics of embryo cell growth during seed germination depend on irreversible cell wall loosening followed by water uptake due to the decreasing turgor, and this leads to embryo elongation and eventually radicle emergence. Endosperm weakening as a prerequisite for radicle emergence is a widespread phenomenon among angiosperms. Research into the biochemistry and biomechanics of endosperm weakening has demonstrated that the reduction in puncture force of a seed's micropylar endosperm is environmentally and hormonally regulated and involves tissue-specific expression of cell wall remodelling proteins such as expansins, diverse hydrolases, and the production of directly acting apoplastic reactive oxygen. The endosperm-weakening biomechanics and its underlying cell wall biochemistry differ between the micropylar (ME) and chalazal (CE) endosperm domains. In the ME, they involve cell wall loosening, cell separation, and programmed cell death to provide decreased and localized ME tissue resistance, autolysis, and finally the formation of an ME hole required for radicle emergence. Future work will further unravel the molecular mechanisms, environmental regulation, and evolution of the diverse biomechanical cell wall changes underpinning the control of germination by endosperm weakening. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Anthropometry and biomechanics: characteristics, principles and anthropometric models

    Directory of Open Access Journals (Sweden)

    Saray Giovana dos Santos

    2000-12-01

    Full Text Available Due to the importance of interdisciplinarity and multidisciplinarity to the complex analysis of human movement, and in an attempt to seek to bring Kinanthropometry and Biomechanics closer together, throughanthropometry, this review article was compiled in order to: present the historical evolution of anthropometry and the theoretical presuppositions on which its anthropometric models are based; to present anthropometry as a method for measurement in biomechanics; to describe the role and scope of anthropometry in biomechanics by discussing some of its applications and contributions. Initially, an analysis is made of historical and conceptual aspects and anthropometric models are presented and characterized together with their theoretical presuppositions and limitations. Anthropometry is then analyzed in the context of the different methods for measuring in biomechanics, studying its position within the process of analyzing human movement as a prerequisite of kinemetry and dynamometry and also of synchronized analysis. What follows is a refl ection on the role and scope of anthropometry within the analysis of movement, with examples from drawn from several studies, and an identifi cation of their respective contributions. Finally, some considerations resulting from this refl ection are presented; the degree of development of anthropometric models is identifi ed and the constant pursuit for improvement over recent years, with the use of ever more sophisticated techniques, is demonstrated. RESUMO Face à importância da inter e da multidisciplinariedade na complexa análise do movimento humano e no intuito de buscar a aproximação da Cineantropometria e da Biomecânica, através da antropometria, realizou-se este estudo de revisão com o objetivo de apresentar a evolução histórica da antropometria e os pressupostos teóricos de seus modelos antropométricos; apresentar a antropometria enquanto método de medição em biomecânica; descrever

  18. Squat Biomechanical Modeling Results from Exercising on the Hybrid Ultimate Lifting Kit

    Science.gov (United States)

    Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen M.

    2016-01-01

    Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. The computational models currently under development utilize the OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from test subjects for estimation of muscle and joint loads. The subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. Test variables include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data is also obtained using free weights for a comparison to the resistively loaded exercise device. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. The focus of this presentation is to summarize the results from the full squat exercises

  19. Probabilistic Modeling of Intracranial Pressure Effects on Optic Nerve Biomechanics

    Science.gov (United States)

    Ethier, C. R.; Feola, Andrew J.; Raykin, Julia; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.

    2016-01-01

    Altered intracranial pressure (ICP) is involved/implicated in several ocular conditions: papilledema, glaucoma and Visual Impairment and Intracranial Pressure (VIIP) syndrome. The biomechanical effects of altered ICP on optic nerve head (ONH) tissues in these conditions are uncertain but likely important. We have quantified ICP-induced deformations of ONH tissues, using finite element (FE) and probabilistic modeling (Latin Hypercube Simulations (LHS)) to consider a range of tissue properties and relevant pressures.

  20. Computational Biomechanics Theoretical Background and BiologicalBiomedical Problems

    CERN Document Server

    Tanaka, Masao; Nakamura, Masanori

    2012-01-01

    Rapid developments have taken place in biological/biomedical measurement and imaging technologies as well as in computer analysis and information technologies. The increase in data obtained with such technologies invites the reader into a virtual world that represents realistic biological tissue or organ structures in digital form and allows for simulation and what is called “in silico medicine.” This volume is the third in a textbook series and covers both the basics of continuum mechanics of biosolids and biofluids and the theoretical core of computational methods for continuum mechanics analyses. Several biomechanics problems are provided for better understanding of computational modeling and analysis. Topics include the mechanics of solid and fluid bodies, fundamental characteristics of biosolids and biofluids, computational methods in biomechanics analysis/simulation, practical problems in orthopedic biomechanics, dental biomechanics, ophthalmic biomechanics, cardiovascular biomechanics, hemodynamics...

  1. Biomechanics of compensatory mechanisms in spinal-pelvic complex

    Science.gov (United States)

    Ivanov, D. V.; Hominets, V. V.; Kirillova, I. V.; Kossovich, L. Yu; Kudyashev, A. L.; Teremshonok, A. V.

    2018-04-01

    3D geometric solid computer model of spinal-pelvic complex was constructed on the basis of computed tomography and full body X-ray in standing position data. The constructed model was used for biomechanical analysis of compensatory mechanisms arising in the spine with anteversion and retroversion of the pelvis. The results of numerical biomechanical 3D modeling are in good agreement with the clinical data.

  2. [Research Progress and Prospect of Applications of Finite Element Method in Lumbar Spine Biomechanics].

    Science.gov (United States)

    Zhang, Zhenjun; Li, Yang; Liao, Zhenhua; Liu, Weiqiang

    2016-12-01

    Based on the application of finite element analysis in spine biomechanics,the research progress of finite element method applied in lumbar spine mechanics is reviewed and the prospect is forecasted.The related works,including lumbar ontology modeling,clinical application research,and occupational injury and protection,are summarized.The main research areas of finite element method are as follows:new accurate modeling process,the optimized simulation method,diversified clinical effect evaluation,and the clinical application of artificial lumbar disc.According to the recent research progress,the application prospects of finite element method,such as automation and individuation of modeling process,evaluation and analysis of new operation methods and simulation of mechanical damage and dynamic response,are discussed.The purpose of this paper is to provide the theoretical reference and practical guidance for the clinical lumbar problems by reviewing the application of finite element method in the field of the lumbar spine biomechanics.

  3. Simulation of facial expressions using person-specific sEMG signals controlling a biomechanical face model

    NARCIS (Netherlands)

    Eskes, M.; Balm, A.J.M.; van Alphen, M.J.A.; Smeele, L.E.; Stavness, I.; van der Heijden, F.

    2018-01-01

    Purpose: Functional inoperability in advanced oral cancer is difficult to assess preoperatively. To assess functions of lips and tongue, biomechanical models are required. Apart from adjusting generic models to individual anatomy, muscle activation patterns (MAPs) driving patient-specific functional

  4. Simulation of facial expressions using person-specific sEMG signals controlling a biomechanical face model

    NARCIS (Netherlands)

    Eskes, Merijn; Balm, Alfons J. M.; van Alphen, Maarten J. A.; Smeele, Ludi E.; Stavness, Ian; van der Heijden, Ferdinand

    2018-01-01

    Purpose Functional inoperability in advanced oral cancer is difficult to assess preoperatively. To assess functions of lips and tongue, biomechanical models are required. Apart from adjusting generic models to individual anatomy, muscle activation patterns (MAPs) driving patient-specific functional

  5. Biomechanical modeling and load-carrying simulation of lower limb exoskeleton.

    Science.gov (United States)

    Zhu, Yanhe; Zhang, Guoan; Zhang, Chao; Liu, Gangfeng; Zhao, Jie

    2015-01-01

    This paper introduces novel modern equipment-a lower extremity exoskeleton, which can implement the mutual complement and the interaction between human intelligence and the robot's mechanical strength. In order to provide a reference for the exoskeleton structure and the drive unit, the human biomechanics were modeled and analyzed by LifeModeler and Adams software to derive each joint kinematic parameter. The control was designed to implement the zero-force interaction between human and exoskeleton. Furthermore, simulations were performed to verify the control and assist effect. In conclusion, the system scheme of lower extremity exoskeleton is demonstrated to be feasible.

  6. Patient-specific models of cardiac biomechanics

    Science.gov (United States)

    Krishnamurthy, Adarsh; Villongco, Christopher T.; Chuang, Joyce; Frank, Lawrence R.; Nigam, Vishal; Belezzuoli, Ernest; Stark, Paul; Krummen, David E.; Narayan, Sanjiv; Omens, Jeffrey H.; McCulloch, Andrew D.; Kerckhoffs, Roy C. P.

    2013-07-01

    Patient-specific models of cardiac function have the potential to improve diagnosis and management of heart disease by integrating medical images with heterogeneous clinical measurements subject to constraints imposed by physical first principles and prior experimental knowledge. We describe new methods for creating three-dimensional patient-specific models of ventricular biomechanics in the failing heart. Three-dimensional bi-ventricular geometry is segmented from cardiac CT images at end-diastole from patients with heart failure. Human myofiber and sheet architecture is modeled using eigenvectors computed from diffusion tensor MR images from an isolated, fixed human organ-donor heart and transformed to the patient-specific geometric model using large deformation diffeomorphic mapping. Semi-automated methods were developed for optimizing the passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Material properties of active cardiac muscle contraction were optimized to match ventricular pressures measured by cardiac catheterization, and parameters of a lumped-parameter closed-loop model of the circulation were estimated with a circulatory adaptation algorithm making use of information derived from echocardiography. These components were then integrated to create a multi-scale model of the patient-specific heart. These methods were tested in five heart failure patients from the San Diego Veteran's Affairs Medical Center who gave informed consent. The simulation results showed good agreement with measured echocardiographic and global functional parameters such as ejection fraction and peak cavity pressures.

  7. Digital Astronaut Project Biomechanical Models: Biomechanical Modeling of Squat, Single-Leg Squat and Heel Raise Exercises on the Hybrid Ultimate Lifting Kit (HULK)

    Science.gov (United States)

    Thompson, William K.; Gallo, Christopher A.; Crentsil, Lawton; Lewandowski, Beth E.; Humphreys, Brad T.; DeWitt, John K.; Fincke, Renita S.; Mulugeta, Lealem

    2015-01-01

    The NASA Digital Astronaut Project (DAP) implements well-vetted computational models to predict and assess spaceflight health and performance risks, and to enhance countermeasure development. The DAP Musculoskeletal Modeling effort is developing computational models to inform exercise countermeasure development and to predict physical performance capabilities after a length of time in space. For example, integrated exercise device-biomechanical models can determine localized loading, which will be used as input to muscle and bone adaptation models to estimate the effectiveness of the exercise countermeasure. In addition, simulations of mission tasks can be used to estimate the astronaut's ability to perform the task after exposure to microgravity and after using various exercise countermeasures. The software package OpenSim (Stanford University, Palo Alto, CA) (Ref. 1) is being used to create the DAP biomechanical models and its built-in muscle model is the starting point for the DAP muscle model. During Exploration missions, such as those to asteroids and Mars, astronauts will be exposed to reduced gravity for extended periods. Therefore, the crew must have access to exercise countermeasures that can maintain their musculoskeletal and aerobic health. Exploration vehicles may have very limited volume and power available to accommodate such capabilities, even more so than the International Space Station (ISS). The exercise devices flown on Exploration missions must be designed to provide sufficient load during the performance of various resistance and aerobic/anaerobic exercises while meeting potential additional requirements of limited mass, volume and power. Given that it is not practical to manufacture and test (ground, analog and/or flight) all candidate devices, nor is it always possible to obtain data such as localized muscle and bone loading empirically, computational modeling can estimate the localized loading during various exercise modalities performed on

  8. Chemical and biomechanical characterization of hyperhomocysteinemic bone disease in an animal model

    Directory of Open Access Journals (Sweden)

    Howell David S

    2003-02-01

    Full Text Available Abstract Background Classical homocystinuria is an autosomal recessive disorder caused by cystathionine β-synthase (CBS deficiency and characterized by distinctive alterations of bone growth and skeletal development. Skeletal changes include a reduction in bone density, making it a potentially attractive model for the study of idiopathic osteoporosis. Methods To investigate this aspect of hyperhomocysteinemia, we supplemented developing chicks (n = 8 with 0.6% dl-homocysteine (hCySH for the first 8 weeks of life in comparison to controls (n = 10, and studied biochemical, biomechanical and morphologic effects of this nutritional intervention. Results hCySH-fed animals grew faster and had longer tibiae at the end of the study. Plasma levels of hCySH, methionine, cystathionine, and inorganic sulfate were higher, but calcium, phosphate, and other indices of osteoblast metabolism were not different. Radiographs of the lower limbs showed generalized osteopenia and accelerated epiphyseal ossification with distinct metaphyseal and suprametaphyseal lucencies similar to those found in human homocystinurics. Although biomechanical testing of the tibiae, including maximal load to failure and bone stiffness, indicated stronger bone, strength was proportional to the increased length and cortical thickness in the hCySH-supplemented group. Bone ash weights and IR-spectroscopy of cortical bone showed no difference in mineral content, but there were higher Ca2+/PO43- and lower Ca2+/CO32- molar ratios than in controls. Mineral crystallization was unchanged. Conclusion In this chick model, hyperhomocysteinemia causes greater radial and longitudinal bone growth, despite normal indices of bone formation. Although there is also evidence for an abnormal matrix and altered bone composition, our finding of normal biomechanical bone strength, once corrected for altered morphometry, suggests that any increase in the risk of long bone fracture in human hyperhomocysteinemic

  9. Unified Approach to the Biomechanics of Dental Implantology

    Science.gov (United States)

    Grenoble, D. E.; Knoell, A. C.

    1973-01-01

    The human need for safe and effective dental implants is well-recognized. Although many implant designs have been tested and are in use today, a large number have resulted in clinical failure. These failures appear to be due to biomechanical effects, as well as biocompatibility and surgical factors. A unified approach is proposed using multidisciplinary systems technology, for the study of the biomechanical interactions between dental implants and host tissues. The approach progresses from biomechanical modeling and analysis, supported by experimental investigations, through implant design development, clinical verification, and education of the dental practitioner. The result of the biomechanical modeling, analysis, and experimental phases would be the development of scientific design criteria for implants. Implant designs meeting these criteria would be generated, fabricated, and tested in animals. After design acceptance, these implants would be tested in humans, using efficient and safe surgical and restorative procedures. Finally, educational media and instructional courses would be developed for training dental practitioners in the use of the resulting implants.

  10. Biomechanics of Wheat/Barley Straw and Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T. Wright; Peter A. Pryfogle; Nathan A. Stevens; Eric D. Steffler; J. Richard Hess; Thomas H. Ulrich

    2005-03-01

    The lack of understanding of the mechanical characteristics of cellulosic feedstocks is a limiting factor in economically collecting and processing crop residues, primarily wheat and barley stems and corn stover. Several testing methods, including compression, tension, and bend have been investigated to increase our understanding of the biomechanical behavior of cellulosic feedstocks. Biomechanical data from these tests can provide required input to numerical models and help advance harvesting, handling, and processing techniques. In addition, integrating the models with the complete data set from this study can identify potential tools for manipulating the biomechanical properties of plant varieties in such a manner as to optimize their physical characteristics to produce higher value biomass and more energy efficient harvesting practices.

  11. Why National Biomechanics Day?

    Science.gov (United States)

    DeVita, Paul

    2018-04-11

    National Biomechanics Day (NBD) seeks to expand the influence and impact of Biomechanics on our society by expanding the awareness of Biomechanics among young people. NBD will manifest this goal through worldwide, synchronized and coordinated celebrations and demonstrations of all things Biomechanics with high school students. NBD invites all Biomechanists to participate in NBD 2018, http://nationalbiomechanicsday.asbweb.org/. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Clinical, biomechanical and morphological assessment of anterior cruciate ligament Kevlar®-based artificial prosthesis in rabbit model.

    Science.gov (United States)

    de la Garza-Castro, Santiago; González-Rivera, Carlos E; Vílchez-Cavazos, Félix; Morales-Avalos, Rodolfo; Barrera-Flores, Francisco J; Elizondo-Omaña, Rodrigo E; Soto-Dominguez, Adolfo; Acosta-Olivo, Carlos; Mendoza-Lemus, Oscar F

    2017-07-27

    The aim of this study was to evaluate the clinical, biomechanical and morphological characteristics of a Kevlar®-based prosthetic ligament as a synthetic graft of the anterior cruciate ligament (ACL) in an experimental animal model in rabbits. A total of 27 knees of rabbits randomly divided into 3 groups (control, ACL excision and ACL replacement with a Kevlar® prosthesis) were analyzed using clinical, biomechanical and morphological tests at 6, 12 and 18 weeks postprocedure. The mean displacement in mechanical testing was 0.73 ± 0.06 mm, 1.58 ± 0.19 mm and 0.94 ± 0.20 mm for the control, ACL excision and ACL replacement with synthetic prosthesis groups, respectively. The results showed an improvement in the stability of the knee with the use of the Kevlar® synthetic prosthesis in the biomechanical testing (p0.05), between the replacement group and the control group. The histological study revealed a good morphological adaptation of the synthetic material to the knee. This study proposes a new animal model for the placement and evaluation of Kevlar®-based synthetic ACL implants. The studied prosthesis showed promising behavior in the clinical and biomechanical tests and in the histological analysis. This study lays the foundation for further basic and clinical studies of artificial ACL prostheses using this material.

  13. CURRENT CONCEPTS IN BIOMECHANICAL INTERVENTIONS FOR PATELLOFEMORAL PAIN

    Science.gov (United States)

    Meira, Erik P.

    2016-01-01

    Patellofemoral pain (PFP) has historically been a complex and enigmatic issue. Many of the factors thought to relate to PFP remain after patients' symptoms have resolved making their clinical importance difficult to determine. The tissue homeostasis model proposed by Dye in 2005 can assist with understanding and implementing biomechanical interventions for PFP. Under this model, the goal of interventions for PFP should be to re-establish patellofemoral joint (PFJ) homeostasis through a temporary alteration of load to the offended tissue, followed by incrementally restoring the envelope of function to the baseline level or higher. High levels of PFJ loads, particularly in the presence of an altered PFJ environment, are thought to be a factor in the development of PFP. Clinical interventions often aim to alter the biomechanical patterns that are thought to result in elevated PFJ loads while concurrently increasing the load tolerance capabilities of the tissue through therapeutic exercise. Biomechanics may play a role in PFJ load modification not only when addressing proximal and distal components, but also when considering the involvement of more local factors such as the quadriceps musculature. Biomechanical considerations should consider the entire kinetic chain including the hip and the foot/ankle complex, however the beneficial effects of these interventions may not be the result of long-term biomechanical changes. Biomechanical alterations may be achieved through movement retraining, but the interventions likely need to be task-specific to alter movement patterns. The purpose of this commentary is to describe biomechanical interventions for the athlete with PFP to encourage a safe and complete return to sport. Level of Evidence 5 PMID:27904791

  14. Teaching undergraduate biomechanics with Just-in-Time Teaching.

    Science.gov (United States)

    Riskowski, Jody L

    2015-06-01

    Biomechanics education is a vital component of kinesiology, sports medicine, and physical education, as well as for many biomedical engineering and bioengineering undergraduate programmes. Little research exists regarding effective teaching strategies for biomechanics. However, prior work suggests that student learning in undergraduate physics courses has been aided by using the Just-in-Time Teaching (JiTT). As physics understanding plays a role in biomechanics understanding, the purpose of study was to evaluate the use of a JiTT framework in an undergraduate biomechanics course. This two-year action-based research study evaluated three JiTT frameworks: (1) no JiTT; (2) mathematics-based JiTT; and (3) concept-based JiTT. A pre- and post-course assessment of student learning used the biomechanics concept inventory and a biomechanics concept map. A general linear model assessed differences between the course assessments by JiTT framework in order to evaluate learning and teaching effectiveness. The results indicated significantly higher learning gains and better conceptual understanding in a concept-based JiTT course, relative to a mathematics-based JiTT or no JiTT course structure. These results suggest that a course structure involving concept-based questions using a JiTT strategy may be an effective method for engaging undergraduate students and promoting learning in biomechanics courses.

  15. Invertebrate biomechanics.

    Science.gov (United States)

    Patek, S N; Summers, A P

    2017-05-22

    Invertebrate biomechanics focuses on mechanical analyses of non-vertebrate animals, which at root is no different in aim and technique from vertebrate biomechanics, or for that matter the biomechanics of plants and fungi. But invertebrates are special - they are fabulously diverse in form, habitat, and ecology and manage this without the use of hard, internal skeletons. They are also numerous and, in many cases, tractable in an experimental and field setting. In this Primer, we will probe three axes of invertebrate diversity: worms (Phylum Annelida), spiders (Class Arachnida) and insects (Class Insecta); three habitats: subterranean, terrestrial and airborne; and three integrations with other fields: ecology, engineering and evolution. Our goal is to capture the field of invertebrate biomechanics, which has blossomed from having a primary focus on discoveries at the interface of physics and biology to being inextricably linked with integrative challenges that span biology, physics, mathematics and engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A method to investigate the biomechanical alterations in Perthes’ disease by hip joint contact modeling

    DEFF Research Database (Denmark)

    Salmingo, Remel A.; Skytte, Tina Lercke; Traberg, Marie Sand

    2017-01-01

    for the preoperative planning to obtain stress relief for the highly stressed areas in the malformed hip. This single-patient study demonstrated that the biomechanical alterations in Perthes’ disease can be evaluated individually by patient-specific finite element contact modeling using MRI. A multi-patient study...... was to develop a method to investigate the biomechanical alterations in Perthes’ disease by finite element (FE ) contact modeling using MRI. The MRI data of a unilateral Perthes’ case was obtained to develop the three-dimensional FE model of the hip joint. The stress and contact pressure patterns...... in the unaffected hip were well distrib uted. Elevated concentrations of stress and contact pressure were found in the Perthes’ hip. The highest femoral cartilagev on Mises stress 3.9 MPa and contact pressure 5.3 M P a were found in the Perthes’ hip, whereas 2.4 M P a and 4.9 MP a in the healthy hip, respectively...

  17. Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics

    Directory of Open Access Journals (Sweden)

    Dewy C. van der Valk

    2018-05-01

    Full Text Available In calcific aortic valve disease (CAVD, microcalcifications originating from nanoscale calcifying vesicles disrupt the aortic valve (AV leaflets, which consist of three (biomechanically distinct layers: the fibrosa, spongiosa, and ventricularis. CAVD has no pharmacotherapy and lacks in vitro models as a result of complex valvular biomechanical features surrounding resident mechanosensitive valvular interstitial cells (VICs. We measured layer-specific mechanical properties of the human AV and engineered a three-dimensional (3D-bioprinted CAVD model that recapitulates leaflet layer biomechanics for the first time. Human AV leaflet layers were separated by microdissection, and nanoindentation determined layer-specific Young’s moduli. Methacrylated gelatin (GelMA/methacrylated hyaluronic acid (HAMA hydrogels were tuned to duplicate layer-specific mechanical characteristics, followed by 3D-printing with encapsulated human VICs. Hydrogels were exposed to osteogenic media (OM to induce microcalcification, and VIC pathogenesis was assessed by near infrared or immunofluorescence microscopy. Median Young’s moduli of the AV layers were 37.1, 15.4, and 26.9 kPa (fibrosa/spongiosa/ventricularis, respectively. The fibrosa and spongiosa Young’s moduli matched the 3D 5% GelMa/1% HAMA UV-crosslinked hydrogels. OM stimulation of VIC-laden bioprinted hydrogels induced microcalcification without apoptosis. We report the first layer-specific measurements of human AV moduli and a novel 3D-bioprinted CAVD model that potentiates microcalcification by mimicking the native AV mechanical environment. This work sheds light on valvular mechanobiology and could facilitate high-throughput drug-screening in CAVD.

  18. Inverse Dynamics Model for the Ankle Joint with Applications in Tibia Malleolus Fracture

    Science.gov (United States)

    Budescu, E.; Merticaru, E.; Chirazi, M.

    The paper presents a biomechanical model of the ankle joint, in order to determine the force and the torque of reaction into the articulation, through inverse dynamic analysis, in various stages of the gait. Thus, knowing the acceleration of the foot and the reaction force between foot and ground during the gait, determined by experimental measurement, there was calculated, for five different positions of the foot, the joint reaction forces, on the basis of dynamic balance equations. The values numerically determined were compared with the admissible forces appearing in the technical systems of osteosynthesis of tibia malleolus fracture, in order to emphasize the motion restrictions during bone healing.

  19. Gait biomechanics in the era of data science.

    Science.gov (United States)

    Ferber, Reed; Osis, Sean T; Hicks, Jennifer L; Delp, Scott L

    2016-12-08

    Data science has transformed fields such as computer vision and economics. The ability of modern data science methods to extract insights from large, complex, heterogeneous, and noisy datasets is beginning to provide a powerful complement to the traditional approaches of experimental motion capture and biomechanical modeling. The purpose of this article is to provide a perspective on how data science methods can be incorporated into our field to advance our understanding of gait biomechanics and improve treatment planning procedures. We provide examples of how data science approaches have been applied to biomechanical data. We then discuss the challenges that remain for effectively using data science approaches in clinical gait analysis and gait biomechanics research, including the need for new tools, better infrastructure and incentives for sharing data, and education across the disciplines of biomechanics and data science. By addressing these challenges, we can revolutionize treatment planning and biomechanics research by capitalizing on the wealth of knowledge gained by gait researchers over the past decades and the vast, but often siloed, data that are collected in clinical and research laboratories around the world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Research Techniques in Biomechanics.

    Science.gov (United States)

    Ward, Terry

    Biomechanics involves the biological human beings interacting with his/her mechanical environment. Biomechanics research is being done in connection with sport, physical education, and general motor behavior, and concerns mechanics independent of implements. Biomechanics research falls in the following two general categories: (1) that specific…

  1. Interpreting locomotor biomechanics from the morphology of human footprints.

    Science.gov (United States)

    Hatala, Kevin G; Wunderlich, Roshna E; Dingwall, Heather L; Richmond, Brian G

    2016-01-01

    Fossil hominin footprints offer unique direct windows to the locomotor behaviors of our ancestors. These data could allow a clearer understanding of the evolution of human locomotion by circumventing issues associated with indirect interpretations of habitual locomotor patterns from fossil skeletal material. However, before we can use fossil hominin footprints to understand better the evolution of human locomotion, we must first develop an understanding of how locomotor biomechanics are preserved in, and can be inferred from, footprint morphologies. In this experimental study, 41 habitually barefoot modern humans created footprints under controlled conditions in which variables related to locomotor biomechanics could be quantified. Measurements of regional topography (depth) were taken from 3D models of those footprints, and principal components analysis was used to identify orthogonal axes that described the largest proportions of topographic variance within the human experimental sample. Linear mixed effects models were used to quantify the influences of biomechanical variables on the first five principal axes of footprint topographic variation, thus providing new information on the biomechanical variables most evidently expressed in the morphology of human footprints. The footprint's overall depth was considered as a confounding variable, since biomechanics may be linked to the extent to which a substrate deforms. Three of five axes showed statistically significant relationships with variables related to both locomotor biomechanics and substrate displacement; one axis was influenced only by biomechanics and another only by the overall depth of the footprint. Principal axes of footprint morphological variation were significantly related to gait type (walking or running), kinematics of the hip and ankle joints and the distribution of pressure beneath the foot. These results provide the first quantitative framework for developing hypotheses regarding the

  2. Biomechanics of occlusion--implications for oral rehabilitation.

    Science.gov (United States)

    Peck, C C

    2016-03-01

    The dental occlusion is an important aspect of clinical dentistry; there are diverse functional demands ranging from highly precise tooth contacts to large crushing forces. Further, there are dogmatic, passionate and often diverging views on the relationship between the dental occlusion and various diseases and disorders including temporomandibular disorders, non-carious cervical lesions and tooth movement. This study provides an overview of the biomechanics of the masticatory system in the context of the dental occlusion's role in function. It explores the adaptation and precision of dental occlusion, its role in bite force, jaw movement, masticatory performance and its influence on the oro-facial musculoskeletal system. Biomechanics helps us better understand the structure and function of biological systems and consequently an understanding of the forces on, and displacements of, the dental occlusion. Biomechanics provides insight into the relationships between the dentition, jaws, temporomandibular joints, and muscles. Direct measurements of tooth contacts and forces are difficult, and biomechanical models have been developed to better understand the relationship between the occlusion and function. Importantly, biomechanical research will provide knowledge to help correct clinical misperceptions and inform better patient care. The masticatory system demonstrates a remarkable ability to adapt to a changing biomechanical environment and changes to the dental occlusion or other components of the musculoskeletal system tend to be well tolerated. © 2015 John Wiley & Sons Ltd.

  3. Creation of an in vitro biomechanical model of the trachea using rapid prototyping.

    Science.gov (United States)

    Walenga, Ross L; Longest, P Worth; Sundaresan, Gobalakrishnan

    2014-06-03

    Previous in vitro models of the airways are either rigid or, if flexible, have not matched in vivo compliance characteristics. Rapid prototyping provides a quickly evolving approach that can be used to directly produce in vitro airway models using either rigid or flexible polymers. The objective of this study was to use rapid prototyping to directly produce a flexible hollow model that matches the biomechanical compliance of the trachea. The airway model consisted of a previously developed characteristic mouth-throat region, the trachea, and a portion of the main bronchi. Compliance of the tracheal region was known from a previous in vivo imaging study that reported cross-sectional areas over a range of internal pressures. The compliance of the tracheal region was matched to the in vivo data for a specific flexible resin by iteratively selecting the thicknesses and other dimensions of tracheal wall components. Seven iterative models were produced and illustrated highly non-linear expansion consisting of initial rapid size increase, a transition region, and continued slower size increase as pressure was increased. Thickness of the esophageal interface membrane and initial trachea indention were identified as key parameters with the final model correctly predicting all phases of expansion within a value of 5% of the in vivo data. Applications of the current biomechanical model are related to endotracheal intubation and include determination of effective mucus suctioning and evaluation of cuff sealing with respect to gases and secretions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Low-Back Biomechanics and Static Stability During Isometric Pushing

    Science.gov (United States)

    Granata, Kevin P.; Bennett, Bradford C.

    2006-01-01

    Pushing and pulling tasks are increasingly prevalent in industrial workplaces. Few studies have investigated low-back biomechanical risk factors associated with pushing, and we are aware of none that has quantified spinal stability during pushing exertions. Data recorded from 11 healthy participants performing isometric pushing exertions demonstrated that trunk posture, vector force direction of the applied load, and trunk moment were influenced (p pushing task, and foot position. A biomechanical model was used to analyze the posture and hand force data gathered from the pushing exertions. Model results indicate that pushing exertions provide significantly (p pushing exertions. If one maintains stability by means of cocontraction, additional spinal load is thereby created, increasing the risk of overload injury. Thus it is important to consider muscle cocontraction when evaluating the biomechanics of pushing exertions. Potential applications of this research include improved assessment of biomechanical risk factors for the design of industrial pushing tasks. PMID:16435695

  5. A review of biomechanics of the shoulder and biomechanical concepts of rotator cuff repair

    Directory of Open Access Journals (Sweden)

    Nobuyuki Yamamoto

    2015-01-01

    Full Text Available In this article, we describe the basic knowledge about shoulder biomechanics, which is thought to be useful for surgeons. Some clinical reports have described that the excellent outcome after cuff repair without acromioplasty and a limited acromioplasty might be enough for subacromial decompression. It was biomechanically demonstrated that a 10-mm medial shift of the tendon repair site has a minimum effect on biomechanics. Many biomechanical studies reported that the transosseous equivalent repair was superior to other techniques, although the tendon may lose its inherent elasticity. We herein introduce our recent experiment data and latest information on biomechanics.

  6. Applications of biomechanics for prevention of work-related musculoskeletal disorders.

    Science.gov (United States)

    Garg, Arun; Kapellusch, Jay M

    2009-01-01

    This paper summarises applications of biomechanical principles and models in industry to control musculoskeletal disorders of the low back and upper extremity. Applications of 2-D and 3-D biomechanical models to estimate compressive force on the low back, the strength requirements of jobs, application of guidelines for overhead work and application of strain index and threshold limit value to address distal upper extremity musculoskeletal disorders are presented. Several case studies applied in the railroad industry, manufacturing, healthcare and warehousing are presented. Finally, future developments needed for improved biomechanical applications in industry are discussed. The information presented will be of value to practising ergonomists to recognise how biomechanics has played a significant role in identifying causes of musculoskeletal disorders and controlling them in the workplace. In particular, the information presented will help practising ergonomists with how physical stresses can be objectively quantified.

  7. Modeling of Biomechanics and Biorheology of Red Blood Cells in Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Chang, Hung-Yu; Li, Xuejin; Karniadakis, George Em

    2017-07-25

    Erythrocytes in patients with type-2 diabetes mellitus (T2DM) are associated with reduced cell deformability and elevated blood viscosity, which contribute to impaired blood flow and other pathophysiological aspects of diabetes-related vascular complications. In this study, by using a two-component red blood cell (RBC) model and systematic parameter variation, we perform detailed computational simulations to probe the alteration of the biomechanical, rheological, and dynamic behavior of T2DM RBCs in response to morphological change and membrane stiffening. First, we examine the elastic response of T2DM RBCs subject to static tensile forcing and their viscoelastic relaxation response upon release of the stretching force. Second, we investigate the membrane fluctuations of T2DM RBCs and explore the effect of cell shape on the fluctuation amplitudes. Third, we subject the T2DM RBCs to shear flow and probe the effects of cell shape and effective membrane viscosity on their tank-treading movement. In addition, we model the cell dynamic behavior in a microfluidic channel with constriction and quantify the biorheological properties of individual T2DM RBCs. Finally, we simulate T2DM RBC suspensions under shear and compare the predicted viscosity with experimental measurements. Taken together, these simulation results and their comparison with currently available experimental data are helpful in identifying a specific parametric model-the first of its kind, to our knowledge-that best describes the main hallmarks of T2DM RBCs, which can be used in future simulation studies of hematologic complications of T2DM patients. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Biomechanics and mechanobiology in functional tissue engineering

    Science.gov (United States)

    Guilak, Farshid; Butler, David L.; Goldstein, Steven A.; Baaijens, Frank P.T.

    2014-01-01

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of “functional tissue engineering” has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements. PMID:24818797

  9. Effects of a dynamic core stability program on the biomechanics of cutting maneuvers: A randomized controlled trial.

    Science.gov (United States)

    Whyte, E F; Richter, C; O'Connor, S; Moran, K A

    2018-02-01

    Deficits in trunk control predict ACL injuries which frequently occur during high-risk activities such as cutting. However, no existing trunk control/core stability program has been found to positively affect trunk kinematics during cutting activities. This study investigated the effectiveness of a 6-week dynamic core stability program (DCS) on the biomechanics of anticipated and unanticipated side and crossover cutting maneuvers. Thirty-one male, varsity footballers participated in this randomized controlled trial. Three-dimensional trunk and lower limb biomechanics were captured in a motion analysis laboratory during the weight acceptance phase of anticipated and unanticipated side and crossover cutting maneuvers at baseline and 6-week follow-up. The DCS group performed a DCS program three times weekly for 6 weeks in a university rehabilitation room. Both the DCS and control groups concurrently completed their regular practice and match play. Statistical parametric mapping and repeated measures analysis of variance were used to determine any group (DCS vs control) by time (pre vs post) interactions. The DCS resulted in greater internal hip extensor (P=.017, η 2 =0.079), smaller internal knee valgus (P=.026, η 2 =0.076), and smaller internal knee external rotator moments (P=.041, η 2 =0.066) during anticipated side cutting compared with the control group. It also led to reduced posterior ground reaction forces for all cutting activities (P=.015-.030, η 2 =0.074-0.105). A 6-week DCS program did not affect trunk kinematics, but it did reduce a small number of biomechanical risk factors for ACL injury, predominantly during anticipated side cutting. A DCS program could play a role in multimodal ACL injury prevention programs. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Biomechanics in Schools.

    Science.gov (United States)

    Vincent, J. F. V.

    1980-01-01

    Examines current usage of the term "biomechanics" and emphasizes the importance of differentiating between structure and material. Describes current prolects in biomechanics and lists four points about the educational significance of the field. (GS)

  11. A GPU based high-resolution multilevel biomechanical head and neck model for validating deformable image registration

    Energy Technology Data Exchange (ETDEWEB)

    Neylon, J., E-mail: jneylon@mednet.ucla.edu; Qi, X.; Sheng, K.; Low, D. A.; Kupelian, P.; Santhanam, A. [Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California 90095 (United States); Staton, R.; Pukala, J.; Manon, R. [Department of Radiation Oncology, M.D. Anderson Cancer Center, Orlando, 1440 South Orange Avenue, Orlando, Florida 32808 (United States)

    2015-01-15

    Purpose: Validating the usage of deformable image registration (DIR) for daily patient positioning is critical for adaptive radiotherapy (RT) applications pertaining to head and neck (HN) radiotherapy. The authors present a methodology for generating biomechanically realistic ground-truth data for validating DIR algorithms for HN anatomy by (a) developing a high-resolution deformable biomechanical HN model from a planning CT, (b) simulating deformations for a range of interfraction posture changes and physiological regression, and (c) generating subsequent CT images representing the deformed anatomy. Methods: The biomechanical model was developed using HN kVCT datasets and the corresponding structure contours. The voxels inside a given 3D contour boundary were clustered using a graphics processing unit (GPU) based algorithm that accounted for inconsistencies and gaps in the boundary to form a volumetric structure. While the bony anatomy was modeled as rigid body, the muscle and soft tissue structures were modeled as mass–spring-damper models with elastic material properties that corresponded to the underlying contoured anatomies. Within a given muscle structure, the voxels were classified using a uniform grid and a normalized mass was assigned to each voxel based on its Hounsfield number. The soft tissue deformation for a given skeletal actuation was performed using an implicit Euler integration with each iteration split into two substeps: one for the muscle structures and the other for the remaining soft tissues. Posture changes were simulated by articulating the skeletal structure and enabling the soft structures to deform accordingly. Physiological changes representing tumor regression were simulated by reducing the target volume and enabling the surrounding soft structures to deform accordingly. Finally, the authors also discuss a new approach to generate kVCT images representing the deformed anatomy that accounts for gaps and antialiasing artifacts that may

  12. A GPU based high-resolution multilevel biomechanical head and neck model for validating deformable image registration

    International Nuclear Information System (INIS)

    Neylon, J.; Qi, X.; Sheng, K.; Low, D. A.; Kupelian, P.; Santhanam, A.; Staton, R.; Pukala, J.; Manon, R.

    2015-01-01

    Purpose: Validating the usage of deformable image registration (DIR) for daily patient positioning is critical for adaptive radiotherapy (RT) applications pertaining to head and neck (HN) radiotherapy. The authors present a methodology for generating biomechanically realistic ground-truth data for validating DIR algorithms for HN anatomy by (a) developing a high-resolution deformable biomechanical HN model from a planning CT, (b) simulating deformations for a range of interfraction posture changes and physiological regression, and (c) generating subsequent CT images representing the deformed anatomy. Methods: The biomechanical model was developed using HN kVCT datasets and the corresponding structure contours. The voxels inside a given 3D contour boundary were clustered using a graphics processing unit (GPU) based algorithm that accounted for inconsistencies and gaps in the boundary to form a volumetric structure. While the bony anatomy was modeled as rigid body, the muscle and soft tissue structures were modeled as mass–spring-damper models with elastic material properties that corresponded to the underlying contoured anatomies. Within a given muscle structure, the voxels were classified using a uniform grid and a normalized mass was assigned to each voxel based on its Hounsfield number. The soft tissue deformation for a given skeletal actuation was performed using an implicit Euler integration with each iteration split into two substeps: one for the muscle structures and the other for the remaining soft tissues. Posture changes were simulated by articulating the skeletal structure and enabling the soft structures to deform accordingly. Physiological changes representing tumor regression were simulated by reducing the target volume and enabling the surrounding soft structures to deform accordingly. Finally, the authors also discuss a new approach to generate kVCT images representing the deformed anatomy that accounts for gaps and antialiasing artifacts that may

  13. Simulated parallel annealing within a neighborhood for optimization of biomechanical systems.

    Science.gov (United States)

    Higginson, J S; Neptune, R R; Anderson, F C

    2005-09-01

    Optimization problems for biomechanical systems have become extremely complex. Simulated annealing (SA) algorithms have performed well in a variety of test problems and biomechanical applications; however, despite advances in computer speed, convergence to optimal solutions for systems of even moderate complexity has remained prohibitive. The objective of this study was to develop a portable parallel version of a SA algorithm for solving optimization problems in biomechanics. The algorithm for simulated parallel annealing within a neighborhood (SPAN) was designed to minimize interprocessor communication time and closely retain the heuristics of the serial SA algorithm. The computational speed of the SPAN algorithm scaled linearly with the number of processors on different computer platforms for a simple quadratic test problem and for a more complex forward dynamic simulation of human pedaling.

  14. Initial stress in biomechanical models of atherosclerotic plaques

    NARCIS (Netherlands)

    Speelman, L.; Akyildiz, A.C.; Adel, den B.; Wentzel, J.J.; Steen, van der A.F.W.; Virmani, R.; Weerd, van der L.; Jukema, J.W.; Poelmann, R.E.; Brummelen, van E.H.; Gijsen, F.J.H.

    2011-01-01

    Rupture of atherosclerotic plaques is the underlying cause for the majority of acute strokes and myocardial infarctions. Rupture of the plaque occurs when the stress in the plaque exceeds the strength of the material locally. Biomechanical stress analyses are commonly based on pressurized

  15. Gingival Recessions and Biomechanics

    DEFF Research Database (Denmark)

    Laursen, Morten Godtfredsen

    Gingival recessions and biomechanics “Tissue is the issue, but bone sets the tone.“ A tooth outside the cortical plate can result in loss of bone and development of a gingival recession. The presentation aims to show biomechanical considerations in relation to movement of teeth with gingival...... by moving the root back in the alveolus. The tooth movement is accompanied by bone gain and thus increase the success rate for soft tissue augmentation. The choice of biomechanical system influences the treatment outcome. If a standard straight wire appliance is used, a biomechanical dilemma can arise...

  16. Developments in dynamic MR elastography for in vitro biomechanical assessment of hyaline cartilage under high-frequency cyclical shear.

    Science.gov (United States)

    Lopez, Orlando; Amrami, Kimberly K; Manduca, Armando; Rossman, Phillip J; Ehman, Richard L

    2007-02-01

    The design, construction, and evaluation of a customized dynamic magnetic resonance elastography (MRE) technique for biomechanical assessment of hyaline cartilage in vitro are described. For quantification of the dynamic shear properties of hyaline cartilage by dynamic MRE, mechanical excitation and motion sensitization were performed at frequencies in the kilohertz range. A custom electromechanical actuator and a z-axis gradient coil were used to generate and image shear waves throughout cartilage at 1000-10,000 Hz. A radiofrequency (RF) coil was also constructed for high-resolution imaging. The technique was validated at 4000 and 6000 Hz by quantifying differences in shear stiffness between soft ( approximately 200 kPa) and stiff ( approximately 300 kPa) layers of 5-mm-thick bilayered phantoms. The technique was then used to quantify the dynamic shear properties of bovine and shark hyaline cartilage samples at frequencies up to 9000 Hz. The results demonstrate that one can obtain high-resolution shear stiffness measurements of hyaline cartilage and small, stiff, multilayered phantoms at high frequencies by generating robust mechanical excitations and using large magnetic field gradients. Dynamic MRE can potentially be used to directly quantify the dynamic shear properties of hyaline and articular cartilage, as well as other cartilaginous materials and engineered constructs. (c) 2007 Wiley-Liss, Inc.

  17. Biomechanics of the thorax - research evidence and clinical expertise.

    Science.gov (United States)

    Lee, Diane Gail

    2015-07-01

    Understanding the biomechanics of the thorax is critical for understanding its role in multiple conditions since the thorax is part of many integrated systems including the musculoskeletal, respiratory, cardiac, digestive and urogynecological. The thorax is also an integrated system within itself and an element of the whole body/person. Therefore, understanding the biomechanics of the thorax is fundamental to all forms of treatment for multiple conditions. The interpretation of movement examination findings depends on one's view of optimal biomechanics and the influential factors. This article will provide a synopsis of the current state of research evidence as well as observations from clinical experience pertaining to the biomechanics of the thorax in order to help clinicians organise this knowledge and facilitate evidence-based and informed management of the, often complex, patient with or without thoracic pain and impairment. The integrated systems model (ISM) will be introduced as a way to determine when the noted biomechanical findings are relevant to a patient's clinical presentation.

  18. Human-Structure Dynamic Interaction during Short-Distance Free Falls

    Directory of Open Access Journals (Sweden)

    E. Shahabpoor

    2016-01-01

    Full Text Available The dynamic interactions of falling human bodies with civil structures, regardless of their potentially critical effects, have sparsely been researched in contact biomechanics. The physical contact models suggested in the existing literature, particularly for short-distant falls in home settings, assume the human body falls on a “rigid” (not vibrating ground. A similar assumption is usually made during laboratory-based fall tests, including force platforms. Based on observations from a set of pediatric head-first free fall tests, the present paper shows that the dynamics of the grounded force plate are not always negligible when doing fall test in a laboratory setting. By using a similar analogy for lightweight floor structures, it is shown that ignoring the dynamics of floors in the contact model can result in an up to 35% overestimation of the peak force experienced by a falling human. A nonlinear contact model is suggested, featuring an agent-based modelling approach, where the dynamics of the falling human and the impact object (force plate or a floor structure here are each modelled using a single-degree-of-freedom model to simulate their dynamic interactions. The findings of this research can have wide applications in areas such as impact biomechanics and sports science.

  19. Simulations, Imaging, and Modeling: A Unique Theme for an Undergraduate Research Program in Biomechanics.

    Science.gov (United States)

    George, Stephanie M; Domire, Zachary J

    2017-07-01

    As the reliance on computational models to inform experiments and evaluate medical devices grows, the demand for students with modeling experience will grow. In this paper, we report on the 3-yr experience of a National Science Foundation (NSF) funded Research Experiences for Undergraduates (REU) based on the theme simulations, imaging, and modeling in biomechanics. While directly applicable to REU sites, our findings also apply to those creating other types of summer undergraduate research programs. The objective of the paper is to examine if a theme of simulations, imaging, and modeling will improve students' understanding of the important topic of modeling, provide an overall positive research experience, and provide an interdisciplinary experience. The structure of the program and the evaluation plan are described. We report on the results from 25 students over three summers from 2014 to 2016. Overall, students reported significant gains in the knowledge of modeling, research process, and graduate school based on self-reported mastery levels and open-ended qualitative responses. This theme provides students with a skill set that is adaptable to other applications illustrating the interdisciplinary nature of modeling in biomechanics. Another advantage is that students may also be able to continue working on their project following the summer experience through network connections. In conclusion, we have described the successful implementation of the theme simulation, imaging, and modeling for an REU site and the overall positive response of the student participants.

  20. Analysis of the impact of biomechanical traits of European black Poplar on riverbank flow resistance

    Science.gov (United States)

    Battista Chirico, Giovanni; Saulino, Luigi; Pasquino, Vittorio; Villani, Paolo; Rita, Angelo; Todaro, Luigi; Saracino, Antonio

    2016-04-01

    Predicting the effects of riparian plants on river flow dynamics is fundamental for an appropriate river management. Riparian woody vegetation enhances bank cohesion and provides ecosystem services by mitigating nutrient and sediment loads to the river flow and enhancing biodiversity. However riparian trees also contribute to river flow resistance and thus can have a significant impact on flow dynamics during flood events. The flow-plant interaction mainly depends on plant morphological characters (e.g. diameter, height, canopy size, foliage density) and biomechanical properties, such as its flexural rigidity. This study aims at testing the hypothesis that the hydrodynamic behaviour of the European black Poplar (∖textit{Populus nigra} L.), a common woody riparian plant, is influenced by specific biomechanical traits developed as result of its adaptation to different river ecosystems. We examine the morphological and biomechanical properties of living stems of black Poplar sampled in two different riverine environments in Southern Italy located only a few kilometres apart. The two sample sets of living stems exhibit similar morphological traits but significantly different Young module of elasticity. We compared the drag forces that the flow would exert on these two different sets of plants for a wide range of flow velocities, by employing a numerical model that accounts for the bending behaviour of the woody plant due to the hydrodynamic load, under the hypothesis of complete submergence. A Monte Carlo approach was applied in order to account for the stochastic variability of the morphological and mechanical parameters affecting plant biomechanical behaviour. We identified a threshold value of the plant diameter, above which the two sets of European black Poplars are subjected to drag forces that differ by more than 25{∖%} on average, for flow velocities larger than 1 m/s.

  1. The biomechanics study of rabbit osteoporosis models treated by 99Tcm-MDP combined with GuKangLing

    International Nuclear Information System (INIS)

    Gao Kejia; Zhao Guoding; Ye Zhiwei; Mei Xiaogang; Tian Yingmin; Yan Chushun; Wang Wei; Li Wei; Cai Zhengyu; Song Haiping

    2011-01-01

    Objective: To study the bone biomechanics of the rabbit osteoporosis models induced by dexamethasone sodium phosphate injection (DX) using a combined treatment modality of 99 Tc-MDP and GuKangLing. Methods: Rabbits were intramuscularly injected with DX (2 mg/kg) twice a week for 6 weeks. The animal osteoporosis model group (Group C) and normal group (Group A) were compared to confirm the model was available. Another control group (Group B), the osteoporosis control group (Group D) were set for the comparison at the end of the experiment. The 99 Tc-MDP therapy group (Group E), GuKangLing therapy group (Group F) and 99 Tc-MDP plus GuKangLing therapy group (Group G) were included in the study. The treatment lasted for 16 weeks. The bone biomechanics, cytopathology bone histomorphology, bone mineral density (BMD), X-ray, CT, bone scintigraphy and serum bone alkaline phosphatase (BALP) and P (bone gla protein) were chosen as the markers or methods to evaluate the treatment results (excellent, effective and invalid). The analysis of variance (ANOVA) and t-test were used for group comparison analysis. Results: Cytopathology result indicated that there was no bone trabecular destruction in Group A. However, there was distinct bone destruction in Group C. The bone biomechanics (left femur head (265.914 ±52.773) N, L 4 (369.671 ±94.919) N), BMD (left femur (0.238 ±0.016) g/cm 2 , L 4 (0.236 ±0.016) g/cm 2 ) and bone histomorphology ((66.230 ± 10.848)%) in Group C reduced clearly as compared with Group A ((405.343±55.410) N, (750.870±53.718) N, (0.294±0.017) g/cm 2 , (0.302±0.023) g/cm 2 , (131.500 ± 21.846)%) (t ≥4.550, all P<0.01). Radionuclide bone scan also showed that the uptake of tracers was higher by the main arthrosis in Group C than that in Group A. Vertebra was not clearly visualized on bone scan image. There were significant differences between Group A and Group C in serum BALP and P ((45.000±7.303) vs (12.485 ±1.512) U/L, (0.168±0.018) vs (0.115

  2. Biomechanics of an orthosis-managed cranial cruciate ligament-deficient canine stifle joint predicted by use of a computer model.

    Science.gov (United States)

    Bertocci, Gina E; Brown, Nathan P; Mich, Patrice M

    2017-01-01

    OBJECTIVE To evaluate effects of an orthosis on biomechanics of a cranial cruciate ligament (CrCL)-deficient canine stifle joint by use of a 3-D quasistatic rigid-body pelvic limb computer model simulating the stance phase of gait and to investigate influences of orthosis hinge stiffness (durometer). SAMPLE A previously developed computer simulation model for a healthy 33-kg 5-year-old neutered Golden Retriever. PROCEDURES A custom stifle joint orthosis was implemented in the CrCL-deficient pelvic limb computer simulation model. Ligament loads, relative tibial translation, and relative tibial rotation in the orthosis-stabilized stifle joint (baseline scenario; high-durometer hinge]) were determined and compared with values for CrCL-intact and CrCL-deficient stifle joints. Sensitivity analysis was conducted to evaluate the influence of orthosis hinge stiffness on model outcome measures. RESULTS The orthosis decreased loads placed on the caudal cruciate and lateral collateral ligaments and increased load placed on the medial collateral ligament, compared with loads for the CrCL-intact stifle joint. Ligament loads were decreased in the orthosis-managed CrCL-deficient stifle joint, compared with loads for the CrCL-deficient stifle joint. Relative tibial translation and rotation decreased but were not eliminated after orthosis management. Increased orthosis hinge stiffness reduced tibial translation and rotation, whereas decreased hinge stiffness increased internal tibial rotation, compared with values for the baseline scenario. CONCLUSIONS AND CLINICAL RELEVANCE Stifle joint biomechanics were improved following orthosis implementation, compared with biomechanics of the CrCL-deficient stifle joint. Orthosis hinge stiffness influenced stifle joint biomechanics. An orthosis may be a viable option to stabilize a CrCL-deficient canine stifle joint.

  3. Future of crash dummies and biomechanical mathematical models

    NARCIS (Netherlands)

    Wismans, J.S.H.M.

    2000-01-01

    Thorough knowledge of the characteristics of the human body and its behaviour under extreme loading conditions is essential in order to prevent the serious consequences of road and other accidents. This field of research is called injury or impact biomechanics. In order to study the human body

  4. The biomechanical role of the chondrocranium and sutures in a lizard cranium.

    Science.gov (United States)

    Jones, Marc E H; Gröning, Flora; Dutel, Hugo; Sharp, Alana; Fagan, Michael J; Evans, Susan E

    2017-12-01

    The role of soft tissues in skull biomechanics remains poorly understood. Not least, the chondrocranium, the portion of the braincase which persists as cartilage with varying degrees of mineralization. It also remains commonplace to overlook the biomechanical role of sutures despite evidence that they alter strain distribution. Here, we examine the role of both the sutures and the chondrocranium in the South American tegu lizard Salvator merianae We use multi-body dynamics analysis (MDA) to provide realistic loading conditions for anterior and posterior unilateral biting and a detailed finite element model to examine strain magnitude and distribution. We find that strains within the chondrocranium are greatest during anterior biting and are primarily tensile; also that strain within the cranium is not greatly reduced by the presence of the chondrocranium unless it is given the same material properties as bone. This result contradicts previous suggestions that the anterior portion (the nasal septum) acts as a supporting structure. Inclusion of sutures to the cranium model not only increases overall strain magnitudes but also leads to a more complex distribution of tension and compression rather than that of a beam under sagittal bending. © 2017 The Authors.

  5. Vesicle biomechanics in a time-varying magnetic field.

    Science.gov (United States)

    Ye, Hui; Curcuru, Austen

    2015-01-01

    Cells exhibit distortion when exposed to a strong electric field, suggesting that the field imposes control over cellular biomechanics. Closed pure lipid bilayer membranes (vesicles) have been widely used for the experimental and theoretical studies of cellular biomechanics under this electrodeformation. An alternative method used to generate an electric field is by electromagnetic induction with a time-varying magnetic field. References reporting the magnetic control of cellular mechanics have recently emerged. However, theoretical analysis of the cellular mechanics under a time-varying magnetic field is inadequate. We developed an analytical theory to investigate the biomechanics of a modeled vesicle under a time-varying magnetic field. Following previous publications and to simplify the calculation, this model treated the inner and suspending media as lossy dielectrics, the membrane thickness set at zero, and the electric resistance of the membrane assumed to be negligible. This work provided the first analytical solutions for the surface charges, electric field, radial pressure, overall translational forces, and rotational torques introduced on a vesicle by the time-varying magnetic field. Frequency responses of these measures were analyzed, particularly the frequency used clinically by transcranial magnetic stimulation (TMS). The induced surface charges interacted with the electric field to produce a biomechanical impact upon the vesicle. The distribution of the induced surface charges depended on the orientation of the coil and field frequency. The densities of these charges were trivial at low frequency ranges, but significant at high frequency ranges. The direction of the radial force on the vesicle was dependent on the conductivity ratio between the vesicle and the medium. At relatively low frequencies (biomechanics under a time-varying magnetic field. Biological effects of clinical TMS are not likely to occur via alteration of the biomechanics of brain

  6. The Statistical Segment Length of DNA: Opportunities for Biomechanical Modeling in Polymer Physics and Next-Generation Genomics.

    Science.gov (United States)

    Dorfman, Kevin D

    2018-02-01

    The development of bright bisintercalating dyes for deoxyribonucleic acid (DNA) in the 1990s, most notably YOYO-1, revolutionized the field of polymer physics in the ensuing years. These dyes, in conjunction with modern molecular biology techniques, permit the facile observation of polymer dynamics via fluorescence microscopy and thus direct tests of different theories of polymer dynamics. At the same time, they have played a key role in advancing an emerging next-generation method known as genome mapping in nanochannels. The effect of intercalation on the bending energy of DNA as embodied by a change in its statistical segment length (or, alternatively, its persistence length) has been the subject of significant controversy. The precise value of the statistical segment length is critical for the proper interpretation of polymer physics experiments and controls the phenomena underlying the aforementioned genomics technology. In this perspective, we briefly review the model of DNA as a wormlike chain and a trio of methods (light scattering, optical or magnetic tweezers, and atomic force microscopy (AFM)) that have been used to determine the statistical segment length of DNA. We then outline the disagreement in the literature over the role of bisintercalation on the bending energy of DNA, and how a multiscale biomechanical approach could provide an important model for this scientifically and technologically relevant problem.

  7. Innovative approaches to cell biomechanics from cell migration to on-chip manipulation

    CERN Document Server

    Okeyo, Kennedy Omondi; Adachi, Taiji

    2015-01-01

    This book covers topics on mechanosensing, mechanotransduction, and actin cytoskeletal dynamics in cell motility. It will contribute to a better understanding of how cells functionally adapt to their mechanical environment as well as highlighting fundamental concepts for designing material niches for cell manipulation. With topics from multidisciplinary fields of the life sciences, medicine, and engineering, the book is the first of its kind, providing comprehensive, integrated coverage of innovative approaches to cell biomechanics. It provides a valuable resource for seniors and graduate students studying cell biomechanics, and is also suitable for researchers interested in the application of methods and strategies in connection with the innovative approaches discussed. Each section of the book has been supplemented with concrete examples and illustrations to facilitate understanding even for readers unfamiliar with cell biomechanics.

  8. Generating Facial Expressions Using an Anatomically Accurate Biomechanical Model.

    Science.gov (United States)

    Wu, Tim; Hung, Alice; Mithraratne, Kumar

    2014-11-01

    This paper presents a computational framework for modelling the biomechanics of human facial expressions. A detailed high-order (Cubic-Hermite) finite element model of the human head was constructed using anatomical data segmented from magnetic resonance images. The model includes a superficial soft-tissue continuum consisting of skin, the subcutaneous layer and the superficial Musculo-Aponeurotic system. Embedded within this continuum mesh, are 20 pairs of facial muscles which drive facial expressions. These muscles were treated as transversely-isotropic and their anatomical geometries and fibre orientations were accurately depicted. In order to capture the relative composition of muscles and fat, material heterogeneity was also introduced into the model. Complex contact interactions between the lips, eyelids, and between superficial soft tissue continuum and deep rigid skeletal bones were also computed. In addition, this paper investigates the impact of incorporating material heterogeneity and contact interactions, which are often neglected in similar studies. Four facial expressions were simulated using the developed model and the results were compared with surface data obtained from a 3D structured-light scanner. Predicted expressions showed good agreement with the experimental data.

  9. Robust augmented reality registration method for localization of solid organs' tumors using CT-derived virtual biomechanical model and fluorescent fiducials.

    Science.gov (United States)

    Kong, Seong-Ho; Haouchine, Nazim; Soares, Renato; Klymchenko, Andrey; Andreiuk, Bohdan; Marques, Bruno; Shabat, Galyna; Piechaud, Thierry; Diana, Michele; Cotin, Stéphane; Marescaux, Jacques

    2017-07-01

    Augmented reality (AR) is the fusion of computer-generated and real-time images. AR can be used in surgery as a navigation tool, by creating a patient-specific virtual model through 3D software manipulation of DICOM imaging (e.g., CT scan). The virtual model can be superimposed to real-time images enabling transparency visualization of internal anatomy and accurate localization of tumors. However, the 3D model is rigid and does not take into account inner structures' deformations. We present a concept of automated AR registration, while the organs undergo deformation during surgical manipulation, based on finite element modeling (FEM) coupled with optical imaging of fluorescent surface fiducials. Two 10 × 1 mm wires (pseudo-tumors) and six 10 × 0.9 mm fluorescent fiducials were placed in ex vivo porcine kidneys (n = 10). Biomechanical FEM-based models were generated from CT scan. Kidneys were deformed and the shape changes were identified by tracking the fiducials, using a near-infrared optical system. The changes were registered automatically with the virtual model, which was deformed accordingly. Accuracy of prediction of pseudo-tumors' location was evaluated with a CT scan in the deformed status (ground truth). In vivo: fluorescent fiducials were inserted under ultrasound guidance in the kidney of one pig, followed by a CT scan. The FEM-based virtual model was superimposed on laparoscopic images by automatic registration of the fiducials. Biomechanical models were successfully generated and accurately superimposed on optical images. The mean measured distance between the estimated tumor by biomechanical propagation and the scanned tumor (ground truth) was 0.84 ± 0.42 mm. All fiducials were successfully placed in in vivo kidney and well visualized in near-infrared mode enabling accurate automatic registration of the virtual model on the laparoscopic images. Our preliminary experiments showed the potential of a biomechanical model with fluorescent

  10. Biomechanical and Hemodynamic Measures of Right Ventricular Diastolic Function: Translating Tissue Biomechanics to Clinical Relevance.

    Science.gov (United States)

    Jang, Sae; Vanderpool, Rebecca R; Avazmohammadi, Reza; Lapshin, Eugene; Bachman, Timothy N; Sacks, Michael; Simon, Marc A

    2017-09-12

    Right ventricular (RV) diastolic function has been associated with outcomes for patients with pulmonary hypertension; however, the relationship between biomechanics and hemodynamics in the right ventricle has not been studied. Rat models of RV pressure overload were obtained via pulmonary artery banding (PAB; control, n=7; PAB, n=5). At 3 weeks after banding, RV hemodynamics were measured using a conductance catheter. Biaxial mechanical properties of the RV free wall myocardium were obtained to extrapolate longitudinal and circumferential elastic modulus in low and high strain regions (E 1 and E 2 , respectively). Hemodynamic analysis revealed significantly increased end-diastolic elastance (E ed ) in PAB (control: 55.1 mm Hg/mL [interquartile range: 44.7-85.4 mm Hg/mL]; PAB: 146.6 mm Hg/mL [interquartile range: 105.8-155.0 mm Hg/mL]; P =0.010). Longitudinal E 1 was increased in PAB (control: 7.2 kPa [interquartile range: 6.7-18.1 kPa]; PAB: 34.2 kPa [interquartile range: 18.1-44.6 kPa]; P =0.018), whereas there were no significant changes in longitudinal E 2 or circumferential E 1 and E 2 . Last, wall stress was calculated from hemodynamic data by modeling the right ventricle as a sphere: stress=Pressure×radius2×thickness. RV pressure overload in PAB rats resulted in an increase in diastolic myocardial stiffness reflected both hemodynamically, by an increase in E ed , and biomechanically, by an increase in longitudinal E 1 . Modest increases in tissue biomechanical stiffness are associated with large increases in E ed . Hemodynamic measurements of RV diastolic function can be used to predict biomechanical changes in the myocardium. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  11. Biomechanical analysis of the camelid cervical intervertebral disc

    Directory of Open Access Journals (Sweden)

    Dean K. Stolworthy

    2015-01-01

    Full Text Available Chronic low back pain (LBP is a prevalent global problem, which is often correlated with degenerative disc disease. The development and use of good, relevant animal models of the spine may improve treatment options for this condition. While no animal model is capable of reproducing the exact biology, anatomy, and biomechanics of the human spine, the quality of a particular animal model increases with the number of shared characteristics that are relevant to the human condition. The purpose of this study was to investigate the camelid (specifically, alpaca and llama cervical spine as a model of the human lumbar spine. Cervical spines were obtained from four alpacas and four llamas and individual segments were used for segmental flexibility/biomechanics and/or morphology/anatomy studies. Qualitative and quantitative data were compared for the alpaca and llama cervical spines, and human lumbar specimens in addition to other published large animal data. Results indicate that a camelid cervical intervertebral disc (IVD closely approximates the human lumbar disc with regard to size, spinal posture, and biomechanical flexibility. Specifically, compared with the human lumbar disc, the alpaca and llama cervical disc size are approximately 62%, 83%, and 75% with regard to area, depth, and width, respectively, and the disc flexibility is approximately 133%, 173%, and 254%, with regard to range of motion (ROM in axial-rotation, flexion-extension, and lateral-bending, respectively. These results, combined with the clinical report of disc degeneration in the llama lower cervical spine, suggest that the camelid cervical spine is potentially well suited for use as an animal model in biomechanical studies of the human lumbar spine.

  12. Low Density Lipoprotein and Non-Newtonian Oscillating Flow Biomechanical Parameters for Normal Human Aorta.

    Science.gov (United States)

    Soulis, Johannes V; Fytanidis, Dimitrios K; Lampri, Olga P; Giannoglou, George D

    2016-04-01

    The temporal variation of the hemodynamic mechanical parameters during cardiac pulse wave is considered as an important atherogenic factor. Applying non-Newtonian blood molecular viscosity simulation is crucial for hemodynamic analysis. Understanding low density lipoprotein (LDL) distribution in relation to flow parameters will possibly spot the prone to atherosclerosis aorta regions. The biomechanical parameters tested were averaged wall shear stress (AWSS), oscillatory shear index (OSI) and relative residence time (RRT) in relation to the LDL concentration. Four non-Newtonian molecular viscosity models and the Newtonian one were tested for the normal human aorta under oscillating flow. The analysis was performed via computational fluid dynamic. Tested viscosity blood flow models for the biomechanical parameters yield a consistent aorta pattern. High OSI and low AWSS develop at the concave aorta regions. This is most noticeable in downstream flow region of the left subclavian artery and at concave ascending aorta. Concave aorta regions exhibit high RRT and elevated LDL. For the concave aorta site, the peak LDL value is 35.0% higher than its entrance value. For the convex site, it is 18.0%. High LDL endothelium regions located at the aorta concave site are well predicted with high RRT. We are in favor of using the non-Newtonian power law model for analysis. It satisfactorily approximates the molecular viscosity, WSS, OSI, RRT and LDL distribution. Concave regions are mostly prone to atherosclerosis. The flow biomechanical factor RRT is a relatively useful tool for identifying the localization of the atheromatic plaques of the normal human aorta.

  13. Influence of Orthotropy on Biomechanics of Peri-Implant Bone in Complete Mandible Model with Full Dentition

    Directory of Open Access Journals (Sweden)

    Xi Ding

    2014-01-01

    Full Text Available Objective. The study was to investigate the impact of orthotropic material on the biomechanics of dental implant, based on a detailed mandible with high geometric and mechanical similarity. Materials and Methods. Multiple data sources were used to elaborate detailed biological structures and implant CAD models. In addition, an extended orthotropic material assignment methodology based on harmonic fields was used to handle the alveolar ridge region to generate compatible orthotropic fields. The influence of orthotropic material was compared with the commonly used isotropic model and simplified orthotropic model. Results. The simulation results showed that the values of stress and strain on the implant-bone interface almost increased in the orthotropic model compared to the isotropic case, especially for the cancellous bone. However, the local stress concentration was more obvious in the isotropic case compared to that in orthotropic case. The simple orthotropic model revealed irregular stress and strain distribution, compared to the isotropic model and the real orthotropic model. The influence of orthotropy was little on the implant, periodontal ligament, tooth enamel, and dentin. Conclusion. The orthotropic material has significant effect on stress and strain of implant-bone interface in the mandible, compared with the isotropic simulation. Real orthotropic mechanical properties of mandible should be emphasized in biomechanical studies of dental implants.

  14. Biomechanics of the thorax – research evidence and clinical expertise

    Science.gov (United States)

    Lee, Diane Gail

    2015-01-01

    Understanding the biomechanics of the thorax is critical for understanding its role in multiple conditions since the thorax is part of many integrated systems including the musculoskeletal, respiratory, cardiac, digestive and urogynecological. The thorax is also an integrated system within itself and an element of the whole body/person. Therefore, understanding the biomechanics of the thorax is fundamental to all forms of treatment for multiple conditions. The interpretation of movement examination findings depends on one's view of optimal biomechanics and the influential factors. This article will provide a synopsis of the current state of research evidence as well as observations from clinical experience pertaining to the biomechanics of the thorax in order to help clinicians organise this knowledge and facilitate evidence-based and informed management of the, often complex, patient with or without thoracic pain and impairment. The integrated systems model (ISM) will be introduced as a way to determine when the noted biomechanical findings are relevant to a patient's clinical presentation. PMID:26309383

  15. Theoretical Considerations and a Mathematical Model for the Analysis of the Biomechanical Response of Human Keratinized Oral Mucosa

    Directory of Open Access Journals (Sweden)

    Aikaterini Tsaira

    2016-08-01

    Full Text Available Removable complete and partial dentures are supported by the residual alveolar ridges consisting of mucosa, submucosa, periosteum and bone. An understanding of the biomechanical behavior of the oral mucosa is essential in order to improve the denture-bearing foundations for complete and partially edentulous patients. The purpose of this paper was to examine the biomechanical behavior of the soft tissues supporting a removable denture and develop a model for that reason. Keratinized oral mucosa blocks with their underlying bone were harvested from the maxillary palatal area adjacent to the edentulous ridges of a cadaver. The compressive response of the oral mucosa was tested by using atomic force microscopy. The specimens were first scanned in order their topography to be obtained. The mechanical properties of the specimens were tested using a single crystal silicon pyramidal tip, which traversed towards the keratinized oral mucosa specimens. Loading-unloading cycles were registered and four mathematical models were tested using MATLAB to note which one approximates the force-displacement curve as close as possible: a. spherical, b. conical, c. third order polynomial, d. Murphy (fourth order polynomial, non-linear Hertzian based. The third order polynomial model showed the best accuracy in representing the force-displacement data of the tested specimens. A model was developed in order to analyze the biomechanical behavior of the human oral keratinized mucosa and obtain information about its mechanical properties.

  16. Surface-based prostate registration with biomechanical regularization

    Science.gov (United States)

    van de Ven, Wendy J. M.; Hu, Yipeng; Barentsz, Jelle O.; Karssemeijer, Nico; Barratt, Dean; Huisman, Henkjan J.

    2013-03-01

    Adding MR-derived information to standard transrectal ultrasound (TRUS) images for guiding prostate biopsy is of substantial clinical interest. A tumor visible on MR images can be projected on ultrasound by using MRUS registration. A common approach is to use surface-based registration. We hypothesize that biomechanical modeling will better control deformation inside the prostate than a regular surface-based registration method. We developed a novel method by extending a surface-based registration with finite element (FE) simulation to better predict internal deformation of the prostate. For each of six patients, a tetrahedral mesh was constructed from the manual prostate segmentation. Next, the internal prostate deformation was simulated using the derived radial surface displacement as boundary condition. The deformation field within the gland was calculated using the predicted FE node displacements and thin-plate spline interpolation. We tested our method on MR guided MR biopsy imaging data, as landmarks can easily be identified on MR images. For evaluation of the registration accuracy we used 45 anatomical landmarks located in all regions of the prostate. Our results show that the median target registration error of a surface-based registration with biomechanical regularization is 1.88 mm, which is significantly different from 2.61 mm without biomechanical regularization. We can conclude that biomechanical FE modeling has the potential to improve the accuracy of multimodal prostate registration when comparing it to regular surface-based registration.

  17. Biomechanical bases of rehabilitation of children with cerebral palsy

    Science.gov (United States)

    Davlet'yarova, K. V.; Korshunov, S. D.; Kapilevich, L. V.

    2015-11-01

    Biomechanical analysis and the study results of children's with cerebral palsy (CP) muscles bioelectrical activity while walking on a flat surface are represented. Increased flexion in the hip and shoulder joints and extension in the elbow joint in children with cerebral palsy were observed, with the movement of the lower limbs had less smooth character in comparison with the control group. Herewith, the oscillation amplitude was significantly increased, and the frequency in the m. gastrocnemius and m. lateralis was decreased. It was shown, that the dynamic stereotype of walking in children with cerebral palsy was characterized by excessive involvement of m. gastrocnemius and m.latissimus dorsi in locomotion. Thus, resulting biomechanical and bioelectrical parameters of walking should be considered in the rehabilitation programs development.

  18. MO-AB-BRA-09: Development and Evaluation of a Biomechanical Modeling-Assisted CBCT Reconstruction Technique (Bio-Recon)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y; Nasehi Tehrani, J; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To develop a Bio-recon technique by incorporating the biomechanical properties of anatomical structures into the deformation-based CBCT reconstruction process. Methods: Bio-recon reconstructs the CBCT by deforming a prior high-quality CT/CBCT using a deformation-vector-field (DVF). The DVF is solved through two alternating steps: 2D–3D deformation and finite-element-analysis based biomechanical modeling. 2D–3D deformation optimizes the DVF through an ‘intensity-driven’ approach, which updates the DVF to minimize intensity mismatches between the acquired projections and the simulated projections from the deformed CBCT. In contrast, biomechanical modeling optimizes the DVF through a ‘biomechanical-feature-driven’ approach, which updates the DVF based on the biophysical properties of anatomical structures. In general, Biorecon extracts the 2D–3D deformation-optimized DVF at high-contrast structure boundaries, and uses it as the boundary condition to drive biomechanical modeling to optimize the overall DVF, especially at low-contrast regions. The optimized DVF is fed back into the 2D–3D deformation for further optimization, which forms an iterative loop. The efficacy of Bio-recon was evaluated on 11 lung patient cases, each with a prior CT and a new CT. Cone-beam projections were generated from the new CTs to reconstruct CBCTs, which were compared with the original new CTs for evaluation. 872 anatomical landmarks were also manually identified by a clinician on both the prior and new CTs to track the lung motion, which was used to evaluate the DVF accuracy. Results: Using 10 projections for reconstruction, the average (± s.d.) relative errors of reconstructed CBCTs by the clinical FDK technique, the 2D–3D deformation-only technique and Bio-recon were 46.5±5.9%, 12.0±2.3% and 10.4±1.3%, respectively. The average residual errors of DVF-tracked landmark motion by the 2D–3D deformation-only technique and Bio-recon were 5.6±4.3mm and 3.1±2

  19. MO-AB-BRA-09: Development and Evaluation of a Biomechanical Modeling-Assisted CBCT Reconstruction Technique (Bio-Recon)

    International Nuclear Information System (INIS)

    Zhang, Y; Nasehi Tehrani, J; Wang, J

    2016-01-01

    Purpose: To develop a Bio-recon technique by incorporating the biomechanical properties of anatomical structures into the deformation-based CBCT reconstruction process. Methods: Bio-recon reconstructs the CBCT by deforming a prior high-quality CT/CBCT using a deformation-vector-field (DVF). The DVF is solved through two alternating steps: 2D–3D deformation and finite-element-analysis based biomechanical modeling. 2D–3D deformation optimizes the DVF through an ‘intensity-driven’ approach, which updates the DVF to minimize intensity mismatches between the acquired projections and the simulated projections from the deformed CBCT. In contrast, biomechanical modeling optimizes the DVF through a ‘biomechanical-feature-driven’ approach, which updates the DVF based on the biophysical properties of anatomical structures. In general, Biorecon extracts the 2D–3D deformation-optimized DVF at high-contrast structure boundaries, and uses it as the boundary condition to drive biomechanical modeling to optimize the overall DVF, especially at low-contrast regions. The optimized DVF is fed back into the 2D–3D deformation for further optimization, which forms an iterative loop. The efficacy of Bio-recon was evaluated on 11 lung patient cases, each with a prior CT and a new CT. Cone-beam projections were generated from the new CTs to reconstruct CBCTs, which were compared with the original new CTs for evaluation. 872 anatomical landmarks were also manually identified by a clinician on both the prior and new CTs to track the lung motion, which was used to evaluate the DVF accuracy. Results: Using 10 projections for reconstruction, the average (± s.d.) relative errors of reconstructed CBCTs by the clinical FDK technique, the 2D–3D deformation-only technique and Bio-recon were 46.5±5.9%, 12.0±2.3% and 10.4±1.3%, respectively. The average residual errors of DVF-tracked landmark motion by the 2D–3D deformation-only technique and Bio-recon were 5.6±4.3mm and 3.1±2

  20. Rabbit Achilles tendon full transection model - wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery.

    Science.gov (United States)

    Meier Bürgisser, Gabriella; Calcagni, Maurizio; Bachmann, Elias; Fessel, Gion; Snedeker, Jess G; Giovanoli, Pietro; Buschmann, Johanna

    2016-09-15

    After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization), or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization), while in the other groups (3 and 12 weeks) a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011), and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points). Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand. © 2016. Published by The Company of Biologists Ltd.

  1. Biomechanics principles and practices

    CERN Document Server

    Peterson, Donald R

    2014-01-01

    Presents Current Principles and ApplicationsBiomedical engineering is considered to be the most expansive of all the engineering sciences. Its function involves the direct combination of core engineering sciences as well as knowledge of nonengineering disciplines such as biology and medicine. Drawing on material from the biomechanics section of The Biomedical Engineering Handbook, Fourth Edition and utilizing the expert knowledge of respected published scientists in the application and research of biomechanics, Biomechanics: Principles and Practices discusses the latest principles and applicat

  2. The prevention of diabetic foot ulceration: how biomechanical research informs clinical practice

    Directory of Open Access Journals (Sweden)

    Frank E. DiLiberto

    Full Text Available ABSTRACT Background Implementation of interprofessional clinical guidelines for the prevention of neuropathic diabetic foot ulceration has demonstrated positive effects regarding ulceration and amputation rates. Current foot care recommendations are primarily based on research regarding the prevention of ulcer recurrence and focused on reducing the magnitude of plantar stress (pressure overload. Yet, foot ulceration remains to be a prevalent and debilitating consequence of Diabetes Mellitus. There is limited evidence targeting the prevention of first-time ulceration, and there is a need to consider additional factors of plantar stress to supplement current guidelines. Objectives The first purpose of this article is to discuss the biomechanical theory underpinning diabetic foot ulcerations and illustrate how plantar tissue underloading may precede overloading and breakdown. The second purpose of this commentary is to discuss how advances in biomechanical foot modeling can inform clinical practice in the prevention of first-time ulceration. Discussion Research demonstrates that progressive weight-bearing activity programs to address the frequency of plantar stress and avoid underloading do not increase ulceration risk. Multi-segment foot modeling studies indicate that dynamic foot function of the midfoot and forefoot is compromised in people with diabetes. Emerging research demonstrates that implementation of foot-specific exercises may positively influence dynamic foot function and improve plantar stress in people with diabetes. Conclusion Continued work is needed to determine how to best design and integrate activity recommendations and foot-specific exercise programs into the current interprofessional paradigm for the prevention of first-time ulceration in people with Diabetes Mellitus.

  3. Qualitative biomechanical principles for application in coaching.

    Science.gov (United States)

    Knudson, Duane

    2007-01-01

    Many aspects of human movements in sport can be readily understood by Newtonian rigid-body mechanics. Many of these laws and biomechanical principles, however, are counterintuitive to a lot of people. There are also several problems in the application of biomechanics to sports, so the application of biomechanics in the qualitative analysis of sport skills by many coaches has been limited. Biomechanics scholars have long been interested in developing principles that facilitate the qualitative application of biomechanics to improve movement performance and reduce the risk of injury. This paper summarizes the major North American efforts to establish a set of general biomechanical principles of movement, and illustrates how principles can be used to improve the application of biomechanics in the qualitative analysis of sport technique. A coach helping a player with a tennis serve is presented as an example. The standardization of terminology for biomechanical principles is proposed as an important first step in improving the application ofbiomechanics in sport. There is also a need for international cooperation and research on the effectiveness of applying biomechanical principles in the coaching of sport techniques.

  4. The state of head injury biomechanics: past, present, and future part 2: physical experimentation.

    Science.gov (United States)

    Goldsmith, Werner; Monson, Kenneth L

    2005-01-01

    This presentation is the continuation of the article published in Critical Reviews of Biomedical Engineering, 29(5-6), 2001. That issue contained topics dealing with components and geometry of the human head, classification of head injuries, some early experimental studies, and tolerance considerations. It then dealt with head motion and load characterization, investigations during the period from 1939 to 1966, injury causation and early modeling efforts, the 1966 Head Injury Conference and its sequels, mechanical properties of solid tissues, fluid characterization, and early investigation of the mechanical properties of cranial materials. It continued with a description of the systematic investigations of solid cranial components and structural properties since 1966, fetal cranial properties, analytical head modeling, and numerical solutions of head injury. The paper concluded with experimental dynamic loading of human living and cadaver heads, dynamic loading of surrogate heads, and head injury mechanics. This portion of the paper describes physical head injury experimentation involving animals, primarily primates, human cadavers, volunteers, and inanimate physical models. In order to address the entire domain of head injury biomechanics in the two-part survey, it was intended that this information be supplemented by discussions of head injury tolerance and criteria, automotive and sports safety considerations, and the design of protective equipment, but Professor Goldsmith passed away before these sections could be completed. It is nevertheless anticipated that this attenuated installment will provide, in conjunction with the first part of the survey, a valuable resource for students and practitioners of head injury biomechanics.

  5. A novel physiological testing device to study knee biomechanics in vitro

    NARCIS (Netherlands)

    van de Bunt, Fabian; Emanuel, Kaj S.; Wijffels, Thomas; Kooren, Peter N.; Kingma, Idsart; Smit, Theodoor H.

    2017-01-01

    Background To properly study knee kinetics, kinematics and the effects of injury and surgical treatment in vitro, the knee should be constrained as little as possible, while imposing physiological loads. A novel dynamic biomechanical knee system (BKS) is presented here. The aim of this study was to

  6. A novel physiological testing device to study knee biomechanics in vitro

    NARCIS (Netherlands)

    van de Bunt, Fabian; Emanuel, Kaj S.; Wijffels, Thomas; Kooren, Peter N.; Kingma, Idsart; Smit, Theodoor H.

    2017-01-01

    Background: To properly study knee kinetics, kinematics and the effects of injury and surgical treatment in vitro, the knee should be constrained as little as possible, while imposing physiological loads. A novel dynamic biomechanical knee system (BKS) is presented here. The aim of this study was to

  7. Biomechanical analysis on stent materials used as cardiovascular implants

    Science.gov (United States)

    Kumar, Vasantha; Ramesha, C. M.; Sajjan, Sudheer S.

    2018-04-01

    Atherosclerosis is the most common cause of death in the world, accounting for 48% of all deaths in the world. Atherosclerosis, also known as coronary artery disease occurs when excess cholesterol attaches itself to the walls of blood vessels. Coronary stent implantation is one of the most important procedures to treating coronary artery disease such atherosclerosis. Due to its efficiency, flexibility and simplicity, the use of coronary stents procedures has increased rapidly. In order to have better output of stent implantation, it is needed to study and analyze the biomechanical behavior of this device before manufacturing and put into use. Biomaterials are commonly used for medical application in cardiovascular stent implantation. A biomaterial is a non-viable material used as medical implant, so it is intended to interact with biological system. In this paper, an explicit dynamic analysis is used for analyzing the biomechanical behavior of cardiovascular stent by using finite element analysis tool, ABAQUS 6.10. Results showed that a best suitable biomaterial for cardiovascular stent implants, which exhibits an outstanding biocompatibility and biomechanical characteristics will be aimed at which will be quite useful to the human beings worldwide.

  8. Paralympic sport: an emerging area for research and consultancy in sports biomechanics.

    Science.gov (United States)

    Keogh, Justin W L

    2011-09-01

    The Paralympic Games are the pinnacle of sport for many athletes with a disability. The overall purpose of this paper is to highlight the role that the field of sports biomechanics specifically (and sports science in general) may play in improving performance in various summer Paralympic sports through research and consultancy. To achieve this broad aim, this review provides some history and background on the Summer Paralympic Games, discusses the eligibility and classification rules, describes the potential for the constraints-led approach of dynamical systems theory to inform practice and research in this area, and reviews selected studies examining the biomechanics of the primary forms of Paralympic locomotion. Some recommendations on how sports biomechanics can help facilitate improvements in Paralympic athletic performance through applied research and consultancy are provided, along with commentary on what may be some of the most important issues addressing Paralympic sport.

  9. Rabbit Achilles tendon full transection model – wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery

    Directory of Open Access Journals (Sweden)

    Gabriella Meier Bürgisser

    2016-09-01

    Full Text Available After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization, or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization, while in the other groups (3 and 12 weeks a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011, and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points. Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand.

  10. Rabbit Achilles tendon full transection model – wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery

    Science.gov (United States)

    Meier Bürgisser, Gabriella; Calcagni, Maurizio; Bachmann, Elias; Fessel, Gion; Snedeker, Jess G.; Giovanoli, Pietro

    2016-01-01

    ABSTRACT After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization), or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization), while in the other groups (3 and 12 weeks) a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011), and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points). Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand. PMID:27635037

  11. Biomechanically determined hand force limits protecting the low back during occupational pushing and pulling tasks.

    Science.gov (United States)

    Weston, Eric B; Aurand, Alexander; Dufour, Jonathan S; Knapik, Gregory G; Marras, William S

    2018-06-01

    Though biomechanically determined guidelines exist for lifting, existing recommendations for pushing and pulling were developed using a psychophysical approach. The current study aimed to establish objective hand force limits based on the results of a biomechanical assessment of the forces on the lumbar spine during occupational pushing and pulling activities. Sixty-two subjects performed pushing and pulling tasks in a laboratory setting. An electromyography-assisted biomechanical model estimated spinal loads, while hand force and turning torque were measured via hand transducers. Mixed modelling techniques correlated spinal load with hand force or torque throughout a wide range of exposures in order to develop biomechanically determined hand force and torque limits. Exertion type, exertion direction, handle height and their interactions significantly influenced dependent measures of spinal load, hand force and turning torque. The biomechanically determined guidelines presented herein are up to 30% lower than comparable psychophysically derived limits and particularly more protective for straight pushing. Practitioner Summary: This study utilises a biomechanical model to develop objective biomechanically determined push/pull risk limits assessed via hand forces and turning torque. These limits can be up to 30% lower than existing psychophysically determined pushing and pulling recommendations. Practitioners should consider implementing these guidelines in both risk assessment and workplace design moving forward.

  12. Introduction of Two Novel Stiffness Parameters and Interpretation of Air Puff-Induced Biomechanical Deformation Parameters With a Dynamic Scheimpflug Analyzer.

    Science.gov (United States)

    Roberts, Cynthia J; Mahmoud, Ashraf M; Bons, Jeffrey P; Hossain, Arif; Elsheikh, Ahmed; Vinciguerra, Riccardo; Vinciguerra, Paolo; Ambrósio, Renato

    2017-04-01

    To investigate two new stiffness parameters and their relationships with the dynamic corneal response (DCR) parameters and compare normal and keratoconic eyes. Stiffness parameters are defined as Resultant Pressure at inward applanation (A1) divided by corneal displacement. Stiffness parameter A1 uses displacement between the undeformed cornea and A1 and stiffness parameter highest concavity (HC) uses displacement from A1 to maximum deflection during HC. The spatial and temporal profiles of the Corvis ST (Oculus Optikgeräte, Wetzlar, Germany) air puff were characterized using hot wire anemometry. An adjusted air pressure impinging on the cornea at A1 (adjAP1) and an algorithm to biomechanically correct intraocular pressure based on finite element modelling (bIOP) were used for Resultant Pressure calculation (adjAP1 - bIOP). Linear regression analyses between DCR parameters and stiffness parameters were performed on a retrospective dataset of 180 keratoconic eyes and 482 normal eyes. DCR parameters from a subset of 158 eyes of 158 patients in each group were matched for bIOP and compared using t tests. A P value of less than .05 was considered statistically significant. All DCR parameters evaluated showed significant differences between normal and keratoconic eyes, except peak distance. Keratoconic eyes had lower stiffness parameter values, thinner pachymetry, shorter applanation lengths, greater absolute values of applanation velocities, earlier A1 times and later second applanation times, greater HC deformation amplitudes and HC deflection amplitudes, and lower HC radius of concave curvature (greater concave curvature). Most DCR parameters showed a significant relationship with both stiffness parameters in both groups. Keratoconic eyes demonstrated less resistance to deformation than normal eyes with similar IOP. The stiffness parameters may be useful in future biomechanical studies as potential biomarkers. [J Refract Surg. 2017;33(4):266-273.]. Copyright 2017

  13. The Effect of Phospholipids (Surfactant on Adhesion and Biomechanical Properties of Tendon: A Rat Achilles Tendon Repair Model

    Directory of Open Access Journals (Sweden)

    T. Kursat Dabak

    2015-01-01

    Full Text Available Adhesion of the tendon is a major challenge for the orthopedic surgeon during tendon repair. Manipulation of biological environment is one of the concepts to prevent adhesion. Lots of biochemicals have been studied for this purpose. We aimed to determine the effect of phospholipids on adhesion and biomechanical properties of tendon in an animal tendon repair model. Seventy-two Wistar rats were divided into 4 groups. Achilles tendons of rats were cut and repaired. Phospholipids were applied at two different dosages. Tendon adhesion was determined histopathologically and biomechanical test was performed. At macroscopic evaluation of adhesion, there are statistically significant differences between multiple-dose phospholipid injection group and Control group and also hyaluronic acid group and Control group (p0.008. Ultimate strength was highest at hyaluronic acid injection group and lowest at multiple-dose phospholipid injection group. Single-dose phospholipids (surfactant application may have a beneficial effect on the tendon adhesion. Although multiple applications of phospholipids seem the most effective regime to reduce the tendon adhesion among groups, it deteriorated the biomechanical properties of tendon.

  14. Dynamic corneal deformation response and integrated corneal tomography

    Directory of Open Access Journals (Sweden)

    Marcella Q Salomão

    2018-01-01

    Full Text Available Measuring corneal biomechanical properties is still challenging. There are several clinical applications for biomechanical measurements, including the detection of mild or early forms of ectatic corneal diseases. This article reviews clinical applications for biomechanical measurements provided by the Corvis ST dynamic non contact tonometer

  15. Biomechanics and tennis.

    Science.gov (United States)

    Elliott, B

    2006-05-01

    Success in tennis requires a mix of player talent, good coaching, appropriate equipment, and an understanding of those aspects of sport science pertinent to the game. This paper outlines the role that biomechanics plays in player development from sport science and sport medicine perspectives. Biomechanics is a key area in player development because all strokes have a fundamental mechanical structure and sports injuries primarily have a mechanical cause.

  16. Analysis on Biomechanical Characteristics of Post-operational Vertebral C5-C6 Segments

    Directory of Open Access Journals (Sweden)

    Heqiang Tian

    2016-03-01

    Full Text Available Both anterior cervical decompression and fusion (ACDF and artificial cervical disc replacement (ACDR have obvious advantages in the treatment of cervical spondylosis. To analyze the operation results, it is absolutely necessary to study the biomechanics of the movement range of post-operational vertebral C5-C6 segments, especially the biomechanical characteristics in cervical tissues in actual movements. In this study, using the human vertebral 3D graph gained by imaging diagnosis (CT, a vertebral solid model is established by the 3D reconstruction algorithm and reverse engineering technology. After that, with cervical soft tissue structure added to the solid model and set with a joint contact mechanism, a finite element model with a complete, accurate cervical C5-C6 kinematic unit is constructed, based on relevant physiological anatomical knowledge. This model includes vertebral segments, an intervertebral disc, ligament and zygopophysis in the cervical C5-C6 kinematic unit. In the created vertebral finite element model, the model is amended, referring to ACDF and ACDR, and the load and constraint are applied to a normal group, a fusion group and a displacement group, so as to analyze the biomechanical characteristics of the cervical vertebra after ACDF and ACDR. By comparing the finite element simulation results of different surgeries, this paper is intended to evaluate the functions and biomechanical behaviors of the post-operational vertebra, and explore the influence of the operation on the biomechanical stability of the cervical vertebra. This will provide theoretical guidance for implementation and optimization of ACDF and ACDR.

  17. The history of biomechanics in total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Jan Van Houcke

    2017-01-01

    Full Text Available Biomechanics of the hip joint describes how the complex combination of osseous, ligamentous, and muscular structures transfers the weight of the body from the axial skeleton into the appendicular skeleton of the lower limbs. Throughout history, several biomechanical studies based on theoretical mathematics, in vitro, in vivo as well as in silico models have been successfully performed. The insights gained from these studies have improved our understanding of the development of mechanical hip pathologies such as osteoarthritis, hip fractures, and developmental dysplasia of the hip. The main treatment of end-stage degeneration of the hip is total hip arthroplasty (THA. The increasing number of patients undergoing this surgical procedure, as well as their demand for more than just pain relief and leading an active lifestyle, has challenged surgeons and implant manufacturers to deliver higher function as well as longevity with the prosthesis. The science of biomechanics has played and will continue to play a crucial and integral role in achieving these goals. The aim of this article, therefore, is to present to the readers the key concepts in biomechanics of the hip and their application to THA.

  18. Confidence crisis of results in biomechanics research.

    Science.gov (United States)

    Knudson, Duane

    2017-11-01

    Many biomechanics studies have small sample sizes and incorrect statistical analyses, so reporting of inaccurate inferences and inflated magnitude of effects are common in the field. This review examines these issues in biomechanics research and summarises potential solutions from research in other fields to increase the confidence in the experimental effects reported in biomechanics. Authors, reviewers and editors of biomechanics research reports are encouraged to improve sample sizes and the resulting statistical power, improve reporting transparency, improve the rigour of statistical analyses used, and increase the acceptance of replication studies to improve the validity of inferences from data in biomechanics research. The application of sports biomechanics research results would also improve if a larger percentage of unbiased effects and their uncertainty were reported in the literature.

  19. Radiographic, densitometric, and biomechanical effects of recombinant canine somatotropin in an unstable ostectomy gap model of bone healing in dogs

    International Nuclear Information System (INIS)

    Millis, D.L.; Wilkens, B.E.; Daniel, G.B.; Hubner, K.; Mathews, A.; Buonomo, F.C.; Patell, K.R.; Weigel, J.P.

    1998-01-01

    Objective: To determine the effect of recombinant canine somatotropin (STH) on radiographic, densitometric, and biomechanical aspects of bone healing using an unstable ostectomy gap model. Study Design: After an ostectomy of the midshaft radius, bone healing was evaluated over an 8-week period in control dogs (n = 4) and dogs receiving recombinant canine STH (n = 4). Animals Or Sample Population: Eight sexually intact female Beagle dogs, 4 to 5 years old. Methods: Bone healing was evaluated by qualitative and quantitative evaluation of serial radiographs every 2 weeks. Terminal dual-energy x-ray absorptiometry and three-point bending biomechanical testing were also performed. Results: Dogs receiving STH had more advanced radiographic healing of ostectomy sites. Bone area, bone mineral content, and bone density were two to five times greater at the ostectomy sites of treated dogs. Ultimate load at failure and stiffness were three and five times greater in dogs receiving STH. Conclusions: Using the ostectomy gap model, recombinant canine STH enhanced the radiographic, densitometric, and biomechanical aspects of bone healing in dogs. Clinical Relevance: Dogs at risk for delayed healing of fractures may benefit from treatment with recombinant canine STH

  20. Scleral Biomechanics in the Aging Monkey Eye

    Science.gov (United States)

    Girard, Michaël J. A.; Suh, J-K. Francis; Bottlang, Michael; Burgoyne, Claude F.; Downs, J. Crawford

    2010-01-01

    Purpose To investigate the age-related differences in the inhomogeneous, anisotropic, nonlinear biomechanical properties of posterior sclera from old (22.9 ± 5.3 years) and young (1.5 ± 0.7 years) rhesus monkeys. Methods The posterior scleral shell of each eye was mounted on a custom-built pressurization apparatus, then intraocular pressure (IOP) was elevated from 5 to 45 mmHg while the 3D displacements of the scleral surface were measured using speckle interferometry. Each scleral shell geometry was digitally reconstructed from data generated by a 3D digitizer (topography) and 20 MHz ultrasounds (thickness). An inverse finite element (FE) method incorporating a fiber-reinforced constitutive model was used to extract a unique set of biomechanical properties for each eye. Displacements, thickness, stress, strain, tangent modulus, structural stiffness, and preferred collagen fiber orientation were mapped for each posterior sclera. Results The model yielded 3-D deformations of posterior sclera that matched well with those observed experimentally. The posterior sclera exhibited inhomogeneous, anisotropic, nonlinear mechanical behavior. The sclera was significantly thinner (p = 0.038), and tangent modulus and structural stiffness were significantly higher in old monkeys (p biomechanics, and potentially contribute to age-related susceptibility to glaucomatous vision loss. PMID:19494203

  1. Brillouin microscopy: assessing ocular tissue biomechanics.

    Science.gov (United States)

    Yun, Seok Hyun; Chernyak, Dimitri

    2018-07-01

    Assessment of corneal biomechanics has been an unmet clinical need in ophthalmology for many years. Many researchers and clinicians have identified corneal biomechanics as source of variability in refractive procedures and one of the main factors in keratoconus. However, it has been difficult to accurately characterize corneal biomechanics in patients. The recent development of Brillouin light scattering microscopy heightens the promise of bringing biomechanics into the clinic. The aim of this review is to overview the progress and discuss prospective applications of this new technology. Brillouin microscopy uses a low-power near-infrared laser beam to determine longitudinal modulus or mechanical compressibility of tissue by analyzing the return signal spectrum. Human clinical studies have demonstrated significant difference in the elastic properties of normal corneas versus corneas diagnosed with mild and severe keratoconus. Clinical data have also shown biomechanical changes after corneal cross-linking treatment of keratoconus patients. Brillouin measurements of the crystalline lens and sclera have also been demonstrated. Brillouin microscopy is a promising technology under commercial development at present. The technique enables physicians to characterize the biomechanical properties of ocular tissues.

  2. Computer methods in biomechanics and biomedical engineering - Supplement 1: papers from the 32th congress of the Société de Biomécanique, Lyon, 28-29th August

    OpenAIRE

    CHEZE, L; DUMAS, R; NICOLLE, S; MIDDLETON, J; JACOBS, CR

    2007-01-01

    Subjects: Bioinformatics; Biomaterials; Biomaterials & Medical Devices; Biomaterials & Medical devices; Biomechanics; Biomechanics & Human Movement Science; Breast Cancer; Cardiovascular Imaging; Computational Mechanics; Dentistry; Diagnostic Imaging; Ergonomics; Ergonomics & Human Factors; Mechanics: Fluid Dynamics; Mechanical Engineering: Fluid Dynamics; Mathematical Biology; Mechanical Engineering: Mechanical Engineering Design; Design: Mechanical Engineering Design; Mechanical Engineering...

  3. MO-C-17A-03: A GPU-Based Method for Validating Deformable Image Registration in Head and Neck Radiotherapy Using Biomechanical Modeling

    International Nuclear Information System (INIS)

    Neylon, J; Min, Y; Qi, S; Kupelian, P; Santhanam, A

    2014-01-01

    Purpose: Deformable image registration (DIR) plays a pivotal role in head and neck adaptive radiotherapy but a systematic validation of DIR algorithms has been limited by a lack of quantitative high-resolution groundtruth. We address this limitation by developing a GPU-based framework that provides a systematic DIR validation by generating (a) model-guided synthetic CTs representing posture and physiological changes, and (b) model-guided landmark-based validation. Method: The GPU-based framework was developed to generate massive mass-spring biomechanical models from patient simulation CTs and contoured structures. The biomechanical model represented soft tissue deformations for known rigid skeletal motion. Posture changes were simulated by articulating skeletal anatomy, which subsequently applied elastic corrective forces upon the soft tissue. Physiological changes such as tumor regression and weight loss were simulated in a biomechanically precise manner. Synthetic CT data was then generated from the deformed anatomy. The initial and final positions for one hundred randomly-chosen mass elements inside each of the internal contoured structures were recorded as ground truth data. The process was automated to create 45 synthetic CT datasets for a given patient CT. For instance, the head rotation was varied between +/− 4 degrees along each axis, and tumor volumes were systematically reduced up to 30%. Finally, the original CT and deformed synthetic CT were registered using an optical flow based DIR. Results: Each synthetic data creation took approximately 28 seconds of computation time. The number of landmarks per data set varied between two and three thousand. The validation method is able to perform sub-voxel analysis of the DIR, and report the results by structure, giving a much more in depth investigation of the error. Conclusions: We presented a GPU based high-resolution biomechanical head and neck model to validate DIR algorithms by generating CT equivalent 3D

  4. Computer simulation of human motion in sports biomechanics.

    Science.gov (United States)

    Vaughan, C L

    1984-01-01

    This chapter has covered some important aspects of the computer simulation of human motion in sports biomechanics. First the definition and the advantages and limitations of computer simulation were discussed; second, research on various sporting activities were reviewed. These activities included basic movements, aquatic sports, track and field athletics, winter sports, gymnastics, and striking sports. This list was not exhaustive and certain material has, of necessity, been omitted. However, it was felt that a sufficiently broad and interesting range of activities was chosen to illustrate both the advantages and the pitfalls of simulation. It is almost a decade since Miller [53] wrote a review chapter similar to this one. One might be tempted to say that things have changed radically since then--that computer simulation is now a widely accepted and readily applied research tool in sports biomechanics. This is simply not true, however. Biomechanics researchers still tend to emphasize the descriptive type of study, often unfortunately, when a little theoretical explanation would have been more helpful [29]. What will the next decade bring? Of one thing we can be certain: The power of computers, particularly the readily accessible and portable microcomputer, will expand beyond all recognition. The memory and storage capacities will increase dramatically on the hardware side, and on the software side the trend will be toward "user-friendliness." It is likely that a number of software simulation packages designed specifically for studying human motion [31, 96] will be extensively tested and could gain wide acceptance in the biomechanics research community. Nevertheless, a familiarity with Newtonian and Lagrangian mechanics, optimization theory, and computers in general, as well as practical biomechanical insight, will still be a prerequisite for successful simulation models of human motion. Above all, the biomechanics researcher will still have to bear in mind that

  5. Coralline hydroxyapatite bone graft substitutes in a canine metaphyseal defect model: Radiographic-biomechanical correlation

    International Nuclear Information System (INIS)

    Sartoris, D.J.; Resnick, D.; Holmes, R.E.; Tencer, A.F.; Texas Univ., Dallas; Mooney, V.

    1986-01-01

    Radiographic and biomechanical assessment of a new type of bone graft substitute derived from reef-building sea coral was performed in a canine metaphyseal defect model. Blocks of this material and autogenous iliac crest graft were implanted, respectively, into the right and left proximal tibial metaphyses of eight dogs. Qualitative and quantitative radiographic evaluation was performed in the immediate postoperative period and at 6 months after surgery. Biomechanical testing was carried out on all grafts following harvest at 6 months, as well as on nonimplanted coralline hydroxyapatite and autogenous iliac cancellous bone. In contrast to autografts, incorporation of coralline implants was characterized by predictable osseous growth and apposition with preservation of intrinsic architecture. Greater percent increase in radiography density, higher ultimate compressive strength, and lower stiffness with incorporation were documented advantages of coralline hydroxyapatite over autogenous graft. Densitometric measurements correlated moderately with strength for both types of graft material (r=0.65). These promising results have important implications to the clinical application of coralline hydroxyapatite bone graft substitutes as an alternative to autogenous grafting. (orig.)

  6. Structural biomechanics of the craniomaxillofacial skeleton under maximal masticatory loading: Inferences and critical analysis based on a validated computational model.

    Science.gov (United States)

    Pakdel, Amir R; Whyne, Cari M; Fialkov, Jeffrey A

    2017-06-01

    The trend towards optimizing stabilization of the craniomaxillofacial skeleton (CMFS) with the minimum amount of fixation required to achieve union, and away from maximizing rigidity, requires a quantitative understanding of craniomaxillofacial biomechanics. This study uses computational modeling to quantify the structural biomechanics of the CMFS under maximal physiologic masticatory loading. Using an experimentally validated subject-specific finite element (FE) model of the CMFS, the patterns of stress and strain distribution as a result of physiological masticatory loading were calculated. The trajectories of the stresses were plotted to delineate compressive and tensile regimes over the entire CMFS volume. The lateral maxilla was found to be the primary vertical buttress under maximal bite force loading, with much smaller involvement of the naso-maxillary buttress. There was no evidence that the pterygo-maxillary region is a buttressing structure, counter to classical buttress theory. The stresses at the zygomatic sutures suggest that two-point fixation of zygomatic complex fractures may be sufficient for fixation under bite force loading. The current experimentally validated biomechanical FE model of the CMFS is a practical tool for in silico optimization of current practice techniques and may be used as a foundation for the development of design criteria for future technologies for the treatment of CMFS injury and disease. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Cerebrospinal Fluid Pressure: Revisiting Factors Influencing Optic Nerve Head Biomechanics

    Science.gov (United States)

    Hua, Yi; Voorhees, Andrew P.; Sigal, Ian A.

    2018-01-01

    Purpose To model the sensitivity of the optic nerve head (ONH) biomechanical environment to acute variations in IOP, cerebrospinal fluid pressure (CSFP), and central retinal artery blood pressure (BP). Methods We extended a previously published numerical model of the ONH to include 24 factors representing tissue anatomy and mechanical properties, all three pressures, and constraints on the optic nerve (CON). A total of 8340 models were studied to predict factor influences on 98 responses in a two-step process: a fractional factorial screening analysis to identify the 16 most influential factors, followed by a response surface methodology to predict factor effects in detail. Results The six most influential factors were, in order: IOP, CON, moduli of the sclera, lamina cribrosa (LC) and dura, and CSFP. IOP and CSFP affected different aspects of ONH biomechanics. The strongest influence of CSFP, more than twice that of IOP, was on the rotation of the peripapillary sclera. CSFP had similar influence on LC stretch and compression to moduli of sclera and LC. On some ONHs, CSFP caused large retrolamina deformations and subarachnoid expansion. CON had a strong influence on LC displacement. BP overall influence was 633 times smaller than that of IOP. Conclusions Models predict that IOP and CSFP are the top and sixth most influential factors on ONH biomechanics. Different IOP and CSFP effects suggest that translaminar pressure difference may not be a good parameter to predict biomechanics-related glaucomatous neuropathy. CON may drastically affect the responses relating to gross ONH geometry and should be determined experimentally. PMID:29332130

  8. Biomechanical comparison of single-row, double-row, and transosseous-equivalent repair techniques after healing in an animal rotator cuff tear model.

    Science.gov (United States)

    Quigley, Ryan J; Gupta, Akash; Oh, Joo-Han; Chung, Kyung-Chil; McGarry, Michelle H; Gupta, Ranjan; Tibone, James E; Lee, Thay Q

    2013-08-01

    The transosseous-equivalent (TOE) rotator cuff repair technique increases failure loads and contact pressure and area between tendon and bone compared to single-row (SR) and double-row (DR) repairs, but no study has investigated if this translates into improved healing in vivo. We hypothesized that a TOE repair in a rabbit chronic rotator cuff tear model would demonstrate a better biomechanical profile than SR and DR repairs after 12 weeks of healing. A two-stage surgical procedure was performed on 21 New Zealand White Rabbits. The right subscapularis tendon was transected and allowed to retract for 6 weeks to simulate a chronic tear. Repair was done with the SR, DR, or TOE technique and allowed to heal for 12 weeks. Cyclic loading and load to failure biomechanical testing was then performed. The TOE repair showed greater biomechanical characteristics than DR, which in turn were greater than SR. These included yield load (p repair of a chronic, retracted rotator cuff tear, the TOE technique was the strongest biomechanical construct after healing followed by DR with SR being the weakest. Copyright © 2013 Orthopaedic Research Society.

  9. Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint.

    Science.gov (United States)

    Liukkonen, Mimmi K; Mononen, Mika E; Tanska, Petri; Saarakkala, Simo; Nieminen, Miika T; Korhonen, Rami K

    2017-10-01

    Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.

  10. A three-dimensional finite element model for biomechanical analysis of the hip.

    Science.gov (United States)

    Chen, Guang-Xing; Yang, Liu; Li, Kai; He, Rui; Yang, Bin; Zhan, Yan; Wang, Zhi-Jun; Yu, Bing-Nin; Jian, Zhe

    2013-11-01

    The objective of this study was to construct a three-dimensional (3D) finite element model of the hip. The images of the hip were obtained from Chinese visible human dataset. The hip model includes acetabular bone, cartilage, labrum, and bone. The cartilage of femoral head was constructed using the AutoCAD and Solidworks software. The hip model was imported into ABAQUS analysis system. The contact surface of the hip joint was meshed. To verify the model, the single leg peak force was loaded, and contact area of the cartilage and labrum of the hip and pressure distribution in these structures were observed. The constructed 3D hip model reflected the real hip anatomy. Further, this model reflected biomechanical behavior similar to previous studies. In conclusion, this 3D finite element hip model avoids the disadvantages of other construction methods, such as imprecision of cartilage construction and the absence of labrum. Further, it provides basic data critical for accurately modeling normal and abnormal loads, and the effects of abnormal loads on the hip.

  11. Influence of different sizes of composite femora on the biomechanical behavior of cementless hip prosthesis.

    Science.gov (United States)

    Schmidutz, Florian; Woiczinski, Mathias; Kistler, Manuel; Schröder, Christian; Jansson, Volkmar; Fottner, Andreas

    2017-01-01

    For the biomechanical evaluation of cementless stems different sizes of composite femurs have been used in the literature. However, the impact of different specimen sizes on test results is unknown. To determine the potential effect of femur size the biomechanical properties of a conventional stem (CLS Spotorno) were examined in 3 different sizes (small, medium and large composite Sawbones®). Primary stability was tested under physiologically adapted dynamic loading conditions measuring 3-dimensional micromotions. For the small composite femur the dynamic load needed to be adapted since fractures occurred when reaching 1700N. Additionally, surface strain distribution was recorded before and after implantation to draw conclusions about the tendency for stress shielding. All tested sizes revealed similar micromotions only reaching a significant different level at one measurement point. The highest micromotions were observed at the tip of the stems exceeding the limit for osseous integration of 150μm. Regarding strain distribution the highest strain reduction after implantation was registered in all sizes at the level of the lesser trochanter. Specimen size seems to be a minor influence factor for biomechanical evaluation of cementless stems. However, the small composite femur is less suitable for biomechanical testing since this size failed under physiological adapted loads. For the CLS Spotorno osseous integration is unlikely at the tip of the stem and the tendency for stress shielding is the highest at the level of the lesser trochanter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A modelling approach for exploring muscle dynamics during cyclic contractions.

    Directory of Open Access Journals (Sweden)

    Stephanie A Ross

    2018-04-01

    Full Text Available Hill-type muscle models are widely used within the field of biomechanics to predict and understand muscle behaviour, and are often essential where muscle forces cannot be directly measured. However, these models have limited accuracy, particularly during cyclic contractions at the submaximal levels of activation that typically occur during locomotion. To address this issue, recent studies have incorporated effects into Hill-type models that are oftentimes neglected, such as size-dependent, history-dependent, and activation-dependent effects. However, the contribution of these effects on muscle performance has yet to be evaluated under common contractile conditions that reflect the range of activations, strains, and strain rates that occur in vivo. The purpose of this study was to develop a modelling framework to evaluate modifications to Hill-type muscle models when they contract in cyclic loops that are typical of locomotor muscle function. Here we present a modelling framework composed of a damped harmonic oscillator in series with a Hill-type muscle actuator that consists of a contractile element and parallel elastic element. The intrinsic force-length and force-velocity properties are described using Bézier curves where we present a system to relate physiological parameters to the control points for these curves. The muscle-oscillator system can be geometrically scaled while preserving dynamic and kinematic similarity to investigate the muscle size effects while controlling for the dynamics of the harmonic oscillator. The model is driven by time-varying muscle activations that cause the muscle to cyclically contract and drive the dynamics of the harmonic oscillator. Thus, this framework provides a platform to test current and future Hill-type model formulations and explore factors affecting muscle performance in muscles of different sizes under a range of cyclic contractile conditions.

  13. Changes in Chopart joint load following tibiotalar arthrodesis: in vitro analysis of 8 cadaver specimen in a dynamic model

    Directory of Open Access Journals (Sweden)

    Herberts T

    2007-08-01

    Full Text Available Abstract Background In the current discussion of surgical treatment of arthroses in the ankle joint, arthrodesis is in competition with artificial joint replacement. Up until now, no valid biomechanical findings have existed on the changes in intraarticular loads following arthrodesis. One argument against tibiotalar arthrodesis is the frequently associated, long-term degeneration of the talonavicular joint, which can be attributed to changes in biomechanical stresses. Methods We used a dynamic model to determine the changes in intraarticular forces and peak-pressure in the talonavicular joint and in the calcaneocuboid joint on 8 cadaver feet under stress in a simulated stance phase following tibiotalar arthrodesis. Results The change seen after arthrodesis was a tendency of relocation of average force and maximum pressure from the lateral onto the medial column of the foot. The average force increased from native 92 N to 100 N upon arthrodesis in the talonavicular joint and decreased in the calcaneocuboid joint from 54 N to 48 N. The peak pressure increased from native 3.9 MPa to 4.4 MPa in the talonavicular joint and in the calcaneocuboid joint from 3.3 MPa to 3.4 MPa. The increase of force and peak pressure on the talonavicular joint and decrease of force on the calcaneocuboid joint is statistically significant. Conclusion The increase in imparted force and peak pressure on the medial column of the foot following tibiotalar arthrodesis, as was demonstrated in a dynamic model, biomechanically explains the clinically observed phenomenon of cartilage degeneration on the medial dorsum of the foot in the long term. As a clinical conclusion from the measurements, it would be desirable to reduce the force imparted on the medial column with displacement onto the lateral forefoot, say by suitable shoe adjustment, in order to achieve a more favourable long-term clinical result.

  14. Patient specific dynamic geometric models from sequential volumetric time series image data.

    Science.gov (United States)

    Cameron, B M; Robb, R A

    2004-01-01

    Generating patient specific dynamic models is complicated by the complexity of the motion intrinsic and extrinsic to the anatomic structures being modeled. Using a physics-based sequentially deforming algorithm, an anatomically accurate dynamic four-dimensional model can be created from a sequence of 3-D volumetric time series data sets. While such algorithms may accurately track the cyclic non-linear motion of the heart, they generally fail to accurately track extrinsic structural and non-cyclic motion. To accurately model these motions, we have modified a physics-based deformation algorithm to use a meta-surface defining the temporal and spatial maxima of the anatomic structure as the base reference surface. A mass-spring physics-based deformable model, which can expand or shrink with the local intrinsic motion, is applied to the metasurface, deforming this base reference surface to the volumetric data at each time point. As the meta-surface encompasses the temporal maxima of the structure, any extrinsic motion is inherently encoded into the base reference surface and allows the computation of the time point surfaces to be performed in parallel. The resultant 4-D model can be interactively transformed and viewed from different angles, showing the spatial and temporal motion of the anatomic structure. Using texture maps and per-vertex coloring, additional data such as physiological and/or biomechanical variables (e.g., mapping electrical activation sequences onto contracting myocardial surfaces) can be associated with the dynamic model, producing a 5-D model. For acquisition systems that may capture only limited time series data (e.g., only images at end-diastole/end-systole or inhalation/exhalation), this algorithm can provide useful interpolated surfaces between the time points. Such models help minimize the number of time points required to usefully depict the motion of anatomic structures for quantitative assessment of regional dynamics.

  15. Editorial Commentary: All-Suture Anchors, Foam Blocks, and Biomechanical Testing.

    Science.gov (United States)

    Brand, Jefferson C

    2017-06-01

    Barber's biomechanical work is well known to Arthroscopy's readers as thorough, comprehensive, and inclusive of new designs as they become available. In "All-Suture Anchors: Biomechanical Analysis of Pullout Strength, Displacement, and Failure Mode," the latest iteration, Barber and Herbert test all-suture anchors in both porcine femurs and biphasic foam. While we await in vivo clinical trials that compare all-suture anchors to currently used anchors, Barber and Herbert have provided data to inform anchor choice, and using their biomechanical data at time zero from all-suture anchor trials in an animal model, we can determine the anchors' feasibility for human clinical investigations. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  16. Biomechanical analysis technique choreographic movements (for example, "grand battman jete"

    Directory of Open Access Journals (Sweden)

    Batieieva N.P.

    2015-04-01

    Full Text Available Purpose : biomechanical analysis of the execution of choreographic movement "grand battman jete". Material : the study involved students (n = 7 of the department of classical choreography faculty of choreography. Results : biomechanical analysis of choreographic movement "grand battman jete" (classic exercise, obtained kinematic characteristics (path, velocity, acceleration, force of the center of mass (CM bio parts of the body artist (foot, shin, thigh. Built bio kinematic model (phase. The energy characteristics - mechanical work and kinetic energy units legs when performing choreographic movement "grand battman jete". Conclusions : It was found that the ability of an athlete and coach-choreographer analyze the biomechanics of movement has a positive effect on the improvement of choreographic training of qualified athletes in gymnastics (sport, art, figure skating and dance sports.

  17. Biomechanical analysis of double poling in elite cross-country skiers.

    Science.gov (United States)

    Holmberg, Hans-Christer; Lindinger, Stefan; Stöggl, Thomas; Eitzlmair, Erich; Müller, Erich

    2005-05-01

    To further the understanding of double poling (DP) through biomechanical analysis of upper and lower body movements during DP in cross-country (XC) skiing at racing speed. Eleven elite XC skiers performed DP at 85% of their maximal DP velocity (V85%) during roller skiing at 1 degrees inclination on a treadmill. Pole and plantar ground reaction forces, joint angles (elbow, hip, knee, and ankle), cycle characteristics, and electromyography (EMG) of upper and lower body muscles were analyzed. 1) Pole force pattern with initial impact force peak and the following active force peak (PPF) correlated to V85%, (r = 0.66, P biomechanical aspects. Future research should further investigate the relationship between biomechanical and physiological variables and elaborate training models to improve DP performance.

  18. A Biomechanical Modeling Study of the Effects of the Orbicularis Oris Muscle and Jaw Posture on Lip Shape

    Science.gov (United States)

    Stavness, Ian; Nazari, Mohammad Ali; Perrier, Pascal; Demolin, Didier; Payan, Yohan

    2013-01-01

    Purpose: The authors' general aim is to use biomechanical models of speech articulators to explore how possible variations in anatomical structure contribute to differences in articulatory strategies and phone systems across human populations. Specifically, they investigated 2 issues: (a) the link between lip muscle anatomy and variability in…

  19. Numerical Simulation of Some Biomechanical Problems

    Czech Academy of Sciences Publication Activity Database

    Nedoma, Jiří; Klézl, Z.; Fousek, J.; Kestřánek, Zdeněk; Stehlík, J.

    2003-01-01

    Roč. 61, 3-6 (2003), s. 283-295 ISSN 0378-4754. [MODELLING 2001. IMACS Conference on Mathematical Modelling and Computational Methods in Mechanics, Physics , Biomechanics and Geodynamics /2./. Pilsen, 19.06.2001-25.06.2001] Institutional research plan: AV0Z1030915 Keywords : non-linear elasticity * contact problems * variational inequality * finite element method * wrist * spine * fracture Subject RIV: BA - General Mathematics Impact factor: 0.558, year: 2003

  20. Toward characterization of craniofacial biomechanics.

    Science.gov (United States)

    Szwedowski, Tomasz D; Whyne, Cari M; Fialkov, Jeffrey A

    2010-01-01

    Surgical reconstruction of craniofacial deformities has advanced significantly in recent years. However, unlike orthopedic surgery of the appendicular skeleton, the biomechanical characterization of the human craniofacial skeleton (CFS) has yet to be elucidated. Attempts to simplify facial skeletal structure into straightforward mechanical device analogies have been insufficient in delineating craniofacial biomechanics. Advanced computational engineering analysis methods offer the potential to accurately and completely define the internal mechanical environment of the CFS. This study developed a finite element (FE) model in the I-deas 10 FEM software package of a preserved cadaveric human CFS and compared the predictions of this model against in vitro strain measurement of simulated occlusal loading forces from a single masseter muscle. The FE model applied shell element modeling to capture the behavior of the thin cortical bone that may play an important role in stabilizing the facial structures against functional loads. In vitro testing included strain measurements at 12 locations for a total of 16 independent channels with less than 150 N of tensile force applied through the masseter muscle into the zygomatic arch origin at 4 different orientations, with 3 trials of 500 recorded data points for each loading orientation. Linear regression analysis yielded a moderate prediction (r = 0.57) between the model and experimentally measured strains. Exclusion of strain comparisons in regions that required greater modeling assumptions greatly improved the correlation (r = 0.70). Future validation studies will benefit from improved placement of strain gauges as guided by FE model predicted strain patterns.

  1. Model Reduction in Biomechanics

    Science.gov (United States)

    Feng, Yan

    The mechanical characteristic of the cell is primarily performed by the cytoskeleton. Microtubules, actin, and intermediate filaments are the three main cytoskeletal polymers. Of these, microtubules are the stiffest and have multiple functions within a cell that include: providing tracks for intracellular transport, transmitting the mechanical force necessary for cell division during mitosis, and providing sufficient stiffness for propulsion in flagella and cilia. Microtubule mechanics has been studied by a variety of methods: detailed molecular dynamics (MD), coarse-grained models, engineering type models, and elastic continuum models. In principle, atomistic MD simulations should be able to predict all desired mechanical properties of a single molecule, however, in practice the large computational resources are required to carry out a simulation of larger biomolecular system. Due to the limited accessibility using even the most ambitious all-atom models and the demand for the multiscale molecular modeling and simulation, the emergence of the reduced models is critically important to provide the capability for investigating the biomolecular dynamics that are critical to many biological processes. Then the coarse-grained models, such as elastic network models and anisotropic network models, have been shown to bequite accurate in predicting microtubule mechanical response, but still requires significant computational resources. On the other hand, the microtubule is treated as comprising materials with certain continuum material properties. Such continuum models, especially Euler-Bernoulli beam models, are often used to extract mechanical parameters from experimental results. The microtubule is treated as comprising materials with certain continuum material properties. Such continuum models, especially Euler-Bernoulli beam models in which the biomolecular system is assumed as homogeneous isotropic materials with solid cross-sections, are often used to extract

  2. A review of biomechanically informed breast image registration

    International Nuclear Information System (INIS)

    Hipwell, John H; Vavourakis, Vasileios; Mertzanidou, Thomy; Eiben, Björn; Hawkes, David J; Han, Lianghao

    2016-01-01

    Breast radiology encompasses the full range of imaging modalities from routine imaging via x-ray mammography, magnetic resonance imaging and ultrasound (both two- and three-dimensional), to more recent technologies such as digital breast tomosynthesis, and dedicated breast imaging systems for positron emission mammography and ultrasound tomography. In addition new and experimental modalities, such as Photoacoustics, Near Infrared Spectroscopy and Electrical Impedance Tomography etc, are emerging. The breast is a highly deformable structure however, and this greatly complicates visual comparison of imaging modalities for the purposes of breast screening, cancer diagnosis (including image guided biopsy), tumour staging, treatment monitoring, surgical planning and simulation of the effects of surgery and wound healing etc. Due primarily to the challenges posed by these gross, non-rigid deformations, development of automated methods which enable registration, and hence fusion, of information within and across breast imaging modalities, and between the images and the physical space of the breast during interventions, remains an active research field which has yet to translate suitable methods into clinical practice. This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms. Despite these developments there remain a number of issues that limit clinical application of biomechanical modelling. These include the accuracy of constitutive modelling, implementation of representative boundary conditions, failure to meet clinically acceptable levels of computational cost, challenges associated with automating patient-specific model generation (i.e. robust image segmentation and mesh generation) and the complexity of applying biomechanical modelling methods in routine clinical practice. (topical review)

  3. Systems biomechanics of the cell

    CERN Document Server

    Maly, Ivan V

    2013-01-01

    Systems Biomechanics of the Cell attempts to outline systems biomechanics of the cell as an emergent and promising discipline. The new field owes conceptually to cell mechanics, organism-level systems biomechanics, and biology of biochemical systems. Its distinct methodology is to elucidate the structure and behavior of the cell by analyzing the unintuitive collective effects of elementary physical forces that interact within the heritable cellular framework. The problematics amenable to this approach includes the variety of cellular activities that involve the form and movement of the cell body and boundary (nucleus, centrosome, microtubules, cortex, and membrane). Among the elementary system effects in the biomechanics of the cell, instability of symmetry, emergent irreversibility, and multiperiodic dissipative motion can be noted. Research results from recent journal articles are placed in this unifying framework. It is suggested that the emergent discipline has the potential to expand the spectrum of ques...

  4. Mathematical foundations of biomechanics.

    Science.gov (United States)

    Niederer, Peter F

    2010-01-01

    The aim of biomechanics is the analysis of the structure and function of humans, animals, and plants by means of the methods of mechanics. Its foundations are in particular embedded in mathematics, physics, and informatics. Due to the inherent multidisciplinary character deriving from its aim, biomechanics has numerous connections and overlapping areas with biology, biochemistry, physiology, and pathophysiology, along with clinical medicine, so its range is enormously wide. This treatise is mainly meant to serve as an introduction and overview for readers and students who intend to acquire a basic understanding of the mathematical principles and mechanics that constitute the foundation of biomechanics; accordingly, its contents are limited to basic theoretical principles of general validity and long-range significance. Selected examples are included that are representative for the problems treated in biomechanics. Although ultimate mathematical generality is not in the foreground, an attempt is made to derive the theory from basic principles. A concise and systematic formulation is thereby intended with the aim that the reader is provided with a working knowledge. It is assumed that he or she is familiar with the principles of calculus, vector analysis, and linear algebra.

  5. Development and validation of a human biomechanical model for rib fracture and thorax injuries in blunt impact.

    Science.gov (United States)

    Cai, Zhihua; Lan, Fengchong; Chen, Jiqing

    2015-07-01

    From 1990 to approximately 50,000-120,000 people die annually of road traffic accidents in China. Traffic accidents are the main cause of death of Chinese adults aged 15-45 years. This study aimed to determine the biomechanical response and injury tolerance of the human body in traffic accidents. The subject was a 35-year-old male with a height of 170 cm, weight of 70 kg and Chinese characteristics at the 50th percentile. Geometry was generated by computed tomography and magnetic resonance imaging. A human-body biomechanical model was then developed. The model featured in great detail the main anatomical characteristics of skeletal tissues, soft tissues and internal organs, including the head, neck, shoulder, thoracic cage, abdomen, spine, pelvis, pleurae and lungs, heart, aorta, arms, legs, and other muscle tissues and skeletons. The material properties of all tissues in the human body model were obtained from the literature. Material properties were developed in the LS-DYNA code to simulate the mechanical behaviour of the biological tissues in the human body. The model was validated against cadaver responses to frontal and side impact. The predicted model response reasonably agreed with the experimental data, and the model can further be used to evaluate thoracic injury in real-world crashes. We believe that the transportation industry can use numerical models in the future to simultaneously reduce physical testing and improve automotive safety.

  6. CT-derived Biomechanical Metrics Improve Agreement Between Spirometry and Emphysema

    Science.gov (United States)

    Bhatt, Surya P.; Bodduluri, Sandeep; Newell, John D.; Hoffman, Eric A.; Sieren, Jessica C.; Han, Meilan K.; Dransfield, Mark T.; Reinhardt, Joseph M.

    2016-01-01

    Rationale and Objectives Many COPD patients have marked discordance between FEV1 and degree of emphysema on CT. Biomechanical differences between these patients have not been studied. We aimed to identify reasons for the discordance between CT and spirometry in some patients with COPD. Materials and Methods Subjects with GOLD stage I–IV from a large multicenter study (COPDGene) were arranged by percentiles of %predicted FEV1 and emphysema on CT. Three categories were created using differences in percentiles: Catspir with predominant airflow obstruction/minimal emphysema, CatCT with predominant emphysema/minimal airflow obstruction, and Catmatched with matched FEV1 and emphysema. Image registration was used to derive Jacobian determinants, a measure of lung elasticity, anisotropy and strain tensors, to assess biomechanical differences between groups. Regression models were created with the above categories as outcome variable, adjusting for demographics, scanner type, quantitative CT-derived emphysema, gas trapping, and airway thickness (Model 1), and after adding biomechanical CT metrics (Model 2). Results Jacobian determinants, anisotropy and strain tensors were strongly associated with FEV1. With Catmatched as control, Model 2 predicted Catspir and CatCT better than Model 1 (Akaike Information Criterion, AIC 255.8 vs. 320.8). In addition to demographics, the strongest independent predictors of FEV1 were Jacobian mean (β= 1.60,95%CI = 1.16 to 1.98; p<0.001), coefficient of variation (CV) of Jacobian (β= 1.45,95%CI = 0.86 to 2.03; p<0.001) and CV strain (β= 1.82,95%CI = 0.68 to 2.95; p = 0.001). CVs of Jacobian and strain are both potential markers of biomechanical lung heterogeneity. Conclusions CT-derived measures of lung mechanics improve the link between quantitative CT and spirometry, offering the potential for new insights into the linkage between regional parenchymal destruction and global decrement in lung function in COPD patients. PMID:27055745

  7. The Biomechanical Role of Scaffolds in Augmented Rotator Cuff Tendon Repairs

    Science.gov (United States)

    2012-01-01

    The biomechanical role of scaffolds in augmented rotator cuff tendon repairs Amit Aurora, D Enga,b, Jesse A. McCarron, MDc, Antonie J. van den Bogert...used for rotator cuff repair augmentation; however, the appropriate scaffold material properties and/or surgical application techniques for achieving...The model predicts that the biomechanical performance of a rotator cuff repair can be modestly increased by augmenting the repair with a scaffold that

  8. A pilot study of biomechanical assessment before and after an integrative training program for adolescents with juvenile fibromyalgia.

    Science.gov (United States)

    Tran, Susan T; Thomas, Staci; DiCesare, Christopher; Pfeiffer, Megan; Sil, Soumitri; Ting, Tracy V; Williams, Sara E; Myer, Gregory D; Kashikar-Zuck, Susmita

    2016-07-22

    Adolescents with juvenile fibromyalgia (JFM) tend to be very sedentary and avoid participation in physical activity. A prior study suggested that JFM patients show altered biomechanics compared to healthy adolescents which may make them more prone to pain/injury during exercise. A new intervention combining well established cognitive behavioral therapy (CBT) techniques with specialized neuromuscular exercise -Fibromyalgia Integrative Training for Teens (FIT Teens) was developed and shown to be promising in improving functioning in adolescents with JFM. In contrast to traditional exercise programs such as aerobic or resistance training, neuromuscular training is a tailored approach which targets gait, posture, balance and movement mechanics which form the foundation for safe exercise participation with reduced risk for injury or pain (and hence more tolerable by JFM patients). The aim of this pilot feasibility study was to establish whether objective biomechanical assessment including sophisticated 3-D motion analysis would be useful in measuring improvements in strength, balance, gait, and functional performance after participation in the 8-week FIT Teens program. Eleven female participants with JFM (ages 12-18 years) completed pre- and post-treatment assessments of biomechanics, including walking gait analysis, lower extremity strength assessment, functional performance, and dynamic postural stability. Descriptive data indicated that mechanics of walking gait and functional performance appeared to improve after treatment. Hip abduction strength and dynamic postural control also demonstrated improvements bilaterally. Overall, the results of this pilot study offer initial evidence for the utility of biomechanical assessment to objectively demonstrate observable changes in biomechanical performance after an integrated training intervention for youth with JFM. If replicated in larger controlled studies, findings would suggest that through the FIT Teens intervention

  9. Advanced Computational Methods in Bio-Mechanics.

    Science.gov (United States)

    Al Qahtani, Waleed M S; El-Anwar, Mohamed I

    2018-04-15

    A novel partnership between surgeons and machines, made possible by advances in computing and engineering technology, could overcome many of the limitations of traditional surgery. By extending surgeons' ability to plan and carry out surgical interventions more accurately and with fewer traumas, computer-integrated surgery (CIS) systems could help to improve clinical outcomes and the efficiency of healthcare delivery. CIS systems could have a similar impact on surgery to that long since realised in computer-integrated manufacturing. Mathematical modelling and computer simulation have proved tremendously successful in engineering. Computational mechanics has enabled technological developments in virtually every area of our lives. One of the greatest challenges for mechanists is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. Biomechanics has significant potential for applications in orthopaedic industry, and the performance arts since skills needed for these activities are visibly related to the human musculoskeletal and nervous systems. Although biomechanics is widely used nowadays in the orthopaedic industry to design orthopaedic implants for human joints, dental parts, external fixations and other medical purposes, numerous researches funded by billions of dollars are still running to build a new future for sports and human healthcare in what is called biomechanics era.

  10. Biomechanical Modeling of Split-leg Squat and Heel Raise on the Hybrid Ultimate Lifting Kit (HULK)

    Science.gov (United States)

    Thompson, William K.; Gallo, Christopher A.; Lewandowski, Beth E.; Jagodnik, Kathleen M.; Humphreys, Brad; Funk, Justin; Funk, Nathan; Dewitt, John K.

    2016-01-01

    Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and musculoskeletal forces that occur during exercises performed on the prototype devices. Computational models currently use OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from subjects for estimation of muscle and joint loads. Subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the loads on the body. Multiple exercises are performed and evaluated during a test session such as a full squat, single leg squat, heel raise and dead lift. Variables for these exercises include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data from free weights are compared to the resistively loaded exercise

  11. Coupling biomechanics to a cellular level model: an approach to patient-specific image driven multi-scale and multi-physics tumor simulation.

    Science.gov (United States)

    May, Christian P; Kolokotroni, Eleni; Stamatakos, Georgios S; Büchler, Philippe

    2011-10-01

    Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. A Biomechanical Model of Single-joint Arm Movement Control Based on the Equilibrium Point Hypothesis

    OpenAIRE

    Masataka, SUZUKI; Yoshihiko, YAMAZAKI; Yumiko, TANIGUCHI; Department of Psychology, Kinjo Gakuin University; Department of Health and Physical Education, Nagoya Institute of Technology; College of Human Life and Environment, Kinjo Gakuin University

    2003-01-01

    SUZUKI,M., YAMAZAKI,Y. and TANIGUCHI,Y., A Biomechanical Model of Single-joint Arm Movement Control Based on the Equilibrium Point Hypothesis. Adv. Exerc. Sports Physiol., Vol.9, No.1 pp.7-25, 2003. According to the equilibrium point hypothesis of motor control, control action of muscles is not explicitly computed, but rather arises as a consequence of interaction among moving equilibrium point, reflex feedback and muscle mechanical properties. This approach is attractive as it obviates the n...

  13. Radiation combined injury models to study the effects of interventions and wound biomechanics.

    Science.gov (United States)

    Zawaski, Janice A; Yates, Charles R; Miller, Duane D; Kaffes, Caterina C; Sabek, Omaima M; Afshar, Solmaz F; Young, Daniel A; Yang, Yunzhi; Gaber, M Waleed

    2014-12-01

    In the event of a nuclear detonation, a considerable number of projected casualties will suffer from combined radiation exposure and burn and/or wound injury. Countermeasure assessment in the setting of radiation exposure combined with dermal injury is hampered by a lack of animal models in which the effects of interventions have been characterized. To address this need, we used two separate models to characterize wound closure. The first was an open wound model in mice to study the effect of wound size in combination with whole-body 6 Gy irradiation on the rate of wound closure, animal weight and survival (morbidity). In this model the addition of interventions, wound closure, subcutaneous vehicle injection, topical antiseptic and topical antibiotics were studied to measure their effect on healing and survival. The second was a rat closed wound model to study the biomechanical properties of a healed wound at 10 days postirradiation (irradiated with 6 or 7.5 Gy). In addition, complete blood counts were performed and wound pathology by staining with hematoxylin and eosin, trichrome, CD68 and Ki67. In the mouse open wound model, we found that wound size and morbidity were positively correlated, while wound size and survival were negatively correlated. Regardless of the wound size, the addition of radiation exposure delayed the healing of the wound by approximately 5-6 days. The addition of interventions caused, at a minimum, a 30% increase in survival and improved mean survival by ∼9 days. In the rat closed wound model we found that radiation exposure significantly decreased all wound biomechanical measurements as well as white blood cell, platelet and red blood cell counts at 10 days post wounding. Also, pathological changes showed a loss of dermal structure, thickening of dermis, loss of collagen/epithelial hyperplasia and an increased density of macrophages. In conclusion, we have characterized the effect of a changing wound size in combination with radiation

  14. Image-assisted non-invasive and dynamic biomechanical analysis of human joints

    International Nuclear Information System (INIS)

    Muhit, Abdullah A; Pickering, Mark R; Scarvell, Jennifer M; Ward, Tom; Smith, Paul N

    2013-01-01

    Kinematic analysis provides a strong link between musculoskeletal injuries, chronic joint conditions, treatment planning/monitoring and prosthesis design/outcome. However, fast and accurate 3D kinematic analysis still remains a challenge in order to translate this procedure into clinical scenarios. 3D computed tomography (CT) to 2D single-plane fluoroscopy registration is a promising non-invasive technology for biomechanical examination of human joints. Although this technique has proven to be very precise in terms of in-plane translation and rotation measurements, out-of-plane motion estimations have been a difficulty so far. Therefore, to enable this technology into clinical translation, precise and fast estimation of both in-plane and out-of-plane movements is crucial, which is the aim of this paper. Here, a fast and accurate 3D/2D registration technique is proposed to evaluate biomechanical/kinematic analysis. The proposed algorithm utilizes a new multi-modal similarity measure called ‘sum of conditional variances’, a coarse-to-fine Laplacian of Gaussian filtering approach for robust gradient-descent optimization and a novel technique for the analytic calculation of the required gradients for out-of-plane rotations. Computer simulations and in vitro experiments showed that the new approach was robust in terms of the capture range, required significantly less iterations to converge and achieved good registration and kinematic accuracy when compared to existing techniques and to the ‘gold-standard’ Roentgen stereo analysis. (paper)

  15. Applied dynamics

    CERN Document Server

    Schiehlen, Werner

    2014-01-01

    Applied Dynamics is an important branch of engineering mechanics widely applied to mechanical and automotive engineering, aerospace and biomechanics as well as control engineering and mechatronics. The computational methods presented are based on common fundamentals. For this purpose analytical mechanics turns out to be very useful where D’Alembert’s principle in the Lagrangian formulation proves to be most efficient. The method of multibody systems, finite element systems and continuous systems are treated consistently. Thus, students get a much better understanding of dynamical phenomena, and engineers in design and development departments using computer codes may check the results more easily by choosing models of different complexity for vibration and stress analysis.

  16. Generation of subject-specific, dynamic, multisegment ankle and foot models to improve orthotic design: a feasibility study

    Directory of Open Access Journals (Sweden)

    Oosterwaal Michiel

    2011-11-01

    Full Text Available Abstract Background Currently, custom foot and ankle orthosis prescription and design tend to be based on traditional techniques, which can result in devices which vary greatly between clinicians and repeat prescription. The use of computational models of the foot may give further insight in the biomechanical effects of these devices and allow a more standardised approach to be taken to their design, however due to the complexity of the foot the models must be highly detailed and dynamic. Methods/Design Functional and anatomical datasets will be collected in a multicentre study from 10 healthy participants and 15 patients requiring orthotic devices. The patient group will include individuals with metarsalgia, flexible flat foot and drop foot. Each participant will undergo a clinical foot function assessment, 3D surface scans of the foot under different loading conditions, and detailed gait analysis including kinematic, kinetic, muscle activity and plantar pressure measurements in both barefoot and shod conditions. Following this each participant will undergo computed tomography (CT imaging of their foot and ankle under a range of loads and positions while plantar pressures are recorded. A further subgroup of participants will undergo magnetic resonance imaging (MRI of the foot and ankle. Imaging data will be segmented to derive the geometry of the bones and the orientation of the joint axes. Insertion points of muscles and ligaments will be determined from the MRI and CT-scans and soft tissue material properties computed from the loaded CT data in combination with the plantar pressure measurements. Gait analysis data will be used to drive the models and in combination with the 3D surface scans for scaling purposes. Predicted plantar pressures and muscle activation patterns predicted from the models will be compared to determine the validity of the models. Discussion This protocol will lead to the generation of unique datasets which will be used

  17. HOW CAN DYNAMIC RIGID-BODY MODELING BE HELPFUL IN MOTOR LEARNING? - DIAGNOSING PERFORMANCE USING DYNAMIC MODELING

    OpenAIRE

    Shan, Gongbing; Sust, Martin; Simard, Stephane; Bohn, Christina; Nicol, Klaus

    2004-01-01

    There are two main problems for biomechanists in motor learning practice. One is theory vs. experience, the other is the determination of dominative information directly helpful in the practice. This project aimed at addressing these problems from a quantitative aspect by using motion capture and biomechanical rigid body modeling. The purposes were to identify differences in the description of movements amongst motion analysists (external view), athletes (internal sight) and coaches (internal...

  18. Biomechanical ToolKit: Open-source framework to visualize and process biomechanical data.

    Science.gov (United States)

    Barre, Arnaud; Armand, Stéphane

    2014-04-01

    C3D file format is widely used in the biomechanical field by companies and laboratories to store motion capture systems data. However, few software packages can visualize and modify the integrality of the data in the C3D file. Our objective was to develop an open-source and multi-platform framework to read, write, modify and visualize data from any motion analysis systems using standard (C3D) and proprietary file formats (used by many companies producing motion capture systems). The Biomechanical ToolKit (BTK) was developed to provide cost-effective and efficient tools for the biomechanical community to easily deal with motion analysis data. A large panel of operations is available to read, modify and process data through C++ API, bindings for high-level languages (Matlab, Octave, and Python), and standalone application (Mokka). All these tools are open-source and cross-platform and run on all major operating systems (Windows, Linux, MacOS X). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Biomechanics in dermatology: Recent advances and future directions.

    Science.gov (United States)

    Lewinson, Ryan T; Haber, Richard M

    2017-02-01

    Biomechanics is increasingly being recognized as an important research area in dermatology. To highlight only a few examples, biomechanics has contributed to the development of novel topical therapies for aesthetic and medical purposes, enhanced our understanding of the pathogenesis of plantar melanoma, and provided insight into the epidemiology of psoriatic disease. This article summarizes the findings from recent studies to demonstrate the important role that biomechanics may have in dermatologic disease and therapy and places these biomechanical findings in a clinical context for the practicing physician. In addition, areas for future biomechanics research and development in dermatology are discussed. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  20. Biomechanics of Spider Silks

    Science.gov (United States)

    2006-03-02

    water and deformation conditions. Such fibres [Nexia ’ biosteel ’ silk ] were spun from recombinant silk ’cloned’ from Spidroin II and indeed show 67...SUBTITLE 5. FUNDING NUMBERS Biomechanics of Spider Silks F49620-03-1-0111 6. AUTHOR(S) Fritz Vollrath 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...Perform Pro, WHSIDIOR, Oct 94 COVER SHEET FINAL (3rd Year) Report to AFOSR on: BIOMECHANICS OF SPIDER SILKS Fritz Vollrath, Oxford University, England

  1. Clinical and biomechanical researches of polyetheretherketone (PEEK) rods for semi-rigid lumbar fusion: a systematic review.

    Science.gov (United States)

    Li, Chan; Liu, Lei; Shi, Jian-Yong; Yan, Kai-Zhong; Shen, Wei-Zhong; Yang, Zhen-Rong

    2018-04-01

    Lumbar spinal fusion using rigid rods is a common surgical technique. However, adjacent segment disease and other adverse effects can occur. Dynamic stabilization devices preserve physiologic motion and reduce painful stress but have a high rate of construct failure and reoperation. Polyetheretherketone (PEEK) rods for semi-rigid fusions have a similar stiffness and adequate stabilization power compared with titanium rods, but with improved load sharing and reduced mechanical failure. The purpose of this paper is to review and evaluate the clinical and biomechanical performance of PEEK rods. A systematic review of clinical and biomechanical studies was conducted. A literature search using the PubMed, EMBASE, and Cochrane Library databases identified studies that met the eligibility criteria. Eight clinical studies and 15 biomechanical studies were included in this systematic review. The visual analog scale and the Oswestry disability index improved significantly in most studies, with satisfactory fusion rates. The occurrence of adjacent segment disease was low. In biomechanical studies, PEEK rods demonstrated a superior load-sharing distribution, a larger adjacent segment range of motion, and reduced stress at the rod-screw/screw-bone interfaces compared with titanium rods. The PEEK rod construct was simple to assemble and had a reliable in vivo performance compared with dynamic devices. The quality of clinical studies was low with confounding results, although results from mechanical studies were encouraging. There is no evidence strong enough to confirm better outcomes with PEEK rods than titanium rods. More studies with better protocols, a larger sample size, and a longer follow-up time are needed.

  2. Morphological and biomechanical remodeling of the hepatic portal vein in a swine model of portal hypertension.

    Science.gov (United States)

    He, Xi-Ju; Huang, Tie-Zhu; Wang, Pei-Jun; Peng, Xing-Chun; Li, Wen-Chun; Wang, Jun; Tang, Jie; Feng, Na; Yu, Ming-Hua

    2012-02-01

    To obtain the morphological and biomechanical remodeling of portal veins in swine with portal hypertension (PHT), so as to provide some mechanical references and theoretical basis for clinical practice about PHT. Twenty white pigs were used in this study, 14 of them were subjected to both carbon tetrachloride- and pentobarbital-containing diet to induce experimental liver cirrhosis and PHT, and the remaining animals served as the normal controls. The morphological remodeling of portal veins was observed. Endothelial nitric oxide synthase expression profile in the vessel wall was assessed at both mRNA and protein level. The biomechanical changes of the hepatic portal veins were evaluated through assessing the following indicators: the incremental elastic modulus, pressure-strain elastic modulus, volume elastic modulus, and the incremental compliance. The swine PHT model was successfully established. The percentages for the microstructural components and the histological data significantly changed in the experimental group. Endothelial nitric oxide synthase expression was significantly downregulated in the portal veins of the experimental group. Three incremental elastic moduli (the incremental elastic modulus, pressure-strain elastic modulus, and volume elastic modulus) of the portal veins from PHT animals were significantly larger than those of the controls (P portal vein decreased. Our study suggests that the morphological and biomechanical properties of swine hepatic portal veins change significantly during the PHT process, which may play a critical role in the development of PHT and serve as potential therapeutic targets during clinical practice. Copyright © 2012 Annals of Vascular Surgery Inc. Published by Elsevier Inc. All rights reserved.

  3. Dynamic model of the octopus arm. II. Control of reaching movements.

    Science.gov (United States)

    Yekutieli, Yoram; Sagiv-Zohar, Roni; Hochner, Binyamin; Flash, Tamar

    2005-08-01

    The dynamic model of the octopus arm described in the first paper of this 2-part series was used here to investigate the neural strategies used for controlling the reaching movements of the octopus arm. These are stereotypical extension movements used to reach toward an object. In the dynamic model, sending a simple propagating neural activation signal to contract all muscles along the arm produced an arm extension with kinematic properties similar to those of natural movements. Control of only 2 parameters fully specified the extension movement: the amplitude of the activation signal (leading to the generation of muscle force) and the activation traveling time (the time the activation wave takes to travel along the arm). We found that the same kinematics could be achieved by applying activation signals with different activation amplitudes all exceeding some minimal level. This suggests that the octopus arm could use minimal amplitudes of activation to generate the minimal muscle forces required for the production of the desired kinematics. Larger-amplitude signals would generate larger forces that increase the arm's stability against perturbations without changing the kinematic characteristics. The robustness of this phenomenon was demonstrated by examining activation signals with either a constant or a bell-shaped velocity profile. Our modeling suggests that the octopus arm biomechanics may allow independent control of kinematics and resistance to perturbation during arm extension movements.

  4. An Evidence-Based Videotaped Running Biomechanics Analysis.

    Science.gov (United States)

    Souza, Richard B

    2016-02-01

    Running biomechanics play an important role in the development of injuries. Performing a running biomechanics analysis on injured runners can help to develop treatment strategies. This article provides a framework for a systematic video-based running biomechanics analysis plan based on the current evidence on running injuries, using 2-dimensional (2D) video and readily available tools. Fourteen measurements are proposed in this analysis plan from lateral and posterior video. Identifying simple 2D surrogates for 3D biomechanic variables of interest allows for widespread translation of best practices, and have the best opportunity to impact the highly prevalent problem of the injured runner. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A Development of Force Plate for Biomechanics Analysis of Standing and Walking

    Science.gov (United States)

    Wardoyo, S.; Hutajulu, P. T.; Togibasa, O.

    2016-08-01

    Force plates are known as an excellent teaching aid to demonstrate the kinematics and dynamics of motion and commonly used in biomechanics laboratories to measure ground forces involved in the motion of human. It is consist of a metal plate with sensors attached to give an electrical output proportional to the force on the plate. Moreover, force plates are useful for examining the kinetic characteristics of an athlete's movement. They provide information about the external forces involved in movement that can aid a coach or sports scientist to quantitatively evaluate the athlete's skill development. In this study, we develop our prototype of force plate with less than 100,- simply by using flexible force transducer attached inside rubber matt, in the form of square blocks (dimension: 250 mm × 150 mm × 10 mm), with maximum load up to 60 kg. The handmade force plate was tested by applying biomechanics analysis for standing and walking. The testing was done on Experimental Soccer Courses’ students at the Department of Physical Education, Health and Recreation, University of Cenderawasih. The design of the force plate system together with biomechanics analysis will be discussed.

  6. Augmentation of Distal Biceps Repair With an Acellular Dermal Graft Restores Native Biomechanical Properties in a Tendon-Deficient Model.

    Science.gov (United States)

    Conroy, Christine; Sethi, Paul; Macken, Craig; Wei, David; Kowalsky, Marc; Mirzayan, Raffy; Pauzenberger, Leo; Dyrna, Felix; Obopilwe, Elifho; Mazzocca, Augustus D

    2017-07-01

    The majority of distal biceps tendon injuries can be repaired in a single procedure. In contrast, complete chronic tears with severe tendon substance deficiency and retraction often require tendon graft augmentation. In cases with extensive partial tears of the distal biceps, a human dermal allograft may be used as an alternative to restore tendon thickness and biomechanical integrity. Dermal graft augmentation will improve load to failure compared with nonaugmented repair in a tendon-deficient model. Controlled laboratory study. Thirty-six matched specimens were organized into 1 of 4 groups: native tendon, native tendon with dermal graft augmentation, tendon with an attritional defect, and tendon with an attritional defect repaired with a graft. To mimic a chronic attritional biceps lesion, a defect was created by a complete tear, leaving 30% of the tendon's width intact. The repair technique in all groups consisted of cortical button and interference screw fixation. All specimens underwent cyclical loading for 3000 cycles and were then tested to failure; gap formation and peak load at failure were documented. The mean (±SD) load to failure (320.9 ± 49.1 N vs 348.8 ± 77.6 N, respectively; P = .38) and gap formation (displacement) (1.8 ± 1.4 mm vs 1.6 ± 1.1 mm, respectively; P = .38) did not differ between the native tendon groups with and without graft augmentation. In the tendon-deficient model, the mean load to failure was significantly improved with graft augmentation compared with no graft augmentation (282.1 ± 83.8 N vs 199.7 ± 45.5 N, respectively; P = .04), while the mean gap formation was significantly reduced (1.2 ± 1.0 mm vs 2.7 ± 1.4 mm, respectively; P = .04). The mean load to failure of the deficient tendon with graft augmentation (282.1 N) compared with the native tendon (348.8 N) was not significantly different ( P = .12). This indicates that the native tendon did not perform differently from the grafted deficient tendon. In a tendon

  7. Hill’s and Huxley’s muscle models - tools for simulations in biomechanics

    Directory of Open Access Journals (Sweden)

    Jovanović Kosta

    2015-01-01

    Full Text Available Numerous mathematical models of human skeletal muscles have been developed. However, none of them is adopted as a general one and each of them is suggested for some specific purpose. This topic is essential in humanoid robotics, since we firstly need to understand how human moves and acts in order to exploit human movement patterns in robotics and design human like actuators. Simulations in biomechanics are intensively used in research of locomotion, safe human-robot interaction, development of novel robotic actuators, biologically inspired control algorithms, etc. This paper presents two widely adopted muscle models (Hill’s and Huxley’s model, elaborates their features and demonstrates trade-off between their accuracy and efficiency of computer simulations. The simulation setup contains mathematical representation of passive muscle structures as well as mathematical model of an elastic tendon as a series elastic actuation element. Advanced robot control techniques point out energy consumption as one of the key issues. Therefore, energy store and release mechanism in elastic elements in both tendon and muscle, based on the simulation models, are considered. [Projekat Ministarstva nauke Republike Srbije, br. TR35003 and br. OS175016

  8. Developmental dysplasia of the hip: A computational biomechanical model of the path of least energy for closed reduction.

    Science.gov (United States)

    Zwawi, Mohammed A; Moslehy, Faissal A; Rose, Christopher; Huayamave, Victor; Kassab, Alain J; Divo, Eduardo; Jones, Brendan J; Price, Charles T

    2017-08-01

    This study utilized a computational biomechanical model and applied the least energy path principle to investigate two pathways for closed reduction of high grade infantile hip dislocation. The principle of least energy when applied to moving the femoral head from an initial to a final position considers all possible paths that connect them and identifies the path of least resistance. Clinical reports of severe hip dysplasia have concluded that reduction of the femoral head into the acetabulum may occur by a direct pathway over the posterior rim of the acetabulum when using the Pavlik harness, or by an indirect pathway with reduction through the acetabular notch when using the modified Hoffman-Daimler method. This computational study also compared the energy requirements for both pathways. The anatomical and muscular aspects of the model were derived using a combination of MRI and OpenSim data. Results of this study indicate that the path of least energy closely approximates the indirect pathway of the modified Hoffman-Daimler method. The direct pathway over the posterior rim of the acetabulum required more energy for reduction. This biomechanical analysis confirms the clinical observations of the two pathways for closed reduction of severe hip dysplasia. The path of least energy closely approximated the modified Hoffman-Daimler method. Further study of the modified Hoffman-Daimler method for reduction of severe hip dysplasia may be warranted based on this computational biomechanical analysis. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1799-1805, 2017. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.

  9. Modelling of subject specific based segmental dynamics of knee joint

    Science.gov (United States)

    Nasir, N. H. M.; Ibrahim, B. S. K. K.; Huq, M. S.; Ahmad, M. K. I.

    2017-09-01

    This study determines segmental dynamics parameters based on subject specific method. Five hemiplegic patients participated in the study, two men and three women. Their ages ranged from 50 to 60 years, weights from 60 to 70 kg and heights from 145 to 170 cm. Sample group included patients with different side of stroke. The parameters of the segmental dynamics resembling the knee joint functions measured via measurement of Winter and its model generated via the employment Kane's equation of motion. Inertial parameters in the form of the anthropometry can be identified and measured by employing Standard Human Dimension on the subjects who are in hemiplegia condition. The inertial parameters are the location of centre of mass (COM) at the length of the limb segment, inertia moment around the COM and masses of shank and foot to generate accurate motion equations. This investigation has also managed to dig out a few advantages of employing the table of anthropometry in movement biomechanics of Winter's and Kane's equation of motion. A general procedure is presented to yield accurate measurement of estimation for the inertial parameters for the joint of the knee of certain subjects with stroke history.

  10. [RESEARCH PROGRESS OF BIOMECHANICS OF PROXIMAL ROW CARPAL INSTABILITY].

    Science.gov (United States)

    Guo, Jinhai; Huang, Fuguo

    2015-01-01

    To review the research progress of the biomechanics of proximal row carpal instability (IPRC). The related literature concerning IPRC was extensively reviewed. The biomechanical mechanism of the surrounding soft tissue in maintaining the stability of the proximal row carpal (PRC) was analyzed, and the methods to repair or reconstruct the stability and function of the PRC were summarized from two aspects including basic biomechanics and clinical biomechanics. The muscles and ligaments of the PRC are critical to its stability. Most scholars have reached a consensus about biomechanical mechanism of the PRC, but there are still controversial conclusions on the biomechanics mechanism of the surrounding soft tissue to stability of distal radioulnar joint when the triangular fibrocartilage complex are damaged and the biomechanics mechanism of the scapholunate ligament. At present, there is no unified standard about the methods to repair or reconstruct the stability and function of the PRC. So, it is difficult for clinical practice. Some strides have been made in the basic biomechanical study on muscle and ligament and clinical biomechanical study on the methods to repair or reconstruct the stability and function of PRC, but it will be needed to further study the morphology of carpal articular surface and the adjacent articular surface, the pressure of distal carpals to proximal carpal and so on.

  11. Biomechanical comparison of expanded polytetrafluoroethylene (ePTFE) and PTFE interpositional patches and direct tendon-to-bone repair for massive rotator cuff tears in an ovine model.

    Science.gov (United States)

    McKeown, Andrew Dj; Beattie, Rebekah F; Murrell, George Ac; Lam, Patrick H

    2016-01-01

    Massive irreparable rotator cuff tears are a difficult problem. Modalities such as irrigation and debridement, partial repair, tendon transfer and grafts have been utilized with high failure rates and mixed results. Synthetic interpositional patch repairs are a novel and increasingly used approach. The present study aimed to examine the biomechanical properties of common synthetic materials for interpositional repairs in contrast to native tendon. Six ovine tendons, six polytetrafluoroethylene (PTFE) felt sections and six expanded PTFE (ePTFE) patch sections were pulled-to-failure to analyze their biomechanical and material properties. Six direct tendon-to-bone surgical method repairs, six interpositional PTFE felt patch repairs and six interpositional ePTFE patch repairs were also constructed in ovine shoulders and pulled-to-failure to examine the biomechanical properties of each repair construct. Ovine tendon had higher load-to-failure (591 N) and had greater stiffness (108 N/mm) than either PTFE felt (296 N, 28 N/mm) or ePTFE patch sections (323 N, 34 N/mm). Both PTFE felt and ePTFE repair techniques required greater load-to-failure (225 N and 177 N, respectively) than direct tendon-to-bone surgical repairs (147 N) in ovine models. Synthetic materials lacked several biomechanical properties, including strength and stiffness, compared to ovine tendon. Interpositional surgical repair models with these materials were significantly stronger than direct tendon-to-bone model repairs.

  12. Motion Analysis of Chinese Bajiquan Based on Three-dimensional Images of Biomechanics

    Directory of Open Access Journals (Sweden)

    Ming Zi

    2017-06-01

    Full Text Available With the development of sports biomechanics, human motion mechanical characteristics have received more and more attention from plenty of researchers. Therefore, how to analyze the biomechanics of the living body has become the principle problem at the present stage. In this study, the three-dimensional (3D image was adopted for a sport dynamics analysis of the riding style of the Chinese Bajiquan. First of all, the change rules of the temporal characteristic parameters when the research objects in the experiment group and the control group completing the riding style action were analyzed based on the characteristics of the action; in the initial stage of the action, the movement speed was relatively slow, and with the center of gravity of the right feet moving down, stable support was formed. Secondly, parameters such as hip joint angle and knee joint angle, etc., were tested from the perspective of dynamics sensors and a rigid block model was constructed to accurately calculate the joint angle. The hip joint guaranteed the stability of center of gravity during movement; the fluctuation of the ankle joint was relatively small, while the maximum fluctuation range of the trunk angle during movement was small, which could keep the upper limbs up straight as well as reduce fluctuation, and the lowering of the center of gravity was good for the stability of the lower limbs. When the riding style action was completed, the toes of the research objects in the experiment group would buckle subconsciously to control the balance of the body. Therefore, the riding style requires the interaction among different parameters, which conforms with the characteristics of the Chinese Bajiquan.

  13. Biomechanically acquired foot types

    International Nuclear Information System (INIS)

    Weissman, S.D.

    1989-01-01

    Over the years, orthopedics of the foot has gone through many stages and phases, each of which has spawned a whole vocabulary of its own. According the author, today we are in the biomechanical age, which represents a step forward in understanding the mechanisms governing the functions of the lower extremity. A great deal of scientific research on the various foot types and pathological entities is now being performed. This paper discusses how, from a radiographic point of view, a knowledge of certain angular relationships must be achieved before one can perform a biomechanical evaluation. In order to validate the gross clinical findings, following an examination of a patient, a biomechanical evaluation can be performed on the radiographs taken. It must be remembered, however, that x-rays are never the sole means of making a diagnosis. They are just one of many findings that must be put together to arrive at a pertinent clinical assessment or diagnosis

  14. Integrated biomechanical and topographical surface characterization (IBTSC)

    Energy Technology Data Exchange (ETDEWEB)

    Löberg, Johanna, E-mail: Johanna.Loberg@dentsply.com [Dentsply Implants, Box 14, SE-431 21 Mölndal (Sweden); Mattisson, Ingela [Dentsply Implants, Box 14, SE-431 21 Mölndal (Sweden); Ahlberg, Elisabet [Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg (Sweden)

    2014-01-30

    In an attempt to reduce the need for animal studies in dental implant applications, a new model has been developed which combines well-known surface characterization methods with theoretical biomechanical calculations. The model has been named integrated biomechanical and topographical surface characterization (IBTSC), and gives a comprehensive description of the surface topography and the ability of the surface to induce retention strength with bone. IBTSC comprises determination of 3D-surface roughness parameters by using 3D-scanning electron microscopy (3D-SEM) and atomic force microscopy (AFM), and calculation of the ability of different surface topographies to induce retention strength in bone by using the local model. Inherent in this integrated approach is the use of a length scale analysis, which makes it possible to separate different size levels of surface features. The IBTSC concept is tested on surfaces with different level of hierarchy, induced by mechanical as well as chemical treatment. Sequential treatment with oxalic and hydrofluoric acid results in precipitated nano-sized features that increase the surface roughness and the surface slope on the sub-micro and nano levels. This surface shows the highest calculated shear strength using the local model. The validity, robustness and applicability of the IBTSC concept are demonstrated and discussed.

  15. ECCOMAS Thematic Conference on Multibody Dynamics

    CERN Document Server

    Multibody Dynamics : Computational Methods and Applications

    2016-01-01

    This book includes selected papers from the ECCOMAS Thematic Conference on Multibody Dynamics, that took place in Barcelona, Spain, from June 29 to July 2, 2015. By having its origin in analytical and continuum mechanics, as well as in computer science and applied mathematics, multibody dynamics provides a basis for analysis and virtual prototyping of innovative applications in many fields of contemporary engineering. With the utilization of computational models and algorithms that classically belonged to different fields of applied science, multibody dynamics delivers reliable simulation platforms for diverse highly-developed industrial products such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, smart structures, biomechanical systems,and nanotechnologies.

  16. Design of a Passive Exoskeleton for the Upper Extremity through Co-simulation with a Biomechanical Human Arm Model

    DEFF Research Database (Denmark)

    Zhou, Lelai; Bai, Shaoping; Rasmussen, John

    2013-01-01

    An approach of designing exoskeletons on the basis of simulation of the exoskeleton and a human body model is proposed in this paper. The new approach, addressing the problem of physical human-exoskeleton interactions, models and simulates the mechanics for both the exoskeleton and the human body......, which allows designers to analyze and evaluate an exoskeleton for its functioning, effectively. A simulation platform is developed by integrating a biomechanical model of human body and the exoskeleton. With the proposed approach, two types of exoskeletons with gravity compensating capability...

  17. Biomechanical investigation of different surgical strategies for the treatment of rib fractures using a three-dimensional human respiratory model.

    Science.gov (United States)

    Shih, Kao-Shang; Truong, Thanh An; Hsu, Ching-Chi; Hou, Sheng-Mou

    2017-11-02

    Rib fracture is a common injury and can result in pain during respiration. Conservative treatment of rib fracture is applied via mechanical ventilation. However, ventilator-associated complications frequently occur. Surgical fixation is another approach to treat rib fractures. Unfortunately, this surgical treatment is still not completely defined. Past studies have evaluated the biomechanics of the rib cage during respiration using a finite element method, but only intact conditions were modelled. Thus, the purpose of this study was to develop a realistic numerical model of the human rib cage and to analyse the biomechanical performance of intact, injured and treated rib cages. Three-dimensional finite element models of the human rib cage were developed. Respiratory movement of the human rib cage was simulated to evaluate the strengths and limitations of different scenarios. The results show that a realistic human respiratory movement can be simulated and the predicted results were closely related to previous study (correlation coefficient>0.92). Fixation of two fractured ribs significantly decreased the fixation index (191%) compared to the injured model. This fixation may provide adequate fixation stability as well as reveal lower bone stress and implant stress compared with the fixation of three or more fractured ribs.

  18. Can biomechanical variables predict improvement in crouch gait?

    Science.gov (United States)

    Hicks, Jennifer L.; Delp, Scott L.; Schwartz, Michael H.

    2011-01-01

    Many patients respond positively to treatments for crouch gait, yet surgical outcomes are inconsistent and unpredictable. In this study, we developed a multivariable regression model to determine if biomechanical variables and other subject characteristics measured during a physical exam and gait analysis can predict which subjects with crouch gait will demonstrate improved knee kinematics on a follow-up gait analysis. We formulated the model and tested its performance by retrospectively analyzing 353 limbs of subjects who walked with crouch gait. The regression model was able to predict which subjects would demonstrate ‘improved’ and ‘unimproved’ knee kinematics with over 70% accuracy, and was able to explain approximately 49% of the variance in subjects’ change in knee flexion between gait analyses. We found that improvement in stance phase knee flexion was positively associated with three variables that were drawn from knowledge about the biomechanical contributors to crouch gait: i) adequate hamstrings lengths and velocities, possibly achieved via hamstrings lengthening surgery, ii) normal tibial torsion, possibly achieved via tibial derotation osteotomy, and iii) sufficient muscle strength. PMID:21616666

  19. Cycling biomechanics: a literature review.

    Science.gov (United States)

    Wozniak Timmer, C A

    1991-01-01

    Submitted in partial fulfillment for a Master of Science degree at the University of Pittsburgh, School of Health Related Professions, Pittsburgh, PA 1.5213 This review of current literature on cycling biomechanics emphasizes lower extremity muscle actions and joint excursions, seat height, pedal position, pedaling rate, force application, and pedaling symmetry. Guidelines are discussed for optimal seat height, pedal position, and pedaling rate. Force application in the power and recovery phases of cycling and the relationship of force application to pedaling symmetry are discussed. The need for a biomechanical approach to cycling exists since a great deal of the literature is primarily physiologic in nature. The purpose of this review is to make cyclists and their advisors aware of the biomechanics of cycling and guidelines to follow. This approach is also important because cycling is a very common form of exercise prescribed by physical therapists for clinic or home programs. Biomechanical aspects of cycling should be considered by cyclists at any level of participation and by physical therapists in order for goal-oriented, efficient cycling to occur. J Orthop Sports Phys Ther 1991;14(3):106-113.

  20. Simulation of facial expressions using person-specific sEMG signals controlling a biomechanical face model.

    Science.gov (United States)

    Eskes, Merijn; Balm, Alfons J M; van Alphen, Maarten J A; Smeele, Ludi E; Stavness, Ian; van der Heijden, Ferdinand

    2018-01-01

    Functional inoperability in advanced oral cancer is difficult to assess preoperatively. To assess functions of lips and tongue, biomechanical models are required. Apart from adjusting generic models to individual anatomy, muscle activation patterns (MAPs) driving patient-specific functional movements are necessary to predict remaining functional outcome. We aim to evaluate how volunteer-specific MAPs derived from surface electromyographic (sEMG) signals control a biomechanical face model. Muscle activity of seven facial muscles in six volunteers was measured bilaterally with sEMG. A triple camera set-up recorded 3D lip movement. The generic face model in ArtiSynth was adapted to our needs. We controlled the model using the volunteer-specific MAPs. Three activation strategies were tested: activating all muscles [Formula: see text], selecting the three muscles showing highest muscle activity bilaterally [Formula: see text]-this was calculated by taking the mean of left and right muscles and then selecting the three with highest variance-and activating the muscles considered most relevant per instruction [Formula: see text], bilaterally. The model's lip movement was compared to the actual lip movement performed by the volunteers, using 3D correlation coefficients [Formula: see text]. The correlation coefficient between simulations and measurements with [Formula: see text] resulted in a median [Formula: see text] of 0.77. [Formula: see text] had a median [Formula: see text] of 0.78, whereas with [Formula: see text] the median [Formula: see text] decreased to 0.45. We demonstrated that MAPs derived from noninvasive sEMG measurements can control movement of the lips in a generic finite element face model with a median [Formula: see text] of 0.78. Ultimately, this is important to show the patient-specific residual movement using the patient's own MAPs. When the required treatment tools and personalisation techniques for geometry and anatomy become available, this may

  1. Global models for the biomechanics of green plants: 1

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1990-12-01

    The paper considers the biomechanics of green plants for Reynolds number flow in the stem. In particular, it is assumed that the stem is cylindrical and the flow fully-developed. So that if the aspect ratio is defined as the ratio of the stem radius to its length, then when the aspect ratio is small analytical solutions have been developed for the concentration, temperature and the axial velocity. The process of translocation and transpiration are discussed quantitatively. (author). 4 refs, 2 figs

  2. Integrative Role Of Cinematography In Biomechanics Research

    Science.gov (United States)

    Zernicke, Ronald F.; Gregor, Robert J.

    1982-02-01

    Cinematography is an integral element in the interdisciplinary biomechanics research conducted in the Department of Kinesiology at the University of California, Los Angeles. For either an isolated recording of a movement phenomenon or as a recording component which is synchronized with additional transducers and recording equipment, high speed motion picture film has been effectively incorporated into resr'arch projects ranging from two and three dimensional analyses of human movements, locomotor mechanics of cursorial mammals and primates, to the structural responses and dynamic geometries of skeletal muscles, tendons, and ligaments. The basic equipment used in these studies includes three, 16 mm high speed, pin-registered cameras which have the capacity for electronic phase-locking. Crystal oscillators provide the generator pulses to synchronize the timing lights of the cameras and the analog-to-digital recording equipment. A rear-projection system with a sonic digitizer permits quantification of film coordinates which are stored on computer disks. The capacity for synchronizing the high speed films with additional recording equipment provides an effective means of obtaining not only position-time data from film, but also electromyographic, force platform, tendon force transducer, and strain gauge recordings from tissues or moving organisms. During the past few years, biomechanics research which comprised human studies has used both planar and three-dimensional cinematographic techniques. The studies included planar analyses which range from the gait characteristics of lower extremity child amputees to the running kinematics and kinetics of highly skilled sprinters and long-distance runners. The dynamics of race cycling and kinetics of gymnastic maneuvers were studied with cinematography and either a multi-dimensional force platform or a bicycle pedal with strain gauges to determine the time histories of the applied forces. The three-dimensional technique

  3. A dynamic 3D biomechanical evaluation of the load on the low back during different patient-handling tasks.

    Science.gov (United States)

    Skotte, J H; Essendrop, M; Hansen, A F; Schibye, B

    2002-10-01

    The objective of this study was to investigate the low-back loading during common patient-handling tasks. Ten female health care workers without formal training in patient handling performed nine patient-handling tasks including turning, lifting and repositioning a male stroke patient. The low-back loading was quantified by net moment, compression, and shear forces at the L4/L5 joint, measured muscle activity (EMG) in erector spinae muscles and rate of perceived exertion (RPE; Borg scale). The experiments were videotaped with a 50Hz video system using five cameras, and the ground and bedside reaction forces of the health care worker were recorded by means of force platforms and force transducers on the bed. The biomechanical load was calculated using a dynamic 3D seven-segment model of the lower part of the body, and the forces at the L4/L5 joint were estimated by a 14 muscles cross-sectional model of the low back (optimisation procedure). Compression force and torque showed high task dependency whereas the EMG data and the RPE values were more dependent on the subject. The peak compression during two tasks involving lifting the patient (4132/4433N) was significantly higher than all other tasks. Four tasks involving repositioning the patient in the bed (3179/3091/2932/3094N) did not differ, but showed higher peak compression than two tasks turning the patient in the bed (1618/2197N). Thus, in this study the patient-handling tasks could be classified into three groups-characterised by lifting, repositioning or turning-with different levels of peak net torque and compression at the L4/L5 joint.

  4. Technique of the biomechanical analysis of execution of upward jump piked

    Directory of Open Access Journals (Sweden)

    Nataliya Batieieva

    2016-12-01

    Full Text Available Purpose: the biomechanical analysis of execution of upward jump piked. Material & Methods: the following methods of the research were used: theoretical analysis and synthesis of data of special scientific and methodical literature; photographing, video filming, biomechanical computer analysis, pedagogical observation. Students (n=8 of the chair of national choreography of the department of choreographic art of Kiev national university of culture and art took part in carrying out the biomechanical analysis of execution of upward jump piked. Results: the biomechanical analysis of execution of upward jump piked is carried out, the kinematic characteristics (way, speed, acceleration, effort of the general center of weight (GCW and center of weight (CW of biolinks of body of the executor are received (feet, shins, hips, shoulder, forearm, hands. Biokinematic models (phases are constructed. Power characteristics are defined – mechanical work and kinetic energy of links of legs and hands at execution of upward jump piked. Conclusions: it is established that the technique of execution of upward jump piked considerably influences the level of technical training of the qualified sportsmen in gymnastics (sports, in aerobic gymnastics (aerobics, diving and dancing sports.

  5. WE-AB-BRA-02: Development of Biomechanical Models to Describe Dose-Volume Response to Liver Stereotactic Body Radiation Therapy (SBRT) Patients

    International Nuclear Information System (INIS)

    McCulloch, M; Polan, D; Feng, M; Lawrence, T; Haken, R Ten; Brock, K

    2015-01-01

    Purpose: Previous studies have shown that radiotherapy treatment for liver metastases causes marked liver hypertrophy in areas receiving low dose and atrophy/fibrosis in areas receiving high dose. The purpose of this work is to develop and evaluate a biomechanical model-based dose-response model to describe these liver responses to SBRT. Methods: In this retrospective study, a biomechanical model-based deformable registration algorithm, Morfeus, was expanded to include dose-based boundary conditions. Liver and tumor volumes were contoured on the planning images and CT/MR images three months post-RT and converted to finite element models. A thermal expansion-based relationship correlating the delivered dose and volume response was generated from 22 patients previously treated. This coefficient, combined with the planned dose, was applied as an additional boundary condition to describe the volumetric response of the liver of an additional cohort of metastatic liver patients treated with SBRT. The accuracy of the model was evaluated based on overall volumetric liver comparisons and the target registration error (TRE) using the average deviations in positions of identified vascular bifurcations on each set of registered images, with a target accuracy of the 2.5mm isotropic dose grid (vector dimension 4.3mm). Results: The thermal expansion coefficient models the volumetric change of the liver to within 3%. The accuracy of Morfeus with dose-expansion boundary conditions a TRE of 5.7±2.8mm compared to 11.2±3.7mm using rigid registration and 8.9±0.28mm using Morfeus with only spatial boundary conditions. Conclusion: A biomechanical model has been developed to describe the volumetric and spatial response of the liver to SBRT. This work will enable the improvement of correlating functional imaging with delivered dose, the mapping of the delivered dose from one treatment onto the planning images for a subsequent treatment, and will further provide information to assist

  6. Biomimetic Spider Leg Joints: A Review from Biomechanical Research to Compliant Robotic Actuators

    Directory of Open Access Journals (Sweden)

    Stefan Landkammer

    2016-07-01

    Full Text Available Due to their inherent compliance, soft actuated joints are becoming increasingly important for robotic applications, especially when human-robot-interactions are expected. Several of these flexible actuators are inspired by biological models. One perfect showpiece for biomimetic robots is the spider leg, because it combines lightweight design and graceful movements with powerful and dynamic actuation. Building on this motivation, the review article focuses on compliant robotic joints inspired by the function principle of the spider leg. The mechanism is introduced by an overview of existing biological and biomechanical research. Thereupon a classification of robots that are bio-inspired by spider joints is presented. Based on this, the biomimetic robot applications referring to the spider principle are identified and discussed.

  7. Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study

    International Nuclear Information System (INIS)

    Han, Zhaolong; Li, Jiasong; Singh, Manmohan; Wu, Chen; Liu, Chih-hao; Wang, Shang; Idugboe, Rita; Raghunathan, Raksha; Sudheendran, Narendran; Larin, Kirill V; Aglyamov, Salavat R; Twa, Michael D

    2015-01-01

    We present a systematic analysis of the accuracy of five different methods for extracting the biomechanical properties of soft samples using optical coherence elastography (OCE). OCE is an emerging noninvasive technique, which allows assessment of biomechanical properties of tissues with micrometer spatial resolution. However, in order to accurately extract biomechanical properties from OCE measurements, application of a proper mechanical model is required. In this study, we utilize tissue-mimicking phantoms with controlled elastic properties and investigate the feasibilities of four available methods for reconstructing elasticity (Young’s modulus) based on OCE measurements of an air-pulse induced elastic wave. The approaches are based on the shear wave equation (SWE), the surface wave equation (SuWE), Rayleigh-Lamb frequency equation (RLFE), and finite element method (FEM), Elasticity values were compared with uniaxial mechanical testing. The results show that the RLFE and the FEM are more robust in quantitatively assessing elasticity than the other simplified models. This study provides a foundation and reference for reconstructing the biomechanical properties of tissues from OCE data, which is important for the further development of noninvasive elastography methods. (paper)

  8. Applied Biomechanics in an Instructional Setting

    Science.gov (United States)

    Hudson, Jackie L.

    2006-01-01

    Biomechanics is the science of how people move better, meaning more skillfully and more safely. This article places more emphasis on skill rather than safety, though there are many parallels between them. It shares a few features of the author's paradigm of applied biomechanics and discusses an integrated approach toward a middle school football…

  9. Biomechanical responses of PMHS in moderate-speed rear impacts and development of response targets for evaluating the internal and external biofidelity of ATDS.

    Science.gov (United States)

    Kang, Yun-Seok; Bolte, John H; Moorhouse, Kevin; Donnelly, Bruce; Herriott, Rodney; Mallory, Ann

    2012-10-01

    The objectives of this study were to obtain biomechanical responses of post mortem human subjects (PMHS) by subjecting them to two moderate-speed rear impact sled test conditions (8.5g, 17 km/h; 10.5g, 24 km/h) while positioned in an experimental seat system, and to create biomechanical targets for internal and external biofidelity evaluation of rear impact ATDs. The experimental seat was designed to measure external loads on the head restraint (4 load cells), seat back (6 load cells), and seat pan (4 load cells) such that subject dynamic interaction with the seat could be evaluated. This seat system was capable of simulating the dynamic characteristics of modern vehicle seat backs by considering the moment-rotation properties of a typical passenger vehicle, thus providing a more realistic test environment than using a rigid seat with a non-rotating seat back as done in previous studies. Instrumentation used to measure biomechanical responses of the PMHS included both accelerometers and angular rate sensors (ARS). A total of fourteen sled tests using eight PMHS (males 175.8 ± 6.2 cm of stature and 78.4 ± 7.2 kg of weight) provided data sets of seven PMHS for both test conditions. The biomechanical responses are described at both speeds, and cervical spine injuries are documented. Biomechanical targets are also created for internal and external biofidelity evaluation of rear impact anthropomorphic test devices (ATDs).

  10. Biomechanical Remodeling of the Diabetic Gastrointestinal Tract

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Liao, Donghua; Yang, Jian

    2010-01-01

    several years, several studies demonstrated that experimental diabetes induces GI morphological and biomechanical remodeling. Following the development of diabetes, the GI wall becomes thicker and the stiffness of the GI wall increases in a time-dependent manner. It is well known that mechanosensitive...... the biomechanical environment of the mechanosensitive nerve endings, therefore, the structure as well as the tension, stress and strain distribution in the GI wall is important for the sensory and motor function. Biomechanical remodeling of diabetic GI tract including alterations of residual strain and increase...

  11. Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading.

    Science.gov (United States)

    Ignasiak, Dominika; Dendorfer, Sebastian; Ferguson, Stephen J

    2016-04-11

    Musculoskeletal modeling offers an invaluable insight into the spine biomechanics. A better understanding of thoracic spine kinetics is essential for understanding disease processes and developing new prevention and treatment methods. Current models of the thoracic region are not designed for segmental load estimation, or do not include the complex construct of the ribcage, despite its potentially important role in load transmission. In this paper, we describe a numerical musculoskeletal model of the thoracolumbar spine with articulated ribcage, modeled as a system of individual vertebral segments, elastic elements and thoracic muscles, based on a previously established lumbar spine model and data from the literature. The inverse dynamics simulations of the model allow the prediction of spinal loading as well as costal joints kinetics and kinematics. The intradiscal pressure predicted by the model correlated well (R(2)=0.89) with reported intradiscal pressure measurements, providing a first validation of the model. The inclusion of the ribcage did not affect segmental force predictions when the thoracic spine did not perform motion. During thoracic motion tasks, the ribcage had an important influence on the predicted compressive forces and muscle activation patterns. The compressive forces were reduced by up to 32%, or distributed more evenly between thoracic vertebrae, when compared to the predictions of the model without ribcage, for mild thoracic flexion and hyperextension tasks, respectively. The presented musculoskeletal model provides a tool for investigating thoracic spine loading and load sharing between vertebral column and ribcage during dynamic activities. Further validation for specific applications is still necessary. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Optic nerve head biomechanics in aging and disease.

    Science.gov (United States)

    Downs, J Crawford

    2015-04-01

    This nontechnical review is focused upon educating the reader on optic nerve head biomechanics in both aging and disease along two main themes: what is known about how mechanical forces and the resulting deformations are distributed in the posterior pole and ONH (biomechanics) and what is known about how the living system responds to those deformations (mechanobiology). We focus on how ONH responds to IOP elevations as a structural system, insofar as the acute mechanical response of the lamina cribrosa is confounded with the responses of the peripapillary sclera, prelaminar neural tissues, and retrolaminar optic nerve. We discuss the biomechanical basis for IOP-driven changes in connective tissues, blood flow, and cellular responses. We use glaucoma as the primary framework to present the important aspects of ONH biomechanics in aging and disease, as ONH biomechanics, aging, and the posterior pole extracellular matrix (ECM) are thought to be centrally involved in glaucoma susceptibility, onset and progression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The Biomechanics of Gender Difference and Whiplash Injury: Designing Safer Car Seats for Women

    Directory of Open Access Journals (Sweden)

    J. Mordaka

    2003-01-01

    Full Text Available Female car users are reported to have a higher incidence of soft tissue neck injuries in low speed rear-end collisions than males, and they apparently take longer to recover. This paper addresses the whiplash problem by developing a biomechanical FEM (Finite Element Method model of the 50th and the 5th percentile female cervical spines, based on the earlier published male model created at the Nottingham Trent University. This model relies on grafting a detailed biomechanical model of the neck and head onto a standard HYBRID III dummy model. The overall philosophy of the investigation was to see if females responded essentially as scaled down males from the perspective of rear end collisions. It was found that detailed responses varied significantly with gender and it became clear that females cannot be modelled as scaled-down males, thus confirming the need for separate male and female biomechanical models and a revision of car test programmes and regulations which are currently based on the average male. Further investigation is needed to quantify the gender differences and then recommendations can be made for changes to the design of car seats and head restraints in order to reduce the risk of soft tissue injury to women.

  14. A hybrid biomechanical intensity based deformable image registration of lung 4DCT

    International Nuclear Information System (INIS)

    Samavati, Navid; Velec, Michael; Brock, Kristy

    2015-01-01

    Deformable image registration (DIR) has been extensively studied over the past two decades due to its essential role in many image-guided interventions (IGI). IGI demands a highly accurate registration that maintains its accuracy across the entire region of interest. This work evaluates the improvement in accuracy and consistency by refining the results of Morfeus, a biomechanical model-based DIR algorithm.A hybrid DIR algorithm is proposed based on, a biomechanical model–based DIR algorithm and a refinement step based on a B-spline intensity-based algorithm. Inhale and exhale reconstructions of four-dimensional computed tomography (4DCT) lung images from 31 patients were initially registered using the biomechanical DIR by modeling contact surface between the lungs and the chest cavity. The resulting deformations were then refined using the intensity-based algorithm to reduce any residual uncertainties. Important parameters in the intensity-based algorithm, including grid spacing, number of pyramids, and regularization coefficient, were optimized on 10 randomly-chosen patients (out of 31). Target registration error (TRE) was calculated by measuring the Euclidean distance of common anatomical points on both images after registration. For each patient a minimum of 30 points/lung were used.Grid spacing of 8 mm, 5 levels of grid pyramids, and regularization coefficient of 3.0 were found to provide optimal results on 10 randomly chosen patients. Overall the entire patient population (n = 31), the hybrid method resulted in mean ± SD (90th%) TRE of 1.5 ± 1.4 (2.9) mm compared to 3.1 ± 1.9 (5.6) using biomechanical DIR and 2.6 ± 2.5 (6.1) using intensity-based DIR alone.The proposed hybrid biomechanical modeling intensity based algorithm is a promising DIR technique which could be used in various IGI procedures. The current investigation shows the efficacy of this approach for the registration of 4DCT images of the lungs with average accuracy of 1.5

  15. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level.

    Science.gov (United States)

    Ren, Li; Yang, Pengfei; Wang, Zhe; Zhang, Jian; Ding, Chong; Shang, Peng

    2015-10-01

    Bones with complicated hierarchical configuration and microstructures constitute the load-bearing system. Mechanical loading plays an essential role in maintaining bone health and regulating bone mechanical adaptation (modeling and remodeling). The whole-bone or sub-region (macroscopic) mechanical signals, including locomotion-induced loading and external actuator-generated vibration, ultrasound, oscillatory skeletal muscle stimulation, etc., give rise to sophisticated and distinct biomechanical and biophysical environments at the pericellular (microscopic) and collagen/mineral molecular (nanoscopic) levels, which are the direct stimulations that positively influence bone adaptation. While under microgravity, the stimulations decrease or even disappear, which exerts a negative influence on bone adaptation. A full understanding of the biomechanical and biophysical environment at different levels is necessary for exploring bone biomechanical properties and mechanical adaptation. In this review, the mechanical transferring theories from the macroscopic to the microscopic and nanoscopic levels are elucidated. First, detailed information of the hierarchical structures and biochemical composition of bone, which are the foundations for mechanical signal propagation, are presented. Second, the deformation feature of load-bearing bone during locomotion is clarified as a combination of bending and torsion rather than simplex bending. The bone matrix strains at microscopic and nanoscopic levels directly induced by bone deformation are critically discussed, and the strain concentration mechanism due to the complicated microstructures is highlighted. Third, the biomechanical and biophysical environments at microscopic and nanoscopic levels positively generated during bone matrix deformation or by dynamic mechanical loadings induced by external actuators, as well as those negatively affected under microgravity, are systematically discussed, including the interstitial fluid flow

  16. CAD – CAM PROCEDURE USING FOR RAPID PROTOTYPING WITH APPLICATION IN BIOMECHANICS

    Directory of Open Access Journals (Sweden)

    BRAUN Barbu

    2015-06-01

    Full Text Available The paper presents a new and efficient method for modeling some components with application in Biomechanics. It is shown the way in which this method could be successfully applied for orthopedic shoes, namely for foot insoles to correct any plantar deformities. The main advantages of the proposed method refer to low costs, successfully applying for different products for Biomechanics. The prototyped models via CAD/CAM method allowed a rapid and efficient improvement of their design. Another advantage refer to the fact that these can be properly and efficiently tested before prototyping by the point of view of mechanical stress, due to prior simulations, eliminating all costs meaning wastes or adjustments.

  17. Sixth Computational Biomechanics for Medicine Workshop

    CERN Document Server

    Nielsen, Poul MF; Miller, Karol; Computational Biomechanics for Medicine : Deformation and Flow

    2012-01-01

    One of the greatest challenges for mechanical engineers is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. This book is an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. Computational Biomechanics for Medicine: Deformation and Flow collects the papers from the Sixth Computational Biomechanics for Medicine Workshop held in Toronto in conjunction with the Medical Image Computing and Computer Assisted Intervention conference. The topics covered include: medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, injury mechanism analysis, implant and prostheses design, and medical robotics.

  18. Twenty-year trends of authorship and sampling in applied biomechanics research.

    Science.gov (United States)

    Knudson, Duane

    2012-02-01

    This study documented the trends in authorship and sampling in applied biomechanics research published in the Journal of Applied Biomechanics and ISBS Proceedings. Original research articles of the 1989, 1994, 1999, 2004, and 2009 volumes of these serials were reviewed, excluding reviews, modeling papers, technical notes, and editorials. Compared to 1989 volumes, the mean number of authors per paper significantly increased (35 and 100%, respectively) in the 2009 volumes, along with increased rates of hyperauthorship, and a decline in rates of single authorship. Sample sizes varied widely across papers and did not appear to change since 1989.

  19. A biomechanical assessment to evaluate breed differences in normal porcine medial collateral ligaments.

    Science.gov (United States)

    Germscheid, Niccole M; Thornton, Gail M; Hart, David A; Hildebrand, Kevin A

    2011-02-24

    Little information is available on the role of genetic factors and heredity in normal ligament behaviour and their ability to heal. Assessing these factors is challenging because of the lack of suitable animal models. Therefore, the purpose of this study was to develop a porcine model in order to evaluate and compare the biomechanical differences of normal medial collateral ligaments (MCLs) between Yorkshire (YK) and red Duroc (RD) breeds. It was hypothesized that biomechanical differences would not exist between normal YK and RD MCLs. Comparisons between porcine and human MCL were also made. A biomechanical testing apparatus and protocol specific to pig MCL were developed. Ligaments were subjected to cyclic and static creep tests and then elongated to failure. Pig MCL morphology, geometry, and low- and high-load mechanical behaviour were assessed. The custom-designed apparatus and protocol were sufficiently sensitive to detect mechanical property differences between breeds as well as inter-leg differences. The results reveal that porcine MCL is comparable in both shape and size to human MCL and exhibits similar structural and material failure properties, thus making it a feasible model. Comparisons between RD and YK breeds revealed that age-matched RD pigs weigh more, have larger MCL cross-sectional area, and have lower MCL failure stress than YK pigs. The effect of weight may have influenced MCL geometrical and biomechanical properties, and consequently, the differences observed may be due to breed type and/or animal weight. In conclusion, the pig serves as a suitable large animal model for genetic-related connective tissue studies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. The application of finite element analysis in the skull biomechanics and dentistry.

    Science.gov (United States)

    Prado, Felippe Bevilacqua; Rossi, Ana Cláudia; Freire, Alexandre Rodrigues; Ferreira Caria, Paulo Henrique

    2014-01-01

    Empirical concepts describe the direction of the masticatory stress dissipation in the skull. The scientific evidence of the trajectories and the magnitude of stress dissipation can help in the diagnosis of the masticatory alterations and the planning of oral rehabilitation in the different areas of Dentistry. The Finite Element Analysis (FEA) is a tool that may reproduce complex structures with irregular geometries of natural and artificial tissues of the human body because it uses mathematical functions that enable the understanding of the craniofacial biomechanics. The aim of this study was to review the literature on the advantages and limitations of FEA in the skull biomechanics and Dentistry study. The keywords of the selected original research articles were: Finite element analysis, biomechanics, skull, Dentistry, teeth, and implant. The literature review was performed in the databases, PUBMED, MEDLINE and SCOPUS. The selected books and articles were between the years 1928 and 2010. The FEA is an assessment tool whose application in different areas of the Dentistry has gradually increased over the past 10 years, but its application in the analysis of the skull biomechanics is scarce. The main advantages of the FEA are the realistic mode of approach and the possibility of results being based on analysis of only one model. On the other hand, the main limitation of the FEA studies is the lack of anatomical details in the modeling phase of the craniofacial structures and the lack of information about the material properties.

  1. A biomechanical modeling-guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction

    Science.gov (United States)

    Huang, Xiaokun; Zhang, You; Wang, Jing

    2018-02-01

    Reconstructing four-dimensional cone-beam computed tomography (4D-CBCT) images directly from respiratory phase-sorted traditional 3D-CBCT projections can capture target motion trajectory, reduce motion artifacts, and reduce imaging dose and time. However, the limited numbers of projections in each phase after phase-sorting decreases CBCT image quality under traditional reconstruction techniques. To address this problem, we developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, an iterative method that can reconstruct higher quality 4D-CBCT images from limited projections using an inter-phase intensity-driven motion model. However, the accuracy of the intensity-driven motion model is limited in regions with fine details whose quality is degraded due to insufficient projection number, which consequently degrades the reconstructed image quality in corresponding regions. In this study, we developed a new 4D-CBCT reconstruction algorithm by introducing biomechanical modeling into SMEIR (SMEIR-Bio) to boost the accuracy of the motion model in regions with small fine structures. The biomechanical modeling uses tetrahedral meshes to model organs of interest and solves internal organ motion using tissue elasticity parameters and mesh boundary conditions. This physics-driven approach enhances the accuracy of solved motion in the organ’s fine structures regions. This study used 11 lung patient cases to evaluate the performance of SMEIR-Bio, making both qualitative and quantitative comparisons between SMEIR-Bio, SMEIR, and the algebraic reconstruction technique with total variation regularization (ART-TV). The reconstruction results suggest that SMEIR-Bio improves the motion model’s accuracy in regions containing small fine details, which consequently enhances the accuracy and quality of the reconstructed 4D-CBCT images.

  2. Simulations of Biomechanical Phenomena

    Science.gov (United States)

    Gonzalez, Jose Cruz

    Recent studies have published breakthroughs in the application of finite element (FEA) studies in the design and analysis of advanced orthodontics. However, FEA has not captured bone remodeling responses to advanced orthodontics. The results of these simulations report unrealistic displacement around the nasal bridge, which impeded correlation with clinical data. Bone remodeling has been previously documented in FEA and has shown bone response to mechanical stimulus in femur bone models. However, the relationship between mechanical stimulus and bone remodeling has not been reported in orthodontic studies due to the complexity of the skull. In the current study, strain energy is used as the mechanical stimulus to control remodeling, from which density and modulus evolve. Due to the localization of forces in orthodontics, current remodeling algorithms have limited application. In turn, we developed an algorithm that dynamically collects, sorts, and bins stresses in all elements for regional remodeling based on the proximity of the element to the load. The results demonstrate that bone response to orthodontic appliances is different than that of an FEA without bone remodeling, due to load path changes based upon evolution of the bone properties. It was also found that density and moduli proximal to the load application site exhibit faster remodeling than those located remotely. Modeling another biomechanical phenomena, a 3D simulation was created to simulate recent experimental results that discovered a difference in impact mitigation properties of dense-polymer/foam bilayer structure based on the orientation of the dense-polymer with respect to the impact site. The impact energy transmitted varied in time of arrival and amplitude depending on the orientation of the structure (thin layer up or down). By creating a 3D explicit dynamic FEA simulation, it is expected to reduce costly experiments and time consumed in set up, and offer opportunities for optimization for

  3. Biomechanics of subcellular structures by non-invasive Brillouin microscopy

    Science.gov (United States)

    Antonacci, Giuseppe; Braakman, Sietse

    2016-11-01

    Cellular biomechanics play a pivotal role in the pathophysiology of several diseases. Unfortunately, current methods to measure biomechanical properties are invasive and mostly limited to the surface of a cell. As a result, the mechanical behaviour of subcellular structures and organelles remains poorly characterised. Here, we show three-dimensional biomechanical images of single cells obtained with non-invasive, non-destructive Brillouin microscopy with an unprecedented spatial resolution. Our results quantify the longitudinal elastic modulus of subcellular structures. In particular, we found the nucleoli to be stiffer than both the nuclear envelope (p biomechanics and its role in pathophysiology.

  4. Neck muscle biomechanics and neural control.

    Science.gov (United States)

    Fice, Jason Bradley; Siegmund, Gunter P; Blouin, Jean-Sebastien

    2018-04-18

    The mechanics, morphometry, and geometry of our joints, segments and muscles are fundamental biomechanical properties intrinsic to human neural control. The goal of our study was to investigate if the biomechanical actions of individual neck muscles predicts their neural control. Specifically, we compared the moment direction & variability produced by electrical stimulation of a neck muscle (biomechanics) to their preferred activation direction & variability (neural control). Subjects sat upright with their head fixed to a 6-axis load cell and their torso restrained. Indwelling wire electrodes were placed into the sternocleidomastoid (SCM), splenius capitis (SPL), and semispinalis capitis (SSC) muscles. The electrically stimulated direction was defined as the moment direction produced when a current (2-19mA) was passed through each muscle's electrodes. Preferred activation direction was defined as the vector sum of the spatial tuning curve built from RMS EMG when subjects produced isometric moments at 7.5% and 15% of their maximum voluntary contraction (MVC) in 26 3D directions. The spatial tuning curves at 15% MVC were well-defined (unimodal, pbiomechanics but, as activation increases, biomechanical constraints in part dictate the activation of synergistic neck muscles.

  5. On seed physiology, biomechanics and plant phenology in Eragrostis tef

    NARCIS (Netherlands)

    Delden, van S.H.

    2011-01-01

    • Key words: Teff (Eragrostis tef (Zuccagni) Trotter), germination, temperature, model, leaf appearance, phyllochron, development rate, lodging, biomechanics, safety factor, flowering, heading, day length, photoperiod.

    • Background Teff (Eragrostis tef (Zuccagni) Trotter) is a C4 annual

  6. Biomechanical implications of lumbar spinal ligament transection.

    Science.gov (United States)

    Von Forell, Gregory A; Bowden, Anton E

    2014-11-01

    Many lumbar spine surgeries either intentionally or inadvertently damage or transect spinal ligaments. The purpose of this work was to quantify the previously unknown biomechanical consequences of isolated spinal ligament transection on the remaining spinal ligaments (stress transfer), vertebrae (bone remodelling stimulus) and intervertebral discs (disc pressure) of the lumbar spine. A finite element model of the full lumbar spine was developed and validated against experimental data and tested in the primary modes of spinal motion in the intact condition. Once a ligament was removed, stress increased in the remaining spinal ligaments and changes occurred in vertebral strain energy, but disc pressure remained similar. All major biomechanical changes occurred at the same spinal level as the transected ligament, with minor changes at adjacent levels. This work demonstrates that iatrogenic damage to spinal ligaments disturbs the load sharing within the spinal ligament network and may induce significant clinically relevant changes in the spinal motion segment.

  7. Biomechanical studies: science (f)or common sense?

    NARCIS (Netherlands)

    Mellema, Jos J.; Doornberg, Job N.; Guitton, Thierry G.; Ring, David; van der Zwan, A. L.; Spoor, A. B.; van Vugt, A. B.; Armstrong, A. D.; Shrivastava, A.; Wahegaonkar, A. L.; Shafritz, A. B.; Adams, J.; Ilyas, A.; Vochteloo, A. J. H.; Castillo, A. P.; Basak, A.; Andreas, P.; Barquet, A.; Kristan, A.; Berner, A.; Ranade, A. B.; Ashish, S.; Terrono, A. L.; Jubel, A.; Frieman, B.; Bamberger, H. B.; van den Bekerom, M. P. J.; Belangero, W. D.; Hearon, B. F.; Boler, J. M.; Walter, F. L.; Boyer, M.; Wills, B. P. D.; Broekhuyse, H.; Buckley, R.; Watkins, B.; Sears, B. W.; Calfee, R. P.; Ekholm, C.; Fernandes, C. H.; Swigart, C.; Cassidy, C.; Wilson, C. J.; Bainbridge, L. C.; Wilson, C.; Eygendaal, D.; Goslings, J. C.; Schep, N.; Kloen, P.; Haverlag, R.

    2014-01-01

    It is our impression that many biomechanical studies invest substantial resources studying the obvious: that more and larger metal is stronger. The purpose of this study is to evaluate if a subset of biomechanical studies comparing fixation constructs just document common sense. Using a web-based

  8. The Influence of Lower Extremity Lean Mass on Landing Biomechanics During Prolonged Exercise.

    Science.gov (United States)

    Montgomery, Melissa M; Tritsch, Amanda J; Cone, John R; Schmitz, Randy J; Henson, Robert A; Shultz, Sandra J

    2017-08-01

      The extent to which lower extremity lean mass (LELM) relative to total body mass influences one's ability to maintain safe landing biomechanics during prolonged exercise when injury incidence increases is unknown.   To examine the influence of LELM on (1) pre-exercise lower extremity biomechanics and (2) changes in biomechanics during an intermittent exercise protocol (IEP) and (3) determine whether these relationships differ by sex. We hypothesized that less LELM would predict higher-risk baseline biomechanics and greater changes toward higher-risk biomechanics during the IEP.   Cohort study.   Controlled laboratory.   A total of 59 athletes (30 men: age = 20.3 ± 2.0 years, height = 1.79 ± 0.05 m, mass = 75.2 ± 7.2 kg; 29 women: age = 20.6 ± 2.3 years, height = 1.67 ± 0.08 m, mass = 61.8 ± 9.0 kg) participated.   Before completing an individualized 90-minute IEP designed to mimic a soccer match, participants underwent dual-energy x-ray absorptiometry testing for LELM.   Three-dimensional lower extremity biomechanics were measured during drop-jump landings before the IEP and every 15 minutes thereafter. A previously reported principal components analysis reduced 40 biomechanical variables to 11 factors. Hierarchical linear modeling analysis then determined the extent to which sex and LELM predicted the baseline score and the change in each factor over time.   Lower extremity lean mass did not influence baseline biomechanics or the changes over time. Sex influenced the biomechanical factor representing knee loading at baseline (P = .04) and the changes in the anterior cruciate ligament-loading factor over time (P = .03). The LELM had an additional influence only on women who possessed less LELM (P = .03 and .02, respectively).   Lower extremity lean mass influenced knee loading during landing in women but not in men. The effect appeared to be stronger in women with less LELM. Continually decreasing knee loading over time may reflect a

  9. An integrated approach to the biomechanics and motor control of cricket fast bowling techniques.

    Science.gov (United States)

    Glazier, Paul S; Wheat, Jonathan S

    2014-01-01

    To date, scientific investigations into the biomechanical aspects of cricket fast bowling techniques have predominantly focused on identifying the mechanical factors that may predispose fast bowlers to lower back injury with a relative paucity of research being conducted on the technical features that underpin proficient fast bowling performance. In this review paper, we critique the scientific literature examining fast bowling performance. We argue that, although many published investigations have provided some useful insights into the biomechanical factors that contribute to a high ball release speed and, to a lesser extent, bowling accuracy, this research has not made a substantive contribution to knowledge enhancement and has only had a very minor influence on coaching practice. To significantly enhance understanding of cricket fast bowling techniques and, therefore, have greater impact on practice, we recommend that future scientific research adopts an interdisciplinary focus, integrating biomechanical measurements with the analytical tools and concepts of dynamical systems motor control theory. The use of qualitative (topological) analysis techniques, in particular, promises to increase understanding of the coordinative movement patterns that define 'technique' in cricket fast bowling and potentially help distinguish between functional and dysfunctional aspects of technique for individual fast bowlers.

  10. Role of Aquaporin 0 in lens biomechanics.

    Science.gov (United States)

    Sindhu Kumari, S; Gupta, Neha; Shiels, Alan; FitzGerald, Paul G; Menon, Anil G; Mathias, Richard T; Varadaraj, Kulandaiappan

    2015-07-10

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5(-/-)), AQP0 KO (heterozygous KO: AQP0(+/-); homozygous KO: AQP0(-/-); all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0(+/-) lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and together they help to confer

  11. CT-derived Biomechanical Metrics Improve Agreement Between Spirometry and Emphysema.

    Science.gov (United States)

    Bhatt, Surya P; Bodduluri, Sandeep; Newell, John D; Hoffman, Eric A; Sieren, Jessica C; Han, Meilan K; Dransfield, Mark T; Reinhardt, Joseph M

    2016-10-01

    Many patients with chronic obstructive pulmonary disease (COPD) have marked discordance between forced expiratory volume in 1 second (FEV1) and degree of emphysema on computed tomography (CT). Biomechanical differences between these patients have not been studied. We aimed to identify reasons for the discordance between CT and spirometry in some patients with COPD. Subjects with Global initiative for chronic Obstructive Lung Disease stages I-IV from a large multicenter study (The Genetic Epidemiology of COPD) were arranged by percentiles of %predicted FEV1 and emphysema on CT. Three categories were created using differences in percentiles: Catspir with predominant airflow obstruction/minimal emphysema, CatCT with predominant emphysema/minimal airflow obstruction, and Catmatched with matched FEV1 and emphysema. Image registration was used to derive Jacobian determinants, a measure of lung elasticity, anisotropy, and strain tensors, to assess biomechanical differences between groups. Regression models were created with the previously mentioned categories as outcome variable, adjusting for demographics, scanner type, quantitative CT-derived emphysema, gas trapping, and airway thickness (model 1), and after adding biomechanical CT metrics (model 2). Jacobian determinants, anisotropy, and strain tensors were strongly associated with FEV1. With Catmatched as control, model 2 predicted Catspir and CatCT better than model 1 (Akaike information criterion 255.8 vs. 320.8). In addition to demographics, the strongest independent predictors of FEV1 were Jacobian mean (β = 1.60,95%confidence intervals [CI] = 1.16 to 1.98; P spirometry, offering the potential for new insights into the linkage between regional parenchymal destruction and global decrement in lung function in patients with COPD. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  12. New tools for Content Innovation and data sharing: Enhancing reproducibility and rigor in biomechanics research.

    Science.gov (United States)

    Guilak, Farshid

    2017-03-21

    We are currently in one of the most exciting times for science and engineering as we witness unprecedented growth in our computational and experimental capabilities to generate new data and models. To facilitate data and model sharing, and to enhance reproducibility and rigor in biomechanics research, the Journal of Biomechanics has introduced a number of tools for Content Innovation to allow presentation, sharing, and archiving of methods, models, and data in our articles. The tools include an Interactive Plot Viewer, 3D Geometric Shape and Model Viewer, Virtual Microscope, Interactive MATLAB Figure Viewer, and Audioslides. Authors are highly encouraged to make use of these in upcoming journal submissions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Biomechanical analysis of rollator walking

    DEFF Research Database (Denmark)

    Alkjaer, T; Larsen, Peter K; Pedersen, Gitte

    2006-01-01

    The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects.......The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects....

  14. Equivalent Dynamic Models.

    Science.gov (United States)

    Molenaar, Peter C M

    2017-01-01

    Equivalences of two classes of dynamic models for weakly stationary multivariate time series are discussed: dynamic factor models and autoregressive models. It is shown that exploratory dynamic factor models can be rotated, yielding an infinite set of equivalent solutions for any observed series. It also is shown that dynamic factor models with lagged factor loadings are not equivalent to the currently popular state-space models, and that restriction of attention to the latter type of models may yield invalid results. The known equivalent vector autoregressive model types, standard and structural, are given a new interpretation in which they are conceived of as the extremes of an innovating type of hybrid vector autoregressive models. It is shown that consideration of hybrid models solves many problems, in particular with Granger causality testing.

  15. Role of Aquaporin 0 in lens biomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Sindhu Kumari, S.; Gupta, Neha [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); Shiels, Alan [Washington University School of Medicine, St. Louis, MO (United States); FitzGerald, Paul G. [Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA (United States); Menon, Anil G. [University of Cincinnati College of Medicine, Cincinnati, OH (United States); Mathias, Richard T. [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); SUNY Eye Institute, NY (United States); Varadaraj, Kulandaiappan, E-mail: kulandaiappan.varadaraj@stonybrook.edu [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); SUNY Eye Institute, NY (United States)

    2015-07-10

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5{sup −/−}), AQP0 KO (heterozygous KO: AQP0{sup +/−}; homozygous KO: AQP0{sup −/−}; all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0{sup +/−} lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and

  16. Role of Aquaporin 0 in lens biomechanics

    International Nuclear Information System (INIS)

    Sindhu Kumari, S.; Gupta, Neha; Shiels, Alan; FitzGerald, Paul G.; Menon, Anil G.; Mathias, Richard T.; Varadaraj, Kulandaiappan

    2015-01-01

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5 −/− ), AQP0 KO (heterozygous KO: AQP0 +/− ; homozygous KO: AQP0 −/− ; all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0 +/− lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and together they help to

  17. Smart Materials in Structural Health Monitoring, Control and Biomechanics

    CERN Document Server

    Soh, Chee-Kiong; Bhalla, Suresh

    2012-01-01

    "Smart Materials in Structural Health Monitoring, Control and Biomechanics" presents the latest developments in structural health monitoring, vibration control and biomechanics using smart materials. The book mainly focuses on piezoelectric, fibre optic and ionic polymer metal composite materials. It introduces concepts from the very basics and leads to advanced modelling (analytical/ numerical), practical aspects (including software/ hardware issues) and case studies spanning civil, mechanical and aerospace structures, including bridges, rocks and underground structures. This book is intended for practicing engineers, researchers from academic and R&D institutions and postgraduate students in the fields of smart materials and structures, structural health monitoring, vibration control and biomedical engineering. Professor Chee-Kiong Soh and Associate Professor Yaowen Yang both work at the School of Civil and Environmental Engineering, Nanyang Technological University, Singapore. Dr. Suresh Bhalla is an A...

  18. Conference on Multibody Dynamics

    CERN Document Server

    Multibody Dynamics : Computational Methods and Applications

    2014-01-01

    By having its origin in analytical and continuum mechanics, as well as in computer science and applied mathematics, multibody dynamics provides a basis for analysis and virtual prototyping of innovative applications in many fields of contemporary engineering. With the utilization of computational models and algorithms that classically belonged to different fields of applied science, multibody dynamics delivers reliable simulation platforms for diverse highly-developed industrial products such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, smart structures, biomechanical applications and nano-technologies. The chapters of this volume are based on the revised and extended versions of the selected scientific papers from amongst 255 original contributions that have been accepted to be presented within the program of the distinguished international ECCOMAS conference. It reflects state-of-the-art in the advances of multibody dynamics, providing excellent insight in the recen...

  19. Dynamic legged locomotion in robots and animals

    Science.gov (United States)

    Raibert, Marc; Playter, Robert; Ringrose, Robert; Bailey, Dave; Leeser, Karl

    1995-01-01

    This report documents our study of active legged systems that balance actively and move dynamically. The purpose of this research is to build a foundation of knowledge that can lead both to the construction of useful legged vehicles and to a better understanding of how animal locomotion works. In this report we provide an update on progress during the past year. Here are the topics covered in this report: (1) Is cockroach locomotion dynamic? To address this question we created three models of cockroaches, each abstracted at a different level. We provided each model with a control system and computer simulation. One set of results suggests that 'Groucho Running,' a type of dynamic walking, seems feasible at cockroach scale. (2) How do bipeds shift weight between the legs? We built a simple planar biped robot specifically to explore this question. It shifts its weight from one curved foot to the other, using a toe-off and toe-on strategy, in conjunction with dynamic tipping. (3) 3D biped gymnastics: The 3D biped robot has done front somersaults in the laboratory. The robot changes its leg length in flight to control rotation rate. This in turn provides a mechanism for controlling the landing attitude of the robot once airborne. (4) Passively stabilized layout somersault: We have found that the passive structure of a gymnast, the configuration of masses and compliances, can stabilize inherently unstable maneuvers. This means that body biomechanics could play a larger role in controlling behavior than is generally thought. We used a physical 'doll' model and computer simulation to illustrate the point. (5) Twisting: Some gymnastic maneuvers require twisting. We are studying how to couple the biomechanics of the system to its control to produce efficient, stable twisting maneuvers.

  20. Dual-task and anticipation impact lower limb biomechanics during a single-leg cut with body borne load.

    Science.gov (United States)

    Seymore, Kayla D; Cameron, Sarah E; Kaplan, Jonathan T; Ramsay, John W; Brown, Tyler N

    2017-12-08

    This study quantified how a dual cognitive task impacts lower limb biomechanics during anticipated and unanticipated single-leg cuts with body borne load. Twenty-four males performed anticipated and unanticipated cuts with and without a dual cognitive task with three load conditions: no load (∼6 kg), medium load (15% of BW), and heavy load (30% of BW). Lower limb biomechanics were submitted to a repeated measures linear mixed model to test the main and interaction effects of load, anticipation, and dual task. With body borne load, participants increased peak stance (PS) hip flexion (p = .004) and hip internal rotation (p = .001) angle, and PS hip flexion (p = .001) and internal rotation (p = .018), and knee flexion (p = .016) and abduction (p = .001) moments. With the dual task, participants decreased PS knee flexion angle (p biomechanical adaptations thought to increase risk of musculoskeletal injury, but neither anticipation nor dual task exaggerated those biomechanical adaptations. With a dual task, participants adopted biomechanics known to increase injury risk; whereas, participants used lower limb biomechanics thought to decrease injury risk during unanticipated cuts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The effect of radiation processing and filler morphology on the biomechanical stability of a thermoset polyester composite

    Energy Technology Data Exchange (ETDEWEB)

    Jayabalan, M; Shalumon, K T; Mitha, M K [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Polymer Division, BMT Wing, Thiruvananthapuram 695 012, Kerala (India); Ganesan, K; Epple, M, E-mail: muthujayabalan@rediffmail.co [University of Duisburg-Essen, Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), Universitaetsstr. 5-7, 45117 Essen (Germany)

    2010-04-15

    The effect of radiation processing and filler morphology on the biodegradation and biomechanical stability of a poly(propylene fumarate)/hydroxyapatite composite was investigated. Radiation processing influenced both cross-linking and biodegradation of the composites. Irradiation with a dose of 3 Mrad resulted in enhanced cross-linking, mechanical properties and a higher storage modulus which are favourable for dimensional stability of the implant. The particle morphology of the added hydroxyapatite in the highly cross-linked state significantly influenced the biomechanical and interfacial stability of the composites. Reorganization of agglomerated hydroxyapatite occurred in the cross-linked polymeric matrix under dynamic mechanical loading under simulated physiological conditions. Such a reorganization may increase the damping characteristics of the composite.

  2. The effect of radiation processing and filler morphology on the biomechanical stability of a thermoset polyester composite.

    Science.gov (United States)

    Jayabalan, M; Shalumon, K T; Mitha, M K; Ganesan, K; Epple, M

    2010-04-01

    The effect of radiation processing and filler morphology on the biodegradation and biomechanical stability of a poly(propylene fumarate)/hydroxyapatite composite was investigated. Radiation processing influenced both cross-linking and biodegradation of the composites. Irradiation with a dose of 3 Mrad resulted in enhanced cross-linking, mechanical properties and a higher storage modulus which are favourable for dimensional stability of the implant. The particle morphology of the added hydroxyapatite in the highly cross-linked state significantly influenced the biomechanical and interfacial stability of the composites. Reorganization of agglomerated hydroxyapatite occurred in the cross-linked polymeric matrix under dynamic mechanical loading under simulated physiological conditions. Such a reorganization may increase the damping characteristics of the composite.

  3. The effect of radiation processing and filler morphology on the biomechanical stability of a thermoset polyester composite

    International Nuclear Information System (INIS)

    Jayabalan, M; Shalumon, K T; Mitha, M K; Ganesan, K; Epple, M

    2010-01-01

    The effect of radiation processing and filler morphology on the biodegradation and biomechanical stability of a poly(propylene fumarate)/hydroxyapatite composite was investigated. Radiation processing influenced both cross-linking and biodegradation of the composites. Irradiation with a dose of 3 Mrad resulted in enhanced cross-linking, mechanical properties and a higher storage modulus which are favourable for dimensional stability of the implant. The particle morphology of the added hydroxyapatite in the highly cross-linked state significantly influenced the biomechanical and interfacial stability of the composites. Reorganization of agglomerated hydroxyapatite occurred in the cross-linked polymeric matrix under dynamic mechanical loading under simulated physiological conditions. Such a reorganization may increase the damping characteristics of the composite.

  4. Recent microfluidic devices for studying gamete and embryo biomechanics.

    Science.gov (United States)

    Lai, David; Takayama, Shuichi; Smith, Gary D

    2015-06-25

    The technical challenges of biomechanic research such as single cell analysis at a high monetary cost, labor, and time for just a small number of measurements is a good match to the strengths of microfluidic devices. New scientific discoveries in the fertilization and embryo development process, of which biomechanics is a major subset of interest, is crucial to fuel the continual improvement of clinical practice in assisted reproduction. The following review will highlight some recent microfluidic devices tailored for gamete and embryo biomechanics where biomimicry arises as a major theme of microfluidic device design and function, and the application of fundamental biomechanic principles are used to improve outcomes of cryopreservation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Lingual biomechanics, case selection and success

    Directory of Open Access Journals (Sweden)

    Sanjay Labh

    2016-01-01

    Full Text Available Deeper understanding of lingual biomechanics is prerequisite for success with lingual appliance. The difference between labial and lingual force system must be understood and kept in mind during treatment planning, especially anchorage planning, and extraction decision-making. As point of application of force changes, it completely changes the force system in all planes. This article describes lingual biomechanics, anchorage planning, diagnostic considerations, treatment planning, and case selection criteria in lingual orthodontics.

  6. A knee-mounted biomechanical energy harvester with enhanced efficiency and safety

    Science.gov (United States)

    Chen, Chao; Chau, Li Yin; Liao, Wei-Hsin

    2017-06-01

    Energy harvesting is becoming a major limiting issue for many portable devices. When undertaking any activity, the human body generates a significant amount of biomechanical energy, which can be collected by means of a portable energy harvester. This energy provides a method of powering portable devices such as prosthetic limbs. In this paper, a knee-mounted energy harvester with enhanced efficiency and safety is proposed and developed to convert mechanical energy into electricity during human motion. This device can change the bi-directional knee input into uni-directional rotation for an electromagnetic generator using a specially designed transmission system. Without the constraint of induced impact on the human body, this device can harvest biomechanical energy from both knee flexion and extension, improving the harvesting efficiency over previous single-direction energy harvesters. It can also provide protection from device malfunction, and increase the safety of current biomechanical energy harvesters. A highly compact and light prototype is developed taking into account human kinematics. The biomechanical energy harvesting system is also modeled and analyzed. The prototype is tested under different conditions including walking, running and climbing stairs, to evaluate the energy harvesting performance and effect on the human gait. The experimental results show that the prototype can harvest an average power of 3.6 W at 1.5 m s-1 walking speed, which is promising for portable electronic devices.

  7. [Three-dimensional finite element modeling and biomechanical simulation for evaluating and improving postoperative internal instrumentation of neck-thoracic vertebral tumor en bloc resection].

    Science.gov (United States)

    Qinghua, Zhao; Jipeng, Li; Yongxing, Zhang; He, Liang; Xuepeng, Wang; Peng, Yan; Xiaofeng, Wu

    2015-04-07

    To employ three-dimensional finite element modeling and biomechanical simulation for evaluating the stability and stress conduction of two postoperative internal fixed modeling-multilevel posterior instrumentation ( MPI) and MPI with anterior instrumentation (MPAI) with neck-thoracic vertebral tumor en bloc resection. Mimics software and computed tomography (CT) images were used to establish the three-dimensional (3D) model of vertebrae C5-T2 and simulated the C7 en bloc vertebral resection for MPI and MPAI modeling. Then the statistics and images were transmitted into the ANSYS finite element system and 20N distribution load (simulating body weight) and applied 1 N · m torque on neutral point for simulating vertebral displacement and stress conduction and distribution of motion mode, i. e. flexion, extension, bending and rotating. With a better stability, the displacement of two adjacent vertebral bodies of MPI and MPAI modeling was less than that of complete vertebral modeling. No significant differences existed between each other. But as for stress shielding effect reduction, MPI was slightly better than MPAI. From biomechanical point of view, two internal instrumentations with neck-thoracic tumor en bloc resection may achieve an excellent stability with no significant differences. But with better stress conduction, MPI is more advantageous in postoperative reconstruction.

  8. Biomechanical and neuromuscular characteristics of male athletes: implications for the development of anterior cruciate ligament injury prevention programs.

    Science.gov (United States)

    Sugimoto, Dai; Alentorn-Geli, Eduard; Mendiguchía, Jurdan; Samuelsson, Kristian; Karlsson, Jon; Myer, Gregory D

    2015-06-01

    Prevention of anterior cruciate ligament (ACL) injury is likely the most effective strategy to reduce undesired health consequences including reconstruction surgery, long-term rehabilitation, and pre-mature osteoarthritis occurrence. A thorough understanding of mechanisms and risk factors of ACL injury is crucial to develop effective prevention programs, especially for biomechanical and neuromuscular modifiable risk factors. Historically, the available evidence regarding ACL risk factors has mainly involved female athletes or has compared male and female athletes without an intra-group comparison for male athletes. Therefore, the principal purpose of this article was to review existing evidence regarding the investigation of biomechanical and neuromuscular characteristics that may imply aberrant knee kinematics and kinetics that would place the male athlete at risk of ACL injury. Biomechanical evidence related to knee kinematics and kinetics was reviewed by different planes (sagittal and frontal/coronal), tasks (single-leg landing and cutting), situation (anticipated and unanticipated), foot positioning, playing surface, and fatigued status. Neuromuscular evidence potentially related to ACL injury was reviewed. Recommendations for prevention programs for ACL injuries in male athletes were developed based on the synthesis of the biomechanical and neuromuscular characteristics. The recommendations suggest performing exercises with multi-plane biomechanical components including single-leg maneuvers in dynamic movements, reaction to and decision making in unexpected situations, appropriate foot positioning, and consideration of playing surface condition, as well as enhancing neuromuscular aspects such as fatigue, proprioception, muscle activation, and inter-joint coordination.

  9. MRI and CT lung biomarkers: Towards an in vivo understanding of lung biomechanics.

    Science.gov (United States)

    Young, Heather M; Eddy, Rachel L; Parraga, Grace

    2017-09-29

    The biomechanical properties of the lung are necessarily dependent on its structure and function, both of which are complex and change over time and space. This makes in vivo evaluation of lung biomechanics and a deep understanding of lung biomarkers, very challenging. In patients and animal models of lung disease, in vivo evaluations of lung structure and function are typically made at the mouth and include spirometry, multiple-breath gas washout tests and the forced oscillation technique. These techniques, and the biomarkers they provide, incorporate the properties of the whole organ system including the parenchyma, large and small airways, mouth, diaphragm and intercostal muscles. Unfortunately, these well-established measurements mask regional differences, limiting their ability to probe the lung's gross and micro-biomechanical properties which vary widely throughout the organ and its subcompartments. Pulmonary imaging has the advantage in providing regional, non-invasive measurements of healthy and diseased lung, in vivo. Here we summarize well-established and emerging lung imaging tools and biomarkers and how they may be used to generate lung biomechanical measurements. We review well-established and emerging lung anatomical, microstructural and functional imaging biomarkers generated using synchrotron x-ray tomographic-microscopy (SRXTM), micro-x-ray computed-tomography (micro-CT), clinical CT as well as magnetic resonance imaging (MRI). Pulmonary imaging provides measurements of lung structure, function and biomechanics with high spatial and temporal resolution. Imaging biomarkers that reflect the biomechanical properties of the lung are now being validated to provide a deeper understanding of the lung that cannot be achieved using measurements made at the mouth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Important learning factors in high- and low-achieving students in undergraduate biomechanics.

    Science.gov (United States)

    Hsieh, ChengTu; Knudson, Duane

    2017-07-21

    The purpose of the present study was to document crucial factors associated with students' learning of biomechanical concepts, particularly between high- and-low achieving students. Students (N = 113) from three introductory biomechanics classes at two public universities volunteered for the study. Two measures of students' learning were obtained, final course grade and improvement on the Biomechanics Concept Inventory version 3 administered before and after the course. Participants also completed a 15-item questionnaire documenting student learning characteristics, effort, and confidence. Partial correlations controlling for all other variables in the study, confirmed previous studies that students' grade point average (p biomechanics, (p biomechanics concepts. Students' confidence when encountering difficult biomechanics concepts was also significantly (p biomechanics and confidence in solving relevant professional problems in order to improve learning for both low- and high-ability students.

  11. Artificial playing surfaces research: a review of medical, engineering and biomechanical aspects.

    Science.gov (United States)

    Dixon, S J; Batt, M E; Collop, A C

    1999-05-01

    In this paper, current knowledge of artificial playing surfaces is reviewed. Research status in the fields of sports medicine, engineering and biomechanics is described. A multidisciplinary approach to the study of artificial sports surface properties is recommended. The development of modelling techniques to characterise fundamental material properties is described as the most appropriate method for the unique specification of material properties such as stiffness and damping characteristics. It is suggested that the systematic manipulation of fundamental surface material properties in biomechanics research will allow the identification of subject responses to clearly defined surface variation. It is suggested that subjects should be grouped according to characteristic behaviour on specific sports surfaces. It is speculated that future biomechanics research will identify subject criterion related to differing group responses. The literature evidence of interactions between sports shoes and sports surfaces leads to the suggestion that sports shoe and sports surface companies should work together in the development of ideal shoe - surface combinations for particular groups of subjects.

  12. Biomechanics of footwear.

    Science.gov (United States)

    Snijders, C J

    1987-07-01

    This article discusses biomechanical principles that indicate a number of basic design criteria for shoes and the properties of good footwear in terms of normal daily activities at home, at school, and at work. These properties also apply to normal occupational footwear and safety footwear.

  13. Intraocular pressure measurements and corneal biomechanical properties using a dynamic Scheimpflug analyzer, after several keratoplasty techniques, versus normal eyes.

    Science.gov (United States)

    Hugo, J; Granget, E; Ho Wang Yin, G; Sampo, M; Hoffart, L

    2018-01-01

    To evaluate the biomechanical properties of the cornea and their impact on intraocular pressure (IOP) measurement after lamellar keratoplasty, compared to healthy eyes, using a non-contact tonometer with a Scheimpflug camera. This study, from 2014 to 2015, included 22 primary DSAEK, 5 DALK, 6 DSAEK after PK, and 50 control eyes. Using a non-contact tonometer with a high-speed Scheimpflug camera (CORVIS ST, Oculus Optikgeräte GmbH, Wetzlar, Germany), several biomechanical parameters were recorded, including radius at highest concavity (R hc ) and defomation amplitude (DA). Central corneal thickness (CCT) and uncorrected IOP, were also recorded. For the control eyes only, a corrected IOP was calculated, based on age, central corneal thickness, and biomechanical parameters. R hc was significantly lower after DALK (R hc =5.54±0.71, P=0.007) and DSAEK (R hc =6.26±0.77, P=0.042) compared to control eyes (R hc =6.82±0.76). DA was higher after DALK and DSAEK, but not significantly (respectively 1.24±0.09 P=0.41 and 1.22±0.15, P=0.923) compared to normal eyes (1.18±0.15). Uncorrected IOP was not significantly different between post-keratoplasty and control eyes. In control eyes, the corrected IOP (15.23±1.88) was lower than the uncorrected IOP (16.10±2.34); a statistically significant positive correlation between R hc and CCT (R 2 =0.6020, P<0001), and a significant negative correlation between DA and CCT (R 2 =-0.641, P<0.0001) were found. Our study showed that, after lamellar keratoplasty, corneal biomechanics are altered. Corneas with higher ocular rigidity will show a lower DA and a higher R hc . Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Changes in fatigue, multiplanar knee laxity, and landing biomechanics during intermittent exercise.

    Science.gov (United States)

    Shultz, Sandra J; Schmitz, Randy J; Cone, John R; Henson, Robert A; Montgomery, Melissa M; Pye, Michele L; Tritsch, Amanda J

    2015-05-01

    Knee laxity increases during exercise. However, no one, to our knowledge, has examined whether these increases contribute to higher-risk landing biomechanics during prolonged, fatiguing exercise. To examine associations between changes in fatigue (measured as sprint time [SPTIME]), multiplanar knee laxity (anterior-posterior [APLAX], varus-valgus [VVLAX] knee laxity, and internal-external rotation [IERLAX]) knee laxity and landing biomechanics during prolonged, intermittent exercise. Descriptive laboratory study. Laboratory and gymnasium. A total of 30 male (age = 20.3 ± 2.0 years, height = 1.79 ± 0.05 m, mass = 75.2 ± 7.2 kg) and 29 female (age = 20.5 ± 2.3 years, height = 1.67 ± 0.08 m, mass = 61.8 ± 9.0 kg) competitive athletes. A 90-minute intermittent exercise protocol (IEP) designed to simulate the physiologic and biomechanical demands of a soccer match. We measured SPTIME, APLAX, and landing biomechanics before and after warm-up, every 15 minutes during the IEP, and every 15 minutes for 1 hour after the IEP. We measured VVLAX and IERLAX before and after the warm-up, at 45 and 90 minutes during the IEP, and at 30 minutes after the IEP. We used hierarchical linear modeling to examine associations between exercise-related changes in SPTIME and knee laxity with exercise-related changes in landing biomechanics while controlling for initial (before warm-up) knee laxity. We found that SPTIME had a more global effect on landing biomechanics in women than in men, resulting in a more upright landing and a reduction in landing forces and out-of-plane motions about the knee. As APLAX increased with exercise, women increased their knee internal-rotation motion (P = .02), and men increased their hip-flexion motion and energy-absorption (P = .006) and knee-extensor loads (P = .04). As VVLAX and IERLAX increased, women went through greater knee-valgus motion and dorsiflexion and absorbed more energy at the knee (P ≤ .05), whereas men were positioned in greater hip

  15. BIOMECHANIC EVALUATION OF CARPENTRY WORKERS IN THE DISTRITO FEDERAL, BRAZIL

    Directory of Open Access Journals (Sweden)

    Nilton Cesar Fiedler

    2010-08-01

    Full Text Available The aim of this study was the biomechanical assessment of carpentry woodworkers, located in Brasília, DF. It was filmed the profile of each worker during the performance of his activities in the carpentry and the forces involved in the work were assessed. The image of each woodworker was congealed to accomplish the measurement of articulation angles. The data were submitted to the software of posture analysis “Winowas” (OWAS Method and to the biomechanic model of posture prognosis and static forces, developed by Michigan University. The OWAS method showed that, for all machines and carpentries assessed, the worst posture occurred when the worker lifted and placed the pieces of wood on the floor and during the feeding in the smoother. The tridimensional biomechanic model registered the worst posture in different phases of the work cycle. In the first one, there were problems in all articulations, except the hips, when placing the pieces on the floor from the smoother. In the second one, there were problems in all articulations, except the elbows and the L5-S1 column disc, by feeding the surface planer. The third one, the ankles were the most injured when feeding the smoother, the surface planer, the circular saw and the band saw. According to the results, the woodworkers should try to eliminate the constant work standing upright, use auxiliary machinery to handle pieces of wood, reduce the load during feeding the machines and improve postures.

  16. Biomechanics Strategies for Space Closure in Deep Overbite

    Directory of Open Access Journals (Sweden)

    Harryanto Wijaya

    2013-07-01

    Full Text Available Space closure is an interesting aspect of orthodontic treatment related to principles of biomechanics. It should be tailored individually based on patient’s diagnosis and treatment plan. Understanding the space closure biomechanics basis leads to achieve the desired treatment objective. Overbite deepening and losing posterior anchorage are the two most common unwanted side effects in space closure. Conventionally, correction of overbite must be done before space closure resulted in longer treatment. Application of proper space closure biomechanics strategies is necessary to achieve the desired treatment outcome. This cases report aimed to show the space closure biomechanics strategies that effectively control the overbite as well as posterior anchorage in deep overbite patients without increasing treatment time. Two patients who presented with class II division 1 malocclusion were treated with fixed orthodontic appliance. The primary strategies included extraction space closure on segmented arch that employed two-step space closure, namely single canine retraction simultaneously with incisors intrusion followed by enmasse retraction of four incisors by using differential moment concept. These strategies successfully closed the space, corrected deep overbite and controlled posterior anchorage simultaneously so that the treatment time was shortened. Biomechanics strategies that utilized were effective to achieve the desired treatment outcome.

  17. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology

    Directory of Open Access Journals (Sweden)

    Laura J. Lambert

    2016-10-01

    Full Text Available Osteocalcin, also known as bone γ-carboxyglutamate protein (Bglap, is expressed by osteoblasts and is commonly used as a clinical marker of bone turnover. A mouse model of osteocalcin deficiency has implicated osteocalcin as a mediator of changes to the skeleton, endocrine system, reproductive organs and central nervous system. However, differences between mouse and human osteocalcin at both the genome and protein levels have challenged the validity of extrapolating findings from the osteocalcin-deficient mouse model to human disease. The rat osteocalcin (Bglap gene locus shares greater synteny with that of humans. To further examine the role of osteocalcin in disease, we created a rat model with complete loss of osteocalcin using the CRISPR/Cas9 system. Rat osteocalcin was modified by injection of CRISPR/Cas9 mRNA into the pronuclei of fertilized single cell Sprague-Dawley embryos, and animals were bred to homozygosity and compound heterozygosity for the mutant alleles. Dual-energy X-ray absorptiometry (DXA, glucose tolerance testing (GTT, insulin tolerance testing (ITT, microcomputed tomography (µCT, and a three-point break biomechanical assay were performed on the excised femurs at 5 months of age. Complete loss of osteocalcin resulted in bones with significantly increased trabecular thickness, density and volume. Cortical bone volume and density were not increased in null animals. The bones had improved functional quality as evidenced by an increase in failure load during the biomechanical stress assay. Differences in glucose homeostasis were observed between groups, but there were no differences in body weight or composition. This rat model of complete loss of osteocalcin provides a platform for further understanding the role of osteocalcin in disease, and it is a novel model of increased bone formation with potential utility in osteoporosis and osteoarthritis research.

  18. Orbital stability analysis in biomechanics: a systematic review of a nonlinear technique to detect instability of motor tasks.

    Science.gov (United States)

    Riva, F; Bisi, M C; Stagni, R

    2013-01-01

    Falls represent a heavy economic and clinical burden on society. The identification of individual chronic characteristics associated with falling is of fundamental importance for the clinicians; in particular, the stability of daily motor tasks is one of the main factors that the clinicians look for during assessment procedures. Various methods for the assessment of stability in human movement are present in literature, and methods coming from stability analysis of nonlinear dynamic systems applied to biomechanics recently showed promise. One of these techniques is orbital stability analysis via Floquet multipliers. This method allows to measure orbital stability of periodic nonlinear dynamic systems and it seems a promising approach for the definition of a reliable motor stability index, taking into account for the whole task cycle dynamics. Despite the premises, its use in the assessment of fall risk has been deemed controversial. The aim of this systematic review was therefore to provide a critical evaluation of the literature on the topic of applications of orbital stability analysis in biomechanics, with particular focus to methodologic aspects. Four electronic databases have been searched for articles relative to the topic; 23 articles were selected for review. Quality of the studies present in literature has been assessed with a customised quality assessment tool. Overall quality of the literature in the field was found to be high. The most critical aspect was found to be the lack of uniformity in the implementation of the analysis to biomechanical time series, particularly in the choice of state space and number of cycles to include in the analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A biomechanical analysis of common lunge tasks in badminton.

    Science.gov (United States)

    Kuntze, Gregor; Mansfield, Neil; Sellers, William

    2010-01-01

    The lunge is regularly used in badminton and is recognized for the high physical demands it places on the lower limbs. Despite its common occurrence, little information is available on the biomechanics of lunging in the singles game. A video-based pilot study confirmed the relatively high frequency of lunging, approximately 15% of all movements, in competitive singles games. The biomechanics and performance characteristics of three badminton-specific lunge tasks (kick, step-in, and hop lunge) were investigated in the laboratory with nine experienced male badminton players. Ground reaction forces and kinematic data were collected and lower limb joint kinetics calculated using an inverse dynamics approach. The step-in lunge was characterized by significantly lower mean horizontal reaction force at drive-off and lower mean peak hip joint power than the kick lunge. The hop lunge resulted in significantly larger mean reaction forces during loading and drive-off phases, as well as significantly larger mean peak ankle joint moments and knee and ankle joint powers than the kick or step-in lunges. These findings indicate that, within the setting of this investigation, the step-in lunge may be beneficial for reducing the muscular demands of lunge recovery and that the hop lunge allows for higher positive power output, thereby presenting an efficient lunging method.

  20. Biomechanical Strength of Retrograde Fixation in Proximal Third Scaphoid Fractures.

    Science.gov (United States)

    Daly, Charles A; Boden, Allison L; Hutton, William C; Gottschalk, Michael B

    2018-04-01

    Current techniques for fixation of proximal pole scaphoid fractures utilize antegrade fixation via a dorsal approach endangering the delicate vascular supply of the dorsal scaphoid. Volar and dorsal approaches demonstrate equivalent clinical outcomes in scaphoid wrist fractures, but no study has evaluated the biomechanical strength for fractures of the proximal pole. This study compares biomechanical strength of antegrade and retrograde fixation for fractures of the proximal pole of the scaphoid. A simulated proximal pole scaphoid fracture was produced in 22 matched cadaveric scaphoids, which were then assigned randomly to either antegrade or retrograde fixation with a cannulated headless compression screw. Cyclic loading and load to failure testing were performed and screw length, number of cycles, and maximum load sustained were recorded. There were no significant differences in average screw length (25.5 mm vs 25.6 mm, P = .934), average number of cyclic loading cycles (3738 vs 3847, P = .552), average load to failure (348 N vs 371 N, P = .357), and number of catastrophic failures observed between the antegrade and retrograde fixation groups (3 in each). Practical equivalence between the 2 groups was calculated and the 2 groups were demonstrated to be practically equivalent (upper threshold P = .010). For this model of proximal pole scaphoid wrist fractures, antegrade and retrograde screw configuration have been proven to be equivalent in terms of biomechanical strength. With further clinical study, we hope surgeons will be able to make their decision for fixation technique based on approaches to bone grafting, concern for tenuous blood supply, and surgeon preference without fear of poor biomechanical properties.

  1. Optimization of a quarter-car suspension model coupled with the driver biomechanical effects

    Science.gov (United States)

    Kuznetsov, Alexey; Mammadov, Musa; Sultan, Ibrahim; Hajilarov, Eldar

    2011-06-01

    In this paper a Human-Vehicle-Road (HVR) model, comprising a quarter-car and a biomechanical representation of the driver, is employed for the analysis. Differential equations are provided to describe the motions of various masses under the influence of a harmonic road excitation. These equations are, subsequently, solved to obtain a closed form mathematical expression for the steady-state vertical acceleration measurable at the vehicle-human interface. The solution makes it possible to find optimal parameters for the vehicle suspension system with respect to a specified ride comfort level. The quantitative definition given in the ISO 2631 standard for the ride comfort level is adopted in this paper for the optimization procedure. Numerical examples, based on actually measured road profiles, are presented to prove the validity of the proposed approach and its suitability for the problem at hand.

  2. An aetiological study on spondylolysis from a biomechanical aspect.

    Science.gov (United States)

    Ichikawa, N.; Ohara, Y.; Morishita, T.; Taniguichi, Y.; Koshikawa, A.; Matsukura, N.

    1982-01-01

    The authors report clinical studies on lumbar disorders (clinical symptoms, X-ray findings) in athletes in various sports. The sport items were divided into three groups according to the main dynamic load applied to the lumbar region. As a result, over 60% of the athletes suffered from "lumbago", and among them spondylolysis reached the high rate of 27%. Arising from these clinical observations, we performed biomechanical laboratory analyses on human cadaver material, axial compression and rotational bending. Our results suggest that the incidence of spondylolysis depends upon the extent and direction of the loads. Images Fig. 4 Fig. 5 Fig. 8 Fig. 9 Fig. 10 PMID:7139222

  3. Double-row vs single-row rotator cuff repair: a review of the biomechanical evidence.

    Science.gov (United States)

    Wall, Lindley B; Keener, Jay D; Brophy, Robert H

    2009-01-01

    A review of the current literature will show a difference between the biomechanical properties of double-row and single-row rotator cuff repairs. Rotator cuff tears commonly necessitate surgical repair; however, the optimal technique for repair continues to be investigated. Recently, double-row repairs have been considered an alternative to single-row repair, allowing a greater coverage area for healing and a possibly stronger repair. We reviewed the literature of all biomechanical studies comparing double-row vs single-row repair techniques. Inclusion criteria included studies using cadaveric, animal, or human models that directly compared double-row vs single-row repair techniques, written in the English language, and published in peer reviewed journals. Identified articles were reviewed to provide a comprehensive conclusion of the biomechanical strength and integrity of the repair techniques. Fifteen studies were identified and reviewed. Nine studies showed a statistically significant advantage to a double-row repair with regards to biomechanical strength, failure, and gap formation. Three studies produced results that did not show any statistical advantage. Five studies that directly compared footprint reconstruction all demonstrated that the double-row repair was superior to a single-row repair in restoring anatomy. The current literature reveals that the biomechanical properties of a double-row rotator cuff repair are superior to a single-row repair. Basic Science Study, SRH = Single vs. Double Row RCR.

  4. Microgravity-Driven Optic Nerve/Sheath Biomechanics Simulations

    Science.gov (United States)

    Ethier, C. R.; Feola, A.; Myers, J. G.; Nelson, E.; Raykin, J.; Samuels, B.

    2016-01-01

    Visual Impairment and Intracranial Pressure (VIIP) syndrome is a concern for long-duration space flight. Current thinking suggests that the ocular changes observed in VIIP syndrome are related to cephalad fluid shifts resulting in altered fluid pressures [1]. In particular, we hypothesize that increased intracranial pressure (ICP) drives connective tissue remodeling of the posterior eye and optic nerve sheath (ONS). We describe here finite element (FE) modeling designed to understand how altered pressures, particularly altered ICP, affect the tissues of the posterior eye and optic nerve sheath (ONS) in VIIP. METHODS: Additional description of the modeling methodology is provided in the companion IWS abstract by Feola et al. In brief, a geometric model of the posterior eye and optic nerve, including the ONS, was created and the effects of fluid pressures on tissue deformations were simulated. We considered three ICP scenarios: an elevated ICP assumed to occur in chronic microgravity, and ICP in the upright and supine positions on earth. Within each scenario we used Latin hypercube sampling (LHS) to consider a range of ICPs, ONH tissue mechanical properties, intraocular pressures (IOPs) and mean arterial pressures (MAPs). The outcome measures were biomechanical strains in the lamina cribrosa, optic nerve and retina; here we focus on peak values of these strains, since elevated strain alters cell phenotype and induce tissue remodeling. In 3D, the strain field can be decomposed into three orthogonal components, denoted as first, second and third principal strains. RESULTS AND CONCLUSIONS: For baseline material properties, increasing ICP from 0 to 20 mmHg significantly changed strains within the posterior eye and ONS (Fig. 1), indicating that elevated ICP affects ocular tissue biomechanics. Notably, strains in the lamina cribrosa and retina became less extreme as ICP increased; however, within the optic nerve, the occurrence of such extreme strains greatly increased as

  5. Biomechanical analysis of press-extension technique on degenerative lumbar with disc herniation and staggered facet joint

    Directory of Open Access Journals (Sweden)

    Hong-gen Du

    2016-05-01

    Full Text Available This study investigates the effect of a new Chinese massage technique named “press-extension” on degenerative lumbar with disc herniation and facet joint dislocation, and provides a biomechanical explanation of this massage technique. Self-developed biomechanical software was used to establish a normal L1–S1 lumbar 3D FE model, which integrated the spine CT and MRI data-based anatomical structure. Then graphic technique is utilized to build a degenerative lumbar FE model with disc herniation and facet joint dislocation. According to the actual press-extension experiments, mechanic parameters are collected to set boundary condition for FE analysis. The result demonstrated that press-extension techniques bring the annuli fibrosi obvious induction effect, making the central nucleus pulposus forward close, increasing the pressure in front part. Study concludes that finite element modelling for lumbar spine is suitable for the analysis of press-extension technique impact on lumbar intervertebral disc biomechanics, to provide the basis for the disease mechanism of intervertebral disc herniation using press-extension technique.

  6. Scale-Independent Biomechanical Optimization

    National Research Council Canada - National Science Library

    Schutte, J. F; Koh, B; Reinbolt, J. A; Haftka, R. T; George, A; Fregly, B. J

    2003-01-01

    ...: the Particle Swarm Optimizer (PSO). They apply this method to the biomechanical system identification problem of finding positions and orientations of joint axes in body segments through the processing of experimental movement data...

  7. Consequences of biomechanically constrained tasks in the design and interpretation of synergy analyses.

    Science.gov (United States)

    Steele, Katherine M; Tresch, Matthew C; Perreault, Eric J

    2015-04-01

    Matrix factorization algorithms are commonly used to analyze muscle activity and provide insight into neuromuscular control. These algorithms identify low-dimensional subspaces, commonly referred to as synergies, which can describe variation in muscle activity during a task. Synergies are often interpreted as reflecting underlying neural control; however, it is unclear how these analyses are influenced by biomechanical and task constraints, which can also lead to low-dimensional patterns of muscle activation. The aim of this study was to evaluate whether commonly used algorithms and experimental methods can accurately identify synergy-based control strategies. This was accomplished by evaluating synergies from five common matrix factorization algorithms using muscle activations calculated from 1) a biomechanically constrained task using a musculoskeletal model and 2) without task constraints using random synergy activations. Algorithm performance was assessed by calculating the similarity between estimated synergies and those imposed during the simulations; similarities ranged from 0 (random chance) to 1 (perfect similarity). Although some of the algorithms could accurately estimate specified synergies without biomechanical or task constraints (similarity >0.7), with these constraints the similarity of estimated synergies decreased significantly (0.3-0.4). The ability of these algorithms to accurately identify synergies was negatively impacted by correlation of synergy activations, which are increased when substantial biomechanical or task constraints are present. Increased variability in synergy activations, which can be captured using robust experimental paradigms that include natural variability in motor activation patterns, improved identification accuracy but did not completely overcome effects of biomechanical and task constraints. These results demonstrate that a biomechanically constrained task can reduce the accuracy of estimated synergies and highlight

  8. Predictive modeling of multicellular structure formation by using Cellular Particle Dynamics simulations

    Science.gov (United States)

    McCune, Matthew; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan

    2014-03-01

    Cellular Particle Dynamics (CPD) is an effective computational method for describing and predicting the time evolution of biomechanical relaxation processes of multicellular systems. A typical example is the fusion of spheroidal bioink particles during post bioprinting structure formation. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short-range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. CPD was successfully applied to describe and predict the fusion of 3D tissue construct involving identical spherical aggregates. Here, we demonstrate that CPD can also predict tissue formation involving uneven spherical aggregates whose volumes decrease during the fusion process. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  9. Lumbar Spine Musculoskeletal Physiology and Biomechanics During Simulated Military Operations

    Science.gov (United States)

    2016-06-01

    AWARD NUMBER: W81XWH-13-2-0043 TITLE: Lumbar Spine Musculoskeletal Physiology and Biomechanics During Simulated Military Operations PRINCIPAL...31May2016 4. TITLE AND SUBTITLE Lumbar Spine Musculoskeletal Physiology and Biomechanics 5a. CONTRACT NUMBER During Simulated Military Operations 5b... Biomechanics , Cincinnati, 2015. § Website(s) or other Internet site(s) § Nothing to report § Technologies or techniques § Nothing to report

  10. Biomechanical forces promote embryonic haematopoiesis

    Science.gov (United States)

    Adamo, Luigi; Naveiras, Olaia; Wenzel, Pamela L.; McKinney-Freeman, Shannon; Mack, Peter J.; Gracia-Sancho, Jorge; Suchy-Dicey, Astrid; Yoshimoto, Momoko; Lensch, M. William; Yoder, Mervin C.; García-Cardeña, Guillermo; Daley, George Q.

    2009-01-01

    Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system1,2. After initiation of the heartbeat in vertebrates, cells lining the ventral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3–5), a master regulator of haematopoiesis, and give rise to haematopoietic cells4. It remains unknown whether the biomechanical forces imposed on the vascular wall at this developmental stage act as a determinant of haematopoietic potential6. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41+c-Kit+ haematopoietic progenitor cells7,concomitantly augmenting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the paraaortic splanchnopleura/aorta–gonads–mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling8, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development. PMID:19440194

  11. Biomechanics of the brain

    CERN Document Server

    Miller, Karol

    2011-01-01

    With contributions from scientists at major institutions, this book presents an introduction to brain anatomy for engineers and scientists. It provides, for the first time, a comprehensive resource in the field of brain biomechanics.

  12. Biomechanical and psychosocial work exposures and musculoskeletal symptoms among vineyard workers.

    Science.gov (United States)

    Bernard, Christophe; Courouve, Laurène; Bouée, Stéphane; Adjémian, Annie; Chrétien, Jean-Claude; Niedhammer, Isabelle

    2011-01-01

    This study explored the associations between biomechanical and psychosocial work factors and musculoskeletal symptoms in vineyard workers. This cross-sectional study was based on a random sample of 2,824 male and 1,123 female vineyard workers in France. Data were collected using a self-administered questionnaire. Neck/shoulder, back and upper and lower extremity symptoms were evaluated using the Nordic questionnaire. Biomechanical exposures included 15 tasks related to vineyard activities. Psychosocial work factors included effort-reward imbalance and overcommitment, measured using the effort-reward imbalance model, and low job control and insufficient material means. Statistical analysis was performed using logistic regression analysis, and the results were adjusted for age, body mass index, educational level, work status and years in vineyard. Pruning-related factors increased the risk of upper extremity pain for both genders, of back pain for men and of neck/shoulder and lower extremity pain for women. Driving increased the risk of neck/shoulder and back pain among men. Psychosocial work factors, which were insufficient material means, overcommitment (both genders), effort-reward imbalance (men) and low job control (women), were associated with musculoskeletal symptoms, back and upper extremity pain for both genders and neck/shoulder and lower extremity pain for men. These results underlined that both biomechanical and psychosocial work factors may play a role in musculoskeletal pain among vineyard workers. Prevention policies focusing on both biomechanical and psychosocial work exposures may be useful to prevent musculoskeletal symptoms.

  13. Artificial intelligence in sports biomechanics: new dawn or false hope?

    Science.gov (United States)

    Bartlett, Roger

    2006-12-15

    This article reviews developments in the use of Artificial Intelligence (AI) in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements ('techniques') and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs) in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics. Key PointsExpert Systems remain almost unused in sports biomechanics, unlike in the similar discipline of gait analysis.Artificial Neural Networks, particularly Kohonen Maps, have been used, although their full value remains unclear.Other AI applications, including Evolutionary Computation, have received little attention.

  14. [Advances on biomechanics and kinematics of sprain of ankle joint].

    Science.gov (United States)

    Zhao, Yong; Wang, Gang

    2015-04-01

    Ankle sprains are orthopedic clinical common disease, accounting for joint ligament sprain of the first place. If treatment is not timely or appropriate, the joint pain and instability maybe develop, and even bone arthritis maybe develop. The mechanism of injury of ankle joint, anatomical basis has been fully study at present, and the diagnostic problem is very clear. Along with the development of science and technology, biological modeling and three-dimensional finite element, three-dimensional motion capture system,digital technology study, electromyographic signal study were used for the basic research of sprain of ankle. Biomechanical and kinematic study of ankle sprain has received adequate attention, combined with the mechanism research of ankle sprain,and to explore the the biomechanics and kinematics research progress of the sprain of ankle joint.

  15. The Influence of Artificial Cervical Disc Prosthesis Height on the Cervical Biomechanics: A Finite Element Study.

    Science.gov (United States)

    Yuan, Wei; Zhang, Haiping; Zhou, Xiaoshu; Wu, Weidong; Zhu, Yue

    2018-05-01

    Artificial cervical disc replacement is expected to maintain normal cervical biomechanics. At present, the effect of the Prestige LP prosthesis height on cervical biomechanics has not been thoroughly studied. This finite element study of the cervical biomechanics aims to predict how the parameters, like range of motion (ROM), adjacent intradiscal pressure, facet joint force, and bone-implant interface stress, are affected by different heights of Prestige LP prostheses. The finite element model of intact cervical spine (C3-C7) was obtained from our previous study, and the model was altered to implant Prestige LP prostheses at the C5-C6 level. The effects of the height of 5, 6, and 7 mm prosthesis replacement on ROM, adjacent intradiscal pressure, facet joint force, as well as the distribution of bone-implant interface stress were examined. ROM, adjacent intradiscal pressure, and facet joint force increased with the prosthesis height, whereas ROM and facet joint force decreased at C5-C6. The maximal stress on the inferior surface of the prostheses was greater than that on the superior surface, and the stresses increased with the prosthesis height. The biomechanical changes were slightly affected by the height of 5 and 6 mm prostheses, but were strongly affected by the 7-mm prosthesis. An appropriate height of the Prestige LP prosthesis can preserve normal ROM, adjacent intradiscal pressure, and facet joint force. Prostheses with a height of ≥2 mm than normal can lead to marked changes in the cervical biomechanics and bone-implant interface stress. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Factors Related to Students' Learning of Biomechanics Concepts

    Science.gov (United States)

    Hsieh, ChengTu; Smith, Jeremy D.; Bohne, Michael; Knudson, Duane

    2012-01-01

    The purpose of this study was to replicate and expand a previous study to identify the factors that affect students' learning of biomechanical concepts. Students were recruited from three universities (N = 149) located in the central and western regions of the United States. Data from 142 students completing the Biomechanics Concept Inventory…

  17. Inter-assessor reliability of practice based biomechanical assessment of the foot and ankle

    Directory of Open Access Journals (Sweden)

    Jarvis Hannah L

    2012-06-01

    Full Text Available Abstract Background There is no consensus on which protocols should be used to assess foot and lower limb biomechanics in clinical practice. The reliability of many assessments has been questioned by previous research. The aim of this investigation was to (i identify (through consensus what biomechanical examinations are used in clinical practice and (ii evaluate the inter-assessor reliability of some of these examinations. Methods Part1: Using a modified Delphi technique 12 podiatrists derived consensus on the biomechanical examinations used in clinical practice. Part 2: Eleven podiatrists assessed 6 participants using a subset of the assessment protocol derived in Part 1. Examinations were compared between assessors. Results Clinicians choose to estimate rather than quantitatively measure foot position and motion. Poor inter-assessor reliability was recorded for all examinations. Intra-class correlation coefficient values (ICC for relaxed calcaneal stance position were less than 0.23 and were less than 0.14 for neutral calcaneal stance position. For the examination of ankle joint dorsiflexion, ICC values suggest moderate reliability (less than 0.61. The results of a random effects ANOVA highlight that participant (up to 5.7°, assessor (up to 5.8° and random (up to 5.7° error all contribute to the total error (up to 9.5° for relaxed calcaneal stance position, up to 10.7° for the examination of ankle joint dorsiflexion. Kappa Fleiss values for categorisation of first ray position and mobility were less than 0.05 and for limb length assessment less than 0.02, indicating slight agreement. Conclusion Static biomechanical assessment of the foot, leg and lower limb is an important protocol in clinical practice, but the key examinations used to make inferences about dynamic foot function and to determine orthotic prescription are unreliable.

  18. Biomechanical tactics of chiral growth in emergent aquatic macrophytes

    Science.gov (United States)

    Zhao, Zi-Long; Zhao, Hong-Ping; Li, Bing-Wei; Nie, Ben-Dian; Feng, Xi-Qiao; Gao, Huajian

    2015-01-01

    Through natural selection, many plant organs have evolved optimal morphologies at different length scales. However, the biomechanical strategies for different plant species to optimize their organ structures remain unclear. Here, we investigate several species of aquatic macrophytes living in the same natural environment but adopting distinctly different twisting chiral morphologies. To reveal the principle of chiral growth in these plants, we performed systematic observations and measurements of morphologies, multiscale structures, and mechanical properties of their slender emergent stalks or leaves. Theoretical modeling of pre-twisted beams in bending and buckling indicates that the different growth tactics of the plants can be strongly correlated with their biomechanical functions. It is shown that the twisting chirality of aquatic macrophytes can significantly improve their survivability against failure under both internal and external loads. The theoretical predictions for different chiral configurations are in excellent agreement with experimental measurements. PMID:26219724

  19. ARTIFICIAL INTELLIGENCE IN SPORTS BIOMECHANICS: NEW DAWN OR FALSE HOPE?

    Directory of Open Access Journals (Sweden)

    Roger Bartlett

    2006-12-01

    Full Text Available This article reviews developments in the use of Artificial Intelligence (AI in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements ('techniques' and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics.

  20. The Undergraduate Biomechanics Experience at Iowa State University.

    Science.gov (United States)

    Francis, Peter R.

    This paper discusses the objectives of a program in biomechanics--the analysis of sports skills and movement--and the evolution of the biomechanics program at Iowa State University. The primary objective of such a course is to provide the student with the basic tools necessary for adequate analysis of human movement, with special emphasis upon…

  1. A computational approach for inferring the cell wall properties that govern guard cell dynamics.

    Science.gov (United States)

    Woolfenden, Hugh C; Bourdais, Gildas; Kopischke, Michaela; Miedes, Eva; Molina, Antonio; Robatzek, Silke; Morris, Richard J

    2017-10-01

    Guard cells dynamically adjust their shape in order to regulate photosynthetic gas exchange, respiration rates and defend against pathogen entry. Cell shape changes are determined by the interplay of cell wall material properties and turgor pressure. To investigate this relationship between turgor pressure, cell wall properties and cell shape, we focused on kidney-shaped stomata and developed a biomechanical model of a guard cell pair. Treating the cell wall as a composite of the pectin-rich cell wall matrix embedded with cellulose microfibrils, we show that strong, circumferentially oriented fibres are critical for opening. We find that the opening dynamics are dictated by the mechanical stress response of the cell wall matrix, and as the turgor rises, the pectinaceous matrix stiffens. We validate these predictions with stomatal opening experiments in selected Arabidopsis cell wall mutants. Thus, using a computational framework that combines a 3D biomechanical model with parameter optimization, we demonstrate how to exploit subtle shape changes to infer cell wall material properties. Our findings reveal that proper stomatal dynamics are built on two key properties of the cell wall, namely anisotropy in the form of hoop reinforcement and strain stiffening. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd and Society for Experimental Biology.

  2. A scalable platform for biomechanical studies of tissue cutting forces

    International Nuclear Information System (INIS)

    Valdastri, P; Tognarelli, S; Menciassi, A; Dario, P

    2009-01-01

    This paper presents a novel and scalable experimental platform for biomechanical analysis of tissue cutting that exploits a triaxial force-sensitive scalpel and a high resolution vision system. Real-time measurements of cutting forces can be used simultaneously with accurate visual information in order to extract important biomechanical clues in real time that would aid the surgeon during minimally invasive intervention in preserving healthy tissues. Furthermore, the in vivo data gathered can be used for modeling the viscoelastic behavior of soft tissues, which is an important issue in surgical simulator development. Thanks to a modular approach, this platform can be scaled down, thus enabling in vivo real-time robotic applications. Several cutting experiments were conducted with soft porcine tissues (lung, liver and kidney) chosen as ideal candidates for biopsy procedures. The cutting force curves show repeated self-similar units of localized loading followed by unloading. With regards to tissue properties, the depth of cut plays a significant role in the magnitude of the cutting force acting on the blade. Image processing techniques and dedicated algorithms were used to outline the surface of the tissues and estimate the time variation of the depth of cut. The depth of cut was finally used to obtain the normalized cutting force, thus allowing comparative biomechanical analysis

  3. Biomechanics research in ski jumping, 1991-2006.

    Science.gov (United States)

    Schwameder, Hermann

    2008-01-01

    In this paper, I review biomechanics research in ski jumping with a specific focus on publications presented between 1991 and 2006 on performance enhancement, limiting factors of the take-off, specific training and conditioning, aerodynamics, and safety. The first section presents a brief description of ski jumping phases (in-run, take-off, early flight, stable flight, and landing) regarding the biomechanical and functional fundamentals. The most important and frequently used biomechanical methods in ski jumping (kinematics, ground reaction force analyses, muscle activation patterns, aerodynamics) are summarized in the second section. The third section focuses on ski jumping articles and research findings published after the establishment of the V-technique in 1991, as the introduction of this technique has had a major influence on performance enhancement, ski jumping regulations, and the construction of hill profiles. The final section proposes topics for future research in the biomechanics of ski jumping, including: take-off and early flight and the relative roles of vertical velocity and forward somersaulting angular momentum; optimal jumping patterns utilizing the capabilities of individual athletes; development of kinematic and kinetic feedback systems for hill jumps; comparisons of simulated and hill jumps; effect of equipment modifications on performance and safety enhancement.

  4. Biomechanical study on the bladder neck and urethral positions: simulation of impairment of the pelvic ligaments.

    Science.gov (United States)

    Brandão, Sofia; Parente, Marco; Mascarenhas, Teresa; da Silva, Ana Rita Gomes; Ramos, Isabel; Jorge, Renato Natal

    2015-01-21

    Excessive mobility of the bladder neck and urethra are common features in stress urinary incontinence. We aimed at assessing, through computational modelling, the bladder neck position taking into account progressive impairment of the pelvic ligaments. Magnetic resonance images of a young healthy female were used to build a computational model of the pelvic cavity. Appropriate material properties and constitutive models were defined. The impairment of the ligaments was simulated by mimicking a reduction in their stiffness. For healthy ligaments, valsalva maneuver led to an increase in the α angle (between the bladder neck-symphysis pubis and the main of the symphysis) from 91.8° (at rest) to 105.7°, and 5.7 mm of bladder neck dislocation, which was similar to dynamic imaging of the same woman (α angle from 80° to 103.3°, and 5mm of bladder neck movement). For 95% impairment, they enlarged to 124.28° and 12 mm. Impairment to the pubourethral ligaments had higher effect than that of vaginal support (115° vs. 108°, and 9.1 vs. 7.3mm). Numerical simulation could predict urethral motion during valsalva maneuver, for both healthy and impaired ligaments. Results were similar to those of continent women and women with stress urinary incontinence published in the literature. Biomechanical analysis of the pubourethral ligaments complements the biomechanical study of the pelvic cavity in urinary incontinence. It may be useful in young women presenting stress urinary incontinence without imaging evidence of urethral and muscle lesions or organ descend during valsalva, and for whom fascial damage are not expected. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Teaching motor skills by means of biomechanical analysis of the motion: the physiological basis and applied information technologies

    Directory of Open Access Journals (Sweden)

    Razuvanova A.V.

    2016-01-01

    Full Text Available The article proves the possibility of training athletes using motor skills on the basis of biomechanical analysis of movements with application of information technologies. Motion Tracking – digital single frame shooting photography – is proposed as a method for biomechanical analysis. The relevance of this method is conditioned by the results of the study of a repulsion phase in the performing of the standing jump by athletes of different qualifications. The conclusion about the importance of an optimal model of a jump based on biomechanical analysis is given, and the formation of athletes’ skills, using information technologies and the principle of urgent information, is discussed.

  6. Functional Apparent Moduli (FAMs) as Predictors of Oral Implant Osseointegration Dynamics

    OpenAIRE

    Chang, Po-Chun; Seol, Yang-Jo; Kikuchi, Noboru; Goldstein, Steven A.; Giannobile, William V.

    2010-01-01

    At present, limited functional data exists regarding the application and use of biomechanical and imaging technologies for oral implant osseointegration assessment. The objective of this investigation was to determine the functional apparent moduli (FAMs) that could predict the dynamics of oral implant osseointegration. Using an in vivo dental implant osseous healing model, two FAMs, functional bone apparent modulus (FBAM) and composite tissue apparent modulus (FCAM), of the selected peri-imp...

  7. Biomechanical determinants of elite rowing technique and performance.

    Science.gov (United States)

    Buckeridge, E M; Bull, A M J; McGregor, A H

    2015-04-01

    In rowing, the parameters of injury, performance, and technique are all interrelated and in dynamic equilibrium. Whilst rowing requires extreme physical strength and endurance, a high level of skill and technique is essential to enable an effective transfer of power through the rowing sequence. This study aimed to determine discrete aspects of rowing technique, which strongly influence foot force production and asymmetries at the foot-stretchers, as these are biomechanical parameters often associated with performance and injury risk. Twenty elite female rowers performed an incremental rowing test on an instrumented rowing ergometer, which measured force at the handle and foot-stretchers, while three-dimensional kinematic recordings of the ankle, knee, hip, and lumbar-pelvic joints were made. Multiple regression analyses identified hip kinematics as a key predictor of foot force output (R(2)  = 0.48), whereas knee and lumbar-pelvic kinematics were the main determinants in optimizing the horizontal foot force component (R(2)  = .41). Bilateral asymmetries of the foot-stretchers were also seen to significantly influence lumbar-pelvic kinematics (R(2)  = 0.43) and pelvic twisting (R(2)  = 0.32) during the rowing stroke. These results provide biomechanical evidence toward aspects of technique that can be modified to optimize force output and performance, which can be of direct benefit to coaches and athletes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Effects of sex and obesity on gait biomechanics before and six months after total knee arthroplasty: A longitudinal cohort study.

    Science.gov (United States)

    Paterson, K L; Sosdian, L; Hinman, R S; Wrigley, T V; Kasza, J; Dowsey, M; Choong, P; Bennell, K L

    2018-03-01

    Gait biomechanics, sex, and obesity can contribute to suboptimal outcomes from primary total knee arthroplasty. The aims of this study were to i) determine if sex and/or obesity influence the amount of change in gait biomechanics from pre-surgery to six months post-surgery and; ii) assess if gait returns to normal in men and women. Three-dimensional gait analysis was performed on 43 patients undergoing primary total knee arthroplasty for knee osteoarthritis (pre- and six months post-operative) and 40 asymptomatic controls. Mixed linear regression models were fit to assess which factors influenced change in gait biomechanics within the arthroplasty cohort, and interaction terms were included to assess if biomechanics returned to normal following surgery. Male peak knee adduction moment (p biomechanics after arthroplasty. Men retained abnormal gait patterns after surgery, whilst women did not. Further research should determine the long-term implications of gait abnormalities seen in men after arthroplasty. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Validation of an experimental polyurethane model for biomechanical studies on implant supported prosthesis - tension tests

    Directory of Open Access Journals (Sweden)

    Mariane Miyashiro

    2011-06-01

    Full Text Available OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, frequently hinder the development of clinical trials. The purpose of this in vitro study was to determine the modulus of elasticity of a polyurethane isotropic experimental model via tension tests, comparing the results to those reported in the literature for mandibular bone, in order to validate the use of such a model in lieu of mandibular bone in biomechanical studies. MATERIAL AND METHODS: Forty-five polyurethane test specimens were divided into 3 groups of 15 specimens each, according to the ratio (A/B of polyurethane reagents (PU-1: 1/0.5, PU-2: 1/1, PU-3: 1/1.5. RESULTS: Tension tests were performed in each experimental group and the modulus of elasticity values found were 192.98 MPa (SD=57.20 for PU-1, 347.90 MPa (SD=109.54 for PU-2 and 304.64 MPa (SD=25.48 for PU-3. CONCLUSION: The concentration of choice for building the experimental model was 1/1.

  10. Matrix viscoplasticity and its shielding by active mechanics in microtissue models: experiments and mathematical modeling

    Science.gov (United States)

    Liu, Alan S.; Wang, Hailong; Copeland, Craig R.; Chen, Christopher S.; Shenoy, Vivek B.; Reich, Daniel H.

    2016-01-01

    The biomechanical behavior of tissues under mechanical stimulation is critically important to physiological function. We report a combined experimental and modeling study of bioengineered 3D smooth muscle microtissues that reveals a previously unappreciated interaction between active cell mechanics and the viscoplastic properties of the extracellular matrix. The microtissues’ response to stretch/unstretch actuations, as probed by microcantilever force sensors, was dominated by cellular actomyosin dynamics. However, cell lysis revealed a viscoplastic response of the underlying model collagen/fibrin matrix. A model coupling Hill-type actomyosin dynamics with a plastic perfectly viscoplastic description of the matrix quantitatively accounts for the microtissue dynamics, including notably the cells’ shielding of the matrix plasticity. Stretch measurements of single cells confirmed the active cell dynamics, and were well described by a single-cell version of our model. These results reveal the need for new focus on matrix plasticity and its interactions with active cell mechanics in describing tissue dynamics. PMID:27671239

  11. Low-cost microcontroller platform for studying lymphatic biomechanics in vitro.

    Science.gov (United States)

    Kornuta, Jeffrey A; Nipper, Matthew E; Dixon, J Brandon

    2013-01-04

    The pumping innate to collecting lymphatic vessels routinely exposes the endothelium to oscillatory wall shear stress and other dynamic forces. However, studying the mechanical sensitivity of the lymphatic endothelium remains a difficult task due to limitations of commercial or custom systems to apply a variety of time-varying stresses in vitro. Current biomechanical in vitro testing devices are very expensive, limited in capability, or highly complex; rendering them largely inaccessible to the endothelial cell biology community. To address these shortcomings, the authors propose a reliable, low-cost platform for augmenting the capabilities of commercially available pumps to produce a wide variety of flow rate waveforms. In particular, the Arduino Uno, a microcontroller development board, is used to provide open-loop control of a digital peristaltic pump using precisely timed serial commands. In addition, the flexibility of this platform is further demonstrated through its support of a custom-built cell-straining device capable of producing oscillatory strains with varying amplitudes and frequencies. Hence, this microcontroller development board is shown to be an inexpensive, precise, and easy-to-use tool for supplementing in vitro assays to quantify the effects of biomechanical forces on lymphatic endothelial cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. THERE ARE NO BIOMECHANICAL DIFFERENCES BETWEEN RUNNERS CLASSIFIED BY THE FUNCTIONAL MOVEMENT SCREEN

    Science.gov (United States)

    de Oliveira, Rodrigo Ribeiro; Chaves, Shalimá Figueirêdo; Lima, Yuri Lopes; Bezerra, Márcio Almeida; Leão Almeida, Gabriel Peixoto

    2017-01-01

    Background Running has been one of the main choices of physical activity in people seeking an active lifestyle. The Functional Movement Screen (FMS™) is a screening tool that aims to discern movement competency. Purpose The purposes of this study were to compare biomechanical characteristics between two groups rated using the composite FMS™ score, and to analyze the influence of specific individual tests. The hypothesis was that the group that scored above 14 would demonstrate better performance on biomechanical tests than the group that scored below 14. Study Design Cross-Sectional Study. Methods Runners were screened using the FMS™ and were dichotomized into groups based on final score: Functional, where the subjects scored a 14 or greater (G≥14, n = 16) and dysfunctional, when the subjects scored less than 14 (G in flexibility, muscle strength, knee dynamic valgus, or myoelectric response time of the transversus abdominis and long fibular muscles. Index of asymmetry (IS) of global stability was 3.26 ± 26.79% in G≥14 and 31.72 ± 52.69% in GIn-line lunge and active straight-leg raise tests showed no significant difference between the groups (p > 0.05). Conclusions Overall, there were no biomechanical differences between the groups of runners as classified by the FMS™. In addition, in-line lunge and active strength-leg raise tests did not influence on the FMS™ final score. Level of Evidence 2b PMID:28900569

  13. [The development of an oral biomechanical testing instrument].

    Science.gov (United States)

    Zhang, X H; Sun, X D; Lin, Z

    2000-03-01

    An oral biomechanical testing instrument, which is portable, powered with batteries and controlled by single chip microcomputer, was described. The instrument was characterized by its multichannel, high accuracy, low power dissipation, wide rage of force measurement and stable performance. It can be used for acquisiting, displaying and storing data. And it may be expected to be an ideal instrument for oral biomechanical measurements.

  14. Translating ocular biomechanics into clinical practice: current state and future prospects.

    Science.gov (United States)

    Girard, Michaël J A; Dupps, William J; Baskaran, Mani; Scarcelli, Giuliano; Yun, Seok H; Quigley, Harry A; Sigal, Ian A; Strouthidis, Nicholas G

    2015-01-01

    Biomechanics is the study of the relationship between forces and function in living organisms and is thought to play a critical role in a significant number of ophthalmic disorders. This is not surprising, as the eye is a pressure vessel that requires a delicate balance of forces to maintain its homeostasis. Over the past few decades, basic science research in ophthalmology mostly confirmed that ocular biomechanics could explain in part the mechanisms involved in almost all major ophthalmic disorders such as optic nerve head neuropathies, angle closure, ametropia, presbyopia, cataract, corneal pathologies, retinal detachment and macular degeneration. Translational biomechanics in ophthalmology, however, is still in its infancy. It is believed that its use could make significant advances in diagnosis and treatment. Several translational biomechanics strategies are already emerging, such as corneal stiffening for the treatment of keratoconus, and more are likely to follow. This review aims to cultivate the idea that biomechanics plays a major role in ophthalmology and that the clinical translation, lead by collaborative teams of clinicians and biomedical engineers, will benefit our patients. Specifically, recent advances and future prospects in corneal, iris, trabecular meshwork, crystalline lens, scleral and lamina cribrosa biomechanics are discussed.

  15. Force adaptation transfers to untrained workspace regions in children: evidence for developing inverse dynamic motor models.

    Science.gov (United States)

    Jansen-Osmann, Petra; Richter, Stefanie; Konczak, Jürgen; Kalveram, Karl-Theodor

    2002-03-01

    When humans perform goal-directed arm movements under the influence of an external damping force, they learn to adapt to these external dynamics. After removal of the external force field, they reveal kinematic aftereffects that are indicative of a neural controller that still compensates the no longer existing force. Such behavior suggests that the adult human nervous system uses a neural representation of inverse arm dynamics to control upper-extremity motion. Central to the notion of an inverse dynamic model (IDM) is that learning generalizes. Consequently, aftereffects should be observable even in untrained workspace regions. Adults have shown such behavior, but the ontogenetic development of this process remains unclear. This study examines the adaptive behavior of children and investigates whether learning a force field in one hemifield of the right arm workspace has an effect on force adaptation in the other hemifield. Thirty children (aged 6-10 years) and ten adults performed 30 degrees elbow flexion movements under two conditions of external damping (negative and null). We found that learning to compensate an external damping force transferred to the opposite hemifield, which indicates that a model of the limb dynamics rather than an association of visited space and experienced force was acquired. Aftereffects were more pronounced in the younger children and readaptation to a null-force condition was prolonged. This finding is consistent with the view that IDMs in children are imprecise neural representations of the actual arm dynamics. It indicates that the acquisition of IDMs is a developmental achievement and that the human motor system is inherently flexible enough to adapt to any novel force within the limits of the organism's biomechanics.

  16. Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis

    Science.gov (United States)

    Maher, Jason R.; Takahata, Masahiko; Awad, Hani A.; Berger, Andrew J.

    2011-08-01

    Although glucocorticoids are frequently prescribed for the symptomatic management of inflammatory disorders such as rheumatoid arthritis, extended glucocorticoid exposure is the leading cause of physician-induced osteoporosis and leaves patients at a high risk of fracture. To study the biochemical effects of glucocorticoid exposure and how they might affect biomechanical properties of the bone, Raman spectra were acquired from ex vivo tibiae of glucocorticoid- and placebo-treated wild-type mice and a transgenic mouse model of rheumatoid arthritis. Statistically significant spectral differences were observed due to both treatment regimen and mouse genotype. These differences are attributed to changes in the overall bone mineral composition, as well as the degree of phosphate mineralization in tibial cortical bone. In addition, partial least squares regression was used to generate a Raman-based prediction of each tibia's biomechanical strength as quantified by a torsion test. The Raman-based predictions were as accurate as those produced by microcomputed tomography derived parameters, and more accurate than the clinically-used parameter of bone mineral density. These results suggest that Raman spectroscopy could be a valuable tool for monitoring bone biochemistry in studies of bone diseases such as osteoporosis, including tests of drugs being developed to combat these diseases.

  17. Comparing handrim biomechanics for treadmill and overground wheelchair propulsion

    Science.gov (United States)

    Kwarciak, Andrew M.; Turner, Jeffrey T.; Guo, Liyun; Richter, W. Mark

    2010-01-01

    Study design Cross-sectional study. Objectives To compare handrim biomechanics recorded during overground propulsion to those recorded during propulsion on a motor-driven treadmill. Setting Biomechanics laboratory. Methods Twenty-eight manual wheelchair users propelled their own wheelchairs, at a self-selected speed, on a low-pile carpet and on a wheelchair accessible treadmill. Handrim biomechanics were recorded with an OptiPush instrumented wheelchair wheel. Results Across the two conditions, all handrim biomechanics were found to be similar and highly correlated (r > 0.85). Contact angle, peak force, average force, and peak axle moment differed by 1.6% or less across the two conditions. While not significant, power output and cadence tended to be slightly higher for the treadmill condition (3.5% and 3.6%, respectively), due to limitations in adjusting the treadmill grade. Conclusion Based on the results of this study, a motor-driven treadmill can serve as a valid surrogate for overground studies of wheelchair propulsion. PMID:21042332

  18. Dynamic Model Averaging in Large Model Spaces Using Dynamic Occam's Window.

    Science.gov (United States)

    Onorante, Luca; Raftery, Adrian E

    2016-01-01

    Bayesian model averaging has become a widely used approach to accounting for uncertainty about the structural form of the model generating the data. When data arrive sequentially and the generating model can change over time, Dynamic Model Averaging (DMA) extends model averaging to deal with this situation. Often in macroeconomics, however, many candidate explanatory variables are available and the number of possible models becomes too large for DMA to be applied in its original form. We propose a new method for this situation which allows us to perform DMA without considering the whole model space, but using a subset of models and dynamically optimizing the choice of models at each point in time. This yields a dynamic form of Occam's window. We evaluate the method in the context of the problem of nowcasting GDP in the Euro area. We find that its forecasting performance compares well with that of other methods.

  19. Automatic generation of a subject-specific model for accurate markerless motion capture and biomechanical applications.

    Science.gov (United States)

    Corazza, Stefano; Gambaretto, Emiliano; Mündermann, Lars; Andriacchi, Thomas P

    2010-04-01

    A novel approach for the automatic generation of a subject-specific model consisting of morphological and joint location information is described. The aim is to address the need for efficient and accurate model generation for markerless motion capture (MMC) and biomechanical studies. The algorithm applied and expanded on previous work on human shapes space by embedding location information for ten joint centers in a subject-specific free-form surface. The optimal locations of joint centers in the 3-D mesh were learned through linear regression over a set of nine subjects whose joint centers were known. The model was shown to be sufficiently accurate for both kinematic (joint centers) and morphological (shape of the body) information to allow accurate tracking with MMC systems. The automatic model generation algorithm was applied to 3-D meshes of different quality and resolution such as laser scans and visual hulls. The complete method was tested using nine subjects of different gender, body mass index (BMI), age, and ethnicity. Experimental training error and cross-validation errors were 19 and 25 mm, respectively, on average over the joints of the ten subjects analyzed in the study.

  20. Patellofemoral anatomy and biomechanics: current concepts

    Science.gov (United States)

    ZAFFAGNINI, STEFANO; DEJOUR, DAVID; GRASSI, ALBERTO; BONANZINGA, TOMMASO; MUCCIOLI, GIULIO MARIA MARCHEGGIANI; COLLE, FRANCESCA; RAGGI, FEDERICO; BENZI, ANDREA; MARCACCI, MAURILIO

    2013-01-01

    The patellofemoral joint, due to its particular bone anatomy and the numerous capsuloligamentous structures and muscles that act dynamically on the patella, is considered one of the most complex joints in the human body from the biomechanical point of view. The medial patellofemoral ligament (MPFL) has been demonstrated to contribute 60% of the force that opposes lateral displacement of the patella, and MPFL injury results in an approximately 50% reduction in the force needed to dislocate the patella laterally with the knee extended. For this reason, recent years have seen a growing interest in the study of this important anatomical structure, whose aponeurotic nature has thus been demonstrated. The MPFL acts as a restraint during motion, playing an active role under conditions of laterally applied stress, but an only marginal role during natural knee flexion. However, it remains extremely difficult to clearly define the anatomy of the MPFL and its relationships with other anatomical structures. PMID:25606512

  1. The Biomechanics of Cervical Spondylosis

    Directory of Open Access Journals (Sweden)

    Lisa A. Ferrara

    2012-01-01

    Full Text Available Aging is the major risk factor that contributes to the onset of cervical spondylosis. Several acute and chronic symptoms can occur that start with neck pain and may progress into cervical radiculopathy. Eventually, the degenerative cascade causes desiccation of the intervertebral disc resulting in height loss along the ventral margin of the cervical spine. This causes ventral angulation and eventual loss of lordosis, with compression of the neural and vascular structures. The altered posture of the cervical spine will progress into kyphosis and continue if the load balance and lordosis is not restored. The content of this paper will address the physiological and biomechanical pathways leading to cervical spondylosis and the biomechanical principles related to the surgical correction and treatment of kyphotic progression.

  2. Biomechanics of the elbow joint in tennis players and relation to pathology.

    Science.gov (United States)

    Eygendaal, Denise; Rahussen, F Th G; Diercks, R L

    2007-11-01

    Elbow injuries constitute a sizeable percentage of tennis injuries. A basic understanding of biomechanics of tennis and analysis of the forces, loads and motions of the elbow during tennis will improve the understanding of the pathophysiology of these injuries. All different strokes in tennis have a different repetitive biomechanical nature that can result in tennis-related injuries. In this article, a biomechanically-based evaluation of tennis strokes is presented. This overview includes all tennis-related pathologies of the elbow joint, whereby the possible relation of biomechanics to pathology is analysed, followed by treatment recommendations.

  3. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: a review.

    Science.gov (United States)

    Roriz, Paulo; Carvalho, Lídia; Frazão, Orlando; Santos, José Luís; Simões, José António

    2014-04-11

    In vivo measurement, not only in animals but also in humans, is a demanding task and is the ultimate goal in experimental biomechanics. For that purpose, measurements in vivo must be performed, under physiological conditions, to obtain a database and contribute for the development of analytical models, used to describe human biomechanics. The knowledge and control of the mechanisms involved in biomechanics will allow the optimization of the performance in different topics like in clinical procedures and rehabilitation, medical devices and sports, among others. Strain gages were first applied to bone in a live animal in 40's and in 80's for the first time were applied fibre optic sensors to perform in vivo measurements of Achilles tendon forces in man. Fibre optic sensors proven to have advantages compare to conventional sensors and a great potential for biomechanical and biomedical applications. Compared to them, they are smaller, easier to implement, minimally invasive, with lower risk of infection, highly accurate, well correlated, inexpensive and multiplexable. The aim of this review article is to give an overview about the evolution of the experimental techniques applied in biomechanics, from conventional to fibre optic sensors. In the next sections the most relevant contributions of these sensors, for strain and force in biomechanical applications, will be presented. Emphasis was given to report of in vivo experiments and clinical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Masticatory System Biomechanical Photoelastic Simulation fot the Comparision of the Conventional and Uni-Lock Systems in Mandibular Osteosynthesis

    Directory of Open Access Journals (Sweden)

    Jose Luis Cebrian Carretero

    2017-08-01

    Full Text Available The biomechanical consequences of the interaction between titanium trauma plates and screws and the fractured mandible are still a matter of investigation. The mathematical and biomechanical models that have been developed show limitations and the experimental studies are not able to reproduce muscle forces and internal stress distributions in the bone-implant interface and mandibular structure. In the present article we show a static simulator of the masticatory system to demonstrate in epoxy resin mandibular models, by means of 3D (three-dimensional photoelasticity, the stress distribution using different osteosynthesis methods in the mandibular angle fractures. The results showed that the simulator and 3D photoelasticity were a useful method to study interactions between bone and osteosynthesis materials. The “Lock” systems can be considered the most favourable method due to their stress distribution in the epoxy resin mandible. 3D photoelasticity in epoxy resin models is a useful method to evaluate stress distribution for biomechanical studies. Regarding to mandibular osteosynthesis, “lock” plates offer the most favourable stress distribution due to being less aggressive to the bone

  5. In vitro method for assessing the biomechanics of the patellofemoral joint following total knee arthroplasty.

    Science.gov (United States)

    Coles, L G; Gheduzzi, S; Miles, A W

    2014-12-01

    The patellofemoral joint is a common site of pain and failure following total knee arthroplasty. A contributory factor may be adverse patellofemoral biomechanics. Cadaveric investigations are commonly used to assess the biomechanics of the joint, but are associated with high inter-specimen variability and often cannot be carried out at physiological levels of loading. This study aimed to evaluate the suitability of a novel knee simulator for investigating patellofemoral joint biomechanics. This simulator specifically facilitated the extended assessment of patellofemoral joint biomechanics under physiological levels of loading. The simulator allowed the knee to move in 6 degrees of freedom under quadriceps actuation and included a simulation of the action of the hamstrings. Prostheses were implanted on synthetic bones and key soft tissues were modelled with a synthetic analogue. In order to evaluate the physiological relevance and repeatability of the simulator, measurements were made of the quadriceps force and the force, contact area and pressure within the patellofemoral joint using load cells, pressure-sensitive film, and a flexible pressure sensor. The results were in agreement with those previously reported in the literature, confirming that the simulator is able to provide a realistic physiological loading situation. Under physiological loading, average standard deviations of force and area measurements were substantially lower and comparable to those reported in previous cadaveric studies, respectively. The simulator replicates the physiological environment and has been demonstrated to allow the initial investigation of factors affecting patellofemoral biomechanics following total knee arthroplasty. © IMechE 2014.

  6. Material parameter identification and inverse problems in soft tissue biomechanics

    CERN Document Server

    Evans, Sam

    2017-01-01

    The articles in this book review hybrid experimental-computational methods applied to soft tissues which have been developed by worldwide specialists in the field. People developing computational models of soft tissues and organs will find solutions for calibrating the material parameters of their models; people performing tests on soft tissues will learn what to extract from the data and how to use these data for their models and people worried about the complexity of the biomechanical behavior of soft tissues will find relevant approaches to address this complexity.

  7. A biomechanical triphasic approach to the transport of nondilute solutions in articular cartilage.

    Science.gov (United States)

    Abazari, Alireza; Elliott, Janet A W; Law, Garson K; McGann, Locksley E; Jomha, Nadr M

    2009-12-16

    Biomechanical models for biological tissues such as articular cartilage generally contain an ideal, dilute solution assumption. In this article, a biomechanical triphasic model of cartilage is described that includes nondilute treatment of concentrated solutions such as those applied in vitrification of biological tissues. The chemical potential equations of the triphasic model are modified and the transport equations are adjusted for the volume fraction and frictional coefficients of the solutes that are not negligible in such solutions. Four transport parameters, i.e., water permeability, solute permeability, diffusion coefficient of solute in solvent within the cartilage, and the cartilage stiffness modulus, are defined as four degrees of freedom for the model. Water and solute transport in cartilage were simulated using the model and predictions of average concentration increase and cartilage weight were fit to experimental data to obtain the values of the four transport parameters. As far as we know, this is the first study to formulate the solvent and solute transport equations of nondilute solutions in the cartilage matrix. It is shown that the values obtained for the transport parameters are within the ranges reported in the available literature, which confirms the proposed model approach.

  8. Computational modeling of blast wave interaction with a human body and assessment of traumatic brain injury

    Science.gov (United States)

    Tan, X. G.; Przekwas, A. J.; Gupta, R. K.

    2017-11-01

    The modeling of human body biomechanics resulting from blast exposure poses great challenges because of the complex geometry and the substantial material heterogeneity. We developed a detailed human body finite element model representing both the geometry and the materials realistically. The model includes the detailed head (face, skull, brain and spinal cord), the neck, the skeleton, air cavities (lungs) and the tissues. Hence, it can be used to properly model the stress wave propagation in the human body subjected to blast loading. The blast loading on the human was generated from a simulated C4 explosion. We used the highly scalable solvers in the multi-physics code CoBi for both the blast simulation and the human body biomechanics. The meshes generated for these simulations are of good quality so that relatively large time-step sizes can be used without resorting to artificial time scaling treatments. The coupled gas dynamics and biomechanics solutions were validated against the shock tube test data. The human body models were used to conduct parametric simulations to find the biomechanical response and the brain injury mechanism due to blasts impacting the human body. Under the same blast loading condition, we showed the importance of inclusion of the whole body.

  9. Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection

    DEFF Research Database (Denmark)

    Bork, Lasse; Møller, Stig Vinther

    2015-01-01

    We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves substantia......We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves...

  10. Biomechanical factors associated with the risk of knee injury when ...

    African Journals Online (AJOL)

    Objectives. To systematically assess the literature investigating biomechanical knee injury risk factors when an individual lands from a jump. Data sources. Four electronic databases were searched for peer-reviewed English journals containing landing biomechanical studies published over 14 years (1990 - 2003).

  11. Research on simulation calculation method of biomechanical characteristics of C1-3 motion segment damage mechanism

    Directory of Open Access Journals (Sweden)

    HUANG Ju-ying

    2013-11-01

    Full Text Available Objective To develop the finite element model (FEM of cervical spinal C1-3 motion segment, and to make biomechanical finite element analysis (FEA on C1-3 motion segment and thus simulate the biomechanical characteristics of C1-3 motion segment in distraction violence, compression violence, hyperextension violence and hyperflexion violence. Methods According to CT radiological data of a healthy adult, the vertebrae and intervertebral discs of cervical spinal C1-3 motion segment were respectively reconstructed by Mimics 10.01 software and Geomagic 10.0 software. The FEM of C1-3 motion segment was reconstructed by attaching the corresponding material properties of cervical spine in Ansys software. The biomechanical characteristics of cervical spinal C1-3 motion segment model were simulated under the 4 loadings of distraction violence, compression violence, hyperextension violence and hyperflexion violence by finite element method. Results In the loading of longitudinal stretch, the stress was relatively concentrated in the anterior arch of atlas, atlantoaxial joint and C3 lamina and spinous process. In the longitudinal compressive loads, the maximum stress of the upper cervical spine was located in the anterior arch of atlas. In the loading of hyperextension moment, the stress was larger in the massa lateralis atlantis, the lateral and posterior arch junction of atlas, the posterior arch nodules of the atlas, superior articular surface of axis and C2 isthmus. In the loading of hyperflexion moment, the stress was relatively concentrated in the odontoid process of axis, the posterior arch of atlas, the posterior arch nodules of atlas, C2 isthmic and C2 inferior articular process. Conclusion Finite element biomechanical testing of C1-3 motion segment can predict the biomechanical mechanism of upper cervical spine injury.

  12. The effect of intraosseous injection of calcium sulfate on microstructure and biomechanics of osteoporotic lumbar vertebrae in sheep

    Directory of Open Access Journals (Sweden)

    Da LIU

    2014-10-01

    Full Text Available Objective To investigate the effect of calcium sulfate (CS on improvement of microstructure and biomechanical performance of osteoporotic lumbar vertebrae in sheep. Methods Osteoporosis model was reproduced in 8 female sheep by bilateral ovariectomy and methylprednisolone administration. Then the lumbar vertebrae (L1-L4 in each sheep were randomly divided into CS group and blank group (2 vertebrae in each sheep. CS was injected into the vertebral bodies through the pedicle in CS group, and no treatment was given in blank group. All of the animals were sacrificed 3 months later, and vertebrae L1-L4 were harvested. The microstructure and biomechanical performance of vertebral bodies were assessed by micro-CT scanning, histological observation and biomechanical test. Results After ovariectomy and methylprednisolone administration, the mean bone mineral density of the lumbar vertebrae in the sheep was significantly decreased (>25% compared with that before induction (P<0.05, demonstrating a successful reproduction of osteoporosis model. Three months after injection, it was shown that CS was completely degraded without any remnant in the bone tissue. The quality of the bone tissue (trabecular number and tissue mineral density in CS group was significantly better than that in blank group (P<0.05, and the biomechanical performance in CS group was significantly superior to that in blank group (P<0.05. Conclusions  Local injection of CS could significantly improve the microstructure and biomechanical performance of osteoporotic vertebrae, and it may decrease the risk of fracture of patients with osteoporosis. DOI: 10.11855/j.issn.0577-7402.2014.09.02

  13. Limitations of rotational manoeuvrability in insects and hummingbirds: evaluating the effects of neuro-biomechanical delays and muscle mechanical power.

    Science.gov (United States)

    Liu, Pan; Cheng, Bo

    2017-07-01

    Flying animals ranging in size from fruit flies to hummingbirds are nimble fliers with remarkable rotational manoeuvrability. The degrees of manoeuvrability among these animals, however, are noticeably diverse and do not simply follow scaling rules of flight dynamics or muscle power capacity. As all manoeuvres emerge from the complex interactions of neural, physiological and biomechanical processes of an animal's flight control system, these processes give rise to multiple limiting factors that dictate the maximal manoeuvrability attainable by an animal. Here using functional models of an animal's flight control system, we investigate the effects of three such limiting factors, including neural and biomechanical (from limited flapping frequency) delays and muscle mechanical power, for two insect species and two hummingbird species, undergoing roll, pitch and yaw rotations. The results show that for animals with similar degree of manoeuvrability, for example, fruit flies and hummingbirds, the underlying limiting factors are different, as the manoeuvrability of fruit flies is only limited by neural delays and that of hummingbirds could be limited by all three factors. In addition, the manoeuvrability also appears to be the highest about the roll axis as it requires the least muscle mechanical power and can tolerate the largest neural delays. © 2017 The Author(s).

  14. Modeling dynamic swarms

    KAUST Repository

    Ghanem, Bernard

    2013-01-01

    This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal interdependency and stationarity, i.e., the motions are similar in any small spatiotemporal neighborhood. Examples of DS abound in nature, e.g., herds of animals and flocks of birds. To capture the local spatiotemporal properties of the DS, we present a probabilistic model that learns both the spatial layout of swarm elements (based on low-level image segmentation) and their joint dynamics that are modeled as linear transformations. To this end, a spatiotemporal neighborhood is associated with each swarm element, in which local stationarity is enforced both spatially and temporally. We assume that the prior on the swarm dynamics is distributed according to an MRF in both space and time. Embedding this model in a MAP framework, we iterate between learning the spatial layout of the swarm and its dynamics. We learn the swarm transformations using ICM, which iterates between estimating these transformations and updating their distribution in the spatiotemporal neighborhoods. We demonstrate the validity of our method by conducting experiments on real and synthetic video sequences. Real sequences of birds, geese, robot swarms, and pedestrians evaluate the applicability of our model to real world data. © 2012 Elsevier Inc. All rights reserved.

  15. Dynamics of human movement

    NARCIS (Netherlands)

    Koopman, Hubertus F.J.M.

    2010-01-01

    The part of (bio)mechanics that studies the interaction of forces on the human skeletal system and its effect on the resulting movement is called rigid body dynamics. Some basic concepts are presented: A mathematical formulation to describe human movement and how this relates on the mechanical loads

  16. Compressive Loads on the Lumbar Spine During Lifting: 4D WATBAK versus Inverse Dynamics Calculations

    Directory of Open Access Journals (Sweden)

    M. H. Cole

    2005-01-01

    Full Text Available Numerous two- and three-dimensional biomechanical models exist for the purpose of assessing the stresses placed on the lumbar spine during the performance of a manual material handling task. More recently, researchers have utilised their knowledge to develop specific computer-based models that can be applied in an occupational setting; an example of which is 4D WATBAK. The model used by 4D WATBAK bases its predications on static calculations and it is assumed that these static loads reasonably depict the actual dynamic loads acting on the lumbar spine. Consequently, it was the purpose of this research to assess the agreement between the static predictions made by 4D WATBAK and those from a comparable dynamic model. Six individuals were asked to perform a series of five lifting tasks, which ranged from lifting 2.5 kg to 22.5 kg and were designed to replicate the lifting component of the Work Capacity Assessment Test used within Australia. A single perpendicularly placed video camera was used to film each performance in the sagittal plane. The resultant two-dimensional kinematic data were input into the 4D WATBAK software and a dynamic biomechanical model to quantify the compression forces acting at the L4/L5 intervertebral joint. Results of this study indicated that as the mass of the load increased from 2.5 kg to 22.5 kg, the static compression forces calculated by 4D WATBAK became increasingly less than those calculated using the dynamic model (mean difference ranged from 22.0% for 2.5 kg to 42.9% for 22.5 kg. This study suggested that, for research purposes, a validated three-dimensional dynamic model should be employed when a task becomes complex and when a more accurate indication of spinal compression or shear force is required. Additionally, although it is clear that 4D WATBAK is particularly suited to industrial applications, it is suggested that the limitations of such modelling tools be carefully considered when task-risk and employee

  17. Computational biomechanics for medicine new approaches and new applications

    CERN Document Server

    Miller, Karol; Wittek, Adam; Nielsen, Poul

    2015-01-01

    The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologiesand advancements. Thisvolumecomprises twelve of the newest approaches and applications of computational biomechanics, from researchers in Australia, New Zealand, USA, France, Spain and Switzerland. Some of the interesting topics discussed are:real-time simulations; growth and remodelling of soft tissues; inverse and meshless solutions; medical image analysis; and patient-specific solid mechanics simulations. One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. We hope the research presented within this book series will contribute to overcoming this grand challenge.

  18. An Investigation of Two Finite Element Modeling Solutions for Biomechanical Simulation Using a Case Study of a Mandibular Bone.

    Science.gov (United States)

    Liu, Yun-Feng; Fan, Ying-Ying; Dong, Hui-Yue; Zhang, Jian-Xing

    2017-12-01

    The method used in biomechanical modeling for finite element method (FEM) analysis needs to deliver accurate results. There are currently two solutions used in FEM modeling for biomedical model of human bone from computerized tomography (CT) images: one is based on a triangular mesh and the other is based on the parametric surface model and is more popular in practice. The outline and modeling procedures for the two solutions are compared and analyzed. Using a mandibular bone as an example, several key modeling steps are then discussed in detail, and the FEM calculation was conducted. Numerical calculation results based on the models derived from the two methods, including stress, strain, and displacement, are compared and evaluated in relation to accuracy and validity. Moreover, a comprehensive comparison of the two solutions is listed. The parametric surface based method is more helpful when using powerful design tools in computer-aided design (CAD) software, but the triangular mesh based method is more robust and efficient.

  19. Trampoline-related injuries in children: a preliminary biomechanical model of multiple users.

    Science.gov (United States)

    Menelaws, Simon; Bogacz, Andrew R; Drew, Tim; Paterson, Brodie C

    2011-07-01

    The recent popularity of domestic trampolines has seen a corresponding increase in injured children. Most injuries happen on the trampoline mat when there are multiple users present. This study sought to examine and simulate the forces and energy transferred to a child's limbs when trampolining with another person of greater mass. The study used a computational biomechanical model. The simulation demonstrated that when two masses bounce out of phase on a trampoline, a transfer of kinetic energy from the larger mass to the smaller mass is likely to occur. It predicted that when an 80 kg adult is on a trampoline with a 25 kg child, the energy transfer is equivalent to the child falling 2.8 m onto a solid surface. Additionally, the rate of loading on the child's bones and ligaments is greater than that on the accompanying adult. Current guidelines are clear that more than one user on a trampoline at a time is a risk factor for serious injury; however, the majority of injuries happen in this scenario. The model predicted that there are high energy transfers resulting in serious fracture and ligamentous injuries to children and that this could be equated to equivalent fall heights. This provides a clear take-home message, which can be conveyed to parents to reduce the incidence of trampoline-related injuries.

  20. Corneal Biomechanics in Ectatic Diseases: Refractive Surgery Implications

    Science.gov (United States)

    Ambrósio, Jr, Renato; Correia, Fernando Faria; Lopes, Bernardo; Salomão, Marcella Q.; Luz, Allan; Dawson, Daniel G.; Elsheikh, Ahmed; Vinciguerra, Riccardo; Vinciguerra, Paolo; Roberts, Cynthia J.

    2017-01-01

    Background: Ectasia development occurs due to a chronic corneal biomechanical decompensation or weakness, resulting in stromal thinning and corneal protrusion. This leads to corneal steepening, increase in astigmatism, and irregularity. In corneal refractive surgery, the detection of mild forms of ectasia pre-operatively is essential to avoid post-operative progressive ectasia, which also depends on the impact of the procedure on the cornea. Method: The advent of 3D tomography is proven as a significant advancement to further characterize corneal shape beyond front surface topography, which is still relevant. While screening tests for ectasia had been limited to corneal shape (geometry) assessment, clinical biomechanical assessment has been possible since the introduction of the Ocular Response Analyzer (Reichert Ophthalmic Instruments, Buffalo, USA) in 2005 and the Corvis ST (Oculus Optikgeräte GmbH, Wetzlar, Germany) in 2010. Direct clinical biomechanical evaluation is recognized as paramount, especially in detection of mild ectatic cases and characterization of the susceptibility for ectasia progression for any cornea. Conclusions: The purpose of this review is to describe the current state of clinical evaluation of corneal biomechanics, focusing on the most recent advances of commercially available instruments and also on future developments, such as Brillouin microscopy. PMID:28932334

  1. Matrix Metalloproteinase 9 (MMP-9 Regulates Vein Wall Biomechanics in Murine Thrombus Resolution.

    Directory of Open Access Journals (Sweden)

    Khanh P Nguyen

    Full Text Available Deep venous thrombosis is a common vascular problem with long-term complications including post-thrombotic syndrome. Post-thrombotic syndrome consists of leg pain, swelling and ulceration that is related to incomplete or maladaptive resolution of the venous thrombus as well as loss of compliance of the vein wall. We examine the role of metalloproteinase-9 (MMP-9, a gene important in extracellular remodeling in other vascular diseases, in mediating thrombus resolution and biomechanical changes of the vein wall.The effects of targeted deletion of MMP-9 were studied in an in vivo murine model of thrombus resolution using the FVB strain of mice. MMP-9 expression and activity significantly increased on day 3 after DVT. The lack of MMP-9 impaired thrombus resolution by 27% and this phenotype was rescued by the transplantation of wildtype bone marrow cells. Using novel biomechanical techniques, we demonstrated that the lack of MMP-9 significantly decreased thrombus-induced loss of vein wall compliance. Biomechanical analysis of the contribution of individual structural components showed that MMP-9 affected the elasticity of the extracellular matrix and collagen-elastin fibers. Biochemical and histological analyses correlated with these biomechanical effects as thrombi of mice lacking MMP-9 had significantly fewer macrophages and collagen as compared to those of wildtype mice.MMP-9 mediates thrombus-induced loss of vein wall compliance by increasing stiffness of the extracellular matrix and collagen-elastin fibers during thrombus resolution. MMP-9 also mediates macrophage and collagen content of the resolving thrombus and bone-marrow derived MMP-9 plays a role in resolution of thrombus mass. These disparate effects of MMP-9 on various aspects of thrombus illustrate the complexity of individual protease function on biomechanical and morphometric aspects of thrombus resolution.

  2. Matrix Metalloproteinase 9 (MMP-9) Regulates Vein Wall Biomechanics in Murine Thrombus Resolution

    Science.gov (United States)

    Nguyen, Khanh P.; McGilvray, Kirk C.; Puttlitz, Christian M.; Mukhopadhyay, Subhradip; Chabasse, Christine; Sarkar, Rajabrata

    2015-01-01

    Objective Deep venous thrombosis is a common vascular problem with long-term complications including post-thrombotic syndrome. Post-thrombotic syndrome consists of leg pain, swelling and ulceration that is related to incomplete or maladaptive resolution of the venous thrombus as well as loss of compliance of the vein wall. We examine the role of metalloproteinase-9 (MMP-9), a gene important in extracellular remodeling in other vascular diseases, in mediating thrombus resolution and biomechanical changes of the vein wall. Methods and Results The effects of targeted deletion of MMP-9 were studied in an in vivo murine model of thrombus resolution using the FVB strain of mice. MMP-9 expression and activity significantly increased on day 3 after DVT. The lack of MMP-9 impaired thrombus resolution by 27% and this phenotype was rescued by the transplantation of wildtype bone marrow cells. Using novel biomechanical techniques, we demonstrated that the lack of MMP-9 significantly decreased thrombus-induced loss of vein wall compliance. Biomechanical analysis of the contribution of individual structural components showed that MMP-9 affected the elasticity of the extracellular matrix and collagen-elastin fibers. Biochemical and histological analyses correlated with these biomechanical effects as thrombi of mice lacking MMP-9 had significantly fewer macrophages and collagen as compared to those of wildtype mice. Conclusions MMP-9 mediates thrombus-induced loss of vein wall compliance by increasing stiffness of the extracellular matrix and collagen-elastin fibers during thrombus resolution. MMP-9 also mediates macrophage and collagen content of the resolving thrombus and bone-marrow derived MMP-9 plays a role in resolution of thrombus mass. These disparate effects of MMP-9 on various aspects of thrombus illustrate the complexity of individual protease function on biomechanical and morphometric aspects of thrombus resolution. PMID:26406902

  3. An Anatomic and Biomechanical Comparison of Bankart Repair Configurations.

    Science.gov (United States)

    Judson, Christopher H; Voss, Andreas; Obopilwe, Elifho; Dyrna, Felix; Arciero, Robert A; Shea, Kevin P

    2017-11-01

    Suture anchor repair for anterior shoulder instability can be performed using a number of different repair techniques, but none has been proven superior in terms of anatomic and biomechanical properties. Purpose/Hypothesis: The purpose was to compare the anatomic footprint coverage and biomechanical characteristics of 4 different Bankart repair techniques: (1) single row with simple sutures, (2) single row with horizontal mattress sutures, (3) double row with sutures, and (4) double row with labral tape. The hypotheses were as follows: (1) double-row techniques would improve the footprint coverage and biomechanical properties compared with single-row techniques, (2) horizontal mattress sutures would increase the footprint coverage compared with simple sutures, and (3) repair techniques with labral tape and sutures would not show different biomechanical properties. Controlled laboratory study. Twenty-four fresh-frozen cadaveric specimens were dissected. The native labrum was removed and the footprint marked and measured. Repair for each of the 4 groups was performed, and the uncovered footprint was measured using a 3-dimensional digitizer. The strength of the repair sites was assessed using a servohydraulic testing machine and a digital video system to record load to failure, cyclic displacement, and stiffness. The double-row repair techniques with sutures and labral tape covered 73.4% and 77.0% of the footprint, respectively. These percentages were significantly higher than the footprint coverage achieved by single-row repair techniques using simple sutures (38.1%) and horizontal mattress sutures (32.8%) ( P row and double-row groups or between the simple suture and horizontal mattress suture techniques. Likewise, there was no difference in the biomechanical properties of the double-row repair techniques with sutures versus labral tape. Double-row repair techniques provided better coverage of the native footprint of the labrum but did not provide superior

  4. Biomechanical response of human spleen in tensile loading.

    Science.gov (United States)

    Kemper, Andrew R; Santago, Anthony C; Stitzel, Joel D; Sparks, Jessica L; Duma, Stefan M

    2012-01-10

    Blunt splenic injuries are most frequently caused as a result of motor vehicle collisions and are associated with high mortality rates. In order to accurately assess the risk of automotive related spleen injuries using tools such as finite element models, tissue level tolerance values and suitable material models must be developed and validated based on appropriate biomechanical data. This study presents a total of 41 tension tests performed on spleen parenchyma coupons and 29 tension tests performed on spleen capsule/parenchyma coupons. Standard dog-bone coupons were obtained from fresh human spleen and tested within 48 h of death. Each coupon was tested once to failure at one of the four loading rates to investigate the effects of rate dependence. Load and acceleration data were obtained at each of the specimen grips. High-speed video and optical markers placed on the specimens were used to measure local displacement. Failure stress and strain were calculated at the location of failure in the gage length of the coupon. The results of the study showed that both the spleen parenchyma and the capsule are rate dependent, with higher loading rates yielding higher failure stresses and lower failure strains. The results also show that the failure stress of the splenic capsule is significantly greater than that of the underlying parenchyma. Overall, this study provides novel biomechanical data that demonstrate the rate dependent tissue level tolerance values of human spleen tissue in tensile loading, which can aid in the improvement of finite element models used to assess injury risk in blunt trauma. Published by Elsevier Ltd.

  5. An upper limb mathematical model of an oil palm harvester

    Science.gov (United States)

    Tumit, N. P.; Rambely, A. S.; BMT, Shamsul; Shahriman A., B.; Ng Y., G.; Deros, B. M.; Zailina, H.; Goh, Y. M.; Arumugam, Manohar; Ismail, I. A.; Abdul Hafiz A., R.

    2014-09-01

    The main purpose of this article is to develop a mathematical model of human body during harvesting via Kane's method. In this paper, a 2-D closed-kinematic biomechanical model that represents a harvesting movement is developed. The model of six segments consisted of upper right arm, right forearm, harvesting equipment, left forearm, upper left arm, and upper part of trunk. Finally, the inverse dynamic equations are represented in matrix form.

  6. Review of various dynamic modeling methods and development of an intuitive modeling method for dynamic systems

    International Nuclear Information System (INIS)

    Shin, Seung Ki; Seong, Poong Hyun

    2008-01-01

    Conventional static reliability analysis methods are inadequate for modeling dynamic interactions between components of a system. Various techniques such as dynamic fault tree, dynamic Bayesian networks, and dynamic reliability block diagrams have been proposed for modeling dynamic systems based on improvement of the conventional modeling methods. In this paper, we review these methods briefly and introduce dynamic nodes to the existing Reliability Graph with General Gates (RGGG) as an intuitive modeling method to model dynamic systems. For a quantitative analysis, we use a discrete-time method to convert an RGGG to an equivalent Bayesian network and develop a software tool for generation of probability tables

  7. Platelet biomechanics, platelet bioenergetics, and applications to clinical practice and translational research.

    Science.gov (United States)

    George, Mitchell J; Bynum, James; Nair, Prajeeda; Cap, Andrew P; Wade, Charles E; Cox, Charles S; Gill, Brijesh S

    2018-07-01

    The purpose of this review is to explore the relationship between platelet bioenergetics and biomechanics and how this relationship affects the clinical interpretation of platelet function devices. Recent experimental and technological advances highlight platelet bioenergetics and biomechanics as alternative avenues for collecting clinically relevant data. Platelet bioenergetics drive energy production for key biomechanical processes like adhesion, spreading, aggregation, and contraction. Platelet function devices like thromboelastography, thromboelastometry, and aggregometry measure these biomechanical processes. Platelet storage, stroke, sepsis, trauma, or the activity of antiplatelet drugs alters measures of platelet function. However, the specific mechanisms governing these alterations in platelet function and how they relate to platelet bioenergetics are still under investigation.

  8. Dinosaur biomechanics

    Science.gov (United States)

    Alexander, R. McNeill

    2006-01-01

    Biomechanics has made large contributions to dinosaur biology. It has enabled us to estimate both the speeds at which dinosaurs generally moved and the maximum speeds of which they may have been capable. It has told us about the range of postures they could have adopted, for locomotion and for feeding, and about the problems of blood circulation in sauropods with very long necks. It has made it possible to calculate the bite forces of predators such as Tyrannosaurus, and the stresses they imposed on its skull; and to work out the remarkable chewing mechanism of hadrosaurs. It has shown us how some dinosaurs may have produced sounds. It has enabled us to estimate the effectiveness of weapons such as the tail spines of Stegosaurus. In recent years, techniques such as computational tomography and finite element analysis, and advances in computer modelling, have brought new opportunities. Biomechanists should, however, be especially cautious in their work on animals known only as fossils. The lack of living specimens and even soft tissues oblige us to make many assumptions. It is important to be aware of the often wide ranges of uncertainty that result. PMID:16822743

  9. Measurement system for an in-vitro characterization of the biomechanics and hemodynamics of arterial bifurcations

    International Nuclear Information System (INIS)

    Suárez-Bagnasco, D; Balay, G; Negreira, C A; Cymberknop, L; Armentano, R L

    2013-01-01

    Arterial behaviour in-vivo is influenced, amongst other factors, by the interaction between blood flow and the arterial wall endothelium, and the biomechanical properties of the arterial wall. This interaction plays an important role in pathogenic mechanisms of cardiovascular diseases such as atherosclerosis and arteriosclerosis. To quantify these interactions both from biomechanical and hemodynamical standpoints, a complete characterization and modelling of the arterial wall, blood flow, shear wall and circumferential wall stresses are needed. The development of a new multi-parameter measurement system (distances, pressures, flows, velocity profiles, temperature, viscosity) for an in-vitro characterization of the biomechanics and hemodynamics in arterial bifurcations (specially in carotid bifurcations) is described. This set-up represents an improvement relative to previous set-ups developed by the group FCIEN-FMED and is presently under development. Main subsystems interactions and environment-system interactions were identified and compensated to improve system's performance. Several interesting problems related with signal acquisition using a variety of sensors and some experimental results are shown and briefly discussed. Experimental data allow construction of meshes and parameter estimation of the biomechanical properties of the arterial wall, as well as boundary conditions, all suitable to be employed in CFD and FSI numerical simulation.

  10. In vivo biomechanical evaluation of a novel angle-stable interlocking nail design in a canine tibial fracture model.

    Science.gov (United States)

    Déjardin, Loïc M; Cabassu, Julien B; Guillou, Reunan P; Villwock, Mark; Guiot, Laurent P; Haut, Roger C

    2014-03-01

    To compare clinical outcome and callus biomechanical properties of a novel angle stable interlocking nail (AS-ILN) and a 6 mm bolted standard ILN (ILN6b) in a canine tibial fracture model. Experimental in vivo study. Purpose-bred hounds (n = 11). A 5 mm mid-diaphyseal tibial ostectomy was stabilized with an AS-ILN (n = 6) or an ILN6b (n = 5). Orthopedic examinations and radiographs were performed every other week until clinical union (18 weeks). Paired tibiae were tested in torsion until failure. Callus torsional strength and toughness were statistically compared and failure mode described. Total and cortical callus volumes were computed and statistically compared from CT slices of the original ostectomy gap. Statistical significance was set at P dogs (P dogs by 10 weeks and in 3/5 ILN6b dogs at 18 weeks. Callus mechanical properties were significantly greater in AS-ILN than ILN6b specimens by 77% (failure torque) and 166% (toughness). Failure occurred by acute spiral (control and AS-ILN) or progressive transverse fractures (ILN6b). Cortical callus volume was 111% greater in AS-ILN than ILN6b specimens (P < .05). Earlier functional recovery, callus strength and remodeling suggest that the AS-ILN provides a postoperative biomechanical environment more conducive to bone healing than a comparable standard ILN. © Copyright 2014 by The American College of Veterinary Surgeons.

  11. Biomechanics and mechanical signaling in the ovary: a systematic review.

    Science.gov (United States)

    Shah, Jaimin S; Sabouni, Reem; Cayton Vaught, Kamaria C; Owen, Carter M; Albertini, David F; Segars, James H

    2018-04-24

    Mammalian oogenesis and folliculogenesis share a dynamic connection that is critical for gamete development. For maintenance of quiescence or follicular activation, follicles must respond to soluble signals (growth factors and hormones) and physical stresses, including mechanical forces and osmotic shifts. Likewise, mechanical processes are involved in cortical tension and cell polarity in oocytes. Our objective was to examine the contribution and influence of biomechanical signaling in female mammalian gametogenesis. We performed a systematic review to assess and summarize the effects of mechanical signaling and mechanotransduction in oocyte maturation and folliculogenesis and to explore possible clinical applications. The review identified 2568 publications of which 122 met the inclusion criteria. The integration of mechanical and cell signaling pathways in gametogenesis is complex. Follicular activation or quiescence are influenced by mechanical signaling through the Hippo and Akt pathways involving the yes-associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ), phosphatase and tensin homolog deleted from chromosome 10 (PTEN) gene, the mammalian target of rapamycin (mTOR), and forkhead box O3 (FOXO3) gene. There is overwhelming evidence that mechanical signaling plays a crucial role in development of the ovary, follicle, and oocyte throughout gametogenesis. Emerging data suggest the complexities of mechanotransduction and the biomechanics of oocytes and follicles are integral to understanding of primary ovarian insufficiency, ovarian aging, polycystic ovary syndrome, and applications of fertility preservation.

  12. The Impact of Biomechanics in Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Butler, David L.; Goldstein, Steven A.; Guo, X. Edward; Kamm, Roger; Laurencin, Cato T.; McIntire, Larry V.; Mow, Van C.; Nerem, Robert M.; Sah, Robert L.; Soslowsky, Louis J.; Spilker, Robert L.; Tranquillo, Robert T.

    2009-01-01

    Biomechanical factors profoundly influence the processes of tissue growth, development, maintenance, degeneration, and repair. Regenerative strategies to restore damaged or diseased tissues in vivo and create living tissue replacements in vitro have recently begun to harness advances in understanding of how cells and tissues sense and adapt to their mechanical environment. It is clear that biomechanical considerations will be fundamental to the successful development of clinical therapies based on principles of tissue engineering and regenerative medicine for a broad range of musculoskeletal, cardiovascular, craniofacial, skin, urinary, and neural tissues. Biomechanical stimuli may in fact hold the key to producing regenerated tissues with high strength and endurance. However, many challenges remain, particularly for tissues that function within complex and demanding mechanical environments in vivo. This paper reviews the present role and potential impact of experimental and computational biomechanics in engineering functional tissues using several illustrative examples of past successes and future grand challenges. PMID:19583462

  13. Energetics, Biomechanics, and Performance in Masters' Swimmers: A Systematic Review.

    Science.gov (United States)

    Ferreira, Maria I; Barbosa, Tiago M; Costa, Mário J; Neiva, Henrique P; Marinho, Daniel A

    2016-07-01

    Ferreira, MI, Barbosa, TM, Costa, MJ, Neiva, HP, and Marinho, DA. Energetics, biomechanics, and performance in masters' swimmers: a systematic review. J Strength Cond Res 30(7): 2069-2081, 2016-This study aimed to summarize evidence on masters' swimmers energetics, biomechanics, and performance gathered in selected studies. An expanded search was conducted on 6 databases, conference proceedings, and department files. Fifteen studies were selected for further analysis. A qualitative evaluation of the studies based on the Quality Index (QI) was performed by 2 independent reviewers. The studies were thereafter classified into 3 domains according to the reported data: performance (10 studies), energetics (4 studies), and biomechanics (6 studies). The selected 15 articles included in this review presented low QI scores (mean score, 10.47 points). The biomechanics domain obtained higher QI (11.5 points), followed by energetics and performance (10.6 and 9.9 points, respectively). Stroke frequency (SF) and stroke length (SL) were both influenced by aging, although SF is more affected than SL. Propelling efficiency (ηp) decreased with age. Swimming performance declined with age. The performance declines with age having male swimmers deliver better performances than female counterparts, although this difference tends to be narrow in long-distance events. One single longitudinal study is found in the literature reporting the changes in performance over time. The remaining studies are cross-sectional designs focusing on the energetics and biomechanics. Overall, biomechanics parameters, such as SF, SL, and ηp, tend to decrease with age. This review shows the lack of a solid body of knowledge (reflected in the amount and quality of the articles published) on the changes in biomechanics, energetics, and performance of master swimmers over time. The training programs for this age-group should aim to preserve the energetics as much as possible and, concurrently, improve the

  14. Applanation optical coherence elastography: noncontact measurement of intraocular pressure, corneal biomechanical properties, and corneal geometry with a single instrument

    Science.gov (United States)

    Singh, Manmohan; Han, Zhaolong; Nair, Achuth; Schill, Alexander; Twa, Michael D.; Larin, Kirill V.

    2017-02-01

    Current clinical tools provide critical information about ocular health such as intraocular pressure (IOP). However, they lack the ability to quantify tissue material properties, which are potent markers for ocular tissue health and integrity. We describe a single instrument to measure the eye-globe IOP, quantify corneal biomechanical properties, and measure corneal geometry with a technique termed applanation optical coherence elastography (Appl-OCE). An ultrafast OCT system enabled visualization of corneal dynamics during noncontact applanation tonometry and direct measurement of micro air-pulse induced elastic wave propagation. Our preliminary results show that the proposed Appl-OCE system can be used to quantify IOP, corneal biomechanical properties, and corneal geometry, which builds a solid foundation for a unique device that can provide a more complete picture of ocular health.

  15. Tissue and cellular biomechanics during corneal wound injury and repair.

    Science.gov (United States)

    Raghunathan, Vijay Krishna; Thomasy, Sara M; Strøm, Peter; Yañez-Soto, Bernardo; Garland, Shaun P; Sermeno, Jasmyne; Reilly, Christopher M; Murphy, Christopher J

    2017-08-01

    Corneal wound healing is an enormously complex process that requires the simultaneous cellular integration of multiple soluble biochemical cues, as well as cellular responses to the intrinsic chemistry and biophysical attributes associated with the matrix of the wound space. Here, we document how the biomechanics of the corneal stroma are altered through the course of wound repair following keratoablative procedures in rabbits. Further we documented the influence that substrate stiffness has on stromal cell mechanics. Following corneal epithelial debridement, New Zealand white rabbits underwent phototherapeutic keratectomy (PTK) on the right eye (OD). Wound healing was monitored using advanced imaging modalities. Rabbits were euthanized and corneas were harvested at various time points following PTK. Tissues were characterized for biomechanics with atomic force microscopy and with histology to assess inflammation and fibrosis. Factor analysis was performed to determine any discernable patterns in wound healing parameters. The matrix associated with the wound space was stiffest at 7days post PTK. The greatest number of inflammatory cells were observed 3days after wounding. The highest number of myofibroblasts and the greatest degree of fibrosis occurred 21days after wounding. While all clinical parameters returned to normal values 400days after wounding, the elastic modulus remained greater than pre-surgical values. Factor analysis demonstrated dynamic remodeling of stroma occurs between days 10 and 42 during corneal stromal wound repair. Elastic modulus of the anterior corneal stroma is dramatically altered following PTK and its changes coincide initially with the development of edema and inflammation, and later with formation of stromal haze and population of the wound space with myofibroblasts. Factor analysis demonstrates strongest correlation between elastic modulus, myofibroblasts, fibrosis and stromal haze thickness, and between edema and central corneal

  16. MRI to X-ray mammography intensity-based registration with simultaneous optimisation of pose and biomechanical transformation parameters.

    Science.gov (United States)

    Mertzanidou, Thomy; Hipwell, John; Johnsen, Stian; Han, Lianghao; Eiben, Bjoern; Taylor, Zeike; Ourselin, Sebastien; Huisman, Henkjan; Mann, Ritse; Bick, Ulrich; Karssemeijer, Nico; Hawkes, David

    2014-05-01

    Determining corresponding regions between an MRI and an X-ray mammogram is a clinically useful task that is challenging for radiologists due to the large deformation that the breast undergoes between the two image acquisitions. In this work we propose an intensity-based image registration framework, where the biomechanical transformation model parameters and the rigid-body transformation parameters are optimised simultaneously. Patient-specific biomechanical modelling of the breast derived from diagnostic, prone MRI has been previously used for this task. However, the high computational time associated with breast compression simulation using commercial packages, did not allow the optimisation of both pose and FEM parameters in the same framework. We use a fast explicit Finite Element (FE) solver that runs on a graphics card, enabling the FEM-based transformation model to be fully integrated into the optimisation scheme. The transformation model has seven degrees of freedom, which include parameters for both the initial rigid-body pose of the breast prior to mammographic compression, and those of the biomechanical model. The framework was tested on ten clinical cases and the results were compared against an affine transformation model, previously proposed for the same task. The mean registration error was 11.6±3.8mm for the CC and 11±5.4mm for the MLO view registrations, indicating that this could be a useful clinical tool. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Dynamic Model Averaging in Large Model Spaces Using Dynamic Occam’s Window*

    Science.gov (United States)

    Onorante, Luca; Raftery, Adrian E.

    2015-01-01

    Bayesian model averaging has become a widely used approach to accounting for uncertainty about the structural form of the model generating the data. When data arrive sequentially and the generating model can change over time, Dynamic Model Averaging (DMA) extends model averaging to deal with this situation. Often in macroeconomics, however, many candidate explanatory variables are available and the number of possible models becomes too large for DMA to be applied in its original form. We propose a new method for this situation which allows us to perform DMA without considering the whole model space, but using a subset of models and dynamically optimizing the choice of models at each point in time. This yields a dynamic form of Occam’s window. We evaluate the method in the context of the problem of nowcasting GDP in the Euro area. We find that its forecasting performance compares well with that of other methods. PMID:26917859

  18. Interpretation of body-mounted accelerometry in flying animals and estimation of biomechanical power.

    Science.gov (United States)

    Spivey, R J; Bishop, C M

    2013-10-06

    An idealized energy fluctuation model of a bird's body undergoing horizontal flapping flight is developed, focusing on the biomechanical power discernible to a body-mounted accelerometer. Expressions for flight body power constructed from root mean square dynamic body accelerations and wingstroke frequency are derived from first principles and presented in dimensionally appropriate units. As wingstroke frequency increases, the model generally predicts a gradual transition in power from a linear to an asymptotically cubic relationship. However, the onset of this transition and the degree to which this occurs depends upon whether and how forward vibrations are exploited for temporary energy storage and retrieval. While this may vary considerably between species and individual birds, it is found that a quadrature phase arrangement is generally advantageous during level flight. Gravity-aligned vertical acceleration always enters into the calculation of body power, but, whenever forward acceleration becomes relevant, its contribution is subtractive. Several novel kinematic measures descriptive of flapping flight are postulated, offering fresh insights into the processes involved in airborne locomotion. The limitations of the model are briefly discussed, and departures from its predictions during ascending and descending flight evaluated. These findings highlight how body-mounted accelerometers can offer a valuable, insightful and non-invasive technique for investigating the flight of free-ranging birds and bats.

  19. High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.

    Science.gov (United States)

    Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E

    2016-02-01

    To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair

  20. Plantar Fasciitis and the Windlass Mechanism: A Biomechanical Link to Clinical Practice

    Science.gov (United States)

    Malone, Terry R.

    2004-01-01

    Objective: Plantar fasciitis is a prevalent problem, with limited consensus among clinicians regarding the most effective treatment. The purpose of this literature review is to provide a systematic approach to the treatment of plantar fasciitis based on the windlass mechanism model. Data Sources: We searched MEDLINE, SPORT Discus, and CINAHL from 1966 to 2003 using the key words plantar fasciitis, windlass mechanism, pronation, heel pain, and heel spur. Data Synthesis: We offer a biomechanical application for the evaluation and treatment of plantar fasciitis based on a review of the literature for the windlass mechanism model. This model provides a means for describing plantar fasciitis conditions such that clinicians can formulate a potential causal relationship between the conditions and their treatments. Conclusions/Recommendations: Clinicians' understanding of the biomechanical causes of plantar fasciitis should guide the decision-making process concerning the evaluation and treatment of heel pain. Use of this approach may improve clinical outcomes because intervention does not merely treat physical symptoms but actively addresses the influences that resulted in the condition. Principles from this approach might also provide a basis for future research investigating the efficacy of plantar fascia treatment. PMID:16558682

  1. Clinical applications of biomechanics cinematography.

    Science.gov (United States)

    Woodle, A S

    1986-10-01

    Biomechanics cinematography is the analysis of movement of living organisms through the use of cameras, image projection systems, electronic digitizers, and computers. This article is a comparison of cinematographic systems and details practical uses of the modality in research and education.

  2. Biomechanical pulping of kenaf

    Science.gov (United States)

    Aziz Ahmed; Masood Akhtar; Gary C. Myers; Gary M. Scott

    1999-01-01

    The objective of this study was to investigate the effect of fungal pretreatment of whole kenaf prior to refining on refiner electrical energy consumption, paper strength, and optical properties. We also explored the suitability of whole kenaf biomechanical pulp for making newsprint in terms of ISO brightness and strength properties. Kenaf was sterilized by autoclaving...

  3. Dance band on the Titanic: biomechanical signaling in cardiac hypertrophy.

    Science.gov (United States)

    Sussman, Mark A; McCulloch, Andrew; Borg, Thomas K

    2002-11-15

    Biomechanical signaling is a complex interaction of both intracellular and extracellular components. Both passive and active components are involved in the extracellular environment to signal through specific receptors to multiple signaling pathways. This review provides an overview of extracellular matrix, specific receptors, and signaling pathways for biomechanical stimulation in cardiac hypertrophy.

  4. Biomechanical evaluation of a second generation headless compression screw for ankle arthrodesis in a cadaver model.

    Science.gov (United States)

    Somberg, Andrew Max; Whiteside, William K; Nilssen, Erik; Murawski, Daniel; Liu, Wei

    2016-03-01

    Many types of screws, plates, and strut grafts have been utilized for ankle arthrodesis. Biomechanical testing has shown that these constructs can have variable stiffness. More recently, headless compression screws have emerged as an evolving method of achieving compression in various applications but there is limited literature regarding ankle arthrodesis. The aim of this study was to determine the biomechanical stability provided by a second generation fully threaded headless compression screw compared to a standard headed, partially threaded cancellous screw in a cadaveric ankle arthrodesis model. Twenty fresh frozen human cadaver specimens were subjected to simulated ankle arthrodesis with either three standard cancellous-bone screws (InFix 7.3mm) or with three headless compression screws (Acumed Acutrak 2 7.5mm). The specimens were subjected to cyclic loading and unloading at a rate of 1Hz, compression of 525 Newtons (N) and distraction of 20N for a total of 500 cycles using an electromechanical load frame (Instron). The amount of maximum distraction was recorded as well as the amount of motion that occurred through 1, 10, 50, 100, and 500 cycles. No significant difference (p=0.412) was seen in the amount of distraction that occurred across the fusion site for either screw. The average maximum distraction after 500 cycles was 201.9μm for the Acutrak 2 screw and 235.4μm for the InFix screw. No difference was seen throughout each cycle over time for the Acutrak 2 screw (p-value=0.988) or the InFix screw (p-value=0.991). Both the traditional InFix type screw and the second generation Acumed Acutrak headless compression screws provide adequate fixation during ankle arthrodesis under submaximal loads. There is no demonstrable difference between traditional cannulated partially threaded screws and headless compression screws studied in this model. Copyright © 2015 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  5. Biomechanical evaluation of heel elevation on load transfer — experimental measurement and finite element analysis

    Science.gov (United States)

    Luximon, Yan; Luximon, Ameersing; Yu, Jia; Zhang, Ming

    2012-02-01

    In spite of ill-effects of high heel shoes, they are widely used for women. Hence, it is essential to understand the load transfer biomechanics in order to design better fit and comfortable shoes. In this study, both experimental measurement and finite element analysis were used to evaluate the biomechanical effects of heel height on foot load transfer. A controlled experiment was conducted using custom-designed platforms. Under different weight-bearing conditions, peak plantar pressure, contact area and center of pressure were analyzed. A three-dimensional finite element foot model was used to simulate the high-heel support and to predict the internal stress distributions and deformations for different heel heights. Results from both experiment and model indicated that heel elevations had significant effects on all variables. When heel elevation increased, the center of pressure shifted from the midfoot region to the forefoot region, the contact area was reduced by 26% from 0 to 10.2 cm heel and the internal stress of foot bones increased. Prediction results also showed that the strain and total tension force of plantar fascia was minimum at 5.1 cm heel condition. This study helps to better understand the biomechanical behavior of foot, and to provide better suggestions for design parameters of high heeled shoes.

  6. Biomechanics of the Optic Nerve Sheath in VIIP Syndrome

    Science.gov (United States)

    Ethier, C. Ross; Raykin, Julia; Gleason, Rudy; Mulugeta, Lealem; Myers, Jerry; Nelson, Emily; Samuels, Brian C.

    2014-01-01

    Long-duration space flight carries the risk of developing Visual Impairment and Intracranial Pressure (VIIP) syndrome, a spectrum of ophthalmic changes including posterior globe flattening, choroidal folds, distension of the optic nerve sheath (ONS), optic nerve kinking and potentially permanent degradation of visual function. The slow onset of VIIP, its chronic nature, and certain clinical features strongly suggest that biomechanical factors acting on the ONS play a role in VIIP. Here we measure several relevant ONS properties needed to model VIIP biomechanics. The ONS (meninges) of fresh porcine eyes (n7) was reflected, the nerve proper was truncated near the sclera, and the meninges were repositioned to create a hollow cylinder of meningeal connective tissue attached to the posterior sclera. The distal end was cannulated, sealed, and pressure clamped (mimicking cerebrospinal fluid [CSF] pressure), while the eye was also cannulated for independent control of intraocular pressure (IOP). The meninges were inflated (CSF pressure cycling 7-50 mmHg) while ONS outer diameter was imaged. In another set of experiments (n4), fluid permeation rate across the meninges was recorded by observing the drainage of an elevated fluid reservoir (30 mmHg) connected to the meninges. The ONS showed behavior typical of soft tissues: viscoelasticity, with hysteresis in early preconditioning cycles and repeatable behavior after 4 cycles, and nonlinear stiffening, particularly at CSF pressures 15 mmHg (Figure). Tangent moduli measured from the loading curve were 372 101, 1199 358, and 2050 379 kPa (mean SEM) at CSF pressures of 7, 15 and 30 mmHg, respectively. Flow rate measurements through the intact meninges at 30mmHg gave a permeability of 1.34 0.46 lmincm2mmHg (mean SEM). The ONS is a tough, strain-stiffening connective tissue that is surprisingly permeable. The latter observation suggests that there could be significant CSF drainage through the ONS into the orbit, likely important

  7. Biomechanics of Head, Neck, and Chest Injury Prevention for Soldiers

    Science.gov (United States)

    2011-03-01

    30 am – 5:00 pm Overview of Blast Physics and Applications Doubletree Hotel Crystal City Arlington VA, Between the Pentagon and National Airport at...provided) 8:30 Introduction and Overview Dr. Stefan Duma, Virginia Tech Head Injury Biomechanics 8:45 “Instrumented Helmet Data Collection and Analysis...of NASA Suit Interface and Landing Conditions” Ms. Kerry Danelson, Wake Forest University 4:05 “Modeling Human Variation: Orbit Anthropometry and

  8. Integrated Model of the Eye/Optic Nerve Head Biomechanical Environment

    Science.gov (United States)

    Ethier, C. R.; Feola, A.; Myers, J. G.; Nelson, E.; Raykin, J.; Samuels, B.

    2017-01-01

    Visual Impairment and Intracranial Pressure (VIIP) syndrome is a concern for long-duration space flight. Previously, it has been suggested that ocular changes observed in VIIP syndrome are related to the cephalad fluid shift that results in altered fluid pressures [1]. We are investigating the impact of changes in intracranial pressure (ICP) using a combination of numerical models, which simulate the effects of various environment conditions, including finite element (FE) models of the posterior eye. The specific interest is to understand how altered pressures due to gravitational changes affect the biomechanical environment of tissues of the posterior eye and optic nerve sheath. METHODS: Additional description of the numerical modeling is provided in the IWS abstract by Nelson et al. In brief, to simulate the effects of a cephalad fluid shift on the cardiovascular and ocular systems, we utilized a lumped-parameter compartment model of these systems. The outputs of this lumped-parameter model then inform boundary conditions (pressures) for a finite element model of the optic nerve head (Figure 1). As an example, we show here a simulation of postural change from supine to 15 degree head-down tilt (HDT), with primary outcomes being the predicted change in strains at the optic nerve head (ONH) region, specifically in the lamina cribrosa (LC), retrolaminar optic nerve, and prelaminar neural tissue (PLNT). The strain field can be decomposed into three orthogonal components, denoted as the first, second and third principal strains. We compare the peak tensile (first principal) and compressive (third principal) strains, since elevated strain alters cell phenotype and induces tissue remodeling. RESULTS AND CONCLUSIONS: Our lumped-parameter model predicted an IOP increase of c. 7 mmHg after 21 minutes of 15 degree HDT, which agreed with previous reports of IOP in HDT [1]. The corresponding FEM simulations predicted a relative increase in the magnitudes of the peak tensile

  9. Competing dynamic phases of active polymer networks

    Science.gov (United States)

    Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.

    Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  10. Dynamic Latent Classification Model

    DEFF Research Database (Denmark)

    Zhong, Shengtong; Martínez, Ana M.; Nielsen, Thomas Dyhre

    as possible. Motivated by this problem setting, we propose a generative model for dynamic classification in continuous domains. At each time point the model can be seen as combining a naive Bayes model with a mixture of factor analyzers (FA). The latent variables of the FA are used to capture the dynamics...

  11. Biomechanics, Exercise Physiology, and the 75th Anniversary of RQES

    Science.gov (United States)

    Hamill, Joseph; Haymes, Emily M.

    2005-01-01

    The purpose of this paper is to review the biomechanics and exercise physiology studies published in the Research Quarterly for Exercise and Sport (RQES) over the past 75 years. Studies in biomechanics, a relatively new subdiscipline that evolved from kinesiology, first appeared in the journal about 40 years ago. Exercise physiology studies have…

  12. Biomechanics of Head, Neck, and Chest Injury Prevention for Soldiers: Phase 2 and 3

    Science.gov (United States)

    2016-08-01

    AWARD NUMBER: W81XWH-10-2-0165 TITLE: “ Biomechanics of Head, Neck, and Chest Injury Prevention for Soldiers: Phase 2 & 3”.” PRINCIPAL INVESTIGATOR...27Sep2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-10-2-0165 “ Biomechanics of Head, Neck, and Chest Injury Prevention for Soldiers: Phase 2...Virginia Tech – Wake Forest University, Center for Injury Biomechanics and the U.S. Army entitled “ Biomechanics of Head, Neck, and Chest Injury

  13. Biomechanics of the press-fit phenomenon in dental implantology: an image-based finite element analysis

    Directory of Open Access Journals (Sweden)

    Frisardi Gianni

    2012-05-01

    Full Text Available Abstract Background A fundamental pre-requisite for the clinical success in dental implant surgery is the fast and stable implant osseointegration. The press-fit phenomenon occurring at implant insertion induces biomechanical effects in the bone tissues, which ensure implant primary stability. In the field of dental surgery, the understanding of the key factors governing the osseointegration process still remains of utmost importance. A thorough analysis of the biomechanics of dental implantology requires a detailed knowledge of bone mechanical properties as well as an accurate definition of the jaw bone geometry. Methods In this work, a CT image-based approach, combined with the Finite Element Method (FEM, has been used to investigate the effect of the drill size on the biomechanics of the dental implant technique. A very accurate model of the human mandible bone segment has been created by processing high resolution micro-CT image data. The press-fit phenomenon has been simulated by FE analyses for different common drill diameters (DA = 2.8 mm, DB = 3.3 mm, and DC = 3.8 mm with depth L = 12 mm. A virtual implant model has been assumed with a cylindrical geometry having height L = 11 mm and diameter D = 4 mm. Results The maximum stresses calculated for drill diameters DA, DB and DC have been 12.31 GPa, 7.74 GPa and 4.52 GPa, respectively. High strain values have been measured in the cortical area for the models of diameters DA and DB, while a uniform distribution has been observed for the model of diameter DC . The maximum logarithmic strains, calculated in nonlinear analyses, have been ϵ = 2.46, 0.51 and 0.49 for the three models, respectively. Conclusions This study introduces a very powerful, accurate and non-destructive methodology for investigating the effect of the drill size on the biomechanics of the dental implant technique. Further studies could aim at understanding how different drill

  14. Biomechanical Analysis of Treadmill Locomotion on the International Space Station

    Science.gov (United States)

    De Witt, J. K.; Fincke, R. S.; Guilliams, M. E.; Ploutz-Snyder, L. L.

    2011-01-01

    Treadmill locomotion exercise is an important aspect of ISS exercise countermeasures. It is widely believed that an optimized treadmill exercise protocol could offer benefits to cardiovascular and bone health. If training heart rate is high enough, treadmill exercise is expected to lead to improvements in aerobic fitness. If impact or bone loading forces are high enough, treadmill exercise may be expected to contribute to improved bone outcomes. Ground-based research suggests that joint loads increase with increased running speed. However, it is unknown if increases in locomotion speed results in similar increases in joint loads in microgravity. Although data exist regarding the biomechanics of running and walking in microgravity, a majority were collected during parabolic flight or during investigations utilizing a microgravity analog. The Second Generation Treadmill (T2) has been in use on the International Space Station (ISS) and records the ground reaction forces (GRF) produced by crewmembers during exercise. Biomechanical analyses will aid in understanding potential differences in typical gait motion and allow for modeling of the human body to determine joint and muscle forces during exercise. By understanding these mechanisms, more appropriate exercise prescriptions can be developed that address deficiencies. The objective of this evaluation is to collect biomechanical data from crewmembers during treadmill exercise prior to and during flight. The goal is to determine if locomotive biomechanics differ between normal and microgravity environments and to determine how combinations of subject load and speed influence joint loading during in-flight treadmill exercise. Further, the data will be used to characterize any differences in specific bone and muscle loading during locomotion in these two gravitational conditions. This project maps to the HRP Integrated Research Plan risks including Risk of Bone Fracture (Gap B15), Risk of Early Onset Osteoporosis Due to

  15. Biomechanical study of percutaneous lumbar diskectomy

    International Nuclear Information System (INIS)

    Li Yuan; Huang Xianglong; Shen Tianzhen; Hu Zhou; Hong Shuizong; Mei Haiying

    2003-01-01

    Objective: To investigate the stiffness of lumbar spine after the injury caused by percutaneous diskectomy and evaluate the efficiency of percutaneous lumbar diskectomy by biomechanical study. Methods: Four fresh lumbar specimens were used to analyse load-displacement curves in the intact lumbar spine and vertical disc-injured lumbar spine. The concepts of average flexibility coefficient (f) and standardized average flexibility coefficient (fs) were also introduced. Results: The load-displacement curves showed a good stabilization effect of the intact lumbar spine and disc-injured lumbar spine in flexion, extension, right and left bending. The decrease of anti-rotation also can be detected (P<0.05). Conclusion: In biomechanical study, percutaneous lumbar diskectomy is one of the efficiency methods to treat lumbar diac hernia

  16. Biomechanics/risk management (Working Group 2)

    DEFF Research Database (Denmark)

    Sanz, Mariano; Naert, Ignace; Gotfredsen, Klaus

    2009-01-01

    INTRODUCTION: The remit of this workgroup was to update the existing knowledge base in biomechanical factors, navigation systems and medications that may affect the outcome of implant therapy. MATERIAL AND METHODS: The literature was systematically searched and critically reviewed. Five manuscripts...... were produced in five specific topics identified as areas where innovative approaches have been developed in biomechanical factors, navigation systems and medications that may affect the outcome of implant therapy. RESULTS: The results and conclusions of the review process are presented...... survival and complications of implant supported restorations? * A systematic review on the accuracy and the clinical outcome of computer-guided template based implant dentistry. * What is the impact of systemic bisphosphonates on patients undergoing oral implant therapy? * What is the impact...

  17. Modeling dynamic swarms

    KAUST Repository

    Ghanem, Bernard; Ahuja, Narendra

    2013-01-01

    This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal

  18. Advances in Proximal Interphalangeal Joint Arthroplasty: Biomechanics and Biomaterials.

    Science.gov (United States)

    Zhu, Andy F; Rahgozar, Paymon; Chung, Kevin C

    2018-05-01

    Proximal interphalangeal (PIP) joint arthritis is a debilitating condition. The complexity of the joint makes management particularly challenging. Treatment of PIP arthritis requires an understanding of the biomechanics of the joint. PIP joint arthroplasty is one treatment option that has evolved over time. Advances in biomaterials have improved and expanded arthroplasty design. This article reviews biomechanics and arthroplasty design of the PIP joint. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Harnessing biomechanics to develop cartilage regeneration strategies.

    Science.gov (United States)

    Athanasiou, Kyriacos A; Responte, Donald J; Brown, Wendy E; Hu, Jerry C

    2015-02-01

    As this review was prepared specifically for the American Society of Mechanical Engineers H.R. Lissner Medal, it primarily discusses work toward cartilage regeneration performed in Dr. Kyriacos A. Athanasiou's laboratory over the past 25 years. The prevalence and severity of degeneration of articular cartilage, a tissue whose main function is largely biomechanical, have motivated the development of cartilage tissue engineering approaches informed by biomechanics. This article provides a review of important steps toward regeneration of articular cartilage with suitable biomechanical properties. As a first step, biomechanical and biochemical characterization studies at the tissue level were used to provide design criteria for engineering neotissues. Extending this work to the single cell and subcellular levels has helped to develop biochemical and mechanical stimuli for tissue engineering studies. This strong mechanobiological foundation guided studies on regenerating hyaline articular cartilage, the knee meniscus, and temporomandibular joint (TMJ) fibrocartilage. Initial tissue engineering efforts centered on developing biodegradable scaffolds for cartilage regeneration. After many years of studying scaffold-based cartilage engineering, scaffoldless approaches were developed to address deficiencies of scaffold-based systems, resulting in the self-assembling process. This process was further improved by employing exogenous stimuli, such as hydrostatic pressure, growth factors, and matrix-modifying and catabolic agents, both singly and in synergistic combination to enhance neocartilage functional properties. Due to the high cell needs for tissue engineering and the limited supply of native articular chondrocytes, costochondral cells are emerging as a suitable cell source. Looking forward, additional cell sources are investigated to render these technologies more translatable. For example, dermis isolated adult stem (DIAS) cells show potential as a source of

  20. Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions.

    Science.gov (United States)

    Phinyomark, Angkoon; Petri, Giovanni; Ibáñez-Marcelo, Esther; Osis, Sean T; Ferber, Reed

    2018-01-01

    The increasing amount of data in biomechanics research has greatly increased the importance of developing advanced multivariate analysis and machine learning techniques, which are better able to handle "big data". Consequently, advances in data science methods will expand the knowledge for testing new hypotheses about biomechanical risk factors associated with walking and running gait-related musculoskeletal injury. This paper begins with a brief introduction to an automated three-dimensional (3D) biomechanical gait data collection system: 3D GAIT, followed by how the studies in the field of gait biomechanics fit the quantities in the 5 V's definition of big data: volume, velocity, variety, veracity, and value. Next, we provide a review of recent research and development in multivariate and machine learning methods-based gait analysis that can be applied to big data analytics. These modern biomechanical gait analysis methods include several main modules such as initial input features, dimensionality reduction (feature selection and extraction), and learning algorithms (classification and clustering). Finally, a promising big data exploration tool called "topological data analysis" and directions for future research are outlined and discussed.

  1. THE CENTER FOR MILITARY BIOMECHANICS RESEARCH

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Military Biomechanics Research is a 7,500 ft2 dedicated laboratory outfitted with state-of-the-art equipment for 3-D analysis of movement, measurement...

  2. Injury and biomechanical perspectives on the rugby scrum: a review of the literature.

    Science.gov (United States)

    Trewartha, Grant; Preatoni, Ezio; England, Michael E; Stokes, Keith A

    2015-04-01

    As a collision sport, rugby union has a relatively high overall injury incidence, with most injuries being associated with contact events. Historically, the set scrum has been a focus of the sports medicine community due to the perceived risk of catastrophic spinal injury during scrummaging. The contemporary rugby union scrum is a highly dynamic activity but to this point has not been well characterised mechanically. In this review, we synthesise the available research literature relating to the medical and biomechanical aspects of the rugby union scrum, in order to (1) review the injury epidemiology of rugby scrummaging; (2) consider the evidence for specific injury mechanisms existing to cause serious scrum injuries and (3) synthesise the information available on the biomechanics of scrummaging, primarily with respect to force production. The review highlights that the incidence of acute injury associated with scrummaging is moderate but the risk per event is high. The review also suggests an emerging acknowledgement of the potential for scrummaging to lead to premature chronic degeneration injuries of the cervical spine and summarises the mechanisms by which these chronic injuries are thought to occur. More recent biomechanical studies of rugby scrummaging confirm that scrum engagement forces are high and multiplanar, but can be altered through modifications to the scrum engagement process which control the engagement velocity. As the set scrum is a relatively 'controlled' contact situation within rugby union, it remains an important area for intervention with a long-term goal of injury reduction. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Semimembranosus muscle herniation: a rare case with emphasis on muscle biomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Naffaa, Lena [American University of Beirut, Department of Diagnostic Radiology, P.O. Box 11-0236, Riad El-Solh, Beirut (Lebanon); Moukaddam, Hicham [Saint Rita Medical Center, Lima, OH (United States); Samim, Mohammad [New York University, Department of Radiology, Hospital for Joint Disease, New York, NY (United States); Lemieux, Aaron [University of California, San Diego School of Medicine, La Jolla, CA (United States); Smitaman, Edward [University of California, San Diego, Teleradiology and Education Center, San Diego, CA (United States)

    2017-03-15

    Muscle herniations are rare and most reported cases involve muscles of the lower leg. We use a case of muscle herniation involving the semimembranosus muscle, presenting as a painful mass in an adolescent male after an unspecified American football injury, to highlight a simple concept of muscle biomechanics as it pertains to muscle hernia(s): decreased traction upon muscle fibers can increase conspicuity of muscle herniation(s) - this allows a better understanding of the apt provocative maneuvers to employ, during dynamic ultrasound or magnetic resonance imaging, in order to maximize diagnostic yield and, thereby, limit patient morbidity related to any muscle herniation. Our patient subsequently underwent successful decompressive fasciotomy and has since returned to his normal daily activities. (orig.)

  4. Semimembranosus muscle herniation: a rare case with emphasis on muscle biomechanics

    International Nuclear Information System (INIS)

    Naffaa, Lena; Moukaddam, Hicham; Samim, Mohammad; Lemieux, Aaron; Smitaman, Edward

    2017-01-01

    Muscle herniations are rare and most reported cases involve muscles of the lower leg. We use a case of muscle herniation involving the semimembranosus muscle, presenting as a painful mass in an adolescent male after an unspecified American football injury, to highlight a simple concept of muscle biomechanics as it pertains to muscle hernia(s): decreased traction upon muscle fibers can increase conspicuity of muscle herniation(s) - this allows a better understanding of the apt provocative maneuvers to employ, during dynamic ultrasound or magnetic resonance imaging, in order to maximize diagnostic yield and, thereby, limit patient morbidity related to any muscle herniation. Our patient subsequently underwent successful decompressive fasciotomy and has since returned to his normal daily activities. (orig.)

  5. Biomechanical factors associated with the development of tibiofemoral knee osteoarthritis

    DEFF Research Database (Denmark)

    van Tunen, Joyce A C; Dell'Isola, Andrea; Juhl, Carsten

    2016-01-01

    INTRODUCTION: Altered biomechanics, increased joint loading and tissue damage, might be related in a vicious cycle within the development of knee osteoarthritis (KOA). We have defined biomechanical factors as joint-related factors that interact with the forces, moments and kinematics in and aroun...... publications in peer-reviewed journals and presentations at (inter)national conferences. TRIAL REGISTRATION NUMBER: CRD42015025092....

  6. Tennis elbow: a biomechanical and therapeutic approach.

    Science.gov (United States)

    Schnatz, P; Steiner, C

    1993-07-01

    Lateral epicondylitis, one of the most common lesions of the arm, affects some 50% of tennis players. This condition poses a problem in clinical management because treatment is dependent not only on proper medical therapy but also on correction of the improper on-court biomechanics. The most common flaw is a late contact on the backhand groundstroke, forcing the player to extend the wrist with the extensor muscles. This action predisposes to trauma of the tendon fibers at the lateral epicondyle. Understanding the biomechanics will better prepare the physician to advise the patient and to communicate with a tennis teaching professional to facilitate long-term relief.

  7. Intestinal morphometric and biomechanical changes during aging in rats

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Gregersen, Hans

    2015-01-01

    Background and aim: Previously we demonstrated pronounced morphometric and biomechanical remodeling in the rat intestine during physiological growth up to 32 weeks of age. The aim of the present study is to study intestinal geometric and biomechanical changes in aging rats. Materials and methods...... in the circumferential direction. In conclusion pronounced morphometric and biomechanical remodeling occurred in the rat intestine during aging. The observed changes likely reflect the changes of the physiological function of the intestine during ageing, similar to other tissues where function, mechanical loading......: Twenty-four male Wistar rats, aged from 6 to 22 months, were used in the study. The body weight and the wet weight per length of duodenal and ileal segments were measured at the termination of experiment. Morphometric data were obtained by measuring the wall thickness and wall cross-sectional area...

  8. Biomechanical Effects of Posterior Condylar Offset and Posterior Tibial Slope on Quadriceps Force and Joint Contact Forces in Posterior-Stabilized Total Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    Kyoung-Tak Kang

    2017-01-01

    Full Text Available This study aimed to determine the biomechanical effect of the posterior condylar offset (PCO and posterior tibial slope (PTS in posterior-stabilized (PS fixed-bearing total knee arthroplasty (TKA. We developed ±1, ±2, and ±3 mm PCO models in the posterior direction and −3°, 0°, 3°, and 6° PTS models using a previously validated FE model. The influence of changes in the PCO and PTS on the biomechanical effects under deep-knee-bend loading was investigated. The contact stress on the PE insert increased by 14% and decreased by 7% on average as the PCO increased and decreased, respectively, compared to the neutral position. In addition, the contact stress on post in PE insert increased by 18% on average as PTS increased from −3° to 6°. However, the contact stress on the patellar button decreased by 11% on average as PTS increased from −3° to 6° in all different PCO cases. The quadriceps force decreased by 14% as PTS increased from −3° to 6° in all PCO models. The same trend was found in patellar tendon force. Changes in PCO had adverse biomechanical effects whereas PTS increase had positive biomechanical effects. However, excessive PTS should be avoided to prevent knee instability and subsequent failure.

  9. BIOMECHANICAL PRINCIPLES PHYSICAL REHABILITATION OF CHILDREN WITH CEREBRAL PALSY

    Directory of Open Access Journals (Sweden)

    S. D. Korshunov

    2016-01-01

    Full Text Available Aim. We studied the basic biomechanical principles of physical rehabilitation of children with cerebral palsy.Materials and methods. Methods of Motion Tracking and electromyography investigated the biomechanical characteristics of gait in children with cerebral palsy. It is shown that the main differences between dynamic stereotype walk pediatric patients is to delay moving forward center of gravity and the disorganization of the lower limb movements (especially knee in the vertical plane. Prevailing flexion - leading position of the lower extremities during locomotion cycle associated with limitation of motion in the hip joint, offset by an increase swinging body, weakening activity in the rear shock phase and its sharp increase in the fourth phase. Changes in the structure of the movement of the shoulder girdle and upper extremities can be considered as compensatory. Characteristically excessive involvement in the locomotion of the calf muscles and the rectus muscles of the back, with the central mechanisms gipersinhronizatsii activity of motor units are the primary mechanism for adaptation in a group of children that are capable of self-locomotion.Results. As a result of the research it shows that in motor rehabilitation of children with cerebral palsy should include the following elements: exercise to maintain the body balance when performing arm movements, exercises for coordination of hand movements, including motor brushes, exercises to increase mobility in the hip joints and in the back, exercises designed to exercise the calf muscles, the front thigh muscles and the rectus muscles of the back, massage to relieve hyper calf muscles. 

  10. Biomechanical indicators of key elements of sports equipment gymnastic exercises

    Directory of Open Access Journals (Sweden)

    Potop V.A.

    2013-09-01

    Full Text Available The aim of this study is to analyze the biomechanical performance of the kinematic and dynamic structures of key elements of sports techniques of basic exercises performed gymnasts aged 12 - 14 years to the vaulting and on the bars of different heights, on the basis of the method of postural orientation movements. The study involved 11 gymnasts doing exercises on the vaulting and 9 gymnasts - on the boards of various heights. It is shown that the method of video - computer analysis of the type Yurchenko vault and dismount from the bars of varying heights, in conjunction with the method of postural orientation movements possible to isolate and identify the node elements. The indicators characterizing the node elements of sports equipment movements gymnasts in the phase structure of the vault and dismount from the bars of different heights have specific features and characteristics. Learned node elements sports equipment is the basis for the measurement, analysis and evaluation of the kinematic and dynamic structures and other types of exercises all-around gymnastics.

  11. Models for Dynamic Applications

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Morales Rodriguez, Ricardo; Heitzig, Martina

    2011-01-01

    This chapter covers aspects of the dynamic modelling and simulation of several complex operations that include a controlled blending tank, a direct methanol fuel cell that incorporates a multiscale model, a fluidised bed reactor, a standard chemical reactor and finally a polymerisation reactor...... be applied to formulate, analyse and solve these dynamic problems and how in the case of the fuel cell problem the model consists of coupledmeso and micro scale models. It is shown how data flows are handled between the models and how the solution is obtained within the modelling environment....

  12. The Effects of Injury Prevention Programs on the Biomechanics of Landing Tasks: A Systematic Review With Meta-analysis.

    Science.gov (United States)

    Lopes, Thiago Jambo Alves; Simic, Milena; Myer, Gregory D; Ford, Kevin R; Hewett, Timothy E; Pappas, Evangelos

    2018-05-01

    Anterior cruciate ligament (ACL) tear is a common injury in sports and often occurs during landing from a jump. To synthesize the evidence on the effects of injury prevention programs (IPPs) on landing biomechanics as they relate to the ligament, quadriceps, trunk, and leg dominance theories associated with ACL injury risk. Meta-analysis. Six electronic databases were searched for studies that investigated the effect of IPPs on landing task biomechanics. Prospective studies that reported landing biomechanics at baseline and post-IPP were included. Results from trunk, hip, and knee kinematics and kinetics related to the ACL injury theories were extracted, and meta-analyses were performed when possible. The criteria were met by 28 studies with a total of 466 participants. Most studies evaluated young females, bilateral landing tasks, and recreational athletes, while most variables were related to the ligament and quadriceps dominance theories. An important predictor of ACL injury, peak knee abduction moment, decreased ( P = .01) after the IPPs while other variables related to the ligament dominance theory did not change. Regarding the quadriceps dominance theory, after the IPPs, angles of hip flexion at initial contact ( P = .009), peak hip flexion ( P = .002), and peak knee flexion ( P = .007) increased, while knee flexion at initial contact did not change ( P = .18). Moreover, peak knee flexion moment decreased ( P = .005) and peak vertical ground-reaction force did not change ( P = .10). The exercises used in IPPs might have the potential to improve landing task biomechanics related to the quadriceps dominance theory, especially increasing peak knee and hip flexion angles. Importantly, peak knee abduction moment decreased, which indicates that IPPs influence a desired movement strategy to help athletes overcome dangerous ligament dominance loads arising from lack of frontal plane control during dynamic tasks. The lack of findings for some biomechanical variables

  13. Corruption dynamics model

    Science.gov (United States)

    Malafeyev, O. A.; Nemnyugin, S. A.; Rylow, D.; Kolpak, E. P.; Awasthi, Achal

    2017-07-01

    The corruption dynamics is analyzed by means of the lattice model which is similar to the three-dimensional Ising model. Agents placed at nodes of the corrupt network periodically choose to perfom or not to perform the act of corruption at gain or loss while making decisions based on the process history. The gain value and its dynamics are defined by means of the Markov stochastic process modelling with parameters established in accordance with the influence of external and individual factors on the agent's gain. The model is formulated algorithmically and is studied by means of the computer simulation. Numerical results are obtained which demonstrate asymptotic behaviour of the corruption network under various conditions.

  14. Identification of the contribution of contact and aerial biomechanical parameters in acrobatic performance.

    Directory of Open Access Journals (Sweden)

    Diane Haering

    Full Text Available Teaching acrobatic skills with a minimal amount of repetition is a major challenge for coaches. Biomechanical, statistical or computer simulation tools can help them identify the most determinant factors of performance. Release parameters, change in moment of inertia and segmental momentum transfers were identified in the prediction of acrobatics success. The purpose of the present study was to evaluate the relative contribution of these parameters in performance throughout expertise or optimisation based improvements. The counter movement forward in flight (CMFIF was chosen for its intrinsic dichotomy between the accessibility of its attempt and complexity of its mastery.Three repetitions of the CMFIF performed by eight novice and eight advanced female gymnasts were recorded using a motion capture system. Optimal aerial techniques that maximise rotation potential at regrasp were also computed. A 14-segment-multibody-model defined through the Rigid Body Dynamics Library was used to compute recorded and optimal kinematics, and biomechanical parameters. A stepwise multiple linear regression was used to determine the relative contribution of these parameters in novice recorded, novice optimised, advanced recorded and advanced optimised trials. Finally, fixed effects of expertise and optimisation were tested through a mixed-effects analysis.Variation in release state only contributed to performances in novice recorded trials. Moment of inertia contribution to performance increased from novice recorded, to novice optimised, advanced recorded, and advanced optimised trials. Contribution to performance of momentum transfer to the trunk during the flight prevailed in all recorded trials. Although optimisation decreased transfer contribution, momentum transfer to the arms appeared.Findings suggest that novices should be coached on both contact and aerial technique. Inversely, mainly improved aerial technique helped advanced gymnasts increase their

  15. Model-Based Estimation of Ankle Joint Stiffness.

    Science.gov (United States)

    Misgeld, Berno J E; Zhang, Tony; Lüken, Markus J; Leonhardt, Steffen

    2017-03-29

    We address the estimation of biomechanical parameters with wearable measurement technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the lower leg was formulated that is driven by electromyographic signals. The model incorporates a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm is necessary that employs segmental orientation sensor measurements. Because of the model's inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed. The performance of the novel estimation approach was evaluated in silico and in an experimental procedure. The experimental study was conducted with body-worn sensors and a test-bench that was specifically designed to obtain reference angle and torque measurements for a single joint. Results show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as, joint stiffness during experimental test bench movements.

  16. Computer Aided Modeling of Human Mastoid Cavity Biomechanics Using Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Chou Yuan-Fang

    2010-01-01

    Full Text Available The aim of the present study was to analyze the human mastoid cavity on sound transmission using finite element method. Pressure distributions in the external ear canal and middle ear cavity at different frequencies were demonstrated. Our results showed that, first, blocking the aditus improves middle ear sound transmission in the 1500- to 2500-Hz range and decreases displacement in frequencies below 1000 Hz when compared with the normal ear. Second, at frequencies lower than 1000 Hz, the acoustic pressures were almost uniformly distributed in the external ear canal and middle ear cavity. At high frequencies, higher than 1000 Hz, the pressure distribution varied along the external ear canal and middle ear cavity. Third, opening the aditus, the pressures difference in dB between the middle ear cavity and external ear canal were larger than those of the closed mastoid cavity in low frequency (<1000 Hz. Finally, there was no significant difference in the acoustic pressure between the oval window and round window is noted and increased by 5 dB by blocking the aditus. These results suggest that our complete FE model including the mastoid cavity is potentially useful and can provide more information in the study of middle ear biomechanics.

  17. Development of custom measurement system for biomechanical evaluation of independent wheelchair transfers.

    Science.gov (United States)

    Koontz, Alicia M; Lin, Yen-Sheng; Kankipati, Padmaja; Boninger, Michael L; Cooper, Rory A

    2011-01-01

    This study describes a new custom measurement system designed to investigate the biomechanics of sitting-pivot wheelchair transfers and assesses the reliability of selected biomechanical variables. Variables assessed include horizontal and vertical reaction forces underneath both hands and three-dimensional trunk, shoulder, and elbow range of motion. We examined the reliability of these measures between 5 consecutive transfer trials for 5 subjects with spinal cord injury and 12 nondisabled subjects while they performed a self-selected sitting pivot transfer from a wheelchair to a level bench. A majority of the biomechanical variables demonstrated moderate to excellent reliability (r > 0.6). The transfer measurement system recorded reliable and valid biomechanical data for future studies of sitting-pivot wheelchair transfers.We recommend a minimum of five transfer trials to obtain a reliable measure of transfer technique for future studies.

  18. The Effect of Pterygium and Pterygium Surgery on Corneal Biomechanics.

    Science.gov (United States)

    Koç, Mustafa; Yavrum, Fuat; Uzel, Mehmet Murat; Aydemir, Emre; Özülken, Kemal; Yılmazbaş, Pelin

    2018-01-01

    To evaluate the effect of pterygium and pterygium surgery on corneal biomechanics by ocular response analyzer (ORA, Reichert, USA). This study considered 68 eyes (from 34 patients with a mean age of 21.2±7.1 years) with unilateral nasal, primary pterygium (horizontal length biomechanics. The correlation of the ORA measurements with the pterygium area was evaluated. Mean pterygium horizontal length and area were 3.31±1.43 mm and 6.82±2.17 mm 2 , respectively. There was no statistically significant difference between the eyes with and without pterygium in corneal hysteresis (CH, p=0.442), corneal resistance factor (CRF, p=0.554), corneal-compensated intraocular pressure (IOP cc , p=0.906), and Goldmann-correlated IOP (IOP g , p=0.836). All preoperative parameters decreased after surgery; however, none of them were statistically significant (CH, p=0.688; CRF, p=0.197; IOP cc , p=0.503; IOP g , p=0.231). There were no correlations between pterygium area and ORA measurements (p>0.05). Pterygium biomechanics. These results may be taken into account when cornea biomechanics, mainly intraocular pressure measurements, are important.

  19. Dynamic Linear Models with R

    CERN Document Server

    Campagnoli, Patrizia; Petris, Giovanni

    2009-01-01

    State space models have gained tremendous popularity in as disparate fields as engineering, economics, genetics and ecology. Introducing general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. It illustrates the fundamental steps needed to use dynamic linear models in practice, using R package.

  20. Biomechanical assessment of dynamic balance: Specificity of different balance tests.

    Science.gov (United States)

    Ringhof, Steffen; Stein, Thorsten

    2018-04-01

    Dynamic balance is vitally important for most sports and activities of daily living, so the assessment of dynamic stability has become an important issue. In consequence, a large number of balance tests have been developed. However, it is not yet known whether these tests (i) measure the same construct and (ii) can differentiate between athletes with different balance expertise. We therefore studied three common dynamic balance tests: one-leg jump landings, Posturomed perturbations and simulated forward falls. Participants were 24 healthy young females in regular training in either gymnastics (n = 12) or swimming (n = 12). In each of the tests, the participants were instructed to recover balance as quickly as possible. Dynamic stability was computed by time to stabilization and margin of stability, deduced from force plates and motion capture respectively. Pearson's correlations between the dynamic balance tests found no significant associations between the respective dynamic stability measures. Furthermore, independent t-tests indicated that only jump landings could properly distinguish between both groups of athletes. In essence, the different dynamic balance tests applied did not measure the same construct but rather task-specific skills, each of which depends on multifactorial internal and external constraints. Our study therefore contradicts the traditional view of considering balance as a general ability, and reinforces that dynamic balance measures are not interchangeable. This highlights the importance of selecting appropriate balance tests. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index.

    Science.gov (United States)

    Polzer, Stanislav; Gasser, T Christian

    2015-12-06

    A rupture risk assessment is critical to the clinical treatment of abdominal aortic aneurysm (AAA) patients. The biomechanical AAA rupture risk assessment quantitatively integrates many known AAA rupture risk factors but the variability of risk predictions due to model input uncertainties remains a challenging limitation. This study derives a probabilistic rupture risk index (PRRI). Specifically, the uncertainties in AAA wall thickness and wall strength were considered, and wall stress was predicted with a state-of-the-art deterministic biomechanical model. The discriminative power of PRRI was tested in a diameter-matched cohort of ruptured (n = 7) and intact (n = 7) AAAs and compared to alternative risk assessment methods. Computed PRRI at 1.5 mean arterial pressure was significantly (p = 0.041) higher in ruptured AAAs (20.21(s.d. 14.15%)) than in intact AAAs (3.71(s.d. 5.77)%). PRRI showed a high sensitivity and specificity (discriminative power of 0.837) to discriminate between ruptured and intact AAA cases. The underlying statistical representation of stochastic data of wall thickness, wall strength and peak wall stress had only negligible effects on PRRI computations. Uncertainties in AAA wall stress predictions, the wide range of reported wall strength and the stochastic nature of failure motivate a probabilistic rupture risk assessment. Advanced AAA biomechanical modelling paired with a probabilistic rupture index definition as known from engineering risk assessment seems to be superior to a purely deterministic approach. © 2015 The Author(s).

  2. The effect of pre-vertebroplasty tumor ablation using laser-induced thermotherapy on biomechanical stability and cement fill in the metastatic spine

    OpenAIRE

    Ahn, Henry; Mousavi, Payam; Chin, Lee; Roth, Sandra; Finkelstein, Joel; Vitken, Alex; Whyne, Cari

    2007-01-01

    A biomechanical study comparing simulated lytic vertebral metastases treated with laser-induced thermotherapy (LITT) and vertebroplasty versus vertebroplasty alone. To investigate the effect of tumor ablation using LITT prior to vertebroplasty on biomechanical stability and cement fill patterns in a standardized model of spinal metastatic disease. Vertebroplasty in the metastatic spine is aimed at reducing pain, but is associated with risk of cement extravasation in up to 10%. Six pairs of fr...

  3. Integrating physiological and biomechanical drivers of population growth over environmental gradients on coral reefs.

    Science.gov (United States)

    Madin, Joshua S; Hoogenboom, Mia O; Connolly, Sean R

    2012-03-15

    Coral reefs exhibit marked spatial and temporal variability, and coral reef organisms exhibit trade-offs in functional traits that influence demographic performance under different combinations of abiotic environmental conditions. In many systems, trait trade-offs are modelled using an energy and/or nutrient allocation framework. However, on coral reefs, differences in biomechanical vulnerability have major demographic implications, and indeed are believed to play an essential role in mediating species coexistence because highly competitive growth forms are vulnerable to physical dislodgment events that occur with high frequency (e.g. annual summer storms). Therefore, an integrated energy allocation and biomechanics framework is required to understand the effect of physical environmental gradients on species' demographic performance. However, on coral reefs, as in most ecosystems, the effects of environmental conditions on organisms are measured in different currencies (e.g. lipid accumulation, survival and number of gametes), and thus the relative contributions of these effects to overall capacity for population growth are not readily apparent. A comprehensive assessment of links between the environment and the organism, including those mediated by biomechanical processes, must convert environmental effects on individual-level performance (e.g. survival, growth and reproduction) into a common currency that is relevant to the capacity to contribute to population growth. We outline such an approach by considering the population-level performance of scleractinian reef corals over a hydrodynamic gradient, with a focus on the integrating the biomechanical determinants of size-dependent coral colony dislodgment as a function of flow, with the effects of flow on photosynthetic energy acquisition and respiration.

  4. [Representation and mathematical analysis of human crystalline lens].

    Science.gov (United States)

    Tălu, Stefan; Giovanzana, Stefano; Tălu, Mihai

    2011-01-01

    The surface of human crystalline lens can be described and analyzed using mathematical models based on parametric representations, used in biomechanical studies and 3D solid modeling of the lens. The mathematical models used in lens biomechanics allow the study and the behavior of crystalline lens on variables and complex dynamic loads. Also, the lens biomechanics has the potential to improve the results in the development of intraocular lenses and cataract surgery. The paper presents the most representative mathematical models currently used for the modeling of human crystalline lens, both optically and biomechanically.

  5. Energetic and biomechanical constraints on animal migration distance.

    Science.gov (United States)

    Hein, Andrew M; Hou, Chen; Gillooly, James F

    2012-02-01

    Animal migration is one of the great wonders of nature, but the factors that determine how far migrants travel remain poorly understood. We present a new quantitative model of animal migration and use it to describe the maximum migration distance of walking, swimming and flying migrants. The model combines biomechanics and metabolic scaling to show how maximum migration distance is constrained by body size for each mode of travel. The model also indicates that the number of body lengths travelled by walking and swimming migrants should be approximately invariant of body size. Data from over 200 species of migratory birds, mammals, fish, and invertebrates support the central conclusion of the model - that body size drives variation in maximum migration distance among species through its effects on metabolism and the cost of locomotion. The model provides a new tool to enhance general understanding of the ecology and evolution of migration. © 2011 Blackwell Publishing Ltd/CNRS.

  6. Femoral Component External Rotation Affects Knee Biomechanics: A Computational Model of Posterior-stabilized TKA.

    Science.gov (United States)

    Kia, Mohammad; Wright, Timothy M; Cross, Michael B; Mayman, David J; Pearle, Andrew D; Sculco, Peter K; Westrich, Geoffrey H; Imhauser, Carl W

    2018-01-01

    The correct amount of external rotation of the femoral component during TKA is controversial because the resulting changes in biomechanical knee function associated with varying degrees of femoral component rotation are not well understood. We addressed this question using a computational model, which allowed us to isolate the biomechanical impact of geometric factors including bony shapes, location of ligament insertions, and implant size across three different knees after posterior-stabilized (PS) TKA. Using a computational model of the tibiofemoral joint, we asked: (1) Does external rotation unload the medial collateral ligament (MCL) and what is the effect on lateral collateral ligament tension? (2) How does external rotation alter tibiofemoral contact loads and kinematics? (3) Does 3° external rotation relative to the posterior condylar axis align the component to the surgical transepicondylar axis (sTEA) and what anatomic factors of the femoral condyle explain variations in maximum MCL tension among knees? We incorporated a PS TKA into a previously developed computational knee model applied to three neutrally aligned, nonarthritic, male cadaveric knees. The computational knee model was previously shown to corroborate coupled motions and ligament loading patterns of the native knee through a range of flexion. Implant geometries were virtually installed using hip-to-ankle CT scans through measured resection and anterior referencing surgical techniques. Collateral ligament properties were standardized across each knee model by defining stiffness and slack lengths based on the healthy population. The femoral component was externally rotated from 0° to 9° relative to the posterior condylar axis in 3° increments. At each increment, the knee was flexed under 500 N compression from 0° to 90° simulating an intraoperative examination. The computational model predicted collateral ligament forces, compartmental contact forces, and tibiofemoral internal/external and

  7. Biomechanics of the Peacock's Display: How Feather Structure and Resonance Influence Multimodal Signaling.

    Science.gov (United States)

    Dakin, Roslyn; McCrossan, Owen; Hare, James F; Montgomerie, Robert; Amador Kane, Suzanne

    2016-01-01

    Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus) perform a complex, multimodal "train-rattling" display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock's visual display by allowing the colorful iridescent eyespots-which strongly influence female mate choice-to remain nearly stationary against a dynamic iridescent background.

  8. Modelling dynamic roughness during floods

    NARCIS (Netherlands)

    Paarlberg, Andries; Dohmen-Janssen, Catarine M.; Hulscher, Suzanne J.M.H.; Termes, A.P.P.

    2007-01-01

    In this paper, we present a dynamic roughness model to predict water levels during floods. Hysteresis effects of dune development are explicitly included. It is shown that differences between the new dynamic roughness model, and models where the roughness coefficient is calibrated, are most

  9. A Biomechanical Analysis of 2 Constructs for Metacarpal Spiral Fracture Fixation in a Cadaver Model: 2 Large Screws Versus 3 Small Screws.

    Science.gov (United States)

    Eu-Jin Cheah, Andre; Behn, Anthony W; Comer, Garet; Yao, Jeffrey

    2017-12-01

    Surgeons confronted with a long spiral metacarpal fracture may choose to fix it solely with lagged screws. A biomechanical analysis of a metacarpal spiral fracture model was performed to determine whether 3 1.5-mm screws or 2 2.0-mm screws provided more stability during bending and torsional loading. Second and third metacarpals were harvested from 12 matched pairs of fresh-frozen cadaveric hands and spiral fractures were created. One specimen from each matched pair was fixed with 2 2.0-mm lagged screws whereas the other was fixed with 3 1.5-mm lagged screws. Nine pairs underwent combined cyclic cantilever bending and axial compressive loading followed by loading to failure. Nine additional pairs were subjected to cyclic external rotation while under a constant axial compressive load and were subsequently externally rotated to failure under a constant axial compressive load. Paired t tests were used to compare cyclic creep, stiffness, displacement, rotation, and peak load levels. Average failure torque for all specimens was 7.2 ± 1.7 Nm. In cyclic torsional testing, the group with 2 screws exhibited significantly less rotational creep than the one with 3 screws. A single specimen in the group with 2 screws failed before cyclic bending tests were completed. No other significant differences were found between test groups during torsional or bending tests. Both constructs were biomechanically similar except that the construct with 2 screws displayed significantly less loosening during torsional cyclic loading, although the difference was small and may not be clinically meaningful. Because we found no obvious biomechanical advantage to using 3 1.5-mm lagged screws to fix long spiral metacarpal fractures, the time efficiency and decreased implant costs of using 2-2.0 mm lagged screws may be preferred. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  10. Flexor tendon repair with a knotless, bidirectional barbed suture: an in vivo biomechanical analysis.

    Science.gov (United States)

    Maddox, Grady E; Ludwig, Jonathan; Craig, Eric R; Woods, David; Joiner, Aaron; Chaudhari, Nilesh; Killingsworth, Cheryl; Siegal, Gene P; Eberhardt, Alan; Ponce, Brent

    2015-05-01

    To compare and analyze biomechanical properties and histological characteristics of flexor tendons either repaired by a 4-strand modified Kessler technique or using barbed suture with a knotless repair technique in an in vivo model. A total of 25 chickens underwent surgical transection of the flexor digitorum profundus tendon followed by either a 4-strand Kessler repair or a knotless repair with barbed suture. Chickens were randomly assigned to 1 of 3 groups with various postoperative times to death. Harvested tendons were subjected to biomechanical testing or histologic analysis. Harvested tendons revealed failures in 25% of knotless repairs (8 of 32) and 8% of 4-strand Kessler repairs (2 of 24). Biomechanical testing revealed no significant difference in tensile strength between 4-strand Kessler and barbed repairs; however, this lack of difference may be attributed to lower statistical power. We noted a trend toward a gradual decrease in strength over time for barbed repairs, whereas we noticed the opposite for the 4-strand Kessler repairs. Mode of failure during testing differed between repair types. The barbed repairs tended toward suture breakage as opposed to 4-strand Kessler repairs, which demonstrated suture pullout. Histological analysis identified no difference in the degree of inflammation or fibrosis; however, there was a vigorous foreign body reaction around the 4-strand Kessler repair and no such response around the barbed repairs. In this model, knotless barbed repairs trended toward higher in vivo failure rates and biomechanical inferiority under physiologic conditions, with each repair technique differing in mode of failure and respective histologic reaction. We are unable to recommend the use of knotless barbed repair over the 4-strand modified Kessler technique. For the repair techniques tested, surgeons should prefer standard Kessler repairs over the described knotless technique with barbed suture. Copyright © 2015 American Society for Surgery

  11. Preventive Biomechanics: A Paradigm Shift With a Translational Approach to Injury Prevention.

    Science.gov (United States)

    Hewett, Timothy E; Bates, Nathaniel A

    2017-09-01

    Preventive medicine techniques have alleviated billions of dollars' worth of the economic burden in the medical care system through the implementation of vaccinations and screenings before the onset of disease symptoms. Knowledge of biomechanical tendencies has progressed rapidly over the past 20 years such that clinicians can identify, in healthy athletes, the underlying mechanisms that lead to catastrophic injuries such as anterior cruciate ligament (ACL) ruptures. As such, preventive medicine concepts can be applied to noncontact musculoskeletal injuries to reduce the economic burden of sports medicine treatments and enhance the long-term health of athletes. To illustrate the practical medical benefits that could be gained from preventive biomechanics applied to the ACL as well as the need and feasibility for the broad implementation of these principles. Literature review. The recent literature pertinent to the screening and prevention of musculoskeletal injuries was reviewed and compiled into a clinical commentary on the current state and applicability of preventive biomechanics. Investigators have identified neuromuscular training protocols that screen for and correct the underlying biomechanical deficits that lead to ACL injuries. The literature shows that when athletes comply with these prescribed training protocols, the incidence of injuries is significantly reduced within that population. Such preventive biomechanics practices employ basic training methods that would be familiar to athletic coaches and have the potential to save billions of dollars in cost in sports medicine. The widespread implementation of preventive biomechanics concepts could profoundly affect the field of sports medicine with a minimum of initial investment.

  12. The application of 3D-printed transparent facemask for facial scar management and its biomechanical rationale.

    Science.gov (United States)

    Wei, Yating; Wang, Yan; Zhang, Ming; Yan, Gang; Wu, Shixue; Liu, Wenjun; Ji, Gang; Li-Tsang, Cecilia W P

    2018-03-01

    Deep facial burns leave conspicuous scar to the patients and affect their quality of life. Transparent facemask has been adopted for the prevention and treatment of facial hypertrophic scars for decades. Recently, with the advancement of 3D printing, the transparent facemask could facilitate the fitting of the facial contour. However, the effectiveness of the device and its biomechanical characteristics on pressure management of hypertrophic scar would need more objective evaluation. A biomechanical model of the transparent 3D-printed facemask was established through finite element analysis. Ten patients with extensive deep facial burns within 6 months were recruited for clinical study using 3D-printed facemask designed according to biomechanical model, and the interface pressure was measured on each patient. The patients in the treatment group (n=5) was provided with the 3D-printed transparent face mask soon after initial scar assessment, while the delayed treatment group (n=5) began the treatment one month after the initial scar assessment. The scar assessment was performed one month post intervention for both groups. The biomechanical modeling showed that the 3D, computer-generated facemask resulted in unbalanced pressure if design modifications were not incorporated to address these issues. The interface pressure between the facemask and patient's face was optimized through individualized design adjustments and the addition of silicone lining. After optimization of pressure through additional lining, the mean thickness and hardness of the scars of all 10 patients were decreased significantly after 1-month of intervention. In the delayed treatment group, the mean thickness of the scars was increased within the month without intervention, but it was also decreased after intervention. Facemask design and the silicone lining are important to ensure adequate compression pressure of 3D-printed transparent facemask. The intervention using the 3D-printed facemask

  13. A Biomechanical Study Comparing Helical Blade with Screw Design for Sliding Hip Fixations of Unstable Intertrochanteric Fractures

    Directory of Open Access Journals (Sweden)

    Qiang Luo

    2013-01-01

    Full Text Available Dynamic hip screw (DHS is a well-established conventional implant for treating intertrochanteric fracture. However, revision surgery sometimes still occurs due to the cutting out of implants. A helical blade instead of threaded screw (DHS blade was designed to improve the fixation power of the osteoporotic intertrochanteric fracture. In this study, the biomechanical properties of DHS blade compared to the conventional DHS were evaluated using an unstable AO/OTA 31-A2 intertrochanteric fracture model. Fifty synthetic proximal femoral bone models with such configuration were fixed with DHS and DHS blade in five different positions: centre-centre (CC, superior-centre (SC, inferior-center (IC, centre-anterior (CA, and centre-posterior (CP. All models had undergone mechanical compression test, and the vertical and rotational displacements were recorded. The results showed that DHS blade had less vertical or rotational displacement than the conventional DHS in CC, CA, and IC positions. The greatest vertical and rotational displacements were found at CP position in both groups. Overall speaking, DHS blade was superior in resisting vertical or rotational displacement in comparison to conventional DHS, and the centre-posterior position had the poorest performance in both groups.

  14. The effect of a daily quiz (TOPday) on self-confidence, enthusiasm, and test results for biomechanics.

    Science.gov (United States)

    Tanck, Esther; Maessen, Martijn F H; Hannink, Gerjon; van Kuppeveld, Sascha M H F; Bolhuis, Sanneke; Kooloos, Jan G M

    2014-01-01

    Many students in Biomedical Sciences have difficulty understanding biomechanics. In a second-year course, biomechanics is taught in the first week and examined at the end of the fourth week. Knowledge is retained longer if the subject material is repeated. However, how does one encourage students to repeat the subject matter? For this study, we developed 'two opportunities to practice per day (TOPday)', consisting of multiple-choice questions on biomechanics with immediate feedback, which were sent via e-mail. We investigated the effect of TOPday on self-confidence, enthusiasm, and test results for biomechanics. All second-year students (n = 95) received a TOPday of biomechanics on every regular course day with increasing difficulty during the course. At the end of the course, a non-anonymous questionnaire was conducted. The students were asked how many TOPday questions they completed (0-6 questions [group A]; 7-18 questions [group B]; 19-24 questions [group C]). Other questions included the appreciation for TOPday, and increase (no/yes) in self-confidence and enthusiasm for biomechanics. Seventy-eight students participated in the examination and completed the questionnaire. The appreciation for TOPday in group A (n = 14), B (n = 23) and C (n = 41) was 7.0 (95 % CI 6.5-7.5), 7.4 (95 % CI 7.0-7.8), and 7.9 (95 % CI 7.6-8.1), respectively (p biomechanics due to TOPday. In addition, they had a higher test result for biomechanics (p biomechanics on the other.

  15. Defining the biomechanical and biological threshold of murine mild traumatic brain injury using CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration).

    Science.gov (United States)

    Namjoshi, Dhananjay R; Cheng, Wai Hang; Bashir, Asma; Wilkinson, Anna; Stukas, Sophie; Martens, Kris M; Whyte, Tom; Abebe, Zelalem A; McInnes, Kurt A; Cripton, Peter A; Wellington, Cheryl L

    2017-06-01

    CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration) is a recently described animal model of traumatic brain injury (TBI) that primarily produces diffuse axonal injury (DAI) characterized by white matter inflammation and axonal damage. CHIMERA was specifically designed to reliably generate a variety of TBI severities using precise and quantifiable biomechanical inputs in a nonsurgical user-friendly platform. The objective of this study was to define the lower limit of single impact mild TBI (mTBI) using CHIMERA by characterizing the dose-response relationship between biomechanical input and neurological, behavioral, neuropathological and biochemical outcomes. Wild-type male mice were subjected to a single CHIMERA TBI using six impact energies ranging from 0.1 to 0.7J, and post-TBI outcomes were assessed over an acute period of 14days. Here we report that single TBI using CHIMERA induces injury dose- and time-dependent changes in behavioral and neurological deficits, axonal damage, white matter tract microgliosis and astrogliosis. Impact energies of 0.4J or below produced no significant phenotype (subthreshold), 0.5J led to significant changes for one or more phenotypes (threshold), and 0.6 and 0.7J resulted in significant changes in all outcomes assessed (mTBI). We further show that linear head kinematics are the most robust predictors of duration of unconsciousness, severity of neurological deficits, white matter injury, and microgliosis following single TBI. Our data extend the validation of CHIMERA as a biofidelic animal model of DAI and establish working parameters to guide future investigations of the mechanisms underlying axonal pathology and inflammation induced by mechanical trauma. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  16. Computational biomechanics of bone's responses to dental prostheses - osseointegration, remodeling and resorption

    International Nuclear Information System (INIS)

    Li Wei; Rungsiyakull, Chaiy; Field, Clarice; Lin, Daniel; Zhang Leo; Li Qing; Swain, Michael

    2010-01-01

    Clinical and experimental studies showed that human bone has the ability to remodel itself to better adapt to its biomechanical environment by changing both its material properties and geometry. As a consequence of the rapid development and extensive applications of major dental restorations such as implantation and fixed partial denture (FPD), the effect of bone remodeling on the success of a dental restorative surgery is becoming critical for prosthetic design and pre-surgical assessment. This paper aims to provide a computational biomechanics framework to address dental bone's responses as a result of dental restoration. It explored three important issues of resorption, apposition and osseointegration in terms of remodeling simulation. The published remodeling data in long bones were regulated to drive the computational remodeling prediction for the dental bones by correlating the results to clinical data. It is anticipated that the study will provide a more predictive model of dental bone response and help develop a new design methodology for patient-specific dental prosthetic restoration.

  17. A New Approach to Teaching Biomechanics Through Active, Adaptive, and Experiential Learning.

    Science.gov (United States)

    Singh, Anita

    2017-07-01

    Demand of biomedical engineers continues to rise to meet the needs of healthcare industry. Current training of bioengineers follows the traditional and dominant model of theory-focused curricula. However, the unmet needs of the healthcare industry warrant newer skill sets in these engineers. Translational training strategies such as solving real world problems through active, adaptive, and experiential learning hold promise. In this paper, we report our findings of adding a real-world 4-week problem-based learning unit into a biomechanics capstone course for engineering students. Surveys assessed student perceptions of the activity and learning experience. While students, across three cohorts, felt challenged to solve a real-world problem identified during the simulation lab visit, they felt more confident in utilizing knowledge learned in the biomechanics course and self-directed research. Instructor evaluations indicated that the active and experiential learning approach fostered their technical knowledge and life-long learning skills while exposing them to the components of adaptive learning and innovation.

  18. Biomechanical investigation of an alternative concept to angular stable plating using conventional fixation hardware.

    Science.gov (United States)

    Windolf, Markus; Klos, Kajetan; Wähnert, Dirk; van der Pol, Bas; Radtke, Roman; Schwieger, Karsten; Jakob, Roland P

    2010-05-21

    Angle-stable locking plates have improved the surgical management of fractures. However, locking implants are costly and removal can be difficult. The aim of this in vitro study was to evaluate the biomechanical performance of a newly proposed crossed-screw concept ("Fence") utilizing conventional (non-locked) implants in comparison to conventional LC-DCP (limited contact dynamic compression plate) and LCP (locking compression plate) stabilization, in a human cadaveric diaphyseal gap model. In eight pairs of human cadaveric femora, one femur per pair was randomly assigned to receive a Fence construct with either elevated or non-elevated plate, while the contralateral femur received either an LCP or LC-DCP instrumentation. Fracture gap motion and fatigue performance under cyclic loading was evaluated successively in axial compression and in torsion. Results were statistically compared in a pairwise setting. The elevated Fence constructs allowed significantly higher gap motion compared to the LCP instrumentations (axial compression: p concept can be of interest in cases were angle-stable implants are unavailable and can lead to new strategies in implant design.

  19. Assessment and characterization of in situ rotator cuff biomechanics

    Science.gov (United States)

    Trent, Erika A.; Bailey, Lane; Mefleh, Fuad N.; Raikar, Vipul P.; Shanley, Ellen; Thigpen, Charles A.; Dean, Delphine; Kwartowitz, David M.

    2013-03-01

    Rotator cuff disease is a degenerative disorder that is a common, costly, and often debilitating, ranging in severity from partial thickness tear, which may cause pain, to total rupture, leading to loss in function. Currently, clinical diagnosis and determination of disease extent relies primarily on subjective assessment of pain, range of motion, and possibly X-ray or ultrasound images. The final treatment plan however is at the discretion of the clinician, who often bases their decision on personal experiences, and not quantitative standards. The use of ultrasound for the assessment of tissue biomechanics is established, such as in ultrasound elastography, where soft tissue biomechanics are measured. Few studies have investigated the use of ultrasound elastography in the characterization of musculoskeletal biomechanics. To assess tissue biomechanics we have developed a device, which measures the force applied to the underlying musculotendentious tissue while simultaneously obtaining the related ultrasound images. In this work, the musculotendinous region of the infraspinatus of twenty asymptomatic male organized baseball players was examined to access the variability in tissue properties within a single patient and across a normal population. Elastic moduli at percent strains less than 15 were significantly different than those above 15 percent strain within the normal population. No significant difference in tissue properties was demonstrated within a single patient. This analysis demonstrated elastic moduli are variable across individuals and incidence. Therefore threshold elastic moduli will likely be a function of variation in local-tissue moduli as opposed to a specific global value.

  20. Model-Based Estimation of Ankle Joint Stiffness

    Directory of Open Access Journals (Sweden)

    Berno J. E. Misgeld

    2017-03-01

    Full Text Available We address the estimation of biomechanical parameters with wearable measurement technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the lower leg was formulated that is driven by electromyographic signals. The model incorporates a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm is necessary that employs segmental orientation sensor measurements. Because of the model’s inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed. The performance of the novel estimation approach was evaluated in silico and in an experimental procedure. The experimental study was conducted with body-worn sensors and a test-bench that was specifically designed to obtain reference angle and torque measurements for a single joint. Results show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as, joint stiffness during experimental test bench movements.

  1. Model-Based Estimation of Ankle Joint Stiffness

    Science.gov (United States)

    Misgeld, Berno J. E.; Zhang, Tony; Lüken, Markus J.; Leonhardt, Steffen

    2017-01-01

    We address the estimation of biomechanical parameters with wearable measurement technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the lower leg was formulated that is driven by electromyographic signals. The model incorporates a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm is necessary that employs segmental orientation sensor measurements. Because of the model’s inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed. The performance of the novel estimation approach was evaluated in silico and in an experimental procedure. The experimental study was conducted with body-worn sensors and a test-bench that was specifically designed to obtain reference angle and torque measurements for a single joint. Results show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as, joint stiffness during experimental test bench movements. PMID:28353683

  2. Biomechanics Associated with Patellofemoral Pain and ACL Injuries in Sports.

    Science.gov (United States)

    Weiss, Kaitlyn; Whatman, Chris

    2015-09-01

    Knee injuries are prevalent among a variety of competitive sports and can impact an athlete's ability to continue to participate in their sport or, in the worst case, end an athlete's career. The aim was to evaluate biomechanics associated with both patellofemoral pain syndrome (PFPS) and anterior cruciate ligament (ACL) injuries (in sports involving landing, change in direction, or rapid deceleration) across the three time points frequently reported in the literature: pre-injury, at the time of injury, and following injury. A search of the literature was conducted for research evaluating biomechanics associated with ACL injury and PFPS. The Web of Science, SPORTDiscus, EBSCO, PubMed, and CINAHL databases, to March 2015, were searched, and journal articles focused on ACL injuries and PFPS in sports that met the inclusion criteria were reviewed. The search methodology was created with the intent of extracting case-control, case, and cohort studies of knee injury in athletic populations. The search strategy was restricted to only full-text articles published in English. These articles were included in the review if they met all of the required selection criteria. The following inclusion criteria were used: (1) The study must report lower extremity biomechanics in one of the following settings: (a) a comparison of currently injured and uninjured participants, (b) a prospective study evaluating risk factors for injury, or (c) a study reporting on the injury event itself. (2) The study must include only currently active participants who were similar at baseline (i.e. healthy, high school level basketball players currently in-season) and include biomechanical analysis of either landing, change in direction, or rapid deceleration. (3) The study must include currently injured participants. The studies were graded on the basis of quality, which served as an indication of risk of bias. An adapted version of the 'Strengthening the Reporting of Observational Studies in

  3. Modelling MIZ dynamics in a global model

    Science.gov (United States)

    Rynders, Stefanie; Aksenov, Yevgeny; Feltham, Daniel; Nurser, George; Naveira Garabato, Alberto

    2016-04-01

    Exposure of large, previously ice-covered areas of the Arctic Ocean to the wind and surface ocean waves results in the Arctic pack ice cover becoming more fragmented and mobile, with large regions of ice cover evolving into the Marginal Ice Zone (MIZ). The need for better climate predictions, along with growing economic activity in the Polar Oceans, necessitates climate and forecasting models that can simulate fragmented sea ice with a greater fidelity. Current models are not fully fit for the purpose, since they neither model surface ocean waves in the MIZ, nor account for the effect of floe fragmentation on drag, nor include sea ice rheology that represents both the now thinner pack ice and MIZ ice dynamics. All these processes affect the momentum transfer to the ocean. We present initial results from a global ocean model NEMO (Nucleus for European Modelling of the Ocean) coupled to the Los Alamos sea ice model CICE. The model setup implements a novel rheological formulation for sea ice dynamics, accounting for ice floe collisions, thus offering a seamless framework for pack ice and MIZ simulations. The effect of surface waves on ice motion is included through wave pressure and the turbulent kinetic energy of ice floes. In the multidecadal model integrations we examine MIZ and basin scale sea ice and oceanic responses to the changes in ice dynamics. We analyse model sensitivities and attribute them to key sea ice and ocean dynamical mechanisms. The results suggest that the effect of the new ice rheology is confined to the MIZ. However with the current increase in summer MIZ area, which is projected to continue and may become the dominant type of sea ice in the Arctic, we argue that the effects of the combined sea ice rheology will be noticeable in large areas of the Arctic Ocean, affecting sea ice and ocean. With this study we assert that to make more accurate sea ice predictions in the changing Arctic, models need to include MIZ dynamics and physics.

  4. Forward lunge knee biomechanics before and after partial meniscectomy

    DEFF Research Database (Denmark)

    Hall, Michelle; Nielsen, Jonas Høberg; Holsgaard-Larsen, Anders

    2015-01-01

    partial meniscectomy (APM) on knee joint mechanics. The purpose of this study was to evaluate changes in knee joint biomechanics during a forward lunge in patients with a suspected degenerative meniscal tear from before to three months after APM. METHODS: Twenty-two patients (35-55years old......) with a suspected degenerative medial meniscal tear participated in this study. Three dimensional knee biomechanics were assessed on the injured and contralateral leg before and three months after APM. The visual analogue scale was used to assess knee pain and the Knee Injury Osteoarthritis Outcome Score was used...

  5. Biomechanical aspects of gravitational training of the astronauts before the flight.

    Science.gov (United States)

    Laputin, A N

    1997-07-01

    Researchers tested a hypothesis that astronauts can become more proficient in training for tasks during space flight by training in a high gravity suit. Computer image analysis of movements, tensodynamography, and myotonometry were used to analyze movement in the hypergravity suit, muscle response, and other biomechanical factors. Results showed that training in the hypergravity suit improved the biomechanics of motor performance.

  6. Current Biomechanical Concepts for Rotator Cuff Repair

    Science.gov (United States)

    2013-01-01

    For the past few decades, the repair of rotator cuff tears has evolved significantly with advances in arthroscopy techniques, suture anchors and instrumentation. From the biomechanical perspective, the focus in arthroscopic repair has been on increasing fixation strength and restoration of the footprint contact characteristics to provide early rehabilitation and improve healing. To accomplish these objectives, various repair strategies and construct configurations have been developed for rotator cuff repair with the understanding that many factors contribute to the structural integrity of the repaired construct. These include repaired rotator cuff tendon-footprint motion, increased tendon-footprint contact area and pressure, and tissue quality of tendon and bone. In addition, the healing response may be compromised by intrinsic factors such as decreased vascularity, hypoxia, and fibrocartilaginous changes or aforementioned extrinsic compression factors. Furthermore, it is well documented that torn rotator cuff muscles have a tendency to atrophy and become subject to fatty infiltration which may affect the longevity of the repair. Despite all the aforementioned factors, initial fixation strength is an essential consideration in optimizing rotator cuff repair. Therefore, numerous biomechanical studies have focused on elucidating the strongest devices, knots, and repair configurations to improve contact characteristics for rotator cuff repair. In this review, the biomechanical concepts behind current rotator cuff repair techniques will be reviewed and discussed. PMID:23730471

  7. Age-related changes in biomechanical properties of transgenic porcine pulmonary and aortic conduits

    International Nuclear Information System (INIS)

    Wilczek, Piotr; Malota, Zbigniew; Lesiak, Anna; Niemiec-Cyganek, Aleksandra; Kubin, Barbara; Nozynski, Jerzy; Mzyk, Aldona; Gramatyka, Michalina; Slomski, Ryszard; Wilczek, Grazyna; Opiela, Jolanta

    2014-01-01

    The limitations associated with conventional valve prosthesis have led to a search for alternatives. One potential approach is tissue engineering. Most tissue engineering studies have described the biomechanical properties of heart valves derived from adult pigs. However, because one of the factors affecting the function of valve prosthesis after implantation is appropriate sizing for a given patient, it is important to evaluate the usefulness of a heart valve given the donor animal’s weight and age. The aim of this study was to evaluate how the age of a pig can influence the biomechanical and hemodynamical properties of porcine heart valve prosthesis after acellularization. Acellular porcine aortic and pulmonary valve conduits were used. Hearts were harvested from animals differing in weight and age. The biomechanical properties of the valves were then characterized using a uniaxial tensile test. Moreover, computer simulations based on the finite element method (FEM) were used to study the influence of biomechanical properties on the hemodynamic conditions. Studying biomechanical and morphological changes in porcine heart valve conduits according to the weight and age of the animals can be valuable for developing age-targeted therapy using tissue engineering techniques. (paper)

  8. In Vivo Corneal Biomechanical Properties with Corneal Visualization Scheimpflug Technology in Chinese Population

    Directory of Open Access Journals (Sweden)

    Ying Wu

    2016-01-01

    Full Text Available Purpose. To determine the repeatability of recalculated corneal visualization Scheimpflug technology (CorVis ST parameters and to study the variation of biomechanical properties and their association with demographic and ocular characteristics. Methods. A total of 783 healthy subjects were included in this study. Comprehensive ophthalmological examinations were conducted. The repeatability of the recalculated biomechanical parameters with 90 subjects was assessed by the coefficient of variation (CV and intraclass correlation coefficient (ICC. Univariate and multivariate linear regression models were used to identify demographic and ocular factors. Results. The repeatability of the central corneal thickness (CCT, deformation amplitude (DA, and first/second applanation time (A1/A2-time exhibited excellent repeatability (CV% ≤ 3.312% and ICC ≥ 0.929 for all measurements. The velocity in/out (Vin/out, highest concavity- (HC- radius, peak distance (PD, and DA showed a normal distribution. Univariate linear regression showed a statistically significant correlation between Vin, Vout, DA, PD, and HC-radius and IOP, CCT, and corneal volume, respectively. Multivariate analysis showed that IOP and CCT were negatively correlated with Vin, DA, and PD, while there was a positive correlation between Vout and HC-radius. Conclusion. The ICCs of the recalculated parameters, CCT, DA, A1-time, and A2-time, exhibited excellent repeatability. IOP, CCT, and corneal volume significantly influenced the biomechanical properties of the eye.

  9. Dynamic accelerator modeling

    International Nuclear Information System (INIS)

    Nishimura, Hiroshi.

    1993-05-01

    Object-Oriented Programming has been used extensively to model the LBL Advanced Light Source 1.5 GeV electron storage ring. This paper is on the present status of the class library construction with emphasis on a dynamic modeling

  10. Dynamic Modelling Of A SCARA Robot

    Science.gov (United States)

    Turiel, J. Perez; Calleja, R. Grossi; Diez, V. Gutierrez

    1987-10-01

    This paper describes a method for modelling industrial robots that considers dynamic approach to manipulation systems motion generation, obtaining the complete dynamic model for the mechanic part of the robot and taking into account the dynamic effect of actuators acting at the joints. For a four degree of freedom SCARA robot we obtain the dynamic model for the basic (minimal) configuration, that is, the three degrees of freedom that allow us to place the robot end effector in a desired point, using the Lagrange Method to obtain the dynamic equations in matrix form. The manipulator is considered to be a set of rigid bodies inter-connected by joints in the form of simple kinematic pairs. Then, the state space model is obtained for the actuators that move the robot joints, uniting the models of the single actuators, that is, two DC permanent magnet servomotors and an electrohydraulic actuator. Finally, using a computer simulation program written in FORTRAN language, we can compute the matrices of the complete model.

  11. Modification of elastic stable intramedullary nailing with a 3rd nail in a femoral spiral fracture model - results of biomechanical testing and a prospective clinical study.

    Science.gov (United States)

    Kaiser, Martin M; Stratmann, Christine; Zachert, Gregor; Schulze-Hessing, Maaike; Gros, Nina; Eggert, Rebecca; Rapp, Marion

    2014-01-08

    Elastic stable intramedullary nailing (ESIN) is the standard treatment for displaced diaphyseal femoral fractures in children. However, high complication rates (10-50%) are reported in complex fractures. This biomechanical study compares the stiffness with a 3rd nail implanted to that in the classical 2C-shaped configuration and presents the application into clinical practice. For each of the 3 configurations of ESIN-osteosynthesis with titanium nails eight composite femoral grafts (Sawbones®) with an identical spiral fracture were used: 2C configuration (2C-shaped nails, 2 × 3.5 mm), 3CM configuration (3rd nail from medial) and 3CL configuration (3rd nail from lateral). Each group underwent biomechanical testing in 4-point bending, internal/external rotation and axial compression. 2C and 3CM configurations showed no significant differences in this spiroid type fracture model. 3CL had a significantly higher stiffness during anterior-posterior bending, internal rotation and 9° compression than 2C, and was stiffer in the lateral-medial direction than 3CM. The 3CL was less stable during p-a bending and external rotation than both the others. As biomechanical testing showed a higher stability for the 3CL configuration in two (a-p corresponding to recurvation and 9° compression to shortening) of three directions associated with the most important clinical problems, we added a 3rd nail in ESIN-osteosynthesis for femoral fractures. 11 boys and 6 girls (2.5-15 years) were treated with modified ESIN of whom 12 were '3CL'; due to the individual character of the fractures 4 patients were treated with '3CM' (third nail from medial) and as an exception 1 adolescent with 4 nails and one boy with plate osteosynthesis. No additional stabilizations or re-operations were necessary. All patients achieved full points in the Harris-Score at follow-up; no limb length discrepancy occurred. The 3CL configuration provided a significantly higher stiffness than 2C and 3CM configurations

  12. Is gender influencing the biomechanical results after autologous chondrocyte implantation?

    Science.gov (United States)

    Kreuz, Peter C; Müller, Sebastian; Erggelet, Christoph; von Keudell, Arvind; Tischer, Thomas; Kaps, Christian; Niemeyer, Philipp; Hirschmüller, Anja

    2014-01-01

    The influence of gender on the biomechanical outcome after autologous chondrocyte implantation (ACI) including isokinetic muscle strength measurements has not been investigated. The present prospective study was performed to evaluate gender-specific differences in the biomechanical function 48 months after ACI. Fifty-two patients (mean age 35.6 ± 8.5 years) that met our inclusion criteria, underwent ACI with Bioseed C(®) and were evaluated with the KOOS score preoperatively, 6, 12 and 48 months after surgery. At final follow-up, 44 out of the 52 patients underwent biomechanical evaluation with isokinetic strength measurements of both knees. All data were evaluated separately for men and women and compared for each time interval using the Mann-Whitney U test. Clinical scores improved significantly over the whole study period (p genders. Isokinetic muscle strength measures are significantly worse in women (p role for the explanation of gender-specific results after ACI.

  13. System Dynamics Modelling for a Balanced Scorecard

    DEFF Research Database (Denmark)

    Nielsen, Steen; Nielsen, Erland Hejn

    2008-01-01

    /methodology/approach - We use a case study model to develop time or dynamic dimensions by using a System Dynamics modelling (SDM) approach. The model includes five perspectives and a number of financial and non-financial measures. All indicators are defined and related to a coherent number of different cause...... have a major influence on other indicators and profit and may be impossible to predict without using a dynamic model. Practical implications - The model may be used as the first step in quantifying the cause-and-effect relationships of an integrated BSC model. Using the System Dynamics model provides......Purpose - To construct a dynamic model/framework inspired by a case study based on an international company. As described by the theory, one of the main difficulties of BSC is to foresee the time lag dimension of different types of indicators and their combined dynamic effects. Design...

  14. Biomechanics Scholar Citations across Academic Ranks

    Directory of Open Access Journals (Sweden)

    Knudson Duane

    2015-11-01

    Full Text Available Study aim: citations to the publications of a scholar have been used as a measure of the quality or influence of their research record. A world-wide descriptive study of the citations to the publications of biomechanics scholars of various academic ranks was conducted.

  15. The effects of gravity on human walking: a new test of the dynamic similarity hypothesis using a predictive model.

    Science.gov (United States)

    Raichlen, David A

    2008-09-01

    The dynamic similarity hypothesis (DSH) suggests that differences in animal locomotor biomechanics are due mostly to differences in size. According to the DSH, when the ratios of inertial to gravitational forces are equal between two animals that differ in size [e.g. at equal Froude numbers, where Froude = velocity2/(gravity x hip height)], their movements can be made similar by multiplying all time durations by one constant, all forces by a second constant and all linear distances by a third constant. The DSH has been generally supported by numerous comparative studies showing that as inertial forces differ (i.e. differences in the centripetal force acting on the animal due to variation in hip heights), animals walk with dynamic similarity. However, humans walking in simulated reduced gravity do not walk with dynamically similar kinematics. The simulated gravity experiments did not completely account for the effects of gravity on all body segments, and the importance of gravity in the DSH requires further examination. This study uses a kinematic model to predict the effects of gravity on human locomotion, taking into account both the effects of gravitational forces on the upper body and on the limbs. Results show that dynamic similarity is maintained in altered gravitational environments. Thus, the DSH does account for differences in the inertial forces governing locomotion (e.g. differences in hip height) as well as differences in the gravitational forces governing locomotion.

  16. Cervical spondylosis anatomy: pathophysiology and biomechanics.

    Science.gov (United States)

    Shedid, Daniel; Benzel, Edward C

    2007-01-01

    Cervical spondylosis is the most common progressive disorder in the aging cervical spine. It results from the process of degeneration of the intervertebral discs and facet joints of the cervical spine. Biomechanically, the disc and the facets are the connecting structures between the vertebrae for the transmission of external forces. They also facilitate cervical spine mobility. Symptoms related to myelopathy and radiculopathy are caused by the formation of osteophytes, which compromise the diameter of the spinal canal. This compromise may also be partially developmental. The developmental process, together with the degenerative process, may cause mechanical pressure on the spinal cord at one or multiple levels. This pressure may produce direct neurological damage or ischemic changes and, thus, lead to spinal cord disturbances. A thorough understanding of the biomechanics, the pathology, the clinical presentation, the radiological evaluation, as well as the surgical indications of cervical spondylosis, is essential for the management of patients with cervical spondylosis.

  17. Biomechanics of the Peacock's Display: How Feather Structure and Resonance Influence Multimodal Signaling.

    Directory of Open Access Journals (Sweden)

    Roslyn Dakin

    Full Text Available Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus perform a complex, multimodal "train-rattling" display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock's visual display by allowing the colorful iridescent eyespots-which strongly influence female mate choice-to remain nearly stationary against a dynamic iridescent background.

  18. Biomechanical testing of zirconium dioxide osteosynthesis system for Le Fort I advancement osteotomy fixation.

    Science.gov (United States)

    Hingsammer, Lukas; Grillenberger, Markus; Schagerl, Martin; Malek, Michael; Hunger, Stefan

    2018-01-01

    The following work is the first evaluating the applicability of 3D printed zirconium dioxide ceramic miniplates and screws to stabilize maxillary segments following a Le-Fort I advancement surgery. Conventionally used titanium and individual fabricated zirconium dioxide miniplates were biomechanically tested and compared under an occlusal load of 120N and 500N using 3D finite element analysis. The overall model consisted of 295,477 elements. Under an occlusal load of 500N a safety factor before plastic deformation respectively crack of 2.13 for zirconium dioxide and 4.51 for titanium miniplates has been calculated. From a biomechanical point of view 3D printed ZrO 2 mini-plates and screws are suggested to constitute an appropriate patient specific and metal-free solution for maxillary stabilization after Le Fort I osteotomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Relapse and stability of surgically assisted rapid maxillary expansion, an anatomical biomechanical study

    NARCIS (Netherlands)

    Koudstaal, M.J.; Smeets, J.B.J.; Kleinrensink, G.J.; Schulten, A.J.M.; van der Wal, K.G.H.

    2009-01-01

    Purpose: This anatomic biomechanical study was undertaken to gain insight into the underlining mechanism of tipping of the maxillary segments during transverse expansion using tooth-borne and bone-borne distraction devices. Materials and Methods: An anatomic biomechanical study was performed on 10

  20. Biomechanical, anthropometric, and psychological determinants of barbell back squat strength.

    Science.gov (United States)

    Vigotsky, Andrew D; Bryanton, Megan A; Nuckols, Greg; Beardsley, Chris; Contreras, Bret; Evans, Jessica; Schoenfeld, Brad J

    2018-02-27

    Previous investigations of strength have only focused on biomechanical or psychological determinants, while ignoring the potential interplay and relative contributions of these variables. The purpose of this study was to investigate the relative contributions of biomechanical, anthropometric, and psychological variables to the prediction of maximum parallel barbell back squat strength. Twenty-one college-aged participants (male = 14; female = 7; age = 23 ± 3 years) reported to the laboratory for two visits. The first visit consisted of anthropometric, psychometric, and parallel barbell back squat one-repetition maximum (1RM) testing. On the second visit, participants performed isometric dynamometry testing for the knee, hip, and spinal extensors in a sticking point position-specific manner. Multiple linear regression and correlations were used to investigate the combined and individual relationships between biomechanical, anthropometric, and psychological variables and squat 1RM. Multiple regression revealed only one statistically predictive determinant: fat free mass normalized to height (standardized estimate ± SE = 0.6 ± 0.3; t(16) = 2.28; p = 0.037). Correlation coefficients for individual variables and squat 1RM ranged from r = -0.79-0.83, with biomechanical, anthropometric, experiential, and sex predictors showing the strongest relationships, and psychological variables displaying the weakest relationships. These data suggest that back squat strength in a heterogeneous population is multifactorial and more related to physical rather than psychological variables.

  1. Phase reversal of biomechanical functions and muscle activity in backward pedaling.

    Science.gov (United States)

    Ting, L H; Kautz, S A; Brown, D A; Zajac, F E

    1999-02-01

    Computer simulations of pedaling have shown that a wide range of pedaling tasks can be performed if each limb has the capability of executing six biomechanical functions, which are arranged into three pairs of alternating antagonistic functions. An Ext/Flex pair accelerates the limb into extension or flexion, a Plant/Dorsi pair accelerates the foot into plantarflexion or dorsiflexion, and an Ant/Post pair accelerates the foot anteriorly or posteriorly relative to the pelvis. Because each biomechanical function (i.e., Ext, Flex, Plant, Dorsi, Ant, or Post) contributes to crank propulsion during a specific region in the cycle, phasing of a muscle is hypothesized to be a consequence of its ability to contribute to one or more of the biomechanical functions. Analysis of electromyogram (EMG) patterns has shown that this biomechanical framework assists in the interpretation of muscle activity in healthy and hemiparetic subjects during forward pedaling. Simulations show that backward pedaling can be produced with a phase shift of 180 degrees in the Ant/Post pair. No phase shifts in the Ext/Flex and Plant/Dorsi pairs are then necessary. To further test whether this simple yet biomechanically viable strategy may be used by the nervous system, EMGs from 7 muscles in 16 subjects were measured during backward as well as forward pedaling. As predicted, phasing in vastus medialis (VM), tibialis anterior (TA), medial gastrocnemius (MG), and soleus (SL) were unaffected by pedaling direction, with VM and SL contributing to Ext, MG to Plant, and TA to Dorsi. In contrast, phasing in biceps femoris (BF) and semimembranosus (SM) were affected by pedaling direction, as predicted, compatible with their contribution to the directionally sensitive Post function. Phasing of rectus femoris (RF) was also affected by pedaling direction; however, its ability to contribute to the directionally sensitive Ant function may only be expressed in forward pedaling. RF also contributed significantly to

  2. The effect of trochlear dysplasia on patellofemoral biomechanics: a cadaveric study with simulated trochlear deformities.

    Science.gov (United States)

    Van Haver, Annemieke; De Roo, Karel; De Beule, Matthieu; Labey, Luc; De Baets, Patrick; Dejour, David; Claessens, Tom; Verdonk, Peter

    2015-06-01

    Trochlear dysplasia appears in different geometrical variations. The Dejour classification is widely used to grade the severity of trochlear dysplasia and to decide on treatment. To investigate the effect of trochlear dysplasia on patellofemoral biomechanics and to determine if different types of trochlear dysplasia have different effects on patellofemoral biomechanics. Controlled laboratory study. Trochlear dysplasia was simulated in 4 cadaveric knees by replacing the native cadaveric trochlea with different types of custom-made trochlear implants, manufactured with 3-dimensional printing. For each knee, 5 trochlear implants were designed: 1 implant simulated the native trochlea (control condition), and 4 implants simulated 4 types of trochlear dysplasia. The knees were subjected to 3 biomechanical tests: a squat simulation, an open chain extension simulation, and a patellar stability test. The patellofemoral kinematics, contact area, contact pressure, and stability were compared between the control condition (replica implants) and the trochlear dysplastic condition and among the subgroups of trochlear dysplasia. The patellofemoral joint in the trochlear dysplastic group showed increased internal rotation, lateral tilt, and lateral translation; increased contact pressures; decreased contact areas; and decreased stability when compared with the control group. Within the trochlear dysplastic group, the implants graded as Dejour type D showed the largest deviations for the kinematical parameters, and the implants graded as Dejour types B and D showed the largest deviations for the patellofemoral contact areas and pressures. Patellofemoral kinematics, contact area, contact pressure, and stability are significantly affected by trochlear dysplasia. Of all types of trochlear dysplasia, the models characterized with a pronounced trochlear bump showed the largest deviations in patellofemoral biomechanics. Investigating the relationship between the shape of the trochlea and

  3. Validated biomechanical model for efficiency and speed of rowing.

    Science.gov (United States)

    Pelz, Peter F; Vergé, Angela

    2014-10-17

    The speed of a competitive rowing crew depends on the number of crew members, their body mass, sex and the type of rowing-sweep rowing or sculling. The time-averaged speed is proportional to the rower's body mass to the 1/36th power, to the number of crew members to the 1/9th power and to the physiological efficiency (accounted for by the rower's sex) to the 1/3rd power. The quality of the rowing shell and propulsion system is captured by one dimensionless parameter that takes the mechanical efficiency, the shape and drag coefficient of the shell and the Froude propulsion efficiency into account. We derive the biomechanical equation for the speed of rowing by two independent methods and further validate it by successfully predicting race times. We derive the theoretical upper limit of the Froude propulsion efficiency for low viscous flows. This upper limit is shown to be a function solely of the velocity ratio of blade to boat speed (i.e., it is completely independent of the blade shape), a result that may also be of interest for other repetitive propulsion systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The use of mechanistic descriptions of algal growth and zooplankton grazing in an estuarine eutrophication model

    Science.gov (United States)

    Baird, M. E.; Walker, S. J.; Wallace, B. B.; Webster, I. T.; Parslow, J. S.

    2003-03-01

    A simple model of estuarine eutrophication is built on biomechanical (or mechanistic) descriptions of a number of the key ecological processes in estuaries. Mechanistically described processes include the nutrient uptake and light capture of planktonic and benthic autotrophs, and the encounter rates of planktonic predators and prey. Other more complex processes, such as sediment biogeochemistry, detrital processes and phosphate dynamics, are modelled using empirical descriptions from the Port Phillip Bay Environmental Study (PPBES) ecological model. A comparison is made between the mechanistically determined rates of ecological processes and the analogous empirically determined rates in the PPBES ecological model. The rates generally agree, with a few significant exceptions. Model simulations were run at a range of estuarine depths and nutrient loads, with outputs presented as the annually averaged biomass of autotrophs. The simulations followed a simple conceptual model of eutrophication, suggesting a simple biomechanical understanding of estuarine processes can provide a predictive tool for ecological processes in a wide range of estuarine ecosystems.

  5. Biomechanical comparison between titanium and cobalt chromium rods used in a pedicle subtraction osteotomy model

    Directory of Open Access Journals (Sweden)

    Kalpit N. Shah

    2018-03-01

    Full Text Available Instrumentation failure is a common complication following complex spinal reconstruction and deformity correction. Rod fracture is the most frequent mode of hardware failure and often occurs at or near a 3-column osteotomy site. Titanium (Ti rods are commonly utilized for spinal fixations, however, theoretically stiffer materials, such as cobalt-chrome (CoCr rods are also available. Despite ongoing use in clinical practice, there is little biomechanical evidence that compares the construct ability to withstand fatigue stress for Ti and Co-Cr rods. Six models using 2 polyethylene blocks each were used to simulate a pedicle subtraction osteotomy. Within each block 6.0×45 mm polyaxial screws were placed and connected to another block using either two 6.0×100 mm Ti (3 models or CoCr rods (3 models. The rods were bent to 40° using a French bender and were secured to the screws to give a vertical height of 1.5 cm between the blocks. The blocks were fatigue tested with 700N at 4 Hz until failure. The average number of cycles to failure for the Ti rod models was 12840 while the CoCr rod models failed at a significantly higher, 58351 cycles (P=0.003. All Ti models experienced rod fracture as the mode of failure. Two out of the three CoCr models had rod fractures while the last sample failed via screw fracture at the screw-tulip junction. The risk of rod failure is substantial in the setting of long segment spinal arthrodesis and corrective osteotomy. Efforts to increase the mechanical strength of posterior constructs may reduce the occurrence of this complication. Utilizing CoCr rods in patients with pedicle subtraction osteotomy may reduce the rate of device failure during maturation of the posterior fusion mass and limit the need for supplemental anterior column support.

  6. Citation metrics of excellence in sports biomechanics research.

    Science.gov (United States)

    Knudson, Duane

    2017-11-13

    This study extended research on key citation metrics of winners of two career scholar awards in sports biomechanics. Google Scholar (GS) was searched using Harzing's Publish or Perish software for the 13 most recent winners of the ISBS Geoffrey Dyson Award and the ASB Jim Hay Memorial Award. Returned records were corrected for author, and publications excluded for all but peer-reviewed journal articles, proceedings articles, chapters and books in English. These recent award winners had published about 150 publications that had been cited typically 4,082 and 6,648 times over a 26- and 28-year period before receiving these career awards for sports biomechanics research. Estimated median citations at time of their awards were 2,927 and 4,907 for the Dyson and Hay awards, respectively. Award winners had mean Hirsh indexes of 32-45 and mean h i of 19-28. Their mean g indexes (59-84) and their numerous citation classics (C > 100) indicated that they had many influential publications. The citation metrics of these scholars were outstanding and consistent with recent studies of top scholars in biomechanics and kinesiology/exercise science. Careful searching, cleaning and interpretation of several scholar-level citation metrics may provide useful confirmatory evidence for evaluations of awards committees.

  7. ES-2 Dummy Biomechanical Responses.

    Science.gov (United States)

    Byrnes, Katie; Abramczyk, Joseph; Berliner, Jeff; Irwin, Annette; Jensen, Jack; Kowsika, Murthy; Mertz, Harold J; Rouhana, Stephen W; Scherer, Risa; Shi, Yibing; Sutterfield, Aleta; Xu, Lan; Tylko, Suzanne; Dalmotas, Dainius

    2002-11-01

    This technical paper presents the results of biomechanical testing conducted on the ES-2 dummy by the Occupant Safety Research Partnership and Transport Canada. The ES-2 is a production dummy, based on the EuroSID-1 dummy, that was modified to further improve testing capabilities as recommended by users of the EuroSID-1 dummy. Biomechanical response data were obtained by completing a series of drop, pendulum, and sled tests that are outlined in the International Organization of Standardization Technical Report 9790 that describes biofidelity requirements for the midsize adult male side impact dummy. A few of the biofidelity tests were conducted on both sides of the dummy to evaluate the symmetry of its responses. Full vehicle crash tests were conducted to verify if the changes in the EuroSID-1, resulting in the ES-2 design, did improve the dummy's testing capability. In addition to the biofidelity testing, the ES-2 dummy repeatability, reproducibility and durability are discussed. Finally, this technical paper will compare the biofidelity ratings of the current adult side impact dummies with the ES-2 dummy, which received an overall dummy biofidelity rating of 4.6.

  8. Generative Models of Conformational Dynamics

    Science.gov (United States)

    Langmead, Christopher James

    2014-01-01

    Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term ‘generative’ refers to a model of the joint probability distribution over the behaviors of the constituent atoms. In the context of molecular modeling, generative models reveal the correlation structure between the atoms, and may be used to predict how the system will respond to structural perturbations. We begin by discussing traditional methods, which produce multivariate Gaussian models. We then discuss GAMELAN (GrAphical Models of Energy LANdscapes), which produces generative models of complex, non-Gaussian conformational dynamics (e.g., allostery, binding, folding, etc) from long timescale simulation data. PMID:24446358

  9. Modeling and simulation of normal and hemiparetic gait

    Science.gov (United States)

    Luengas, Lely A.; Camargo, Esperanza; Sanchez, Giovanni

    2015-09-01

    Gait is the collective term for the two types of bipedal locomotion, walking and running. This paper is focused on walking. The analysis of human gait is of interest to many different disciplines, including biomechanics, human-movement science, rehabilitation and medicine in general. Here we present a new model that is capable of reproducing the properties of walking, normal and pathological. The aim of this paper is to establish the biomechanical principles that underlie human walking by using Lagrange method. The constraint forces of Rayleigh dissipation function, through which to consider the effect on the tissues in the gait, are included. Depending on the value of the factor present in the Rayleigh dissipation function, both normal and pathological gait can be simulated. First of all, we apply it in the normal gait and then in the permanent hemiparetic gait. Anthropometric data of adult person are used by simulation, and it is possible to use anthropometric data for children but is necessary to consider existing table of anthropometric data. Validation of these models includes simulations of passive dynamic gait that walk on level ground. The dynamic walking approach provides a new perspective of gait analysis, focusing on the kinematics and kinetics of gait. There have been studies and simulations to show normal human gait, but few of them have focused on abnormal, especially hemiparetic gait. Quantitative comparisons of the model predictions with gait measurements show that the model can reproduce the significant characteristics of normal gait.

  10. Biomechanical Characteristics and Determinants of Instep Soccer Kick

    Science.gov (United States)

    Kellis, Eleftherios; Katis, Athanasios

    2007-01-01

    Good kicking technique is an important aspect of a soccer player. Therefore, understanding the biomechanics of soccer kicking is particularly important for guiding and monitoring the training process. The purpose of this review was to examine latest research findings on biomechanics of soccer kick performance and identify weaknesses of present research which deserve further attention in the future. Being a multiarticular movement, soccer kick is characterised by a proximal-to-distal motion of the lower limb segments of the kicking leg. Angular velocity is maximized first by the thigh, then by the shank and finally by the foot. This is accomplished by segmental and joint movements in multiple planes. During backswing, the thigh decelerates mainly due to a motion-dependent moment from the shank and, to a lesser extent, by activation of hip muscles. In turn, forward acceleration of the shank is accomplished through knee extensor moment as well as a motion-dependent moment from the thigh. The final speed, path and spin of the ball largely depend on the quality of foot-ball contact. Powerful kicks are achieved through a high foot velocity and coefficient of restitution. Preliminary data indicate that accurate kicks are achieved through slower kicking motion and ball speed values. Key pointsSoccer kick is achieved through segmental and joint rotations in multiple planes and via the proximal-to-distal sequence of segmental angular velocities until ball impact. The quality of ball - foot impact and the mechanical behavior of the foot are also important determinants of the final speed, path and spin of the ball.Ball speed values during the maximum instep kick range from 18 to 35 msec-1 depending on various factors, such as skill level, age, approach angle and limb dominance.The main bulk of biomechanics research examined the biomechanics of powerful kicks, mostly under laboratory conditions. A powerful kick is characterized by the achievement of maximal ball speed. However

  11. Training for Women's Basketball: A Biomechanical Emphasis for Preventing Anterior Cruciate Ligament Injury.

    Science.gov (United States)

    Pettitt, Robert W.; Bryson, Erin R.

    2002-01-01

    Summarizes proposed variables linked with higher incidences of anterior cruciate ligament tears in females and the biomechanical aspects of the lower extremity during the performance of common basketball skills, focusing on gender differences in knee joint stability and neuromuscular control, biomechanical aspects of lower extremity skills in…

  12. Biomechanics of the pelvic floor musculature

    NARCIS (Netherlands)

    Janda, S.

    2006-01-01

    The present thesis was motivated by two main goals. The first research goal of the thesis was to understand the complex biomechanical behaviour of the pelvic floor muscles. The second goal was to study the mechanism of the pelvic organ prolapse (genital prolapse). The pelvic floor in humans is a

  13. Biomechanical considerations in mandibular incisor extraction cases.

    Science.gov (United States)

    Rachala, Madhukar Reddy; Aileni, Kaladhar Reddy; Dasari, Arun Kumar; Sinojiya, Jay

    2015-01-01

    Mandibular incisor extraction can be regarded as a valuable treatment option in certain malocclusions to obtain excellence in orthodontic results in terms of function, aesthetics and stability. This treatment alternative is indicated in clinical situations like mild to moderate class III malocclusion, mild anterior mandibular tooth size excess, periodontally compromised teeth, ectopic eruption of mandibular incisor and minimal openbite tendencies. Unlike in premolar extraction cases, space closure in mandibular incisor extraction cases is unique in which the extraction space will be in the middle of the arch. The end result of space closure in these cases should be well aligned, upright, anterior teeth with parallel roots and the goal can be achieved with the bodily tooth movement through proper application of biomechanics. The purpose of this article is to explain the biomechanics of space closure in mandibular incisor extraction cases.

  14. No effects of functional exercise therapy on walking biomechanics in patients with knee osteoarthritis

    DEFF Research Database (Denmark)

    Henriksen, Marius; Klokker, Louise; Bartholdy, Cecilie

    2016-01-01

    AIM: To assess the effects of a functional and individualised exercise programme on gait biomechanics during walking in people with knee OA. METHODS: Sixty participants were randomised to 12 weeks of facility-based functional and individualised neuromuscular exercise therapy (ET), 3 sessions per...... limited confidence in the findings due to multiple statistical tests and lack of biomechanical logics. Therefore we conclude that a 12-week supervised individualised neuromuscular exercise programme has no effects on gait biomechanics. Future studies should focus on exercise programmes specifically...

  15. Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder

    DEFF Research Database (Denmark)

    Ajalloueian, Fatemeh; Lemon, Greg; Hilborn, Jöns

    2018-01-01

    and scaffolds. To replicate an organ that is under frequent mechanical loading and unloading, special attention towards fulfilling its biomechanical requirements is necessary. Several biological and synthetic scaffolds are available, with various characteristics that qualify them for use in bladder regeneration...... in vitro and in vivo, including in the treatment of clinical conditions. The biomechanical properties of the native bladder can be investigated using a range of mechanical tests for standardized assessments, as well as mathematical and computational bladder biomechanics. Despite a large body of research...

  16. Proteomics Analyses of Human Optic Nerve Head Astrocytes Following Biomechanical Strain*

    OpenAIRE

    Rogers, Ronan S.; Dharsee, Moyez; Ackloo, Suzanne; Sivak, Jeremy M.; Flanagan, John G.

    2011-01-01

    We investigate the role of glial cell activation in the human optic nerve caused by raised intraocular pressure, and their potential role in the development of glaucomatous optic neuropathy. To do this we present a proteomics study of the response of cultured, optic nerve head astrocytes to biomechanical strain, the magnitude and mode of strain based on previously published quantitative models. In this case, astrocytes were subjected to 3 and 12% stretches for either 2 h or 24 h. Proteomic me...

  17. Unsteady Vibration Aerodynamic Modeling and Evaluation of Dynamic Derivatives Using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Xu Liu

    2015-01-01

    Full Text Available Unsteady aerodynamic system modeling is widely used to solve the dynamic stability problems encountering aircraft design. In this paper, single degree-of-freedom (SDF vibration model and forced simple harmonic motion (SHM model for dynamic derivative prediction are developed on the basis of modified Etkin model. In the light of the characteristics of SDF time domain solution, the free vibration identification methods for dynamic stability parameters are extended and applied to the time domain numerical simulation of blunted cone calibration model examples. The dynamic stability parameters by numerical identification are no more than 0.15% deviated from those by experimental simulation, confirming the correctness of SDF vibration model. The acceleration derivatives, rotary derivatives, and combination derivatives of Army-Navy Spinner Rocket are numerically identified by using unsteady N-S equation and solving different SHV patterns. Comparison with the experimental result of Army Ballistic Research Laboratories confirmed the correctness of the SHV model and dynamic derivative identification. The calculation result of forced SHM is better than that by the slender body theory of engineering approximation. SDF vibration model and SHM model for dynamic stability parameters provide a solution to the dynamic stability problem encountering aircraft design.

  18. Dynamic Airspace Managment - Models and Algorithms

    OpenAIRE

    Cheng, Peng; Geng, Rui

    2010-01-01

    This chapter investigates the models and algorithms for implementing the concept of Dynamic Airspace Management. Three models are discussed. First two models are about how to use or adjust air route dynamically in order to speed up air traffic flow and reduce delay. The third model gives a way to dynamically generate the optimal sector configuration for an air traffic control center to both balance the controller’s workload and save control resources. The first model, called the Dynami...

  19. Biomechanical analysis of clavicle hook plate implantation with different hook angles in the acromioclavicular joint.

    Science.gov (United States)

    Hung, Li-Kun; Su, Kuo-Chih; Lu, Wen-Hsien; Lee, Cheng-Hung

    2017-08-01

    A clavicle hook plate is a simple and effective method for treating acromioclavicular dislocation and distal clavicle fractures. However, subacromial osteolysis and peri-implant fractures are complicated for surgeons to manage. This study uses finite element analysis (FEA) to investigate the post-implantation biomechanics of clavicle hook plates with different hook angles. This FEA study constructed a model with a clavicle, acromion, clavicle hook plate, and screws to simulate the implantation of clavicle hook plates at different hook angles (90°, 95°, 100°, 105°, and 110°) for treating acromioclavicular joint dislocations. This study investigated the biomechanics of the acromion, clavicle, hook plate, and screws. A smaller hook angle increases the stress on the middle third of the clavicle. A larger hook angle increases the force exerted by the clavicle hook plate on the acromion. The screw at the most medial position on the plate generated the highest stress. The highest stress on the implanted clavicle hook plate was on the turning corner of the hook. A clavicle hook plate with different hook angles may induce different biomechanical behaviors in the clavicle and acromion. Orthopedic surgeons must select a suitable clavicle hook plate based on the anatomical structure of each patient.

  20. Biomechanical aspects of bone microstructure in vertebrates ...

    Indian Academy of Sciences (India)

    Prakash

    2009-10-29

    Oct 29, 2009 ... Biomechanical or biophysical principles can be applied to study biological structures in their modern or .... Accounting for the flow in a horizontal pipe, z1 = z2, and ..... OH, USA for providing financial assistance and academic.